57 research outputs found

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Efficient Regularized Least-Squares Algorithms for Conditional Ranking on Relational Data

    Full text link
    In domