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Introduetion 

1. Introduetion 

The advent of the buyers' market has irnposed a necessity on rnanufacturing 
cornpanies to suit individual customer requirements. Cornpanies have answered this 
need by offering a large variety frorn which custorners choose their ideal products. 
However, offering a large product variety is not a solution when this variety is 
accornpanied by high internal costs. The salution for coping with the problern of 
rnass-custornisation lies in the development of product families, which offer a large 
variety frorn a small set of modules that can be easily cornbined. This thesis deals with 
such product families. It focuses on the structure of design inforrnation of product 
families and shows how the evolution of this inforrnation in the design process can be 
supported. 

Today's buyers' market is a break with the past. The sellers' market of the fifties and 
sixties was characterised by high demand and a relative shortage of supply. Firrns 
produced large volumes of identical products, supported by rnass production 
techniques. The traditional rnass-production cornpany was bureaucratie and 
hierarchical. Under close supervision, workers repeated narrowly defined, repetitious 
tasks. Of course, sorne companies produced customised or highly differential products 
on customer-order, for example expensive machinery. But their volumes were small 
and their costs were high. The main problem, however, was that cornpanies could 
pursue only two very distinct strategies. In other words, companies had to choose 
between being efficient mass producers and being innovative speciality businesses. 
According to Pine, Victor and Boynton [1993], this old competitive dictum was 
grounded in the well-substantiated notion that the two strategies required very 
different ways of managing, and, therefore, two distin ct organisational forrns. 

The buyers' market of the eighties and beyond is forcing companies making specific 
high-volume products to manufacture a growing range of products tailored to 
individual customer' s needs but at the cost of standard mass-produced goods. Figure 
1-1 shows this evolution in the automotive industry [Womack, 1991]. 

sa les 
volume 
per 
product 

mass-customisation 

~ production 

number of products on sale 

Figure 1-1. From eraf! production to mass customisation 

Adapted trom Womack ea. [1991] 



Introduetion 

Craft production is succeeded by mass production, in which a smal] set of products 
has to be made in large volumes. Today's mass customisation returns to craft 
production in the sense that a large set of products is made in small volumes, but now 
with the economy of scale of mass production. 

Nowadays, many companies go through these stages and adapt their products and 
design strategies to cope with this changed environment. A first step in mass
customisation is the adaptation of existing products and the creation of new products 
to individual customer requirements. New components are developed to meet these 
requirements and initially the added variety improves sales as the offerings become 
more attractive for individual customers. The other side of this reactive approach is 
that the new products are dissimHar and do not share a common architecture with 
common components. If sales engineers and designers focus on individual customer 
requirements, they feel that sharing components compromises the quality of their 
products. Therefore, they resist reuse of existing components in a predefined 
architecture and diversity will be further increased. 

A better approach is a pro-active development of product families. Reusable modules 
are developed in such a way that they fit the predefined architecture of a product 
family. Compromises are made in the design stage of the product family, independent 
from individual customer-orders. The life-cycle of modules is considered so as to 
reuse modules in different product variauts and over different, possibly successive, 
product families. This approach should maximise the ratio of external variety to 
intemal design and manufacturing efforts. It is, however, not the goal of this thesis to 
develop financial assessments for the determination of optimal variety. The objective 
of this thesis is complexity management by structuring design information in such a 
way that the transparency of a product family is enhanced and that better decisions can 
be made using this information. This thesis will also focus on the evolution of design 
information, since a well-understood design process is an important factor in 
complexity management. 

This thesis builds upon the work of many others. Much research in the modelling of 
product families bas been pursued by Wortmann, Van Veen and Hegge. They made an 
important contribution to the rednetion of complexity in the operational 
manufacturing process. The objective of this thesis is to extend their concepts with the 
views that are relevant for the design of product families. It will be argued that a 
product family can be described from several perspectives, but that a complete design 
is constituted by putting together these perspectives. Each perspeelive models the 
variety of a product family in a different way and each model evolves in the design 
processin its own way. However, the consistency of modelsin this dynamic process 
is vital to ensure that the developed product family meets both extemal requirements 
such as customer variety and internal requirements such as reusable modules. 

2 



Introduetion 

1.1 Overview of this thesis 

Below the structure of this thesis is discussed. A graphical overview of the 8 chapters 
of this thesis is depicted in Figure 1-2: 

1. Introduction. Chapter 1 detennines the scope of research and gives an introduetion 
to product families. A survey of tenninology is presented and the role of product 
families in business strategy, design and manufacturing is briefly discussed. 
Chapter 1 is concluded with a problem statement and a research objective; 

2. Problems with product variety. The problem of rnanaging product families is 
defined in more detail in chapter 2. Much attention is given to probierus that 
different disciplines face in the development of a large variety of products. The 
gencric bill-of-material concept is discussed as this concept has proven to be 
valuable for rnanaging product varietyin the operational manufacturing process; 

3. Languages for single products. In chapter 3, an overview of rnadelling languages 
for single products is given. It is demonstrated that most product rnadelling 
languages are applicable for a specific viewpoint or a specific technology and that 
these modeHing languages do not support the development of products in which 
several technologies are incorporated, such as mechatronics; 

4. Languages for product families. In chapter 4, an overview of rnadelling languages 
for product families is given. Most of these languages are used in a specific field, 
such as mechanica} design, process planning or logistics. It is demonstrated that the 
gencric bill-of-material concept has a mechanism that can be used independent of a 
particular field or discipline to model a product family in a non-redundant way; 

Figure 1-2. Overview of this thesis 

5. Design processes. Next to product rnadelling languages, this thesis discusses 
design methods for supporting the design process. A distinction is made between 
models that describe the design process and models that prescribe the design 
process. One design method, named the Productive Reasarring Model, is discussed 
in more detail as it is an important starting point for chapter 7; 

3 



Introduetion 

6. Structuring product families. In this chapter, a definition of the notion product 
family is given. Further, a product modeHing language is developed to capture 
product variety in the design process. It extends the generic bill-of-material concept 
with different domains in which a product faruily is developed. Much attention is 
paid to consistency of information, both within a domain and across domains. 
Finally, it is argued that product models for use in operational processes can be 
derived from a product family model; 

7. Developing product families. Chapter 7 proposes a design metbod for product 
families that completes the product family modelling language of chapter 6. The 
family design metbod can be used in all phases of the design process and for all 
levels of the design hierarchy. Furthermore, issues such as reusability, concurrency, 
modularity and integration are discussed; 

8. Evaluation and conclusions. The solutions that are presented in this thesis are 
compared with the original problem statement. Some conclusions are presented and 
directions for further research are discussed. 

Finally, this thesis is completed with appendices and literature references (chapter 9). 

The remainder of chapter 1 defines the scope of research, discusses the role of product 
modelling languages and design methods, formulates a problem statement and 
research objective, and gives a short description of the applied research method. 

Reading suggestion 

The following chapters and sections are essential for achieving a good understanding 
of the contents of this thesis: 

1. Introduetion 

2.1. Domains, product models and representations 

2.3. Industrial problem statement 

2.4. Design problems 

3.3. Non-compositional systems 

4.3. Generic product structures (section 4.3.1.- 4.3.8) 

5.5. Design Cycle 

6.1. Definition of product family 

6.2. Design of the product faruily modelling language 

7. De veloping product families 

8.2. Conclusions 

Furthermore, it can be recommended to read the introduetion of each chapter. 
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Introduetion 

1.2 Defining the scope of research 

This thesis focuses on developing product families. Both the structure of product 
families and the act of developing these families is discussed. This chapter first 
reduces the scope of this thesis by defining product families in relationship to other 
classes of products. A literature review (section 1.2.1) shows that the term product 
family is widely used, but refers to different sets of products depending on the 
classification criteria that are used. Furthermore, this chapter discusses a few 
classifications concerning product families, namely: 

0 a classification of design (section 1.2.2); 

0 a classification of manufacturing control (section 1.2.3). 

The research discussed in this thesis focuses on product family development, although 
the results seem to be generally applicable when it concerns the management of 
several perspectives on a design. 

1.2.1 Products and product families 

In literature, product families are considered from many perspectives, each 
perspective introducing its own terminology. Below, an overview of terminology is 
given to denote product families and productsin generaL The term product family will 
be compared with more general terrus such as product platform and product range, and 
with more specific terrus such as product variant and single product. Then, for the 
purpose of this thesis, the term product family will be defined in relationship to other 
definitions of products. 

Terminology as used in literature 

A literature review shows that many terrus are used to describe a set of related 
products, for example, product platform, product range, product family, product line, 
product class and configuration product: 

0 Meyer and Utterback [1993] define product platforms and product families. A 
product platform encompasses the design and components shared by a set of 
products. A robust platform is the heart of a successful product family, serving as 
the basis of a series of closely related products. New products are refinements ar 
extensions of the platform. These authors call products that share a common 
platform, but have specific features and functions required by different sets of 
customers, a product family. A product family typically addresses a market 
segment, while specific products or groups of products within the family target 
niches within that segment. The commonality of technologies and markets leads to 
efficiency and effectiveness in manufacturing, distribution, and service, where the 
firm tailors each general capability to the needs of specific customer groups. 
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0 Child, Diederichs, Sanders and Wisniowski [1991] define a product range as a set 
of products that optimises market variety, maximises sales and minimises 
complexity. Such a product range can be achieved by creating modular product 
concepts, in which large components, sub-assemblies and interfaces are 
standardised. Furthermore, the number of different manufacturing processes should 
be reduced. 

0 Onkvisit and Shaw [1989] distinguish product lines and product classes. A product 
line is a group of related products, for example because they are sold tagether (e.g. 
hamburger and a drink), they are used tagether (soeks and shoes), or they are made 
tagether using the same materials, equipment, technology or Iabour. If a line of 
audio products is taken as an example, the product line consists of such products 
that perfarm complementary functions related to sound production. Within each 
product line, there are usually product classes. A product class is a partienlar 
product designed to serve a specific purpose or function. A product class often 
assumes a number of product forms. Such farms may differ in shape, dimension, 
and other engineered characteristics. Yet all these variations, regardless of their 
physical characteristics or appearance, still perfarm the same function. 

0 Ulrich and Tung [1991] define a product family as a large set of end products 
constructed from a much smaller set of components. They state that product variety 
is a potential benefit of a modular design: the variety available in modular designs 
arises from the ability to use one of several alternative component options to 
implement a functional element of the design. 

0 Mittal and Frayman [1989] define configuration design as a special type of design 
activity, with the key feature that an artefact of the family being designed is 
assembied from a set of pre-defined components that can only be connected in 
eertaio ways. A configuration product has the following properties: 

0 There is a limited and fixed set of components that can be used to configure new 
artefacts, i.e. the number of possible configurations is restricted; 

0 Each component has predefined and fixed interfaces to conneet to other 
components. Interfaces are abstractions for places where a component can be 
connected to other components. A salution not only specifies the actual 
components but also how to conneet them; it is not enough to just identify the 
components; 

0 Designing a class of artefacts leads to an understanding of the functions that 
must be met and provides rules on how these functions campose and interact 
This is often codified in the form of an architecture that guides the design of 
such artefacts. 

0 Erens, Hegge, Van Veen and Wortmann [1992] focus on rnanaging product variety 
in the logistics process. They give a definition of a product family with similar 
properties to those given by Mittal and Frayman: 
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0 A product hierarchy is defined as an acyclic graph of product families. The 
leaves of the tree are called primitive families, all other families are compound 
families. The latter are composed of primitive and compound families. For 
example, a motor car family is, amongst others, composed of an engine family, 
which in turn is composed of a crankshaft piston family; 

0 Primitive families have a fixed number of (primitive) variauts from which 
compound variauts (configurations) on higher levels in the product hierarchy 
can be assembled. For example, crankshafts and pistons in different sizes create 
a variety of engines which in turn create an even larger variety of motor cars; 

0 Parameters and parameter values can be linked to any family in the product 
hierarchy and define the possible set of configurations from a commercial 
viewpoint They are used by customers and guide the selection of primitive 
variants for the assembly of compound variants; 

0 Constraints are defined in terms of parameters and parameter values to exclude 
unwanted or impossible configurations by prohibiting the selection of eertaio 
combinations of primitive variants. 

0 Most authors make a distinction between variants and versions. A variant is a 
unique configuration of modules of a product family, while a version is a 
semantically meaningful snapshot of a design object at a point in time. Bath 
variauts and families can have versions. A version is descendent from existing 
versions and cao serve as an ancestor of additional versions. All versions of a 
design object tagether make a version history. 

0 Some authors discuss products on the level of features. In configuration design, a 
feature is a functional attribute of a product family, si mil ar to a parameter, and is 
used to specify a unique variant. Therefore, each feature (or parameter) bas a set of 
options ( or parameter values) from which one must be selected. Other authors 
discuss accessories as a sart of modular options, in the sense that they cao be easily 
added to an existing product variant. 

0 In mechanical design, a feature is an abstraction of lower-level design information. 
Cunningham and Dixon [1987] define a feature as any geometrie form or entity 
that is used for reasoning in design (product features) or in manufacturing 
(manufacturing feature), for example surfaces of machined parts, holes, bosses and 
ribs. Also features can have parameters, for example the diameter and size of a 
hole. Then the act of assigning values to the parameters will make the feature 
specific in its application. In that respect, a parametrised feature can be regarded as 
a family of which the variauts are achieved not by combining component variants 
into new configurations, but by machining a component in a different way. 

7 



Introduetion 

0 Finally, Hatley and Pirbhai [ 1987] give a design metbod for reai-time systems, in 
which they pay attention to the behaviour of systems. A system is a coneetion of 
states, of which one is valid at a certain moment in time. Past and present events, 
both external and internal, change the product state and in that respect the 
behaviour of the system. For example, the state of a gearbox depends on the gear 
that is selected and the power that is provided by the engine. A gearbox, or any 
other specific machine, can be regarded as a collection of states. 

Terminology as used in tbis thesis 

Basedon the Hterature review, the following summary presents someterros that are 
used in this thesis. Some of these terms will be defined more formally in chapter 4 and 
chapter 6 where product families are discussed from a rnadelling perspective. 

product platform An architectural concept comprising interface definitions and 
key-components, actdressing a market and being a base for 
deriving different product families. Examples of product 
platforms are a digital architecture for medical equipment, an 
operating system, and the floorpan of a range of cars. 

product architecture A set of modules connected through interfaces and performing 
a certain operation. A product architecture partitions the 
salution space of design, sets conditions for a further 
decomposition of these modules and specifies the application 
of these modules in a bigger whole. 

product family A product concept that is designed for a market but caters for 
the individual wishes of customers by introducing variety 
within a defined product architecture and within a defined 
manufacturing process. For example, a farnily of cars, 
televisions or medica! systems. 

product structure A description of the elements of a product identified by their 
type, and the relations between these elements. A product 
structure is context dependent the selection of elements and 
their relationships depends on the viewpoint taken. 

product variant An occurrence of a product farnily, sometimes introduced as a 
product of its own, sometimes derived from a product family 
on customer-order. For example, a television set purchased at 
a retailer or a medica! system ordered at the manufacturer. 

single product A product that has hardly any pre-defined relationships with 
other products. Any resemblance with other products is mainly 
coincidence or due to the style of the maker. For example, a 
painting by Rembrandt, a house by Frank Loyd Wright or a 
machine that is designed and built to meet unique customer 
requirements. 
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A generic shape with which engineers associate certain 
properties or attributes and knowledge useful in reasoning 
about the product [Shah, 1991]. 

product parameter A variabie quantity or quality that makes a product family 
specific. Parameters are used to derive a product variant from 
a product family, but also to make a product feature specific 
for its application. 

version 

state 

A semantically meaningful snapshot of a design object at a 
point in time. 

The attributes' values of a product variant or single product 
that are relevant for its behaviour at a certain point in time. 

Some of the above terms can be listed with a decreasing order of design freedom. 
Brown and Chandrasekaran [1983] define the design problem as a search problem in a 
very large space for objects that satisfy multiple constraints. Only a vanishingly small 
number of objects in this space constitute satisfying solutions. The following figure 
expresses, in a rather qualitative way, how this solution space is reduced in product 
design and variant derivation. 

t 
salution 
space 

variant derlvaflon variant recycling 

product development .._... product use +-+ 

product 
platform 

+-------------------

product product 
famlly variant 

product 
state 

Figure 1-3. Decreasing solution space 

time --
The initia! solution space of a product platform is constrained by the current state of 
technology, the market at which the product platform is addressed and the technica! 
possibilities for manufacturing. This solution space is further reduced by the 
specifications for a product family and the power of a firm to turn these specifications 
into reality. Typical for a product family is that the derivation of variants, and the 
accompanying shrinkage of solution space, does not require intensive efforts in 
design. The possibilities to derive variants from the product family concept are 
usually considered at an early stage of the design process. This thesis will mainly 
consider product families that have been designed in such a way that the design of 
variants has been converted into a parameter selection problem. 
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After a specific variant has been detennined, the customer can change the state of the 
solution space by actually using the product variant. The horizontalline in Figure 1-3 
represents the remaining solution space. Lately, the use of embedded software has 
enabled manufacturers to enlarge the solution space without acquiring extra 
manufacturing costs. The product application area, or in other words, the scope of the 
family of states, is enlarged. This means that the use process bas gained importance 
over the variant derivation process with respect to making the product family specific 
fora eertaio user application1

• However, the use process and other dynamicaspects of 
the product family' s variants are not discussed2

• 

This thesis will mainly concentrate on product families and their variants. Product 
platfonns, for example, are only discussed to show that the developed principlescan 
be generally applied in the aforementioned solution space. With respect to product 
families, it will be stated that the variety at the top-level results from the variety at 
lower levels in the predefined product structute. 

Figure 1-4 shows a graphical presentation of variety using a diabolo, which represents 
the number of products on the x-axis and the levels of the product structure on the y
axis. For most assembied product families, the variety of end-products is caused by 
the variety of a limited number of modules. These modules, in turn, are constructed 
from a larger set of component variants. 

levels In 
product 
sinJeture 

end-produels 

Figure 1-4. Diabolo 

The terminology that is introduced in this figure is subject to judgement. The 
remaioder of this thesis does not discriminate between end-products, modules and 
components. These are just narnes for products at a eertaio level in the product 
structure. In chapter 3, 4 and 6, more precise definitions from a modelling language 
viewpoint are given. 

1 The use process and other dynamic aspects of the product family' s variants are not discussed in this 
thesis. The interested reader is referred to Hatley and Pirbhai [1987] or Stevens [1994]. 

1 The interested reader is referred to Stevens ea. [ 1994] and Rumbaugh [ 1994). 
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1.2.2 Classification of design 

This section addresses two different classifications of design. The first classification 
discusses the role of architectures and separates innovation of modules and innovation 
of the relationships between modules. The second classification pays attention to how 
far the requirements for a new design penetrate the product hierarchy and make use of 
existing concepts and modules. 

Modules and architectures 

Henderson and Clark [1990] state that the distinction between radical and incremental 
innovation has produced important insights, but is fundarnentally incomplete. 
Incremental innovation introduces relatively minor changes to the existing product, 
exploits the potential of the established design, and often reinforees the dominanee of 
established firms. Radical innovation, in contrast, is based on different engineering 
and scientific principles and often opens up whole new markets and potential 
applications. Radical and incremental innovations have such different competitive 
consequences because they require quite different organisational capabilities. 

However, according to Henderson and Clark, there is growing evidence that there are 
numerous technica! innovations that involve apparently modest changes to the 
existing technology but have quite dramatic competitive consequences. They give the 
following example: 

" Xerox, the pioneer of plain-paper copiers, was confronted in the mid-1970' with 
competitors offering copiers that were much smaller and more reliable than the 
traditional product. The new products required little new scientific or engineering 
knowied ge, but despite the fact that Xerox had invented the care technologies and had 
enormous experience in the industry, it taak the company almast eight years of 
missteps and false starts to introduce a competitive product into the market. In that 
time Xerox lost half of its market share and suffered serious financial problems. " 

Henderson and Clark define innovations that change the way in which the components 
of a product are linked together, while leaving the core design concepts untouched, as 
architectural innovation. It greatly diminishes the usefulness of a finn's architectural 
knowledge but preserves the usefulness of its knowledge about the product' s 
components. Table 1-1 classifies innovations along two dimensions. The horizontal 
dimension expresses the impact of an innovation on core concepts, while the vertical 
captures its impact on the linkages between modules. 

Core concept reinforeed 

Linkages Incremental Innovation 

Linkages changed Architectural Innovation 

Table 1-1. A framewerk tor defining i nnovation 

Souree Hendersen and Clark [1990] 

Core concept overtumed 

Modular Innovation 

Radical Innovation 
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As can beseen from Table 1-1, radical and incremental innovation are extreme points 
along both dimensions. Furthermore, two other types of innovation are shown. 
Modular innovation changes the core concepts of some modules within a stabie 
product architecture, for example the replacement of an engine type in an existing car 
design. The second type of innovation, named architectural innovation, changes the 
linkages between modules, for example the design of a small copier that uses many 
modules of larger copiers, however in a new arrangement. 

The above classification shows that the concept of product families requires a certain 
maturity of both market and technology. This maturity is reflected in a stabie product 
architecture that addresses a well-known market V ariety is created by changing 
components in a pre-defined architecture. This requires the acceptance of a dominant 
design which incorporates a range of basic choices about the design that are not 
revisited in every subsequent design, for example when a specific variant is derived 
from the product family concept. Usually, these dominant designs do not exist yet for 
innovative products, as the relationships between function and technology are not 
fully understood and still subject to improvement. 

If the basic function, technology and architecture of a product are familiar enough to 
create variations that cater for individual customer requirements, a product family can 
be developed. lf the architectural knowledge is stable, it tends to become embedded in 
the practices and procedures of the (learning) organisation. In these cases, only 
incremental and modular innovations seem to be possible. A radical or architectural 
innovation requires the development of a new product platform causing many changes 
fora company [Morris, 1993). Real innovative products are usually not designed as a 
product family. New technologies, or new combinations of technologies, require 
considerable experience before they can be applied such that they meet a diverse range 
of customer requirements. 

Reuse and product hierarcbies 

Design can be classified according to the extent that it makes use of existing designs 
and salution concepts. Por each design task, the availability of a possibly large and 
generally only implicitly specified set of primitive design objects can be assumed 
[Brown, 1985]. The design domain also specifies a repertoire of primitive relations or 
connections possible between these design objects. 

An automotive engineer, for example, may assume the existence of gearboxes and 
engines when designing a new car. Knowledge about all functional and mechanical 
interfaces provides for a design independent from the design of the gearbox and the 
engine. On a lower level in the design hierarchy, another designer may assume 
primitive objects as chain-wheels and shafts when designing a gearbox. 

The idea that the primitiveness of design objects is a relative notion is depicted in the 
following figure. The diamond-shaped figure represents the design hierarchy of a 
product that is assembied from a large set of components, which in turn are 
manufactured from a small set of chemical elements. The horizontal lines are natural 
or organisational boundaries in the design and divide for each domain the primitive 
and assembied design objects. 
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assembied product 

the chemica! elements 

Figure 1-5. Design hierarchy 

Because the universe is a hierarchy of systems with many levels, the word system can 
be applied at any of these levels [Bowler, 1981]. However, lower-level systems tend 
to have a longer life-cycle than higher-level systems. The stability of primitive 
systems is a necessary condition for the creation of compound systems. The above 
figure also illustrates that design is a recursive activity: if an assumed primitive design 
object is not available, the design of that object can be undertaken independent of the 
main design [Simon, 1981]. This requires however that this object can be regarcled as 
a black-box, of which the interfaces in terms of function and physical fit are known. 

According to Brown and Chandrasekaran [1989], the complexity of design is, to a 
large extent, determined by the availability of primitive objects together with effective 
decomposition strategies to find the right combinations of primitive objects. Based on 
this, they propose the following classification of design': 

0 Class 1 design. This is an innovative type of design which leads to a major 
invention or completely new products. Goals are ill-specified, no storehouse of 
effective decompositions exists and no precompiled partial design solutions are 
available. For each potential sub-problem, further work has to be done in 
evaluating if a design plan can be constructed. Class 1 design is comparable to 
radical innovation (Table 1-1). 

0 Class 2 design. This type of design activity is characterised by the existence of 
powerlul problem decompositions. The design of a new motor car, for example, 
does not involve new discoveries about decompositions: the structure of the 
automobile together with the general interfaces of the main subsystems has been 
fixed for quite a long time. On the other hand, several of the components in this 
architecture constantly undergo major technologkal changes, and routine methods 
of design for some of them may no longer be applicable. Class 2 design often 
reuses existing modules as the linkages between modules remain unchanged. Class 
2 design is comparable to modular innovation (Table 1-1 ). 

A similar classification is given by Muntslag [1993]. This classification is named the design 
decoupling point as it states how far a new design penetrates the product hierarchy. It can be 
compared with the customer-order decoupling point that is discussed in section 1.2.3. 
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Cl Class 3 design. This is relatively routine design, similar to incremental innovation 
(Table 1-1 ), where effective problem decompositions and compiled design plans 
for the component problems are known. Class 3 products are often tailored to the 
instanation site while retaining the same structure and general properties. For 
example, an air-cylinder intended for accurate and reliable backward and forward 
movement of some component will need to be redesigned for every new customer 
in order to take into account the partienlar space into which it must fit or the 
intended operating temperatures and pressures [Brown, 1983]. 

Shah and Wilson [1988] give simHar design categoties but add a fourth one, named 
design synthesis, which can be regarded as simplified Class 3 design. It concerns the 
denvation of products with a predefined architecture from standard components. All 
necessary design effort can be automated, simHar to the derivation of variants from a 
product family. In literature, several approaches are mentioned for deriving variauts 
from a genetic design: 

Cl Grammars. Muilins and Rinderle [1991] propose the use of grammars to automate 
the design. A grammar is a definition of a language written in a transformational 
form. The grammar of a naturallanguage, such as English, determines how words 
may be arranged to form a syntactically correct sentence [Rinderle, 1991]. A 
design grammar specifies how components can be arranged into acceptable 
products. Design grammars are especially suitable for alternative configurations 
with standard components and slightly different product architectures. 

Cl Rule-based systems. McDermott [1980] describes Rl, a rule-based system, to 
configure Digital Equipment Corporation's V AX systems. The system contains 
descriptions of all components supported for the V AX. As Rl begins to configure 
an order, it retrieves the relevant component descriptions and production rules. 
Since an order frequently lacks one or more components required for the system 
function, a major part of RI 's task is to notice what components are missing and 
add them to the order. lts rules have conditions that recognise situations in which a 
partienlar type of extension to a partienlar type of partial configuration is 
permissible or required; the actions then effect that extension. 

This thesis, however, concentrates on product families that are designed in such a way 
that the designs of product variants can be automatically derived from the family 
design using a parameter selection mechanism. The design of the product family 
itself, however, is usually a Class 2 design. If there are any major technological 
changes (Class 1 design), they play a role on the level of components and can be 
regarded as modular innovations, which do not considerably modify the product 
family architecture. As stated before, Class 1 products are usually not designed as 
product families. The complexity of interactions between new primitive design 
objects does not allow the creation of several customer options. 
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Figure 1-7 repeats the diamond-shaped structure for product families. The main 
architecture can be regarded as a Class 2 design, although some components that are 
critica! to the function can be considered Class 1 designs. The derivation of product 
variants, indicated with a dotted line, is Class 3 design. This thesis only considers the 
automatic derivation of variants with a parameter selection mechanism. 

1.2.3 Classification of manufacturing control 

In this section, attention is paid to an often used classification for goods flow control 
and manufacturing. This classification is based on the concept of the customer-order 
decoupling point. The customer-order decoupling point in manufacturing is similar to 
the design decoupling point, which was discussed in the previous section. That section 
discusses how design requirements for a new product are decomposed till the level 
that primitive design objects are available that meet these detailed requirements. 

In manufacturing, the customer requirements are decomposed into the product's 
components till the necessary components are available on stock. For understanding 
the customer-order decoupling point, it is important to distinguish between 
anonymous and dedicated stock. Anonymous stock decouples the main production 
process from the fluctuating customer demands, while for dedicated stock, customer
orders are already known. The first stock type is only needed if differences exist 
between the requirement time and the precise moment of availability. 

The customer-order decoupling point separates the customer-order driven part of the 
activities from the activities that are based on forecast and planning. In general, the 
decoupling point will coincide with a main stock point. Hoekstra and Romme [1992] 
distinguish five different positions of the customer-order decoupling point to describe 
the most distinguishable product-market situations in the control concept. These are 
graphically depicted in Figure 1-8. 

1. Make and ship to stock. Products are manufactured and distributed to stock points, 
which are spread out and located close to the customer. 

2. Make to stock (MtS). End products are held in stock at the end of the production 
process and from there are sent directly to many customers who are scattered 
geographically. 
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assembly lnstollolfon 

---~~----------------

Figure 1-7. Customer-Order Decoupling Point 

Source: Hoekstra and Romme [1992] 

3. Assemble to order (AtO). Only system elements or subsystems are held in stock in 
the manufacturing centre, and the final assembly takes place on the basis of a 
specific customer-order. 

4. Make to order (MtO). Only raw materials and components are kept in stock: each 
order for a customer is a specific project. 

5. Purchase and make to order. No stocks are kept at all: purchasing takes place on 
the basis of the specific customer-order; furthermore, the whole project is carried 
out for the one specific customer. 

The above classification helps in understanding the presence of variety in a certain 
product-market combination. Usually, products that are made or shipped to stock have 
a limited variety, as it is not possible to keep allvariantsof a large product family on 
stock. On the other hand, products that are assembled, made or purchased to order 
give the opportunity to create with a limited number of modules an almost infinite 
variety. Recently, the development of embedded software has enabled manufacturers 
to make a product specific at the time of use. 

As customers accept a Jonger lead-time, if they perceive the product as made to 
customer-order, it is acceptable to move the customer-order decoupling point 
upstream and thereby reduce considerable stocks of finished products [Giesberts, 
1992]. However many manufacturers pursue a hybrid manufacturing strategy in which 
a limited set of product variants is made to stock, while others are assembied to order 
and a third group is even made or engineered to order1

• 

1 Wemmerlöv [1984] discusses the relative differences between MtO, AtO and MtS strategies, 
including reasoos why a company may decide to be an AtO manufacturer. Chapter 2 discusses a 
case study of a company which has gone through several of these manufacturing strategies. 
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This thesis pays most attention to products that are assembied to customer-order. The 
gencric bill-of-material concept, which wiJl be discussed extensively in chapter 2 and 
4, is a product modeHing language that has been created to allow the derivation of a 
customer-order specific bill-of-material from a family bill-of-materiaL It will be 
argued that this concept can also be used to derive designs from a family design. 
Furthermore, a slightly modified concept can be used to capture the characteristics of 
a product family in the process of designing. The complexity of products that are 
assembied to customer-order for often demanding and professional users is such that 
especially these manufacturers can benefit from the product family modelZing 
language and the design methad for product families defined in this thesis. However, 
some aspects of these rnadelling languages are useful independent from the variety of 
the product or the chosen manufacturing concept as they deal with preserving 
consistency between domains in the design process. 

17 



Introduetion 

1.3 Product modelling languages and design methods 

The introduetion of this thesis already stated that the foundation of this research lies in 
modelling languages1 to describe the artefact. A large part of this thesis is devoted to 
these languages and the models that can be created with them. This thesis 
distinguishes two types of product modeHing languages: 

1. Languages for "compositional systems" are based on theories from natura! science. 
As these languages arebasedon the laws of nature (e.g. electronics and hydraulics) 
or mathematica! principles (e.g. software), they are able to formally define the 
relationship between function and realisation. Important in these rational 
approaches is that natural phenomena can be understood and modelled at all levels 
of the product model. In other words, the function of a product can be composed 
from the functions of its components if the components' relationships are 
understood. As a consequence, also the design process of these products can be 
executed in a methodical way, thereby decomposing the function and realisation 
simultaneously; 

2. Languages for "non-compositional systems" define the function and the realisation 
of a product separately. For mechatronic products, comprising a variety of 
technologies, there is no grand theory that links these technologies into one 
uniform and predictive theory. Although some unified theories exist, for exarnple 
for electro-magnetism, there is no general design theory in which the function of a 
mechatronic product can be described and predicted without consictering the 
different technologies separately. Therefore, dedicated modeHing languages exist 
to describe the function of such a product, independent from the possible 
technologkal solutions. Also the realisation of the product is described with 
dedicated modelling languages, however without maintaining a formal link 
between this realisation and the function. 

Design is characterised by several domains that contribute simultaneously to the 
creation of a product family. A domain is defined as a product model together with all 
viewpoints on this product model. This thesis asserts that there are three domains in 
which a product family is defined: 

1. Functional domain, defining the required function or behaviour of the product 
family to be designed; 

2. Technology domain, defining the technological realisation of the function in terms 
of solution principles, ho wever independent of the final physical shape; 

3. Physical domain, defining the physical materialisation of the technologkal solution 
principles in such a way that the product variants can be efficiently manufactured. 

1 A product modelling language is a system of symbols and rules which is meant to describe a 
product unambiguously. In this thesis, a conceptual data model ( see sec ti on 9.1) is used for defining 
a modelling Janguage for product families. 
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Chapter 3 and chapter 4 of this thesis discuss a number of compositional product 
modeHing languages that cover the functional, technology and physical domain. 
However, products that use different technologies to realise user functions are often 
described with dedicated rnadelling languages for these three domains. Por these non
compositional systems, there is no modeHing language that unites all natura! 
phenomena and mathematica! principles. 

Although this thesis describes both types of modeHing languages for these domains, 
the scope of the solutions presented in this thesis is restricted to non-compositional 
product families. This has consequences for the product family modelZing language of 
chapter 6 and the family design methad of chapter 7. The product family modeHing 
language should be able to describe the structure of a product family in three domains 
independent of the different representations of this structure. The family design 
metbod should be able to re!ate function, technological realisation and physical 
implementation, not for reasans of formalisation, but for rnanaging the complexity of 
the design process. 
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1.4 Problem statement and research objective 

This thesis focuses on ways to manage variety in the design process. Both, product 
models for capturing the product definition and design methods for guiding the design 
process are discussed. The problem statement of this thesis is summarised as follows: 

Cl Currently, no attention is given to the integral design of product families. If 
families or variants are discussed, it is presupposed that a product family is the 
result of several related but sequentially designed variants. Existing product 
model1ing languages focus on the design of single products and do not support the 
structuring of a product family. This statement holds especially for product 
families, in which different technologies are applied; 

Cl There are several domains, having different representations of a product family 
being designed. All domains structure infotrnation in partienlar ways to 
accommodate their own needs. The design of such an intangible entity as a product 
family is hindered if these domains are not linked in a consistent way. This 
concerns both representations used in development and representations used in 
operational processes sneb as sales, manufacturing and service; 

(J Product models for capturing the structure of a product family are insufficient if 
these are not completed with design methods. Design is not only constituted by 
design processes that take place within a domain, but especially by processes that 
take place between domains. Furthermore, most design methods focus on defining 
phases of the design process without consictering the quality of the design artefact 
at each phase. 

From this problem statement, the following research objective can be derived: 

CJ Develop a product rnadelling language that is suitable for structuring product 
family information in different domains. Link these domains in such a way that 
consistency of information is preserved. Deduce how information that is used in 
operational sales and manufacturing processes (including sales and service) can be 
derived from this design information; 

CJ Develop a design metbod that supports the design process of product families and 
guides the evolution of design information, including the way that this information 
is structured. State the interactions between the design process and the product 
family model, taking into account the different domains in which a product family 
exists. 

A salution to the problem statement is discussed in chapter 6 and chapter 7. The 
extent to which this soluti~n meets the research objective is subject of chapter 8. 
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1.5 Research metbod 

The objective of this study is not to investigate all problems that manufacturing 
companies face with the management of product variety. Neither is this a study that is 
based on a large number of case studies. The seriousness of the variety issue is 
acknowledged through literature and personal observations. According to the 
standards of natural science with its analytica] and empirica! techniques, these 
observations are insufficient to draw general conclusions [Popper, 1968]. Therefore, 
this research is design oriented. A modeHing language for product families and a 
modeHing language for the design process of a product family will be designed. The 
industrial merit is still small, but so far, several case studies have approved the 
theories presented in this thesis. 

It can be asserted that the theory of a product family modelling language, which is 
developed in this thesis can be logically derived from theoriesof modelZing languages 
for single products and theories of variety management in manufacturing. Both, 
theories of rnadelling languages for single products and theories of variety 
management in manufacturing have proven their merit in many industrial companies. 
The combination of both theories results in a theory for structuring a product family in 
different design domains. The theory of a family design method is derived in a similar 
way from the product family modelling language and existing design methods for 
capturing the design process. 
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Design is 100 people in a room arguing. 

Anonymous 
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2. Problems with product variety 

Many manufacturing companies face a problem with product variety. Difficulties 
occur when companies cannot deal with the complexity of many similar, but not 
identical, products. This part lists some problems, but also presents solutions that have 
been developed for production control and which have been a souree of inspiration for 
this thesis. 

The overview of problems presented here is not meant to be exhaustive, neither is it 
stated that manufacturing companies face all these problems simultaneously. As an 
illustration, this thesis presents a case study and some examples, which put a selection 
of these problems in an organisational context. This case study stresses the fact that 
product variety is especially a problem when several domains are involved in the 
operational and development process. 

The following sections discuss problems related to product variety: 

2.1. Domains, product models and representations. This thesis acknowledges three 
domains in which a product family is designed, namely the functional, 
technology and physical domain. Each domain has a product model, which acts 
as a framework for capturing domain specitïc information. Manufacturing 
disciplines in a company make use of these domains in both development and 
operational manufacturing processes; 

2.2. Manufacturing disciplines and domains. There are a number of disciplines that 
contribute to the product development process, for example marketing, 
manufacturing engineering, purchasing and service. Each of these disciplines 
imposes different requirements on how the product family is decomposed. 
Different manufacturing functions of a company face different problems 
regarding product variety in these domains; 

2.3. Industrial problem statement. The most evident aspect of product variety is its 
uncontrolled growth. When products are added to an existing product family, 
the possibility of rnanaging all variauts of the product family in the same way is 
diminished. A salution lies in developing components that are reused over 
several product families and product variants. This requires, however, sufficient 
knowledge about the market and a development philosophy in which reusability 
is accommodated; 

2.4. Design problems. The main focus of this thesis is on the design of product 
families, through the extension of concepts developed for manufacturing 
controL In design, several disciplines contribute to the evolution of product 
family data. In this chapter, attention will be paid to problems arising from 
communication within and between domains; 

2.5. The intangibility of product families. Single products exist physically, product 
families do not. The fact that a product family is an intangible entity is 
considered to be a primary obstacle to effective communication in, and between, 
both the operational process and the development process. 
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2.6. Product family descriptions. The problem of product variety was first signalied 
in production due to its repetitive nature. An evolution of solution concepts is 
discussed including the generic bill-of-material concept, which is amongst the 
most ad vaneed for rnanaging product variety. The different concepts are 
illustrated with a case study of a company named Philips Medical Systems. This 
company has been chosen for this case study as it has gone through several 
phases of descrihing product families. 

Finally, in chapter 2.7, a summary of problems is given. These problems will be used 
as requirements for the design of a product farnily modelling language and a family 
design method. The summary states that the origin of many problems lies in the 
definition of a product family in several domains. Only if these perspectives agree on 
the boundaries and characteristics of the product family being designed, it can be 
guaranteed that balanced design decisions are taken and that eventually customers 
recognise their requirements in the derived physical variants. 
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2.1 Domains, product models and representations 

Development is characterised by several domains that contribute simultaneously to the 
creation of a product famîly. As stated before, a domain is defined as a product model 
tagether wîth all representations of thîs model. Chapter 3 of this thesis asserts that 
three domains are sufficient to capture product information in the development 
process. These domains are also acknowledged by other authors, including Pahl & 
Beitz [1984], Albano & Suh [1992] and Kota & Lee [1990]: 

0 functional domain; 

0 technology domain; 

0 physical domain. 

The initia! specifications can not be attributed to one partienlar domain as they 
provide an often informal description of the required function, the technological 
constraints and the physical constraints. Specifications are the starting point for the 
deve1opment of a product family. The fact that product fami1ies are mature products 
that are sold in often competitive markets puts a high pressure on meeting individual 
customer wishes. Initial requirements reflect these wishes by defining both the core 
function and the optîons in commercially understandable terms. Therefore, the initia! 
requirements are usually expressed in a text-based format, which is convenient for 
validation with customers, but weak for indicating dependendes and constraints. 
However, not all aspects of the initial requirements are functional and therefore 
determined by customer wishes. Some aspects are stated by product management and 
express the campany's demands with respect to the (re)use oftechnology, components 
and manufacturing processes. In this sense, non-functional requirements or constraints 
on the salution are stated. Finally, the initia! requirements should be such that the 
attributes of the resultant design, or any intermediate stage, can be compared with 
these original requirements. 

Func~onal Domaln lechnalagy Domaln Physical Domaln 

Figure 2-1. Specifications, domains and product models 

Figure 2-1 shows that specifications are formalîsed in product models 1• These models 
act as backbones for structuring the domain specific information, which is represented 
with modeHing languages. The remainder of this section describes the functional 
domain, technology domain and physical domain in more detail: 

1 In the remainder of this thesis, circles denote functions, squares denote technology modules and 
triangles denote physical assemblies. 
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1:1 The functional domain results from those initia! requirements that define the 
function of the product family. Functions should provide a complete and 
unambiguous description of the product family, and are expressed in such a way 
that functional dependendes that are relevant for development are clearly 
indicated. These dependendes concern interface definitions that deal with 
interactions between functions. Interactions are often represented as non
hierarchical relationships, for example flows of material, energy and signals [Pahl 
& Beitz, 1984]. If a product function is too complexfora direct realisation, it can 
be decomposed into sub-functions. This results in a hierarchical function structure, 
which represents the function of the product on different abstraction levels. 
Customer options are specified by introducing function variants, together with 
commercial or functional restrictions on combinations. 

1:1 The technology domain represents the technological realisation of the design 
problem and consists of a set of modules or solution principles, which together 
cover the required function. For example, a company rnanufacturing X-ray 
equipment will have, among others, the following technologies: image-quality, 
power generation, image acquisition and user-interface. These company specific 
technologies build upon a large set of basic technologies such as electronics, 
hydraulics, geometry and software. Designers map functions onto modules, thereby 
taking into account constraints on the solution. A set of modules is hierarchically 
composed to create the design artefact, but can also be further decomposed by 
adding necessary detail. If functions are interconnected to express functional 
dependencies, then modules have interfaces for technological dependencies. 
Finally, modules can exist in module variants to cater for the functional variety; 

1:1 Just because a concept that is described in the technology domain provestomeet 
the required function does not mean it can be manufactured. Therefore, the 
physical domain, which is often the responsibility of engineering1

, can differ from 
the technology domain. Nevertheless, engineers should be involved in both the 
functional specification and the technological realisation to guarantee the creation 
of a suitable physical model. Despite the fact that the physical domain eventually 
describes the same artefact as the functional domain and the technology domain, it 
can be different as modules can be adapted for physical reasons, for example 
resulting from a specific assembly process. An engine, for example, is often 
assembied together with its gearbox, even when the engine and gearbox are 
designed as relatively separate entities in the technology model. The determination 
of valid assembly relationships puts specific requests on the geometrie 
relationships between the elements of the physical model. SimHar to functions and 
modules, (sub)assemblies can have variants from which instances of the family are 
assembled. 

' In this thesis, engineering is responsible for realising the physical product, while manufacturing 
engineering is responsible for realising the manufacturing process. Design is responsible for 
creating the functional definition and the technological realisation. 
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Product models structure the product from the perspective of the functional domain, 
technology domain and physical domain. Despite the fact that these structures 
prescribe the design artefact, different disciplines can have their own views on these 
models, for example a two-dimensional or three-dimensional view on the physical 
model. Further, some disciplines define views that go beyond individual models. The 
service discipline, for example is interested in functions, the applied technologies and 
the physical shape. Finally, some disciplines can re-arrange the information that is 
contained in a product modelfortheir purposes. However, the souree of information 
should be clear to maintain the domain's consistency between the product model and 
its representations. 

Each discipline creates, edits and uses information, and some of this information will 
be shared among several disciplines. The domains have product models, which act as 
back-hones for the information needs of disciplines. Discipline specific information is 
represented with specific modellîng languages, which are assigned as doeurneuts to 
product models. A domain is the ensemble of its product model and the different 
representations. In general there are three ways to assign doeurneuts to a product 
model: 

0 The following figure shows a product model, which acts as back-bone for a variety 
of representations. In this case the product model concerns the physical model. The 
representations share this structure and are indicated with a document symbol. Due 
to computerised means, it is often possible to derive several representations from a 
single product model. A well known example concerns a solid-model in computer
aided design (CAD) from which both 2-dimensional and 3-dimensional views can 
be obtained. 

Figure 2-2. One product model, different representat!ons 

This "single product model" approach is often encountered in companies where the 
logistic discipline is dominant. The database of a production control system (such 
as MRP ll) has then attributes for other disciplines as we11. The attributes, however, 
follow the physical model. Problems occur when the doeurneuts of other 
disciplines can not be forced into one single structure, for example if the functional 
decomposition of a product family differs from the physical decomposition. 
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Cl The second approach is a special case of the previous approach. A number of 
representations makes use of the same product model, but not all levels in the 
product model are relevant for all representations. The following figure shows that 
one representation (for example assembly drawings, represented with black 
documents) uses a subset of the physical model. If the node without a black 
document is a phantom, i.e. a collection of parts that cannot be put on stock, the 
node cannot have an assembly drawing. 

Figure 2-3. Subsets of a product model 

0 The third approach shows a situation in which representations need own models for 
storing information. In such a way, models can be fine-tuned to individual 
purposes. The problem of this approach, however, is guaranteeing the 
communication and consistency between the different product models. This 
becomes especially apparent in a concurrent engineering environment where the 
early availability of constraints imposed by other views is vital [Anderl, 1992]. The 
following figure shows the functional, technology and physical model, each 
completed with specific documents, which stand for representations of these 
models. 

Agure 2-4. Different product models and representations 

The focus of this thesis lies on the product models of these three domains. It is not 
tried to (1) discuss all possible representations and (2) force all representations in one 
model as was done in the first and secoud approach. This thesis agrees with Konda 
[1992] who states that the interaction between disciplines creates the problems: 
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" Design del1Ulnds the linkage of disciplines without being a discipline itseif. We 
contend that design as a body of 'intellectual tough, analytica[, partly formalised, 
partly empirica!, teachable doctrine' is but a colteetion of linkages and any attempt to 
force it into a single discipline loses the essence of design. This is because it is 
impossible a priori even to identify completely which disciplines are required to he 
involved for a design problem except through past records of similar -cases and the 
specifics of the design context. The essential characteristics of design derives from the 
multiple and jluid interstices of several and varying disciplines. Hence, it is the 
interactions between agents, human or otherwise, with different ways of looking at the 
same problem that creates the problems which theories of design attempt to address. 
Rendering design into a single discipline removes this difficulty for the design theorist 
but not for the design. " 

The problems that originate from the communication between different disciplines are 
discussed in the remaioder of this chapter. It is demonstrated that the existence of 
domains and the characteristics of a product family add some inherent complexity to 
the communication in design and manufacturing. Chapter 3 asserts that the application 
of more than one technology in a product family design is the main reason for not 
rendering the functional model, the technology model and the physical model into a 
single modeL 

The next chapter considers some disciplines and states to which extent they make use 
of the functional, technology and physical domain. 
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2.2 Manufacturing disciplines and domains 

Development and manufacturing are collaborative processes, where people from 
various disciplines interact to design or produce a product. The need for this 
interaction is especially true in a concurrent engineering environment, which is 
characterised by high quality and short development and production lead-times1

• This 
thesis pursues a product modelling language and an accompanying design metbod that 
make it possible for several disciplines to share a common framework of the product 
family being designed. The following disciplines are referred to in this thesis and 
therefore introduced briefly: 

1. programme and product management; 

2. marketing and sales; 

3. manufacturing engineering; 

4. logistics and goods flow control; 

5. purchasing; 

6. accounting; 

7. service. 

Together these disciplines contribute to the engineering and design function. The 
engineering and design discipline is regarded as a facilitator in realising the required 
function within the constraints of the manufacturing company. These constraints are 
elaborated in chapter 2.4 (design problems). 

It is not the goal of this chapter to elaborate all problems these disciplines face. The 
first objective is to clarify in which domains these disciplines operate. Secondly, the 
acknowledgement of the existence of different domains and disciplines eases the 
understanding of why communication about product farnilies is difficult. 

2.2.1 Programme and product management 

A company must continue to invest in new products, particularly for markets with 
accelerating rates of product introduetion and competitive intensity. Meyer [1993] 
states that much current 'management thought focuses on developing single products 
as rapidly as possible. Product development when seen from this perspective has two 
essential problems: redundancy of both technical and marketing effort and lack of 
long-term consistency and focus. 

1 In recent years, much attention has been given to Japanese management practice, which seems to 
support concurrent engineering. Hartley [1990], for example, describes how Japanese managers 
from all disciplines strive for consensus. After that, everyone is committed and will give tbeir all to 
the project. 
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Concentrating at the level of the product family and more specifically on the 
development and sharing of key components and assets within a product family, is the 
vital issue. The benefit of examining elements shared by products within a family is 
that firms will then develop the foundation for a range of individual product 
variations. At an even broader level, one can examine relationships between product 
familîes themselves to achieve even greater commonality both in technologies and in 
marketing. 

lt is the task of programme management to decide how to exploit the firm' s core 
competencies, which basic technology, produet platforms and families to develop, 
which technology to acquire, which strategie alliances to start and which resources to 
allocate for a product family to introduce in the market. 

When programme management has positioned a product family in the campany's 
long-term strategy, it is the responsibility of product management to develop and 
introduce it. Besides project control, the main interest of product management lies in: 

0 defining the product family's core function; and, 

0 defining additional options to cater for individual customer wishes. 

The core function of a product family should distinguish it from competitor' s products 
and should dete1mine in which market segment it can be positioned. The core function 
is also closely related to the applied technology and governs in that respect 
possibilities for future extensions. This also means the specification of life-cycle 
issues such as backward and forward compatibility. Options, on the other hand, give 
possibilities to provide a range of product variations, which cater for anticipated 
individual differences between customers. Furthermore, a diverse set of other relevant 
issues should be addressed. Although it is not the purpose of this thesis to elaborate on 
all of them, a few are mentioned1

: 

0 performance, how fast, safe, reliable a product variant is; 

0 manufacturing issues, how fast, reliable and cheap a product variant is made; 

0 other life-cycle issues such as service and environmental impact; 

0 lead-time of the development project; 

0 development effort and capacity resources; and, 

0 legislative issues. 

In the remainder of this thesis, these subjects are discussed to the extent that they are 
related to rnadelling product families. 

' For more information on these issues, see Urban and Hauser [1993], Smith andReinertsen [1991], 
and Cooper [1993]. 
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2.2.2 Marketing and sales 

Due to good cootacts with the market and customers, marketing provides input for 
product and programme management. Furthermore, marketing is responsible for the 
release of a product family, including its promotion. lt bas to be positioned in the right 
market segment using advertising campaigns and direct customer contacts. Therefore, 
a close relationship with sales exists. 

Marketing is also responsible for tracking the sales of the product family's variants. 
These variauts are classified to relevant criteria, which are used to adjust the 
manufacturing and planning process. Furthermore, these aggregations provide insight 
for new product family developments. 

From an information perspective, marketing should specify first of all the core 
function and the options of a product family as perceived by the customer. Therefore, 
a subset of all development specifications and solutions is publisbed in commercial 
catalogues and commercial brochures, which are also used by sales engineers. If the 
number of product variauts is small, they are usually described independently using 
code numbers and associated documentation. If the number of product variauts is 
extremely largeit is not possible tomention them all explicitly. Section 2.6 explains 
some approaches that are used to specify the variantsof a product family. 

2.2.3 Manufacturing engineering 

Manufacturing engineering is concerned with the design of the manufacturing process. 
It is responsible for the lay-out of the floor, the machinery and the knowledge of 
manufacturing people. lt is not responsible for the development of the product, 
although it contributes to this by stating conditions for the physical model frorn a 
manufacturing perspective. 

The manufacturing process is created to attain both efficiency and flexibility. 
Efficiencyrequires flow-lines and dedicated equipment. Shared resources are split-up 
and allocated to the different lines. In contrast, flexibility can be achieved by 
organising the factory as job shops in which machines and knowledge of one type are 
grouped together since no one product provides a dominant flow around which a flow 
line can be organised. 

In this context it is interesting tomention the "law of requisite variety". Ashby [1969] 
states that only variety can control variety. If one wants to master the variety in an 
environment, the complexity of the control capacity must match the complexity of the 
system being controlled. If there is insufficient control capacity, one can: 

0 reduce the need for regulation; and, 

0 improve the control capacity. 

Van Amelsvoort [1992] asserts that, in manufacturing processes, there are two ways 
to reduce the needed control effort (see Figure 2-5): 
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0 Split-up the order flows and create dedicated and parallel manufacturing processes 
for groups of products (flow-lines); 

0 Segment the production process at organisational crossings where the control needs 
are limited (job-shops). 

process 

process porallel and segmented 

Figure 2-5. Reducing the control complexity 

Sou ree: Van Amelsvoort [1992] 

If this is applied to product families, it seems that the choice for either a flow line or a 
job shop is difficult. On one hand, a product family has such a large variety that a high 
manufacturing flexibility is required, on the other hand all these variauts have a 
similar product and process architecture, which permits the u se of flow lines. 

Deeper analysis reveals, however, that product families are quite suitable for 
mastering product variety in factories. The classical way to deal with problems of 
variety in component manufacturing is through production flow analysis and group 
technology. In group technology [Burbidge, 1989], a seemingly endless variety of 
components is grouped based on similarity in routing. This group of components is 
matebed with a part of the factory responsible for the complete manufacture of the 
group: a focused Jactory [Skinner, 1974]. In a similar way, a family of similar sub
assemblies will be matebed with an assembly line or work area, focused on precisely 
this family. Therefore, it is possible to match the product family structure with the 
delivery structure of focused factories. 

If focused factories match product family structures, it becomes possible to link 
product innovation (see section 1.2.2, Table 1-1) to production innovation: 

0 In case of incremental product innovation, where linkages in products remaio 
unchanged and the core concept of product families is reinforced, the factory can 
remaio a learning organisation and work for continuous improvement; 

0 In case of modular product innovation, where the core-concept of a particular 
module is overrun, but linkages remaio unchanged, it is vcry clear which part of the 
factory has to be restructured; 

0 In case of architectural product innovation, where modules are not immediately 
changed, but new interfaces are defined, the new interfaces might result in new 
assemblies of modules and therefore require changes in the related workcentres; 

0 Radical product-innovation leads to restructuring a whole factory. 
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It can be concluded, therefore, that proper matching of product family structures with 
factory organisation structures makes innovation in production processes manageable 
and makes design-for-production feasible. Section 2.6 discusses a concept, named 
genetic bills-of-material, which gives more control possibilities in manufacturing than 
concepts that are based on "traditional" bilis-of-materiaL The underlying principles of 
the genetic bill-of-material concept will also be used to improve the control 
possibilities in product development. 

2.2.4 Logistics and goods flow control 

In the development process, the logistics discipline states conditions to which the 
physical model should conform. In the operational process, logistics has a view on the 
same physical model. lt controls the goods flow by releasing production orders to 
production units. A production order requires material, components or sub-assemblies 
from stock, and the output of the production unit will flow into stock again. The 
following figure shows how the goods flow can be modelled by distinguishing 
production units and stock points. 

stockpoint 

! production orders 
I (lnformatlon flow) 
i 

producilon unit stockpoint 

Figure 2-6. Goeds flow 

Source: Bartrand ea. [1990] 

goedsflow 

Both the production and logistic discipline experience the consequences of a chosen 
product model and its representation in a bill-of-materiaL Hoekstra and Romme 
[1992] list some logistic requirements with respect to product models. The logistic 
advantage of developing product families is similar to the advantages that product 
families have for manufacturing. The variants of a product family (assemblies, 
subassemblies and components) have a similar structure, which reduces the efforts to 
meet the following six logistic requirements of a product model: 

1. The product model must fit the basic structure (the positioning of the primary 
functions and the associated physical goods flow) and the location of the 
decoupling point (see section 1.2.3). The common structure of a product family can 
be used to create a manufacturing process that is highly efficient and relatively 
insensitive for changes in the product family (see the previous section); 

2. The product model must have levels at which reliable forecasting is possible. Here 
it is important to aggregate product clusters in such a way that a reliable master 
production schedule (MPS) can be made on the basis of the commercial forecast. 
Product families provide for aggregations at which reliable forecasting is possible. 
It is not necessary to forecast all individual products as forecasts can be distributed 
over the variants of the product family model; 
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3. The product model must make it possible to build in range flexibility. Particularly 
with regard to standard products with variants, and when thinking in terms of 
families, it does not make sense to keep all the finished products in stock. In this 
case the items should be chosen such that the definitive variant is determined at the 
latest possible moment of production. Product families are designed for range 
flexibility. The modular approach of product familiescan be used to add customer 
options at the very last moment. In these cases, it is possible to manufacture the 
product family's variantsin ajust-in-time (JIT) manner as is argued by Bennettand 
Forrester [1994]; 

4. The product model must have levels at which direction can be given to production. 
Here, of course, there is very close co-operation with production: logistics and 
manufacturing engineering will have to be in agreement on this point. The generic 
bill-of-material concept, which is discussed in section 2.6.4, can be structured 
according to the manufacturing lay-out while retaining aggregations for logistic 
purposes, e.g. the set of components that is common for all product variants; 

5. The product model must enable an easy link-up withorder processing. On the basis 
of customer-orders, often described in terms of functions, it should be possible to 
translate all required functions easily into the relevant physical items. The 
automatic denvation of product variants from a family design is facilitated with the 
generic bill-of-material concept, which provides an order specification and an 
assembly view on the same data; 

6. The product model must be the basis for resource planning. For example, within 
the context of manufacturing resource planning (MRP), the structure must be such 
that all resources can be planned clearly and efficiently according to the product 
structure. This relates not only to hardware, but also to software, documentation, 
packaging, capacities, etc. Again, product families are logical clusters of variants in 
order to reduce the effort of design and processes such as resource planning. Hegge 
[1995] describes a genetic MRP algorithm that uses the gencric bill-of-material to 
calculate the time-phased demand for all items (families and variauts) in the 
hierarchical product structure. 

For the aforementioned issues, the logistic discipline must be involved in the 
development process. Furthermore, there is a farrago of logistic requirements that can 
be considered in development, for example: 

0 avoid the use of special matcrials with only a few suppliers; 

0 consicter the reliability and quality ofsuppliers; 

0 increase the commonality of the components used in a product family; 

0 standardise manufacturing processes, reduce set-up times and throughput times; 

0 reduce the number of bill-of-material levels for which a stock point is allocated; 

0 consicter the volume and mix quantities of a product famîly; and, 

For more information on the relationships between logistics, design, engineering and 
manufacturing engineering, see Mather [1988], Nevins [1989], De Toni [1991] and 
Whitney [1993]. 
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2.2.5 Purchasing 

The purchasing discipline is defined as the organisational function concerned with 
obtaining from third parties all goods and services that are necessary for the primary 
processes of the business, their maintenance and management, at the most favourable 
conditions for the organisation. From this definition, it is clear that there is a variety of 
purchasing actions. These can be classified in the following three categories: 

[J product related material, e.g. components and sub-assemblies; 

CJ process related material, e.g. machines and energy; 

[J other material, e.g. office supplies. 

The purchasing department plays a dominant role in the operational process of 
purchasing materials. However, in the development process, many purchasing 
activities are done by engineers, sametimes without consictering the impact for the 
operational process [Brens·, 1993]. Also product and programme management have an 
important purebase function as they judge in make-or-buy decisions. In that respect, it 
is better to speak about a purebase function than about a purebase discipline. This 
phenomenon is even inereased due to today's decreasing vertical integration of firms. 
The following figure shows a complete product structure in which bath a vertically 
integrated company and a less vertically integrated company are indicated . 
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Figure 2-7. Vertical inlegration 
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The vertically integrated company will purebase many standardised components of a 
low complexity, while the less vertically integrated company will buy a few sub
systems, most likely of a high complexity and specifically designed for the finished 
product family. In the latter case, purchasing must play an important role in product 
development. This is also stated by Dowlatshahi [1992] who exarnines the role of 
purchasing in a concurrent engineering environment. In his opinion, purchasing can 
contribute to design in the following ways: 

[J Purchasing may be in a position to provide the designer with parts, materials and 
suppliers that are capable of meeting the functional requirements at the lowest 
practical cast; 
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0 Due to its view on the whole product basket, purchasing can provide an option for 
standardising parts. This should not be seen as a way to stifle the creativity of 
designers, but as a way of standardising routine design procedures, thereby 
allowing them to spend more time on increasing a product' s overall performance 
and effectiveness; 

0 Purchasing can mediate between designers and suppliers in a Value Analysis (V A) 
or Value Engineering (VE) session. V AIVE's objective is to rnaintaio or enhance 
functional and performance output and reduce the cost input through design 
simplification, part elimination, material substitution or process modification; 

0 Purchasing can assist the design group and eventually the manufacturing operation 
by calling attention to any specified items that have a long or an unstable lead time. 
Designers need to be aware of these items so that they can possibly be designed out 
of a product. In that sense, there is a close collaboration between design, 
purchasing and logistics. 

The scattered nature of purchasing prohibits the use of a single product model. In fact, 
purchasing will be represented in the three domains of a product family. Purchasing is 
not only represented in the physical domain for its activities in engineering and 
manufacturing, it also plays a role in design (technology domain) and in the functional 
definition of the product (functional domain) when discussing the qualities of the 
product with suppliers. 

The development of product families can seriously reduce the purchasing effort. First 
of all, product families reuse components over the variants of the product family, 
which results in an improved ratio of commercial and technica! variety. Secondly, the 
variants of a product family share an interface definition, which makes it sensible to 
use product families for communication with suppliers. However, these results can 
only be achieved if all parties involved use a product rnadelling language that is able 
to describe a product family completely and in a non-redundant way. 

2.2.6 Accounting 

In many companies, accounting systems are entirely based on code numbers for single 
products. Production control systems with bilis-of-material are used for calculating 
cost prices. In a similar way routings are used to assign cost prices to assembly and 
manufacturing processes. Furthermore, tooling and overhead costs are allocated to a 
product. The calculated cost price can be used as a basisfora market price (cost plus 
method), but in many cases the market price is more determined by the competitors 
(market minus method) than by the internally calculated cost price. 

In product development, the physical model is used to assign material prices, while 
the functions in the functional model can be used for assigning market prices. In the 
development process, the expected cost prices and market prices are compared to get 
insight in the profitability of the product. 
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The development of product families has the advantage that the cost and market prices 
are not considered on a product to product basis. Components that are reused over 
many product variants can be manufactured with economies of scale and with 
corresponding lower cost prices. The presentation of a product family as a collection 
of customer options enforces the determination of market prices for these options. 

From a manufacturing perspective, accounting needs the physical model and an 
assembly process model, bath for product families. These roodels should make it 
possible to add component costs and manufacturing (routing) casts automatically for 
each customer-order specific variant. However, in many cases there are virtually no 
customer-order specific activities (such as when customisation is a matter of software 
installation) or the variabie casts are not related to the value of the product (for 
example, again, in the case of software). 

In general, the overhead casts that are determined by the development effort are 
difficult to assign to individual product variants. Not only bas a firm to estimate the 
volume of products which will be sold in the product life-cycle, it must also consider 
the modules which can be reused in other or future product families for calculating a 
cast price that approximates the real casts. 

2.2. 7 Service 

Like most other disciplines, service plays a double role in manufacturing operations. It 
is responsible for servicing the installed base and needs to be provided with the right 
service parts at the right time and the right place [Finkelstein, 1988]. In case of 
customer-order specific products, it needs to know the precise configurations in the 
installed base to facilitate the actual service work. Furthermore, knowledge about the 
installed base is also necessary for planning and manufacturing service parts. In mass
customisation, where each product is different, aggregation of information in the 
installed base is a difficult problem. An approach in which each product gets a set of 
relevant characteristics that can be used for aggregation purposes is the reversed 
world. 

Wortmann and Erens [1995] assert that the correct approach is to instaU a meaningful 
configuration process, and make the . customer-order identical to the relevant 
information. This is achieved with a product family of which the specification view in 
terms of customer options corresponds to the information that is needed for upgrading 
purposes. The physical variants that are derived from the product family can be 
recorded according to their original family structure. This provides for a natural 
aggregation of variants into product families at different levels of the product 
hierarchy. This aggregation can, for example, be used for preventive and corrective 
maintenance actions. 

The other role of service is in the development of products, where it is involved in 
proving the reliability and maintainability of products [Moss, 1985] [Niebel, 1985]. In 
this respect, service will be a ware of the different domains of a product family, 
including the product modeJs (functional, technology and physical model), which are 
used to structure information in these domains. 
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These domains play again a role in the operational process as, in the perception of the 
user, functions fail. For example, if a car won't brake adequately anymore, it is the 
failure of a function. This failure can be caused by a variety of technologies, for 
exarnple flaws in the brake pedal, the hydraulics, the discs or the electronics of the 
anti-loek braking system (ABS). However, for solving the failure, knowledge about 
the physical model is needed to change the defect part. 

These different domains can be recognîsed in service documentation, which follows 
the functional model (the problem symptoms), the technology model (the problem 
causes) and the physical model (the problem solution). 
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2.3 Industrial problem statement 

The following sections show some problems as encountered by manufacturing 
companies. The first class of problems concerns the uncontrolled growth of variety if 
companies cannot guide the requirements of customers. A reaction to this problem is 
the creation of reusable modules, which can be applied in different products, however 
again resulting in a number of problems. 

2.3.1. Uncontrolled growth of variety. In many companies, variety arises from the 
actdition of products to an existing product family. If companies cannot guide 
the customer requirements, a large variety of components might result. In 
other cases, uncertainty about market requirements stimulates the creation of 
many short-living variants, requiring many new components and reducing the 
possibility of rnanaging all variauts of the product family in a similar way. 

2.3.2. Preparing for product family design. A first reaction to the problem of 
variety is the creation of standard modules that can be reused over product 
variauts of a product farnily and over new generations of products. This 
approach requires, however, a good insight in reusability criteria, which will 
be different for all concemed domains. 

The following sections discuss these in more detail. 

2.3.1 U neontrolled growth of variety 

Initially, variety improves sales as the offering becomes more attractive for individual 
customers. But as variety increases, the law of diminishing returns means the benefits 
to the consumer and to the manufacturer do not keep pace. At a eertaio level of 
variety, consumers become confused and withdraw from the purebase decision 
entirely. For manufacturers, the creation and maintenance of new products and 
manufacturing processes becomes a burden. In order to optimise variety, a company 
must assess the level of variety at which consumers will still find its offering attractive 
and the level of complexity that will keep the company's costslow [Child, 1991]. 

The proliferation of products sterns from the expansion along two axes. As Figure 2-8 
illustrates, one axis represents the evolution of a market New product concepts are 
introduced due to new technologies and new market requirements. The other axis 
represents the way a product concept is embodied in product variauts that occupy this 
market at a eertaio moment in time. 

Figure 2-8. Proliferation of products 
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Suzue and Kohdate [ 1990] explain how in the past, the automobile in dustry foliowed 
several different polkies in planning for product diversificatîon. The first policy may 
be called tbe upgrade principle. For example, an automobile manufacturer released an 
initial model in the lOOOcc class. With each change in models, tbe manufacturer 
gradually increased to 1200cc, 1500cc, and so on. Eventually, the company introduced 
a new model in the old lOOOcc class. The other factor of product diversification is the 
wide-variation principle, which relates to how a given market is subdivided. When the 
manufacturer takes one car model, alters its specifications, establishes different 
grades, and broadens its price range, it can satisfy the needs of an individual consumer 
who may want a mid-sized car but cannot afford any options. 

The wide-variation principle, tagether with the upgrade principle, determines the 
product density, i.e. the number of product variants that are introducedover the life
cycle ofthe product family. Figure 2-9 shows a trend in today's society where product 
variety is increasing and Iife-cycles are decreasing. 

time 

Figure 2-9. lncreasing product density 

A high product density requires synergy in product development, which can be 
accomplished by developing product families. Furthermore, a frictionless organisation 
of product information is needed. There is no time for resolving problems of 
unstructured information, neither is there time for extensive team-building. lf the 
learning curve is steep, a company cannot afford a situation in which each phase of 
design takes a step back on the leaming curve. In order to improve the time-to-rnarket 
and reduce costly design iterations, information must be communicated efficiently and 
effectively from phase to phase and between different domains. 

Uncertainty 

In some cases, firms are uncertain about the requirements of individual customers and 
develop extra options to anticipate all possible wishes. Other companies, on the other 
hand, try to reduce their time-to-rnarket in order to release a product family that is 
based on the latest insights with respect to the required options. There is a trade-off 
between costs that are needed to reduce tbe development time and costs associated to 
offering unrequested function. A qualitative model is depicted in Figure 2-10. 
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Rgure 2-10. Trade-off between development time and options 

Still, even if the development time is very short, it will not be possible to anticipate all 
customer requirements. This is the inherent uncertainty in today's markets. For 
televisions and audio equipment, for example, it is hardly possible to reduce 
uncertainty about the quality of the design by spending additional capacity in 
development. Especially the preferenee of customers with respect to fashionable 
aspects such as the looks of the cabinet and the remote control will only be known 
close to the market introduction. If these specifications are late available, then the 
architecture of the physical design should be such that these functions can be 
physically realised at the very last moment. In general, if the customer preferences 
with respect to a function cannot be foreknown, a modular product is required. These 
modular designs make it possible to experiment in the market with a range of diverse 
product variants. The most successful variauts are then used for higher-volume 
manufacturing. Although the cost price of each individual product variant might be 
higher than if the product concept would not have been modular, the overall 
profitability is higher due to the number of products sold [Smith, 1991]. For more 
information on this approach, Sanchez [1991] discusses a concept named "real-time 
marketing". 

Reactive development 

The distinction between refining and improving an existing design and introducing a 
new concept that departs in a significant way from past practice is not always clearly 
visible in an industrial company. Does a new product variant fit in an existing 
technologkal concept and market segment, or does it usher in a new period, a new 
product concept and perhaps even an entirely new market? 

New product families are often based on existing product platforms and its variauts 
have a similar architecture and technology, and reuse many existing components. 
However, at the end of the day, it tums out that the latest product variant only slightly 
resembles the original product and that meanwhile many new components have been 
created. All decisions have been made in isolation on a product by product or 
component by component basis. This is called a reactive approach to customer 
demands. The sum total of these decisions results in too much teehuical variety to 
manage. The cumulative development effort of newly introduced products is depicted 
in Figure 2-11. At the end of the life-cycle, less development effort is put into the 
existing product concept in favour of a new product concept. 
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Figure 2-11. Reactive development 

This steady growth of development effort is most dominant in engineer-ta-order 
companies. lt is allowed that the customer requirements considerably influence the 
architecture and the design of components. On the other hand, a company that sticks 
strictly to the principles of make-to-stock or assemble-to-order manufacturing, will 
not allow an uncontrolled proliferation of variety due to the demands of individual 
customers. However, many companies have a mix of production control concepts: 

0 A product family is designed independent of customer-orders but has many product 
variauts that can be assembied to customer-order without additional engineering 
effort. For example, many trucks are built to customer-order with a choice of 
options potentially resulting in a binion different variants; 

0 Some product variauts of the family are runners and are therefore made-to-stock: a 
few variauts of the billion truck variauts are manufactured customer-order 
independently, for example, for use as showroom models. In some cases, these 
runners are redesigned, independent of customer-orders, to optimise for a large 
sales volume; 

0 Other products, specials or projects, are derived on customer-order from existing 
product variauts and therefore need engineering capacity for customisation. For 
example, some customers require an extra axle, which was not originally foreseen 
in the truck family design. 

Problems occur when a company mixes these three production control concepts. 
Wh en runners are assigned, but maintained independent of the family, it causes these 
designs to diverge. When specials are designed and then added to the set of runners, 
new components and manufacturing processes are introduced in the daily operations. 
All these actions cause one big indistinctness, namely, which designs are customer 
independent and should be maintained carefully, and which designs are customer 
dependentand should not be maintained for possible future reuse? 

2.3.2 Preparing for product family design 

Development, or human problem solving, is a scarce resource. 1t must be used 
appropriately, replaced by less expensive resources when possible, and reecvered for 
further use whenever feasible. Barnes and Bollinger [1991] state that the three 
techniques of judicious use, replacement and recovery correspond fairly closely to 
good planning, automation and reuse: 
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Cl Good planning reduces the loss of human problem solving by mtmmismg 
redundant and dead-end work, by enhancing communication of solutions among 
developers, and by helping development groups select environments that support 
worker productivity; 

Cl Automation is the classicprocessof tooi building, in which well-understood work 
activities are replaced with less costly automated tools; 

Cl Reuse multiplies the effectiveness of human problem solving by ensuring that the 
extensive work or special knowledge used to solve specific development problems 
will be transferred to as many similar problems as possible. 

Good planning and automation are techniques that are used in all design processes to 
improve the efficiency of design. The reuse concept is used on different abstraction 
levels of the design hierarchy (see section 1.2.2) and not only for products, but also 
for knowledge. Engineer-to-order companies usually reuse purchased components, 
while assemble-to-order companies reuse modules with a distinct function. 

Product families are based on the reuse technique. Modules are developed in such a 
way that they have a specific function and that they can be combined in arbitrary ways 
to cater for specific customer requirements [Whitney, 1993]. An improper use of this 
technique can lead to the following problems: 

Cl The specification of a module depends on the scope of the product family. lf a 
module is used in many applications, several functions are implemented in one 
module. As the module must be designed for the application with the most 
stringent demands, this module may then have excess capability and increased unit 
costs. A choice for many specific or a few universa! modules is only possible when 
the scope of the product family or product platform is known beforehand. This 
requires strong product and programme management. A reactive behaviour towards 
customer requirements will cause problems in this respect; 

Cl A function is implemented in more than one module. This means that a module 
cannot be isolated and reused in another product variant. The other modules in 
which this function is materialised should be considered as well; 

Cl Unfortunately, a modular design bas less performance than an integrated design 
[Ulrich, 1991] [Ulrich, 1995]. Modular designscan contain redundant structure and 
do not exploit as much function sharing as is possible. By eliminating interfaces, 
redundant elements can be removed from a design; 

Cl A module is not necessarily a single product as also modulescan have variety. If 
the variauts of a module have simHar interfaces with the environment, it will be 
possible to solve the design problem within a single context. If the module's 
variants have different interfaces, then related variauts of other modules have to be 
considered as well. A well-known example is a family of engines that is applied in 
a truck. Although all engines have a physically identical interface, in the sense that 
they fit in the same engine compartment, the functional interface with the gearbox 
family is different for each individual engine variant: the gearbox ratio must be 
adapted to the power and torque of the engine variant. 
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Modules can have different life-cycles. These cause probierus with respect to forward 
and backward compatibility. A particular type of engine, for exarnple, is used over a 
langer period than the type of motor car in which it is applied (see Figure 2-12). 
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Figure 2-12. Forward compatibility 

The interfaces of an engine should be such that future applications are taken into 
account. In genera!, an interface of a module defines the conditions under which this 
module can function in its environment. A good interface definition takes every 
possible and anticipated "state" of the environment into account. If the environment 
has an unforeseen state and there is an incidental interaction, which the interface 
didn't anticipate for, the module might notact as wanted [Ulrich, 1991]. If allstatesof 
a dynamic environment must be foreseen, much pressure is put on the interface 
definition. Again, this requires the involvement of programme management. 
Consictering a single product family is not sufficient for inte1facing modules with 
different life-cycles. 

The development of product families requires the consideration of both forward and 
backward compatibility (see Figure 2-12). The latter concerns those cases where a 
module must be such that it can be applied in earlier designed families, as a service 
part or as an upgrade for an existing product variant. Usually, it is not possible to 
rnaintaio backward compatibility f01·ever. It is the task of programme management to 
decide when a new generation of products looses compatibility with a previous 
generation. A new generation is often accompanied by the design of a new product 
platform. 

Finally, not only physical assemblies can be reused, but also functions and technology 
modules. Cornrnon for all is that they can be relatively easily isolated from their 
environment in the sense that the interfaces are well-understood and have been 
minimised. An advantage of reusing design information is that the development time 
can be reduced as the level of design primitives is relatively high. A condition for this 
is that the existing modules are suitable for new applications in the sense that their 
interfaces fit frorn a functional, technological and physical perspective. This requires a 
design effort with a horizon that exceeds the life-cycle of an individual project. 
However, different domains can have different requirements or ideas about the general 
applicability of modules. 
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Summarising, the development of reusable modules is mainly driven by the 
possibility to offer a large product variety with limited internal efforts. Product variety 
does not only concern the variants of a product family at a eertaio moment in time, but 
also future and past product families. This requires interface definitions, which take 
both today's and all anticipated future states of the environment into account. The 
unambiguous specification of interfaces is handicapped if different domains are 
involved in the design process. Each domaio will introduce different requirements on 
how to isolate a part of the design from its context. 
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2.4 Design problems 

In a study analysing the design and development process, Danko and Prinz [1989] 
conclude that successful design depends on the exchange of inforrrmtion between 
appropriate groups in the process. Furthermore, inadequate communication at critica! 
times between different groups in the product creation process will result in the failure 
of the product or will require extensive redesign. 

This thesis eentres around the concept of several domains contributing to the design of 
a product family. This chapter focuses on communication probieros within and 
between domains. The communication within and between domains is strongly related 
to the notion of shared memory [Konda, 1992]. The most immediate form of shared 
memory is the "codified corpus of knowledge, techniques and roodels that exist in 
every professional group", for example scientists, engineers, technologists or artists. 
This is named vertical memory, since it is concerned with encapsulating increasingly 
detailed aspects of a gîven profession's knowledge. In actdition to vertical memory, 
any artefact that is based on the knowledge of more than a single domaio requires that 
meaning be shared among multiple domains. This interdisciplinary communication is 
named horizontal memory. In Figure 2-13, vertical memory corresponds to 
intradomaio cominunication, while horizontal memory corresponds to interdomaio 
communication. 

lntradomaln 1 
communlcatlon 

funcHonal 
domaln 

technology 
domaln 

lnterdomaln 
communlcatlon 

Figure 2-13. Domains and shared memory 
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Chapter 2.2 stated that disciplines make use of product roodels in different domains to 
structure their information needs. Design, for example, makes use of both the 
functional modeland the technology model of a product family. The functional model 
classifies functions that fulfil overall user requirements, while the technology model 
places the modules, being solutions to the functions, in a conceptual lay-out of the 
product. 

The next sections take the different domains and product roodels as a starting point. 
They relate the concept of shared memory to the vertical communication within 
domains and the horizontal communication between domains. 
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2.4.1 Structuring the product family 

The first complexity problem lies in recording and understanding the structure of a 
product family in such a way that all variants are easily traced. If a product family is 
developed in a gradual manner as a collection of ·single products, only the most 
involved designers will have knowledge about all components that have been applied 
to suit the requirements, being the souree for variety. 

A common solution to the above problem is to split up the product family in a number 
of sub-families, which are developed in parallel (Figure 2-14 ). This approach is 
similar to creating dedîcated and parallel manufacturing processes, as was discussed 
in section 2.2.3. The complexity of the design problem is reduced but the efficiency of 
the design in terms of reusable functions, modules and assemblies is reduced as well. 

fomlly two subfomBles 

Figure 2-14. Reduction of complexity 

In general, domains and disciplines consider product families in different sizes 
depending on the complexity that can be managed. A personal observation is that 
domains that handle abstract information, e.g. the functional domain, are able to deal 
with larger product families than domains with a technological or physical nature. 
The latter domains are more constrained by physical and technological possibilities 
and environmental impacts, as for example the capabilities of the manufacturing 
process. Figure 2-15 also shows the specifications and the commercial view on the 
physical domains. The scope of the specifications encompasses the functional domain. 
The commercial view is mostly used in the sales process, for example in the 
communication of products to the market: it can be decided to split-up a product 
family so as to discriminate between the cheaper and more expensive product variants. 
With respect to design, different scopes of the product family can give additional 
interdomain communication problems. 
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2.4.2 The product family's variants 

Even when the complexity of the design is reduced by decreasing the scope of the 
product family, the number of variants is generally still large. A large number of 
variants results in a complicated communication between disciplines and a difficult 
evaluation of the design with respect to the required function. The evaluation of 
design is supported by testing individual variants. These variants should be selected 
such that they are representative for many others. When module variants have distinct 
functions, many combinations of module variants, i.e. many variants of the end
product, have to be examined. This requires considerable resources. 

One of the causes of problems in testing product families is that not all variants of a 
product family have the same product structure. A car, for example, is a class of 
variants that share technology, product architecture, manufacturing process and many 
functional requirements. At a lower level of the design abstraction, different engines 
can be detected, for example a diesel engine and a petrol engine. Both are product 
families again, but differ in the sense that they have different functional requirements, 
a different technology, a different product structure and a different manufacturing 
process structure. Consider a car with a diesel engine and a car with a petrol engine: 
they have dissimHar product structures, which cannot be recorded in the same way, 
thereby adding to the complexity of design. 

2.4.3 Decomposition 

If a design problem can be decomposed, more intelligence can be applied to the 
salution of each sub-problem, and the development time can be considerably reduced. 
Decomposing design problems requires the maintenance of relationships or interfaces 
between the pieces, for example flows of material, energy or signals in the functional 
domain and physical interactions between modules in the technology domain. In case 
of a product family design, decomposition can be a complicated task, invalving 
complicated decomposition criteria, as the relationships between the decomposed 
entities bear on a variety of products, for example all variants of an engine family in 
relationship to all variants of a gearbox family. Furthermore, these relationships have 
to be recorded as vertical memory to enable communication between engineers, now 
and in future projects. Furthermore, the existence of variety can only be understood 
when also the context, in which the reasou for variety should be sought, is considered. 

The crucial question in design is whether the design problem can be split up, or 
decomposed, into separate pieces that can be solved in series or in parallel. In weli
tradden domains, effective decompositions are known and little search at that level 
needs to be conducted as part of routine design activity. 
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For example, in automobile design, the overall decomposition bas remained largely 
invariant over several decades [Chandrasekaran, 1989]. In these cases. the design can 
be largely executed within each domain and independent of other domains. However, 
many design problerns are difficult to split up without prejudice to performance, cost, 
weight, appearance or to other objectives that require many trade-offs between 
viewpoints. This occurs in such products as buildings, cars, machine tools and the like 
in which functions are not allocated to distinct parts but spread, in a complicated and 
unpredictable way, over a tightly integrated assembly [Jones, 1970]. 

Many products that use several technologies to realise user functions are developed 
with decomposition strategies that are still subject to change. Nowadays, many 
functions can be implemented with either mechanica! technology or with software 
technology. This design freedom asks for a proper functional analysis independent of 
possible solution concepts. The functional analysis is supported with a dedicated 
functional model, of which the functions are rnapped onto technological solution 
concepts after sufficient functional decomposition. However, a separate functional 
model introduces horizontal cornrnunication problems with respect to the technology 
model and the physical model. 

In larger organisations it is likely that, even for a single domain, the structure of a 
design artefact is traversed by organisational borders. This can cause a situation where 
the organisational borders are recognised in the architecture of a product in the sense 
that interfaces are minimised between different organisadonal units. The development 
of a new product family with a new architecture could require the restructuring of the 
existing organisation. 

2.4.4 Allocation 

Roughly speaking, design is the mapping of a functional specificadon onto a 
manufacturable descripdon. The functional specification is a description of the 
intended behaviour while the manufacturable description is an unambiguous wording 
of how the artefact can be made. In most cases, the complexity of the problem is such 
that the solution cannot be directly derived from the specifications. Therefore, the 
specificadons are refined in a stepwise manner until the mapping to partial soludons 
can bemade. 

An observation, which is related to the decomposition issue and the use of different 
technologies, is discussed by Albano and Sub [1992] and concerns the fact that 
specificadons or functions cannot be refined independent of the solution concepts. 
Assume a funcdon energy transportation. This function can be materialised in several 
ways, depending on the solution concept that is chosen: 

0 For very short distances a mechanica} conneetion can be used, for example with 
chain wheels, propulsion shafts and hearings; 

0 For longer distances a hydraulic conneetion can be used, for example with pressure 
tubes, pumps and valves; 
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0 For very long distances an electrical conneetion can be used, for example with 
generators, transfarmers and power lines. 

The decomposition of the function energy transportation depends on the chosen 
salution concept. However, if a function is decomposed without explicitly discussing 
the salution concept, developers will implicitly assume a solution concept. If it 
appears, at a later stage in the design process, that the wrong solution concept is 
chosen, a costly redesign has to be done [Y ourdon, 1979]. 

Another problem is related to the iterative nature of design and concerns the quality of 
allocation in interdomain communication. The fact that allocations are essential for 
the design process cannot be separated from the difficulties that are related to this 
allocation process: 

0 For a high level function, the allocation onto one technology module cannot 
directly be made, thereby transferring the design problem to the decomposition of 
this function. An example is the function mobility, which won't result in a motor 
car prior to decomposing this function into sub-functions for which technica] 
solutions exist; 

D The efficiency of the design can be low in the case that one module meets the 
requirements of only one function (a 1:1 mapping). If a motor car would be 
designed without function sharing, i.e. each function is realised in one module, then 
it would be relatively large, heavy, expensive and unreliable. But because elements 
like the sheet-metal body perforrn many functions, including electrical ground, 
structural support, aerodynamic faring, weather proteetion and aesthetics, motor 
cars can be manufactured relatively inexpensively and can perforrn relatively well; 

D On the other hand, if more than one function is realised in one module, it will be 
impossible to isolate a function without taking into account the other functions. 
This fact plays án important role in the design of product families. If a customer 
configures a product variant by selecting from a set of functions, this product 
variant will a.lso contain all other functions that are realised in the modules that are 
needed to meet the original customer requirements. Thus, function sharing can 
create redundancy; 

0 Sametimes it is decided that a function should be rea.lised in two or more modules, 
possibly with different technologies. However if this function is not decomposed 
into sub-functions, it is unclear which part of the function is realised in which 
module with which technology. This introduces ambiguities in the design process 
and Ieaves essential decisions about the functional behaviour to the technology 
domain. In other words, the functional description is incomplete and ambiguous; 

D Any function that is realised in two or more remote modules will contribute to a 
more complex design process than a function that is realised in exactly one module. 
For example, the modules that together make the anti-loek braking system (ABS) 
are distributed over the whole car and have interfaces with modules that fall under 
different organisational responsibilities. However, after some time, an organisation 
becomes acquantained with this distribution of functions and will organise its 
knowledge around the new decomposition in which ABS in embedded. 
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2.4.5 Composition 

Design is characterised by the detailing of functions until the abstraction level has 
been reached that they can be allocated to suitable modules. In a similar way, modules 
are mapped onto assemblies, which are used for manufacturing. The issue in 
composition is how to glue the solutions of the sub-problems back into a solution for 
the original problem. However, due to the complexity of the detailing and allocation 
process, it is not always the case that the composition of modules or assemblies meets 
the original function again. If this is detected at the start of production, it can cause an 
expensive and time-consuming redesign of the product. 

2.4.6 V alidation 

Design verification is the act of testing whether a candidate design delivers the 
functions and satisfies any other relevant constraints. The design is not complete until 
the result of decomposition, allocation and composition is validated against the 
required function. In most cases, validation can be done by straightforward compiled 
computational methods (e.g., "add weights of components and check that it is less 
than x") or by invoking possibly complex mathematical methods, such as finite 
element analysis [Chandrasekaran, 1989]. If the quality of the design cannot be 
calculated, simulations give a way to validate the product design at intermediale 
stages [Will, 1991]. However, all design verifications require that the specifications 
are maintained in such a way that they can function as a touchstone for the design 
solutions. If updates on the specification are given as separate doeurneuts without 
adaptation of the original specification, it won't be possible to validate the design. 

2.4. 7 Constraints 

Another complexity problem concerns the fact that, for most product families, it is not 
possible to combine assemblies in arbitrary ways to create variants. Designers will 
record constraints to prohibit technically impossible combinations of assemblies, for 
example because they do not fit physically. In a similar way, product management 
constrains combinatloos of commercial options (functions) to exclude commercially 
unwanted variants. Design management can constrain combinations of modules 
because they don't work together from a technological perspective. In genera!, 
constraints give additional development complexity as exceptions to the concept have 
to be considered. Furthermore, combinations of constraints can give unforeseen 
effects, especially if the communication with other domains and disciplines is 
moderate. 

Constraints on combinations of low-level product variauts determine the number of 
commercially wanted and technically feasible variauts of a product family. Although 
they can be specified by the individual domains, they also delermine design decisions 
in other domains. For example, technological solutions will not be developed for 
product variauts that will never be commercially offered. 
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2.4.8 Documentation 

Usually, vertical memory is easier to record than horizontal memory. However, this 
does not guarantee that all domain dependent information is accessible to all 
engineers. Information can be inadequate or in an unusable form, especially when it 
concerns knowledge that is captured in old design projects and that can in essence be 
reused. With respect to product families, the situation is even more severe as a variety 
of components, products, architectures and constraints must be stored. 

Implicitly structured information hampers communication. Figure 2-16 shows a 
hierarchical product model to which some doeurneuts are related. Each of these 
documents contains relevant information about the product being designed. In some 
cases, this information will be explicitly structured and can in that sense be regarcled 
as a structure contained in another structure. In other cases, this information is hardly 
structured and can be very much subject to the human interpretation of its users. An 
example of the second category is a text-based requirements specification, while an 
example of the first category is a CAD-file. 

Figure 2·16. Explicit doeurnenis containing implicit inlormation 

Figure 2-16 shows a problem, which can be a serious bottleneck in product modelling. 
Models are not only recursive in the sense that a design object is composed of other 
design objects, but also in the sense that related documents can contain a formalised 
description of the product. Sametimes these rnadeis describe the whole artefact again 
from a different viewpoint In genera!, the more there is structure in a document 
rather than there aredocumentsin a structure, the more inconsistency of viewscan be 
the consequence. 

Purthermare the search for information is hindered if there are implicit structures in 
documents. Usually, the structure of an artefact helps in finding information on the 
right abstraction level, for example information about the application of an engine in a 
motor car, or information about the material of the engine's fly-wheel. However, if a 
document contains both structure and information, it is more difficult to search or 
refer to a specific chunk of information. This becomes especially apparent if 
doeurneuts are implemented in computer-based systems for engineering data 
management [Mclntosh, 1995]. 
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Recently, HyperText systems1 have been introduced to support links, both within and 
between, documents. Windows on the computer screen are associated with documents 
in a database, and links are provided within and between these documents, both 
graphically (as labelled tokens in the document) and in the database (as pointers to 
other documents). 

Product families add an additional complexity to documents containing both 
information and structure, when variety is modelled implicitly in the document (as is 
usually the case). People using the document must interpret which text of the 
document is relevant for the variant they are considering. This semantic insight cannot 
be expected from an EDM system, although some researchers are developing 
knowiedge-based systems for the identification of the different regions of a document 
image [Dengel, 1989]. Currently, references to doeurneuts are still ambiguous in the 
sense that the relevant parts of the document cannot be extracted. 

As stated before, in larger organisations it is likely that the structure of a design 
artefact is traversed by organisational borders. This can cause a situation where the 
organisational borders are recognised in both the architecture of a product and the 
documentation of the product as is depicted in Figure 2-17. 

Figure 2-17. Organisational borders and doeurneniS 

Doeurneuts that contain mappings from functions to modules or from modules to 
assemblies give similar reference problems as documents capturing vertical memory. 
Figure 2-18 shows allocation and validation relationships between design entities. If 
these relationships are embedded in documents and are not known formally as entities, 
it will be difficult to keep different domains consistent, especially in case of 
engineering changes. Capturing design rationale is critical, but is currently not 
supported by EDM systems [Lubars, 1991]. Human interpretation is still needed. 

I~ 
Figure 2-18. Relerences between documents 

' For an overview of HyperText systems and techniques, see Conklin [1987, 1988). The use of 
HyperText for rnanaging knowledge is described by Akscyn [1988]. 
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2.5 The intangibility of product families 

Eventually, all problems with respect to the manufacturing of product familiescan be 
traeed back to design decisions. The reusability of modules plays an especially 
important role in offering the required product variety against minimal internal efforts. 
A good design, however, depends on the availability of relevant information, which is 
presented in such a way that it is comprehensible for all domains and viewpoints that 
are involved in the design process. With respect to relevant information, Alexander 
[1964] distinguishes information about the product and information about the 
environment in which this product will function. He defines the process of design 
succinctly: 

" Every design problem begins with an effort to achieve fitness between two entities: 
the form in question and its context. The form is the solution to the problem; the 
context defines the problem. In other words, when we speak of design, the real object 
of discussion is not the form alone, but the ensemble comprising the form and its 
context. " 

However, achieving fitness between form and context is not easy. For today's design 
projects, in which many people work for a few years on a very complex form which 
bas to fit in a yet unknown context, it is hardly possible to have a two-directional 
interaction between context and form. 

An example of a close interaction between form and context is given by Alexander 
and concerns the building of a house by primitive societies, for example Amazon 
Indians. These live in unselfconscious societies, where form-making is learned 
informally, through imitation and correction. In these societies, the human being is 
only present as an agent in the process of building a house. He reacts to misfits by 
changing them, but is unlikely to impose any designed conception on the form. As a 
result, housing designs are very simHar over thousands of years, and if improvements 
are made, they take place in a gradual fashion. Similar examples are given by Jones 
[1970] who illustrates how the craftsman's blend of know-how and ignorance can 
produce works that a scientist would find hard to explain. He gives the following 
ideas of the workings of craft evolution: 

0 Craftsmen do not, and often cannot, draw their works and neither can they give 
adequate reasous for the decisions they take; 

0 The form of a craft product is modified by countless failures and successes in a 
process of trial-and-error over many centuries. This slow and costly sequentia! 
searching for the invisible lines of a good design can, in the end, produce an 
astonishingly well-balanced result and a close fit to the needs ofthe user; 

0 Craft evolution can also produce discordant features if the process of craft 
evolution has not yet assimilated sudden changes of demand; 

0 The cumulative store of the essential information generated by craft evolution is, 
primarily, the form of the product itself, which is not changed except to correct 
errors or to meet new demands; 

55 



Problems with product variety 

0 The two classes of data that are most important in designing today, the shape of the 
product as a whole and the reasoos for the shape, are not recorded in a symbolic 
medium and therefore cannot be investigated and altered without makeshift 
experiments with the product itself. Such experiments involve the loss of the 
patiently-won balance and fit of an earlier design and are attempted only when new 
demands cannot be met by gradual evolution. 

In today's self-conscious society, where form-making is taught academically, 
according to explicit rules, designers have a mental picture of both the form and the 
context. The self-conscious designer works entirely from the pictures in bis mind, and 
these pictures are often wrong. The way to improve this is to make a formal model of 
the mental picture. This formal model is a symbolic or mathematica! description of 
both form and context. The next figure shows that the interaction between form and 
context is transferred to the interaction between a formal model of the form and a 
formal model of the context. 

context form 

actual worfd 

mental plc1ure 

formol model of 
mental pleture 

Figure 2-19. Interaction between form and context 

Source: Alexander [1964] 

If these observations are applied to the design of product families, it can be seen that 
the communication about product families is even more difficult than communication 
about product variants or any other single product: a product family does not exist 
physically. It is not possible fora group of people, repcesenting different domains, to 
surround a product family and discuss how and where their views are present in the 
artefact. lt is unfeasible to indicate which components are responsible for a eertaio 
function and how these components are assembied as there will be a variety of 
functions, a variety of components and a variety of manufacturing processes. 
Eventually, however, a customer will require a specific set of function variants, 
resulting in a physical artefact, which bas to fit in the customer' s specific context. 

In other words, a product family only exists as a mental picture or a formal model. It 
bas been created for a variety of contexts (again an abstraction) and can only be 
validated by studying the fit of its variants in their respective contexts. One of the 
goals of this thesis is to enable such a formal model of a product family that it 
approximates the mental model, not the actual world, to the maximum possible extent. 
The role of language, manifest through expressions, is to allow people to react into 
and interact with each other' s individuals. Por language to be effective, formal 
expressions have to be public [Bijl, 1988]. Therefore, chapter 6 of this thesis proposes 
a language for modeHing product families. 
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From the above can be expected that many problems are encountered if people want to 
cornmunicate about such an abstract entity as a product family: 

0 It is unknown which criteria have been used to classify products into a product 
farnily. Marketing groups all products that have similar commercial characteristics. 
Design groups all products with a similar architecture or technology. Assernbly 
groups all products with a similar physical construction and rnanufacturing process. 
However, if people want to communicate about a product family and its variants, 
the farnily definition is in most cases a cornpromise between all business functions. 
It is unlikely that a given set of products is a family from all possible perspectives; 

0 The variants of a product family are not known beforehand, because the possible 
variety is large. In that case, a family is developed without deseending regularly to 
the level of individual variants. Even, when prototypes are manufactured, it can not 
always be guaranteed that the test-results are valid for the whole family; 

0 It is not understood what is common for all variants, for example common selling
points, common functions, common technology and comrnon parts. Understanding 
what is common facilitates communication. It gives a basis against which the 
variabie aspects can be measured. However, the cornmon aspects are not 
necessarily identical to physical parts. It is very possible that a product family has 
no common parts, but a cornmon architecture in which the variabie parts fit; 

0 It proves to be difficult to define interfaces for product families. How does a family 
of engines fit in a farnily of cars? Will there be an interface for each engine and 
each engine-cornpartment, or will it be possible to standardise the interface? In the 
first case, an interface is regarded as the impHeit result of variants that have to fit, 
while in the latter case the interface is explicitly designed and acts as a eenstraint 
for the design of the engine and cernpartment variants. 

The aforementioned points create great difficulties for rnanufacturing companies. It is 
often not even considered as a possibility to describe a product family as an abstract 
entity. In these cases, companies resort to the description of productvariantsas if they 
are single products. Due to the repetitive nature of manufacturing, solutions forthese 
problerns were first discovered in the field of bilis-of-material and production controL 

The following chapter presents a case study of a cornpany that has gone through 
several phases of sales and rnanufacturing co-ordination. In this evolution, they have 
applied four different languages for rnadelling product families. The discussion of 
these description languages pays most attention to the generic bill-of-material concept. 
This concept has originally been designed to meet the farnily description problems 
that are related to custorner-order driven rnanufacturing. However, this concept is also 
a strong basis for other business processes. At this point, the suitability of the generic 
bill-of-material concept for design management purposes might be stressed as the 
concept can be extended towards the incorporation of several dornains of the design. 
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2.6 Product family descriptions 

The objective of this chapter is to discuss four existing languages that are commonly 
used by manufacturing companies to define a product family. Therefore, this part 
introduces a company, named Philips Medica! Systems (PMS), which is one of the 
largest companies in the world manufacturing X-ray medica! equipment. Over the past 
twenty years PMS has used these four different languages in succession. This 
introduetion gives a short overview of product family descriptions, which are 
explained in more detail later in this chapter. It will be explained that the use of each 
of these languages is very much related to the typical problems that Medica! Systems 
was facing at that time. 

2.6.1. Descrihing preferred modules 

Originally, Medica] Systems was a group of main component factorles manufacturing 
main components and selling them to a few countries. A logical consequence of this 
component oriented approach was that these components, so called preferred 
modules, were described and publisbed in commercial catalogues. From these 
catalogues, appropriate configurations were composed although a heavy responsibility 
lay on the shoulders of sales and service engineers in the countries, to assembie and 
instaU a system that would actually work. Intensive discussions with component 
factorles were needed to discuss interfaces, and as a rule, development work was 
executed by the country's service engineers. 

2.6.2. Descrihing preferred systems 

By the beginning of the eighties, offering preferred modules became intolerable for a 
number of reasons. First of all, medical equipment became more complex every year 
and used more embedded software, thereby increasing the need for good interface 
management. Secondly, costomers required a rapid instanation of a system in a 
hospita!, assuming a first-time-right use without the need to develop customer specific 
interfaces. Thirdly, costomers wanted a more application oriented discussion with 
sales groups, in stead of a teehoical and component oriented discussion so far. The 
acknowledgement of these problems has resulted in the creation of product groups 
responsible for marketing, development and manufacturing of end-products. This has 
changed the relationships amongst sales and manufacturing considerably. Sales now 
orders products at a systems oriented product group, which, in turn, orders the 
necessary component products. The ordered products are a limited selection (preferred 
systems) of the product family's variants. They are described as if they are single 
products. 

The main problem of preferred systems is that this selection might be too limited to be 
accepted by customers. Furthermore, the fact that the commonality of preferred 
systems was not explicitly considered resulted in redundancy of both products and 
product descriptions, thereby hindering efficient communication about the product 
family as a whole. The variant bill-of-material concept solves some of these problems 
as will be explained below. 
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2.6.3. Variant bilis-of-material 

PMS has introduced an approach that lists all preferred modules used in the variants 
of a product family. To solve communication problems between sales and 
manufacturing, a mechanism was introduced to translate customer functions into 
manufacturable assemblies. The list of preferred modules, together with the 
translation mechanism is named a variant bill-of-materiaL This product family 
language, sometimes named the conditional bill-of-material concept, is extensively 
described by Van Veen [1992]. 

The creation of variant biJls-of-material was accompanied by a renewed attention to 
the interfaces of the preferred modules. It must be guaranteed that each order in 
commercial functions can be translated into a workable medica! system. However, 
variant bilis-of-material exhibit serious draw-backs in modelling the end-product 
family and its interfaces. During the design process, this means that a discussion about 
the product family is stilldoneon the level of its preferred modules. In a similar way, 
the final-assembly phase of manufacturing is not supported by a variant bill-of
material as only preferred modules are described, not the way how these preferred 
modules constitute subassemblies and the medica! system as a whole. 

2.6.4. Generic bilis-of-material 

To meet the problems of variant bills-of-materials, the gencric bill-of-material concept 
was introduced. This concept can be regarcled as a multi-level variant bill-of-material 
as families and variants can be described on alllevels of the product family structure. 
In that sense, it supports both final-assembly operations and the design of product 
families. The difference between a specification view and an assembly view on the 
product family is maintained in a similar way as for variant bills-of-material: customer 
functions are translated to manufacturable assemblies. Currently, the generic bill-of
material concept plays an important role in the later phases of product development. 
The information that is required for manufacturing can be regarded as a representation 
of the physical model. Later, this thesis discusses how an extension of the generic bill
of-material concept can be used for the earlier phases of development. In these earlier 
phases, the product family is defined in the functional and technology domain. 

Short introduetion to medical equipment 

Nowadays, the product families that are designed, manufactured and sold by Medica! 
Systems are of a high complexity and make use of very actvaneed technology, 
including the latest developments in X-ray technology, embedded software, user
interface technology, image manipulation and robotic control of the geometry. Despite 
the actvaneed technology and a high innovation speed of major components, most 
medical systems can be affered to the market in a million or more variants to cater for 
the varied requirements of hospitals and private doctors. 
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Medical Systems manufacturers a diverse range of product families, including MRI 
systems, CT scanners, surgery systems, ultra-sound systems and medical treatment 
systems. This thesis introduces cardio-vascular systems as an example. Cardio
vascular systems, for diagnosis of the heart and the vessels, are characterised by a high 
complexity and are usually offered to the market in more than a million variants. 

In general, cardio-vascular systems are built from the following subsystems: 

0 stand (to support other components); 

0 generator (to generate power for the X-ray tube); 

0 X-ray tube (to produce radiation); 

0 image intensifier (to intensify the radiation after having traversed the patient); 

0 image manipulation (to improve the image quality); 

0 table (to support the patient); 

0 user console (to perform all system's functions in a safe and easy way). 

Figure 2-20. Cardio-Vascular system 

A system as is shown in Figure 2-20 is offered to the market in a few million variants, 
although only a few hundred variants are sold each year. It is therefore impossible to 
predict precisely which end-product variauts customers want, thereby forcing Medical 
Systems to develop product families, from which a customer can configure hislher 
own variant. 

Medical Systems bas developed several subsystems with a limited number of variants. 
Furthermore, the architecture of a medical system is developed in such a way that 
different subsystem variants fit in this architecture. Variants of a medica! system 
originate from the variety at the subsystem level. Each combination of subsystem 
variauts results in a variant at the end~product level. Figure 2-21 shows that the variety 
at the subsystem level can be expressed with a similar diabolo as the variety at the 
end-product level. This is due to the recursive nature of the structure of product 
families as was discussed insection 1.2.1 (cf. Mittal [1989] and Brens [1992]). 
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Figure 2-21. Diabolo for product variety 

Problems with product variety 

The variants of the end-product can be found at the top of the diabolo, the subsystem 
variants are in the neck of the diabolo and the components constitute the bottorn of the 
diabolo. 

The next four sections discuss the product family descriptions that have been applied 
by Medica! Systems. 

2.6.1 Descrihing preferred modules 

The first metbod to model a product family as an abstract entity is to fully describe the 
assembly modules from which the family's variants are made, without explicitly 
defining the way these preferred modules are assembied into end-products [Orlicky, 
1975]. Figure 2-22 gives a graphical presentation of this approach. Modules are 
identified using a code and have drawings and manufacturing bilis-of-material 
indicating how and from which components these modules are assembled. 

preterred modules 

components 

Figure 2-22. Defining modules 

Specifying product variants in this way can lead to the following problems: 

0 No support in assembling the end-product as only the product structure below the 
level of modules is given. This becomes especially apparent when product variants 
are assembied to customer-order. The fact that the top-stroeture of the diabolo is 
not formally defined has consequences for both design and production control 
systems. The latter can only support the manufacturing of preferred modules; 
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[J No shared view on the boundaries of a product farnily in the sense that sales, 
.development and manufacturing have different opinions on whether a eertaio 
product is part of the normal product farnily. For exarnple, sales engineers can offer 
a new combination of modules, which seems perfectly reasonable from a customer 
viewpoint, but appears to be unproved in the technology and physical domain; 

[J Difficulties in forecasting modules as it is not precisely understood in which end
products these modules are applied. An analysis of past orders supports 
forecasting, but is insufficient in case of engineering changes or totally new 
products; 

[J A need to develop interfaces for unplanned product variants, thereby introducing 
extra development effort, quality and lead-time problems and the possibility to 
loose a common product architecture; 

[J The grouping of all common modules into a "universa! module". This pseudo 
module is a set of modules that are applied in every product variant. It does not 
exist physically, but is made visible to the material planning function. All common 
modules can be planned simultaneously, but assembly is not supported. In fact, the 
components of the universa! module will presumably arrive at the same place and 
at the same time. Both, place and time, are wrong from an assembly viewpoint; 

[J Inconsistent catalogues of modules that are used in several locations. If modules 
are used for specification purposes in both sales and manufacturing organisations, 
it is plausible that both use different versions of the sarne modules. This is 
especially true if modules are publisbed ·in a sales catalogue twice a year and 
meanwhile half of the modules is updated due to engineering changes. This 
inconsistency results in an intense and time-consuming communication between 
sales and manufacturing. Many iterations are necessary until both come to an 
agreement on a product variant that captures both the functional requirements as 
demanded by a customer, and the manufacturability requirements as demanded by 
assembly and logistics. This is depicted in Figure 2-23; 
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0 Different criteria for creating versions of modules. A solution for stabilising the 
communication between sales and manufacturing is often sought in limiting the 
conditions under which identifications of modules must be updated. As a result, 
sales and manufacturing have different opinions about these conditions. Sales, for 
example, takes the function of a module as a leading criteria for changes, while 
manufacturing considers the technica! possibilities for exchanging modules. These 
criteria conflict 

From the above, it can be concluded that this approach resembles an engineering 
company of which the engineering is based upon pre-defined modules. Standard 
modules, which cover one or more functions, are needed together with one-of-a-kind 
interfaces to create custom-built end-products. 

2.6.2 Descrihing preferred systems 

If concepts are lacking for descrihing a product family as an abstract entity, an easy 
alternative is to specify all variauts separately as if they are single products. Thus, 
every variant gets its own code, which is used as a reference to documentation 
descrihing the variant. Furthermore, single products are concrete and can be tested for 
function, manufacturability, serviceability and any other requirement in a traditional 
way. Finally, if the number of products variauts is limited, it is often possible to 
manufacture them to stock and sell them as commodity items. 

Many product families, however, have a potential variety that is much larger than the 
number of actually sold variants. Medica! X-ray equipment, for example, can be 
manufactured in a million or more variants, while only a few hondred variauts are 
assembied to costomer-order every year. Predefining all possible variauts including all 
documentation is just as impossible as manufacturing all variauts to stock. 

A choice that can be made in these circumstances is to make a very limited selection 
of preferred systems from the potential variety. These preferred systems are then 
coded and documented, including the creation of bilis-of-materiaL Furthermore, these 
preferred systems are extensively tested as the quality of all variauts of the product 
family cannot be guaranteed beforehand. Interfaces are developed where necessary, 
and manufacturing processes are adapted for the limited selection. Finally, these 
preferred systems are offered to the market in a commercial catalogue. This is 
graphically expressed in the following figure. 

preierred systems 
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Ffgure 2-24. Preterred systems 
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Philips Medical Systems experienced the following problems of this approach: 

0 The main problem is that such a limited selection of variants lacks support by sales 
engineers and customers: it is too restrictive. This is in contrast with a market 
where the distribution of customer requirements over all possible combinations is 
fairly uniform. Product families are designed to support that even distribution. 
Modules can be combined in almost arbitrary ways to meet new combinations of 
customer requirements. A selection of preferred systems is always subject to 
judgement and will not be accepted by customers if it is not compensated with 
benefits as lower prices and faster delivery times; · 

0 Even a limited set of variants can cause selection problems for a customer if the 
differences are not made explicitly clear. A list with 100 code numbers and a short 
description is difficult to traverse if the discriminating options are not mentioned in 
such a way that the preferred systems can be explicitly compared. Usually, this is 
not only a problem for customers, but also for designers if they have to 
communieale on the level of specific products. An often seen approach is that a 
search tree is defined in which all variants are classified. This search tree can be 
walked through to find the right product variant. A problem of search trees is that 
the applied classification criteria do not always meet the criteria of the user; 

0 A similar selection problem exists for a demand planner, as a forecast for a set of 
preferred systems bas to be translated into a forecast for the modules, which these 
preferred systems comprise. Furthermore, forecasting preferred systems will be 
difficult due to the Jack of distinction between preferred systems; 

0 A customer can also make a choice for a variant of another product family and 
therefore needs to know selection criteria that make it possible to compare product 
families in generaL In companies with many product families, the choice for a 
product farnily is of a similar complexity as the choice for a product variant; 

0 In today's customer oriented markets, a product is more than only the bare physical 
product. lt also includes services, for example, packaging, deliveries to the 
customer's address and assistance in case of break-down. All these services add to 
the potential product variety; 

0 The ratio of extemal variety to intemal complexity is distorted. A few preferred 
systems make use of almost all modules and components, thereby not reducing the 
campany's design and manufacturing effort. Only the final assembly operations are 
simplified as a smaller variety of end-products has to be made; 

0 Achieving an agreement on the boundaries of a product farnily is not supported. 
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Which products belong to the product family and which don't? Evenfora preferred 
system, it is not clear whether it still belongs to the product family, as the 
architecture or some of its components might have been changed independent of 
other preferred systems. However, most discussion is needed about newly 
requested product variants. lf a new product variant is a mix of two existing 
preferred systems, it can reuse most components, but still needs additional 
development effort to adapt interfaces and test the function and performance; 
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0 Finally, there is a difficulty in keeping product data consistent, especially in the 
case of engineering changes. For preferred systems, a minor problem is the 
reptacement of a component with a new version. Most engineering data 
management and production control systems have a where-used function to search 
and replace components. More difficult, however, is an engineering change that 
relates to structural changes. In that case, all preferred systems must be considered 
individually, after which the change is made for only some of them. 

2.6.3 Variant bilis-of-material 

A third approach is extensively described by Van Veen [1992] and acknowledges the 
existence of two different views on a product family in the operational process of 
manufacturing and sales. From a commercial perspective, all possible product variauts 
are specified using functions, also called commercial modules, which are not 
necessarily similar to physical assemblies. This approach is commonly applied in 
assemble-to-order companies where a large product variety is offered to technically 
not well grounded customers, and individual product variauts are assembied to order. 
Figure 2-25 gives an example of a selection tree, which is used to configure a variant 
of a cardio-vascular system. 

__c:: 
[1Monlt~ 

===-

Figure 2·25. Selection tree 

This selection-tree presents both common and optional information. The lines in the 
tree indicate which combinations of commercial modules are not possible for 
commercial or technica! reasons [Muntslag, 1992]. This reduces the number of 
variantsin the example from 2304 to 1440. This is still a small number compared to 
the variety that is actually offered by Medical Systems. 
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Such a selection-tree defines the scope of the cardio-vascular product family 
unambiguously. Especially discussions about the borders of the product family, i.e. 
questions whether a variant still belongs to the product family or not, are avoided. In 
the two previously discussed specification concepts much effort was repeatedly 
necessary to find out whether a product variant could be designed and manufactured 
with a predictabie effort. The creation of a product family selection-tree had the 
following consequences for Medical Systems: 

Cl It has concentraled this discussion before the actual manufacturing stage. The first 
discussion (as part of the change to this new way of specifying products) co st more 
than 6 months as sales considered the existing product families to he much broader 
than product groups responsible for systems. Nowadays, this discussion is part of 
the commercial requirements phase in product design; 

0 It has stimulated the discussion about designing product families, where aH 
necessary interfaces between preferred modules are considered beforehand. 
Designing product families pro-actively, instead of designing product variants 
reactively on customer-order, requires that the architecture of the product family is 
deterrnined in an early phase of design. 

The assembly perspeelive on the product family is modelled using a set of preferred 
modules (section 2.6.2). However, this list of preferred modules is extended with 
conditions under which these modules are selected. Therefore, these conditions are 
expressed with Boolean logic containing the commercial modules of the specification 
viewpoint. This forrnalisation of the link between the specification and manufacturing 
perspective makes it possible to use computerised systems for generating customer
order specific bills-of-material. The following figure gives a graphical overview of a 
single-level variant bill-of-material. 
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Although this approach gives clear advantages in marketing and sales communication, 
there are still some problems in the communication with other disciplines: 

0 Supporting the final assembly process. Only bilis-of-material for the preferred 
modules are available, while there is no description of how modules are assembied 
into end-products. This is especially a problem if there are customer-specific levels 
in the physical model (see section 2.6.2); 

0 Agreeing on technical boundaries of a product family. Although the product family 
bas been defined commercially, this does not guarantee that all necessary modules 
and interfaces have been provided for. Every commercially offered product variant 
must have a technica! alter-ego; 

0 Propagating changes from the technical viewpoint to the family specification. If a 
component or configuration of components changes, this might result in a change 
of function that is also perceived as such by the customer. This requires a 
discussion of the circumstances under which a technica! change has consequences 
for the specification, which is more commercially oriented. 

The next section proposes a product family language that solves the problems of the 
variant bill-of-material concept. 

2.6.4 Generic bilis-of-material 

This section examines a product family language that is new for Philips Medica! 
Systems. This concept, named generic bills-of-material\ adds multi-level aspects to 
the variant bill-of-material of section 2.6.3. It is described in more detail in chapter 
4.3. A few conditions must be met to guarantee a successful implementation: 

0 The main condition is that all offered product variants have a common architecture 
and that variety can be created by varying components; 

0 The second condition is that it must be possible to discriminate between product 
variants using customer functions, possibly different from the physical assemblies; 

0 Finally, the possibilities of product families in the operational processes are best 
used if the required delivery time of the customer is long enough to assembie 
product variants to customer-order. 

It should be admitted that it is difficult to ascertain these conditions for a particular 
situation beforehand. The best solution to this problem is structuring a product family 
in the development phase, using the techniques discussed in this section. Chapter 6 
and chapter 7 extend these techniques for other domains, for example the functional 
and technology domain. 

' For more information, see Van Veen [1992] and Hegge [1995] who have both contributed to the 
design of this concept. 
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The generic bill-of-material (GBOM) concept distinguishes two different views on the 
same product family: 

r.J A specification view, which is also used in the communication betweensales and 
manufacturing and which is more stabie than communicating component 
specifications or end-product specifications; 

r.J An assembly view, which is used for manufacturing purposes and describes the 
end-products, sub-assemblies, components and their relationships. The assembly 
view can be regarded as a representation that is derived from the physical modeL 
Therefore it belongs to the physical domain. 

The generic bill-of-material (GBOM) concept integrates an unambiguous 
specification and assembly view into a single product model, being a representation of 
the physical model as created by engineering. 

It has as objectives to: 

D model a product family from both a specification and an assembly viewpoint; 

D model a product family without data-redundancy; 

0 generale complete bilis-of-material for the family's variants; 

0 enable the use of applications for production control; 

D imprave product transparency, e.g. for product managementand development. 

The realisation of these objectives through the GBOM concept exploits the following 
characteristics of product families and their variants: 

1. Functions describe best the specification of a product family and its variants; 

2. The physical product structure, which is similar, however not identical, for all 
product variauts can be used for rnadelling the assembly viewpoint; 

3. The product variety of a family originates from the product variety at the lower 
levels of the product structure; 

4. The specification and assembly view on a product are different, but can be linked 
in a shared product model; 

5. A specific bill-of-material (product variant) for a specific customer-order can be 
generated from the product family description. 

These characteristics of the generic bill-of-material concept are depicted in Figure 2-
27 and elaborated in the following sections. 

68 



: Selection / 
of -······--: porometer ____ 

! values ~......._.. 
_: -------------- ~ 

Prtmltlve vartants 

Compound vartants 

order generlc 
bill-of-material 

Figure 2-27. Generic bill-of-material concept 

1. Specifica ti on of the product family 

Problems with product variety 

customer-order speciflc 
bill-of-material 

The specification, which is introduced in this section, is based on the functions of a 
product family and its variants, similar to the variant bill-of-material of section 2.6.3. 

Product functions: 

0 abstract from the technica! components; 

0 are normally understood by both sales and manufacturing; and, 

0 are more stabie than the ever-ebanging component and end-product specifications. 

Functions can best be defined using parameters and parameter values. Together, all 
parameters and parameter values describe a complete product family from a 
specification viewpoint Constraints on these parameter values prohibit technically 
impossible or commercially unwanted product variants1

• 

The following simplified page, or choice-sheet, of the new Medical Systems global 
commercial catalogue expresses a similar variety as the selection-tree of section 2.6.3. 
It shows that an order is created by marking the relevant parameter values. An 
electronk implementation of this commercial catalogue checks the possible violation 
of constraints automatically. 

Research on this issue was originally done by Digital Equipment. The XCON configuration system 
[Barker, 1989] was used to validate the teehuical correctness (configurability) of customer-orders 
and was the first expert system in daily production use in industry. Other rule-based configuration 
systems are discussed by Bourke [1991, 1992, 1994]. 
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The advantage of parameters, parameter values and constraints over commercial 
modules in a selection tree is that the variety can be expressed in a more forma! way, 
which is eventually easier to maintain, especially for complex product families. 
Mathematically speaking, it is always possible to construct a selection-tree from a 
choice-sheet with parameters, parameter values and Boolean expressions. However, 
the reverse is not true. As the causality of Boolean constraints is lost in a selection 
tree, the construction of correct constraints from a selection tree is not guaranteed. 
Please note that the choice-sheet of Figure 2-28 doesnottry to emulate a real medical 
system. 

Application area Flxed Plane Vollage Frequency 
-cardio -yes - mono-plane -220V -50Hz 
-vascular -no -bi-plane -230V -óOH<: 

-240V 

Starage extension Radialion Roodmap Power 
-standard - WTZ 05!10 - 1 -medium 
-extended - RDT 05/08 -2 -high 

-GFU05/08 -3 
-4 

NOT ((Power= medium] and (Piane = bi-plane]) 
NOT [(Appllcation area = vascular) and pc-ray tube = GFU 05/08)1 

Rgure 2-28. Choice-sheet of a Cardio-Vascular system 

2. Similar product structures and the assembly viewpoint 

The different variants of a product family have a similar product structure and are 
often assembied on the same production facilities with the same people and 
production machinery. This means that the assembly and manufacturing operations 
have a repetitive nature (which adds to efficiency and productivity of the 
manufacturing process), while the product variety can be maintained towards the 
market, thereby meeting the demanded product proliferation. 

A cardio-vascular system, for example, is a product family with millions of possible 
variants. However, all these variauts bear much resemblance to each other. They all 
have a stand, a table for the patient torest on, an X-ray tube, a generator, an image
intensifier and control software, although the exact specifications might be different 
for the individual variants. Classica} bilis-of-material (section 2.6.2) and, to some 
extent, the variant bill-of-material (section 2.6.3) describe these facts over and over 
again. Therefore, classica! bilis-of-material contain much redundancy in data and 
knowledge. A GBOM abstracts from the detailed differences between the different 
variants. Due to its knowledge oriented data structure, it avoids redundancy in 
knowledge and it enables intelligent applications. A simplified example of the product 
family structure is shown in Figure 2-29. Please note that this family structure fits in 
the top-half of the diabolo and is absent for the three other product family languages. 
The preferred modules language and the variant bill-of-material describe only the 
lower part of the family structure, while the preferred systems language describes just 
a few variants. 
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cardio-vascular system 

geometry software generator imaging 

stand tabla intensifier X-raylube 

Figure 2·29. Product family structure 

3. Product variety originates from lower levels 

Both the final product such as a cardio-vascular system and its sub-assemblies and 
components can be regarded as product families, since they have a number of variants. 
A stand, for example, might be delivered in a cardio and a vascular design, while the 
X-ray tube might occur in different variants for different types of medica! 
examination. This variety at lower levels in the product structure is the reason for the 
proliferation of variety at higher levels in the product structure. 

Metaphorical, the origin of product variety lies in the neck of the diabolo, while the 
end-product variety lies in the top of the diabolo. The subsystem variants in the neck 
have specific bills-of-material, similar to Medica! Systems' preferred modules of 
section 2.6.1. In an ideal situation, product variety is introduced late in the 
manufacturing process. The shape of the product diabolo will then change to a 
mushroom, reflecting the fact that a product remains largely unchanged during 
manufacturing. Today's ever increasing use of embedded software creates oppor
tunities to determine the function of a product by downtoading software at the very 
last minute. Furthermore, even a configured product, a product variant, bas still a 
variety of user possibilities, or more formally spoken, a variety of product states (see 
also section 1.2.1 ). 

4. A different specification and assembly view 

If a customer wants a stand suitable for cardio examinations, (s)he is normally not 
bothered with the detailed teehoical implementation of this requirement. In other 
words, the customer orders a product feature rather than the collection of physical 
parts that are used to realise that feature. The customer view is usually represented 
with parameters, parameter valnes and constraints as was discussed before. 

On the other hand, the manufacturing view is based on the physical realisation of the 
product family. As both the customer and the manufacturer have different views on a 
product family, they should be kept consistent; a change in one view is aften 
accompanied by a change in the other view. In order to create a generic bill-of
material it bas to be determined precisely which parameters influence which 
(component) families. This is visualised in Table 2-1 for the simplified cardio
vascular example. 
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Parameter Component Families 

application area stand, table, software 

fixed stand, table 

plane stand 

voltage generator 

frequency ·generator, intensifier 

starage extension software 

radiation X-ray tube, intensifier 

roadmap intensifier, software 

power generator 

Table 2·1. Cardio-vascular parameters and the component families they effect 

The parameter fixed influences 2 component families, as can be seen in Table 2-1. 
Such a parameter is best controlled at the first common parent of the component 
families that are influenced. This means that the parameter fixed will be related to the 
geometry sub-assembly of Figure 2-30. The parameter voltage on the other hand will 
be related to the generator as this is the only component family it influences. 

The values of parameters such as fixed can then be inherited through the product 
structure to the relevant component families (see Hegge [1991]). Therefore, a 
distinction is made between the internal and external parameters of a given product. 
An internal parameter is a parameter that is defined at the family concerned. An 
external parameter is defined at a higher family and one of its valnes is inherited by 
the component families that make use of it. Figure 2-30 shows a subset of the product 
fami1y structure and the parameters that are related to tbe families in this structure. For 
example, fixed is an internal parameter of the geometry as it is defined at this family. 
For the stand and the table, it is an external parameter, inherited from the geometry. 
The parameter plane is local to the stand and is not used by other families in the 
structure. It is clear that such a parameter is normally easier to control from both an 
engineering and a logistic viewpoint The parameter application area, on tbe other 
hand, is defined high up in the structure as it not only influences the stand and table, 
but also other parts of the system. 
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5. Generation of specific bilis-of-material 

A customer-order of which the product specification is made in terms of parameters 
and parameter values can be interpreted by a generic bill-of-material system to create 
a specific bill-of-materiaL A generic bill-of-material captures a product structure, 
which is the technica! twin of the commercial choice-sheet, i.e. each commercial 
variant specification has its mirroring assembly variant specification in the generic 
bill-of-material system. 

It was stated before that the variety at higher levels in the product structure originates 
from the variety at lower levels in the product structure. The product families that are 
not decomposed in the GBOM and are the souree of the product variety, are called 
primitive families. Their variants are called primitive variants. All other families are 
compound families, having compound variants. The stand, table, generator, X-ray tube 
and image-intensifier, for example, are all primitive families, while the geometry 
subsystem, the imaging subsystem and the cardio-vascular system are compound 
families. 

Parameters are related to primitive families in order to select the relevant primitive 
variants for a customer-order (in terms of parameters and parameter values). The 
primitive family table for example, bas the parameters application area andfixed. The 
four table variauts are selected using these parameters as is shown in Table 2-2. 

Table variant 

tabie-a 

table-b 

table-e 

table-d 

Selection condition 

application area=cardio and fixed=yes 

application area=vascular and fixed=yes 

application area=cardio and fixed=no 

application area=vascular and fixed=no 

Table 2-2. Selection conditions for primitive variants 

The generation process of a compound variant can be summarised as follows: 

1. Select a value for each intemal parameter related to a product family; 

2. Inherit the parameter values to the component families that have extemal 
parameters that match the parameters of the parent; 

3. In case of a compound family, create a customer-order specific compound variant 
or select a predefined variant if it happens to exist; 

4. In case of a primitive family, select a primitive variant. 
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This process can be executed in (commercially available) generic bill-of-material 
systems [Bottema, 1992]. For a more thorough onderstanding of the GBOM concept, 
see a paper in which the evolution of bill-of-material concepts is described [Erens, 
1992]. Fora paper on the use of GBOMs in operational manufacturing processes, see 
[Erensa, 1994]. Furthermore, publications by the following authors can he 
recommended: [Orlicky, 1975], [Schönsleben, 1985], [Mather, 1987], [Hegge, 1991, 
1992, 1995], [Van Veen, 1987, 1992] and Wortmann [1996]. 

Chapter 6 uses the generic bill-of-material concept for designing product families. 
This concept is introduced in the functional, technology and physical domain. First, 
these domains are discussed in chapter 3 for single products and in chapter 4 for 
product families. 
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2. 7 Requirements for the solution 

This chapter summarises the subjects of this chapter that are relevant for the design of 
a product family rnadelling language (chapter 6) and an accompanying family design 
metbod (chapter 7). More input forthese designs will come from the next chapter in 
which existing product rnadelling languages for single products are discussed. The 
following bullet-points, however, present requirements from a more industrial 
perspective: 

0 A product family rnadelling language should be able to represent the structure of a 
product family in several domains and from several viewpoints. This thesis 
introduced the functional, technology and physical domaio and stated that the 
views in a domain can be regarded as representations of the domaio's product 
model; 

0 The product family should be described by the product family model including the 
context in which the variants of this family are applied. Due to the recursive nature 
of product models, this requirement is not only valid for end-products, but also for 
component families tbat are applied in tbe context of an end-product; 

0 The elements of a product family must be designed with a consideration of their 
applications and life-cycles. Some of these elements will be designed for a specific 
product family, others will be reused from existing families and some should be 
developed such that they can be applied in future families. Practical design 
considerations must be formulated to support designers in industrial organisations; 

0 The family design metbod should support both intradomaio and interdomaio 
communication. Furtbermore, the family design metbod should be closely related 
to tbe product family modeHing language as design decisions are based on actual 
and historie product information and new product information results from design 
decisions that are taken; 

0 The product family rnadelling language should build upon the generic bill-of
material concept as tbis concept bas proven to be an appropriate tooi for rnadelling 
variety in tbe operational manufacturing process. Furthermore, the genetic bill-of
material concept incorporates tbe idea of having multiple views on a product 
family, althougb currently these views are restricted to the specification and tbe 
assembly view. Finally, tbe product family rnadelling language should be related to 
the generic bill-of-material concept in the sense that design information can be 
transferred to the operational manufacturing process. 

These requirements will be detailed in cbapter 6 and cbapter 7. An evaluation of the 
salution with respect to these requirements will occur in chapter 8. 
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The paradox is now fully established that 
the utmost abstractions are the true weapons 
with which to control our thought of concrete fact. 

A.N. Whitehead 
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3. Languages for single products 

A model of a product can be regarded as a description of this product. ModeHing 
languages provide the means to structure a design artefact on different abstraction 
levels, with corresponding levels of detail, and from different perspectives. Product 
models help designers to focus on the most relevant characteristics of a design. Only 
those aspects that are considered to be important in the design of a product are 
described. Chapter 2 discussed some of these aspects, including the function, the 
technological realisation and the physical implementation. 

This chapter considers rnadelling languages for single products, in contrast to chapter 
4, which discusses modeHing languages for product families. In both cases, a product 
modeHing language is a formalised agreement on how to create and interpret product 
information so as to ensure an effective communication among different disciplines. 

Structure of this chapter 

3.1. lnformal languages and specijications. Textual languages and sketches provide 
a means to describe a product design in an informal way. Informallanguages are 
usually applied at the start of design. Por well-known products, as for example 
products designed by craftsmen, these languages are also used while designing; 

3.2. Compositional systems. Product rnadelling languages that are based on natura! 
science or rnathematics are able to predict the behaviour of the product within 
the context of the theory. Important in these rational approaches is that natural 
phenomena can be understood and modelled at all levels of the product model. 
In other words, the function of a product can be composed from the functions of 
its components if the components' relationships are understood. Although the 
functional, technology and physical domain are often recognised as different 
viewpoints on the same design, compositional rnadelling languages consider 
these domains as inseparable; 

33. Non-compositional systems. Por mechatronic products, there is nogrand theory 
that links different theories into one uniform and predictive theory. Although 
some unified theories exist, for example for electro-magnetism, there is no 
general design theory in which the function of a mechatronic product can be 
described and predicted without consirlering the different technologies 
separately. Therefore, dedicated modeHing languages exist to describe the 
function of such a product, independent from the possible technological 
solutions. Also the composition of technology modules (tech:1ology domain) 
and physical assemblies (physical domain) is described with modeHing 
languages, however without maintaining a formal link between these domains 
and the functional domain. 
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3.4. Conclusions. For mechatronic products, different domains require dedicated 
modelling languages to formalise communication between stakeholders. At 
lower levels of the product hierarchy, where technologies are less composed, 
natural laws and accompanying modelling languages can be used to describe 
aspects of the design. However, it will be argued that also compositional 
systems can benefit from distinguishing the functional, technology and physical 
domain, especially in the conceptnat phase of design. 

Limitations of product models 

According to Hoover and Rinderle [1991], abstractions are the result of cognitive 
decisions to ignore classes of behaviour and portions of the design object. They state 
that useful abstractions do not ignore important behaviours or parts of the design 
object but must capture the important relationships between behaviour and form to 
help make good design refinements. 

Product rnadelling languages are used to describe both abstractions of functional 
requirements and abstractions of the resultant design. Figure 3-1 separates the real 
world from the abstractions that product models are. In the real world, a customer or a 
group of customers, a market, helps in specifying a product. This specification acts as 
a basis for the models that are used in the functional, technology and physical domain. 
Eventually, the physical product exhibits a behaviour that should meet the required 
function preceding the design of the product. 

I SpeclllcaHon should conform lo BehoVfour 

lis reallsed wl1h exhlblls i 
I ProductmodelsIn lhe funcflonal, technology end ~I domaln · 

Figure 3·1. Specification versus behaviour 

There is a number of limitations concerning the separation of the real world and an 
artificial and abstract product modeHing world. The first limitation is that abstractions 
ignore aspects of reality which might prove to be important at a later stage of 
development. If developers are convineed by the quality of their model, and overlook 
important incidental interactions, failures in this model might show up at testing or 
production. The second lirnitation concerns the experience that the design process 
does not always praeeed by refining an abstract concept into a more concrete concept. 
Although a hierarchical decomposition of a design problem might exist, the design 

. problem solving process itself is not always hierarchical. 

With the aim of complexity control, this thesis tries to develop a rnadelling language 
for product families that is better in representing the abstract world than existing 
product modelling languages. Therefore, this thesis integrates different domains in a 
single framework and acknowledges the fact that nowadays many products are 
designed in a large variety. 
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3.1 Inforntal modelling languages and specifications 

The development of a new product starts with an enumeration of requirements. These 
requirements are critica! to the quality of the product as the development process 
depends on them. At the early stages of design, the spedfîcations are often not yet 
written in a forma! product modeHing language. Usually, all dependendes between 
requirements are defined in an informal way, for example with plain text and sketches. 
Craftsmanship products are often designed without the use of rnadelling languages, in 
some cases even without using textual languages or sketches. Design knowledge is 
first of all recorded in the physical product itself. However, if informal rnadelling 
languages are used, they are often used throughout the design process. 

Colton and Pun [1994] distinguish the following key elementsin a specification: 

3.1.1. functional requirements, defining the function of the product; 

3.1.2. constraints, defining conditions for the solution; 

3.1.3. evaluation criteria, to validate the salution w.r.t. the problem statement. 

These aspects are discussed in the following sections. Then in section 3.1.4, the 
Philips Medical Systems case is re-introduced to illustrate the use of specifications. 
Medical Systems has a large variety of products, but the modelling principles that are 
applied do not always cope with this variety effectively. 

The beneath discussion does not pay attention to project planning, which is aften an 
important part of spedfications. However, in chapter 5, the design process is 
discussed including prescriplive models, which spedfy how the design process should 
proceed. 

3.1.1 Function of the product 

The main objective of the spedfications is to define the required function of a product 
or product family. Some parts of the specificatien are clear enough to be 
unambiguously detailed in a textual language. Usually, these parts can be directly 
realised in the technology domain or physical domain. 

Some properties of a design, however, can be difficult to put in meaningful words due 
to the limited suitability of text to define dependendes between functions: 

Functional interfaces. The first type of dependendes concerns functions that must be 
completed prior to the execution of other functions. For example, for aeroplanes, it 
will not be possible to land without unfolding the landing-gear, neither will it be 
possible to open the doors until the plane has come to a complete standstilL These 
dependencies can be regarcled as functional interfaces, in which the status of functions 
determines the possible status of other functions. Whether the plane has come to a 
complete standstill or not is input for the function to open the doors. 
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Constraints. Another type of functional dependendes concerns constraints on possible 
combinations of function variants. Not every configuration of options is feasible from 
a commercial or functional viewpoint For example, it is unusual in automotive 
industry to offer leather upholstery for smaller engine sizes, even if this is possible in 
the technology domain and the physical domain. The following figure gives an 
overview of options that are specified at the start of the development project. Such a 
choice-sheet is essential for designing a product architecture in which these options 
can fit. 

Hatchback model, standardly equlpped wi1h 4 dlsc·brakes and power steet1ng. 
Slx years guoranteed ogainst rust. Dellvery time Is 8 weeks. 

Engine Englneslze Goorbox 
·petrol • 1.811tre • 5speed 
·diesel • 2.lllfre • automotte 

Colour ABS Power wlndows 
-red -no • no 
-whlte -yes • front 
·blue -all 

Not(Englne= 1.8 llfre ond Georbax=outomotlc) 
lnter!or=luxury =>Power wlndows=aU 

Interlor 
• normol 
-luxury 

Country 
- Fronce 
- otlher 

Figure 3·2. Choice-sheet of a motor car 

Allbag 
·00 
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A functional specification should concentrate on the required function, not on the 
means to realise this function. Usually, there are many teehoical options available to 
satisfy a functional requirement. If the specification is not a joint document of all 
disciplines involved in the design process, then the personal preferences of the writers 
will prevail. This blocks other and possibly good solutions to the problem, or in other 
words, the solution space is constrained at a too early stage. 

Unfortunately, some parts of the specification are hard to quantify or specify. 
Qualities like having modem, high-tech styling or being user-friendly or having a high 
petformanee can have a great influence on sales, but they resist accurate verbal 
description [Smith, 1991]. There are no formalised modelling languages that support 
the decomposition of these functions into sub-functions. They are often called non
functional requirements as they can be regarded as qualities of the solution and should 
therefore be specified as constraints on the solution. 

3.1.2 Constraints on the technological and physical solution 

Constraints on the solution can be subdivided into two categories. Firstly, there are 
requirements that cannot be expressed as functions, for example the aesthetics of the 
product, which are usually defined in the physical domain. Secondly, a company can 
have a policy for reusing components and knowledge, not only for improving 
efficiency and quality, but also for reducing costs and design throughput time. 
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Top-down and bottorn-up design processes have different consequences for reuse: 

0 Top-down design process. lf the functional specification is leading in design, the 
artefact will be developed to meet these requirements to the maximum extent. This 
requires a top-down design in which all design steps are made with the required 
function as the main criterion. If existing components do not completely meet sub
functions, then new and better components are designed. This results in a design 
with a low-level reuse of solutions in the technology and physical domain. Such a 
design is highly complex due to insufficient means to build upon previous 
knowledge. Eventually, the design primitives will be equal to the chemica] 
elements as this is the lowest level of which man bas controL Even then it will not 
be possible to construct an artefact that meets every possible need as the salution 
wiJl always be committed to the nature's laws. 

0 Bottorn-up design process. Another salution bas been discussed by Alexander (see 
chapter 2.5) and concerns an evolutionary design, which is performed bottorn-up in 
the physical domain. The artefact is continuously adapted to a slowly changing 
context and reuses most of the solutions and components by gradually changing 
those aspects that do not fit in the context anymore1

• Nowadays, the change of 
context has acquired such momenturn that a full bottorn-up design bas too slow 
adaptation potentialities, especially if the market does not demand a single product, 
but a whole range of product variants. 

In today's society, both a full top-down and an evolutionary bottorn-up design are less 
attractive than a modular design that replaces specific modules in a slightly evolving 
product architecture. Therefore, companies try to reuse existing salution concepts and 
physical assemblies in order to reduce design complexity and improve design 
efficiency. Continuous impravement by learning requires stability, especially in 
product architectures. Compared to end-products, reusable components have a Jonger 
life-cycle and therefore a greater economy of scale, which benefits both the 
customer' s selling price and the firm' s pro fits. Furthermore, if the design is of a high 
complexity, the quality of the design is improved when reusable modules with proven 
functions and technology are used. 

The need to reuse existing solutions and components can be perceived in the design 
specification in e.g. the following ways: 

0 Company or domain specific requirements and practices are formulated as 
references to handhooks and standards, for example ISO and DIN standards. These 
requirements and practices can be regarded as tacit design knowledge in the sense 
that it is independent of a eertaio project. It acts as boundaries for a design; 

0 Existing functions are specified as a company has gained experience in these 
problem areas. Although the design is limited to those predefined functions, the 
ebasen solutions can be developed for the combination of functions; 

1 This type of design is akin to Darwin's evolution theory [Tattersal, 1995] in the sense that the best 
designed artefact wil! survive in a changing environment. 
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0 Existing technology modules are specified as a company has acquired knowledge 
on certain technologies. However, the technology modules must be adapted to meet 
the required functions and manufacturability; 

0 Existing physical assemblies are specified as a company wants a certain economy 
of scale in manufacturing and service. Furthermore, reusable assemblies provide 
for variety when these assemblies can be combined into new configurations; 

0 In some cases, no assemblies but assembly practices are specified. For example, a 
product must be designed for assembly (DfA) or it must meet the requirements of 
just-in-time manufacturing (JIT); 

0 Finally, for some requirements, it will be easier to express them as constraints on 
the solution than as explicitly described functions. For example, it is the overall 
assembly of components that gives a motor car a certain safety or a certain 
aesthetic appearance. In these cases, a geometrical model expresses the required 
function as the function is derived from the geometry. 

The consequence of these constraints on the solution is that a product modelling 
language should support both top-down and bottorn-up design. The part of design that 
is driven by explicitly described functions should meet the part of design that is driven 
by solutions that are explicitly described beforehand. 

3.1.3 Evaluation criteria 

Evaluation criteria are used to assess the feasibility of alternatives with respect to a 
given objective [Colton, 1994]. These alternatives concern technology modules and 
physical assemblies. Functions are allocated to technology modules and, in a similar 
way, technology modules are allocated to physical assemblies. In this allocation 
process, the main objective is that the solution meets the original problem statement. 
Therefore, the success of allocation is not guaranteed till the composed solution is 
validated. For example, the composition of technology modules should be validated 
against the composition of functions. 

Finally, an important element of design evaluation is cost analysis. It involves value 
analysis, that is, the determination of function costs, by the assignment of solution 
principles to the various sub-functions, and the determination of their manufacturing 
costs. The main problem bere is to disentangle functions from components since a 
single component may carry several sub-functions or a single function may be 
fulfilled by several components, which leads to an ambiguous distribution of costs 
[Akiyama, 1991]. Moreover, the evaluation of solution alternatives should not only be 
based on manufacturing costs, but also on variety costs. 
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3.1.4 Specifications at Medical Systems 

The initia! specifications at Medica! Systems can be divided into those that constrain 
the function, those that constrain the technological realisation and those that constrain 
the physical implementation. The functional specifications of the product are given in 
an unstructured format. The division of the document does not go further than sections 
and subsections. Usually, each sentence in the document can be regarcled as an 
individual function. Some of these functions are common for all variants of the 
system, while other functions are optional. There are no ways to represent constraints 
on possible configurations other than with informal descriptions in text. Also 
functional interfaces, including possible sequences in which these functions can be 
used, are described in an informal way. This can be very much subject to human 
interpretation. Therefore, all functions defining the dynamic control of the system and 
all functions concerning the image-quality are formalised in a formal functional 
model. An example is given in section 3.3.1. 

The constraints on the solution cater for technologies and standards with respect to 
purchased materials and components. Furthermore, much attention is given to X -ray 
safety requirements. These requirements are formulated in separate standards and are 
applicable to all X-ray equipment manufactured by Medica! Systems. 

A very important constraint on the solution is that Medica! Systems has a 
development strategy in which several product families are derived from a common 
product platform. Both the Cardio family (for cardiac imaging) and the Vascular 
family (for examination of the vessels) share a digital architecture, which has many 
modules in common. An example is given insection 3.3.2. Product platformsimprove 
both the economy of scale and the time-to-rnarket of new products. The creation of a 
new platform, however, is a complicated issue as many requirements have to be taken 
into account simultaneously. 

Finally, there are also constraints on assemblies and assembly processes. For example, 
the aesthetics of a medica! system are usually defined by Industrial Design in terms of 
geometry that is both pleasant to the eye and ergonomie in use. Furthermore, the 
freedom of design is restricted by the possibilities for the physical handling of the 
medical system on the manufacturing floor and while it is transported to hospitals. An 
example of a medical system in the physical domain is given in section 3.3.3. 
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3.2 Compositional systems 

Product models that are based on theories from natura! science or mathematica! 
principles are able to predict the behaviour of the product within the context of the 
theory. Important for these compositional systems is that natoral phenomena can be 
understood and modelled at all levels of the product model. In other words, the 
behaviour of a product can be expressed if the behaviour of its components and the 
components' relationships are understood. In these cases, there is noneed forseparate 
models in the functional, techno1ogy and physical domain: the function, technological 
solution and physical realisation are views on the same product model. 

Chapter 3.3 argues that this might be achievable in some well trodden engineering 
fields, but will be difficult to accomplish if the product comprises several technologies 
or if there are more . intuitive relationships between function and realisation, so as 
aesthetics, safety and quality. Although some unified theories exist, for example for 
electro-magnetism, there is no general design theory in which the behaviour of a 
mechatronic product can be described and predicted without considering the different 
technology viewpoints separately1

• Furthermore, although natura! laws and 
mathematica! principles might be able to formalise product function, they do not 
immediately support the process of designing. 

The next three sections discuss different design disciplines to demonstrate that, within 
a single discipline, functions and solution principles can be covered by the same 
product modelling language: 

3.2.1. Mechanica! design 

3.2.2. Electrical design 

3.2.3. Software design 

Section 3.2.4 discusses the role of product architectures for development. An example 
of a Very Large Scale Integrated (VLSI) circuit is used to clarify that the function and 
the realisation can be refined in a step-wise manner. Finally, section 3.2.5 presents 
some concluding remarks. 

3.2.1 Mechanical design 

Pahl and Beitz [1984] propose the use of physical laws to define the interaction 
between functions and solution principles. For example, the main function of a lever 
is to transfer torque. They distinguish functions, physical effects, physical principles 
and solution principles. These are defined as follows: 
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0 A function is the general input/output relationship of a system whose purpose it is 
to perfarm a task, for exarnple create force or transfer torque; 

0 A physical effect can be described quantitatively, but independent of the physical 
implementation, by means of the physical laws governing the physical quantities 
involved, for example the lever effect is described by the lever law: FA. a= FB. b; 

0 A physical principle relates a physical effect to a partienlar function and should be 
compatible with the physical principles of other associated functions; 

0 A salution principle is a generic shape that perfarms the required function with a 
physical effect that results from using a certain physical principle. Usually, a 
salution principle must be detailed or adapted before it can be manufactured. A 
salution principle corresponds to a technology module as used in this thesis. 

Some exarnples of functions, physical effects, physical principles and salution 
principles are given in Figure 3-3. Please note that these examples are very much 
restricted to mechanical design. 

Sub-tunetion Physlcal effect Physical principle Solution principle 

b:;·~ fit 

Figure 3-3. Functions, physical elfects, physical principles and solution principles 

In compositional mechanical systems, salution principles and functions are often very 
similar. Therefore, several researchers suggest the use of computer-aided design 
systems in which artefacts can be created by identifying the functions that should be 
accomplished. A problem in this is that there are often several salution principles for a 
particular function. The computer-aided design system should therefore be able to 
select the right salution principles by understanding the combination of required 
functions. 
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Johnson [1991] gives an overview ofjunction verbs (see Table 3-l), which cover most 
functional interactions between sub-assemblies, components, design features, working 
fluids and the environment in mechanical design. It should be possible to translate a 
design that is constituted by a set of function verbs into a set of non-conflicting 
salution principles. 

Verb U sual object Verb Usual object Verb Usual object 

contain a fluid support component se al sub-assembly 

convey fluid, heat locate component fasten two components 

convert force, energy drive component lubricate an interface 

control fluid, force guide component strengthen component, feature 

house sub-assembly limit sub-assembly conform to component, feature 

T able 3-1. Function verbs 

Function primitives make it possible to identify the components of a design primarily 
by their function rather than by their shape. Computer-aided design systems can then 
provide assistance at earlier phases of design, without forcing the user to be precise 
about dimensions. At a certain stage, the design in terms of eomponents and 
functional interactions is transformed into the definitive geometry. Aylmer [1988] 
suggests the development of a functional modeHer in which a designer constructs a 
functional model and a derived geometrie model by using a set of predefined 
components and functions. Goel and Chandrasekaran [1989] use a functional 
representation scheme of technological components to support the purpose of 
redesigning products. 

A similar approach is pursued by and Baxter, Juster and de Pennington [1994]. They 
propose a functional frarnework with the possibility to assess the required function 
without reference to geometry or other non functional information. At a later stage of 
design, the functions are materialised in geometry. According to Baxter ea., it is 
impossible to use a standard set of functions for every engineering application, 
although they assert that all necessary functions can conform to a predefined function 
definition. Then a product can be defined in terms of a data model that contains such a 
functional framework. The framework captures the following information about a 
function: name, inputs, outputs, measures and performer of the function. The function 
information is defined to meet a product specifieation. 

Mechanical products are often modelled in CAD systems, whieh are primarily 
concerned with the geometrie shape of produets. After shape information of a product 
bas been captured in a geometrie model, a variety of analysis, visualisation and 
manufacturing planning tools ean be used. The functions of these tools is restricted to 
one technology, namely geometry. Usually, these tools ean be applied for both 
primitive modules as eubes, spheres and eurved areas and compound modules that are 
created by assembling these primitive modules. 
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Unfortunately, CAD systems are Iess attractive in conceptual design where the 
geometrie shape plays a less prominent role than the intended function [Akman, 
1990]. There are only a few tools in mechanica! CAD that use sarnething that is called 
in software design forma! specifications. Some attention has been given to ICAD, 
which is an object-oriented CAD tooi that uses classes of shapes and a functional 
design language to construct specific designs [Wagner, 1990]. Characteristic of ICAD 
is the absence of direct interaction between the development user and the geometry. 
The creation of geometry can only be done through the design language. All classes, 
also user-defined compound classes, can be instanciated with parameter values. The 
relationships between parameters is recorded with the design language so as to 
rnaintaio design knowledge and support reuse. 

A similar approach is pursued by Mäntylä [1990] who asserts that the weakness of 
geometrie rnadelling in conceptual design is that geometrie models typically represent 
the nomina! shape of the product at only a single level of abstraction. They cannot 
make a distinction between the essential and unessential geometrie information of a 
part. If these CAD systems are used for recording the results of early design phases, 
premature commitment to eertaio detail solutions would result. Therefore, Mäntylä 
proposes the development of functional rnadelling techniques that can support 
conceptual design of mechanica! products according to the top-down approach. 
During the stages of design, new and increasingly concrete concepts and their 
relationships are introduced, and the abstract geometry is modified to take them into 
account. 

Summarising, the nature of mechanica! design conflicts with a functional approach. 
Most designers prefer a direct visualisation of their functional thoughts. Nevertheless, 
systems as ICAD seem promising for storing and reusing design knowledge. With 
these systems, it is possible to derive geometry from function instead of function 
being a property of geometry. In the realm of mechanica! design, function and 
geometry are strongly connected, both for primitive modules and for compound 
modules. 

3.2.2 Electrical design 

Sussman [1992] argues that "it is better to have a naive theory of sophisticated 
knowledge, than to have a sophisticated theory of naive knowledge". This quote has 
been a starting point for Alberts [1993] who has designed an ontology for engineering 
design of two design domains with sophisticated knowledge, namely circuit design in 
electrical design and structural analysis in mechanica! design. In this ontology, he 
strives to integrate the first-principles of nature in roodels of design knowledge so as 
that these principles can be used for design problem solving. 

Alberts defines electrical modules in such a way that the relation between the 
behaviour and the form is maintained. The modules are design primitives and are 
named primitive generic system models. He states that, from a theoretica! point of 
view, any electrical circuit can be modelled as a networkof ideal resistors, capacitors, 
inductors, voltage sources, and current sources. A representation of a primitive 
module, a transistor, is given in Figure 3-4. 
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Figure 3-4. Transistor 

Alberts defines the function, i.e. the operation, of a transistor, according to this model, 
as follows: 

with a number of material-dependent parameters: the current amplification factor a. 
the voltage amplification factor 1.1. and the transconductance factor s. The values of 
these parameters depend on the type of transistor, which in turn depends on the type 
of semi-conductor material that is used. If a more sophisticated model of the 
behaviour of a transistor is needed, it cannot be described in terms of the material
dependent parameters ex, 1.1 and s. Such a description of a transistor would be a new 
primitive. 

A circuit of electrical modules is a compositional system as its behaviour can be 
described using the behaviour of the circuit's modules together with their possible 
interactions. The following figure gives an example of a so-called emitter follower: 

Figure 3·5. Emitter follower 

Alberts defines the behaviour of this circuit in terms of the behaviour of its interfaces. 
If the internal structure is suppressed in the definition of the external behaviour, the 
electrical circuit can be regarded as a black-box. The external behaviour can be 
deduced from its internal structure. Although the eruitter follower is a compound 
module, a designer can use it as if it is a primitive module because of this separation 
of external behaviour and internal realisation. 
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3.2.3 Software design 

Over the past decades, the primitive elements in the design of software have evolved 
from the logic of transistors via assembler code to the statements of high-level 
programming languages [Ghezzi, 1982]. There is a tendency that the primitive 
elements grow in abstraction and become more focused on function. Recent 
developments in object-oriented design intensify this tendency. Software engineers 
create libraries of programming classes, which offer solutions to relatively high-level 
functions [Meyer, 1988]. The complicated nature of these solutions and functions 
requires time to build-up such an often domain specific library. 

The following primitive is used in software design as a control structure for repetition. 
Most useful computations involve repetition of a number of actions. Many 
programming languages provide a while statement, with which a non-fixed number of 
iterations can be specified by introducing a counter, the loop control variable, that 
assumes values over an integer set. For example: 

while i> 0 do 

( .... ) 

i := i - 1 

end while 

This primitive construct can be implemented in several programming languages, 
which however use different terrus to code the same construct. These implementation 
aspects are, for software, not further discussed in this thesis. More important is the 
function of primitive and compound constructs. The relationship between function 
and solution is important from the viewpoint of correctness. A programme is correct if 
it meets its specification. Dijkstra [1976] emphasises the importance of an axiomatic 
approach to software development. This approach is rooted in mathernaties and can be 
used to develop correct programmes. A simple language supports the writing of 
elegant programmes and a forma! definition for each language construct is given in 
terrus of predicate transformers. Dijkstra illustrates a calculus that, given the input and 
output predicates, allows one to derive a programme that is correct with respect to the 
predicates. Dijkstra's approach is constructive, programmes arenotproven after being 
written, but are derived correct by the calculus. The following example adds 
predicates to the while construct: 

{i is an integer and i> 0} 

while i> 0 do 

( .... ) 

i :=i - 1 

end while 

{i= 0} 
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In terros of this thesis, a programme is a compositional system that is constructed with 
a few primitive constructs. This programme is derived from predicates, which · specify 
the required function of the programme. In other words, the function of this 
programme can be proven because the programme as such is confined to a single 
technology. 

In software design the function of a programme closely follows the structure of this 
prograrnme. The encapsulation of function and solution in a software module is 
generally recognised as the only available guideline available for mastering the 
complexity of design and implementation of large and complex systems. Despite this 
encapsulation, the function is expressed in a format (e.g. predicates), which differs 
considerably from the format ofthe solution (e.g. programming constructs). 

The above encapsulation is strongly advocated by object-oriented design [Meyer, 
1988]. The modelling concepts employed by object-oriented design closely link the 
structure and the behaviour of the software being designed. The concept of 
encapsulation integrates the function and the structure of a software module and is 
used to decompose large systems into smaller encapsulated subsystems with their own 
function and structure. Object-oriented design bas proven to be valuable in software 
design, but there bas been no large scale application of these principles in domains 
that are characterised by the intertwined use of different technologies. 

3.2.4 Product architectures 

This section discusses the use of product architectures1 in the design of Very Large 
Scale Integrated (VLSI) circuits. VLSI circuits are complex design objects. lt involves 
several design representations, with designs moving from functional specifications to 
progressively more concrete ones. 

An example of an integrated circuit is a4-bit adder. A VLSI circuit is a compositional 
system as the same modelling language relates function and solution principle for both 
primitive and compound modules. 

According to Batory and Kim [1985], the description of a circuit consists of two parts: 
its interface and its logical realisation. The physical implementation is not discussed 
here. The interface specifies the function of the circuit and lists the inputs and outputs. 
The realisation is an architecture of Jess complex component circuits with their 
interfaces. Recursively, each component circuit is assigned its own interface and 
realisation. Figure 3-6 shows the interface description of a 4-bit adder. A pair of 4-bit 
numbers (X, Y) are input, and a 5-bit number repcesenting their sum (Z) is the output. 
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Figure 3-6. Interface description of a4-bit adder 
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A logkal realisation is shown in Figure 3-7. It is realised as a ripple-carry through 
four adder-slice circuits. These adder-slice circuits have an interface and a realisation 
and can again be decomposed into a circuit with an interface and a realisation. 
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Figure 3-7. A logical realisation of a4-bit adder 

At the lowest level of the hierarchy, function primitives (AND and XOR gates) exist 
for which technologkal primitives exist. These solutions are stated in terms of relays 
or transistors. In this example, the modelling language encompasses both the 
functional and the technology domain. 

The separation of a design into its interface and its realisation is fundamental for 
realising workable abstractions in the design process. Chapter 3.3 on non
compositional systems demonstrates that the relationships between solution principles 
and functions are more complex for designs that make use of several technologies. 

3.2.5 Concluding remarks 

Although non-compositional systems are characterised by modeHing languages that 
cover function and realisation, an observation is that, in the product hierarchy of these 
products, a difference is made between functions, technology modules (i.e. salution 
concepts) and physical parts and assemblies (i.e. physical implementation). These are 
nat confined to the product models of different domains as is the case for non
compositional systems, but are placed on different abstraction levels of one shared 
product model as can be seen in Figure 3-8. Functions are composed of technology 
modules and these are composed of physical parts and assemblies. 
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decomposltiOn 

physlcal parts 
ond assemblies 

Figure 3-8. Functions, modules and assemblies 

composltiOn 

An observation in this matter concerns the existence of a sliding scale between 
function and realisation: both are refined in a step-wise manner. As was the case with 
the 4-bit adder, the realisation of one level in the product hierarchy can be regarded as 
the specification (i.e. the required function) for lower levels in the product hierarchy. 

A similar observation can be made for mechanical design where it is also difficult to 
distinguish functions, salution concepts and the physical implementation. In 
mechanical design, the function of a physical product can best be expressed with its 
geometry [Medland, 1984]. In a top-down design process, the intermediate levels of 
the decomposition are called functions and salution concepts as their exact physical 
implementation is not yet known. However, if the same design is considered from a 
bottorn-up perspective, the objects in the product hierarchy that used to be called 
functions and solution concepts, can now be called physical assemblies. 
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3.3 Non-compositional systems 

For non-compositionaJ systems, there are no rnadelling languages that are ahle to 
predict the hehaviour of the system within the context of the modeHing language. 
Although it is possihle to understand the behaviour of aspects of the system, it is 
impossible to compose the overall system behaviour from the behaviour of these 
system' s aspects. 

An example of a non-compositional system is a motor car with its passengers. There 
are languages for modelling the structural strength of the car in case of accidents. 
There are also modelling languages for understanding the effects of forces on human 
hodies. Still, it is not possihle to model all effects of a collision on human bodies. 
Therefore, car manufacturers put their motor cars through severe callision tests. A 
similar example concerns qualities Iike aesthetics and comfort. There are no 
modelling languages that define these properties in a mathematica! way. 

Non-compositional systems are often characterised by the use of a variety of 
technologies to realise functions. Each technology bas its own modelling language, 
descrihing the function of the technology within the possibilities of the language. If 
these technologies are not unified in a theory from natural science, there is no 
modelling language support for allocating the function to a compound solution 
principle. The function must first he decomposed into suh-functions, which can then 
be allocated to solution principles. Then, these solution principles can he composed 
into the overall solution principle. An example concerns the function move patient of 
a medica! system (see section 3.3.1). 

The consequence of the above is that each domain has its own product hierarchy. The 
ohjects in these hierarcbies (functions, technology modules and physical assemhlies) 
have dedicated modeHing languages to represent the different viewpoints in these 
domains: 

D The functional domain is a consistent description of the function of a system. It is 
composed of functions, which are represented hy functional modeHing languages. 
The functional requirements, as written in the specification are an important input 
for this model; 

D The technology domain is a consistent description of the application of 
technologies to ensure the operation of the system. If a technology module is 
composed from modules with different technologies that are not unified in a theory 
from natura} science, it is impossihle to formalise the behaviour of this compound 
module; 

D The physical domain describes the physical implementation of the technologies 
that are applied in a system. Usually, the physical implernentation is not covered hy 
the modeHing language descrihing the technology. Therefore, dedicated modeHing 
languages are needed to define the geometry of these technologies. The physical 
model is strongly related to the construction of the product. Manufacturing sets 
conditions for this implementation in order to guarantee an easy assemhly 
operation without compromising the quality level or cost level. 
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Figure 3-9 shows the role of modelling languages for the domains of non
compositional systems. Each domain has dedicated modeHing languages, although 
low-level functions, technology modules and physical assemblies are possibly covered 
by a rnadelling language for compositional systems. 

functtonal 
modelilng 
tanguages 

technology 
modelllng 
languages 

modelllng langoogas far composlllonal systems 

physlcol 
modelllng 
longuages 

Figure 3-9. Modelling languages for non-compositional and compositional systems 

\ 
Also the languages that are used for non-compositional systems are restricted to 
specific technologies, e.g. mechanical design, electrical design and software design. 
Within the context of these technologies, the languages can cover the functional, 
technology and physical domain. However, the overall tunetion as perceived by the 
user of the system is created by the whole of technologies. 

This thesis focuses on complexity management. Therefore, the different technologies 
and their contributions to system function are not discussed in great detaiL This thesis 
considers the product hierarcbies in the functional, technology and physical domain. 
These product hierarcbies are called product models. Examples of these product 
models are given insection 3.3.1 (functional model), section 3.3.2 (technology model) 
and section 3.3.3 (physical model). The different technologies, which are part of these 
hierarcbies are seen as representations of the objects in these hierarchies. The product 
rnadelling language that is proposed in chapter 6 is restricted to product models and 
non-hierarchical relationships as interfaces. 

Cognitive science 

The idea that a complex system exists in different domains of which the development 
should be assisted by a variety of modelling languages is also supported by cognitive 
scientists. The basic thesis of a paper by Subrahmanian, Westerberg and Podnar 
[1989] is that a group of designers in designing a design artefact use a variety of 
engineering and management oriented models, such as functional, equational and 
geometrie models. An environment that supports the design process will have to 
accommodate the different modelling paradigms within a single integrated 
framework. 

One of the basic premises is that design is both a social process and a cognitive 
process. The latter is based on information processing theory of human problem 
solving, while the former is an ethnographic perspeelive of engineering design. 
Bucciarelli [ 1988] claims that: 
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" .... different participants think about the workon design in quite different ways. They 
do not share fully congruent internal representations of the design. ln this sense 
design, at any time in the design process, is more than the sum, or simpte synthesis, of 
its participants' interpretation. ln this sense it is a social construction. " 

Subrahmanian ea. summarise the following features of design as a social process: 

D Organising design is an integral part of the design task; it is solved concurrently 
with the design problem. The organisation of the design task is often determined by 
the perceived structure of the object being designed. An object may be dissected in 
more than one way depending on the criteria used. The criteria for dissecting the 
overall design task identifies the boundaries between sub-tasks; 

D Each participant in a design team brings a personal object world consisting of 
theories, modeHing languages, tools and other domain-specific heuristics. 
Professionals solve probierus within their own object world. Interfaces between 
different object-worlds (i.e. domains) require extensive discussions; 

D Specifications and constraints arise from the interests of the participants stemming 
from their object worlds. The major observation is that there is no supra-object 
world that defines an unambiguous exchange between domains in the design. As 
the design process comes to a close, the ambiguities are eliminated through 
negotiation between the participants; 

D Design discourse doesnottake place in a super-design Janguage1 but is defined by 
the reconciliation between the object worlds of the participants and by agreement 
on the naming of the parts and functions of the design. 

Cognitive science focuses on the individual designer and has generally viewed design 
probierus in terms of structures as perceived by engineers. The structure of the design 
problem requires the understanding of the design problem in order to decompose the 
problem. The next chapters demonstrate that the decompositions in the functional, 
technology and physical domain can be different. Due to the existence of different 
domains, it is often not possible to decompose a design artefact in a single way that is 
optimal to all participants. If the artefact is decomposed in different ways, a strategy 
for linking and maintaining the domain specific decompositions should be sought 
after. 

Nevertheless, Kiriyama [1989], Tomiyama [1989] and Yoshikawa [1989, 1990] pursue a meta
model in which a common back-ground theory of the behaviour of productsis used. Their approach 
is, however, restricted to technologies of which the relationships between function, realisation and 
implementation are well understood and which can be formally defined with modelling languages. 
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3.3.1 Functional modelling 

Functional modelling attempts to capture the function of a product independent of a 
particular solution principle. This section first discusses the definition of functions. 
Then attention is paid to compound functions, which are constructed from other more 
prirnitive functions. Thirdly, functions can also have non-hierarchical relationships. A 
set of functions, their interfaces and their operation create a functional architecture. 
To illustrate functions and functional architectures, an example of functional 
modelling at Medica! Systems is given. Finally, some concluding remarks are 
presented. 

Derwition of functions 

A technology independent approach to the formalised specification of functional 
requirements is given by Jakobsen, Sigmjónson and Jakobsen [1991]. The ideas 
presented in their paper deal with requirement specifications independent of a special 
category of design problems. They assert that, in general, functional requirements are 
to be expressed as pairs of a transitive verb an a noun. 

The authors present a classification hierarchy of functional verbs, which is based on 
the technical interpretation of the word in question (see Figure 3-10). Important 
criteria are degree of abstraction and technical relationship. The attributes assigned to 
one class are inherited by all subclasses of that class. In the verb/noun pair, the verbs 
indicate the operation and the noun the object, simHar to the approach of Johnson 
[1991]. The following figure gives a simplified example of a classification hierarchy 
for verbs. 

~Change 

TransformaliOn~ Process ____.- Coupling 

/ ----------. Movernen~ Working 

Verb ---+ Control 1o Activa 

"'- -----.. Passiva 

~ Generation 

Figure 3-10. ClassHication hierarchy for verbs 

The nouns are divided into 4 main classes as is shown in Figure 3-11. Qualitative 
nouns represent properties that are not measurable on some universally accepted scale, 
for example, quality, safety and comfort. Quantitative nouns represent properties that 
can be related to an accepted unit or scale, for example the Système Internationale 
(SI). Concrete nouns represent objects from the real world, for example, rock, steel, 
person and motor car. Finally, conceptual nouns represent abstract concepts like 
programme, system, metbod and result. 
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Length 
Qualitative Angle / 

/ ~ Dimension ___ ,.. Width 

Noun __,.. Quantitative ~ Area ~ Helght 

~ ~'---'------ ~ Thlckness 
\ "- -.._.._ Volume 

\ Concrete Force 
\ 

\ Conceptual 

Figure 3-11. Classification hierarchy for nouns 

This classification can be regarcled as a further detailing of the classification of Pahl 
and Beitz [1984]. Their distinction in substance (materiaJ), energy and information 
(signals) was mentioned in chapter 2.1. A good definition of a design problem is an 
important condition for a successful solution. According to Jakobsen ea., the 
definition must be specific enough to make the objective clear and broad enough so 
that the solution space is not too limited. This means that the functions should be 
specific when they concern technologicaJ solutions, but abstract when they concern 
user functions that are specified independent of the technological realisation. In this 
context abstract means technology independent, it does not mean that the functions 
are ambiguously formulated. The above classification hierarcbies seem useful for this 
task, but do not state how a function, or verb/noun pair, is decomposed into a set of 
sub-functions. These compound functions are subject of the following section. 

Compound functions 

Rane and Isaac [1990] investigate the role of function as an integrator in product 
design. They state that function plays an important role in the initial conceptual phase 
of designing systems. The decisions made at this phase are qualitative in nature and 
cannot be compared with decisions regarding the functions of components. 
Eventually, however, these abstract functions have to be reduced to the functions of 
the primitive components. The · process of functional decomposition may continue 
until the function of a known part is defined. 

Albano ea. [1992, 1993] propose a framewerk for performance-based design in which 
they introduce a functional domain. They give a case stud/ which concerns the design 
of a four-storey parking garage. The garage is designed to provide parking and 
circulation forabout 1000 cars while being safe (i.e. with respect to fire and security), 
reliable (i.e. sufficient capacity to resist loads), durable, easy to maintain and visually 
appealing. A part of the resulting hierarchical function tree is shown in Figure 3-12. 

Section 3.3.2 shows the conesponding decomposition of solutions. Although, Albano 
ea. do not distinguish a technology domain and a physical domain, they agree that the 
entire functional decomposition cannot be created without referring to the hierarchy of 
solution principles. 

1 
Other examples offunctional hierarchies are given by Salzberg [1990] and Lee [1992]. 
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Figure 3-12 shows that compound functions such as support garage operation are still 
abstract and technology independent. Technology independency means that there is 
still a range of appropriate technologies available for this function. More primitive 
functions such as suppress fire can be realised with a more limited range of 
techno logies. 
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Figure 3-12. Functional decomposition of parking garage 

Basedon [Aibano, 1993] 
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This example demonstrates that functional primitiveness is a relative notion. For the 
purpose of this thesis, a function primitive is defined as a function for which, in a 
eertaio design context, a solution principle is known. For example, the function 
suppress fire can be regarded as a function primitive in a design context where fires 
are always extinguished with a sprinkler, even when this solution principle requires 
different basic technologies to operate. In other design contexts, the function suppress 
fire can be a compound function that must be further decomposed before solution 
concepts can be found. In other words, the relationship between a function and a 
solution principle is very much dependent on the existence of known decomposition 
hierarcbies in the functional and technology domain. 

Functional architectures 

Kuttig [1993] states that a function is defined as a relationship between the input 
flows, the output flows and the state variables of a system, independent of a particular 
solution. A relationship between two functions on one abstraction level of the 
decomposition hierarchy is named a functional interface. 
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A set of functions, tagether with their functional interfaces and their operation, is a 
functional architecture. Each function in this architecture can be grouped with other 
functions to compose a function of a higher abstraction level, or it can be decomposed 
into sub-functions in order to achieve a more concrete, however still functional, 
design. A graphical presentation of a functional architecture is given in Figure 3-13. 
The grey functions are similar to textual functions in the specification; the other 
functions are either super- or sub-functions. 

Figure 3-13. Functional architecture 

Chapter 7 asserts that the development of product families requires a careful 
consideration of interfaces. Interface specifications are defined prior to the definition 
of functions that should conform to these interface specifications. This is especially 
important when existing functions, modules and assemblies should be reused in a new 
product family. 

The formal rnadelling of functions facilitates the search for solution principles as the 
solution depends on the defined properties of the function and the flows between 
functions. A salution database should be structured according to the structures of 
functions. If a solution does not exist at a certain level of abstraction, the function is 
further decomposed till sub-functions are found for which solutions are known. A 
secoud purpose of a functional model is discussed in the next section and concerns 
simulation of medica! equipment with the help of computer systems. 

Functional modelling at Medical Systems 

The development of new medica] equipment starts with an analysis of the 
specifications. A part of these specifications deals with the function of the system, 
while another part deals with constraints on the solution, such as the reuse of modules, 
the system safety, the system performance and the use of certain manufacturing 
processes. The functional specifications can be subdivided into: 

0 specifications that are detailed with a textuallanguage; 

0 specifications that are detailed in a functional model. 

The first type of specifications was discussed in section 3.1.4. lts textual format does 
not command consistency and completeness, but with respect to many specifications, 
this not considered to be a problem in obtaining the physical realisation. 
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Some specifications, however, are more critica! and need to be formalised in a 
functional model. To illustrate these, the specifications that govem the dynamic 
control aspects of the system will be discussed. Control specifications explicate the 
communication between the system and the environment (including the radiologist) 
and the communication within the system as a consequence of the inputs from this 
environment. 

To formalise these specifications, dependency relationships between functions are 
extracted from the text. The analysis of functional requirements is done with a 
structured analysis metbod in conformity with the ideas of Hatley and Pirbhai [1987]. 
This analysis results in a functional architecture in which all functions are of a simHar 
abstraction level. An example of this structured analysis is given in Figure 3-14. 
Please note the use of verbs for the functions and the use of nouns for the flows. 

x-fleld_ sefllngs 

run Info 

exp_cmd 

a
~~ ~_cmd 

poslllon 
patlent r-----...._ 

Pl, 1 . ".t. 
tablatop-helght tabla helght x-Image 

presentaHon Image sefllngs 
presentaHon Image 

Pl : perform acqulsl!lon 

Figure 3-14. Functional architecture of the function P1: perforrn acquisition 

Some functions are implemented with a set of different technologies while for other 
functions there is a choice of different salution principles. For example, preventing a 
callision of patient and equipment can be implemented with hardware, electranies or 
software and in some cases parallel implementations are pursued to further increase 
safety. The quality of these and other functions is evaluated after the functions have 
been allocated to modules of the technology model. 
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The functions in the functional architecture of Figure 3-14 are all on the samelevel 
and together create the higher-level function PI, peiform acquisition. As the functions 
should be able to exchange information, they are connected with data flows, indicated 
in the figure with arrows. Not every function can be active simultaneously withother 
functions. For example, do jluoroscopy will never be active together with do 
radiography. The activity of functions is managed by a control specification, 
indicated with a vertical bar. The dotted lines are the control flows. These contain 
information about which functions have to be executed and which not. A functional 
architecture is a complete and unambiguous description of a subset of the functional 
specifications on one abstraction level. 

A repeated application of the structured analysis metbod leads to a functional 
decomposition of the system (see Figure 3-15). The compound functions in this 
decomposition are described independent of possible technologkal realisations, while 
the primitive functions show a close relationship to salution principles. Nevertheless, 
it is known also for the compound function acquire and display radiological image 
that the salution concept is an X-ray system. 

Figure 3-15. Functional decomposition 

The grey functions in Figure 3-15 are identical to the functions in the functional 
architecture of Figure 3-14. The functional decomposition gives a hierarchical 
overview of the product family. However, the functional architecture is more useful 
for individual designers as these work mostly on one abstraction level at a time. 
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The functional architecture serves three purposes: 

a It is an unambiguous description of the required function, independent of possible 
solution concepts. Therefore, functions and dependencies are isolated from the 
specification text and modelled as separate functions, flows and control specs in 
the functional architecture. Functions are grouped into super-functions by 
consirlering the minimal interfaces between functions. This results in a composed 
functional model, which gives a transparentand unambiguous view on the system; 

a It can be used as a reference model for reusing existing designs. Such a reference 
model impraves the quality of the design as existing functions and their 
relationships are not overlooked. In that sense it helps to make the specifications 
complete and consistent; 

a It enables a simulation of function. The functional architecture is completed with a 
graphical user interface, which allows emulating the communication between the 
system and a real user, for example a radiologist. In this way, the scope of the 
simulation is extended towards the environment, in conformanee with the ideas of 
Alexander ( chapter 2.5). Shortcornings of the specification are discovered at an 
early stage as the simulation is much more accessible to users and marketing 
people than a bulky document. 

Currently, the utilised tooi does not allow the rnadelling of the product farnily as one 
functional model with alternative elements. However, optional functions can be added 
to the common function to evaluate their suitability in the functional architecture. In 
all cases, it is not possible to test the product family as a whole because a product 
farnily is an intangible entity, of which only the variauts will be ever be manufactured 
and used. Therefore, some worst-case variauts are selected which together cover the 
complete function of the product family. 

Concluding remarks 

This section discussed a number of functional rnadelling languages. These languages 
are used to formalise those parts of the specification that are critical with respect to an 
unambiguous realisation. It was demonstrated that some of these languages consider 
primitive functions, which are closely related to solution concepts, while other 
languages define a format to which abstract functions should conform. A few authors 
discuss functional architectures so as to formalise the dependendes between 
functions. The Medical Systems case showed that this formalisation can be used for 
simulation purposes. Functional decomposition is used to reduce the complexity of 
design. Compound functions are decomposed into sub-functions for which solutions 
concepts are known. 
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A functional model is usually created in design so as to formalise the specifications as 
written by product management. However, not all aspects of this specificatien are 
relevant or suitable for formalisation. The Medical Systems case showed that the 
dynamic control of a system is suitable for functional rnadelling as a simulation on 
this model can provide fast and accessible feedback to marketing and customers. 
Other aspects are Iess ambiguous and can be interpreted by designers on the basis of 
sketches or plain text. Some parts of the specificatien do not describe the intended 
function of the product, but specify constraints on the salution and are therefore 
formalised with rnadelling languages in the technology and physical domain. 

3.3.2 Technology modelling 

This thesis pays much attention to the technology domain as this domain is essential 
for developing products that use a range of technologies for realising the required 
functions. A good example are mechatronic products. Mechatronics is an artificial 
word, created in Japan in the mid 70's by combining mechanics and electranies [Buur, 
1989] [Buur, 1993]. It describes the technologies used in products and production 
equipment, containing both mechanics and electronics. Specifically, it covers those 
concepts where rigid mechanically coupled mechanisms have been replaced by 
sensors, actuators and software controL There are two fundamental problems in 
designing mechatronic products: 

0 From a technologkal viewpoint, the difficulty of mechatronic products is that 
adequate technology converters or transducers [Bradley, 1991] must be developed. 
These converters are used to couple different technologies. For example, a relay is 
used to activate an electrical circuit with a low power signal, while sensors are used 
to detect, record and measure physical properties, e.g. temperature, humidity and 
pressure; 

0 From a design management viewpoint, the difficulty of mechatronic design is to 
decide how the functions of a product should be realised in terms of mechanics, 
dectronies and software technology. Buur states that when the designer approaches 
the problem with an open mind, i.e. trying not to be tied by traditional solutions 
and the current organisation structure, the borders between technologies become 
very flexible. Many functions may be realised using either mechanica} or electronk 
means, with or without software. Finding an optima] assignment of mechanics, 
electronics and software technology is crucial. 

The next section returns to the parking garage as an example of multiple technologies. 
Then technology architectures with multiple technologies are discussed. The medica! 
systems case of the previous section is completed with technology modelZing at 
Medica[ Systems. Finally, some concluding remarks are presented. 
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An example of multiple technologies 

Albano, Connor and Suh [1993] state that new technologies can make important 
contributions to the efficient and economical delivery of high-quality constructed 
facilities as buildings and bridges. New technologies, however, are inadequate if the 
basic design fails to satisfy the needs of the elient The quality of design also depends 
on the designer's ability to make correct decisions with respect to the allocation of 
functions to techno logies. 

According to Albano ea., the capacity for making correct decisions requires: (1) the 
ability to transforrn the overall needs of the elient into a comprehensive yet minimal 
set of objectives; (2) the creativity to generate plausible solution alternatives; and (3) 
the ability to analyse and evaluate alternative solution principles as a function of their 
performance, often without the benefit of extensive, quantitative inforrnation. The 
approach taken by Albano ea. is based on the principles of Axiomatic Design [Suh, 
1990]. This approach is discussed in more detail in section 5.3.1. 

The parking garage is an example that shows that several technologies play a role in 
the design of such a constructed .facility. In Figure 3-16 not only technologkal 
modules are depicted, but also characteristics of these modules, as for example, the 
width of the parking stall and the number of exits. 
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The security system is a good example of a compound module that comprises several 
technologies and technology converters. The artificial lighting system will be 
implemented in the electrical domain, the gate control system will require software, 
the reinforeed concrete wall is detailed in the mechanica! domain, while the security 
guard can be regarded as human technology. All these technologies are connected as 
they together realise the user function: provide secure environment. However, this 
user function cannot be expressed with the individual technologies alone. 

Each module in Figure 3-16 has a key technology, although some additional 
technologies will be needed to support this key technology. For example, the artificial 
lighting system is mainly designed by electrical engineers, but as it will be hang on 
the concrete walls, knowledge about mechanica! design is required as well. Therefore, 
some of the primitive modules of Figure 3-16 will be further decomposed till they are 
primitive enough to be realised by specific engineers. 

A comparison of the functional decomposition (Figure 3-12) and the technology 
decomposition (Figure 3-16) of the parking garage shows that they cannot be 
decomposed independent of each other. The decision to use a post-tensioned flat plate 
slab module, for instance, will determine how the function resist gravity loads is 
decomposed. It is also important to recognise that the modules at a higher level of the 
technology model become constraints at a lower level of the technology model. The 
relationships between the functional domain and technology domain have 
consequences for the design process. This is elaborated in chapter 5 and chapter 7. 

Technology architectures with multiple technologies 

If a technology architecture consists of modules with different technologies, there will 
be two kind of interconnects: (1) connected modules of the same technology and (2) 
connected modules of different technologies. The latter case requires technology 
couverters to allow communication. Good examples of complex technology 
architectmes with multiple technologiescan be found in automotive industry. 

An anti-loek braking system (ABS) consists of several modules with different 
technologies, for example hydraulics, electronics and software [Erensb, 1993]. 
Together, these different technologies realise the function ABS. A graphical 
presentation of ABS is given in Figure 3-17. 

Figure 3-17. Anti-loek braking system 
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In designing the function ABS, much attention is given to a minimisation of 
interconnects so as to decrease the function's costs and improve the function's 
performance. The rninimisation of interconnects can be achieved by introducing new 
technologies that reduce the number of technology converters. Another difficulty 
concerns the fact that the modules of ABS are distributed over the physical layout of 
the car. This requires a careful consideration of the technological solutions with 
respect to the physical implementation. 

Tecbnology modeDing at Medical Systems 

The consistent description of all technologies applied in a medical system is named 
the technology model. The technology model defines modules on different levels of 
abstraction. Some modules are primitive in the sense that they use a single 
technology, for example the aluminium stand, other modules are compound because 
they are constructed with lower-level modules that often exhibit different 
technological phenomena. Usually, every compound module can be designated a key 
technology and a number of supporting technologies. For example, the aluminium 
stand, which bears the X-ray tube and the image-intensifier, is developed with 
geometrie technology. However, the movement of this stand requires servo-motors, 
electtonics and software. These are supporting technologies. 

Modules are connected with interfaces to exchange data, signals and energy. Figure 3-
18 shows the technology architecture of the module X-ray system (the end-product) on 
one level of abstraction. The technology architecture is the result of an allocation of 
functions to modules. In this allocation process, the flows between functions are 
mapped on the interconnects. The allocation process is iterative as in the design of the 
system, it might appear that the required functions do not fit in the technology 
architecture. 

Figure 3·1 a. Technology architecture of the X·ray system 

The technology architecture is to a large part reflecting the current organisational 
structure. Therefore, the design of a new product platform, with a new architecture, is 
often accompanied by an organisational change. 
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Each module in the technology architecture is either a pnmtttve module or a 
compound module. Primitive modules meet one or more functions and can be realised 
with a known technology. Compound modules are decomposed into more primitive 
modules till the level of primitiveness is such that they meet the required function and 
can be realised with known technologies. An example of a technology decomposition 
is given in Figure 3-19. The grey modules in this decomposition correspond with the 
modules in the technology architecture of Figure 3-18. 

Figure 3-19. Technology decomposition of the X-ray system 

For Medica! Systems, there are several reasons to separate the functional model from 
the technology model: 

0 The first reason is the presence of different technologies. Although, these 
technologies are described within a single technology model, they have to be 
analysed and tested separately independent from the physical implementation; 

0 A second reason is that there is choice of technologies for the realisation of a 
function. For exarnple the prevention of a Collision between patient and equipment 
is implemented with hardware, electronics and software. This requires a proper 
functional analysis without impetuous decisions regarding solution concepts; 

0 A third reason is related to the observation that designers are better in defining the 
solution than in defining the problem. A structured functional analysis independent 
of the technologkal realisation pays attention to the importance of correct, 
consistent and complete specifications; 

0 Finally, an explicit functional decomposition creates opportumtles for function 
sharing, i.e. several functions are allocated to one module with a certain (key) . 
technology. Por exarnple, in the functional analysis phase, engineers might realise 
that several functions can be materialised with the same central processing unit. 
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The technology model as applied by Medica! Systems is mainly used by designers to 
validate the technological solutions to the required functions. However, chapter 3.1 
stated that the specifications can be subdivided into functional requirements and 
constraints on the solution. The first category is formally modelled as functions in a 
functional model, while the latter category is considered in the design of the 
technology model and the physical model. For example, the performance of a system 
is difficult to specify in the functional domain, concerning the dynamic control of a 
medica! system, and is therefore defined as a constraint on the solution. This means 
that the necessary speed of processors, memory and networks is determined in the 
technology domain. 

A similar constraint on the solution is the geometrie shape of the system. This shape is 
critica! to the function of the system but cannot easily be expressed in terms of 
functions that are allocated to modules. Therefore, the shape of the system (e.g. the 
stand and the C-are) is directly modelled in the technology domain with a language 
for capturing geometry. These modules constitute the geometrie aspects of the system 
and are tested against the constraints on the solution as specified in the initia! 
requirements. However, geometry plays different roles in the technology domain and 
the physical domain. In the technology domain, geometry is meant for realising 
functions, while in the physical dornain, geometry is meant for realising 
manufacturability and serviceability. Furthermore, the physical aspects of 
technologies as electronics and software are not important for their function, but must 
be determined before the product can be manufactured and serviced. 

Finally, modules exist in module variauts to cater for the required variety. In most 
cases, module variauts result from the allocation of function variants. Usually, a 
function variant is not materialised in one module variant, but in a set of module 
variants, often having different technologies and being physically distributed over the 
medica! system, similar to ABS in a motor car. Tests are executed on individual 
modules, but these tests have a limited value when the interfaces of the modules are 
variabie due to the variety of the environment. Therefore, system integration tests for 
representative sets of modules have to be executed as well. 

Concluding remarks 

This section discussed the technology model and some representations of 
technologies. The languages that are used to create these representations are used by 
several disciplines. Some examples from mechanica! design, electrical design, 
hydraulic engineering and software design were given in chapter 3.2 on compositional 
systems. These languages are also used in the development of non-compositional 
systems but are insufficient to describe the overall function of the system. 

The technology model differs from the physical model as the physical embodiment of 
technologies is not always relevant to validate the solution principle with respect to 
the function. For example, a software programme can meet the function as described 
in the functional model, independent of its realisation with either an integrated circuit 
or a general purpose micro-processor. 
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Geometry technology, however, is closely related to the physicallay-out as defined in 
the physical model. This technology requires a close co-operation between design, 
engineering and manufacturing engineering. However, in the technology domain 
geometry languages are meant to realise function, while in the physical domain these 
languages are meant for creating a manufacturable description of technologies. 

3.3.3 Physical modeDing 

The purpose of the physical domain is to describe the physical implementation of the 
product as it will be manufactured and serviced. It differs from the technology 
domain, which focuses on developing solutions for the problems defined in the 
functîonal domain. Although the physical domain creates lîmiting conditions for the 
development of technology modules, the technology domain is its primary input. 
Furthermore, the physical domain is determined by a number of operational processes 
as manufacturing, logistics and service. These processes play a role in the 
development of a product family, but are first of all users of the physical model and its 
representations after completion of development: 

The assembly process influences the development of parts and the way in which these 
parts are put together and tested. Furthermore, the assembly tools and machinery are 
described. In the operational use process, assembly uses an assembly representation of 
the physical model, e.g. in the form of assembly drawings; 

The logistîc process defines the way in which parts are made available at the right 
place and time so as to allow assembly or service of a product. In the operational use 
process, logistics uses logistic representations of the physical model, e.g. a (generic) 
bill-of-material; 

The service process describes the sequence of operations to test the installed system, 
locate the part to be replaced, disassembie and reassemble an existing product. In the 
operational use process, service uses a service representation of the physical model, 
e.g. in the form of service drawings; 

All three processes act on the same physical model if this physical model defines the 
actual physical constellation of parts in the assembied whole. In the development 
phase of a new product family, these processes define criteria which the physical 
model, and consequently the technology model and functional model, should meet. In 
the operational use phase, these processes have their own representation of especially 
the physical model. 

Assembly Process Assembly Representotlon 

Loglstle Process Logistie Representation 

Servlee Process Servlee Representation 
Physleal Model 

Figure 3-20. Assembly, logistics and service 
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It is not the purpose of this thesis to decide on the right set of criteria, although some 
examples .of criteria cancerning assembly, lagistics and service are given. More 
important are the rnadelling languages that are used to capture the physical domain. 

These rnadelling languages are similar to languages that are used in the technalogy 
domain to capture geometry, although the function of these languages is different in 
both domains. In the technology domain, geometry is one of the technologies that is 
used to realise the required function. In the physical domain, geometry is relevant for 
engineering the implementation of the solutions created in the technology domain. 
This is obvious for technologies as electronics and hydraulics, but less obvious for 
intangible technologies as software and user-interfaces. However, also these 
technologies have an implementation, for example the software programme in which 
the salution principles are coded. This chapter pays most attention to tangible 
technologies that are eventually implemented with geometry. 

The following topics are discussed: 

0 Geometry. A precise description of the physical shape is necessary in the 
technology domain as long as this description is relevant with respect to the 
function. Geometry aspects are, however, also essential in the physical domaio as 
most technolagical aspects of the product are reduced to geometrie information; 

0 Assembly conditions. An important aspect of the physical model is that it should 
allow the product to be assembied in the assembly process. In other words, the 
product should be designed for assembly; 

0 Logistics conditions. Furthermore, the product should be designed for logistics. 
This is especially relevant for product families. Taking into account the production 
lead time, product variants are made specific as late as passible in the assembly 
process; 

0 Service conditions. Over the life-cycle of the product, it should be possible to 
rnaintaio the product, for example by changing components or by upgrading the 
function. Therefore, the assembied product must be designed such that it can be 
disassembied and reassembled again. 

Also the role of physical modelling at Medical Systems is briefly considered. Finally, 
this sectionis completed with some concluding remarks. 

Geometry 

Geometry is one of the technologies that is applied in design to meet the required 
function as specified in the specifications and the functional model. The physical 
aspects of other technologies, however, can be regarded as sicte-effects that are less 
relevant for their functions. The physical model is used to define the full physical 
implementation of the technologies that occur in the technology model. 

The physical model can be different from the technology model, both with respect to 
the modules and the structure in which these modules are placed. The following list 
summarises some possible differences: 
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0 lf the product functions from a design perspective, it might not be suitable for 
manufacturing on a larger scale. For example, the solution principles are 
implemented as experimental set-ups or, more extreme, only modelled with the 
help of simulation software; 

0 The modules in the technology model are usually structured according to their 
solution principles. The interactions between modules are defined in technology 
architectures. These architectures are also created with the purpose of minimising 
technological interactions. Therefore, they can be different from physical 
architectures that try to minimise physical interactions, for example with the 
objective to improve design for assembly; 

0 Even if the technology model is detailed to the level of primitive modules, it is not 
guaranteed that these modules can be manufactured, assembied or serviced. For 
example, the accessibility of modules must be improved, a variant of the product 
family must be made specific late in the assembly process, or the number of 
modules has to be reduced to decrease costs. In some cases it will be possible to 
forther detail the technology model for manufacturing purposes, in other cases the 
manufacturing view on the product family can only be expressed with a different 
structure. An example of the latter is a set of interconnects, which is defined 
independently in the technology model, but must be grouped into a cable-tree for 
assembly purposes. 

0 In some cases, a product family is split in a few sub-families of which the 
corresponding variauts require different manufacturing processes. 

This sectien mainly pays attention to the geometry aspects of the physical model. Th is 
is defensible because most functions and their realisations in technologies are 
eventually implemented with geometry in physical assemblies. 

Representation of geometry 

One of the crucial issues in configuring assemblies is the representation of geometry 
and spatial relationships among parts. This subject is discussed by many authors, 
including Libardi, Dixon and Simmons [1988], Eastmann, Bond and Chase [1991] 
and Mäntylä [1990]. These papers address the question of how the relative location of 
parts can be expressed and represented during the design and manufacturing of an 
assembly of parts. According to Baxter ea. [1994], a product model that captures 
assembly data in a suitable format can provide information to the following 
applications: 

0 toleranee analysis 

0 kinematic and dynamic analysis 

0 design for manual and robotic assembly 

0 assembly planning 

0 bilis-of-material 

0 visualisation 
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Also Lee and Gossard [1985] recognise the need to develop a data structure that stores 
information on how all the components are connected in an assembly. They state that 
this data structure should extend current data models for representing individual 
components. Currently, most available data structures for representing components 
may be divided into two main types: 

[J One is the data structure used by constructive solid modelling, in which the 
procedure by which an object is created, rather than the information on the final 
object, is stored. This means that the sequence of set operations as union, 
difference and intersection of the primitive objects is stored; 

[J The other type of data structure is boundary representation, in which the faces, 
edges and vertices of an object are stored, together with the connections between 
them. 

The objective of the work of Lee and Gossard is to generate a data structure in which 
any assembly architecture can be represented in a hierarchical manner. They give the 
following simplified assembly to illustrate their approach. 

cap boH 

Figure 3-21. Assembly architecture 

Their approach uses a graph structure in which virtual links are used to express both 
architectural interfaces and hierarchical decompositions. They conneet any mating 
pair of two sub-assemblies, two components or one sub·assembly and one component. 
If more than two components are mutually related, several virtuallinks can be used so 
that every pair of mating components occupies one virtual link. A virtual link is the 
set of information required to describe the relationship and the mating conditions 
between the mating pairs. An example of the container's physical model is given 
below. 

Figure ~22. Assembly architecture and decomposition 

112 



Languagas for single products 

The purpose of this modelling language is to capture the physical model of an 
assembly. It is not the purpose of this language to record the assembly process1

• 

However, the assembly process is an important condition for the physical model as 
will be asserted later in this section. 

Communicating geometry 

Communicating geometry requires an unambiguous definition of assembly product 
data that is generated through the product life cycle. The STandard for the Exchange 
of Product model data (STEP) includes product modelling languages that define the 
form of product data to support communication and reu se of product data. The aim of 
STEP is to produce a single and better standard, to cover all aspects of product life 
cycle in industries [Owen, 1993]. STEP is an ISO activity that will be documented as 
ISO 10303. STEP Part 51 [ISO DIS 10303-41, 1993], Part 54 [ISO DIS 10303-44, 1993], 
and Part 203 [ISO DIS 10303-203, 1993] give languages for defining assemblies and 
rnanaging configurations. There is no support for defining functions. With respect to 
technologies, mechanica! design, electronk design and ship design are considered. 

A shortcoming of these product modelling languages is that they are only suitable for 
individual products. No explicit support is given for modelling and communicating 
product families. All of these languages support only the description of a single 
product and their emphasis is towards the later stages of the design process and 
manufacturing, largely material removal and assembly. 

Assembly conditions 

Assembly can be used as the focusing issue for integration. According to Nevins and 
Whitney [1989], assembly is the first point in the process at which physical parts are 
put together. Before assembly, they are designed, made, handled and inspected 
separately. During and after assembly, they are joined, handled, tested, and must work 
together. Thus assembly is inherently integrative2

• 

The growing realisation that assembly is an important phase in the product' s life-cycle 
has spurred interest in design for assembly, which helps a designer simplify products 
and design single parts so that they will be easier to assemble. However, design for 
assembly cannot be done in isolation as there are many interactions and trade-offs 
with the functional and technology domain. 

For this reason, Henson, Baxter and Juster [1993] critique the approach of Lee and Gossard. They 
state that some applications, such as toleranee and kinematic analysis, require information about the 
relationships between components of an assembly in its assembied state, whilst others, such as 
assembly planning and robotic assembly, require information about the manner in which the 
components can be brought together, i.e. the assembly process. 

Nevins and Whitney [ 1989] state that decisions that affect assembly affect nearly every other aspect 
of production and use of a product. It is crucial to achieve this integration during the product design 
process because 70 percent of the life-cycle cost of a product is determined when it is designed 
[Whitney, 1990]. 
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This thesis does not intend to discuss all of these trade-offs, but will mention some 
goals of design for assembly as listed byEversheim and Baumann [1991]: 

0 reduction of the number of parts; 

0 development of an assembly-oriented product structure; 

0 processing of assembly-relevant data; 

0 simplification of joining operations; 

0 evaluation of assembly features; 

0 standardisation of parts and joining data. 

For the purpose of this thesis, most attention is paid to the development of an 
assembly-oriented physical model. Eversheimand Baumann [1991] have developed a 
system, Demos, which supports the conceptual design of geometry in the technology 
model and the detailed design of geometry in the physical model (see Figure 3-23). 
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First, the designer creates a function-oriented description of the geometry in the 
technology model. Then the assembly-specific relationships between the structural 
elements are defined. The system suggests an assembly sequence for each level of the 
product modeL Once the assembly sequence is fixed, the following optimisation phase 
is used to transfer parts from the final assembly to preliminary sub-assemblies. The 
goal is to form as many independent preliminary sub-assemblies as possible. The final 
stage in optimising the structure is to reduce the number of parts. This is achieved by 
integrating parts into parts that fulfil several functions. 
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In the above steps, no attention is paid to products with different technologies and to 
product families with several function and assembly variants. A second problem is 
that the metbod has been developed for optimising a given design [Herbertsson, 
1995]. This means that only redesign of parts and integration of adjacent parts into 
one component is possible. Therefore, a design metbod should focus on the 
conceptual phase of design before the detailed lay-out of parts is commenced. 

Logistic conditions 

The physical model differs from the technology model in a few respects. First of all, 
the modules in the technology model are integrated into assemblies of the physical 
model to save costs and to improve the easiness of tbe assembly operation. Secondly, 
the timing and sequencing aspect is added as a specifying condition for the physical 
model so as to support the logistic aspects of the assembly process, which should not 
only describe tbe result of the assembly operation, but also the way to achieve this 
result. 

Nevins and Whitney [1989] eonsider the development of the physical model as an 
integral part of the design process. They mention a few competitive advantages of 
assembly, which can be designed into the product: 

0 Supporting model mix flexibility through commonality of parts or by identifying 
subassemblies that express the model differences; 

0 Permitting rapid response to market changes or individual customer-orders by 
concentrating differences between variauts in a few parts that are added at the end 
of the assembly sequence or by making long lead time parts, which are hard to buy 
or hard to make, common to all variants; 

0 Designing for assembly sequences that permit the product to be made in modules 
or sub-assemblies, thereby supporting model mix production and thorough testing 
at the sub-assembly level. 

This thesis pays only minor attention to the assembly process, while concentrating on 
the design process. In this design process, the relationships between the technology 
model and the physical model are considered in chapter 7. It will be argued that the 
integration of modules in assemblies can be positive for cost and performance reasons, 
but can also be incompatible with modularity requirements. 

Service conditions 

The service function contributes to both the operational process and the product 
development process. This thesis does not discuss working metbods of service in the 
operational process, for example service planning and parts exchange. More important 
are the conditions and evaluation criteria, formulated in the development process to 
ensure a high reliability and maintainability of the product. Finkelstein and Guertin 
[1988] define reliability and maintainability as follows: 
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0 Reliability is the probability of successful operations for a specific period of time 
under specific conditions and environments of operation; 

0 Maintainability is the ease and rapidity with which a defective item can be restored 
to its operation condition. 

Maintainability and reliability are very relevant for the physical model, as this model 
concerns the exchange of parts. However, also the functional model and the 
technology model are important for service. The functional model contains functions 
that can fail in the perception of the user, while the technology model shows the 
realisation of functions in modules. 

Reliability is a characteristic of the system and depends on the reliability of all its 
modules. A reliability chain is the complex of all modules that realise a function. The 
function fails if one of the modules in this chain fails: a reliability chain is actually 
weaker than its weakest link. The complex of modules to realise a function is also 
called a functional circuit [Moss, 1985]. The system reliability is not the average but, 
rather, the product of the functional circuit's reliabilities. The mean time between 
failure (MTBF) expresses the reliability inherent in a given product design. 

The relationship between function and functional circuit is fundamental to the proper 
implementation of reliability analysis techniques. Performance analysis of a complex 
product can be greatly simplified by rnadelling the system as a set of functional 
circuits. If a component of a circuit fails, it is likely that the entire function of the 
circuit fails. In complex systems, however, components are shared by several 
functions, which makes a proper reliability analysis more difficult than for simple 
systems in which each component or subsystem is used to materialise one distinct 
function. Therefore, reliability is one of the criteria in determining a good allocation 
of functions in the functional model to modules in the technology model. 

Por maintainability there are a few intuitive design criteria [Moss, 1985]: 

0 Standardisation and modularisation enforce the conformanee of commonly used 
modules and assemblies to generally accepted design standards. The objectives of 
standardisation are (1) to assure compatibility between mating parts, when 
replacing a faulty unit, and between the product and the common tools, test 
equipment, and facilities used for its maintenance; and (2) to minimise the number 
of different spare parts that must be stocked for maintenance support; 

0 Functional packaging locates all modules performing a given function in the same 
package, which is readily removable and replaceable as an entity. The objective of 
functional packaging is to expedite repair of a faulty system. The symptoms of a 
failing function identify the faulty assembly, and the reptacement of this assembly 
completely corrects the failure; 

0 Accessibility controls the spatial arrangement of parts and assemblies within a 
piece of equipment so that each of these items is readily accessible for replacement 
or repair in place 
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Similar to reliability, some criteria determine the physical model while others deal 
with the relationships between the functional model and the technology model. 
Accessibility, for example, is largely determined in the physical model, while 
functional packaging is similar to the allocation of related functions to a single 
replaceable module. 

Physical modeHing at Medical Systems 

The consistent description of a system's parts and assemblies is named the physical 
modeL The modules of the technology model are physically implemenled in 
assemblies that can be manufactured, planned and serviced. Design decisions in the 
physical model are taken on one abstraction level at a time. The physical architecture 
is described in assembly drawings (see Figure 3-24). 

Figure 3-24. Physical architecture of a medica! stand 

The physical architecture defines the relative position of parts and the interfaces 
between parts. Some parts are primitive, other parts are assemblies. Figure 3-25 shows 
the product hierarchy of a medica! stand. 

Figure 3-25. Physical decomposftlon of a medica! stand 

The fact that medical equipment is manufactured with some volume is the reason for a 
difference between an ideal physical model for manufacturing and the Development 
Test Model that is created by development in the technology domain. Eventually, the 
physical model is a compromise between the requirements of development, 
manufacturing, service and other parties that have an interest in the physical 
implementation of the product. 
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In the manufacturing process, a bill-of-material is one of the representations of the 
physical model. For systems with such a large variety that the variants must be 
assembied to customer-order, the generic product structuring (GPS) concept is the 
most efficient product modeHing language to describe the product family completely 
from the purchased components to the end-products [Erens, 1992] [Hegge, 1995] 
[Wortmann, 1995]. Such a generic product structure makes it possible to generate a 
costomer-order specific bill-of-material (and other documentation) out of the family 
description. This enables an efficient and controlled final-assembly process. The 
generated costomer-order specific bill-of-material can also be used for configuration 
management purposes. 

Concluding remarks 

This section discussed rnadelling languages for the physical domain. It stated that the 
physical model specifies the physical product and not the production process, service 
process or any other operational process. To define the physical model, languages for 
capturing geometry are used. These languages are used in a similar way as in the 
technology domain. However, the physical model adds to this that also the physical 
aspects of other technologies are considered. These physical aspects are nat essential 
from a functional perspective but must be understood to allow manufacturing, 
logistics and service. Therefore, the assembly, logistic and service process formulate 
requirements for the physical model. 

Operational processes also use different representations of the physical model. These 
representations make use of specific product rnadelling languages and can have 
dissimHar product decompositions. However, in order to maintain consistency, the 
physical model should be the souree of information. The physical model represents 
the product as it is designed, the derived models represent the product as it is 
perceived by disciplines. 

3.3.4 An integrated approach to three domains 

Most authors discuss one partienlar domain or one partienlar technology. There is 
only a limited number of approaches that considers three different domains 
simultaneously. Especially the technology domain is neglected if the research focuses 
on one technology for which languages exist that cover function and realisation in a 
compositional system. 

Andreasen of the Technica! University of Denmark takes a braader view than most 
researchers and does not only consider the three different domains discussed in this 
thesis, but also the manufacturing process. Andreasen [1987] has been involved in the 
development of a designers workbench for the design of aluminium products 
[Mortensen, 1993]. This workbench is named Alulib [1992] and contains knowledge 
about aluminium technology and should support, among others, the following 
functions: 
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0 find and reuse functional solutions; 

0 find and reuse extrusions; 

0 support design of extrusions; 

0 get information about tooling; 

0 support selection of alloys; 

0 support selection of production methods; 

0 get information about standards. 

Data are classified in two groups, product data and lexical data. Product data are 
related to specific products brought into the system, whereas lexical data beloog to 
classes of products or technologies. Product data are classified according to the 
chromosome modeland its domains (see Figure 3-26). 
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Figure 3-26. Chromosame model 

Adapted trom Alulib [1992] 

A product is the suitable whole, which in the last part of a manufacturing process is 
sold to and applied by a customer. A function is a description of what the product is 
intended to do or be. An organ, or salution principle, is an artefact or technology, 
characterised by its functional surfaces and their relationships, able to create 
functions. Assemblies are connections of two or more components and physically 
realise the salution principles. Components are the physical elements, which the 
product is composed of. A component can exist as a first degree of complication (e.g. 
screws and rivets) or as a functionally composite group of parts (e.g. gear box es and 
hearings). Finally, a manufacturing process chain determines the sequence of 
production methods, related to a specific component or assembly, to achieve the final 
shape. All these domains exist simultaneously. 
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The relationships between the domains indicate how functions are resolved with 
functional artefacts, materialised with assemblies and components, and manufactured 
with process chains. These relationships are important to represent causalities. 
However, according to Andreasen, more research must be pursued to answer the 
question to which degree the domains and their relationships should be formalised. 
One extreme is the desk top publishing mode, another extreme is the full 
systematisation and parametrisation of elements, structures and relationships, so that 
the chromosome in itself becomes a full description of the product. An answer to this 
question is especially important with respect to a computer-based implementation. 

It is not the purpose of this thesis to answer this question. This thesis builds upon the 
work of Andreasen in the sense that it strives to shed more light on structuring product 
families in different domains. Furthermore, this thesis proposes a metbod for the 
design process of product families. 
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3.4 Conclusions 

This chapter distinguished compositional and non-compositional systems. The 
behaviour of a compositional system can be expressed if the behaviour of its 
components and the components' relationships are understood. Non-compositional 
systems are characterised by the presence of technologies that are not unified in a 
theory from natural science. Consequently, non-compositional systems lack rnadelling 
languages that cover function, solution principles and physical implementation. 

For both types of systems, it can be concluded that the functional domain, technology 
domain and physical domain can be recognised in design. Independent of the 
existence of theories from natura! science, designers think in terms of functions, 
solution principles and physical implementations. A difference, however, are the 
rnadelling languages that can be used to express the objects in these domains. 

For craft products and in general for products with well-known deeomposition 
strategies, the number of domains that is actually used in design communication is 
often less than for complex mechatronic product families: 

0 For craft products, design communication takes almost entirely place in the 
physical domain. The function of such a product is usually described by its 
physical parts. The form of a craft product is modified by countless failures and 
successes in a processof trial-and-error over many centuries. Although no separate 
funetional model is used, this type of design can produce an astonishly well
balaneed result and a close fit to the needs of the user [Jones, 1970]; 

0 Products with well-known decomposition strategies or less complex interactions of 
technologies, can be realised with a direct allocation of functions to assemblies 
[Clark, 1985]. An explicit reeognition of the technology domain has no added 
value for these designs. An example concerns the design of trucks in which it is 
known befarehand which functions are realised with which components. However, 
new technologies as electranies and software ask for a reconsideration of functional 
allocation, thereby introducing the need for a separate technology domain. 

Both for compositional and non-compositional systems, there are several processes 
(e.g. the assembly process and service process) that formulate requirements for the 
different domains. Furthermore, these processes can derive their own representations 
from the product models. However, these representations do not alter the product 
description as it is, only as it is perceived. 

Chapter 6 of this thesis proposes a salution for structuring product families. This 
salution covers the possibility to structure a product family in different domains, 
including allocation and validation relationships between these domains. Furthermore, 
the solution considers product hierarchies, interfaces, representations and variety. 
With respect to the last item, the next chapter discusses existing modeHing languages 
for product families. 
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Plato 
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4. Languages for product families 

This chapter considers modelling languages for product families. Alexander [ 1964] 
concluded that the difficulty of defining product variety can be deduced from the 
intangible and abstract nature of product families. A design is an abstraction of a 
concrete product, and the design of a product family can in that respect be regarcled as 
an abstraction of an abstraction. A family of products only exists as a mental picture 
or as a formal model of this mental picture. An approach in which every variant is 
modelled as a single product independent of other variants will be impossible to 
pursue if the variety is large. However, even if the variety is relatively small, or when 
only a subset of the possibilities is described, this approach has the disadvantage that 
the family structure as such is not defined. It is not transparent in which sense the 
variants share common elements, neither is it clear how variants differ to cater for 
customer options. 

Chapter 2 briefly discussed the generic bill-of-material (GBOM) concept, which is 
currently used by some companies to structure a product family in the physical 
domain from an assembly and logistic perspective. However, in design, a product 
family should also bedescribed from a functional and a technologkal perspective. Por 
non-compositional systems, this thesis proposes the use of the GBOM mechanism in 
the functional, technology and physical domain. 

In the early stages of design, major decisions are made that affect the quality of the 
final product family. Product models should describe the product with sufficient level 
of detail to make proper design decisions. Therefore, chapter 3 paid much attention to 
modelling languages for compositional and non-compositional systems. Figure 4-1 
shows the diabolo, which represents the variety at different levels of the generic bill of 
material versus the amount of detail that is captured in traditional modelling Ianguages 
for single products. 

Figure 4-1. GBOM versus a product model for single produels 

It is not the goal of this thesis to add all design detail to a generic bill-of-materiaL This 
thesis is restricted to extending the GBOM concept with multiple domains. Therefore, 
chapter 4.3 discusses the mechanism of the GBOM concept independent of the 
domain in which this mechanism is applied. This mechanism is then called the generic 
product structuring (GPS) concept. 
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The following two chapters pay attention to product modelling languages that capture 
product variety for specific technologies: 

4.1. Feature-based design. Section 1.2.1 defined a feature as a generic shape with 
which engineers associate eertaio properties or attributes and knowledge useful 
in reasoning about the product. Features are used at the part level, i.e. a 
primitive assembly, and do not refer to such productsas compound assemblies. 
However, they usually have a parameter mechanism to make the feature specific 
for an application; 

4.2. Parametrised CAD. This is an extension of feature-based design in the sense 
that parametrisation is also applied at the level of assemblies. Parameters are 
used to make an assembly specific for an application. In some cases, the 
population of parameters is driven by customer variety, in other cases 
parameters are populated experimentally to find optimal values for a specific 
product. 

The genericproduct structuring (GPS) concept is discussed separately in chapter 4.3 
Although this concept was discussed insection 2.6.4 from an assembly perspective, a 
closer look at this concept is needed to identify the precise mechanisms that can be 
reused for the product family rnadelling language of chapter 6. 

4.1 Feature-based design 

Chapter 1 distinguished two types of features. A commercial feature defines a 
functional quality of the product and has a set of options of which one should be 
selected tomeet certain customer's requirements. Such a commercial feature can be 
regarded as a parameter, with parameter values, as was discussed in section 2.6.4 on 
the generic bill-of-material concept. 

The other type of feature is a design feature. It is defined as a generic shape with 
which engineers associate eertaio properties, attributes and knowledge and which is 
useful in reasoning about the product [Shah, 1991]. Examples of features are holes, 
shafts, pockets, bosses, ribs and surfaces of machined parts. Figure 4-2 shows a cube 
with a hole and a shaft. Bath are parametrised generic shapes. 

Figure 4-2. Cuba with hole and shaft 
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Recently, much research has been pursued into feature-based design. Salomons, Van 
Houten and Kals [1993] give an overview of research and discuss more than 150 
papers on this subject. They distinguish approaches that have a process-planning 
perspective and approaches that have a design point of view: 

0 Process planning is used in mechanica! engineering to select and define the 
processes that have to be performed to transferm raw material into a given shape. 
The process planning function formulates conditions for the physical product as it 
is detailed in the physical domain. In computer-aided process planning, it is 
necessary to analyse the part under consideration to generate a detailed process 
plan. In this analysis of the component, manufacturing features are the key to 
generate the process plan. Salomons ea. give two reasons for this: Firstly, 
manufacturing features provide a natura! form of communication between design 
and manufacturing as process planners think in terms of holes, shafts, pockets and 
other features. Secondly, there are only a finite number of ways to manufacture 
features. However, the automation of process planning requires that product data is 
extraetabie from the product model automatically; 

0 The extraction of manufacturing information from the design product model is 
facilitated when manufacturing features are used in design, e.g. in the functional 
and technology domain. This is already possible for features that are constrained to 
single parts. On the part level, the functionality of a feature is closely related to the 
solution principle. A hole, for example, is a generic shape with a well-understood 
function. In fact, the shape and its function are almost interchangeable. Design 
features, however, are usually applied to capture the higher-level function of a 
design. In that sense, they have the potential to support design better than current 
feature-based CAD systems do. But as Salomons ea. assert, research in design 
features has not yet reached its expectations, mainly as the relation between 
physical shape and high-level function is not formally understood. One difficulty is 
that a function can be a composite result of many interacting sub-functions. A 
second difficulty is that there is no unique mapping between function and shape. 
The same function can be performed by several different shapes and a given shape 
can be used to perform different functions. 

Functions that are the composite result of many interacting sub-functions are very 
similar to the compound functions of section 3.3.1. They are used in functional design 
and are not necessarily restricted to geometrie shapes. 

On the part level, design features are used a posteriori, i.e. after functional analysis, to 
record the nomina! form, tolerances and material information. In detailed design 
phases, the form and material are documented using generic features, which are made 
specific for their application. These generic features are defined as entities that cannot 
be evaluated or physically realised until all variables have been specified. The 
variables can be regarded as parameters, which must be populated with values to make 
the feature specific. The hole feature of Figure 4-2, for example, is characterised by at 
least three parameters, namely its diameter, depth and tolerance. These parameters 
may be dependent on the parameters that specify the precise shape of the shaft. In this 
way, the parametrie representation of features provides a powerful way to change 
features with respect to their dimensions. 
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Some engineering applications can make use of this parametrisation to calculate 
optimal values for the features' parameters of a design. Most of these applications fit 
the following constraint formulation [Freeman, 1971]: 

Find a point x in a space X such that x satisfies the constraints Clx) 
and maximises an objective function F(x). 

The objective function F(x) is usually an algorithm that captures a physicallaw, for 
example the distartion of a steel profile under pressure. Typically, a user inputs the 
outline of a part and specifies some geometrie relationships such as A is tangent to B 
or X is parallel to Y. Then the user inputs dimension/angle magnitudes that are known 
or constrained. ImpHeit and explicit constraints, often based on physical phenomena, 
are then used to determine the unknown dimensions. Shah [1990] states that this 
approach has the following advantages: 

0 The exact geometry does not have to be input by the user, instead, the functional 
sense of the geometry is input in the form of constraints; 

0 Dimensions can be easily modified. A parameter corresponds to a measurable and 
physical aspect of the shape and can be related to other parameters; 

0 Families of parts can be stored as a single generic representation with parameters to 
derive specific variauts of the family. 

In these cases, parameters are not used to represent customer variety, but are used as a 
means to design a generic shape, which converges into a specific design by optimising 
the parameters for certain physical laws. This is also known as constraint-based 
design, or variational CAD. This part does not elaborate on the constraint-based 
design of assemblies, but refers to Sapossnek [1989] and Serrano [1990] for more 
information on this subject. 

Feature-based design is relevant for this thesis as product families are found at all 
levels of the product hierarchy. At the level of components, these families are usually 
called design features. The parameters of these design features are similar to the 
parameters of the end-product: both define the specific variant by populating 
parameters thereby taking constraints on parameter values into account. However, 
design features are currently restricted to technologies in which the relationship 
between function and shape is well-understood, for example geometry. On the other 
hand, the parameters that are used in the GBOM concept are mainly used to select 
variants, not to deterrnine the precise physical shape of a geometrie monolith. The 
advantage is that they can be used for different technologies, the disadvantage 
concerns the fact that these parameters are not suitable for the detailed engineering 
phase. However, both types of parameters are complementary and could be part of an 
integrated product family modelling language. This is an open research question that 
will not be answered in this thesis. 

126 



Languages tor product families 

4.2 Parametrised CAD 

Parametrised computer-aided design systems extend the possibilities of conventional 
CAD systems, in the sense that the geometry can be parametrised. At the part level, 
geometry can be extended with parametrised features and algorithms, a<; was briefly 
discussed in the previous chapter. Furthermore, parameters can be used to select parts 
or to orientate and position parts relative to a co-ordinate system or relative to each 
other. At the assembly level, parameters are defined to co-ordinate !ow-level 
parameters, which are applied at the level of parts. Parameters are possibly shared 
between tbe order-specification system, the production control system and the 
parametrised CAD system [Bourke, 1992] [Bourke, 1994]. 

This cbapter discusses an example of a parametrised CAD system. Tbis system bas 
been developed by the University of München [Weinbrenner, 1993] and is especially 
suitable for the development of a family of variants, and for the derivation of variauts 
from existing designs. Firstly, this chapter examines the way the system records 
primitive physical products, then it considers the possibilities for modelling 
parametrised assemblies. 

All predefined primitives are recorded in a design catalogue as element classes, whicb 
can be instanciated for use in an actual design. Each design primitive is placed in an 
object-oriented hierarchy in such a way that characteristics can be inherited. For 
example, the class curved line is considered to be a subclass of line. Not only design 
primitives, but also primitive commands as rotate and translate are stored in the 
database. As volumetrie design primitives are known as constructive solid geometrical 
models, metbods as union, intersection and difference can be applied to these 
primitives. Furthermore, each design primitive bas an associated set of parameters, 
wbicb has to be populated in tbe design process. 

If a design primitive is instanciated in an actual design, the position of this primitive 
must be determined with respect to a Cartesian co-ordination system. For assemblies, 
the position of primitives can be determined relative to otber primitives. Therefore, 
spatial relationships as parallel, coaxial, at a row and others are defined. The use of 
these spatial relationships is restricted to elements, which meet certain characteristics. 
For example, the relationship coaxial can only be applied to elements with an axis. 

Each design primitive, but also each assembly, can be represented in two ways. 
Firstly, conventional two-dimensional and three-dimensional visualisations can be 
applied for products of which the geometry is exactly specified. Secondly, it is 
possible to create a product structure that provides a functional representation of the 
physical design. This structure supports a top-down decompositîon, which abstracts 
from the final implementation. Eventually, the product structure should conneet to 
parametrised design primitives, which canthen be instanciated to create a geometrical 
realisation of the design. 
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Figure 4-3 shows that design primitives can be composed into other design primitives 
through union, intersection and difference operations, and can furthermore be used to 
create faces of parts. Although design primitives can be physically represented, they 
are no physical parts, but only constitute to the creation of these physical parts. In 
Figure 4-3 all faces of parts are drawn with dotted boxes, all tangible physical parts 
are drawn with normal boxes, and all assemblies are drawn withfat boxes. 
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Figure 4-3. CAD product structure 

Basedon Weinbrenner [1993] 

This product structure is not only used to model single products, but can also be 
applied to model products that occur insome variety. Weinbrenner defines a variant 
as a product that differs from another product because of the modification of a set of 
design parameters. V ariants share common aspects as they are derived from a 
common product, or because they try to achieve a common objective. Furthermore, 
variants can be corrected if they do not meet the required function. This classification 
of variety is summarised in the following figure. 

V2 

V1~--.V3 Vl ---+V2 V3 

V4 

dlverglng voriety correctlng voriety converging voriety 

Figure 4-4. Classnication of variety 

Weinbrenner does not use different narnes for variants and versions, although the 
variants that are meant to meet different requirements are sometimes called solution 
variants. The remainder of this chapter only discusses these solution variantsas these 
comply with the objective of this research. 

128 



Languages lor product families 

For modeHing variety, the product model of Figure 4-3 is enhanced with a choice 
object, which has no geometrie meaning. This choice object can be placed anywhere 
in the product structure as can beseen in Figure 4-5. 
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Figure 4-5. Choice object 

Basedon Weinbrenner [1993] 

PrlmHive element 12 

The arrows indicate prohibited configurations of elements of the structure. These 
constraints can have functional or geometrical reasons. Together, the three constraints 
reduce the number of configurations (i.e. product variants) from 8 to 3. Furthermore, it 
is possible to constrain attribute values of elements of the product structure. 

Parameters are not only used to specify the exact geometry of design primitives, but 
can also be applied in selecting elements in the product structure. Every contiguration 
can automatically be generated from the product structure and is recorded in a register 
that indicates which configurations are possible and which are prohibited. The 
possible configurations are then examined for their specific qualities in order to judge 
for which design requirements they are most suitable. For this purpose, a constraint
based modeHing tooi, in which all relevant dependendes between attributes are 
described, is used. Then, the designer can decide to create a geometrie representation 
of the selected configuration by populating the parameters of the design primitives. 

However, the suitability of a design is considered after the selection, which is done by 
the designers, not the customer. The system supports a designer in consiclering a set of 
variants, for example, by offering evaluation criteria, but is not meant for the 
automatic selection of a variant on the basis of a set of relevant customer 
requirements. It comes close to a class 3 design (see sectien 1.2.2) as the individual 
variants are tailored to the application while maintaining the structure and general 
properties. There is no parameter mechanism as is used in the GBOM concept, neither 
is there a constraint mechanism which is based on parameters. All prohibited 
combinations are directly indicated in the product structure. 
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This thesis proposes the development of product families prior to the arrival of 
customer-orders. Parameters are used to record the customer-order in customer terms, 
after which the physical variant can be derived automatically from the family design. 
The approach of Weinbrenner can be regarded as a representation of the physical 
model but must be extended with representations for other technologies to facilitate 
the design of products with multiple techno logies. In the design of these products, the 
functional product structure that Weinbrenner proposes is not necessarily simHar to 
the physical model, as functions can be realised with a range of technologies, without 
even consictering the exact physical implementation. 
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4.3 Generic product structures 

The genericproduct structuring concept has been developed to give an answer to the 
unsolved problems of descrihing product families with traditional product structures1

• 

These traditional approaches define the individual variants of a product family as if 
they are single products (preferred systems, see section 2.6.1) or only define the 
modules with which end-product variants can be composed (preferred modules, 
section 2.6.2). The first approach gives problems of redundancy and consistency, 
while the second approach does not support a complete definition of the physical 
model. The single-level variant bill-of-material (section 2.6.3) can be regarded as a 
logkal step towards the generic product structuring approach. lt separates the 
specification from the teehoical realisation, but is still not adequate for defining the 
full assembly product structure. The generic product structuring (GPS) concept as 
discussed in this chapter is very similar to the GBOM concept of section 2.6.4, with 
the difference that less attention is given to the assembly process. Instead, the concept 
is discussed independent of a particular domain, although for reasons of 
comprehensibility a physical product is again used as an example. 

The main improvement of the genericproduct structuring (GPS) concept over single
level variant bills-of-material is that it acknowledges the existence of product families, 
and variants, at different levels of the product structure. In that sense, the GPS concept 
is a recursive extension of the single-level conditional BOM. This recursive nature is 
extensively described in the remaioder of this chapter: 

0 First, this chapter examines the structuring mechanism of the GPS concept Much 
attention is given to the interplay of parameters, parameter values, constraints and 
families (section 4.3.1 section 4.3.14); 

0 There is a interesting similarity between the use of parameters in software design 
and the use of parameters in the GPS concept. In software design, parameters are 
used to change the dynamic behaviour of the programme; they create a certain state 
of the programme. In the GPS concept, parameters are used to create variants of a 
product family. In both cases, parameters are used to make a class of states/variants 
specific fora eertaio situation (see section 4.3.15); 

0 The conceptual datamodel is explained in terms of the entities and relationships. 
This datamodel facilitates a further understanding of the GPS concept and is also 
important for application programmes (section 4.3.16). 

Finally, chapter 4.4 presents some conclusions. These conclusions act as requirements 
for the product family rnadelling language of chapter 6. 

1 Most contributions have been made by Van Veen [1992] and Hegge [1995] under supervision of 
professor Wortrnann. Much of the material presented in this chapter is based on their work. 
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4.3.1 Structuring principle 

The recursive nature of product families is the main structuring principle of the GPS 
concept. Below, this section starts with an extensive description of primitivefamilies, 
including the parameters, parameter values, constraints and variants that play a role on 
this level of the product structure. Then this section gradually builds up the structure 
of the end-product family. 

Throughout this chapter a simple example is used to illustrate the GPS concept. This 
example, an office-chair, is depicted in Figure 4-6. The office-ehair has been designed 
as a farnily with customer choices concerning driveability, turnability, comfort level, 
colour of the upholstery and presence of arm-rests. 

Figure 4-6. Office-ehair 

Figure 4-7 summarises these choices, together with two constraints on combinatioris 
of chokes. In total, there are 40 possible variantsof the offièe-'chait family. 

Drivecble Tumable Cölour 
-yes -yes -red 
- no -no -blue 

Armresls Comfort 
-grèen 
- yellé>W 

-wlth -hard 
- wlthóuf -soft 

Drivecble = yes => Tl.lfnOI!lle = yes 
Coloor = blue => Drivecble "' yes 

Rgure 4-7. Choice.;.sheet 

AU variants of the office-ehair family are assembied to customer-otdèr from a limited 
set of components, namely stands, wheels, seat frames, back frames, atm-rests and 
upholstery in different colours. In a real manufacturing situation, however, such an, 
office-ehair farnily, would never be modelled with a genede product structure as the 
number of variants is relatively small. However, a more complicated example would 
not be useful to elucidate the GPS concept. 
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4.3.2 Primitive families and primitive variauts 

A primitive family is the lowest-level family that is recognised within an product 
structure and is oot further decomposed for the purpose of product variety. The office
ehair has the following primitive families: stand, wheel, seat frame, upholstery, back 
frame and armrests. Primitive families are very simHar to the primitive design objects 
that were discussed in section 1.2.2. The office chair's stand, for example, might be a 
primitive family from the manufacturer's viewpoint, and a compound family from a 
supplier's perspective as the same aluminium pipe is used, in different sizes, to 
manufacture the different variants of the stand. 

Primitive families have primitive variants, which share some characteristics to be 
classified under the same heading. This similarity does not concern the product 
structure or working principle, neither does it concern the possible reuse of 
components. The main criterion to classify a number of primitive variants is that they 
share a common interface. Figure 4-8 shows the office-chair's stand with three 
primitive variants. Each variant of the stand can be applied with variants of other 
primitive families in the office-chair, although some combinations of primitive 
variants are prohibited. 

stand famlly 

stand 1 stand 2 stand 3 

Figure 4-8. Primitive family "stand" 

Apparently, the stand variauts have a simHar physical interface as they can be 
conneeled to variauts of the wheel family and to variants of the seat frame family in a 
similar way. Furthermore, they have a similar specification as the variants can be 
expressed with the same parameters. This is discussed below. 

4.3.3 Parameters and parameter valnes of a primitive family 

An important asset of the GPS concept is that two views are simultaneously 
supported, namely the specification and the realisation of the product family. The 
specification is expressed in terms of parameters and parameter values, while the 
realisation is represented with families, variauts and the product structure, which 
connects these assembly items. The parameters and parameter values of the 
specification are usually presented in a commercial catalogue and completed with text 
and pictures, which do oot only describe commercial or functional features of the 
product family, but also technica] characteristics as far as they are relevant for the 
customer. Table 4-1 shows the parameters and parameter values of the stand. 

133 



Languages tor product families 

Parameter Parameter values 

tumable yes, no 

driveable yes, no 

Table 4-1. Parameters and parameter values 

Apparently, allvariantsof the stand can be expressed with the sameset of parameters 
and parameter values. However, it can be seen from the table that there are four 
combinations of parameter values, which is one more than the three primitive variants 
mentioned in Figure 4-8. There are two possibilities that explain this difference: 

1:1 Two different combinations of parameter valnes are realised in one primitive 
variant in the physical domain; 

0 One combination of parameter valnes is not realistic as there is no corresponding 
. primitive variant in the physical domain. 

The first possibility is extensively discussed in chapter 6 and chapter 7. In this 
example, the second case is valid. A configuration constraint defines this prohibited 
combination of parameter valnes and is discussed in the next section. 

4.3.4 Primitive contiguration constraints 

Configuration constraints prohibit combinations of parameter value.s. In the example 
of the stand, the combination of driveable = yes and tumable = no is not allowed as 
there is no primitive variant that enables office-ehairs to be driveable without being 
tumable. In fact, this is a technica] constraint which is, however, not expressed in the 
physical domain, but in the specificadons as costomers should be sure to only 
configure technically possible variants of the office-chair. Constraints can be 
expressed with Boolean logic, for example: (driveable=yes) :::::> (turnable=yes). 

4.3.5 Selection conditions 

There should be a link between a specification in terms of parameter values and the 
physical parts of the GPS in order to maintain the relationship between different 
viewpoints in the development process. On the level of primitive f.amilies and 
variants, this link is created with selection conditions. Table 4-2 shows the selection 
conditions for the office-chair' s stand. 

Primitive variant 

stand 1 

stand 2 

stand 3 

Selection condition 

driveable=no and tumable=no 

driveable=no and tumable=yes 

driveable=yes and tumable=yes 

Table 4-2. Selection oonditions 
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The constrained combination of driveable=yes and turnable=no reduces the number 
of stands and related selection conditions to three. In other words, for each primitive 
family, only those variants are described that are not prohibited by constraints. Vice 
versa, every possible combination of parameter values should result in a 
corresponding primitive variant. Especially, if primitive families have a large number 
of variants and a large number of constraints, it must be validated which combinations 
of parameter values are exactly constrained. This can be a problem if a set of explicit 
constraints creates one or more impHeit constraints as is illustrated with the following 
example. 

Soppose a primitive family F with two explicitly described constraints, which act on 
three parameters, A, B and C, each with two parameter values. These parameters, 
parameter values and constraints are depicted in Table 4-3. 

Parameter Parameter values Constraints 

A al, a2 (A=al) => (B=bl) 

B bl,b2 NOT (B=bl and C=cl) 

c cl, c2 

Table 4-3. Example of implicit constraints 

As a result, any combination of parameter values in which A=al occurs together with 
C=cl is prohibited. This can be regarcled as a implicit constraint, resulting from two 
explicit constraints. Although each explicit constraint is comprehensible, a set of 
constraints might give unforeseen side-effects [Van Veen, 1992]. This requires a good 
awareness of the ( over)completeness of the primitive farnily's variants. 

4.3.6 Intermedia te summary 

The main design principle that is applied in the GPS concept is the discrimination 
between the specification and the realisation of the product family. The specification 
is defined in terms of parameters, parameter values and constraints. The realisation is 
defined in terms of families, variants and selection conditions. 

This separation of specification and realisation is similar to the information hiding 
principle in software design. The user of the family, for example a parent family, is 
shielded from the internal teehoical realisation. The remaioder of this chapter 
demonstrates that this principle can be applied recursively on all abstraction levels of 
the product structure. 
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4.3.7 Compound families and compound variants 

Every family that is not a primitive family is a compound family. Compound families 
are composed of primitive families and other compound families. As an example, 
Figure 4-9 shows the product family structure of the office-chair. The office-ehair is 
composed of the underframe, the seat, the back and the arm rests. The latter is a 
primitive family, justas the stand, the wheel, the seat frame, the back frame and the 
upholstery are. 

The lines that conneet families represent the goes-into-relationships and are used for 
indicating the number of families per parent fami1y 1

• For example, each office-ehair 
requires two armrests and each onderframe requires 5 wheels. These quantities are 
depicted in Figure 4-9. 

Stand Wheel Frame Upholstery Frame Upholstery 

11 

Figure 4-9. Product family structure of the office-ehair 

The whole of families and their hierarchical relationships is called the product family 
structure. In this structure, each primitive family has a number of primitive variants, 
which are selected with parameter values. Figure 4-10 shows the selection conditions 
of all primitive variants. 

1 In this example, identical components are grouped together. In the physical design of the office
chair, the sparial arrangements of components requires a separate consideration of five different 
wheels and the left and right armrest 
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The number of compound variauts is usually so large that tbey are not specified 
beforehand. The office-ehair has only 40 possible variants, but a real product family 
as, for example, a cardio-vascular system of Philips Medica! Systems, has a few 
million variauts on the end-product level, and still a few hundred variants for each 
other compound family. The only acceptable and affordable solution in these cases of 
abundant variety is to create compound variauts on customer-order only. An example 
of such a specific variant can be seen in Figure 4-11. 

11 

Figure 4-11. Customer-order specîfic BOM 

Figure 4-11 shows a specific product structure in which all compound variants are 
coded with a customer-specific identification, either a textual description or a numeric 
code. Each customer-order specific BOM is derived from the product family structure 
and the customer-order. This requires a mechanism that links the parameters of the 
specification to the relevant primitive families. If primitive families make use of the 
same parameters, the control of these parameters must be governed by the compound 
families. This is explained below. 
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4.3.8 Distributed parameters 

Previously, this chapter stated that the variantsof a primitive family are selected by a 
Boolean constraint of parameter values. These parameter values belong to a set of 
parameters, which can be regarded as the specification interface of a primitive family. 
1t is very well possible that similar parameters are used by other primitive families to 
select their variants. For example, the office-ehair has a seat and a back, both of which 
can be offered in two comfort levels. If there is a commercial requirement that each 
variant of the office-ehair is either hard or soft, the comfort levels of the seat frame 
and the back frame must be identical. The easiest way to achieve this is to use an 
identical parameter, which is co-ordinated by the first common parent of the seat 
frame and the back frame. This first common parent is the office-chair. 

This example shows that parameters are distributed over the product family structure 
in such a way that the parameters with the largest span of control are specified high
up in the product structure. Local parameters, which determine for only one primitive 
family the selection of its variants, are specified at thatprimitive family. Figure 4-12 
shows how the parameters of the office-ehair are distributed over the strllcture. 

Figure 4·12. Distribóted parameters 

For each family the relevant parameters are indicated. These parameters are grouped 
into two categories, namely internat and external parameters: 

a internal parameters must be populated with values at that family; 

a external parameters inherit their values from the parent farriily. 

Both internal and external parameters are deflned locally at a family. For example, the 
parameter driveable of the underframe is different from the parameter driveable of the 
stand. These parameters should be readas underframe_driveable and stand_driveable. 
In. the process of selecting a product variant, the value of underframe_driveable is 
inherited to stand_driveable. In some implementations of the GPS concept, the 
parameters are maintained outside the product family structure and are globally valid. 
The limitations of this approach become especially apparent when the specification in 
a commercial catalogue is fully separated from the product family structure. 
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Figure 4-12 shows that the underframe is not only determined by the internal 
parameter driveable, but also by the external parameter colour, which is inherited 
from the office-chair. The parameter colour indirectly influences the selection of 
variants of the primitive families stand and wheel. This is due to a commercial 
constraint that relates the parameters turnable and driveable to the colour of the 
office-chair. The constraint colour=blue ==> driveable=yes can be regarcled as a 
commercial constraint as there is no technica! limitation with respect to blue, 
however, non-driveable office-chairs. This constraint is expressed at the underframe 
family, as the parameters driveable and turnable must be populated at this family, 
thereby consiclering the colour of the office-chair. 

The following table shows the complete generic product structure of the office-chair: 

Families 

1. Office-ehair (comfort, colour) 

l.I. Underframe (colour, driveable) 

colour=blue ~ driveable=yes 

driveable=yes ~ turnable=yes 

1.1.1. Stand ( driveable, turnable) 

1.1.2. Wheel ( driveable) 

1.2. Seat (comfort, colour) 

1.2.1. Frame (comfort) 

1.2.2. Upholstery (colour) 

1.3. Back (comfort, colour) 

1.3.1. Frame (comfort) 

1.3.2. Upholstery (colour) 

1.4. Armrest (armrests) 

Table 4-4. Completegeneric product structure 

Variants 

stand l 

stand 2 

stand 3 

wheel 

proteetion cap 

frame soft 

frame hard 

red 

blue 

green 

yellow 

frame soft 

frame hard 

red 

blue 

green 

yellow 

armrests 

proteetion cap 

Conditions 

driveable=no and turnable=no 

driveable=no and turnable=yes 

driveable=yes and turnable=yes 

driveable=yes 

driveable=no 

cornfort=soft 

comfort=hard 

colour=red 

colour=blue 

colour=green 

colour=yellow 

comfort=soft 

comfort= hard 

colour=red 

colour=blue 

colour=green 

colour=yellow 

armrests=with 

armrests=without 

139 



Languages for product families 

4.3.9 Conversion functions 

If a product family concerns a complex product of which the parts are designed and 
manufactured in different organisational units, and if these parts are applied as 
component families in several product families, it is likely that the external parameters 
of these parts are not recognised in the organisational units that are responsible for the 
manufacturing of the product. 

For example, the upholstery of the office-ehair bas a parameter colour with values 
red, blue, green and yellow. However, the organisational unit that is responsible for 
designing upholstery might consicter these parameter values to be ambiguous, 
especially because upholstery is not only designed for the office-ehair family, but also 
for other office equipment, e.g. an easy chair, which is covered with upholstery. 
Although this office equipment is also designed in the colours red, blue, green and 
yellow, these colours might have a slightly different appearance. 

A possible solution is the creation of different parameters for the office-ehair and the 
upholstery, supported by conversion functions, which translate parameter values from 
several parent families to one component family as is depicted in Figure 4-13. 

Office-ehair Eosyellair 

I I 
I {comtort colour} I {colour} 

I I 
Convetsion funcllons: -: Convetsion funcllons: 

Colour=Red => Ponlooe=SlCl0-3 Colour=Red => Pontooe=S95·1 
Colour=Biue => Pantone=S217-4 Colour=Biue => Pantone=S213-1 
Colour=G!een => Pantone=S270-6 Colour=G!een => Pantone=S27 4· 1 
Colour=Yellow => Pantone=S9-4 

{I'OI'I!OnEI] 
Colour=Yellow => Pantone=S5-1 

Figure 4·13. Conversion functions 

Conversion functions are formulated at the pareut-component relationships, so as to 
define a component product family independent from its possible parent families. 

If a component family is defined independent of its parent families, it is conceivable 
that the possible variety of this component family is larger than the variety that is 
actually required by the family in which this component family is applied. In other 
words, not all parameter values or combinations of parameter values that are defined 
at the component family are relevant for all its parent families, for example because 
notall variauts of the component family fit in the architecture of the parent family, or 
because there are commercial reasons to limit the variety. · 
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Eosycholr 

I I 
~~,'~:t~jj 
I { d!lveat>l$} I 

I. 
Conversion funclions: t---- ~ Conversion tuncflons: 

Materlol = aluminium 

1 

Materlol = steel 

{drlveabla. :nctenol} 1 

L~····--• 

Flgure 4-14. Limiting variety 

The example of Figure 4-14 shows that the parent family limits the variety of the 
component family by populating the parameter material with a value, either 
aluminium or steel, without offering the designer of the wheel the possibility to do so. 

4.3.10 Multiple use of a family in a product family structure 

Since different variauts can be generated from one product family, used in different 
places in the product family structure, the information must be contained which 
variant is used in which parent variant. For example, suppose that the back and the 
seat of the office-ehair are allowed to have different colours. The parameter colour is 
then not controlled at the first common parent, which is the office-chair, but is 
populated with values twice at the upholstery family itself. 

Figure 4-15 showshow the upholstery family is made customer specific by populating 
the parameter colour twice with a value, once for every time that the component 
family is used by a parent family. Please note that in the previous examples, the 
upholstery was considered to be two separate primitive families, while in this example 
it is one primitive family that is shared by different parents, namely the seat and the 
back. 

Figure 4-15. Multiple use of upholstery 
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From this example can be seen that a customer-order cannot be specified in terms of 
the parameter values alone, as the primitive family and its parameter colour are used 
twice in a rather independent way. This asks for an identification metbod that 
considers the product family structure in which the component family is applied. This 
is discussed below. 

4.3.11 Variant specifications and identifications 

This paragraph briefly discusses identifications and specifications of product variants. 
The traditional way to identify a product is with a specific code number. lt was· 
explained that in cases of abundant product variety, it is not feasible to identify all 
product variants beforehand. Therefore, the GPS mechanism introduces a 
specification method, which unambiguously results in the identification of a product 
variant. This specification metbod is based on product families and parameter values. 

In the operational manufacturing process, variants are specified by populating the 
parameters of a product family. The result of this specification process is a specific 
variant, uniquely identified. In the development process, there are no customer-orders 
for specific variants. However, it can be useful to extract one product variant from the 
generic product structure so as to discuss or test a specific occurrence of this famil y. 

There are four ways to identify and specify a product variant: 

1. Each individual variant of a family may be identified with a specific code number; 

2. A variant may be identified by the list of identifications of all component variants; 

3. A variant may be specified with a product family of which the corresponding set of 
parameters is populated with values. The product family, parameters and parameter 
values are identified; 

4. A variant of a product family may be specified by the list of component families, 
together with the corresponding sets of parameter values. The product families, 
parameters and parameter values are identified; 

These 4 identification methods are summarised in Table 4-5. 

Identification Without parameters With parameters (specification) 

Direct 1. Variant 3. Family + set of parameter values 

Indirect 2. Set of variants 4. Set of families + corresponding parameter values 

Table 4-5. ldentification and specification methods 

The fourth approach is most advanced and is discussed in more detail below. 
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4.3.12 Indirect specification of variants with parameters 

Since the product structures of the compound variants differ in content, but are the 
same with respect to their structures, the variation within a compound family 
cOinprises the variation within its primitive families. This section uses this for an 
actvaneed form of specifying product variants, that is, indirect specification. This 
means that a variant of a compound family is described by the (multi-level) product 
structure of the compound family, together with the parameter values of the primitive 
and compound families in this gencric product structure. A specification of a 
compound variant is complete once all the primitive families at the beginning of the 
paths leading to the compound family, have been specified. This is illustrated with the 
upholstery example ofFigure 4-15. 

The upholstery family is applied as a component in both the seat family and the back 
family. The variants of the upholstery are specified by populating the parameter 
colour with a value. As the parameter colour is an internal parameter, this population 
is done twice, once for the seat and once for the back. This results in an office-ehair of 
which the seat and the back are allowed to have different colours. 

For the specification of the upholstery variant of the seat, it is not sufficient to 
mention the upholstery family together with its populated parameter as this 
specification does not unambiguously state whether this specific upholstery variant 
concerns the seat or the back. Therefore, this specification should be completed with 
the structure of the office-ehair as far as it concerns the seat and the back. This metbod 
is called indirect specification with parameters. 

As stated before, four different types of identification and specification of variants can 
be distinguished. These are illustrated below by the office-ehair exarnple. 

Identification Without parameters With parameters (specification) 

Direct stand 1 stand { (driveable=yes); (tumable yes I 

Indirect stand 1 underframe { (driveable=yes)} 

+ + 

wheel stand { (tumable=yes)} 

T able 4-6. Example of identification methods 

The example in Table 4-6 demonstrates that the method indirect specification with 
parameters does not need the complete product family structure of a compound 
family (underfrarne), but only those parts in which internat parameters are specified 
with values (stand). The other families (wheel) that occur in the product family 
structure inherit the relevant parameter values from the parent family (underframe). 
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4.3.13 Creating a speciflc variant 

A product variant of which the specificadon is made in terms of parameters and 
parameter values can be interpreted by a generic product structuring system to create a 
specific product . structure. Each variant specification bas its mirroring variant 
realisation in the generic product structuring system. lt was stated before that the 
variety at higher levels in the product structure originates from the variety at lower 
levels in the product structure. The product families that are not decomposed in the 
GPS are the souree of the product variety. They are called primitive families and have 
primitive variants. All other families are called compound families, having compound 
variants. Parameters are related to primitive families to select the relevant primitive 
variants fora customer-order. Parameters are related to compound families so as to 
control the use of parameters at different primitive families. 

The generation process of a compound variant can be summarised as fellows. 

1. Select a value for each internal parameter related to a product family; 

2. lnherit the parameter values to the component families that have external 
parameters matching the parameters of the parent fami1y; 

3. Convert parameter values of the parent family into parameter values of .the 
component families when necessary; 

4. In case of a compound family, create a specific compound variant or select an 
existing variant if it happens to exist (predefined variant); 

5. In case of a primitive family, select a primitive variant. 

This process can be executed in ( commercially available) generic product structuring 
systems, for example the Triton system of Baan Info Systems [Bottema, 1992]. 

4.3.14 Separating the commercial catalogue and the GPS 

In some implementations of the GPS concept, it is decided to separate the family 
specification in the commercial catalogue from the product family model. Such a 
separate commercial catalogue is usually implemented with a lap-top computer, which 
can be used by travelling sales engineers. In an ideal situation, such a computer 
contains all relevant information to improve the efficiency of selling [Collins, 1987] 
[Steppan, 1990]. 

A disadvantage of a separate commercial catalogue is that the parameters must be 
adapted to compensate for the unavailable product structure. The parameter colour, 
for example, must be split into a parameter colour seat and a parameter colour back to 
allowan office-ehair to have different colours for the seat and the back (see Figure 4-
16). This is not necessary if the upholstery family, with one parameter colour, is 
completed with the product structure in which this upholstery family is applied. 
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Colourback 
-red 

blue 
-green 
-yellow 

Figure 4-16. Separate commercial catalogue 

A similar problem exists for parameters that are only relevant if a certain component 
family has been chosen. For example, some software accessories of a medica! system 
can only be chosen if a certain viewing cabinet has been selected. In a separate 
commercial catalogue, the parameters conceming the accessories need not to be 
shown till the parameter conceming the viewing cabinet has been positively answered. 
This requires additional constraints, which would not have been necessary for a 
gencric product structure in which the commercial catalogue is integrated. 

Summarising, the family specification uses other rnadelling objects than the 
realisation view on this product family. However, despite these different rnadelling 
objects, it is difficult to separate the structure of the specification from the structure of 
the realisation. This condusion agrees with the observation in chapter 2 (section 2.4.4) 
that the function of a product cannot be decomposed independent of its realisation. 

4.3.15 The software paradigm 

There is a striking similarity between the use of subprograms in software design and 
the use of product families in the GPS concept. Product families use parameters to 
create product variants, while subprograms use parameters to change the state of the 
software programme, and in that way, the functional behaviour at a certain moment in 
time. Subprograms are useful tools for methodical programming, because they are 
mechanisms for building abstractions. A subprogram is the implementation of an 
abstraction, whereas a subprogram call represents the use of the abstraction [Ghezzi, 
1982]. Parameter passing conventions allow units explicitly to exchange information. 
The parameters of the subprogram are named the forma} parameters, while the 
parameters of the programme that invokes the subprogram are named the actual 
parameters. Most programming languages use a positional metbod for binding actual 
to formal parameters in subroutine eaUs. 

In the GPS concept, a difference is made between internal parameters and external 
parameters. Extemal parameters are inherited from parent families and are in that 
respect very simHar to the forma! parameters of a subprogram. The intemal 
parameters of a subprogram do not play a role in the communication between this 
subprogram and an invoking programme, and are therefore defined as local 
parameters in the implementation body of the subprogram. These can, however, be 
seen as actual parameters when the subprogram eaUs other subprograms. 
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Due to this similarity it is possible to "write" a GPS as if it is a software programme. 
The following example shows the underframe, with a formal parameter UF-colour and 
four possible values, namely {red, blue, green, yellow}. 

If the procedure is declared as: 

subprogram Underframe (UF-colour: {red, blue, green, yellow} ); 

( ... ) 
end Underframe 

and the subroutine call is 

call Underframe (colour) 

then the positional metbod implies that the formal parameter UF-colour is to be bound 
to the actual parameter colour. 

The subprogram Underframe contains an implementation body in which other 
subprograms (Stand and Wheel) are invoked. These subprograms differ from the 
Underframe subprogram in the sense that they have a different identification and a 
different set of parameters: 

subprogram Stand (ST-driveable: {yes, no}); 

( ... ) 
end Stand 

subprogram Wheel (WH-driveable: {yes, no} ); 

( ... ) 
end Wheel 

With these subprograms, the implementation section of the Underframe can be 
written. The subprograms are invoked with an actual parameter driveable with a range 
similar to the ranges of the formal parameters ST-driveable and WH-driveable. 
Furthermore, a check is performed on the parameter value of driveable as this 
parameter value should conform to the constraint: colour=blue => driveable=yes 

The implementation and definition part of the Underframe look as follows: 
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subprogram Underframe (UF-colour: {red, blue, green, yellow}); 

var driveable: {yes, no} endvar 

begin 

input (driveable) "ask user for parameter value" 

( ... ) "check correctness of input and ask for new value" 

call Stand (driveable) "invoke subprogram Stand" 

call Wheel (driveable) "invoke subprogram Wheel" 

end Underframe 
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The above software programme is still limited as its only functionality is to traverse 
the genede product structure in the configuration process. It must be extended to 
generate a customer-order specific product structure. Therefore, the implementation 
sections of the primitive families should enable the selection of primitive variants. 
This is not further discussed. 

A general limitation of such a software programme is that each product family 
structure must be programmed. In contrast, the GPS concept uses a dedicated 
datamodel and application programme, which reduce the freedom of programming, 
but facilitates the creation and maintenance of product farnily information. Still, a 
observation is that many people consider the creation of a GPS to be a programming 
activity, not in the least because of the u se of Boolean expressions to record 
constraints and selection conditions. 

4.3.16 Conceptual data model 

The purpose of this section is to explain the GPS concept in more detail by descrihing 
its conceptual datamodel. This datamodel can be used for database implementations, 
but is used in this section to define the structuring principle of the GPS concept in a 
formal, concise and unambiguous way. No attention is given to software applications 
that use the GPS database implementation, for example a programme that generates 
bills-of-material on customer-order. 

In a conceptual datamodel [Griethuysen, 1982], the information entities and their 
relationships are given. A short description of the rnadelling technique is given in 
chapter 9 .1. The datamodel in Figure 4-17 displays the GPS concept. 

Figure 4·17. Conceptual datamodel of the GPS concept 
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The remaioder of this section is used to explain the above entities in more detail: 

0 The core of the datamodel is the product family. Whether a product family is a 
primitive family or a compound family is indicated at attribute level; 

0 The product family is decomposed for the sake of variety into component product 
families. The product family relationships are recorded in a separate entity, generic 
product structure, as they have specific attributes, for example, the quantity-per and 
the effectivity dates; 

0 Furthermore, conversion rules are connected to the generic product structure, in 
order to translate parameter values from parent families to component families; 

0 Each product family has nil or more parameters. Some of these parameters will be 
internal and are populated with values at the product family, other parameters are 
external and inherit their values from parent families; 

0 Parameters have parameter values. If a parameter has one value, there is no explicit 
choice for the user; 

0 Parameter values can be combined into configuration constraints, which are related 
to product families. Configuration constraints are expressed with Boolean logic and 
prohibit eertaio combinations of parameter values; 

0 Parameter values can also be combined into selection conditions, which are related 
to the primitive variauts of primitive families. A selection condition selects the 
right variant for a customer-order; 

0 Primitive families have primitive variants, which are selected on customer-order. 
Compound variauts are created on customer-order, and are related to other 
compound and primitive variauts through the variant relationship entity; 

0 The variant relationship entity provides for a specific product structure. This 
product structure can be customer-order specific as far as it concerns compound 
variauts that are created on customer-order, but it can also be customer-order 
independent, for example if it concerns the product structure of a primitive variant. 

Chapter 6 extents this datamodel to imptement several domains of a product family 
being designed. The parameters and parameter values of the GPS concept are an 
important element of the specification, but are not sufficient as they only describe the 
family for the sake of configuring an order. They do not describe the product family 
with sufficient detail for design purposes. Furthermore, the GPS concept is applied in 
only one domain, usually the physical domain. In the design of complex products with 
multiple technologies, more domains must be considered to realise the specification. 
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4.4 Conclusions 

Product families do not exist physically, but they can be defined with modeHing 
languages. The previous chapters discussed three approaches: feature based 
modelling, parametrised CAD and gencric product structures. Each of these 
approaches bas its own view on the product family in the physical domain and is used 
by specific disciplines, usually process planning, mechanica! engineering and 
assembly logistics. Like all product modeHing languages, they are used to capture an 
abstraction of reality and consequently ignore some aspectsof this reality. 

There is one aspect that is not overlooked by these rnadelling languages, namely the 
fact that a set of product variants shares a similar product architecture. In many cases, 
the variety of a product family results from the variety at lower levels of the product 
structure, giving a similar product decomposition for all product variants. 

The ability to define a product family at different abstraction levels is a property of 
both parametrised CAD and generic product structures. In feature-based modelling, 
however, most attention is given to individual parts, and not to the product hierarchy, 
so as to improve the relationship between design and manufacturing. 

The main objective of parametrised CAD is to describe the partsof a product family 
tagether with their mutual connections in a coherent way. Design primitives are 
represented in a three-dimensional way to allow a three-dimensional visualisation of 
assemblies. Both feature-based design and generic product structures are not suitable 
for representing product architectures, i.e. the interfaces between parts on one level of 
abstraction. 

The mechanism to derive a specific product variant from a more generic family model 
is most developed in the GPS concept. In this concept, parameters, parameter values 
and constraints are linked to families in such a way that a precise specification for the 
variants of these families can be given. A parameter inheritance mechanism is used to 
define often functional relationships between component families. Primitive variants 
are automatically selected on the basis of parameter values. However, this selection 
mechanism assumes a family design that considers the whole variety prior to the need 
of an individual customer for a specific variant. 

These conclusions act as a specification for the product family rnadelling language of 
chapter 6 and the family design metbod of chapter 7. The first requirement of the 
product family modeHing language is that it should support the functional, technology 
and physical domain (product models and representations) in a single coherent 
framework to support intradomain and interdomain communication. Secondly, both 
product decompositions and product architectures should be considered. Thirdly, it 
should be possible to derive individual variants from the product family model. 
Finally, the product family rnadelling language should be completed with a family 
design methad that controls the complexity of several evolving domains. 
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Those who cannot remember the past 
are condemned to repeat it. 

Santayana 

150 



5. Design processes 

Designing is the initiatien of change in man-made things. This thesis does not only 
discuss modeHing languages for product families, but also the act of modeHing 
product families. This chapter pays attention to design models and design methods for 
single products. Design models describe the design process, while design methods 
have a more practical approach and try to support the designer with tools. The 
difference between design models and design methods is, however, not always clear. 
More important is a good understanding of the possible application area of a particular 
design model or design method. Therefore, this chapter gives a concise overview of 
these models and methods. 

Chapter 3 distinguished compositional and non-compositional systems. Within one 
engineering discipline, often a compositional system, the design process is closely 
related to the description of the artefact as the required function and its technological 
and physical realisation can be stepwise refined. In contrast, non-compositional 
systems are described with modeHing languages that represent an artefact in the 
functional, technology or physical domain. There is no theory from natura! science, 
neither is there a corresponding modeHing language that defines a product 
simultaneously from the perspective of function, applied technologies and physical 
implementation. Therefore, there is no design method that is able to consider the 
formal relationship between functionality and realisation for all applied technologies 
[Mills, 1993]. Consequently, this thesis only pays attention to design methods that can 
be applied independent of a certain technology or product type. One of the discussed 
design methods, the Productive Reasoning Model, will be chosen as a basis for the 
family design method of chapter 7. 

@ ~I __ d~e_sig~n~p_roc_ess_> @ 

human belngs N 
Figure 5-1. Elementsof design 

Figure 5.1 men ti ons the elements that are relevant in this thesis for classifying design 
models. These elements are (1) the design process as a succession of actions, (2) 
milestones partitioning the design process, (3) descriptions defining the product 
evolving in the design process and (4) the human beings who execute the design. 
Computer support is not mentioned as a separate entity. 
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Using these elements of design, the structure of this chapter is as follows: 

5.1. Descriptive design models. In a review of research in mechanica! engineering, 
Finger and Dixon [ 1989] distinguish prescriptive and descriptive models of 
design processes. Descriptive models picture the complex behaviours of human 
beings required to solve engineering problems in terms of underlying functional 
mechanisms. Chapter 5.1 gives some examples from cognitive sdence; 

5.2. Prescriplive design models. These arebasedon the assumption that design is a 
technological activity. If design is a technological activity and artefacts are 
constructed by man, as opposed to something existing in nature, then it should 
also be possible to construct the design process itself. An example is the VDI 
2221 model, which is proposed by the Society of German Engineers. This 
model focuses on the determination of milestones; 

5.3. Artefact models. These prescribe the design process by determining the product 
descriptions of the artefact being designed. An example is Axiomatic Design, 
which discusses the design process in terms of the evolution of the artefact's 
representations. Another example is Quality Function Deptoyment (QFD), 
which starts with the voice of the customer and helps in translating these 
customer needs into design and manufacturing requirements; 

5.4. Organising Tasks. This approach [Eppinger, 1994] describes and reduces 
dependendes between tasks. An interaction matrix is created to (1) consider the 
dependendes between design tasks and (2) group them in such a way that the 
design can be decomposed in relatively independent clusters, which can be 
executed in less time and with less co-ordination effort than the original 
sequence of tasks. Knowledge of the product descriptions is essential for 
clustering these design tasks; 

5.5. Design Cycle. This chapter proposes a design method, named the Design Cycle, 
for developing single products. lt is strongly based on the Productive Reasoning 
Model ofMarch [1984] and Cross [1989]. The Productive Reasoning Model has 
been chosen because it combines the advantages of prescriptive and descriptive 
design models. It will be argued that it (1) can be applied on different levels in 
the product hierarchy, (2) is described independent of a particular domain, (2) 
supports the solution driven nature of design, (3) provides for close relationships 
between the design artefact and the design process, (4) can be extended for 
product families and (5) can act as a framework for other design methods, e.g., 
Axiomatic Design, QFD and Organising Tasks. 

5.6. Philips Medical Systems. The prescriptive design model Systems Management 
defines a number of milestones and indicates briefly which product descriptions 
should be prepared at each milestone. However, Systems Management does not 
support the designer in the daily execution of tasks; 

5.7. Conclusions. Chapter 5 concludes that the Productive Reasoning Model is the 
best starting point for the family design metbod of chapter 7, not only because 
of its qualities, but also because other design methods can fit in. 
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5.1 Descriptive models 

Many researchers have studied the question of how humans design; that is, they have 
studied what processes, strategies and problem solving methods designers use. Finger 
and Dixon [1989] give an overview of research in mechanica! engineering and assert 
that most of the research in descriptive models is based on techniques from artiflcial 
intelligence such as protocol analysis in which data is systematically gathered from 
human subjects. 

Cognitive models describe the complex behaviours required to solve engineering 
probierus in terms of underlying fonctional mechanisms [Adelson, 1989]. There is, 
however, no general theory that unifies all approaches for descrihing the design 
process. Most protocol studies or case studies are set up to study a few well-defined 
questions, for example, the extent to which a product is designed top-down or bottom
up, the way solutions for probierus are searched, the criteria for decision making and 
evaluation, and the way people communicate about design problems. 

This chapter will not elaborate on these studies, but will discuss a few functional 
mechanisms that seem to be essential in design and that are agreed upon by most 
authors, also those who suggest prescriplive design process models. These 
mechanisms can be placed in the context of a design problem space and a design 
solution space. Using the terminology of this thesis, the design problem space 
corresponds with the functional domain, while the design solution space corresponds 
with the technology domain. However as this thesis recognises three domains, the 
technology domain is not only a design solution space, but also the design problem 
space for the physical domain. 

0 Problem formulation. This is the process of deflning design goals in such a way 
that the problem is well described, possible solutions can be found and these 
solutions can be evaluated. The activity of problem formulation is strongly related 
to descrihing a product with a modelling language so as to allow an effective 
communication between all designers involved; 

0 Problem decomposition. The initia! problem cicscription can be defined at a much 
higher level of abstraction than the descriptions of the available solution elements, 
thereby hindering a direct mapping from the problem space to the solution space. 
In a top-down design, probierus are decomposed into sub-probierus for which 
solutions are known; 

.0 Salution search and exploration. The process of design is a problem-solving 
activity, in which a designer formulates solutions for problems. Bafiares-Alcántara 
[1991] classifies design as exploration rather than search, because knowledge about 
the space of possible solutions has to be obtained before search goals can be well 
formulated; 

0 Salution evaluation and selection. From all discovered solutions, the one must be 
chosen that meets the design goals to the maximum extent. Criteria from several 
domains are defined in order to avoid a suboptimal solution; 
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0 Solution composition. If solutions have been found for sub-problems, the overall 
problem should be met by composing the sub-problems' solutions. The result of 
this bottorn-up design process is evaluated against the original problem statement. 

The above design mechanisms seem to be generally valid for a problem-solving 
activity, including the development of single products and product families. 
Furthermore,. these mechanisms can be used anywhere in the design process, both on 
different levels of the product hierarchy and between different domains. Solution 
search and exploration, for example, can take place on a group level and constitute in 
that respect a phase in the design process, but can also take place on the level of 
individuals.and is in that respect just a tiny step of the whole design process. 

Although descriptive models are powerful for understanding the design activities that 
are executed, they Jack the specificness that is needed to support a design process. 
They do not determine milestones, neither do they set quality levels of the design 
artefact at these rnilestones. The Design Cycle (chapter 5.5) converts the above 
mentioned functional mechanisms into design steps that are executed as part of a 
prescriplive design cycle. 

Implementation of descriptive models 

Recent developments in information technology have given possibilities to support 
both prescriptive and descriptive models of the design process, together with 
representations of the design artefact. Although, these computer-based models are 
often driven by technological possibilities, they could lead to the desired theoretica! 
foundations if used appropriately to discover and explain the knowledge and strategies 
needed for design. 

For example, blaclcboard based models are used for co-operative problem-solving by 
human experts. The work ofLondofio, Cleetus and Reddy [1989] is being done as part 
of the DARPA Initiative in Concurrent Engineering (DICE). A major objective of 
DICE is the development of an architecture to support a systematic metbod for 
concurrent engineering. Londofio states that a blackboard attempts to assist experts 
from several domains who need to collaborate intimately in the design of new 
products. 

Usually, blackboards are primarily used for supporting the design process, not the 
modelling or representation of the design artefact. Furthermore, blackboards focus on 
human experts, not on automatons with comprehensive and formalised knowledge
bases. In essence, the blackboard should be the place where a distributed team of 
designers agrees as to how a design should look like. 

A blackboard facilitates co-operative problem-solving by offering designers 
computer-based visibility support. The functional mechanisms are recognised, but 
there are limited possibilities to structure information on design artefacts. In contrast, 
much emphasis is given to facilities for communication and negotiation. Missing, is 
the link between the constitution of the artefact and the design mechanisms that are 
executed. 
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5.2 Prescriptive roodels 

Pahl and Beitz [1984] suggest a systematic approach in which "the design process, as 
part of product creation, is subdivided into general working stages, mak:ing the design 
approach transparent, rational and independent of a specific branch of industry". 
According to Pugh [1990], a systematical design approach should provide (1) 
techniques of analysis, synthesis, and decision mak:ing applicable to any product or 
technology, and (2) specific discipline-dependent techniques and technological 
knowledge. Within a specific technological field, for example the object-oriented 
design of software, the strong relationships between function and realisation create 
opportunities for specific design approaches. However, due to the scope of this thesis, 
only discipline, product and technology independent techniques are discussed. 

An assumption of prescriptive approaches is that prescriptions make design less 
dependent on the experience and intuition of a designers. If designers follow the 
prescribed process, better designs will result. A disadvantage of models that are 
prescrihing the design process is that they assume particular domains and a certain 
sequence of phases, without paying attention to the recursive nature of design projects 
in which both systems, sub-systems and components are developed. 

There have been various attempts to describe the design process and to prescribe a 
general approach for tackling design tasks. In cornrnon with most strategies for 
tackling complex problems, the design process is broken down into a number of main 
phases and these are broken down into an appropriate number of steps, depending on 
the complexity of the task. The aim of a systematical approach is to make the design 
process more logical, visible, transparentand comprehensible [Wallace, 1990]. 

The model (VDI 2221) selected in this sectionis taken from the Society of German 
Engineers (VDI) and prescribes the design process of a single product, not a product 
family. It is extensively illustrated in Engineering Design by Pahl and Beitz [1984]. A 
graphical overview is shown in Figure 5-2. From this picture it can be seen that the 
designprocessis seen as a process that is principally sequentia!, doesnotsupport the 
recursive nature of nested design projects on different levels of the product hierarchy, 
and has only limited iterations between the phases: 

1. Clarification of the task. Development can be considered in the clarification of 
tasks, often in conjunction with product management. Information about 
requirements and constraints is collected as a basis for the conceptual design phase. 
The main technological risks have already been reduced in predevelopment studies; 

2. Detennine functions and their structures. Conceptual design involves the 
establishment of the function structure of a product family, the search for suitable 
solution concepts and the mapping of functions to solution principles. Depending 
on the complexity of the problem, the primary function needs to be broken down 
into sub-functions of lower complexity. The combination of individual function 
structures results in a function structure representing the overall function; 
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Task I 
~ 

1. Clarify and define the task I .I I 
l Speçification I 

2. Determine functions and their structures I 
L_ ..... ·I Function structure I 

3. Search lor solution principles and !heir combinatlens I 
~. ~I Principle solution I 

4. Divide into realizable modules I 
~I Module structure I 

5. Develop layouts of key modules J 
.I I 

6. Complete overallleyout I 
.I Preliminary layouts 

J 
I 

Definitive layout 
I 7. Prepare production end oparating instructions 

Product description I 
Further reefizalion ~ 

Figure 5-2. VOl 2221 

3. Search for salution principles and their combinations. For each of the sub
functions one solution principle has to be selected. A solution principle must reflect 
the physical effect needed for the fulfilment of a given function. If there are any 
alternatives, they need to be evaluated and when they do not meet the requirements, 
they have to be eliminated; 

4. Divide into realisable modules. A solution principle must not only be functionally 
appropriate but must also have form features such that the set of solution principles 
gives a physically possible product. Therefore, the solution principles are divided 
into realisable modules, which are interconnected. This activity is done before the 
time-consuming detail design wiJl start; 

5. Develop layout of key modules. After the conceptual design bas been completed, 
the solution principles can be engineered, first for the key modules. Therefore, a 
layout is created in which the different solution principles fit. This layout provides 
a check of spatial compatibility. Within this layout, the individual solution 
principles can be detailed; 

6. Complete overall layout. In this phase, the preliminary layouts of all modules are · 
completed and much eropbasis is given to their combination into a complete 
assembly. All properties, for example form, dimensions, interface connections and 
performance, are extensively specified. Finally, some representative product 
variants are tested by engineering; 
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7. Prepare production and operating instructions. In parallel to the previous phases, 
manufacturing engineering is involved in developing the manufacturing process. 
They provide product design with conditions to which the physical assemblies 
should obey, and develop a complete manufacturing process including process 
descriptions and test-instructions. 

Despite the sequentia! description of the design process and the focus on mechanica! 
engineering, the phases that are discussed seem to correspond to the specifications and 
the three domains that were acknowledged in chapter 3: 

0 specifications (clarify and define the task); 

0 functional domain (determinefunctions and their structures); 

0 technology domain (search for salution principles and their combinations, divide 
into realisable modules); 

0 physical domain (develop layout of key modules, complete overalllayout, prepare 
production and operating instructions). 

However, there is no room for expansion to other domains, neither does the VDI 
model define conditions that must be satisfied by the artefact before a next phase of 
the design process can start. An important question in design is when the functional 
design is sufficiently specified to proceed to the design of solution principles. 

The most important drawback of the VDI model and other prescriptive models that are 
defining phases, is that they are difficult to adapt for other situations than they were 
devised for. In other words, prescriptive models cannot be not used as modelling 
languages. They Jack the high-level constrocts to model arbitrary design processes. In 
contrast, the Productive Reasoning Model is a modeHing language that can be 
instanciated for a particular situation. Although, the design steps of the Productive 
Reasoning Model are prescriptive, they can be applied in different domains and 
recursively in the product hierarchy. 

Implementation of prescriptive models 

There are numerous examples of computer-based implementations that use a 
prescriptive model as a starting point for the design process. For example, Brown, 
Cutkosky and Tenenbaum [1989] discuss Next-Cut, a computational framework for 
concurrent engineering and manufacturing. The central knowledge base is an object
oriented representation of the manufacturing environment. lt encompasses everything 
known to Next-Cut that is relevant for design and production, including feature-based 
descriptions of designs and their associated process plans, as well as information 
about raw materials, inventory, machines and tooling. The approach of Next-Cut is to 
provide an environment in which designers can jump among different kinds of design 
domains (e.g. geometrie versus functional), working simultaneously with assemblies 
and components that have reached different levels of completion. 
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5.3 Artefact models 

Artefact models are design methods that prescribe the design process by prescrihing 
attributes of the artefact They are closely related to product modelling languages, not 
with the purpose to formalise product descriptions, but with the objective to make 
better decisions in the design process. 

In this chapter, two examples of artefact models are discussed: 

5.3.1. Axiomatic Design. This approach focuses on the artefact and recognises 
different domains in which the design process is executed. The design process 
is discussed in terms of the evolution of the different representations of the 
artefact; 

5.3.2. Quality Function Deployment. QFD is a design metbod that claims to link the 
artefact and the design process independent of the domain in which it is 
applied. It starts with the voice of the customer and helps in translating these 
customer needs into design and manufacturing requirements. 

A similar aspect of both design methods is that they should make public the hitherto 
private thinking of designers. A third method, which focuses on the artefact and tries 
to improve the communication between different disciplines, is design~for~assembly 
(DfA). This metbod can help in the transition from the technology model to the 
physical modeland was already discussed insection 3.3.3. 

5.3.1 Axiomatic Design 

Sub [1990] proposes Axiomatic Design as "a systematic framework for structural 
design". An interesting feature of this approach is the consideration of different 
domains contributing to the design artefact. 

Axiomatic Design focuses on the artefact. The design process is discussed in terms of 
the evolution of the different representations of the artefact. The following four key 
conceptsof Axiomatic Design are given by Albano, Connor and Suh [1993]. 

1. The design process involves mapping between distinct domains of the design 
artefact, such as the client, functional, physical and process domains; 

2. The elements of each design domain can be decomposed into a hierarchical tree by 
iterative mapping or zigzagging between domains; 

3. The acceptable design solution, or design artefact, must satisfy the design axioms, 
i.e. the independenee axiom and the information axiom; 

4. The acceptable design solution must also satisfy all constraints associated with the 
given design problem. 
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Figure 5-3 shows the four domains that Albano and Suh dîstinguish in mechanica! 
engineering and construction engineering. The needs of the elient are established in 
the elient domain, which corresponds with the specifications as discussed in chapter 
3.1. The technology domain is not considered separately, although the example of the 
parking garage (Figure 3-16) demonstrales that several technologies are applied in the 
physical domain. Albano and Suh assume that effective strategies for decomposition 
and allocation of functions are known for the products they consider. Finally, the 
process domaio defines the way to manufacture the physical product. The process 
domain is only discussed in this thesis as far as it states conditions for the physical 
domaio (see section 3.3.3). 

In order to satisfy the dient, the designer establishes appropriate functional 
requirements1 (FRs) in the functional domain. Mapping the FRs in the functional 
domain to design parameters (DPs) in the physical domain is the creative or synthesis 
phase of design. The DPs specified in the physical domain, in turn, are interpreled as a 
set of requirements for the process variables (PVs) of the manufacturing process 
domain. 

CHent 
Domoln 

Funcflonal 
Domaln 

DPs Pils 

Physlcol 
Domaln 

Process 
Domain 

Figure 5-3. Four domains of Axiomatic Design 

Source: Albano ea. [1993] 

In all cases, the relationship between the adjacent domains is that the domain on the 
left represents what is required and the domain on the right describes how we will 
achieve it. Important in this is that once the FRs are defined at a given level of the 
design hierarchy, they cannot be decomposed independent of theevolving DP tree in 
the physical domain. Consequently, an iterative scheme of decomposition and 
mapping between the functional and physical domains must be used to incorporate 
new information within the FR and DP hierarchies, and this process suggests a zigzag 
pattem. A zigzag pattem also govems the decomposition and mapping between the 
physical domaio and the process domain. 

' Non-functional requirements are interpreled as design parameters (DPs). They constrain the 
possible solutions in the physical domain. 
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At each level of deeomposition and mapping, the independenee axiom is used to 
distinguish between aceeptable and unaeceptable solutions. lt states that an aeceptable 
design maintains the independenee of its requirements [Sub, 1990]. To better 
understand the independenee axiom, the mapping from a given set of FRs to DPs is 
expressed in the form of a matrix equation: 

{FR} =[A] {DP} 

A proposed design would fall into one of three classifications based on the strueture of 
the design matrix [A]: uneoupled, deeoupled and coupled. 

a An uncoupled design is charaeterised by a diagonal design matrix, whieh means 
that one FR ean be ehanged without affecting any other FR. The mapping between 
FRs and DPs is given in a Boolean manner: X denotes a strong funetional 
dependenee and 0 denotes a weak dependenee or no dependenee at all; 

!
Fm) [x o ollDPI) FR2 = 0 X 0 . DP2 

FR3 0 0 X DP3 

Figure 5-4. Uncoupled design 

a A decoupled design oceurs when the design matrix is triangular. In this case the 
independenee of the FRs can be maintained, provided that the DPs are changed in a 
specific sequence, such that each FR; is ultimately controlled by a unique DPi; 

!
FRI) [X 0 OllDPil FR2 = X X 0 . DP2 

FR3 X X X DP3 

Figure 5-5. Deccupled design 

0 A coupled design is unacceptable as FRs are dependent and cannot be changed 
without changing other FRs. The designer should consider other altematives. 

!
Fm) [x o xllDPl) FR2 = X X 0 . DP2 

FR3 X X X DP3 

Rgure 5-6. Coupled design 

The definition and charaeteristics of uneoupled, decoupled and coupled designs also 
apply to the mapping of DPs to PVs. Finally, it is important to realise that the 
independenee axiom only refers to functional dependencies; the elements of a design 
can be physically integrated if the goveming requirements can still be independently 
satisfied. In other words, the independenee axiom is used in the mapping of functions 
onto solution principles. 
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Once a number of acceptable solutions has been defined, the information axiom is 
used to determine the best alternative. The best design is the one with the minimum 
information content, where a design's information content is a function of its 
probability of successfully achieving the required functional requirement [Suh, 1990]. 

Summarising, Axiomatic Design has the following useful characteristics for the 
purpose of this thesis: 

0 The existence of different domains is acknowledged, although the technology 
domaio is not defined separately; 

0 A hierarchical decomposition in one domaio cannot be performed independent of 
theevolving hierarcbies in the other domains; 

0 The allocation of the functional domaio onto the physical domaio is supported by a 
matrix equation that provides a rationat basis for the evaluation of solutions. 

Axiomatic Design does not pay attention to the act of designing. Furthermore, no 
attention is paid to product families. 

5.3.2 Quality Function Deployment 

QFD is a metbod for continuous product improvemene, emphasising the need to study 
customer needs, existing products and competitor' s products. lts format supports the 
incorporation of multi-disciplinary communication and decision-making. Further, it 
helps in translating customer needs into design and manufacturing requirements. lts 
main value is in supporting design communication so as to come to design decisions 
that are shared by all stakeholders. However, the focus of attention is oot the design 
actions, but the product descriptions being the result of design actions. 

The QFD approach facilitates a shared interpretation of customer needs (whats) within 
the project team, and provides a process to translate these needs into measurable 
engineering requirements (hows). Furthermore, it cao be applied at each downstream 
stage where a translation between requirements bas to be made. Por instance, 
component requirements can be translated into process requirements, and system 
requirements cao be translated into assembly requirements. This section only 
considers the translation from customer requirements into design requirements. Other 
translations, for example between different domains, are performed in a similar way 
and make use of the same format. This format, sometimes called the house of quality, 
is given in its most complete form in Figure 5-7. 

' For a thorough examinarion of QFD, reference is made to Hauser and Clausing [1988], Akao 
[1990], Chapman [1992], Urban and Hauser [1993]. The relationship between QFD and DfA is 
discussed by Erlandsson, Erixon and Östgren [1993]. 
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Below, the different cells of this house are discussed1
• Most attention is given to the 

interaction matrix, in which the design requirements are measured against the 
customer requirements, and to the attic of the house in which the relationships 
between the design requirements are investigated. 

I ~ustomer 
L requlrements 

PrlorHy 
setHng 

Technlcal 
bench-marklng 

OR 
Interactton 

Design requlrernents 

Interaction maiTix 

Unit of Maasurement 

Technica! 
Imperianee rating 

Technica! 
performance data 

Target values 

Figure 5-7. House of quality 

Target 
Groups 

Competltlve Project 
bench- ob! 
marking 

. CUstomer ! Competltlve 
• lmportance! analysls 
ratings data 

0 The customer requirements are characteristics that customers explicitly or 
implicitly attribute to the new product. These requirements should be expressed in 
a language that is meaningful to the customer. The list of customer requirements is 
called the whats list, and it reflects what is important for the costomers on whom is 
focused. Customer requirements can be described at severallevels of abstraction. A 
classification in main items and subordinate items makes it possible to reduce the 
size of the interaction matrix; 

0 The relative importance of each customer requirement is evaluated for different 
target groups. Although, at first sight, all requirements are very important, the 
customer, of a relevant target group, is forced to give a ranking; 

0 As costomers choose between products of different brands, it is important to know 
the strong and weak: points of the product in relation to the products of the most 
important competitors; 

0 The data that result from competitive bench-marking provide an insight into the 
advantages and disadvantages of the current product. Together with the importance 
ratings, this gives the possibility to identify the objectives for improvement within 
the design project; 

' I would like to acknowledge B. Nijdam, author of several QFD publications for the Corporate 
Quality Bureau of Philips Electronics, for our discussions on this subject. 
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D The list of design requirements is generated, so as to make a comparison possîble 
between the customer requirements and the teehoical solution. Together, the design 
requirements reflect the teehoical characteristics of the new product. They should: 
(1) reflect a valid measurement of customer requirements, (2) be complete, (3) refer 
to concrete observable characteristics, ( 4) be non-redundant, and ( 5) be useful 
within the given time and cost frames of the project. Also the design requirements 
can be described at different levels of abstraction, similar to the abstraction levels 
of the customer requirements; 

Freq. Harmonie Numberof Front Legend 
response distoetion controls material •=9 

0=3 
V=l 

Unit of kHz/dB I dB # Type Demanded 
measurement weight 
Natural sound • • 6.25 
Adjustable freq. band 0 12.5 
Easy to operate • 0 
Radîates quality V 0 2 

Weighted sum 56.25 56.25 39.5 6 
Ranking 1 1 2 3 

Figure 5-8. Interaction matrix 

0 The translation between customer requirements and design requirements is 
graphically summarised in the interaction matrix for an audio receiver. This is not 
a one-to-one translation as can be seen in Figure 5-8. A customer requirement can 
relate to several design requirements, and a design requirement can relate to more 
customer requirements than one. The interactions in the matrix vary in intensity. 
Therefore, QFD uses an interaction score: high interaction (9), medium interaction 
(3) and low interaction (1). With this interaction score, the priority of each design 
requirement can be calculated: 

D A competitors' analysis is performed on technica! aspects. It reveals the technica} 
position of the product with respect to the competition and provides a check for the 
consistency of the interaction matrix and the competitive bench-marking data; 

Figure 5·9. Dependencies between design requirements 
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0 In the attic of the house, the interdependencies of design requirements are 
exarnined. Some requirements will be conflicting, thereby asking for a design 
trade-off. To find the right balance, the customer requirements priority setting 
should betaken into account. Figure 5-9 gives an example a dependency triangle; 

0 Finally, the teehoical target for the new product is determined. However, the design 
requirements can be regarded as specifications for later phases in the design 
process, for exarnple the determination of component requirements or assembly 
requirements. Figure 5-10 gives an exarnple of this recursive use of QFD. 

customer 
requJrements 

design 
requlrements 

component 

en-D 
I component 

~ments 

Fîgure 5·1 0. Recursive use of QFD 

manufactul1ng 
requlrements 

Summarising, the value of QFD for this thesis is that it acknowledges the existence of 
several domains in which a product is designed. Integral design decisions require the 
concern of different domains and views. The QFD House of Quality is a structured 
design metbod to accomplish this concern. However, the QFD approach bas also a 
number of shortcomings: 

0 The product descriptions are not related to the design actions, the human beings 
executing these actions, the required resources and the planning; 

0 There is no support for designing product families. Although, it is possible to use 
QFD for the individual variantsof a product farnily, it does not command the reuse 
of modules over these variants. 

0 There is no support for linking different abstraction levels. The QFD approach 
allows the evaluation of whats and hows on different abstraction levels, but it is not 
possible to link problems and sub-problerns, solutions and sub-solutions in an 
integrated way, both with respect to the artefact description and the design process. 

0 Finally, QFD assumes the existence of distinct target groups for which specific 
single products are designed. The customer importance rating and the interaction 
score determine the precise realisation of design requirements. These are a 
compromise for each target group, which conflicts with the idea of product family 
development to meet the wishes of individuals within target groups by assembling 
modules to customer-order. 

The next chapter discusses a design metbod that couples design actions, product 
descriptions and planning. 
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5.4 Organising Tasks 

Most of the literature on concurrent engineering describes a successful multi
functional team approach to product development. In such a team, a small number of 
representatives from marketing, design, engineering, manufacturing and service is 
working closely together to develop a new product. Eppinger, Whitney, Smith and 
Gebala [ 1994] call this concurrent engineering in the smalt. It works because complex 
teehoical and commercial issues are resolved by mutual understanding. In contrast, 
concurrent engineering in the large requires hundreds of people to develop a new 
product. Millions of decisions are made and none of the design tasks is made in 
isolation. Each decision is influenced by other decisions and can affect many other 
design parameters. Facilitating inforrnation transfer, supported by product models, is 
essential fora good design. Preferably, the management of design requirements and 
project planning should be integrated with the product description data [Gerdeen, 
1989]. Th is chapter considers an approach for modelling the inter-task dependendes 
in such a way that these tasks can be redefined and reorganised. 

Eppinger ea. distinguish 3 types of dependendes between tasks. Consider two 
development tasks, labelled A and B. Figure 5-11 shows directed graphs of three 
possible ways in which the two design tasks can be related: dependent (series), 
independent (parallel) and interdependent (coupled). 

* : B 

Figure 5-11. Dependent, independent and intardependant design tasks 

Co-ordinating dependent and parallel design tasks is quite straightforward. With no 
limitations on resources, the parallel tasks can be perforrned more quickly than the 
dependent design tasks. The interdependent design tasks are more challenging to 
organise, but also more realistic in concurrent engineering, where inforrnation transfer 
is essential and iteration is typical. 

The authors distinguish design tasks, but do not discriminate between the different 
domains in which these design tasks are executed. They agree, however, that a design 
task can be the deterrnination of a product function, the design of the associated 
solution principle or the realisation of the manufacturable assembly [Pimmler, 1994]. 
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The design structure matrix of Steward [1981] bas been used to represent which tasks 
are coupled. Table 5-1 shows the design structure matrix in which the design tasks to 
be performed are each represented by an identically labelled row and column of the 
matrix. The marked elements within each row identify which other tasks must 
contribute information for proper completion of the design'. Por example, the 
execution of task D requires information from tasks E, F and L. 

ABCDEF G H I J KL BCAKLJ F I EDHG 
A x B 
B c 
c x A 
D x x x K ~ 
E x x x L x x x x 
F x x J x x x x x 
G x x F x x 
H x x x x I x x x 
I x x x E x x x 
J x x x x x D x x x 
K x x H x x x x 
L x x x x G x x 

Table 5·1. Unpartitioned and partitioned design structure matrix 

The first step of design structure analysis is to find a sequence of these design tasks 
which allows this matrix to become lower triangular: all tasks are then sequenced so 
that each one can be executed after its predecessors from which it requires 
information. Then, no coupling remains in the design problem. This, however, rarely 
happens as is demonstrated in Table 5-1. The tasks B and C can be performed in series 
and the tasks A and K can be performed in parallel. However, there are two sets of 
coupled task sequences: L-J-F-1 and E-D-H. 

The partitioned design matrix structure is used to organise the design process. 
Strongly coupled tasks can be executed in a small team using a concurrent 
engineering in the smalt approach. However, the coupled blocks in the design 
structure represent design iteration, which means that the proper sequence to work 
through these tasks is quite important. Furthermore, it is still possible that the set of 
coupled design tasks, which is executed by such a small team is interdependent with 
design tasks that fall outside the team. This requires a careful consideration of 
unknown information to allow the iterative design process converge quickly. 

' Eppinger ea. extend the binary design structure matrix by including measures of the degree of 
dependenee and task duration, so that more sophisticated analytical procedures can be used to 
further improve the design process. This is not further discussed in this thesis. 
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Conclusions 

So far, this chapter discussed the design structure matrix for representing the 
dependencies between tasks. Eppinger also suggests to use the matrix for representing 
interactions between characteristics or parameters of the product. Designers are asked 
which parameters must be known in order to set another design parameter. This 
description of the design problem resembles both Axiomatic Design (Suh) and QFD. 
However, there are a few differences: 

(J Axiomatic Design distinguishes different domains in which the design process is 
executed. The interaction matrix defines the dependendes between two domains, 
for example the functional domain and the physical domain. Uncoupled and 
decoupled designs are preferred as a functional requirement can be changed 
without affecting other functional requirements. If Axiomatic Design and 
Steward's design structure matrix are compared, three differences can be seen: (1) 
the interaction matrix of Axiomatic Design spans two domains and therefore 
distinguishes from the start predecessors and successors, (2) Axiomatic Design 
focuses on functional requirements and design parameters insteadof design tasks, 
and (3) Steward and Eppinger are less concemed about the possible existence of 
interdependent tasks and try to use these interdependencies for improving the 
design process; 

(J Quality Function Deployment uses product descriptions and focuses on translating 
customer requirements throughout the different domains that are involved in 
development. There are two types of interaction matrices: (1) a matrix that covers 
two different domains, and (2) a matrix that defines the interactions of 
requirements of parameters within one domain. QFD is meant for supporting 
communication and camparing the own design with the products of competitors. It 
does not pay attention to design tasks, or the sequencing of these tasks so as to 
reduce the development time. 

All three matrix approaches don't support different abstraction levels. Furthermore, 
the approaches do not consider the development of product families. Finally, there is 
no immediate relationship to functional mechanisms defined by cognitive science. 

An advantage of these design methods over a prescriptive model as VDI 2221 is their 
generality. They do not assume fixed milestones and can therefore be applied in many 
different situations. However, some design methods indicate possible milestones. For 
example, QFD advocates a recursive use of the house of quality (see Figure 5-1 0), 
possibly with milestones in between. 

The next chapter asserts that the Productive Reasoning Model can be used as a 
framework for other design methods. 
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5.5 Design Cycle 

A product model is not complete without a design method that supports design. This 
chapter proposes a design method, named the Design Cyèle, that builds upon the 
Productive Reasoning Model of March [1984] and Cross [1989]. Therefore, a brief 
description of this design model is given. Then, the Productive Reasoning Model is 
extended with four elementary design steps that are based on functional mechanisms 
from cognitive science (see chapter 5.1). This extension is meant to give the 
Productive Reasoning Model a more practical orientation. The remainder of this 
chapter is used to discuss some characteristics of the Productive Reasoning Model. 

In more detail, the structure of this chapter is the following: · 

5.5.1. Productive Reasoning Model. This model has been chosen as the foundation of 
the Design Cycle as it (1) can be applied on different levels in the product 
hierarchy, (2) is described independent of a partienlar domain, (2) supports the 
salution deiven nature of design, (3) provides for close relationships between 
the design artefact and the design process, (4) can be extended for product 
families and (5) can act as a framework for other design methods, e.g., 
Axiomatic Design, QFD and Organising Tasks; 

5.5.2. Introduetion to the Design Cycle. This chapter proposes a design cycle 
comprising 4 elementary design steps that are based on functional mechanisrns 
from cognitive science. These steps can be executed by designers independent 
of the domaio or level in the product hierarchy; 

5.5.3. Exploration versus registration. Product models are used to document 
intermediale and final results of a design artefact in a structured way. In a 
sirnilar way, a design method is used to register the design steps that are 
executed or should be executed, thereby not recording the more impHeit 
aspects of design, e.g. design exploration and informal communication; 

5.5.4. Aframeworkfor other design methods. This chapter argues that the Productive 
Reasoning Model can ·act as a framework for other design models and 
methods. The examples of the previous chapters are used to demonstrate this 
point; 

5.5.5. Applicability of the Design Cycle. It is argued that the Design Cycle can also 
be used in traditional situations, as for example craftsmanship; 

5.5.6. Abstraction levels and domains. The Design Cycle can be used on different 
abstraction levels of the domains, for example the design of systems, sub
systems or component families. It is argued that, from a design theory 
viewpoint, the abstraction level is no determinant in applying the Design 
Cycle; 

5.5.7. Granularity. More or less designobjectscan bedealt with simultaneously in 
the design process. The granularity of design objects is an important parameter 
in the maturity of products; 
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5.5.1 Productive Reasoning Model 

According to Cross [1989], the prescriptive VDI 2221 guideline has been criticised in 
the design world because. it seems to be based on a problem-focused rather than a 
solution-focused approach: 

" the solutions are derived from the problem by using two conventionally understood 
farms of reasoning, inductive reasoning and deductive reasonini. These types of 
reasoning can be applied to the evaluative and analytica! actlvities in design, but are 
insufficient for the act of synthesis, that is central to design ". 

To support the missing concept of abductive reasoning, March [1984] proposes the 
Productive Reasoning Model. This model stresses the solution oriented nature of 
design. Solutions are not deduced from problems, they are produced by designers who 
think that these solutions might be. The decomposition of the overall problem can 
only be understood in relationship to the possible solutions. This gives an iterative 
type of design in which solutions and problems are always considered together in the 
design hierarchy. 

Figure 5·12. Productive reasoning 

In the model of March, there are symmetrical relationships between problems, sub
problems, solutions and sub-solutions. In the first phase of productive reasoning, the 
customer requirements and possible solution principles are defined. With this 
proposal, deductive reasoning is used to analyse or predict the performance of the 
design. With these predicted performance characteristics, inductive reasoning is used 
to evaluate further possibilities, leading to changes or refinements in the design 
proposal [Cross, 1989]. 

The Productive Reasoning Model does not impose a eertaio order in which problems, 
sub-problems, solutions and sub-solutions are determined. However, for the purpose 
of registration and formalised communication, a design cycle with four elementary 
design steps can be recognised. This design cycle is discussed in the next section. 

The philosopher Pelree [1923] recognises three types of reasoning: deduction, induction and 
abduction. Deduction is the inferring of aresult (xS:z) frorn a case (xS:y) and a rule (ys;z), induction 
is the inferring of a rule (ys;z) frorn aresult (x:s;z) and a case (xs;y), and abduction is the inferring of 
a case (xs;y) frorn a rule (ys;z) and a result (x:s;z). Deduction proves that sarnething must be; 
induction shows that sarnething actually is operative; abduction rnerely suggests that sornething 
may be. As Pierce writes, "abduction is the only logica! operation which introduces any new ideas; 
for induction does nothing but determine a value; and deduction rnerely evolves the necessary 
consequences of a pure hypothesis". 
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5.5.2 Introduetion to the Design Cycle 

There are a few mechanisms that seem to be generally valid in design. These 
mechanisms are described by cognitive researchers, advocating a descriptive approach 
to design research, but are also recognised by design theorists suggesting more 
prescriptive approaches. The four elementary design steps that are used in this thesis 
are: decomposition, allocation, composition and validation. They act on product 
descriptions and are arranged in a design cycle that prescribes a design process, 
however still independent of a partienlar product type, technology, domain or level in 
the product hierarchy (see Figure 5-13). 

overall problem overall solutlon 
<11111(1'--ir------::-----::------. 

sub-problems sub-soluilons 
i allocolion i 

Figure 5-13. The Design Cycle 

These four design steps can be recognised in the functional mechanisms, which are 
defined by descriptive models: decomposition is the primary mechanism to define and 
detail the design problem, allocation corresponds to solution search and exploration as 
solutions are found for the different sub-problems, composition is the act of 
constructing the overall solution from a set of related sub-solutions, and validation is 
used to evaluate the solutions with respect to the problem statement, both on the level 
of the original problem as well as on the level of the sub-problems. 

Decomposition is the breakdown of a complex product into smaller, relatively 
independent units1

• Decomposition adds detail to a product model. If a design object is 
decomposed into two component design objects, relationships will exist between these 
two objects. These relationships are not necessarily the result of decomposing a design 
object: the design of product families is characterised by the creation of interfaces to 
which exchangeable variants should conform. 

1 Most authors advocate the use of decompositions which exhibit high cohesion within units,. and Iow 
coupling between units [Pels, 1992]. Methods for achieving this goal vary greatly in both scope and 
rigor. Several authors suggest rules of thumb [Wagner, 1993], others suggest approaches for 
automating the process of system decomposition, for example Paulson and Wand [19921 who 
propose an automated approach to information systems decomposition, and Verrilli, Meunier and 
Dixon [1988] who present a computational model for solving the issue of decomposition in 
mechanica! design. 
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The act of decomposition can be applied in different domains and is not necessarily 
restricted to the problem definition, usually the functional model. It is also possible to 
decompose modules in the technology domain or assemblies in the physical domain: 

Cl Firstly, whether a design object is a problem or a solution depends on the domain 
that is considered (see section 5.5.6). A module is a solution for one or more 
functions, but can still be a problem for those who materialise this module in a 
physical assembly. In a similar way, an assembly can beregardedas the problem 
for the manufacturing engineer who is designing the assembly process; 

Cl Secondly, the decomposition of a solution can constrain the decomposition of the 
corresponding problem (see section 5.5.7). Por example, it can be specified that a 
function must be solved with a number of known technologies. In a simHar way, it 
can be specified that existing manufacturing processes should be reused to 
manufacture certain assemblies. 

Allocation is defining which solutions solve which problems. The allocation process 
is strongly related to the decomposition process: decomposition stops when the level 
of detail bas been reached to allocate sub-problems to sub-solutions. The remaioder of 
this thesis does not discriminate between sub-problems and problems, or between sub
solutions and solutions. They are all called either functions or solutions. There are 4 
different relationships between problems and solutions: 

1:1 relationship. One problem is realised with exactly one solution and one solution 
solves precisely one problem. This is a so-called modular design as 
isolating a problem goes together with isolating the corresponding 
solution. From the perspective of design management, these 
relationships can be easily controlled; 

1:N relationship. One problem is realised with more than one solution and one 
solution solves a part of one problem. This allocation requires a 
good understanding of the problem as the different solutions will 
only partially solve it; 

N:1 relationship. Several problems are realised with precisely one solution, while a 
solution meets several problems. This relationship provides for an 
unambiguous allocation of problems to solutions; 

N:M relationship. Several problems are realised with several solutions and vice versa. 
This relationship requires a good onderstanding of problems by 
designers responsible for solutions as each solution solves only 
part of the problem, and a good understanding of solutions by 
people defining the problems as each problem needs only a part of 
the solution. As a rule, N :M relationships must be avoided. 

The next section argues that the choice for an allocation type depends on the 
availability of decomposition strategies and the extent to which these decompositions 
are described in product models. 
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Composition is putting tagether a number of design objects1
• The composition step 

can be executed in different domains. Composing modules in the technology domain 
determines whether these modules work tagether from a technological perspective, 
while composing assemblies in the physical domain delermines whether these 
assemblies fit tagether from a physical perspective. The act of composition, however, 
does not say whether the composed design objects meet the original problem 
statement. 

Validation is checking the realised quality of the composed design object, for example 
testing a compound module with respect to a compound function, or testing a 
compound assembly versus a compound module. The latter type of validation is often 
done by building a prototype. The first type of validation uses engineering prototypes 
of partial solutions or employs simulation tools in which salution concepts are 
described with mathematica} models. 

5.5.3 Exploration versus registration 

The four elementary design steps can be used to create an explicit model of the design 
process. However,. there are a few limitations conceming the separation of the real 
world and an abstract rnadelling world. The first limitation is that abstractions ignore 
aspects of reality, which might prove to be important at later stages of the design 
process. The second limitation concerns the experience that the design process does 
not always praeeed by executing the Design Cycle in a sequentia! way. 

Figure 5-14 shows the Design Cycle, in relationship to the exploratory and aften 
implicit design process. In reality, the communication between designers about 
problems and (altemative) solutions does not follow the logical sequence that is 
suggested in this figure. However, recording the result of communication is essential 
for rnanaging complex design processes. 

Figure 5-14. Exploration versus the Design Cycle 

1 This thesis is restricted to the composition of modules that are the result of allocating functions. No 
attention is paid to configuration design in which the artefact being designed is assembied from a 
set of standard and pre-defined components that can only be connected in certain ways [Mittal, 
1989]. In configuration design, the computational size of the configuration problem is very large. 
Snavely [1992] proposes a computational metbod that reduces the size of this combinatorial 
problem by abstracting components to higher levels of abstraction. Less important details are 
temporarily ignored. 

172 



Design processes 

An example of implicit design is the allocation of 1 function to N modules. If only 
this 1 :N allocation is explicitly recorded, it is assumed that designers know which part 
of the function is allocated to which module. This mental allocation is impHeit design. 
In Figure 5-15, it is explicitly recorded that function 1 is realised in module 1 and 2. 
However, function 1 is implicitly decomposed into the sub-functions 2, 3 and 4. 
Function 3 must again be decomposed before it can be mentally allocated to either 
module 1 or module 2. 

Figure 5-15. Allocation of one tunetion to two modules 

An implicit design process relies on informal communication and known 
decomposition strategies and is therefore only acceptable for one room designs. In 
contrast, multi-project designs require explicitly recorded design information, both of 
products and design processes, to support the communication between hundreds of 
designers with quite different backgrounds. 

Especially, the creation of relationships between different domains is needed to 
understand in the early phases of design the conditions that are posed by the different 
views in the domains. Furthermore, the allocation of system functions to modules 
gives opportunities to divide the project in sub-projects for the different sub-systems 
that can then be solved in parallel. Finally, the relationships between domains are 
needed to validate the salution with respect to the original problem statement. 

5.5.4 A framework for other design methods 

The Design Cycle is a systematic approach to structure the design process in a number 
of activities, which can be recursively executed. Each of these activities can be 
supported by specific design methods. Some examples of design methods were 
discussed in the previous chapters and are repeated in this chapter to show where they 
fit in the Design Cycle. 

D VDI 2221. This prescriplive design model breaks down the design process into a 
number of main phases separated by milestones. In a similar way, the Design Cycle 
can be broken down into four elementary design steps, possibly separated by 
milestones. Using the Design Cycle as a language for rnadelling the design process, 
any partienlar instanee of the language (i.e. any partienlar design process) can be 
created. Figure 5-16 gives a simplified view on the phases of VDI 2221 in 
relationship to three domains and the Design Cycle. 
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Phase 4 Phase 5 

Figure 5-16. VOl 2221 and the Design Cycle 

0 Axiomatic Design. This prescriptive design . methad focuses on the artefact and 
discusses the design process in terms of the evolution of the different 
representations of the artefact. The design process involves . mapping between 
distinct domains, such as dient, functional, physical and process domain. The 
mapping from a given set of functional requirements (FRs) to design parameters 
(DPs) is expressed inthefarm of a matrix equation. In the Design Cycle, matrix 
equations can be used to support allocation. Figure 5-17 shows the allocation of 
functions onto technology modules using a design matrix. 

funcflonal 
model 

FRl FR2 FR3 

technologv 
model 

DPl DP2 DP3 

Figure 5· '17. Axiomatic Design and the Design Cycle 

0 Quality Function Deployment. The QFD approach facilitates a shared interpretation 
of customer needs ( whats) and provides a process to translate these needs into 
measurable engineering requirements (hows). It can be applied at each stage where 
a translation between requirements has to be made. Figure 5-18 shows how the 
house of quality is used totranslate functions of thefunctional model to technology 
modules of the technology model. The attic of the house is used to examine 
interdependencies between technology modules. 

174 



tunc11onal 
model 

technology 
model 

Rgure 5-18. Quality Function Deployment and the Design Cycle 
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0 Organising Tasks. In a design process, thousands of decisions are made and none 
of the design tasks is made in isolation. A design structure matrix can be used to 
represent which tasks are dependent, independent and interdependent. The Design 
Cycle camprises four elementary design steps, which act on product descriptions. 
A design structure matrix can be used to show which design steps need information 
from other design steps. After partitioning, the design process can be organised in 
such a way that, with a limited number of resources, the tasks can be executed with 
a minimal risk and in the shortest time possible. 
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Figure 5-19. Organising Tasks and the Design Cycle 

The next section demonstrates that the Design Cycle can be recognised in less 
complex situations that require no or only a limited formalisation of the domain's 
product descriptions. 
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5.5.5 Applicability of the Design Cycle 

The design of a product family is usually executed in the functional, technology and 
physical domain. However, not every design situation requires the formalisation of 
these domains in product models (see Figure 5-20). For example, it is possible that the 
design process only requires a product model of the physical assemblies, while the 
technology domain and the functional domain are · covered by the textual 
specifications. 

funcflonal domoln technology domaln physical domain 

Rgure 5-20. Formalised product descriptions 

The following three situations are briefly discussed to show that the four elementary 
design steps can also be used in traditional situations as for example craftsmanship: 

1. Craftsmanship. In this situation, the designer is only present as an agent in building 
a product. He reacts to misfits in the real world by changing them, but is unlikely to 
impose any designed conception on the form. All improvements are made in a gradual 
fashion. There is no product model or any other symbolic medium that captures the 
design or design decisions. The cumulative store of the essential information 
generated by craft evolution is, firstly, the form of the physical product itself. 
Nevertheless, composition and validation are common design steps. However, these 
are not applied to product models, but to the physical artefact itself. V alidation is the 
process of continuously monitoring the performance of the physical product in the 
context where it is applied. A misfit of the artefact in its context results in a new 
product that is composed from known materials. A graphical interpretation of these 
actionsis given in Figure 5-21; 

VOIIdalton I 
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physlcol physlcol 
context orlefoct 

Rgure 5-21. Craftsmanship 
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2. Physical model and physical artefact. The design of more complex products 
requires some more formal communication protocol. The ancient Egyptian master 
builders, therefore, used sketches on papyrus and clay to draw their buildings. This 
alone made possible such geometrie precision in their building. Some of the earliest 
drawings of machines to be built by workers were made by Filippo Brunelleschi, who 
in the 15th century designed and supervised the building of the great masonry dome of 
the cathedra] of Florence [Ferguson, 1992]. This is one of the first known examples 
where drawings were used for concurrent manufacturing, however not yet for 
concurrent design. 

Today, Ianguages for drawing have been formalised to guarantee an unambiguous 
interpretation of drawings in the communication between different people, both 
designers and manufacturers, and computers. Figure 5-22 demonstrates that the 
physical model is decomposed till the definition can be understood (i.e. allocation) by 
manufacturing people who build the product. The individual components are 
assembied into the end-product after which the physical artefact is validated against 
the design intention that is recorded in the physical model; 

I volldatlon 

physlcat model physlcol artefact 

Figure 5-22. Physical model and physical artefact 

3. Physical modeland specifications. The development of a new product often starts 
with an enumeration of requirements. These requirements specify both the function of 
the product and the constraints, defining conditions for the solutions. Figure 5-23 
shows that writing the specifications can be regarded as a decomposition process that 
adds detail to the product definition. The textual elements are realised in assemblies of 
the physical model, after which they can be composed and validated against the 
original specification. An example concerns the design of the office-chair, which was 
discussed in chapter 4.3. 

speclftcotlon physlcol model 

Figure 5-23. Specifications and physical model 
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A design rule is that tbe specifications sbould define tbe product on tbe level of 
abstraction tbat is sufficient for the user of the specifications. This level of abstraction 
is not necessarily identical to the · abstraction level that is comprehensible for the 
creator of tbe specifications. The elements of the specification are not allocated to tbe 
lowest level assemblies of the physical model (i.e. purcbased components), but to the 
highest level assemblies that guarantee an unambiguous realisation of the 
specifications (see also the next section). 

Table 5-2 shows the application of the Design Cycle within domains and between 
domains. Within a domain, a product model is either composed or decomposed. 
Between domains, design objects are allocated or validated. The same design steps 
also apply to writing specifications, allocating specifications to product models and 
validating product models with respect to specifications. Finally, the design steps 
show the formal and explicit execution of the design process. This formal procedure 
should be preceded by an impHeit and exploratory design process investigating the 
feasibility of allocation. 

Specifications Functional Technology Physical 
model model model 

Specifications D-C A-V A-V A-V 
Functional model feasibility D-C A-V A-V 
Technology feasibility feasibility D-C A-V 
model 

Physical model feasibility feasibility feasibility D-C 

Legend Decomposition Allocation Composition Validation 

Table 5-2. Relationships between product models 

The extent to wbich the possible solutions determine the problem decomposition is 
discussed insection 5.5.7. 

5.5.6 Abstraction levels and domains 

Design is a recursive activity, which assumes the existence of primitive objects to 
create a compound object. If a primitive object does not exist for a required compound 
object, this primitive object must also be designed. The Design Cycle can be used for 
developing products on different levels of the product hierarchy. For example, the 
Design Cycle supports both the design of an X-rày examination room in a hospita! and 
the design of the products that are used in this room. An example of such a product is 
a cardio-vascular system, which in turn, is composed of a generator, a table, a stand, 
etc. All products in this hierarcby are designed and use the next-higher level as a 
context for design. 
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lt is not necessarily the case that all products in a product hierarchy need an identical 
fonnalisation of domains. Figure 5-24 shows the functional, technology and physical 
model on different levels of abstraction. Notall products are fonnally described in all 
domains as the decomposition process is only fonnalised in those domains where the 
current product definition is ambiguous in the interpretation of other domains. For 
example, in the physical domain, the decomposition of assemblies is perfonned till the 
product definition can be unambiguously understood by manufacturing. 

The design of an X-ray examination room and a cardio-vascular system is fonnally 
executed in three domains and is therefore also supported by functional modelling 
languages, while the design of the system' s image intensifier is executed with the help 
of modelling languages of the technology and physical domain. Finally, purchased 
components as sheet-metal, nuts and bolts are only fonnally described in the physical 
domain. 

luncttonal 
model 

technology 
model 

physical 
model 

Rgure 5-24. Abstraction levels and domains 

In general, non-compositional systems need a functional analysis before sub-functions 
can be allocated to sub-systems. If such a sub-system is a compositional system, it is 
described with a compositional rnadelling language, which covers function and 
realisation. If the sub-system is again a non-compositional system, a second functional 
analysis, on sub-system level, needs to be executed. 

Reuseis an extra complication in designing products. An X-ray tube, for example, is 
not only a sub-system of a cardio-vascular system, but is also applied as a sub-system 
in other medical equipment. Product families are based on the reuse concept and 
employ component variants in several variants of the end-product. In both cases, the 
design of a sub-system should take several end-products into account. The function of 
such a sub-system is a compromise of the different system requirements. In some 
cases, a dedicated sub-system specification is created to support its design. 
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5.5. 7 Granularity 

The decomposition of a design object results in a number of component design objects 
together with interfaces between these objects. The collection of design objects, 
interfaces and their operation conforms to a product architecture. Chapter 3 gave 
examples of functional, technology and physical architectures. 

The granularity of a product architecture is proportional to the number of design 
objects. An architecture with only a few component objects is coarser than an 
architecture with many fine component objects. The number of design objects in a 
product architecture also determines the possible number of interfaces, between these 
objects. A product architecture with many design objects and interfaces is more 
difficult to manage than a coarse product architecture, but can better be fine-tuned for 
an optima! function and performance. The disadvantage of coarse design objects is 
sub-optirnisation. The sub-systems are all designed and optimised individually, 
leading to a collection of individually optimal sub-systems, not necessarily producing 
a global optimum in their combination. 

The issue of granularity is an important parameter in the allocation of design objects 
to other domains. At a certain moment in the design process, product models in 
different domains can have a different level of granularity. The vertical and horizontal 
axes in Figure 5-25 indicate the level of detail in respectively the functional domain 
and technology domain. The allocations are mentioned in the cells of the table 1 

•. 

module datall 

Figure 5-25. Granularity and allocation 

The design of a mature product is characterised by known decomposition strategies. 
Both the problem decomposition and the solution decomposition are known. As 
designers are familiar with the product, they are able to consider many functions, 
modules, assemblies, interfaces and possible allocations simultaneously. This gives a 
fine-grained (integrated) design. On the other hand, if the product is less well-known, 
the functions and modules are coarse, the number of interfaces is small, and there is 
lirnited function sharing. 

1 Souder [1987] discusses the roles that marketing and R&D should play in the development of new 
products. He distinguishes the customer's level of sophistication and the new product developer's 
level of sophistication. These two dimensions lead toa matrix simHar to that of Figure 5-25. The 
cells in the matrix indicate various development situations, including technology push (solution 
driven) and market pull (problem driven) designs. 
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A problem driven design is characterised by known decomposition strategies in the 
functional domain, while the modules in the technology domain are not yet very 
detailed. This can be caused by the introduetion of new technologies for existing and 
mature applications. On the other hand, a salution driven design is characterised by 
known technologies and a yet unknown application. 

The decomposition process is an iterative process in which the functional, technology 
and physical decomposition iteratively determine the decomposition processes in 
other domains. Figure 5-26 shows a functional and a technology decomposition. The 
dark objects denote design objects that are known prior to the decomposition of bath 
models, for example the overall function and salution principle of a system, but also 
an existing module that must be reused. Such a known module constrains the 
functional decomposition. 

problem-drlv~ 
·--·--solution-drlven 

Figure 5-26. Constraints on the functional decomposition 

Product families are often mature products as the interactions between functions, 
modules and assemblies are known enough to introduce variety. Mature products tend 
to become more integrated to imprave performance and reduce casts. On the other 
hand, product families should be modular to provide for flexibility and variety. This 
dilemma is one of the main issues in developing product families. 
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5.6 Design process of Philips Medical Systems 

X-ray systems for medical diagnosis are complex systems, nat only because of the use 
of advanced technologies, but in the first place because of the combination of diverse 
technologies in one system. Functions to control the position of the patient, the X-ray 
souree and aften several X-ray detectors on precise locations are to be combined with 
functions that control the optima! functioning of an X-ray tube, an image intensifier, a 
film transport mechanism ar video chains. Evermore, requirements are set to increase 
usability: user control has to reflect more the medical use then the technologies used. 

Systems with an eminent quality level have to be developed and produced in an ever 
shorter time and at an ever lower cast level. This results in a price pressure leading to 
more integration, which is equivalent to realising more functions with less 
technologies. The increasing price pressure means also development of more systems 
in a shorter time. This can be realised by designing product families with the 
possibility to divert variants. 

Bath, integration and family design, lead to a more complex design process. The goal 
of this thesis is making the complexity of designing product families more 
manageable. To realise this, criteria are formulated in chapter 7 to support design 
decisions. It is argued that design decisions are taken in different domains and that the 
settiement of good design information is essential for decision taking. 

Currently Philips Medical Systems uses a prescriptive design process model, named 
Systems Management, of which the five project phases are given in Figure 5-27. The 
nature of this model corresponds to the VDI model of chapter 5.2. 

Phase 1 Phase2 Phase3 Phase4 PhaseS 

Feasibility Overall Design Detail Design Start Production 

Figure 5-27. Systems Management 

Systems Management describes the interaction of business functions in the 
development process. At the end of each phase, a number of doeurneuts defining the 
product must be completed. The quality of the doeurneuts is, however, oot formally 
defined, which hinders a clear transition from phase to phase. Furthermore, Systems 
Management does nat support a recursive view on design in which systems, sub
systems and components are designed simultaneously. 

Chapter 7 returns to the case study to demonstrate that the Design Cycle can also be 
applied in the Medical Systems situation. However, it will also be shown that the 
different life-cycles of systems, sub-systems and components require a co-ordination 
of development over a langer period than is necessary for an individual design project. 
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5.7 Condoding remarks 

This chapter discussed some design models and methods, without having the intention 
to present a comprehensive survey. The objective of this chapter has been to 
demonstrate that (1) these design models and methods do not consider product 
variety, and (2) that product modeHing languages are not complete without design 
methods. The latter is especially true for prescriptive product rnadelling languages, 
which enforce a certain description language on the designer. Only an appropriate 
design result can be expected if the designer is told how to achieve this result. 

Descriptive rnadelling languages are closely related to natura} science as they describe 
the product or the design process as it is, or stated more accurately, as it has been 
done. Prescriptive models can build upon descriptive models by acknowledging some 
basic psychological and sociological mechanisms to which human beings obey. 

Therefore, this chapter selected the Productive Reasoning Model of March and Cross 
as a basis for the Design Cycle. There are a number of reasons for this: 

0 Productive reasoning does not assume a specific domaio or abstraction level. lt can 
be generally used, not only for the design of a system by a large project team, but 
also for the design of a small component by an individual designer; 

0 The model uses general terms as problems, sub-problems, solutions and sub
solutions. No particular provision for single products is made. The model is general 
enough to be applied for product families; 

0 The model focuses on the solution-oriented nature of design and supports the 
observation that the decomposition of the overall problem can only be done with a 
view on the possible solutions; 

0 Although the Productive Reasoning Model is prescnptlve, its elements can be 
found in descriptive literature. This improves the chance that the model is 
recognised and actually used by designers; 

Chapter 7 describes a family design method, which extends the Productive Reasoning 
Model and the Design Cycle with the following features: 

0 Multiple design cycles. The interactions between different design cycles, for 
example of a system and its sub-systems, are considered in a single design method; 

0 Product variety. lt is possible to describe, in several domains, a product family and 
its variantsin a transparent, unambiguous and concise way. 

The family design metbod uses the product family modelling language of chapter 6. 
Furthermore, elements of other design methods are reconsidered for achieving 
campromises between different domains and for achieving a balance between 
modularity and integration. 
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First, the taking in of scattered partkulars under one Idea, 
so that everyone understands what is being talked about ... Second, 
the separation of the Idea into parts, by dividing it at the joints, 
as nature directs, not breaking any lump in half as a bad carver might. 

Plato 
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6. Structuring product families 

The previous three chapters discussed product modeHing languages and design 
methods. It was stated that modelling languages that are based on mathematica! 
principles or theories from natural science describe the relationships between the 
functional, technology and physical domain with the same language. The objective of 
this thesis is restricted to modeHing product families independent of a particular 
theory, technology or domain. Therefore, this chapter proposes a modelling language 
that captures the product structure of a product family both in terms of the product 
hierarchy and in termsof the interfaces between products (families and variants). This 
product family modeHing language is not necessarily restricted to a fixed number of 
domains, although the functional domain, technology domain and physical domain 
will be used as examples. 

Chapter 6 contains the following chapters: 

6.1. Definition of a product family. The notion of a product family is formally 
defined for the functional, technology and physical domain; 

6.2. Specification of the product family rnadelling language. This chapter 
summarises earlier mentioned requirements (see chapter 2) for structuring 
product families; 

6.3. Design of the product family modelling language. The starting point for the 
design is the gencric product structuring (GPS) concept. This concept is 
extended with product architectures and with allocation relationships between 
domains. Furthermore, this chapter pays attention to doeurneuts that are 
assigned to the product family model; 

6.4. Consistency within and between domains. The parameter mechanism as 
discussed with the GPS concept can be regarded as a view on a product model. 
This representation should be consistent with the design objects in this model. 
Furthermore, different domains should maintain consistency; 

6.5. Representations. This chapter discusses two different types of representations, 
which play a role in domains. The first type of representation concerns 
documentation that is assigned to the structure of a product family to capture 
specific viewpoints. The second type of representation concerns models that are 
derived from the structure of product family in the sense that the structure of 
these derived models differs from the original structure; 

6.6. Concluding remarks. This chapter relaxes the strict interpretation of modelling 
product families and states that most manufacturing companies can do with a 
less rigorous interpretation of the modelling language. 

Chapter 7 discusses a family design metbod that completes the product family 
modeHing language. 
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6.1 Definition of a product family 

This thesis defines an ideal product family as a product with identical intemal 
interfaces for all variants in all domains. Interfaces must be standardised in three 
domains to allow the full exchange of components [Erens & Verhuist, 1996]. 

The above definition is explained with an example. Figure 6-1 mentions three 
products (i.e. technology modules) in the technology domain: product 1, product 2 
and product 3. Each product has two components: CO- Cl, CO- C2, and C3- C4. 
Product 1 and product 2 are variants of the same product family if they do not only 
have identical internal interfaces in the technology domaio but also in the functional 
domaio and the physical domain: 

0 Technology domain. The interfaces between the components CO- Cl and CO- C2 
are identical for both prod.ucts (see Interface 1 in Figure 6-1). Product 3 does not 
beloog to this product family as it has a different internat interface (Interface 2} 
between the components C3 - C4. In other words, component C3 can only be used 
in combination with component C4 and not in combination with the components 
Cl or C2. This limitation to make arbitrary combinations of components reduces 
the number of different parent products. The possibility that the components Cl, 
C2 and C4 are a product family again does not change this. 

I 

Figure 6-1. Example of product variants 

0 Functional and physical domain. The interfaces between the corresponding 
functions in the functional domain and physical assemblies in the physical domain 
must be identical for Product 1 and Product 2. This is not shown in Figure 6-1. 

From the definition of an ideal product family follows that not every product in the 
decomposition hierarchy of a product family is a product family again. Whether a 
product is a product family or not solely depends on the interfaces of its components. 
It does notdepend on the individual architecturesof the product family's components, 
neither does it depend on the extemal interfaces of the product family itself. In terms 
of the example, it is notimportant whether the components Cl and C2 belong to the 
same component family as long as they have identical extemal interfaces with 
component CO. 
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Co-ordinated product architectures 

The standardisation of interfaces in one domain makes it possible to create arbitrary 
combinations of components in that domain. However, the development of a product 
family requires co-ordination of product architectures in different domains. The 
standardisation of interfaces, and consequently the reuse of components, asks for 
anticipating potential customer wishes in an early phase so that the product 
architectmes in the functional, technology and physical domain can take these into 
account. 

The issue of co-ordinated product architectures is related to the allocation process 
between domains. A physical assembly can only be easily isolated in its context if one 
or a limited number of technology modules is allocated to this assembly. This in turn 
requires the allocation of one or only a few functions to each variabie technology 
module. In contrast, the stabie functions, technology modules and physical modules 
can be highly integrated to improve the cost performance ratio. 

A product family is characterised by 1:1 and N: 1 allocation relationships between 
domains. Both l:N and N:M allocation relationships disqualify a product as a product 
family: the distribution of a function over several technology modules implies that a 
technology module can only be chosen together with several other technology 
modules. In other words, there are dedicated interfaces between technology modules 
and therefore not all combinations of technology modules are allowed. This conflicts 
with the definition of a product family. In contrast, a 1:1 or N: 1 allocation of functions 
to technology modules preserves the possibility to make arbitrary combinations of 
technology modules. If N functions are allocated to one technology module, then the 
interfaces between these functions are also allocated to this one module. Therefore, 
they do not harm the standardised interface this module has with other technology 
modules. 

Figure 6-2 gives an example of co-ordinated product architectures. The grey circle, 
square and triangle denote respectively a function, a technology module and a 
physical assembly. Tbey are connected with 1:1 allocation relationships. Together, the 
function, technology module and physical assembly create a modular aspect of the 
design. 

Figure 6-2. Example of co-ordinated product architectures 

Standardisation of a product family's interfaces in all three domains requires 
synchronisation of these architectmes in the three domains. This is realised as 
described above. The components that result from this have an internal architecture 
that is independent of the architecture of the product family. 
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The development of the product family and its components is decoupled: components 
are developed within the context of the product family's architecture. These "levels" 
in the hierarchical product structure are an effective mechanism to control design 
complexity. A deliberate use of this contributes toa more stabie development process. 

Scaleable and non-scaleable interfaces 

The definition states that a product family bas standardised interfaces in all domains. 
These interfaces are also called scaleable inteifaces. If there are dedicated interfaces 
between variants of different product families, these interfaces are called non
scaleable inteifaces. The following two examples demonstrate the difference: 

Cl A socket for electrical appliances is a product with a well-known interface, 
although this interface is not yet standardised for the countries wîthin the EC. This 
example considers a two-pin socket that bas an additional earthing facility. Such an 
interface poses both physical and electrical requirements on plugs. Some plugs 
make use of allaspects of the socket's interface (the interface of the socket is equal 
to the interfaces of these plugs), while other plugs only consider some aspects of 
the socket's interface (flat plugs, for example, have no earthing). The advantage of 
such a scaleable interface is that the product in which the socket is applied does not 
need to be tested withall types of plugs. It is sufficient totest the combination of 
socket and plug that makes maximum use of the socket' s interface definition. 
Figure 6-3 shows that the interfaces of scaleable variants can be ordered to the 
extent that they make use of the interface of their family. 

Figure 6-3. Scaleable interface 

Cl The engine of a car is a farnily with standardised interfaces for the physical fit of 
the engine's variants in the engine compartment. Also the physîcal relationshîps 
with the gearbox are usually standardised. Therefore, in the physical domain, all 
engine variants and gearbox variantscan be combined. However, in the technology 
domain, it is possible that the reduction of a gearbox variant is adapted to the 
power and torque of a particular engine variant. This reduces the possibility for 
arbitrarily combining the engine and gearbox variants. Each engine variant has a 
specific interface with respect to the gearbox. The interface definition of the engine 
family unifles the interface definitions of the engine's variants, but is not identical 
to any interface of its engine variants. The Venn diagram of Figure 6-4 shows the 
interface of a product family that comprises the interfaces of its (non-scaleable) 
variants. 
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Figure 6-4. Non-scaleable interface 

A family with non-scaleable interfaces requires a careful consideration of the 
influences of a variant on variants of other families. Figure 6-5 shows the 
decomposition of a family into two component families, one with two variauts and 
another one with three variants. Both component families are non-scaleable as is 
indicated by the intersecting circles. 

Figure 6-5. Non-scaleable component families 

The variant level of the above product structure is repeated in Figure 6-6, together 
with the interfaces between variants. The figure shows that variant 2 and variant 3 are 
interfaced with a common variant 4 of the other product family, while variant 1 is 
dedicatedly interfaced with variant 5. These 5 primitive variants result in three 
possible compound variants. 

Figure 6-6. Interfaces between component variants 
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Product families with multiple technologies have a variety of interfaces, for example 
mechanical. Some of these interfaces are primitive, for example mechanical, 
electrooie and software interfaces, while other interfaces are compound as they are 
constructed from several primitive interfaces. Compound interfaces are often complex 
and require intense co-ordination between the families that together create the system. 
Figure 6-7 shows that this complexity can be controlled by allowing complex 
interfaces ( 1) only between closely related families. Complex interfaces between 
families that are not developed under one organisational responsibility (2) should be 
avoided. 

Figure 6-7. Interfaces 

Sub-systems that are developed in remote areas of the organisation should be 
connected with interface technology (3) that is easily understood by both sides of the 
interface. Nowadays, software and electtonic networks give the possibility to have 
discipline independent interfaces between different technological and physical sub
systems. Such interfaces may specify in functional terms which actions the different 
sub-systems should execute in a synchronised manner. 

The origin of variety 

The variety of a product family depends on the variety of its components. In the 
example of Figure 6-1, the components C 1 and C2 have a common interface with CO, 
which makes Product 1 and Product 2 variants of the same product family. This does 
not imply that also the components Cl and C2 beloog to the same product family. 
There are two possibilities: 

• The components Cl and C2 are variants of the same component family. In that 
case, they have standardised internal interfaces in all domains. 

• The components C 1 and C2 are not variauts of the same component family, but 
share their external interfaces. The internal interfaces are different in one or several 
domains. 

If C 1 and C2 are component families again, their variants do not individually 
determine the external interfaces of C 1 and C2. Else, Product 1 and Product 2 would 
notbeloog to the sameproduct family. If the external interfaces of, for example, Cl 
cover all variety of Cl, the design effort is seriously reduced. It is not needed to 
design dedicated interfaces for variants of Cl, neither is it necessary to design 
component variants at the "other side" of the interface. This is an important advantage 
of developing product families. 
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If all products in a decomposition hierarchy are product families, the variety of the 
end-product results from the variety of the primitive families. All variants of the end
product have an identical product structure, which increases efficiency in development 
and manufacturing. However, as the differences between the variants of the end
product arebasedon relatively small differences between the variantsof the primitive 
families, the differences between these end-product variants are relatively small as 
well. This possibly reduces the scope of the product family towards the market 

In an ideal situation, the scope of the product family is large in the functional domain 
and relatively small in the technology and physical domain. The functional domain 
corresponds to the viewpoint of the customers and should have a large variety of 
functions to discriminate between the different requirements of these customers. The 
technology and physical domain define the realisation of these requirements and 
should preferably have a limited number of technology modules and assemblies to 
reduce both initia! and operational costs. The development of a product family is 
characterised by the use of N: 1 allocation relationships between domains. As a 
consequence, the scope of a product family is smaller in the technology and physical 
domain than in the functional domain. 

Deviations from the product family definition 

The product family of the definition is characterised by having identical internal 
interfaces for all variants in all domains. In real manufacturing situations, for example 
the manufacturing of medical equipment, most products do not strictly adhere to this 
definition. Nevertheless, many of these products are called product families (also in 
this thesis) as a large variety of end-products is created from a limited variety of 
components. However, there are components that cannot be combined to create new 
product variants, in other words, there are components that can only be applied in 
combination with a limited number of other components. This is the result of an 
allocation process in which a variabie function is distributed over several components 
(or a variabie technology module is materialised in several physical assemblies). 

The existence of l:N (or N:M) allocation relationships asks for a special product 
modelling language. A large variety of products sharing many components must be 
described in a non-redundant way. This product family modelling language is created 
in the remainder of this chapter and is based on the generic product structuring 
concept It meets the following requirements: 

• First of all, the modelling language should enable the decomposition of a product 
into its components, each being either a product family again or a set of products 
with identical extemal interfaces; 

• Secondly, the modelling language should enable the co-ordination of dependent 
component variants, i.e. components that can only be chosen in their combination. 
These are the actual deviations from the product family concept 

Detailed specifications for the product family modeHing language are given in the 
next chapter. 

191 



Structur:ing product families 

6.2 Specification of the product family modelling language 

This chapter summarises earlier mentioned requirements for a rnadelling language. 
These requirements are subdivided into 10 categories: 

6.2.1. The nature of product families 

6.2.2. Design objects 

6.2.3. Decomposition 

6.2.4. Architecture 

6.2.5. Parameters and values 

6.2.6. Constraints 

6.2.7. Consistency between models 

6.2.8. Product platforms 

6.2.9. Documentation 

6.2.10. Derived models 

Solutions for the requirements are presented in the remainder of chapter 6. 

6.2.1 The nature of product families 

Chapter 2 discussed the fact that a product family is an intangible entity. It exists as a 
mental picture or a formal model and can only be validated by physically studying the 
variants that are derived from a family. A product family modelling language bas two 
main objectives, which are formulated below as requirements: 

Requirement: Support the product family development process. 

Requirement: Allow the derivation of product variants for the operafional process. 

With respect to the latter, this thesis emphasises the derivation of an assembly model 
from a physical model. With respect to the first, tbis thesis focuses on visibility, reuse 
and consistency. Chapter 2 discussed tbe existence of different disciplines tbat are 
involved in designing a product family. Eacb discipline poses its own requirements on 
a product family. A product family rnadelling language should facilitate in achieving 
a campromise between all business functions. 

Requirement: Support the development process in attaining a campromise between 
manujacturing disciplines. 

This chapter only discusses product families that are designed proactively, i.e. the 
product family is designed as one entity, not as a set of single products. No attention is 
paid to the gradual development of product families out of single products. 
Nevertheless, it is possible tbat the variants of a proactively designed product family 
are identified, manufactured and sold as if they are single products. 
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6.2.2 Design objects 

Each representation of a product model has its own language. For example, in the 
functional domain, functions are described by combining verbs and nouns. Such a 
combination also determines whether the function is primitive, and can therefore be 
mapped onto a known salution principle, or is still abstract and neects to be 
decomposed into lower-level functions. In the technology domain, the languages that 
are used to represent technology specific modules are closely related to rnathematics 
(e.g. software) and the nature's laws (e.g. hydraulics and electronics). Every 
technology has its own modeHing language and only a limited number of relationships 
between technological phenomena can be expressed with a unified modeHing 
language (e.g. electro-magnetism). For the time being, it has to be accepted that it will 
not be feasible to incorporate all these languages in a compositional rnadelling 
language for product families. A similar concern applies to modelling languages in the 
physical domain. Assemblies can be expressed with, for example, boundary 
representations, but also with constructive solid modeHing languages. Again, it is not 
the purpose of this thesis to decide on the most suitable modelling language for 
assemblies. 

Requirement: Enable the representation of design objects in different domains and on 
different levels of abstraction without attempting to harmonise the 
languages that are used to represent these objects from different 
viewpoints. 

Functions, modules and assemblies can exist in variants to meet the required 
commercial variety of the end product. Each variant is a design object again. 
Furthermore, all design objects can have versions to distinguish them from other 
design objects in time, so as to avoid compatibility problems with design objects in 
the same model or with design objects in other models. 

Requirement: Support botlz variants and versions of design objects. 

6.2.3 Decomposition and composition 

Design is a recursive activity. The complexity of design is toa large extent determined 
by the availability of design primitives together with effective decomposition 
strategies to find the right combinations of these primitives. If an assumed design 
primitive is not available, the design of that object must be undertaken independent of 
the main design. Usually, this decomposition strategy starts with a specification of the 
product family and the environment in which variauts of this family need to fit. 

In a product hierarchy, there is no decomposition without composition. If the design 
problem is decomposed into sub-problems for which sub-solutions are known, then 
these sub-solutions should be composed again to create a solution for the original 
problem. Therefore, the following requirement for the product family rnadelling 
language can be formulated: 

Requirement: Support both decomposition and composition of design objects in a 
product hierarchy. 
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Chapter 3 illustrated the issue of (de)composition for three domains. The discussion 
also considered interfaces between design objects of the same domain. These 
interfaces are defined on different abstraction levels and are therefore also subject to 
(de)composition. Furthermore, the (de)compositions of product models can be 
different, but the resultant design objects should describe the sameproduct family. 

Requirement: Synchronise (de)composition in different domains in order to ensure 
the compatibility of these domains. 

6.2.4 Architecture 

The interfaces, which are defined by a product architecture, are important for product 
families, as the variety of a product farnily arises from changing components in a 
predefined architecture. Interfaces play a role in all models as they determine whether 
designobjectsin one domain (e.g. functions, modules and assemblies) can function 
together. A new customer option can only be added to an existing product family if it 
fits in the functional, technology and physical model. Therefore, the definition of 
interfaces is one of the main factors in determining the scope and the life-cycle of a 
product family. 

Chapter 3 discussed functional, technologkal and physical interfaces, however 
without consictering variety. The interfaces in a product family architecture are 
defined such that all variants of a design object meet the requirements of these 
interfaces, although some variants wiU exploit these requirements more than others. If 
a new object variant does not fit existing interfaces, the interface definition must be 
extended, thereby possibly increasing design effort for other variants. 

Requirement: Enable the definition of intetjaces to which design objects should 
conform. 

However, the interface definitions that are given by this this thesis, will not be 
discussed in terms of the specific technologies involved. Rather, a general data 
structure will be presented. 

6.2.5 Parameters and values 

This thesis concentrates on product families that are designed in such a way that the 
designs of product variants can be automatically derived from the family using a 
parameter selection mechanism. In the operational manufacturing process, each 
product variant that is specified in terms of non-conflicting parameter values can be 
translated into a product variant description in terms of assemblies. As stated before, 
in the product development process, sirnilar variant descriptions can be generated in 
the functional, technology and physical model. 

Requirement: Allow, in each model, the derivation of variants using a parameter 
selection mechanism. 
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Parameters and parameter values can be regarded as a representation of a product 
family. In the generic product structuring concept, this representation has been 
introduced to separate the assembly representation from the more functional oriented 
commercial representation. 

Requirement: Maintain consistency between a representation in terms of parameters 
and parameter values, and the product model in terms of design 
objects, product hierarchies and interfaces. 

Maintaining consistency will not be equally difficult in the three mentioned models. 
For example, parameters can be very similar to functions in the functional model. 
However, this thesis stated that some specifications are unambiguously described in 
the functional model, while others (as performance and physical shape) are realised 
directly in the technology model and physical model. Therefore, only a subset of 
parameters in, for example, the physical model corresponds to functions in the 
functional model. 

6.2.6 Constraints 

In the generic product structuring concept, constraints are expressed as Boolean 
expressions of parameters and parameter values. This mechanism can be applied in a 
similar way in the product farnily modeHing language. The origin of some constraints 
lies in the interfaces that prohibit combinations of design objects, other constraints 
have commercial reasons. In both cases, parameters represent the selection 
possibilities in a product family. 

Requirement: Maintain consistency between parameter constraints and the origin of 
constraints in terms of functions, modules and assemblies. 

Furthermore, combinations of constraints can give unforeseen implicit constraints, 
thereby reducing the possible variety of a family. The meaningful variants of 
(component) families should not be excluded by (implicit) Boolean constraints. 

Requirement: Consider the effect of constraints on decisions in the same domain. 

Finally, constraints that have been created in one domain can be regarded as 
specifications for other domains. For example, it is usually not needed to create a 
physical realisation for a prohibited combination of functions. 

Requirement: Consider the effect of constraints on decisions in other domains. 
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6.2. 7 Consistency between models 

A product family is designed in different domains, which are together descrihing the 
product family. In these domains, designers use a variety of modeHing languages to 
capture relevant views. Due to the existence of these different domains, it is often not 
possible to decompose a design artefact in a single way that is optima! to all 
participants. If the artefact is decomposed in different ways, a strategy for linking and 
maintaining the decompositions of different domains and their related product models 
should be sought after. 

Requirement: Enable links between design objects, inteifaces, parameters and 
constraints across different product models of the same product family 
in order to supportorenforce the consistency of these mode is. 

Some links between design objects in different models will be defined explicitly to 
ensure a controlled design process. For example, the design objects that are the roots1 

of the models should represent the sameproduct family. Other design objects have no 
specific value for other models and are therefore only related to these models through 
parent or children objects. 

Explicit relationships between product models describe the design process as executed 
so far. Furthermore, they define conditions for the remainder of the design process, for 
example in the sense that some functions must be realised in a certain technology 
module. Finally, explicit relationships between productmodelscan be used to validate 
a solution with respect to the original problem. For example, a composition of 
technology modules must meet a compound function in the functional model. 

Requirement: Support allocation and validation of design objects between product 
models. 

It is not necessarily the case that each function corresponds to one module and one 
assembly. Therefore, the product family modeHing language should be able to cope 
with less straightforward situations, such as l:N, N:l and N:M mappings. 

6.2.8 Product platforms 

A product platform is an architectural concept that addresses a market and from which 
different product families can be derived. It defines functional, technological and 
physical aspects on a relatively high level of abstraction, thereby teaving enough 
solution space for the product families to meet more specific market requirements. 

In this thesis, product platforms are discussed to demonstrate the similarity with 
modelling principles for product families. No explicit requirements are formulated for 
the product family modelling language as product platforms can be structured in a 
similar way as product families. This will be discussed in chapter 7. 

' The root of a model is a final product, i.e. a design object without parents. In a similar way, a leave 
of a model is a primitive product, i.e. a design object without children. 
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6.2.9 Documentation 

Chapter 3 demonstrated that design information can be structured according to the 
functional, technology or physical model. The information that is contained in a 
document that is assigned to a model is a representation or view on this model. A 
product model, tagether with its representations, is named a domain. Chapter 3 
discussed a few languages that are used to define these representations. 

Furthermore, this thesis demonstrated that disciplines can be mapped onto product 
models. Each discipline can make use of one or more models to classify its 
information. A model acts as a backbone for communication and is used to assign 
discipline specific representations in the form of documents. 

Requirement: Allow the assignment of documents to product models. 

The product family modeHing language does not distinguish the different languages 
for capturing representations. Each representation is captured in a document that is 
assigned to a design object in a model. 

The content of a document, representing a view on a model, is often implicit 
information, which can only be interpreted by knowledgeable people or dedicated 
software, for example a CAD drawing that has been assigned to some object in the 
physical model. This thesis considers some alternatives for structuring documents and 
maintaining consistency in chapter 6.4. 

6.2.10 Derived models 

Section 3.3.3 discussed the role of the physical modeland stated that the design of this 
model is determined by the technology model together with the assembly conditions, 
logistics conditions and service conditions. These external conditions formulate 
requirements for the physical model and will use the result of design to support their 
own processes. It is possible that a dedicated model is derived from the physical 
model, for example an assembly model, logistic model or service model. These 
derived models are representations and alter the product as it is perceived, not as it is 
design ed. 

Requirement: Support the derivation of models from the product family model for 
operational processes such as assembly, logistics and service. 

These derived models can make use of the generic product structuring mechanism, for 
example a generic bill-of-material as used in the assembly process. Therefore, not 
only functions, modules and assemblies should be taken into account, but also 
parameters, parameter values and constraints. 
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6.3 Design of the product family modelling language 

The design of the modelling language for product families follows from the 
specification of the previous chapter. The starting point for this design, however, is 
the generic product structuring (GPS) concept. This concept has a proven mechanism 
for modeHing product families in a non-redundant way. Therefore, this mechanism 
will be used in the domains' product models. However, the current GPS concept 
should be extended by two requirements that are not met by the GPS concept, namely: 

(J The ability to model interfaces between design objects; 

(J The maintenance of consistency within domains and between domains. 

This chapter starts with the design of the product family modelling language, 
including design objects, decompositions, architectures, parameters, parameter values, 
constraints and mappings between models. Chapter 6.4 will elaborate the issue of 
consistency within and across domains. Some alternatives for structuring 
documentation, including the issue of maintaining consistency between models and 
representations (documents and derived models), are discussed in chaptet 6.5. 

6.3.1 Product models 

The summary of product rnadelling languages in chapter 3 and chapter 4 resulted in a 
list of requirements for the product family rnadelling language. The modeHing 
language that is proposed, is not restricted to three domains. However, this thesis wiJl 
use the functional, technology and physical domain as examples to demonstrate how 
the consistency of different domains can be maintained. 

Figure 6-8. Overview of models 
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Figure 6-8 summarises three domains and their languages. The specifications are 
written within the context of the possibilities of the manufacturing company and state 
conditions to which the functional, technology and physical domain should conform. 
These domains with their models and representations are used to derive models for 
use in operational processes, for example the assembly model. The arrows in Figure 6-
8 represent the allocation of design objects and not necessarily a sequence in time. 
The other three design steps, decomposition, composition and validation, are not 
mentioned in this figure. 

In designing a language for product families, the technique of conceptual database 
rnadelling will be used to represent the design in an unambiguous way1

• A short 
introduetion to this technique is presented in the annex (chapter 9.1). When reference 
is made to database en ti ties in the datamodel, SMALL CAPS are used. 

6.3.2 Design objects 

A design object defines a product on one level of abstraction. Basically, there are two 
different types of design objects: product families and product variants. In Figure 6-9, 
the arrows (generalisation relationship) indicate that a DESIGN OBJECT is either a 
FAMILY or a VARIANT. However, the example of a motor car introduced an engine 
family with two subfamilies, namely a petrol family and a diesel family. Both 
subfamilies share interfaces but also have specific interface requirements. The 
FAMILY-SUBFAMILY entity lists all relationships between families and subfamilies of 
the entity FAMILY. 

Design 
object 

I I fo--4 
Family· 

Family Variant 
subfamily ~ ()< 

Fîgure 6-9. Families, subfamilies and variants 

From Figure 6-9, it can be seen that the difference between primitive and compound 
design objects is not expressed with conceptual database entities. Whether a variant or 
family is primitive or compound can be seen by consictering the product hierarchy in 
which these design objects can be found. 

' Other modelling techniques arealso possible. Erens, McKay and Bloor [Erensb, 1994] propose the 
use of the Leeds Structure Editor [Shaw, 1989] for modelling product families. This approach 
differs from conventional databases, which have three levels of abstraction, namely: the data 
dictionary, the database schema and the database contents. However, the modelling technique is not 
essential for the objectives of this thesis. Therefore, this thesis chooses for the conventional 
conceptual database modelling technique. 
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Each FAMILY has zero or more VARIANTs and each VARIANT has exactly one FAMILY. 

A family with exactly one variant can be regarded as a single product. There is no 
separate entity for single products in the datamodel. In the remainder of this thesis, a 
single product is considered to be a special case of the relationship between the 
FAMILY entity and the VARIANT entity. 

Finally, design objects have versions. These versions are indicated with an attribute of 
the entity · DESIGN OBJECT. The interpretation of versions for the design of product 
families is discussed in chapter 7. 

6.3.3 Product hierarcbies 

Both families and variants can be decomposed into families and variants of a lower 
abstraction level. In a similar way, families and variants can be composed into 
families and variants of a higher abstraction level. The entities FAMILY 

DECOMPOSIDON and VARIANT DECOMPOSIDON in Figure 6-10 record the parent
component relationships between families and variants, without stating the process, 
either decomposition or composition, to achieve these design objects. The 
decomposition entity plays an important role in the design of product families and in 
deriving a compound variant from a compound family. Usually, the variants of a 
compound family are not predefined, but are derived from this compound family on 
customer-order. This derivation process requires the selection of primitive variants, 
which are then composed into a specific compound variant. 

Family • 
sublamily 

Family 
decomposition 

Figure 6-10. Decomposition 

Variant 
decomposition 

The v ARIANf DECOMPOSIDON entity is primarily used for the registration of 
compound variants. Furthermore it can be used to record the product structure of a 
primitive variant or single product. The datamodel enforces that each variant has a 
family. The following figure shows this strict interpretation of the product family 
concept. A product family is decomposed till the level of primitive families. Each 
primitive family has a number of variants, possibly with their own decomposition 
structures. The component variants belong to their own product families. These 
families, however, are not connected in a product family decomposition structure. 
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Fîgure 6-11. Family and variant decompos~ion 

This strict interpretation1 of product families and variants has advantages for product 
development as it does not only support the design of product families on higher 
levels of the product structure, but also the use of families for component variants. In 
other words, it is possible that the family decomposition is interrupted, but proceeds 
for component families. 

As stated before, there are cases where a product family cannot be decomposed into 
component families, for example an engine family containing petrol engines and 
diesel engines. The petrol engines and the diesel engines can be regarded as 
subfamilies of the engine family. The variantsof the diesel family, for example, share 
a common product architecture, which differs, however, from the product architecture 
of the petrol family. As these different subfamilies do not share a common product 
structure, a choice for a subfamily must be made first, before the decomposition can 
proceed. The reason to classify the diesel and petrol family into a general engine 
family could be that both subfamilies have similar interfaces to other families. In other 
words, the abstraction level of the general engine family permits the discussion of 
relationships with other families without discriminating between diesel and petrol 
variants. 

Figure 6-12 gives an example of families and subfamilies. As can be seen, there is a 
strict separation between a family decomposition and a choice between subfamilies2

• 

Figure 6-12. Families and subfamilies 

Other interpretations [Van Veen, 1992] allow single products which do not belong to a product 
family. This is not further discussed in this thesis. 

Other interpretations [Hegge, 1995] allow the selection of a product family being a component in a 
product family decomposition. Both the diesel and the petrol families would be seen as components 
of the car family, although it is mandatory to make a choice between them. 
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The selection of subfamilies is done with parameters and parameter values, in a 
similar way as variants of families are selected. This is discussed in one of the 
following sections. 

6.3.4 Interfaces 

FAMILY DECOMPOSffiON and VARIANT DECOMPOSffiON define relationships between 
design objects on different abstraction levels but within the same domain. In contrast, 
the interfaces between design objects are on the same level of abstraction, however 
still within the same domain. The (de)composition of designobjectsis strongly based 
on the (de )composition of interfaces. Chapter 3 gave examples of interfaces between 
functions, technology modules and physical assemblies. Figure 6-13 mentions the 
entity INTRADOMAlN INTERFACE in the data model. 

lntradomaln 
Interface 

Rgure 6-13. Non-hierarchical relationships 

Varfant 
decomposltion 

Variant 

It can be seen in the above datamodel that interfaces can exist between all design 
objects, both farnilies and variants. Product families that adhere to the definition of 
chapter 6.1 only have scaleable interfaces between product families. 

6.3.5 Mappings 

One of the basic assumptions of this thesis is that there are several domains in which a 
product farnily is designed. In these domains, the product family model integrates 
different models that act as a framework for capturing representations. However, in 
Figure 6-14, the functional, technology and physical model are not explicitly 
mentioned as separate database entities. Whether a design object belongs to one of 
these models is indicated using an attribute of the entity DESIGN OBJECT. The 
relationships between models of different domains, however, are explicitly recorded 
using the entity INTERDOMAlN MAPPING. A consideration of the functional, technology 
and physical model shows that these relationships concern both the allocation of 
functions onto modules (and modules onto assemblies) and the validation of modules 
against functions (and assemblies against modules). 
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Figure 6-14. Mappings between models 
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The next chapter pays attention to maintaining consistency between domains. The use 
of the mapping relationship for allocation and validatien is discussed in chapter 7. 

6.3.6 Parameters and parameter values 

The mechanism to specify variants and subfamilies is basically the same as in the GPS 
concept. Each product family has a set of PARAMETERs with corresponding 
PARAMETER vA LUEs ( see Figure 6-15). Th ere are two types of parameters: 

0 External parameters, which are inherited through the FA.WLY DECOMPosmoN 
entity and the FAMILY-SUBFAMILY entity; 

0 Internal parameters, which are specified at the family and only determine the 
variants of that family. 

This difference between internal and extemal parameters is indicated with an attribute 
of the PARAMETER entity. Extemal parameters are meant to co-ordinate component 
variants that can not be arbitrarily combined, while internal parameters have an 
influence that lies within the scope of the family' s interface definition. 

Figure 6-15 indicates that each parameter belongs uniquely to one product family. 
There are no global parameters, which are valid for all families in a product farnily 
structure1

• If a parameter of a product family affects more than one component farnily, 
the parameter is inherited to these component families. Nevertheless, the conceptual 
database model can be extended with a dictionary of parameters and parameter values. 
This dictionary is accessible for all families and can play an important role in 
standardising parameters and parameter values over different product families and 
different domains. 

Some product family languages define a set of parameters and parameter values, separate from the 
product family structure. The disadvantages of this approach are discussed in section 4.3.14. They 
concern the maintenance of parameters with respect to the families for which these parameters are 
needed, and the multiple use of component families. 
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Parameter Parameter 
value 

Figure 6-15. Parameters and parameter values 

Parameters represent a view on a product farnily. This view can be · understood by 
people who specify variauts of this product family. Therefore, these parameters are 
often used in commercial catalogues. However, they also play a role in the early 
phases of the designprocessas they specify the scope of the product family. In the 
product family model, parameters are often similar to functions that are formally 
defined in the functional domain. Some parameters, however, are related to modules 
in the technology domain or assemblies in the physical domain. Although parameters 
can be of a functional, technological or physical type, it must be possible to share 
them across domains in order to ensure a common onderstanding of the scope of the 
product farnily in these domains. 

6.3.7 Selection conditions 

Both variauts and subfamilies are selected with a Boolean expression of parameter 
values. This expression is recorded in the entity SELECTION coNDmON

1
• Figure 6~ 16 

shows that a SELECTION CONDmON is valid for either a VARIANT or a FAMILY

SUBFAMILY combination. The entity SELECTION CONDmON can also be modelled as an 
attribute of VARIANT or FAMILY-SUBFAMILy-2. 

' The SELECTION CONDITION entity records complex Boolean expressions. In a real database 
implementation, this entity should be implemented as a collection of entities for the different 
elements (parameter values and Boolean operators as AND, OR, and NOT) of the Boolean expression. 

2 Most implementations of the GPS concept have selection conditions for the family-variant 
relationship. The advantage of this approach is that a variant can have multiple parents, possibly 
with different selection conditions for the parent-component relationships. In the approach of this 
thesis, variants are never used as components in the family decomposition. If a primitive family is 
used by multiple parents, the parameters of the parent in question are inherited (and converted) to 
the parameters of the primitive family, after the right variant can be selected. 
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Figure 6-16. Selection conditions 
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Selection conditions make it possible to derive a variant from the product family. In 
general, selection conditions allow the creation of cross-sections of a product family 
model. The parameters that are used in a variant's selection condition should belang 
to the family of this variant. 

6.3.8 Selection constraints 

Selection constraints prohibit combinations of parameter values. In some cases, these 
combinations are commercially not wanted or technically unfeasible, for example as 
there are no component variauts to meet the requirement. An example concerns the 
parameters driveable and turnable of the office-chair. There is no stand variant that 
permits an office-ehair to be driveable without being turnable. Therefore, the user can 
only be stopped from selecting an impossible office-ehair by the following explicit 
selection constraint: driveable=yes :::::> turnable=yes. 

Figure 6-17 shows that a FAMILY bas nil or more SELECTION CONSTRAINTS, being 
constructed from PARAMETER VALUEs in a Boolean expression1

• 

Hegge [1995} proposes a selection tree instead of Boolean constraints. This selection tree is a 
logica! sequence of questions. The leaves of the selection tree refer to primitive variants. This 
approach has advantages from a logistic planning view, but is less. desirably from a design 
perspective as it blurs the logic of design constraints. 
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Figure 6-17. Selection constraints 
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Chapter 6.4 considers the consistency of selection constraints and interfaèes. 
Furthermore, the issue of redundancy in selection constraints and seleètion conditlons 
is discussed. Finally, this thesis argues how consistency of constraints cari be 
maintained across several models. 

6.3.9 Parameter conversion 

External parameters are inherited from parent families. In accól'dan'ce with the 
software paradigm (section 4.3.15), these external parameters are eonverted froiil the 
internal and extemal parameters of the parent family. The PARAMETER CONVERSION 
entity in Figure 6-18 can also be used to set additional parameter values for the 
invoked component farnily. These additional parameter valnes are always true in the 
context of the invoking parent family (see section 4.3.9). The possible vàriety of the 
invoked family is limited by the parent family in which this family is applied as a 
component. 

Parameter conversions are needed if a component farnily bas parameters that differ 
from the parameters of its parent families. The variants of the component family can 
only be selected if the parameters of the parent families have been converted to the 
parameters of the component family. The conversion of parameters permits the 
owners of families to specify the variants of these families with parameters that are 
recognised on that level in the product structure. The complexity of a parameter 
conversion is a measure for the complexity of intradomain communication. 
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Figure 6·18. Parameter conversion 

Finally, chapter 6.5 pays attention to representations. 

6.3.10 Representations 

A product family model structures design objects with hierarchical and non
hierarchical relationships. It provides the domains with a framewerk that guarantees a 
shared view on a product family. As such, a product family model is an important 
information entity in design. Furthermore it can be used as a basis for representations. 

Two types of representations can be distinguished: 

0 representations that restmeture the design objects of a product model; 

0 representations that are contained in documents. 

The first type of representation is also called derived models, for example an assembly 
model that is derived from the physical model. The design objects in these roodels are 
of the assembly type and some assemblies are even shared by both models. However, 
the physical model is always the souree for assembly model. In the product family, the 
difference between souree models and derived models is indicated with an attribute of 
the DESIGN OBJECT entity. 

The second type of representation concerns documents that are assigned to either 
families or variants. Figure 6-19 shows that each DESIGN OBJECT has nil or more 
DOCUMENTs. A document contains a view on the product family model, for example a 
PCB design, a software programme or a CAD drawing. 

207 



Structuring product families 

Figure 6-19. Documents 

Chapter 6.4 pays attention to the content of a document in relationship to the product 
family model to which these documents are assigned. A document that covers several 
design objects or a design object that has several documents can be an obstacle in 
maintaining consistency. This is especially the case if a document has its own 
document structure independent of the structure of the product family model. 
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6.4 Intradomaio and interdomaio consistency 

Different domains have different needs for structuring product information. The 
product family modeHing language as discussed in the previous chapter makes it 
possible to record these needs in separate, however connected, models. The product 
family modeHing language does not decide on the optimal number of domains for a 
specific manufacturing situation, although chapter 2 and chapter 3 made it plausible 
that the functional, technology and physical domain are sufficient to support the 
design process of non-compositional systems. 

D The advantage of a model that is shared by several disciplines lies in efficient 
intradomain communication. All designers involved, also of other domains, refer to 
the same design objects in the same structure. 

D The disadvantage of one shared model is that some information needs are not 
recognised in one shared model, for example when these information needs (1) 
refer to different design objects (e.g. functions and modules insteadof assemblies) 
or (2) structure design objects of the same type (e.g. assemblies as seen by 
engineering or as seen by manufacturing) in a different way. In the first case, the 
product model beoomes a campromise structure that hinders interdomain 
communication, while in the second case intradomain communication is hindered. 

The fact that a campromise model does not support the process of achieving 
compromises within and across different domains has been the main reason to 
distinguish a functional, technology and physical model. Each of these models has its 
own type of design objects (functions, modules and assemblies) and these design 
objects are structured differently in each model. There is only one functional model, 
one technology model and one physical model, as these roodels define the product 
family while it is designed. If there are two roodels with design objects of the same 
type, one of these roodels must be a denvation from the other modeL Otherwise, the 
definition of product information is ambiguons in that domain. 

Maintaining consistency plays an important role in the product family modeHing 
language. The issue of consistency can be subdivided into four problem areas, which 
are graphically summarised in Figure 6-20. 
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Figure 6-20. Consistency 
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1. Consistency within a domain. The parameters, parameter values, conversion rules 
and selection constraints formulate a view on a model, different from families, 
variants and interfaces; 

2. Consistency across domains. This concerns families, variants, parameters and 
constraints in the models of different domains. 

Bes i des intradomaio and interdomaio consistency, there is something that can be 
called representational consistency. This concerns: 

3. Consistency of documentation in relationship to the product models to which these 
documents are assigned; 

4. Consistency of derived modelsin relationship to the models that are the souree of 
these derivations. 

Representational consistency is discussed in the next chapter (6.4). Intradomaio 
consistency and interdomaio consistency are discussed in this chapter. The following 
sections consider 5 different consistency issues: 

6.3.1. Selection conditions versus selection constraints. A product family has (1) 
variants that can be selected and (2) constraints that prohibit certain 
combinations of parameter values. The selection conditions and the constraints 
should cover all combinations of parameter values of this farnily; 

6.3.2. Families versus variants. The compound variants, which are constructed from 
primitive variants that have been selected with a parameter mechanism should 
be consistent with the corresponding compound families; 

6.3.3. Parameters versus inteifaces. Parameters that co-ordinate the selection of 
distributed variants to perform a certain function should be consistent with the 
interfaces between these distributed variants; 

6.3.4. Parameters versus families. Although parameters and parameter values are 
usually defined in the specification, they can be formalised in domains as 
families and variants. In these domains, a parameter can be regarded as a 
representation of a product family, thereby introducing a potential consistency 
problem; 

6.3.5. Functions versus modules and assemblies. Functions are realised in modules 
and modules are physically realised in assemblies. A change in one domain 
can have consequences for design objects in other domains. 

The consistency issue can be supported by application programmes that make use of 
the conceptual data model. The relationships between entities in this datamodel show 
possible consistency problems. In genera!, the change of an entity' s instanee can affect 
instances of other entities with which this entity is directly or indirectly connected. 
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6.4.1 Selection conditions versus selection constraints 

The gencric product structuring concept uses parameters to create a simplified view on 
the product variety of a model. This simplified view regards a family and its variants 
as a blackbox with well-defined interfaces and functions. A selection in terms of 
parameter values determines which functions and interfaces are needed for a certain 
application. The effort to introduce a parameter selection mechanism and maintain 
consistency between parameters and families should be outweighed by the transparent 
representation of a product family using these parameters. 

The (intradomain) consistency between selection conditions and selection constraints 
can be easily checked at the primitive families. For example, the stand family of the 
office-ehair family has two parameters: driveable and turnable (see Figure 6-21). 

I I I 
Underframe seat Back Armrest 

l=n n n 
Stand Wheel Frame Upholstery Frame Upholstery 

Figure 6-21. Parameters driveable and tumable 

The parameter driveable is an extemal parameter, inherited from the underframe. The 
parameter tumable is an internal parameter, which is populated with a value at the 
stand family. In theory, there are 2x2=4 variants ofthe stand: 

Variants 

stand 1 

stand 2 

stand 3 

stand 4 

Selection condition 

driveable=no and tumable=no 

driveable=no and tumable=yes 

driveable=yes and tumable=yes 

driveable=yes and turnable=no 

Table 6-1. Theoretica! variants 

In reality, stand 4 does not exist asthereis a constraint, which states that all driveable 
chairs must be turnable: driveable=yes :::::> turnable=yes. 

Each variant of the stand has a selection condition that uses values of the parameters 
driveable and tumable in a Boolean expression. The three selection conditions and the 
selection constraint should be mutually exclusive, but should also cover all theoretica! 
combinations of parameter values. 
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The negation of the constraint results in the missing variant (stand 4) with the 
selection condition: driveable=yes and turnable=no. In other words, the three variants 
and the selection constraint together cover the four theoretica! combinations of 
parameter values. However, there is some redundancy in this constraint and the 
selection of variants. The selection condition driveable=yes and turnable=yes 
contains superfluous information as the constraint states that all driveable stands must 
be tumable. Therefore, this selection condition can be simplified to: driveable=yes. 

The above example of the stand family is relatively simpte, but the situation becomes 
more complex in case of primitive families that are specified by several parameters 
and constraints. Personal experience shows that "product families" that are designed 
on a product-to-product basis have a vast number of constraints that prohibit those 
combinations of parameter values that have not been sold before. Of course, such a 
collection of single products cannot be called a proper product family design and is 
therefore not advocated in this thesis. 

6.4.2 Families versus variauts 

Each family bas nil or more variants, and each variant belongs to one family. 
Compound variants are constructed from primitive and compound variants. The 
process of constructing compound variants should guarantee consistency between 
these variants and the families from which they are generated (intradomain 
consistency). Insome cases, the compound variant is used as a basis for designinga 
single product, for example by exchanging components (see Figure 6-22). Despite the 
many similarities in product architecture and used components, this changed 
compound variant does not belong to the product family anymore and the consistency 
between the family definition and the variant definition is lost. 

There is a fundamental difference between version management for families and 
version management for customer-order specific variants. Figure 6-22 gives an 
example of a customer-order specific variant that is adapted without considering the 
customer-order independent family. 

Variant derlvation 

Figure 6-22. Exchanging a component 

If there is a need to change a compound variant, but also to maintain consistency 
between this variant and its product family, the most viabie option is to alter the 
choice of the family's parameter values, after which a new compound variant is 
generated. Of course, this possibility is restricted to changes within the scope of the 
product family. 
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Chapter 7 pays attention to version management of product families. It wiJl be argued 
that the mechanism is similar to the mechanism of version management for single 
products. However the practical meaning is different. 

6.4.3 Parameters versus interfaces 

Another intradomaio consistency issue concerns the relationships between parameters 
and interfaces. Chapter 6.1 discussed the role of scaleable and non-scaleable 
interfaces. That section asserted that products with non-scaleable interfaces can make 
use of parameter inheritance to co-ordinate the application of component variants in a 
compound variant. 

An example concerns the upholstery of the seat and the upholstery of the back. Both 
have interfaces that specify the relationship wîth the seat frame and the back frame. In 
this case, the interfaces are identical for all variants of these upholstery families. 
Ho wever, the colours of the seat and back should be identical. This can be regarded as 
a functional inteiface, which is specific for each variant of the upholstery family as 
can beseen in Figure 6-23. 
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Figure 6-23. Parameters and interfaces 

Armrest 

The parameter colour co-ordinates the specific variants of both upholstery families. 
This parameter is specified at the first common parent (the office-chair) and is 
inherited to the seat, the back and the upholstery. The parameter inheritance 
mechanism uses conversion rules to automatically translate the colour of the office
ehair into colours of the seat, the back and the upholstery. These conversion rul es can 
beregardedas ioclusion constraints'. 

1 luclusion constraints can also be formulatcd as exclusîon constraints as is demonstraled with an 
example that concerns the driveability of blue office-chairs. The parameter colour of the office
ehair is inherited and converted to the parameter colour of the underframe. Then, the parameter 
colour of the underframe is translated to the parameter driveable of the underframe using the 
inclusion constraint: colour=blue =? driveable=yes. If this eenstraint is formulated as an exclusion 
constraint, not(colour=blue and driveable=no), the constraint tests for a prohibited selection of 
parameter values after these parameters have been populated with values. 
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6.4.4 Parameters versus families 

A product family cau be described in several domains. In each of these domains, the 
parameter mechanism can be used to specify the variauts of the family. In the 
functional model, those functional requirements are described that cannot he directly 
realised in the technology or physical model: these functional requirements are 
detailed till they cau he allocated to modules of the technology domain. The 
functional model describes only a part of the product family. Eventually, the product 
family with all its physical variety is described in the physical model. 

In the functional model, a function family has function variauts. Such a product 
farnily has one or more parameter values that eau he used to select the variauts of the 
functions. However, as parameters are often of a functional nature, they eau he very 
similar to functions as is visualised in Figure 6-24 for the imaginary function family 
position patient of a medical system. 

mcnual 

po1ienl poslllonlng 
(manucl. eiEiclllcol) 

Figure 6·24. Parameters and functions 

Figure 6-24 demonstrales that the parameter patient positioning is a representation 
that is very simHar to the product family position patient. The valnes of these 
parameters are simHar to the farnily's variants. The parameter patient positioning is 
especially useful in the technology aud physical domain as it is there used to select 
modules aud assemblies that are distributed over the design aud together realise the 
function that is represented by the parameter. 

However, the parameter patient positioning is not sufficient for a further design of the 
functional model as the functions have to he further decomposed into sub-functions 
hefore they cau be allocated to modules of the technology model. 

Figure 6-25 shows a functional decomposition in which function Fl has two function 
variauts F2 and F3. The function family corresponds to the parameter Pl while the 
function variauts correspond to the parameter valnes Pl.l aud P1.2. The functions F2 
and F3 need to be further decomposed hefore they eau be allocated to a common 
module M3 aud to two alternative modules M4 aud M5. The latter two modules are 
selected with parameter Pl and its parameter values P1.2 and Pl.l respectively. 
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Figure 6-25. Function decomposition 

In general, a set of parameters, parameter values and selection constraints can be 
regardedas a representation of a product family. A comparison of the representation 
and the product family shows that the same structuring principle is used: parameter 
values are classified into parameters, while variants are classified into families. 
Similarly, selection constraints correspond to prohibited combinations of product 
variants. 

This not only holds for the functional model, but also for the technology model and 
physical model. The performance of the function variant position electrically (see 
Figure 6-24) cannot be modelled in the functional model, but is a property of the 
technology domain. A high performance solution requires other technologies then a 
low performance solution. If the customer has the possibility to choose the 
performance level, this choice is reflected in the technology model as a separate 
parameter. This parameter is of a technological type. 

Figure 6-26 shows that parameters are introduced in the specification and are usually 
of a functional, technologkal or physical kind. They are often very simHar to the 
designobjectsof the corresponding models. In Figure 6-26, the number of parameters 
increases in the different models. 

Figure 6-26. Reusing parameters 

Some parameters are defined on system level as they control different component 
families of the system, while other parameters are introduced in the decomposition 
process. The latter parameters have a smaller scope as they influence only a limited 
number of families, possibly only one. 
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Figure 6~26 also shows that some parameters are valid in the functional model or 
technology model, but are lost in the allocation of design objects, for example because 
all parameter values are realised in a common design object in another product model. 
A well~known example concerns a common software module in which several 
functional options are realised. 

Interdomaio communication 

Parameters play an important role in interdomain communication. Within a domain, 
the parameters are often well-understood by the responsible designers as the 
parameters are similar to the design objects. In other domains, the parameters 
represent a different view on the design objects. It is precisely this difference that 
supports the selection of modules and assemblies on functional criteria. In other 
words, the fact that modules and assemblies are not meant to be a definition of 
function, but are meant to be a definition of technologies, respectively the physical 
implementation, asks for a mechanism that supports a functional selection. The 
following table shows whether parameters and design objects are of a similar or 
different type. 

Functional model: 

Functions 

l Technology model: 

! Modules 

j Physical model: 

i Assemblies 

Functional parameter similar J different j different 
>+UUU~U•~•nooooOOOOOO+O+OOO*H•~•••hoUOUO .. HUUOHO Hoooooouooouun .. o•ouunuuunooooouo•••••t•••~oununnnouuuo>o+onunooono•••••••u~••t••*>nunououoo•oo>Ouooooooooooo+Ouooo<O•o 

Technology parameter i similar l different .. Ph;~i~~·~~~~~; ................................................................ r:······ .......................................... 't~i;iï;··········· ................ . 
Table 6·2. Parameters versus models 

From thîs table, it can be seen that technology parameters are not applicable in the 
functional model. Furthermore, physical parameters are not applicable in the 
functional model and technology model. Although physical parameters are often 
regarded (by designers), as redundant in the physical model, it is useful to introduce 
them in order to ensure a common mechanism for generating variants from the 
product family modelor one of its derived models (e.g. the assembly model). 

Summarising, a parameter can be regarded as a representation of a product family that 
is relevant for making selections in other domains. U sually, most parameters are of the 
functional type and therefore correspond to product families in the functional model. 

· The corresponding parameter valnes correspond to product variants in the functional 
model. 
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6.4.5 Functions versus modules and assemblies 

Product families and variants exist in all domains. A model in a domain is 
characterised by the fact that its design objects differ from design objects in other 
domains. These different design objects are however related, as design objects of one 
type (e.g. modules) can be seen as solutions for design objects of another type (e.g. 
functions). The issue in interdomaio communication is maintaining consistency 
between design objects, i.e. families and variants. 

The product family modeHing language introduced the MAPPING entity to support this 
consistency issue, both for allocation and validation relationships. Functions are 
allocated to modules and modules are allocated to assemblies. Chapter 7 asserts that 
the allocation of several functions onto one module is less ambiguous and therefore 
easier to maintain than the allocation of one function onto several modules. 

The allocation of interfaces is related to the allocation of design objects. If two 
functions in the functional model are connected with a functional interface, and if 
these functions are allocated onto corresponding modules in the technology model, 
then the functional interface is allocated to the technology interface, connecting these 
modules. 

A more difficult situation in interdomaio communication concerns constraints. It is 
possible that there is a constraint on a combination of module variants, while the 
corresponding assemblies have no constraint on their physical fit. In general, there is 
no need to spend additional effort on creating a physical fit between two assembly 
variauts if their combination is not desirabie from a functional or technological 
perspecti ve. 
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6.5 Representations 

Two topics are discussed in this chapter. Firstly, a product model in a domain 
provides a framework for documents, for example a 2-D or 3-D CAD drawing 
represents the physical model. Secondly, a model in a domaio can be used to derive 
roodels for use in operational processes, for example an assembly model, which is 
derived from the physical model. 

Each domain bas its own type of design objects, for example functions, modules or 
assemblies. Design objects have a variety of representations to express relevant 
properties of these design objects. This thesis defines a domaio as the combination of 
a model and its representations. A model is a framework for structuring 
representations. 

This chapter does not consider the languages that are specific for representations, 
although some examples were given in chapter 3. Therefore, documents will only be 
discussed as an abstraction of representations. There is a number of alternatives for 
structuring documentation. These alternatives have varying possibilities for 
maintaining consistency between the document content and the design object to which 
the document is assigned. 

Furthermore, derived roodels will be discussed. These share design objects with the 
roodels from which they are derived. In contrast to representations, the structure of 
derived roodels differs from their souree models. This chapter elaborates on the 
assembly model, which is derived from the physical model. 

6.5.1 Documentation 

As stated before, representations are contained in documents, which are assigned to a 
product model1

• Figure 6-27 showshow a document is related toa compound design 
object, for example a function, module or assembly. 

Rgure 6-27. Design object and document 

The content of this document can be interpreted by a human being who onderstands 
the syntax and semantics of the document, for example a text giving additional 
information on a set of functions. 

1 The product family model in itself can also be seen as a document, however a document that is 
accessible for an application that creates and maintains product family models. 

218 



Structuring product families 

Although a document is assigned to one design object, its content can cover several 
design objects, for example also the component objects of the design object to which 
the document is assigned. It is often seen that for reasons of maintenance the writer of 
a document prefers a large document in stead of a set of smaller doeurneuts that refer 
more adequately to design objects. 

In many cases, a document contains implicit structure, for example a textual document 
with chapters, paragraphs and pictures (see Figure 6-28). In the remainder of this 
chapter, these will be called document objects. The structure of a document is often 
ambiguous and can only be interprered by human beings. However, if a document is 
created by a software application pro gramme, the structure of the document is explicit 
for this programme. A CAD drawing of an assembly, for example, can be created by 
compiling the drawings of its components if the relative positions of these 
components are known. 

Figure 6-28. Document with implicit structure 

If a document is a representation of a product and if the structure of the document 
objects is identical to the structure of the design objects of the model to which the 
document is assigned, the document can be subdivided into smaller documents that 
refer to the components of the original design object. However, this requires software 
programmes that are able to manage representations over different design objects. 

Figure 6-29. Split documents 

In Figure 6-29, it can be seen that the document of Figure 6-28 is subdivided 
according to the design objects. The compound document is assembied from its 
component documents and does not contain information that is already present in the 
component documents. It only states how these component doeurneuts can be 
assembled. 
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A document with an intemal structure can have conditional document objects as is 
seen in Figure 6-30. The reason for this variety can lie in the coverage of the 
document. If the document covers several conditional design objects, it is likely that 
this variety is also reflected in the corresponding document. This is, however, not 
always the case as the conditional design objects might have common information, 
which is therefore described in one non-conditional document. Vice versa, it is also 
possible that there is variety within a document, without referring to variety within a 
model. For example, a software module, although common for all variants, might be 
made specific for use by the service instaBation engineerwhochanges some set-ups in 
the software module. These set-ups are possibly defined in a document. 

condlflon 1 condlflon 2 

c~~.:co 
~~ndmon2 

Figure 6-30. Document with implicit variety 

If the document structure is identical to the model, the document can be subdivided by 
assigning the document objects to the conditional design objects (see Figure 6-31). 

condmon 1 condmon2 

Figure 6·31. Conditional documents 

The structuring mechanism of documents is very similar to the structuring mechanism 
of products. Documents can have component doeurneuts and eventually every 
compound document is assembied from a set of primitive document. Furthermore, 
documents can be reused in several parent documents or they can be related to several 
design objects. However, if a document structure becomes independent of a model, 
the document structure can be regarcled as a model in its own right. 

The structuring alternatives of documents are relatively easy to model. More difficult, 
however, is the question how consistency should be maintained between doeurneuts 
and design objects. If a design object bas more than one document and if a document 
covers more than one design object, an engineering change of a design object can 
result in a maintenance effort for more than one document. Most likely, only a few 
document objects contained in these documents are effected by the change. 
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Therefore, from a communication perspective, it is easier to divide documents in 
subdocuments that correspond as much as possible to design objects. In an ideal 
situation, an engineering change will only affect one document. 

However, from the perspective of initia! creation, it is often easier to make one 
document that covers several design objects. All document objects are in one 
document, which makes it easier to oversee dependencies. 

Summarising, intradomaio communication favours larger documents, while 
interdomaio communication favours smaller documents (see Figure 6-32). 

more Interdomein communlcatlon ln1radomaln communlcatlon 

i 
favourable 

i 
less 

small -- document slze-- large 

Figure 6-32. The intradomain and interdomain perspectives 

Very smalland very large documents are difficult to manage from both perspectives. 
The optimum document granularity must be based on the relative importance of 
intradomaio and interdomaio communication. An emphasis on good communication 
between domains, for example to shorten development time, favours smaller 
documents. The negative effects of smaller documents for intradomaio 
communication can be compensated by actvaneed document management systems that 
can present a large set of smaller documents to the user as if it is one document. This 
is further not discussed in this thesis 1• 

6.5.2 Derived models 

Derived models are based on existing design objects, which are then restructured to 
present a view on a product family that better supports an (operational) process than 
the structure of the model does. For the purpose of the discussion, the existence of a 
functional, technology and physical model is assumed. The following two examples 
discuss: 

For the interested reader, see Hobbs [1985] who has developed a mathematica! theory of 
granularity. This theory makes it possible tolook at information under various grain sizes, although 
it is still possible to switch among these different granularities. Furthermore, Eindhoven University 
of Technology has started research activities in the area of Enterprise Document Management 
Systems (see section 8.3.2). 
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D the physical model structured to the assembly process; 

D the physical model structured to functions of the functional model. 

The first example is also known as the assembly model. lt is usually derived from the 
physical model and the manufacturing routing, and is known in production control 
systems as a (generic) bill-of-material. The second example structures the physical 
assemblies towards the functions of the functional model. In many companies, this 
model is known as a functional model or an engineering bill-of-materiaL This thesis 
argues that the notion of functional model should be reserved for those product 
roodels that really describe the function of the product, independent of the solution 
concepts and the physical materialisation. Nevertheless, it can be useful to represent 
all assemblies that contribute to the realisation of a certain function. 

funcffonal model technology model phySical model 

~ o%% ~ng 
~ /\1 

"funcffonar model ~ assembly model 

Figure 6-33. Models and derived models 

Figure 6-33 summarises the three product models, the assembly routing, the assembly 
model and the so-called "functional" model. In the remainder of this chapter, these 
examples of derived roodels will successively be discussed. 

Assembly model 

Section 3.3.3 discussed the conditions that the assembly process places on the 
physical model. These conditions are summarised in the design-for-assembly (DfA) 
metbod (Eversheim, 1991] and comprise the reduction of parts and the simplification 
of joining operations. The physical model is, however, always a compromise between 
different requirements. Besides assembly, there are demands with respect to the 
function and the serviceability of the physical product. Each discipline and each 
operational process that makes use of the design result will recognise its demands to a 
limited extent. The derivation of roodels therefore does notchange the extent to which 
these demands are met by the physical model. lt only changes the presentation of 
information, so as to give more insight in the product from a particular 
representational perspective. For example, the assembly model might differ from the 
physical model in the following respects: 

D Components and sub-systems are assembied in a different sequence than is 
suggested by the decomposition structure of the physical model. Please note that 
the physical model does not define a composition sequence. lt only shows the 
relationships between assemblies on different abstraction levels; 
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0 Non-hierarchical relationships are omitted. Product architectmes do not play a role 
in production control systems, which focus on the composition of assemblies by 
rnadelling the assembly process structure in relationship with the assembly product 
structure. For example, each (primitive and compound) assembly bas an attribute 
indicating at which place and time this assembly should be completed. Therefore, 
the production control system uses algorithms to calculate the availability of 
assemblies1

; 

0 As a consequence of omitting product architectures, identical components are 
grouped. For example, the physical model shows bolts and nuts in their precise 
geometrical location, even if identical bolts and nuts are used to conneet different 
assemblies. In contrast, the assembly model groups these components by 
introducing a quantity attribute for each component type2

; 

0 The parameters that define a variant in the physical model can be used to define a 
variant in the assembly modee. This thesis stated that parameterscan be used as a 
communication means between different domains. However, restrueturing the 
physical model for assembly purposes might result in different relationships 
between parameters and assemblies, especially when it concerns the inheritance of 
parameter values over the assembly model. 

The above differences between a model and a derived model have consequenees for 
the product family rnadelling language. It must be possible to define derived models 
that share design objects with the physical model, or any other model. Although of the 
same type, some design objects in a derived model do not exist in its souree model. 
Primitive design objects are shared, but compound design objects can be different 
The end-product, however, is the same for the derived model and the souree model. 
Figure 6-34 shows a model and a derived model, sharing all design objeets except C 
andF. 

Figure 6-34. Deriving a model 

' For more information on production control systems and the algorithms that are applied for 
calculating the availability of material, see Bertrand, Wortmann and Wijngaard [1990]. 

2 In the FAMILY DECOMPOSITION entity and in the VARIANT DECOMPOSITION entity, quantity is only 
important when it concerns non-discrete (i.e. continuous) variables as length and volume. Product 
families, making use of continuons variables, are not discussed in this thesis. 

3 Exceptions concern parameters that are defined for internal reasons, for example different 
manufacturing locations depending on the available capacity. 
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In the above derivation process, both families and variauts are shared across different 
models. The consistency between a model and its derived models is maintained 
through the shared design objects. A change in a shared design object might have 
consequences for parent objects in the derived model. Whether these parent objects 
require version updates must be considered for every case individually. This issue is 
discussed in more detail in chapter 7. 

"Functional" model 

The "functional" model which is derived from the physical model and the functional 
model (see section 3.3.1) is in fact a functional physical model. The structure of the 
model is based on the functional model, while the elements of this '1functional" model 
are of the physical type. A well known example is the materialisation of the function 
anti-loek braking system (ABS) as can be seen in Figure 3-17. The assemblies that 
tagether create the function ABS are visualised in the physical architecture of the 
motorcar. 

Although such a functional physical model might be useful for commercial purposes 
and possibly also in the later phases of design, it is insufficient in the early phases of 
design where the technologies need to be determined for the realisation of the ABS 
function. Technologies as software, electronics and hydraulics cannot be visualised in 
such a functional physical model. and a technica! calculation using the corresponding 
modelling languages is not supported either. 

However, this thesis asserts that many designs have known decomposition strategies 
in the relationship between function, salution principle and physical form. In these 
cases, there is no need for a separate functional model as the functions, which are 
described in the specîfications, are unambiguously understood by designers who are 
responsible for the realisation of the product 

Often, the solution principles are also of a physical nature, although still a difference 
is made between the technology model and the physical model. In such a technology 
model, the physical modules are meant to realise the functions, while the assemblies 
in the physical model are designed to be manufacturable. The structure of this 
technology model resembles the functional physical model, as discussed before. The 
physical modules are grouped according to the function they provide. It is then the 
responsibility of engineering to transfarm these modules into assemblies that fit in the 
definitive physical architecture. In this physical model, it is still possible to make 
functional cross-sections. This can be supported by the parameter mechanism. 
Parameters often correspond to functions and their values can be used to select the 
physical assemblies. However, this mechanism is restricted to those functions that are 
also known as parameters. The sub-functions that are created by decomposing a 
functional option (i.e. a parameter value) cannot be traeed in the physical model. 
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6.6 Concluding remarks 

This chapter defined the notion of a product family and designed a rnadelling 
language for products that slightly deviate from the product family definition, that is, 
products of which variabie functions (or technology modules) are distributed over a 
range of technology modules (or physical assemblies). This language has been 
described with the technique of conceptual database models. However, it has not been 
the purpose of this technique to demonstrate how the product family modeHing 
language can be supported by database implementations. 

A second remark considers the formalisation of product models. This thesis 
pronounces a strict interpretation of product family development and the author is 
aware that manufacturing companies need more flexibility in the application of these 
concepts. For example, the statement that also single products belong to a product 
family, i.e. a product family with one variant, is a more rigarous interpretation of 
product family development than companies will implement. A simHar issue concerns 
the maintenance of consistency. The low level of repetition in design gives more 
possibilities to correct inconsistencies than the high level of repetition that is common 
in operational manufacturing processes. Therefore, it is imaginable that a company 
emphasises the consistency of parameters and design objects in the assembly model, 
without stressing intradomaio and interdomaio consistency in the functional, 
technology and physical domain. 

Thirdly, the product family rnadelling language doesnotstate an optima! number of 
domains for a certain design situation. Although most companies, designing complex 
non-compositional product families, need a functional, technology and physical 
model, it is possible that less complex situations require only a physical model and 
probably a technology model. Nevertheless, the functional domain is still present in 
the form of specifications, including parameters and parameters values, although these 
specifications are of a less formalised nature than a functional model. The value of the 
functional modellies especially in an unambiguous definition of functions that can be 
realised with different technologies. Also the family design metbod that is proposed in 
the next chapter can be executed independent of the number of domains that is 
involved. 

Finally, the design of a product family can not be campelled by a rnadelling language 
alone, but requires a corresponding design method. For example, synchronising 
decomposition in different domains requires a design process that relates decisions in 
one domain to decisions in other domains. A similar example concerns the allocation 
of functions to modules and the allocation of modules to assemblies. The product 
family rnadelling language allows the registration of these allocations, but does not 
give design criteria for optima! allocations. Therefore, the following chapter defines a 
family design metbod that pays attention to the development of a product family in 
relationship to the description of this product family in several domains. 
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How can we know the daneer from the dance? 
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Y eats' couplet refers to an age-old dichotomy, structure and behaviour [Weinberg, 1979]. Is 
structure the invariant of behaviour, or does behaviour result from structure? For this reason, 
chapter 7 of this thesis stresses the importance of a family design method that is closely related to 
the product family modelling language of the previous chapter. 



7. Developing product families 

The family design method, which is discussed in this part, is an extension of the 
Design Cycle that was proposed in part 5 for single products. It completes the 
rnadelling language of part 6, which is meant for non-compositional systems (see the 
introduetion of chapter 3). Therefore, the design methad focuses on the interactions 
between different domains in which such a product family is described. 

Chapter 7 camprises the following chapters: 

7 .1. Overview. The Design Cycle for single products is repeated for several domains 
in which a product is defined. This chapter discusses the interactions between 
domains, however without paying particular attention to product families; 

7.2. Designing sub-systems. Product architectmes allow the concurrent development 
of sub-systems, i.e. product families on intermediate levels in the product 
hierarchy. A level in the product hierarchy acts as a context for the design of 
objects on lower levels of this hierarchy; 

7.3. Modularity versus integration. Product families require some sort of 
modularisation as the selection of assemblies is dependent on the options 
chosen. In the design process, a clear visibility of the relationships between 
functions, modules and assemblies is needed to determine a product architecture 
in which different variants fit. These choices can conflict with a strive for more 
integrated designs that often have a better cost performance ratio; 

7.4. Considering variety. The variety issue introduces special requirements for the 
design process. First of all, interfaces in a domaio should be standardised to 
enable the arbitrary combination of component variants. Secondly, the 
distribution of variabie functions and technology modules in the allocation 
process should be avoided; 

7.5. Observations. A number of observations are made. These concern the use of 
product architectures, sequentia! versus concurrent design, platforms versus 
families, life-cycles, version management, the development organisation, and 
the diabolo: 

7.5.1. The use of product architectures. The development of a product family 
requires product architectmes in which component variants can be 
easily exchanged. In general, a product architecture is used to separate 
the stabie and changeable aspects of development. This section 
summarises the use of product architectures for other purposes than 
product variety, for example communication, learning and reu se; 

7.5.2. Sequentia! versus concurrent design. The family design methad is used 
to clarify how concurrency is created by performing several sequentia} 
processes concurrently. This section stresses the importance of product 
architectmes for establishing contexts in which sub-systems can be 
designed in parallel; 
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7 .5.3. Platforms versus families. Product families are based on the reuse 
concept. Relatively stabie architectures are used to exchange 
components that are reused over different product variauts and possibly 
different product families. Product platforms are designed to promate 
reuse over different product families; 

7.5.4. Life-cycles. The development of a product family requires careful 
thought about the period that this product family and its variauts can be 
effectively used in their contexts. It will be argued that the issue of 
reuse is closely related to the issue of life-cycles; 

7.5.5. Version management. Both product families and variants can have 
versions to differentiate them from families and variauts with 
conflictîng interfaces. Therefore, the product architecture's interfaces 
define whether a change in a product family requires a new version of 
this family; 

7.5.6. Development organisation. The design process model has 
consequences for the organisation structure of a manufacturing 
company, while this organisation structure will also influence the result 
of the design process. This section considers the balance between 
project-orientation and discipline-orientation in terms of the presented 
domains; 

7.5.7. Design considerations and the diabolo. The final observation concerns 
the shape of the diabolo. Many design considerations are reflected in a 
certain shape. Achieving a campromise between different 
manufacturing disciplines is impeded by the different interests of these 
disciplines. 

7.6. Case studies. This chapter demonstrates the suitability of the product family 
modelling language and the family design metbod in two companies that 
rnanuf acture product families in a large variety. The case studies are 
representative fortheuse of the developed concepts; 

7.6.1. Philips Medica[ Systems. This chapter re-introduces the Philips Medical 
Systems case to illustrate the contents of the above chapters. In this example, the 
product family is formally described for both systems and sub-systems in the 
functional, technology and physical domain; 

7.6.2. Philips Lighting. This case study illustrates the design of luminaires by 
Philips Lighting. The example demonstrales that the product family modelling 
language and the family design metbod can also be used in less complex 
situations, for example if the functional domain is only known in the 
specifications and not formally described with a functional modelling language. 

A comprehensive condusion and evaluation ofthe product family modelling language 
and the family design metbod is postponed to chapter 8. 
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7.1 Overview 

All design should start with a need that, when satisfied, will fit into an existing market 
or create a market of its own. The need analysis, together with constraints on the 
solutions and an agreed set of evaluation criteria is recorded in the product 
specification. In many companies, this specification is the outcome of a feasibility 
study that reduces both the commercial and the teehuical risks to an acceptable level. 

The textual elements of the product specification are formalised in the functional, 
technology and physical model. This formalisation process can be regarded as an 
allocation of textual elements to functions, modules and assemblies (see also section 
5.5.5). In this allocation process, the intradomain dependendes between design 
objects are recorded as interfaces. A collection of design objects and their 
dependendes confarms to the product architecture. 

Not only specifications are allocated, but also functions and modules. As a result, the 
technology model is affected by both the specifications and the functional model. In a 
similar way, the physical model is affected by both the specifications and the 
technology model. Figure 7-1 shows these different allocations. 

~~~~=+ 
technology 

model 

Figure 7-1. Different allocations 

physlcal 
model 

In this figure, it is also shown that the allocation of specifications, functions and 
modules is not necessarily to the same level in a domain's product hierarchy. If the 
development of a motor car is considered, it is very well possible that the 
specifications affect different levels in a hierarchy, for example the reuse of abstract 
concepts as engine technologies in the technology domain and the reuse of concrete 
and physical parts as engine components in the physical domain. Furthermore, the 
influence of the specifications is not necessarily on a higher level in the design 
hierarchy than the allocation of design objects from other domains. 

The vertical arrows in Figure 7-1 and Figure 7-2 symbolise decomposition activities. 
Decomposition is often considered to be difficult as new information is added to the 
domains. Therefore, it is important to verify this new information across different 
domains by applying the allocation, composition and validation steps. 
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The composition of modules must conform to ( 1) the functions defined in the 
functional model and (2) the technology constraints that are settled by the 
specifications. This requires communication and iteration as part of the exploratory 
and often impHeit design process. After validation, the technology model is further 
decomposed to achieve a level of detail that is understood in the physical domain. 
Figure 7-2 shows these steps for the functional and technology model. 

func11onol 
model 

technology 
model 

Figure 7-2. Verification of new information 

Product models are used in the design process, but are also used to derive models for 
operational processes. Figure 7-3 gives an overview of the design process .. The 
internat conditions (e.g. the organisation culture) are sometimes explicitly described in 
the specifications, somelimes codified in the product models of a previous product 
family. The grey areas of the product models denote that further decomposition is 
neerled before these design objects can be allocated to a next product model. 
Composition and validation are not mentioned in this figure. 

Figure 7·3. Overview of the design process 

The above overview presents the main steps of design as a sequentia! process: the 
technology model and physical model are detailed after having defined the functional 
model. This is a logical consequence of the Design Cycle as, in the explicit design 
process, decomposition, allocation, composition and validation are executed 
consecutively. Later in this chapter, it will be asserted that sub-systems can be 
designed concurrently by executing their sequentia} design cycles in parallel. 
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7.2 Designing sub~systems 

From the perspective of the family modeHing language and the family design method, 
there is no difference between systems and sub-systems, they are both product 
families. Each product family in the product hierarchy must be designed, although the 
application for which these families are designed can be different. Therefore, a 
manufacturing company can make a difference between the design process of systems 
and sub-systems. In the remainder of this chapter, the application for which a product 
family is designed is called a context, similar to the notion of context as introduced by 
Alexander (see chapter 2.5). 

Important in the design of product families is the penetration of functional 
requirements, i.e. the design decoupling point [Muntslag, 1993]. A product family 
above the design decoupling point is especially designed for its context, while a 
produet family below the design decoupling point is designed independent of a 
specific context. One of the major difficulties in design is linking up both types of 
product families. 

A product family below the design decoupling point is reused in different contexts: it 
is designed withits own specification and, dependent on the complexity of the product 
family, with its own product definitions in the functional, technology and physical 
domain. The reuse of such a product family requires that the context' s interfaces meet 
the product family's interfaces in all domains. 

Figure 7-4 gives an example of a functional model that is decomposed until the 
allocation to the technology model can be made: two system functions are allocated to 
one module, which is a sub-system. Furthermore, as Figure 7-4 shows, the realisation 
of this module is also determined by the specifications. 

Figure 7-4. Allocating system functions toa module 

After allocation, the module can be further decomposed. If the module is a 
compositional system, it can be decomposed in a step-wise manner, not requiring a 
formalisation in different domains. If the module is still a non-compositional system, 
it requires a separate functional analysis and consequently, the use of modelling 
languages in different domains. 
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Figure 7-5 shows that the specifications, the technology module and the two allocated 
functions of Figure 7-4 together forma context for the design of a non-compositional 
sub-system, requiring its own functional analysis. 

Rgure Ni. Designing a sub·system 

The creation of a product architecture on system level gives possibilities to design 
several sub-systems in parallel. Figure 7-6 gives an example in which six functions 
are allocated to three modules after which the resulting sub-systems, combinations of 
two functions and one module, can be designed in parallel. 

11me 

Rgure 7-6. Designing sub-systems in parallel 

If a sub-system is dedicatedly designed for a system, the specification of this sub
system is directly related to the specification of the system. In other cases the design 
life-cycle of the sub-system is such that the specification of the system incorporates 
the specification of the sub-system. In general, different life-cycles of systems and 
sub-systems require a decoupling of design processes. 

The challenge of designing product families is the reuse of sub-system variants in 
different system variants. This can be particularly a problem if the application of a 
sub-system variant in the context of a system variant is considered on a product-to
product basis. A recursive approach to developing product families should not 
consicter the application of individual sub-system variants in individual system 
variants, but should focus on the application of a sub-system, with its variants, in a 
system. This considerably reduces the complexity of designing product families. 
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7.3 Considering variety 

The variety issue introduces special considerations for the interfaces in one domain 
(see chapter 6.1) and the allocation process between dornains. This chapter elaborates 
on the allocation process. It is argued that optional functions must be alloeated in a 
modular way to technology modules and physieal assemblies. 

In general, a modular design is considered to be a design in which each module 
executes only one or a restricted number of functions. The opposite of a modular 
design is an integrated design. As the example in Figure 7-7 shows, this thesis 
reeognises two different types of integration: 

0 Souree integration refers to the situation where a design object is allocated to 
several design objeets in another domain. A design is more integrated if a souree 
object in one domain is distributed over more target objects in another domain. In 
the functional domain, souree integration is equivalent to distributed functions. A 
well-known example is the anti-loek braking system of a motorcar (see Figure 3-
17). A second example is the colour of the office-ehair (see section 4.3.8), which 
determines both the upholstery of the seat and the upholstery of the back. Souree 
integration is often equivalent to a high-quality design as the distribution of 
functions gives a coherent design; 

0 Target inlegration refers to the situation where several design objeets are allocated 
to a design object of another domain. A design is more integrated if more souree 
objects are allocated to a target object. In the technology domain, target integration 
is equivalent to function sharing. An example is the sheet-metal body of a motor 
ear, which performs many functions, including eleetrieal ground, aerodynamic 
faring, weather proteetion and aesthetics. Without function sharing, motor cars 
would be relatively large, heavy, expensive and unreliable. 
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Figure 7-7. Inlegration of functions, modules and assemblies 

The allocation of functions to technology modules and physical assemblies is guided 
by the required modularity or integration. If it is necessary to isolate a function, the 
corresponding modules and assemblies should be designed such that they can be 
isolated in their respective architectures. In other words, optional functions must be 
allocated to a limited number of technology modules and physical assemblies. 
Functions that are common in the product family can be integrated. 
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The variety within the technology domain is not only determined by the allocated 
variety in the functional domain, but also by those parameters of the specification that 
directly relate to the technology domain. There are three possibilities: 

0 Similar variety. The variety in the functional domain is realised with module 
families aud module variauts in the technology domain. The design complexity due 
to variety remains the same; 

0 Decreasing variety. Variauts of a function family have au identical solution in the 
technology domain, i.e. one or more module variants. This reduces the complexity 
of variety. Especially, software gives this possibility as reproducing software is 
inexpensive. Figure 7-8 gives au example that shows that the solution for two 
function variauts is one module in the technology domain; 

Figure 7·8. Function family versus module variant 

0 Increasing variety. The varietyin the technology domain eau increase with respect 
to the functional domain if there are technology parameters mentioned in the 
specifications. Figure 7-9 gives au example that shows that the variety in the 
technology domain is not caused by the allocation of a function, but by the variety 
that is defined in the specifications. 

Figure 7 ·9. Function variant versus module family 

Por all above cases, the allocation of the technology domain to the physical domain is 
executed in a simHar way. Furthermore, each allocation process requires the 
consideration of constraints on combinations of functions, modules aud assemblies as 
was already asserted in chapter 6.4. 
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7.4 Modularity versus integration 

Modularity corresponds to flexibility and changeability. It is an effective mechanism 
to upgrade and reuse existing functions, modules and assemblies. Reuse multiplies the 
effectiveness ofhuman problem solving by ensuring that the extensive workor special 
knowledge used to solve specific development problems will be transferred to as 
many similar problems as possible. This reduces initia/ costs, especially in product 
development. 

In contrast, integration corresponds to stability and optimisation. In an optimised 
design, a large variety of functions is realised with a limited number of components. 
The initial costs of such a multi-functional design are usually higher than the costs of 
a modular design, but the operational costs (in manufacturing and service) are 
relatively low due to this limited number of optimised components. However, 
integration requires a stabie environment and can therefore best be applied in mature 
products. The trade-off between modularity and inlegration is shown in Figure 7-10. 

t 1 
initia! costs 

costs 

Figure 7-10. Initia! costs versus operational costs 

The decomposition process, and consequently the level of modularity or integration 
that can be achieved in a design, is very dependent on the product architectmes in the 
different domains. Product architectures govem the process of allocating functions to 
modules and assemblies. Therefore, important considerations with respect to 
modularity and integration should be made in the early phases of the design process, 
where the product architectmes in the different domains are determined. 

Ulrich ea. [1990, 1991] state that most architectmes evolve from being modular to 
being integrated. In later stages of the product life-cycle, when the interactions 
between different aspects are better understood, the architectmes in the different 
domains should enable function sharing in order to make the design more efficient. 
According to Ulrich ea., the mechanism for function sharing in mechanica} 
development is based on the fact that: 

" it is easier to think about new problems if they are decomposed in a modular fashion, 
and partly because in the initia[ stages of product development, engineers want to be able 
to work independently on different aspects of the design. 

( ... ) 
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Of the infinite properties of a structural element, only a small set is relevant to the 
hehaviour the designer intends for that element. In addition to the primary properties of a 
structural element that provide that element's intended function, there are many 
secondary properties that are incidental to those that implement the intended function. 
The key idea that allows function sharing to he achieved by a design procedure is that 
these secondary properties of structural elements can he exploited. By recognising and 
exploiting secondary properties of one element, neighbouring elements can he eliminated 
from the design ". 

Modularity and integration seem to be conflicting requirements. However, as Figure 
7-11 shows, both can be achieved simultaneously by reducing a third factor, namely 
the design margin. The design margin is the freedom that a designer maintains in the 
development process to allocate less critica! requirements in a later stage. The 
remaining flexibility of the design is then used to find any solution that meets these 
requirements. Increasing both modularity and integration reduces flexibility and the 
possibility to postpone the allocation of less critical requirements. The early 
consideration of modularity and integration is reflected in the product architectures, 
which therefore reduce the design freedom in the remaioder of the development 
process: 

modUIOr modular 

design margin design margin 
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Figure 7 ·11. Design margin 

Product farnilies need architectures in which both modularity and integration are 
considered. Modularity is necessary to offer a large product variety, while integration 
is needed to improve the cost performance ratio 1• 

The issue of modularity is closely related to the issue of granularity as discussed in 
section 5.5.7. In the design of mature systems, effective product decompositions in the 
three domains are known. Also the interactions between functions and technologies 
are better understood than for completely new designs. In these cases, it is possible 
and required (for reasons of performance and price pressure) to make a more fine
grained design. In the functional domain, the decomposition of a function results in a 
large number of (fine) component functions that must be analysed simultaneously. lf 
these fine functions are distributed over many small modules, the result is an 
integrated system. 

' There are many other reasons for modularity as is argued by Erixon, Östgren and Arnström [1993], 
for example testing, upgrading and recycling. They propose an evaluation tooi to calculate the 
optimum modularity of a design. However, this tooi does not take into account criteria for an 
integrated design. 
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It is also possible to reverse the above statements: if there is a need for a more 
integrated system, there is also a need to better manage the complexity of the 
development process. In integrated systems, both the interfaces within domains and 
the mappings between domains increase in quantity and complexity. The number of 
interfaces and mappings mirror the complexity of respectively intradomain and 
interdomain communication. 

Nevertheless, also integrated systems must take the modularity issue into account as it 
must be possible to isolate certain functions, modules and assemblies to create product 
variety or to allow serviceability and upgradeability. The conflicting nature of 
integration and modularity, both resulting from the same market requirements, can 
only be resolved in the early phase of product development by consictering the scope 
of the product family over its life-cycle. This pro-active design process differs 
essentially from the reactive design process of single products. 
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7.5 Observations 

A number of observations are to be made. These concern: product architectures, 
sequentia! versus concurrent design, platforms versus families, life-cycles, version 
management, the development organisation, and the shape of the diabolo. 

7 .5.1 The use of product architectures 

The composition of a product from a number of component products is a product 
architecture. It describes the components, together with their interfaces and operation. 
Each level in the product hierarchy has its architecture. Depending on the type of 
components, it is a functional, technology or physical architecture. 

Although a product architecture can be the result of a decomposition activity, it can 
also be the starting point of development. Increasingly companies define product 
architectures before the development of products is commenced. Besides offering 
product variety, there are several reasons for this: 

0 Stability. Interfaces between components are set in order to reduce the effect of 
changes in one component for related components. In such a way, a product 
architecture creates a stabie environment in which components can be developed in 
parallel with managed risks. However, the value of a product architecture is related 
to the maturity of the product. Innovative products, for example, are characterised 
by frequently changing requirements and solution principles. This reduces the 
possibility to use a detailed product architecture, although the value of a more 
genetic product architecture, leaving much flexibility for the remaioder of the 
development process, can still be significant; 

0 Communication. Stability also reduces the need for communication between 
developers, especially if they are responsible for different components of the 
product. Communication does not only concern verbal discussion, but also written 
documentation, particularly if design knowledge is needed later in time. A product 
architecture should be a stabie framework for associating development 
documentation; 

0 Leaming organisation. Stability is a prerequisite for learning. Therefore, 
companies are often organised around a product architecture. Both the company's 
organisation and the product architecture may be reinforeed by the process through 
which design probieros are solved. This improves the possibility to solve similar 
problems, but at the same time inhibits the development of new products that 
depart significantly from known products. A breakthrough product therefore not 
only requires a new product architecture, but also a change of the development 
organisation; 
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0 Reuse and upgrading. A product architecture is usually more stabie than its 
components. This can be used to create a new version of the product by repiacing 
some of the components with an upgraded version. A number of existing 
components is reused to reduce the time, effort and risk of developing a completely 
new product. However, incremental development requires a good insight in the 
life-cycles of the different components and the product architecture in which these 
components must fit; 

0 Competitive control. Companies that control architectural standards have an 
advantage over other vendors. Since they control the interfaces and aften the 
critica! components, they are better positioned to develop products that maximise 
the possibilities of the architecture. Furthermore, they can discipline competing 
vendors that offer components that are compatible with the architecture. 
Architectural controllers try to increase the competition among these competing 
vendors, which results in a price reduction of the overall product and an increased 
market share for the architectmal controller. 

The above issues share a common theme, which is separating the stabie and 
changeable aspects of development. The stabie aspects of development are used to 
create a framework within which the changeable aspects can be executed in relative 
isolation, for example by component developers and external suppliers. This thesis 
pays most attention to those changeable aspects that create product variety, although 
the principles developed have a general applicability. 

7 .5.2 Sequential versus concurrent design 

Recently, much attention has been paid to concurrent engineering as a means to 
rednee the throughput-time in development. There are two distinct ways to appiy 
concurrent engineering in a project: (1) concurrent engineering in the small1 and (2) 
concurrent engineering in the large. The first type of concurrency focuses on multi
disciplinary teams of which memhers tagether evaluate the decisions that should be 
taken. This type of concurrency is sufficient for smaller projects in which the quality 
of the participants in different disciplines is the main determinant for the quality of the 
product design. However, for larger development projects, a more forma] approach to 
team co-operation should be undertaken as the quality of the product design is highly 
dependent on the quality of the project management. 

The product models tagether with the Design Cycle give a clue to which extent the 
design process can be organised in a more sequentia! or more concurrent way. Figure 
7-12 shows that sequentia! design is characterised by first detailing the functional 
domain, after which the salution principles are determined in the technology domain 
In a later stage, the technology modules are materialised in the physical domain. 

1 Karandikar, Wood and Byrd [1992] use a five stage maturity model (ad-hoc, repeatable, 
characterised, managed and optimising) to indicate the quality of the design process and to assess 
the readiness of an organisation for concurrent engineering. The first stage corresponds to 
concurrent engineering in the small in which the design process is executed in an ad-hoc manner 
and is very dependent on the quality of the team members. 
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Figure 7-12. Sequentia! design 

In contrast, concurrent design is characterised by the execution of several design 
cycles on different levels of the product hierarchy. This results in the involvement of 
all domains in all phases of the design process (see Figure 7-13). This iterative type of 
design corresponds to the zigzag pattem that is proposed by Axiomatic Design. 

Figure 7-13. Concurrent design 

Both approaches have positive and negative consequences. The advantage of 
concurrent design lies in the early involvement and commitment of all disciplines in 
the early phases of the project. Furthermore, a concurrent designprocesscan result in 
shorter throughput times than a sequentia! design process, however with the 
disadvantage of a high project risk when the decomposition strategies still have to 
take shape. Therefore, a modular design is a way to improve concurrency. 

The advantage of sequential design is that quick progress can be made within one 
domain, however with the danger that a deep decomposition in the functional domain 
assumes certain solution concepts and can therefore not be realised in the technology 
domain. However, if the product is mature, and if effective decomposition strategies 
are known, the overall function can be detailed to fine-grained sub-functions, wbich 
are then allocated to correspondingly fine-grained modules. This gives more 
possibilities for integrated designs. 

The throughput time of a development project can be further reduced by taking care of 
the order in which functions, modules and assemblies are decomposed. Meunier 
[1988] recognises two types of design objects: order dependentand order independent 
objects. Order dependent objects require that they are designed in a specific order. If 
this is tbe case, it is important to detail and allocate those functions first that have a 
high impact on the design of other modules (see chapter 5.4 on Organising Design). 
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Figure 7-14 shows two alternative sequences' in refining the functional and 
technology domain. In both cases, function 2 is allocated to module 2, function 4 is 
allocated to module 4 and function 5 is allocated to module 5. Module 2 is critica! and 
must be designed prior to module 4. In a similar way, module 5 cannot be designed 
before module 3 has been designed. 

In the first alternative, function 2 is allocated before function 3 is decomposed, while 
in the second alternative, the available design capacity is first used to decompose 
function 3. However, this decomposition results in a Jonger design time as the 
allocation of function 4 cannot be made prior to the allocation of function 2. 

Figure 7-14. Timing the design process 

Muntslag [1993] gives an example of a bottling machine that is engineered to 
customer-order. In this example, the throughput time of manufacturing is highly 
dependent on the sequence in which the sub-systems in the physical domain are 
detailed. A design structure matrix (see chapter 5.4) represents the coupling of design 
tasks. Algorithms order the tasks in such a way that the matrix becomes lower 
triangular where possible: all tasks are then sequenced so that each one can be 
executed after its predecessors from which it requires information. 

Summarising, concurrency of development can be improved by (1) pursuing a 
modular approach and (2) carefully consictering the sequence in which these modules 
are detailed. 

1 Palmer [1991] proposes a forma! definition for process modelling. Given a product development 
process, several different types of optimisation can be performed, one of which is minimising the 
longest time path in the process. 
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7.5.3 Platforms versus families 

A product platform is defined as a set of interfaces and key-components that must be 
reused by a number of different product families. For example, several car families of 
major car manufacturers are based on a common floorpan. More importantly, 
however, are the interface definitions that follow from these shared components. The 
engines, gearboxes and axles have a similar fit with the floorpan and allow the 
manufacturing of different product families on the same production line. This 
impraves flexibility for the manufacturer. 

The scope of a product family is not only determined by the product platform from 
which it is derived, but is also dependent on the domain in which the farnily is 
described. Section 2.4.1 already asserted that the scope of a product family can be 
different in the functional, technology and physical domain. The functional domain is 
relatively unconstrained by the technica! realisation and can therefore describe a 
larger product family than the technology and physical domain. Figure 7-15 shows a 
product platform that is identical for all product families (the ''white boxes") in the 
functional, technology and physical domain. Sirnilarly, each functional product farnily 
bas a number of product families in the technology domain, and each technological 
family is the basis for realising a number of physical families. 

functlonat domaln technologv domaln physlcal domaln 

Figure 7 ·15. The scope of a product family 

The main reason to split a functional family into a number of technology families is 
the impossibility to realise all variants of a function within the same technology 
architecture, despite the fact that these function variants fit within the same functional 
architecture. The salution principles for these function variauts require dedicated 
technology architectures. 

The above is closely related to the issue of scaleable · interfaces: by definition non
scaleable modules realise a function variant in more than one module variant and 
introduce specific technology architectures for combinations of module variants. In 
other words, non-scaleable module variants force the development of technology 
architectures for variants, instead of a single technology architecture for families. 

242 



Developing product families 

7 .5.4 Life-cycles 

The development of a product family requires careful thought about the period that 
this product family and its variants can be effectively used in their contexts. The life
cycle of a product family that is used in exactly one context (e.g. a parent family) is 
identical to the life-cycle of the context. In contrast, the life-cycle of a product family 
that is used in more than one context spans the life-cycles of the contexts. If the 
product family is a commodity product, the context is usually adapted to the product 
family. If the product family is especially designed for a few contexts, the interfaces 
are negotiated to find campromises in terms of fit and price. 

The life-cycle of a component family encompasses the life-cycles of its parent 
families as was already argued in section 1.2.2. The design of a product family 
assumes the existence of primitive families and variants. If these primitive families do 
not exist, their design must be undertaken. However, the stability of interfaces 
between primitive families is a necessary condition for the stability of compound 
families. The complexity of designing a compound family is determined by the 
availability of primitive families together with effective decomposition strategies to 
reuse the right combinations of primitive families. The effectiveness of reuse is 
determined by (1) the number of compound variants in which a primitive variant is 
applied and (2) the life-cycle of this primitive variant. 

Figure 7-16 shows the life-cycles of 5 product families in a product hierarchy. In this 
example, the life-cycles of the product families are identical to the life-cycles of the 
interfaces between families. At the end of a product family's life-cycle, the interfaces 
of the successive product family do notfit in the original context, that is, they do not 
comply with the interfaces of the parent family. The life-cycle of family 5 is longer 
than the life-cycle of family 4. Family 3 and family 4 have identicallife-cycles: in fact 
the life-cycle of a parent is identical to the minimum of its children's life-cycles. 
Thus, the life-cycle of family 1 is identical to that of family 2, being smaller than the 
life-cycle of family 3. 

life-cycle 

Figure 7-16. Life-cycles 

The fact that component families may have a longer lîfe-cycle than parent families 
requires that product management considers the requirements of parent families and 
the future possibilities of component families. Especially, the life-cycle of component 
families should be understood as they develop over a longer period of time than parent 
families do. Technology roadmaps [Meyer, 1993] can be used to show the succession 
of component families, together with their consequences for future applications. 
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7 .5.5 Version management 

A version is a semantically meaningful snapshot of a design object at a point in time. 
Each design object has one or more versions. Since some design objects themselves 
are a hierarchical collection of component objects, a configuration is defined as a 
binding between a version of a compound object and a version of each of its 
components [Katz, 1990]. Configurations can exist for both families and variants. The 
solution space of a design is determined by both its variants and its versions. The 
transparent diabolo in Figure 7-17 represents a three-dimensional solution space that 
is composed of (1) a product hierarchy, (2) a variety of families and variants, and (3) 
versions for all farnilies and variants. The ancestor/descendent relationships between 
versions are together the version history. 

Figure 7·17. Solution space 

The solution space of variety can be decreased by populating parameters with values, 
while the solution space of versions can be decreased by fixing a point in the version 
history, usually time. The grey triangle symbolises the structure of a specific 
compound variant at a point in the version history. Such a configuration is defined in 
all domains in which the product family is designed. 

Change propagation is the process of incorporating new versions into configurations. 
According to Katz, there are two key issues for a change propagation mechanism: (1) 
how to limit the scope of propagation and (2) how to disambiguate the path of 
changes. An example of the latter issue is given in Figure 7-18. Design object D has 
two parent objects, namely B and C, being components of the same root object A. 

Figure 7·18. Path of changes 

A version update of object D to D' can result in new versions for B and C. Design 
object A, however, can be changed by both B' and C'. In other words, a new version 
of D results in two new versions (A' and A") of design object A. However, the final 
version of A can depend on the sequence of change propagation: 
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The propagation of change can affect families and variants. For both cases, a group 
check-in and group check-out mechanism can solve the problem of ambiguous 
changes. This mechanism ensures that all design objects that are affected by an 
engineering change are changed simultaneously as a group. 

More difficult, however, is the first issue, namely limiting the scope of change. Rarely 
does the designer want to create a new configuration all the way up to the root of the 
product hierarchy, A number of different mechanisms can be used. The first is to use a 
graphical presentation of the configuration and to hold a dialogue with the user to 
establish how far to propagate [Chou, 1986]. A secoud possibility is to place 
constraints on design objects so change propagation will halt if creating a new version 
of the configuration would cause the eaustraint to be violated. The latter possibility 
can be supported by the definition of architectures: if an interface is violated, a new 
version of the design object must be created [Ahmed, 1991]. Otherwise, the new 
design object is exchangeable with the old design object in the context in which these 
design objects are applied. Exchangeable design objects do not require different 
identifications or versions. 

Interface definitions can be applied in a similar way for both families and variants. If a 
family's interface doesnotmeet the interface of the context in which it is applied, the 
version of the farnily must be updated. Usually, the change of a family results in a 
need to change the families that are connected through this interface. As a result, 
change propagation within a product architecture has consequences for the versions of 
these interfaced families. The disadvantage of a non-scaleable family is that its 
variauts are interfaced with dedicated variauts of other families. In contrast to a 
scaleable family, change propagation across interfaces must be considered for the 
variauts individually. A new version of a variant will induce a new version of the 
corresponding family. 

Propagation of change must not only be considered for the domain's interfaces, but 
also across domains. A new version of a function can result in new versions of the 
modules in which this function is realised. A modular design, in which each function 
is realised in one module and each module is materialised in one assembly, decreases 
the propagation of change across domains. 

7.5.6 Development organisation 

The organisational structure of a campany's development department aften reflects its 
design practices. This section discusses the relationship between organisational 
hierarchies, product hierarcbies and design domains. No explicit attention is paid to 
primary processes as sales, manufacturing and service. The terms intradomain and 
interdomain communication are used to structure the discussion: 
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0 With respect to intradomain communication, development can be structured 
according to the product hierarchy. The design of systems is separated from the 
design of sub-systems and component families. A first reason for separati6)n is the 
reality of different life-cycles of systems, sub-systems and component families. 
Generally, the design of a system focuses on the application in the market, while 
the design of a sub-system focuses on obtaining new technologies. The fact that 
sub-systems are often reused in several parent families requires (1) a careful 
compromise between the requirements of these parent families and (2) a modular 
design to facilitate the use in different contexts. A disadvantage of separation is the 
limited integration of the sub-system in its context, which means that the sub
system is not fully geared towards the application in its context. A second reason 
for structuring development according to the product hierarchy is a rednetion of 
design complexity. However, the existence of several relatively independent 
projects requires a multi-project organisation in . which the simultaneons 
management of the throughput times, resource allocations and costs of the projects 
is a complex process of balancing the often conflicting interests of multiple 
participants1

• 

0 With respect to interdomain communication, development can be structured 
according to the functional, technology or physical domain. A company that uses 
the functional domain as its leading organisational structure focuses on the market 
and its application areas, and distributes its technica! expertise over these 
application areas. Such an organisation takes often the form of a project 
organisation in which the memhers of the project are borrowed from the different 
disciplines. 

In contrast, a company that is structured around the technology domain favours a 
technological culture in which engineers are grouped according to their disciplines. 
In such a discipline oriented organisation, the development of new technologies is 
less divided over different groups than in a market oriented organisation. However, 
the latter type of organisation is stronger in understartding the interactions between 
technologies to provide for new functions. 

An example is given by Von Hippel [1990] who argues that the partitioning of 
tasks affects the project outcome, especially when there is more than one solution 
possible for a design problem: "an auto firm project team that chooses to design a 
motor car engine and transmission as one task will probably come up with a 
different design, and surely learn more about engine-transmission interactions, than 
a team that partitions engine design and transmission design into separate tasks". 
The first solution is function oriented, while the second solution is technology 
oriented. 

Finally, a company that stresses the importance of manufacturing for design is 
often organised according to the physical domain. 

' Platje, Seidel and Wadman [1994] propose a new concept of portfolio management that couples the 
planning and control cycles of single projects in the multi-project organisation. The project
breakdown structure and the organisation~breakdown structure remaio connected. 
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If intradomain and interdomain communication are both considered, it can be the case 
that different levels in the product hierarchy are structured according to different 
domains. As an example, the system level in the product hierarchy of Philips Medica! 
Systems is application oriented and therefore structured to the functional domain, 
while the sub-system level in this product hierarchy is technology oriented and 
therefore structured to the technology domain. 

In mature product-market combinations, a high level of integration should be achieved 
to increase performance and reduce costs. Integration asks for a careful functional 
analysis (e.g. by a functional oriented design team) to allocate small functions to smal! 
modules. Also the availability of decomposition strategies' creates opportunities to 
further integrate the product family. However, there is a conflict between defined 
processes and the flexibility to respond to environmental change. The issue of 
flexibility is better served by a modular design of both product family and 
development organisation [Sanchez, 1994]. Product modularity impraves the 
flexibility of an organisation to respond to new opportunities and threats. According 
to Sanchez: 

" the embedded co-ordination of modular product and organisation designs creates a 
form of hierarchical co-ordination that junctions without the continuous exercise of overt 
managerial authority." 

In a development project, the product family model can be used to demonstrate the 
interactions between function, technology and physical shape for a particular system. 
Functions that are allocated to several modules require intensive communication 
between the disciplines that are responsible for the different technologies. 

This can be an indication to set up a project organisation, which eentres around the 
function instead of the disciplines. On the other hand, if the product family model 
shows that a technology module has a distinct function and stabie interfaces with the 
remaioder of the product family, it can be developed in relative isolation from the rest 
of the organisation2

• 

In software engineering, known decomposition strategies are referred to as defined development 
processes [Paulk, 1993]. Both software engineering and management activities are stabie and 
repeatable. The results of the development project are predictabie in qualitative and quantitative 
terms. 

The conflicting nature of modularity and inlegration for organisations is discussed by Pels and 
Erens [1992]. The authors state that a high level of integration is essential to ensure an effective 
communication between different disciplines and domains. However, more integration means 
tighter coupling between organisational units, thereby worsening possibilitîes for change. They 
draw an analogy with the modularity of information systems and introduce three aspects 
(complexity, coupling and cohesion) that determine the relative modularity or integration of an 
organisation. 
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7 .5. 7 Design considerations and the diabolo 

This section reconsiders a number of design considerations and their effects on the 
shape of the diabolo. These considerations do not decide an optimal design, but 
provide a means for a structured discussion between all stakeholders on aspects that 
are relevant in the design of product families [Erensb, 1995] [McKay, 1996]. The 
diabolo's that are presented in this section represent the physical domain. SimHar 
diabolo's can be drawn for other domains. 

standard products 

Figure 7-19. Standard products versus derived products 

An important design consideration is the scope of the product family in relationship to 
standard products (Figure 7-19) and specials (Figure 7-20). A product farnily can have 
a number of standard products (runners) that are put on stock in a sales organisation. 
Other variants of the product family are derived from the family design and are 
usually assembied to customer-order. Finally, there is a class of products that have not 
been considered beforehand in the design of the product family. These specials are 
engineered to customer-order. 

Figure 7-20. Derived products versus specials 

An important design consideration is the modularity of a design. Reusable modules 
are needed to achieve variety. Unfortunately, a modolar design can contain redundant 
structure and does not exploit as much function sharing as is possible. The opposite 
approach to reuse is differentiation. A module variant that is explicitly defined for one 
product variant meets the precise requirements of that product variant. Further, the 
total number of module variants is determined by the origin of variety in the product 
hierarchy and the scaleability of the product architecture. Good decisions about the 
functions and number of module variants require a pro-active approach to design and 
a consideration of the whole life-cycle. 
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Figure 7-21. Differentiation versus reuse 

Nevins and Whitney [ 1989] stress the importance of manufacturing involvement in 
the development of product families. The consideration of manufacturing issues cao 
lead to a product family that supports mix flexibility and permits rapid response to 
market changes or individual customer-orders by concentrating differences between 
variants in a few parts that are added at the end of the assembly sequence (see Figure 
7-22) or by making long lead time parts, which are hard to buy or hard to make, 
common to all variants. In some cases, the assembly lead-time is short enough to 
make the product specific early in the assembly process. 

Figure 7-22. Early specific versus late specific 

Figure 7-23 shows two commercial families, which arebasedon a common teehoical 
family . In the communication of a product family to the market, it cao be decided to 
split-up a product family so as to discriminate between the cheaper and more 
expensive product variants. 

Figure 7-23. Commercial versus technica! families 

A second reason to split-up a product family cao be the number of constraints. These 
prohibit combinations of parameter values and, if they are complex, disturb the sales 
process. Usually, a goal indeveloping product families is to create modules that cao 
be combined without restrictions. However, the added costs of this flexibility cao be 
such that it is sometimes better to introduce an extra constraint (Figure 7-24). 
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completeness 

Figure 7-24. Completeness versus constraints 

Even if the development time is very short, it wil! not be possible to anticipate all 
customer requirements. This is due to the inherent uncertainty in today's markets. For 
televisions and audio equipment, for example, it is hardly possible to reduce 
uncertainty about the quality of the design by spending additional capacity in 
development (Smith, 1991 ]. Especially the preferenee of customers with respect to 
fashionable aspects as the looks of the cabinet and the remote control wil! only be 
known close to the market introduction. If these specifications are late available, then 
the architecture of the physical design should be such that these functions can be 
physically realised at the very last moment. In genera!, if the customer preferences 
with respect to a function cannot be foreknown, a modular product is required. With 
respect to standard products, product families improve the chance to meet customer 
requirements (Figure 7-25). Modular designs make it possible to experiment in the 
market with a range of diverse product variants. The most successful variants are then 
used for higher-volume manufacturing Sanchez (1991]. 

Figure 7-25. Chancetomeet customer requirements 

Finally, Figure 7-26 uses the diabolo to visualise the wishes of disciplines with 
respect to the variety of a product family. Marketing and sales require a product 
family that is broad to meet the wishes of customers in the defined target group. 
Development would like to achieve these wishes with a minimal number of modules, 
while manufacturing wants the optional module variants to be added to the core 
product as late as possible. Purchasing likes a limited number of components, which 
are, preferably, standardised over different product families to accomplish efficient 
and reliable supply. A problem concerns the logistic discipline, which needs 
considerable adaptation of working methods to deal with an increased product variety. 
Intelligent sales-support systems and production control systems should support 
logistics in rnanaging a large variety of customer-order specific product variants. 
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Figure 7-26. Achieving a campromise 

Common for all companies is that the development of a product family requires a 
careful consideration of the scope by commercial and teehoical stakeholders. The 
scope of a product is an important parameter for determining the product architecture, 
the modularity and the reuse of components. Figure 7-26 uses the diabolo to visualise 
the wishes of disciplines with respect to the variety of a product family. 

Marketing and sales require a product farnily that is broad to meet the wishes of 
customers in the defined target group. Development would like to achieve these 
wishes with a minimal number of modules, while manufacturing wants the optional 
modules to be added to the core product as late as possible. Purchasing likes a Iimited 
number of components which are, preferably, standardised over different product 
families to accomplish efficient and reliable supply. A problem concerns the logistic 
discipline which needs considerable adaptation of working methods to deal with an 
increased product variety. The pain of change can be reduced by effective information 
technology. 
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7.6 Case studies 

This chapter demonstrates the suitability of the product family modeHing language 
and the family design methad in two companies that manufacture product families in 
a large variety, Philips Medica] Systems and Philips Lighting. The case studies are 
representative for the use of the developed concepts. The Philips Medica! Systems 
case demonstrates the applicability of the family design methad for a complex non
compositional system, with a high degree of formalisation in all three domains '. The 
second case study has the purpose to show that the design methad for product families 
model and the product family modeHing language can be simplified for use in less 
complex situations, as for example the design of luminairs by Philips Lighting. 

7.6.1 Philips Medical Systems 

As was stated before, both integration and family design, lead to a more complex 
design process. The goal of this case study is to demonstrate that the complexity of 
design can be managed with the family design methad that was proposed in this 
chapter. Firstly, the domains of part 3 are briefly summarised for Medica! Systems. 
Then the design process is described in terms of the family design method. Finally 
some observations are made. These observations concern design decisions with 
respect to ( 1) sequentia! design and concurrent design, (2) overall design versus detail 
design and (3) few technologies versus many technologies. 

Product descriptions 

As was already extensively discussed in part 3, the different product descriptions that 
are required by the development process can be classified in three categones or 
domains. The structures of these domains are named product models and are used by 
different business functions and in several phases of the Systems Management 
procedure (see chapter 5.6) to settie product information in a structured way: 

0 The functional model is a consistent description of the function of a medica! 
system. It is strongly related to the purpose of the system. The Requirements 
Specification, which is created by marketing, is an important input for this model. 

0 The technology model is a consistent description of the application of technologies 
to ensure a correct eperation of the system. Development creates most of the 
information structured in this model. 

0 The physical model is a consistent description of the physical realisation of a 
system. It is strongly related to the construction of the system. Production sets 
conditions for this realisation in order to guarantee an easy assembly operatien 
without compromising the quality level or cost level. 

' I am indebted to Karel Verhulst with whorn I have developed rnany of the theories presented in this 
thesis. Karel Verhulst is the co-author of a publication in which the case study of Philips Medica! 
Systerns is extensively described [Erens', 1995] . 
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Figure 7-27. Domains of Philips Medica! Systems 

Figure 7-27 depiets the contribution of product management, development and 
manufacturing to respectively the functional domain, technology domain and physical 
domain. The depicted product models are independent of the hierarchical level of the 
product: systems, sub-systems as well as components can be represented by these 
models. 

The design process 

The development of a new product family starts with forrnulating the requirements. 
These requirements are described in the Requirements Specification (RS). The 
coverage of the RS concerns the following three parts: 

D specifications that set conditions for the function; 

0 specifications that set conditions for the technology; 

D specifications that set conditions for the physical realisation. 

Functional requirements are considered to be primary conditions, while technology 
and physical requirements are considered to be boundary conditions. Although there 
are practical differences, there are no principle differences between these conditions. 
Product variety is caused by both the primary and the secondary conditions. Functions 
have variants to meet different user requirements, while technology modules have 
variants to create different performance levels. 

A part of the RS is mapped onto the functional model, a part onto the technology 
model, and a part onto the physical model. These product models forrnalise the 
requirements and are especially used intemally in the product development process. 
However, some înforrnation is derived from the product models for extemal use, for 
example for commercial catalogues, user manuals and service manuals. 

The fîrst step in the design process is to compose product models from the 
requirements. Functions are structured in groups to reflect their dependencies. The 
functional requirements are made consistent, complete and unarnbiguous in the 
functional model. 

The technology model is deterrnined first of all by consiclering the boundary 
conditions that are specified in the RS. In a first step, a coarse structure with modules 
is made, which is based on the organisation's key technologies and states conditions 
for the allocation of functions. In a similar way, a first physical model can be 
composed from the requirements. 
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After the first creation of different product models, functions are allocated to the 
technology model. Function variants are realised in different modules to avoid 
redundant modules that add cost to the system. However, functions which are too big 
for allocation onto a module of the technology model are split into functions which 
are small enough for allocation. Then, the modules are grouped and composed to 
validate the technologkal solution witb respect to the required function. The 
validation itself can be supported with simulation tools. Althougb Philips Medical 
Systems acknowledges tbe value of phase four in Systems Management, it is yet not 
fully aware of the possibilities to validate the design in earlier phases of the design 
process. Simulations provide powertul possibilities to validate tbe technology model 
w.r.t. to the functional model, i.e. to validate the Overall Design. In this way, 
expensive and time consuming iterations in the designprocesscan be avoided. 

The process of detailing the functional model, allocating functions onto technology 
modules, and detailing the technology model is done in an iterative way. This iterative 
process can take place on different levels of the product models, for example on 
system level, but also on sub-system level. The allocation on system level results in 
combinations of modules and functions. Each of these combinations can be regarcled 
as the design context for a next abstraction level, namely the design of a sub-system. 
Preferably, the variety of the system is confined to the variety that exists within sub
systems. This reduces the need to control function variants that are distributed over 
several sub-system variants. 

The iterative process of detailing the functional model, allocating functions, 
composing the technology model and validating this solution with respect to the 
required tunetion is repeated for the interaction between the technology model and the 
physical model. Modules are implemented as physical building blocks, which are then 
composed into assemblies. The resulting physical model is tested by constructing an 
engineering prototype, which is validated against the chosen solution concepts and the 
required function. This validation is known as phase four of Systems Management. 

Sequential versus concurrent design 

If the Medical Systems design process is considered, it can be noticed that this process 
is partially sequential and partially concurrent. In the feasibility phase, being the first 
step of Systems Management, all parties are involved, in a very concurrent way, to 
judge the feasibility of the project with respect to function, technology and physical 
requirements. The second phase, named Overall Design, is used for creating a product 
architecture and detailing and allocating functions, and for composing and validating 
modules. This phase is sequentialas can beseen in Figure 7-28. 
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1 . Feaslblllty 

Figure 7-28. Systems Management revislted 

Detail Design is executed in the third phase. Here, in contrast, the implementation of 
the sub-system's technology modules in physical building blocks is executed 
concurrently. A fourth phase, integrating and testing building blocks, is a sequentia! 
activity. 

The Design Cycle can be executed for a system, but also for a sub-system or small 
device being part of a larger system. However, for several reasons, modules in a 
technology model are not always decomposed to such detailed level that they can be 
implemented as physical building blocks: they can be developed with co-designers 
whohave their own responsibility, or they can be purchased from extemal suppliers. 
In those cases, the Detail Design phase on system level can comprise a complete 
extemal development of a part of the system. Again, this extemal development can 
have different phases with both concurrent and sequential activities. 

Overall design versus Detail Design 

The Overall Design phase describes those applied technologies in a system that are 
responsible for a correct operation of the system. The output of the Overall Design 
phase is a system architecture, i.e. a description of the system in terrus of modules and 
interconnections. At the lowest level, modules are described that can be implemented 
in (physical) building blocks. The Detail Design phase defines the implementation of 
these physical building blocks. 

The Overall Design phase is extremely important for several reasons. Itdetermines to 
which extent functional requirements can be met within the technology boundary 
conditions. Further, it defines modules to be concurrently realised in the Detail Design 
phase. In Overall Design, the functional model is decomposed until functions can be 
allocated. The depth of the functional model is proportional to the complexity of the 
system design. A deep functional model results in small modules with corresponding 
few Detail Design activities. 
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As stated before, an important part of Overall Design is the systems' architecture. This 
architecture is especially of importance for the development of external sub-systems 
and purchased parts. In those cases, the allocation of N functions onto one module 
creates new contexts for the design of sub-systems. An N: 1 allocation can be regarded 
as a synchronisation of domains in the design process, after which the design of sub
systems can continue from a common perspective. Especially for function variants, it 
is important that they are not distributed over the system. This would reduce the 
possibility to isolate them from the remainder of the design. 

Because of the impact of the Overall Design phase, it is very significant to ensure the 
quality of Overall Design and to acknowledge the fact that the Overall Design phase is 
not completed until the solution bas been validated. This differs from today's practice 
in which reviews are held after the allocation of functions, but prior to composition 
and validation. 

Few technologies versus many technologies 

The technology model is meant to bridge the function and the physical realisation of 
the system. Medical equipment that uses few different technologies, or technologies 
that are better understood in their relationships can be designed without a dedicated 
functional analysis in the functional model. In these cases, it is possible to (1) directly 
allocate the functional requirements of the RS to modules of the technology model, 
and (2) to adapt the technology architecture to the structure of the functional 
requirements. A validation of the design can be done for the different technologies 
separately as the functions of the RS are closely related to these techno logies. 

The same seems to be valid for software, but the performance of software can only be 
understood in relationship to the hardware platform (i.e. a different technology). In 
medica! equipment, user functions require the combined operation of many 
technologies, e.g. X-radiation, image intensifying, video imaging, digital processing, 
software processing and software storage. An individual application of these 
technologies leads to a complex operation of the system, being more determined by 
the technologies than by the user functions. In those cases, a functional analysis bas to 
be performed before sub-functions of the user functions can be allocated to the 
individual technologies. 

Summary and conclusions 

This section demonstraled the use of the family design metbod by Philips Medical 
Systems. It extends the Systems Management procedure with three domains in which 
the design process is executed. These domains make use of product models to record 
product information. Each model has a specific relevanee in design. The elements in 
these models are decomposed to add detail and composed to integrale partial solutions 
and to describe mutual relations. 
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Furthermore, the elements in a model are related with other models through allocation 
and validatien steps. In this iterative design process, the allocation of functions onto 
modules is essential for synchronising the product models in such a way that the sub
systems can be designed relatively independently. Finally, the importance of 
validation in the quality cycle of design was stated. In other words, a design is not 
complete when functions have been allocated to modules and modules have been 
realised in assemblies. 

Furthermore, the concept of using three product models and four elementary design 
steps has been used to discuss some important design questions. The following 
conclusions can be drawn: 

0 The design process cannot be described independent of the product descriptions. 
Therefore, Systems Management should unite product models and design steps; 

0 Concurrent and sequentia! design altemate in succeeding phases. The design of the 
system is a sequentia} activity, while the design of sub-systems can be done in 
parallel; 

0 The Overall Design phase is crudal for co-design and for purchasing larger parts of 
the system, especially befare the Detail Design phase is commenced; 

0 As today's markets and products become more mature, it is important to design 
integrated products. At the same time, products must be modular to meet customer 
variety. This requires clear responsibilities of a system design function in the PMS 
organisation; 

0 The product architecture of an integrated system should be such that variabie 
modules fit in a stabie framework. These modules do not only cater for customer 
variety, but also for exchanging service parts and for upgrading a system with new 
features. From the viewpoint of complexity management and testability, it is wise 
to make modules scaleable as these have universa] interfaces in a predefined 
product architecture; 

0 The use of many technologies to realise user functions results in complex designs, 
which should be supported by a structured design process. 

Finally, in anideal development organisation, the organisational structure supports the 
design method. This case study described a design process that emphasises the role of 
System Design. When this process is embedded in the organisational structure of 
Medical Systems, a separate system design discipline is required. This discipline 
should be responsible for functional analysis and allocating functions onto 
technological modules. 
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7 .6.2 Philips Lighting 

Philips Lighting is one of the largest companies in the world manufacturing lighting 
equipment. This equipment concerns lamps, luminairs and electrooie components as 
ballasts, ignitors and control units. This chapter focuses on the Business Group 
Luminairs, responsible for designing and manufacturing luminairs. The objective of 
this part is to show that the product family modeHing language and the family design 
metbod can be simplified for use in less complex situations than the design of medical 
equipment. These simplified concepts have been applied several times for the 
development of new Iuminair families. 

Company situation 

Traditionally, Philips Lighting is a rnass-production company. Lamps and luminairs 
are produced in very large quantities. Most design actlvities are executed costomer
order independently. However, especially luminairs must often be adapted to the 
context (e.g. an office-building or residentlal area) in which they are applied. This 
adaptation requires considerable design effort, manufacturing flexibility and 
communication with the customer. Furthermore, it causes the range of products to 
diverge from the original design, giving increasing difficulties in logistics, purchasing 
and bill-of-material management. 

Therefore, the BG Luminairs bas decided to create three categones of products: (1) 
standard products, (2) derived products and (3) specials. The productsin the first two 
categones are variants of a product family, which is designed costomer-order 
independently; the difference only concerns the position of the costomer-order 
decoupling point. Standard products are made-to-stock, derived products are 
assembled-to-customer order and the third category, specials, is engineered to 
customer-order. 

The first two categones should cover more than 90% of all customer orders, which 
requires a carefut product family design in which manufacturing, design and 
marketing tagether determine the scope of the family and constitute the operational 
processes in such a way that customer specific variants are sold, assembied and 
distributed with the efficiency of mass-production. 

Example product 

Tbrooghout this chapter, an outdoor luminairis used as an example. The CityVision is 
a decorative luminair forshopping areas and residential areas. lts features concern a 
large variety of shapes, an excellent lighting performance, a large choice of lamps and 
a rugged construction, which has been designed to withstand actverse weather 
conditions. Figure 7-29 gives an overview of the different shapes. Due toa modolar 
design, each of these shapes can be ordered in a variety of colours and with all 
available electrical circuits. 
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Rgure 7-29. Shapes of the CityVision 

The main architectural concept of the CityVision is asolid circular aluminium frame 
providing mounting strength to the pole. It is also the stabie platform to which the 
main modules as the reflector, the electrical unit plate (including the lamp), the 
upperbowl and the underbowl are clamped. The aluminium frame is common for all 
variants and defines the interfaces for most other modules. 

Specifications 

Both common requirements and optional requirements such as different shapes and 
electrical circuits (including constraints on combinations of options) are extensively 
described in the product specifications, which cover the functional, technology and 
physical domain. Figure 7-30 gives an overview of all options that are available for 
the CityVision. This overview, also called a choice-sheet, is an important document in 
defining the scope of the product family. Therefore, it is extensively discussed by 
product management, development and production. Besides initial purposes, the 
choice-sheet is also used in the operational manufacturing process to communicate the 
affered variety to the market 

Pole diameter 
CJ 42-48 top-eniTy 
o 42-48 •de-entl'{ 
o 60 tQP-<!niTy 
c 60 ~de-enlly 
D761op-en1Ty 

Figure 7-30. Choice-sheet of the CityVision 
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Technology domain 

A limited number of technologies is applied in a luminair. As the main function of a 
luminair is providing a good light distribution, much emphasis is given to the co
operation of lamp and reflector. Special CAD tools are used to calculate an optimal 
performance. Examples of light distributions are given in Figure 7-31. 
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Figure 7-31. Light distributions 

Another important technology concerns the electrical circuit. Different lamp families 
require different components to achieve an optimal ·lamp performance. In the 
CityVision, a range of High Intensity Discharge (HID) lampsis applied. These lamps 
cannot function properly when they are operated directly on the rnains supply voltage. 
Certain electrical devices have to be built into the electric circuit, either in the lamp 
itself or extemally in the form of what is called auxiliary equipment or control gear. 
The control gear (1) limits and stabilises the lamp current, (2) ensures that the lamp 
continnes to operate and (3) provides the ignition voltage (higher than the normal 
operation voltage) for the initiallamp starting [Philips, 1995]. 

An electrical circuit can be regarded ·as a technology architecture. All electrical 
components and interfaces for the lamp are mentioned. The technology architecture of 
Figure 7-32 does not state how these solution principles are materialised in physical 
parts. Recent innovations in miniaturisation give increasing possibilities to integrate 
all necessary components in the lamp. An electrical circuit of a lamp, and in many 
cases also the materialisation in the physical domain, is reused over different product 
families. Therefor~, the electrical circuit cao be regarded as a boundary condition for 
the design of a luminair. 

Figure 7-32. Electrical circuit 

A choice for an electrical circuit depends on the lamp type and other requirements as 
formulated in the choice-sheet. In other words, a number of parameter valnes is 
allocated to the components of a eertaio technology architecture. The ensemble of 
components can then be validated against the original requirements. 
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The technology architecture is very dependent on the lamp type. For example, HID 
lamps and PLL lamps have different technology architectures. The non-scaleability of 
these technology architecture binders the allocations of parameters. Instead, each lamp 
type has its own technology architecture, thereby adding to the total design effort. 

The technology model is not only used to represent dependendes between modules on 
a certain abstraction level, but is also used for formalising textual elements of the 
specification. Figure 7-33 shows the allocation of choice-sheet parameters to the 
technology model defining the HID electrical unit ofthe CityVision. 

lamp 

wattage 
filtercoil 

selfstoppin , 
dimming 

Cabletree 

lamp 
wattage 
filtercoil 
rnains 

selfstopping ~-,-___j 
dimming 

lamp 
dimming 

lamp 
mains 

wattage : 

B 
wattage : dimming 

I Dimmin~ I 
' ballast 

wattage 

ignitor I 

lgnttor 

lamp 
wattage 

Capac~or 

Figure 7-33. Allocating parameters to the HID electrical unit 

The above figure shows that the ballast, being an element of the electrical circuit, is 
determined by three parameters, namely lamp, rnains and wattage. Each combination 
of parameter values results in a specific ballast variant. If a combination is not 
required by the market or if a certain ballast is not available, the prohibited 
combination of parameter values is recorded as a constraint. 

Physical domain 

The physical domain is used to materialise the solution principles of the technology 
domain. The components contributing to specific light distributions and the 
components of the electrical circuits are realised in physical parts. In some cases, 
diverse solution principles are integrated in one physical part, for example a lamp with 
an integrated ignitor and reflector. 

Some specifications are directly allocated to the physical domain. Figure 7-34 shows a 
few drawings that describe physical properties of the City Vision' s shapes. 
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Figure 7·34. Shape drawings 

In the physical domain, the family design is detailed in collaboration with purchasing 
and logistics. The genetic product structuring mechanism is used to describe all 
variauts of the product family in a transparent and non-redundant way. Table 7-1 
shows a limited selection of variauts that are needed for the parameters lamp, rnains 
and wattage. 

Ballast Code Selection condition 

BSN70L33 9136 550 10400 Lamp= (SON-T, SON-E) and Wattage=70 and Mains=230/50 

BSN70L34 9136 550 50500 Lamp= (SON·T, SON-E) and Wattage=70 and Mains=240/50 

BSN100L33 913648060400 Lamp= (SON-T, SON-E) and Wattage=lOO and Mains=230/50 

BSN100L34 9136 480 70500 Lamp= (SON-T, SON-E) and Wattage=lOO and Mains=240/50 

BSN150L33 9136 520 50400 Lamp= (SON-T, SON·E) and Wattage=150 and Mains=230/50 

BSN150L34 9136 520 60500 Lamp= (SON-T, SON·E) and Wattage= lSO and Mains=240/50 

Table 7·1. Ballast variants 

This table clearly demonstrates that some ballast variauts are suitable for several 
lamps. Por example, the BSN50L33 can be used for the SON-E and the SON-T lamp. 
This reduces the number of ballast variauts needed. 

Product Creation Process 

The design process (see Figure 7-35) starts with the feasibility phase in which the 
commercial and teehoical possibilities and risks are evaluated. A first choice-sheet is 
created to communicate and discuss the scope of the product family with all 
stakeholders. The scope of the product family is an important issue in determining the 
main architecture of the product. This architecture, including the first allocation of 
parameters and parameter values is defined in the concept phase. Also solution 
principles aretested in this phase. 

Feasibility Productengineering Market introduetion 

Figure 7·35. Product Creation Process procedure 

The product engineering phase materialises the solution cóncepts defined in the 
concept phase. Some parts and assemblies can be detailed concurrently due to a good 
definition of physical and electrical interfaces. Por complex components, requiring 
dedicated manufacturing technology, suppliers are involved in the design process. 
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The manufacturing process is designed in correspondence with the product design. 
The last phase concerns the market introduetion of the luminair. Extemal 
documentation as catalogues and service instructions are written using the information 
that is available in the different domains. Figure 7-36 summarises the above phases. 

1 . Feasiblllty 

Rgure 7·36. Product Creation Processof Philips Lighting 

Important in the above figure is that the product descriptions in the functîonal domain 
are not formalised with modelling languages as is done by Philips Medical Systems. 
Furthermore, due to the limited complexity of the product, no further functional 
specification or analysis is needed for sub-systems and components. 

Summary and conclusions 

In many respects, the case of Philips Lighting is similar to the case of Philips Medica! 
Systems. Both know three domains in which product families are defined. 
Furthermore, both have specific technologies, which require dedicated modeHing 
languages that cannot be integrated in a uniform theory. 

An important difference is the formalisation of the functional domain. Philips Medical 
Systems uses a functional rnadelling language to define and detail the user functions 
before they are allocated to salution principles in the technology domain. The 
situatîon for Philips Lighting is slightly less complex as the textual functional 
specification can be unambiguously interpreted by designers responsible for the 
different technologies. 

A second difference concerns the depth of the product hierarchy and the penetration 
level of the specification. The design of a luminair requires the development of some 
specific components, while most electrical components are purchased from other 
business groups and companies. The design of medical equipment involves creating 
complex sub-systems with the difficulty that these sub-systems are also used by other 
systems. This requires management attention across development projects on system 
and sub-system level with the additional problem that these projects are characterised 
by different life-cycles. 
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Nothing is harder to manage, more risky in the undertaking, 
or more doubtful of success, than to set up as the introducer of a new order. 
Such an innovator has as enemies all people who were doing well 
under the old order, and only half-hearted defenders in those, 
who hope to profit from the new. 

Machiavelli 
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8. Evaluation and conclusions 

This thesis discusses the development of product families, and especially those 
product families that make use of a variety of technologies to realise user functions. 
Chapter 8.1 argues to which extent this thesis has met the research objectives 
presented in chapter 1 and chapter 2. In addition to that, this chapter discusses the 
applicability of the product family modeHing language and the family design method 
in less complex situations, for example a limited number of technologies or a limited 
variety of end-products. 

Chapter 8.2 presents the main conclusions of this thesis, after which possible future 
research is discussed in chapter 8.3. Therefore, the latter chapter has been written with 
a few people who are currently employed at the Eindhoven University of Technology. 
Finally, chapter 8.4 presents a summary in Englishand a summary in Dutch. 

8.1 Evaluation 

Chapter 1 of this thesis presented a problem statement, which constituted four issues, 
namely: ( 1) no attention is given to the integral design of product families, (2) the 
intangibility of a product family binders the design of a product family in different 
domains with different representations, (3) it is unclear how information necessary for 
the manufacturing processis deduced from development information, and (4) product 
models for capturing the structure of a product farnily are not yet accompanied by 
design methods for supporting the process of designing. 

From this problem statement, a research objective was derived, which emphasised the 
structure of product family information in different domains and the process of 
developing a product family across these different domains. With respect to the 
product family modelling language, chapter 2 formulated the following requirements: 

0 The product family modelling language should re present the structure of a product 
family in several domains and from several viewpoints. Chapter 3 of this thesis 
introduced the functional, technology and physical domaio and argued that most 
products are designed in these domains. Product modeHing languages for non
compositional systems are dedicatedly used to represent viewpoints in one of these 
domains, while other (compositional) languages cover several domains as they are 
based on rnathematics or natural science. The product farnily modeHing language is 
meant for non-compositional systems and defines the structures of domains and the 
allocation and validation relationships between domains. Doeurneuts are assigned 
to the domain' s structure for representing different viewpoints; 
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0 The product family modelling language should describe product families on 
different levels of the product hierarchy. Chapter 6 proposed a modeHing language 
that captures the product structure of a product family both in terms of the product 
hierarchy and in terms of the interfaces between families. The functional, 
technology and physical domain are used as examples, although the product family 
modelling language is not restricted to these domains. Product family design 
stresses the recursive nature of product families: not only systems, but also sub
systems and components should be developed as product families. Finally, also the 
context in which the system is applied should be analysed and designed as a 
product family; 

0 The product family modelling language should build upon the generic bill-of
material concept as this concept has a proven reputation for descrihing product 
families in a non-redundant way in the physical domain. Chapter 4 generalised this 
concept into the generic product structuring (GPS) concept, which is meant to 
structure product families independent of a specific domain. Chapter 6 added non
hierarchical relationships within and between domains to the GPS concept. 
Furthermore, chapter 6 examined the issue of consistency, both for derived models 
(e.g. an assembly model) and representations as parameters and documents, which 
are assigned to the product farnily model. 

With respect to the design metbod for product families, chapter 2 formulated the 
following requirements: 

0 The family design method should support both intradomain and interdomain 
communication in close relationship with the product family modelling language. 
Chapter 7 extended the Productive Reasoning Model of Cross and March for 
developing product families. Decomposition and composition are activities that are 
performed within a domain, while allocation and validation are executed across 
domains. The close relationship of these activities with the product family 
modelling language gives possibilities to judge the modularity of the product 
family and the concurrency of the design process; 

0 The elements of a product family need to be designed while considering their 
applications and life-cycles. Chapter 7 presented a number of design 
considerations, conceming the scope of a product family, the reuse of component 
families, the analysis of functional, technological and physical interfaces, the 
scaleability of product architectures, the origin of variety, the integration of 
functions in a common module, the distribution of a function over a set of modules, 
the concurrency of the design process and the management of constraints. 
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Both the product family modeHing language and the family design methad have been 
designed for complex product families in which a variety of technologies is used. 
However, the results presented in this thesis can also be used in less complex 
situations: 

0 Single products. Also products with a very limited variety can be described in the 
functional, technology and physical domain. Decomposition, allocation, 
composition and validation are design steps that are executed in a similar way as 
for product families. Modularity is still an important issue as also single functions 
(i.e. functions without variauts) can be distributed over the technological and 
physical realisation; 

0 Few technologies. The technology domain bridges the function and the physical 
realisation of the product family. If a limited number of technologies is applied, or 
if the relationships between function and physical realisation are well understood, it 
is aften possible to directly realise the required functions in physical assemblies. 
Although the technology domain can still be recognised, the product rnadelling 
languages that are used cover function, salution principle and physical form with a 
single theory (compositional systems); 

0 Limited product hierarchy. The first execution of the Design Cycle results in a 
system architecture within which the sub-systems can be designed in parallel. In 
some cases, the product hierarchy is such that the sub-systems are standard 
components that can be purchased from external suppliers. These components 
determine the system architecture to a large extent as they have standardised 
interfaces to which product specific components must conform. 
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8.2 Conclusions 

Chapter 2 of this thesis narrowed the scope of research by focusing on product 
families that are (1) developed costomer-order independently, (2) assembied to 
customer-order, (3) use a variety of technologies to create user-functions, (4) are 
positioned in mature product-market combinations and (5) have a complexity that 
requires a carefully executed design process. Within this scope, the following 
conclusions can be presented: 

0 A product family can be defined in three domains, the functional domain, the 
technology domain and the physical domain. Each domain has one product model 
and a number of representations; 

0 The genetic bill-of-material concept is suitable for descrihing product families 
within one domain at a time; 

0 The genetic product structuring concept provides a description language that can be 
applied independent of a specific domain or technological field; 

0 The parameter mechanism of the genetic product structuring concept is used to co
ordinate the selection of component variants that together create a user function; 

0 For meebattonic products, there is no grand theory that unites all theories from 
natoral science. User functions can be realised with different theories, each with a 
dedicated product modelling language; 

0 Deviations from the product family definition (i.e. distributed functions and 
technology modules) are effectively controlled withthe product family modelling 
language. This describes a large variety of products in a non-redundant way. 

0 Product architectures are essential to separate the stabie and variabie parts of 
design. The stabie aspects create a framework within which a variety of products 
can be developed; 

0 The standardisation of interfaces in one domain improves the possibility to 
combine components in such a way that a large variety in that domain is created; 

0 The standardisation of interfaces in three domains, and consequently the existence 
of N:l allocation relationships, reduces the number of technology modules and 
physical assemblies that is needed to create commercial variants in the functional 
domain; 

0 The architecture of a product family is decoupled from the architectures of its 
components. The variety of these components has no consequences for the external 
interfaces of these components, which reduces design complexity; 

0 Modularity and inlegration are two important, but conflicting requirements for the 
design of a product family. 
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0 Product modeHing languages should be accompanied by languages for supporting 
the process of designing; 

0 The Productive Reasoning Model supports the idea that probieros and solutions 
cannot be refined independently. It can be applied in different domains, for both 
single products and product families, and at alllevels of the product hierarchy; 

0 The family design method, which is proposed in this thesis completes the product 
family rnadelling language with a design cycle that can be used in different 
do rnains and on different levels of the product hierarchy; 

Other results of this thesis cannot yet be presented as conclusions. Therefore, the next 
chapter indicates directions for further research. 
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8.3 Directloos for forther research 

Currently. a number of people at the Eindhoven University of Technology pursue 
research that is in some way related with this thesis. The following research issues 
have been written together with these researchers: 

8.3.1. Visibility support for concurrent engineering De Graaf 

8.3.2. Enterprise document management Breuls 

8.3.3. Quality in mechatronic development Dolan 

8.3.4. Supply for customer orders in the extended enterprise Komelius 

8.3.5. Support Jor initia/ purchasing Van Steketenborg 

8.3.6. Product architectures Zwegers 

8.3.7. Towards a Multi-Disciplinary Frameworkfor Design Hammer 

Furthermore, there is a number of research issues that require attention but which are 
currently not addressed by a research pro gramme: 

8.3.8. Financial measures for developing product families 

8.3.9. Business roadmappingfor productfamilies 

Addressing these issues will contribute to a better understanding how and when 
product families should be developed. 
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8.3.1 Visibility support for concurrent engineering 

Rob de Graaf 

Irnproving process performance, such as lead-time control and risk in product 
developrnent has been atternpted with various models and approaches. However, none 
have gained full ratification, mainly because of their lirnited scope and pour scientific 
foundations. The Readiness Assessment for Concurrent Engineering (RACE) is a 
theoretically promising tooi that could diminish the majority of these problems, and is 
therefore tested in practice. RACE is based on a multi-aspect model that visualises the 
maturity of the development process for each aspect. Maturity can bedescribed as the 
extent to which a process reuses acquired knowledge and is repeatable over time. The 
objective of testing RACE is mainly the validation of the tool's applicability in multi
disciplinary development environments. The major assurnption in this research is that 
rnodels that illustrate change in maturity level and the impact for the process are most 
suited for deploying improvements. 

In accordance with this thesis, the research concerning RACE stresses the 
intertwinedness of development process and product definition. As stated in part 7, the 
maturity of the design process is very dependent on the maturity of the product. 
Mature products require a careful consideration of different technologies to meet user 
functions. This results in complex products and therefore complex design processes 
invoking a multi-disciplinary approach with clear decomposition strategies. 

In contrast, the rnain objective of radical innovations is to discover a solution principle 
for the entire function. Finding optima] decompositions is not considered at this stage 
of maturity. Consequently, the design process is characterised by a high level of 
adhocracy and risk, and is highly dependent on the quality of the individual designers 
involved. Therefore, it can be concluded that the ability to increase the maturity level 
of the design process is constrained by the product maturity. Process maturity 
improverneut can therefore not be an objective in itself as unfamiliar products cannot 
be designed with an isolated and detailed process model. 

RACE displays maturity of various aspect of development and does not strive to 
increase the overall process rnaturity. The desired maturity can therefore be tailored to 
the product designed. RACE cannot directly illustrate what the best fitting maturity 
level is, however, the business drives can be linked to the aspects to identify the best 
candidates for achieving the objectives. Furthermore, during the improverneut cycle, 
not only process related measures should indicate the success of the irnprovements but 
also product related measures. 
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8.3.2 Enterprise document management 

Pierre Breuls 

The research of Enterprise Document Management looks into the question: "How to 
obtain the delivery of the right document at the right place and the right time, in the 
right presentation to the right actor''. The scope concerns the total life-cycle and is 
therefore not restricted to development as is the case in this thesis. Furthermore the 
relationships between a product modeland its documentation are discussed. However, 
Enterprise Document Management looks more in general to the relationships between 
objects and documents. The structuring of the information within documents is not 
considered. The document types to be discussed are not limited to only the 
information directly related to products but also to processes, projects, the 
organisation, etc. 

In accordance with this thesis, Enterprise Document Management considers both the 
structural aspects and the process aspectsof documentation. To be more precise, the 
following is pursued: 

0 Document Flow Management System. Concepts for attaining document flows that 
are optimally geared to related work flows (also known in lirerature as logistics of 
information supply); 

0 Generic Document Management System. Organisational concepts for dealing with 
variety in documentation. This extends part 6 of this thesis with process aspects of 
genetic documents; 

0 Change Management System. Changes affect both document flows and genetic 
documentation. The conducted research will lead to new concepts for version 
management and release procedures. 

In this thesis, documentation is considered a derived entity, only descrihing aspects of 
products, being the main entity looked into. However, in the research on Enterprise 
Document Management, a document is seen as a major entity, requiring 
decornposition, interfaces, versions and variety considerations. In this way, a 
document can be considered as a product in itself. The research project Enterprise 
Document Management at TUE tries to apply existing principles from material 
logistics on documents, dependent on the characteristics of the documents asked for. 

Furthermore, the focus of the research will be on business processes rather than 
product descriptions. In other words, documentation is seen as a supporting entity in 
these business processes. This approach differs from this thesis, which regards design 
as a means to achieve valuable product descriptions. 

To demonstrate the applicability of the above mentioned Enterprise Document 
Management concepts, a number of prototype IT -tools will be developed as part of the 
research. 
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8.3.3 Quality in mechatronic development 

TommyDolan 

This research is also in the area of mechatronic (hardware and embedded software) 
development. The complex, interrelated nature of hardware and software development 
in mechatronic products had long failed to been understood thoroughly . Despite 
independent quality impravement drives in hardware (ISO, Baldridge) and software 
(SPI, CMM), embedded software has the additional cömplication that the software 
and hardware are closely coupled throughout the development process, especially in 
the early design stages and in final integration and testing. 

This means that two parallel development streams must be managed and co-ordinated 
before a final product can be delivered. In such an environment, traceability, 
maintenance and communication are very important because of the close coupling of 
the two development processes and the different technological backgrounds of the 
people involved. This is especially so in current market conditions where the pressures 
to reduce costs and time, while increasing variety, are leading de velopers to exploit 
commonality across a farnily of similar products so as to reuse as much of previous 
development knowledge and solutions as possible. 

The research concentrates on improving the quality of the development of families of 
mechatronic products. The project aims to deliver: 

0 A means to structure early-development documentation, so as to incorporate reuse 
possibilities from the requirements-stage onwards. This means recognising the 
system as a farnily within a larger product platform; 

0 A recommended development method, which facilitates the representation of the 
visible and measurable allocation of functions to technology modules and 
eventually to physical and software products. This development method is based 
on, arnongst others, QFD; 

0 Tooi support for the above method, which facilitates the generation and 
communication of development data, among all development stakeholders 
throughout the development cycle. 

The first deliverable tries to recognise product families in the functional domain 
thereby to stimulate reuse from the outset of the development process. The second 
deliverable will examine the application and extension of some well known quality 
impravement techniques (e.g. QFD, FMEA) to embedded software development. The 
work aims to extend these techniques and incorporate them into a running 
development process. This work is closely related to the notion articulated in this 
thesis that product development can be regarcled as the gradual iterative detailing of, 
and mapping between, the functional, technology, and physical domains of the 
artefact. Finally, the third deliverable wiJl explore in more detail how the concepts 
outlined in this thesis can be implemented in an organisational context. 

273 



Appendices and references 

8.3.4 Supply for customer orders in the extended enterprise 

Luuk Kornelius 

The increased complexity of technology has been an important driver for industrial 
organisations to redesign their manufacturing processes. In doing so they have 
become specialistsintheir own specific field of industry. However, the manufacturing 
of their specialised products also requires specialisation in design. Whereas 
outsourcing used to be cost driven, manufacturers have in many cases no other choice 
but to involve suppliers in design and manufacturing, simply because the supplier is 
the only one holding the required knowledge. 

Another result of the increased complexity of technology is the increased importance 
of components for the functions of compound products. Manufacturers must therefore 
incorporate their suppliers in defining these compound products. However, they still 
consider the specification process a core activity. Simply transferring this process will 
strike at the roots of their right to exist. This creates a dilemma that forces a 
manufacturer to choose between cost effectiveness and defining his core business. 
Structured co-operation is a way out of this dilemma. 

In this co-operation, communication is of utmost importance. The specialisation of the 
suppliers has made it impossible for the manufacturer to translate his customer's 
requirements into detailed specifications for the components. This calls for a paradigm 
shift in which the manufacturer is seen as a co-ordinator of a manufacturing network 
of suppliers. The co-ordinator's role is limited to ensuring that the separate 
components in the end become one product that satisfies the final customer's need. In 
the terminology of this thesis the specifications are part of the functional, 
technological and physical domain. 

Customer independently, the co-ordinator's taskis to create a suppliers' architecture, 
which incorporates their competencies to meet a variety of potential customer needs. 
Another important characteristic of this architecture are the communication pattems 
(interfaces), descrihing anticipated relationships between suppliers. Finally, the 
architecture encompasses the aforementioned domains. 

Customer dependently, the co-ordinator identifies the needof an individual customer, 
details this need into woricing packages and allocates these to suppliers in the network. 
The suppliers execute their working packages, following the network's interfaces. 
These interfaces enable continuous communication with other suppliers and/or the co
ordinator ensuring that the separate components together fulfil the customer' s need. 
Finally the co-ordinator validates the compound product with respect to the customer 
requirements. 

The research project explores customer dependent co-ordination in a manufacturing 
network. It must therefore be investigated which actors contribute when in the life
cycle of the compound product. Furthermore, the research addresses the question how 
communication can be realised using the network's interfaces. 
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8.3.5 Support for initial purchasing 

Rob van Stekelenborg 

The project of Rob van Steketenborg concerns initia! purchasing processes and their 
IT support. Initia! purchasing processes involve the specification of what to buy, 
where to buy it (market research, supplier qualification and selection) and under 
which conditions (contracting). IT support thereby involves decision support, work 
flow management and document management systems. 

Purchasing and supply management have become very important issues in industrial 
organisations. Purchasing turnover typically adds up to 50-70% of sales turnover. 
Moreover, as a consequence of present-day back-to-the-core policies in industry, 
'purchasing' more and more involves the outsourcing of development processes and 
(sub-)assemblies. This has increased the attention for the industrial purchasing 
function. Besides, this led to the accelerated professionalisation of purchasing, 
including more rationalised decision making, more structured purchasing processes 
and better educated people. The research aims at the specification of a reference 
model of a purchasing information system that addresses the foregoing issues and can 
provide support for purchasing decision making, work flow management for initia! 
purchasing processes and (generic) document management. 

The relevanee of the work presented in this thesis for the above-mentioned research is 
as follows. Purchasing, alo., tries to allocate requirements of new products onto 
products or suppliers in the supplier market The status of the specification (i.e., in 
terms of the language in which the specification is stated) at the moment of 
outsourcing (i.e., the moment this allocation has to be carried out) largely determines 
the decision criteria and decision making processes within purchasing. This moment 
will be defined by strategie choices such as the choice of a campany's core technology 
(which to a large extent will determine a campany's own capabilities in specifying a 
product in the various domains) and supply policy. For example, when a company 
outsourees a subassembly that is specified in the functional domain, still some parts of 
the development process will have to be carried out by the supplier. This implies that 
evaluation criteria used in a supplier selection process will also have to address 
supplier capabilities in specifying and designing the product in the technology and 
physical domain. 

Furthermore, the moment of this market allocation also has consequences for the 
remaining development stages. As parts of the development process will have to be 
carried out by a supplier, co-ordination will have to take place across organisational 
boundaries and, depending on the moment of market allocation, in terms of the 
functional, technology and/or physical domain. 
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8.3.6 Production control architectures 

Arian Zwegers 

Current architectmes for Computer-Integrated Manufacturing (CIM) show relevant 
deficiencies in controlling the complexity and the uncertainty, which is typ i cal of 
manufacturing systems. Architectural research is necessary in order to obtain systems 
characterised by the desirabie properties of robustness, flexibility and adaptability, not 
forgetting the usual aim of efficient operation. 

In manufacturing systems, the predominant architectmal paradigm has up to now been 
hierarchical; such paradigm, because of its mechanistic and deterministic approach, 
has numerous defects in coping with uncertainty and with the rapidly evolving 
scenario which characterises today's manufacturing environments. More specifically, 
the hierarchical paradigm binders the integration of humans in system operation by 
rather constraining the humans' role on one side and, on the other, by specifying IT 
elements in the architecture as computing black boxes, which allow little user 
interaction and comprehension. 

Opposite to the hierarchical paradigm, purely distributed control has also been 
proposed, but has gained limited acceptance because of its limitations, connected to 
suboptimality, unstability, and uncontrollability. Between the two extremesof purely 
hierarchical and distributed architectures, the observation of natura! and socio
economie systems suggests that an intermediate, "natura!", and stabie architecture wiJl 
tend to originate. 

Within the context of CIM systems, the research of Arian Zwegers focuses on three 
main topics: 

D definition of the term architecture and investigation of related concepts. This also 
involves architecture characteristics such as views, hierarcbies and 
compositionality; 

0 evaluation of existing modelling languages for architectmes and, possibly, the 
specification of a new modelling language; 

D a metbod for evaluating an architectmal design with respect to flexibility, 
extensibility and modifiability. 

It can be concluded that the research concentrates on similar issues as described in this 
thesis, however not in the field of product development, but in the field of developing 
manufacturing control systems. Moreover, in the research of Arian Zwegers, the 
flexibility of an architecture is used to modify the manufacturing system to new 
requirements, whereas in this thesis, architectmal flexibility is used to create a variety 
of products that exist at the same time. 

Finally, the research into production control architectmes especially concerns the 
architecture as a result of development. The development process itself is only briefly 
addressed. 
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8.3.7 Towards a multi-disciplinary framework for design 

Prof. Dieter Hammer 

The design of technica! artefacts of all kinds becomes more and more a multi
disciplinary effort. This is the combined effect of (1) the increasing specialisation and 
professionalisation, (2) the ever increasing product function and (3) the fact that the 
customer wants a single integrated solution. In this situation, a common framework (a 
sort of smallest common denominator), which can be shared by all disciplines 
involved in a given project, is highly desirable. The practice, however, is that different 
specialists still have their own ways of thinking and doing. 

A multi-disciplinary design framework has many aspects of which only the most 
important ones will be briefly discussed below: 

0 Multiple design dimensions. Similar to the assertions made in this thesis, the design 
space can be partitioned into (1) a domain order, (2) a hierarchical (de)composition 
or design-level order and (3) a design process or time order; 

0 Project management. Effective project management is one of the most challenging 
aspects of designing complex artefacts. Within the different design disciplines 
quite detailed and effective resource estimation methods, life-cycle models, 
configuration management methods and project management methods have been 
developed. It is, however, not clear what the common inter-disciplinary core is; 

0 Simultaneous modelling of the static and dynamic system properties. All artefacts 
have two basic design dimensions: (1) the static dimeosion of how the system is 
structured in terms of its components and (2) the dynamic dimeosion of how the 
system behaves when it is actually used; 

0 Process-oriented design. In the last couple of years customer satisfaction plays an 
ever important role. Products are not longer considered in isolation but as part of a 
larger environment. This means that more emphasis is put on the customer 
processes that must be supported by a product. Consequently, also the design 
process should start at the customer process to be supported; 

0 Wel/ balanced design decisions. In order to come from the initia! requirements 
specification to the final implementation of an artefact, many design decisions must 
be taken. Taking effective design decisions is, however, far from trivial. Among 
the most important reasoos for this difficulty are (1) the multi-dimensionality of the 
design space, (2) the fact that many design dimensions are qualitative rather than 
quantitative, (3) contradicting requirements and (4) the impossibility to define 
unambiguous goals or optimality criteria respectively; 

0 Balance between rational-analytical and intuitive-synthetic methods. In practice 
many design decisions are taken in an intuitive way. Although most people would 
agree that creativity and intuition are important for a designer, most technical 
disciplines still concentrate on analytical means and have no methods to tackle the 
synthesis issues systematically; 
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0 Organisational issues. Organisational issues like the organisation culture, the 
social elimate and the way people communieare are of paramount importance in 
large and complex projects; 

0 Intelface management. Organisational issues become obvious at the interfaces 
between people and between organisational units. Modelling of the interfaces 
between different entities is thus an important issue. This holds for the interfaces 
between the various parts of an artefact as well as for the interfaces between the 
different design teams that develop an artefact. 

The above issues address a field that is even broader than the problem statement of 
this thesis. Therefore, a good starting point is their careful categorisation. 
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8.3.8 Financial measures for developing product families 

U sually product families are designed because they offer a large commercial variety 
with a limited teehuical variety. Therefore, modules are developed in such a way that 
they can be reused in several variants of a product family or even in several product 
families. The financial measures that are needed to decide on the scope of a product 
family and the reusability of its components are not discussed in this thesis. However, 
these measures are very important for supporting the development process of product 
families. 

In literature, some attention is paid to financial measures. Suzue and Kohdate [1990], 
for example, discuss the disparate character of standardisation and differentiation. 
With respect to standardisation, they state that a fixed standard for a usually disparate 
group of products gives order to chaos and, by raising the level of technology 
involved, eliminates errors and redundancy. When parts with the same function are 
used in different types of products, the material costs and processing costs could be 
lower due to the economy-of-scale. In addition, standardisation helps reduce overhead 
costs, treated in accounting as fixed costs. Furthermore, standardisation makes it 
possible to introduce new product families faster, i.e. in time, in the market 

The opposite approach to standardisation is differentiation. A module that is explicitly 
defined for one product variant meets the precise requirements of that product. It is 
not necessary to build in excess function unless the module is used in other products 
as well.' This approach reduces the functional costs per module, but increases the total 
number of modules. Good decisions about the function and number of modules can 
only be taken if the application of modules is considered beforehand. This requires a 
pro-active approach to the design of a product family or product platform in which the 
whole life-cycle is taken into account. Product families that result from the gradual 
development of single products are often costly in the sense that many similar 
modules have been developed for similar functional requirements. This is often 
noticed when changes to the overall concept or product range must be made, with the 
consequence of many modules to be redesigned. 

The optima! costs of a product family design are determined by both functional costs 
and variety costs. The functional costs decline when a large variety of module variauts 
is created, while the variety costs can be reduced by defining a few modules with a 
high function. Pi gure 8-1 shows, in a qualitative way, that functional costs and variety 
costs are mutually antagonistic. 

t 
Costs 

Variety-+ 

Figure 8-1. Functional and variety costs 
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The scope of a pro-actively designed product family, i.e. its number of variants, is 
determined by the functional costs versus the variety costs. In some cases, for example 
when a high sales volume for some variants is anticipated, it might be profitable to 
"lift-out" these variants from the family concept and create dedicated modules with a 
lower functional cost. A similar approach is the division of a product family into two 
subfamilies, each of which can be optimised to its application. 

A more theoretica! frameworkis given by Lancaster [1979]. He distinguishes variety, 
efficiency and equity and applies these to economies in general. Usually, reducing 
variety brings efficiency but introduces problems of equity by making some better off 
while making other worse off. The following example explains this. 

" Consider the Ministry of Automobile Production in a planned economy, which must 
decide how many different types of automobile are to be produced. ft knows that 
different consumers pref er different kinds ( some want black jour-door sedans, some 
redtwo-door sedans, for example) but that there are considerable economiesof scale 
in the production of any one kind. The greater the variety that is produced, the less the 
production of any one type and the higher the average cost per car. Is it better to 
produce one type at lower cost? lf only one kind is produced, the industry is more 
efficient as measured by average cost per car, and the consumers who prefer other 
types are less happy, unless the cost saving is so great that they can buy the somewhat 
less-desirable model for much less than they would have had to pay for their most
pre/erred kind. Even in the latter case, there is an equity problem, whatever model is 
chosen, the choice is more desirabie forsome and less desirabie for others. " 

According to Lancaster, it is obvious that the variety, equity and efficiency problem 
arises when the following three elements are present in a situation. 

0 When there is variety in individual preferences. The problem is acute if individuals 
have strong preferences for one variant over another. If each individual prefers one 
variant to others but is nearly indifferent between them, the overall welfare loss by 
producing a single type is relatively small and efficiency considerations can easily 
outweigh all others; 

0 When there is potential variety in the product. Technological change that 
introduces the possibility of variety brings a potential gain in welfare along with 
the problems associated with choice within that potential variety; 

0 When there are economies of scale in production. If there are no economies of 
scale, then there is no reason why every product should not be custom made to suit 
every individual's preferences. 

The studies of Suzue and Lancaster create a basis for a research project into financial 
measures for the development of product families. 
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8.3.9 Business roadmapping for product families 

An important issue that needs further research is the existence of different life-cycles 
of component families, sub-systems and systems. Component families at lower levels 
of the product hierarchy have longer life-cycles than systems. Furthermore, 
component families are often technology oriented, while systems are application 
oriented (see Figure 8-2). 

appllcatton short er 

ortentalton 11fe-cycles 

technology 

Figure 8-2. Life-cycles and orientation 

This means that the development of component families must be organised such that 
the technology orientation does not impede future applications. Physical products are 
the result of an application (i.e. functional) strategy and a technology strategy. 
Therefore, the design of component families and systems should be geared to one 
another. This thesis assumes that component familiescan be designed or adapted in 
the same period as the system is developed tomeet the requirements of the system's 
application. Business roadmaps (see Figure 8-3), comprising both the evolution of the 
application domain and the technology domain over time could create a solution for 
this problem. 

appHcatton roodmap 

product roodmap 

techno!ogy roodmap 

Figure 8-3. Business roadmaps 

The application roadmap in Figure 8-3 corresponds to the functional domain, however 
with the difference that not the design of one product family but the evolution of 
different product families' functionalities over time is considered. The technology · 
roadmap corresponds to the technology domain in a similar way. In fact, the 
technology domain of a product farnily can be regarded as a specific phase of the 
technology roadmap. Finally, the product roadmap corresponds to the physical 
domain, i.e. the implementation of function and technology in physical products. 
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8.4 Summary in Englisb 

This thesis discusses the development of product families. The advent of the buyers 
market bas resulted in decreasing product life-cycles and an enlarged need to meet 
individual customer requirements. Both factors increase the product density, i.e. the 
number of product variants that are introducedover the farnily's life-cycle. A high 
product density requires a frictionless organisation of product information, which is 
however hindered by the intangibility of product families. 

The objective of this thesis is to create a product rnadelling language for capturing 
product information in different development domains. Secondly, this thesis proposes 
a design metbod for supporting the process of developing product families. This 
design metbod is closely related to the product rnadelling language. 

Product families as well as single products are developed in three domains. The 
functional domaio defines the intended function, the technology domaio defines 
possible salution principles for these functions, and the physical domaio defines the 
materialisation of salution principles. This thesis gives an overview of product 
modeHing languages that are used to describe functions, technology modules and 
physical assemblies. In some cases, the ensemble of function and realisation is 
covered by a set of mathematical principles or a theory from natoral science. In other 
cases, user functions can be realised with distinct technologies, which are not yet 
unified in a grand theory. 

The product family rnadelling language, which is developed in this thesis focuses on 
complex product farnilies that use a variety of technologies to realise user functions. 
The decomposition structure of a product family is described in different domains, 
including the interfaces between functions, technology modules or physical 
assemblies. Different viewpoints are represented with doeurneuts that cao be assigned 
to the product family structure. An importànt starting point for the product family 
rnadelling language bas been the genetic product structuring concept, which describes 
a product family and its possible variants in a non-redundant and transparent way. 

Product modeHing languages that prescribe the artefact should be accompanied by 
design methods that support the design process. An overview of design models and 
methods is given. Descriptive models originate from cognitive science and describe 
some basic psychological mechanisms that seem to be generally valid in designing 
products. Prescriptive models define the mile-stones of a development process 
including specific development actions that should be undertaken. The Productive 
Reasoning Model bas been taken as a basis for the family design metbod presented in 
this thesis as it is genede enough to be generally valid and specific enough to be 
applicable in a partienlar product family development process. The farnily design 
metbod is closely related to the language for capturing the structure of product 
families. Furthermore, the combination of this product farnily modelling language and 
the family design metbod offers the right terminology for an explicit discussion about 
issues as product architectures, variety, modularity, integration, life-cycles, platforms, 
version management, concurrent design and the firm's organisation. 
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8.5 Samenvatting in het Nederlands 

Dit proefschrift behandelt het ontwikkelen van produktfarnilies. De opkomst van de 
buyers' market heeft geresulteerd in kortere levenscycli en een groter belang om 
individuele klanten tevreden te stellen. Beide factoren vergroten de produktdichtheid, 
d.w.z. het aantal produktvarianten dat geïntroduceerd wordt over de levenscyclus van 
een produktfamilie. Dit vereist een goede organisatie van produktinformatie, die 
echter gehinderd wordt door het ontastbare karakter van produktfamilies. 

De doelstelling van dit proefschrift is het definiëren van een modelleringstaal voor het 
vastleggen van produktinformatie in de verschillende ontwerpdomeinen. Verder geeft 
dit proefschrift een methode die het ontwerpproces van produktfamilies ondersteunt. 
Deze methode is nauw gerelateerd aan de taal voor het modelleren van families. 

Produktfamilies worden ontwikkeld in drie domeinen. Het functioneel domein 
beschrijft de beoogde functionaliteit, het technologie domein beschrijft de 
oplossingsprincipes voor deze functies en het fysiek domein beschrijft de fysieke 
realisatie van de oplossingsprincipes. Dit proefschrift geeft een overzicht van talen die 
gebruikt worden voor het vastleggen van functies, technologie modules en fysieke 
assemblages. Soms wordt het samenstel van functionaliteit en realisatie afgedekt door 
een verzameling mathematische principes of een natuurwet. In andere gevallen 
worden gebruiksfuncties gerealiseerd middels verschillende technologieën die niet in 
een alomvattende theorie zijn onder te brengen. 

De modelleringstaal voor produktfamilies die in dit proefschrift staat beschreven richt 
zich met name op complexe produktfamilies waarin een grote verscheidenheid aan 
technologieën is toegepast voor het realiseren van gebruiksfuncties. De 
decompositiestructuur van een produktfamilie wordt beschreven voor de verschillende 
domeinen, inclusief de interfaces tussen functies, modules en assemblages. De 
verschillende gezichtspunten worden gerepresenteerd door documenten die aan de 
familiestructuur hangen. Een belangrijk uitgangspunt voor de modelleringstaal is het 
generieke produktstructurerings principe, dat een produktfamilie met zijn varianten op 
een niet-redundante en transparante wijze beschrijft. 

Modelleringstalen die de samenstelling van het artefact voorschrijven dienen 
vergezeld te gaan van methoden en modellen die het ontwerpproces ondersteunen. In 
dit proefschrift wordt hier een overzicht van gegeven. Beschrijvende modellen komen 
voort uit de cognitieve wetenschappen en beschrijven psychologische mechanismen 
die algemeen geldig lijken te zijn voor het ontwikkelen van de produkten. 
Voorschrijvende modellen definiëren de mijlpalen van een ontwikkelproces, inclusief 
de specifieke acties die in dat proces ondernomen moeten worden. 

Dit proefschrift is gebaseerd op het Productive Reasoning Model dat generiek genoeg 
is om algemeen geldig te zijn, maar tevens specifiek genoeg is om voor concrete 
ontwikkelprojekten toegepast te kunnen worden. De ontwerpstappen van deze 
methode (decompositie, allocatie, compositie en validatie) zijn nauw gerelateerd aan 
de modelleringstaal voor het beschrijven van een produktfarnilie. Verder geeft deze 
combinatie de juiste terminologie om een expliciete discussie te kunnen voeren over 
zaken als produktarchitecturen, variëteit, modulariteit, integratie, levenscycli, platform 
ontwerpen, versiebeheer, parallel ontwikkelen en de ontwikkelorganisatie. 

283 



Appendices and raferences 

In dem beschränkung zeigt sich der Meister. 

German saying 
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9. Appendices and references 

9.1 Conceptual database models 

Conceptual database roodels are a means to formalise the properties of a product 
model as they precisely describe the primitive mechanisms which can be used to 
construct a product modeL The graphical notation introduced in this section is based 
upon the conventions used by Martin and Odell [1992]. 

implosion 

Modular 

structure 

Module 

explosion 

Figure 9·1. Decomposition of modules 

Figure 9-1 shows how the decomposition of modules is modelled in a conceptual 
database schema. As was stated in the previous section, a decomposition of modules 
consists of two main entities, namely the modules and the decomposition 
relationships. Both are modelled as separate database classes. 

The implosion and explosion relationships in Figure 9-1 are used to maintain integrity 
between the class of modules and the class of module relationships. They indicate that 
each module bas zero or more children and zero or more parents. Figure 9-2 shows an 
example which is an instanee of this database model. 

Module Modular Structure 

A (parent • compo 

B A·C 
c A·F 
D B·C 
E B·G 
F C·D 
G C-E 

Figure 9-2. lnstances of the classes: Module and Modular Structure 

The above figure demonstrates that every module in the class Modular Structure 
occurs in the class Module. However, not every module in the class Module has a 
parent in the class Modular Structure. Apparently, module A is the top of a 
hierarchical sub-graph, while D, E, F and G are bottorn items in the graph structure 
and consequently do not have children defined in the class Modular Structure. 
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A graphical presentation of the above tableis presented in Figure 9-3. 

Agure 9-3. Modular structure 

The coneeptual database model of the previous example uses l:N relationships (with 
N~) to link the class Module and the class Modular Structure. Figure 9-4 gives an 
overview of l:N relationships hetween database classes: 

N,.1 N"{1,2,3, ... } 

A H B 

N"{O, 1) N=:{0.1 ,2, ... ) 

Figure 9·4. Notation conventions 

If N=1 then for each instanee a of elass A precisely one instaneebof class B exists, 
whieh refers to the instanee a. If N={O,l} then for each instanee a of class A none or 
one instauces b of class B exist, which refer to the instanee a. lf N> 1 then for each 
instanee a of class A at least one instanee b of class B exists, whieh refers to the 
instanee a. If N~ then for each instanee a of class A none, one or many instauces b of 
class B exist, which refer to the instanee a. 

Generalisart on 

Classes can have more specialised types called sub-classes and more general types 
called super-classes [Kim, 1989]. In this thesis, arrows are used to indicate the 
direction of generalisation. The following figure can he read as graduate is a sub
class of student or person is a super-class of student. Each instanee of a class is also 
an instanee of its superclass. 

I graduate j --+ ,__stu_de_n_t_, ---+ person 

Figure 9-5. Generalisation 
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throughput-time, 239 
verification, 52 
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life-cycle, 243; 281 
light distri bution (luminairs ), 260 
limitations of product models, 78 
local parameter, 138 
logical realisation, 90 
1ogistic 

conditions, !15 
function, 34 

logistics of information supply, 272 
long-term strategy, 31 
luminairs, 258 

maintainability, 3 8; 115 
make 

to order (MtO), 16 
to stock (MtS), 15 

make-or-buy, 36 
manual assembly, 111 

M 



manufacturing 
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engineering, 32 
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uncertainty, 42 

marketing, 32 
mass 

customisation, 1 
production, 2 

master production schedule, 34 
mathematica! principles, 18; 84 
matrix equation, 160 
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multi-functional team, 165 
multiple 

parents, 141 
technologies, 190 

mushroom (diabolo), 71 

naturallaws, 84 
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non-scaleable interface, 188 
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object world, 95 
objective function, 126 
object-oriented design, 89 
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operating instructions, 157 
operational costs, 235 
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overhead costs, 38 
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design, 232 
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distribution, 138 
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selection mechanism, 14 
selection problem, 9 
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Philips Lighting case study, 258 
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Detail Design phase, 255 
functional model, 99 
Overall Design phase, 255 
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preventive maintenance, 38 
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system, 13 
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design, 12 
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management, 31 
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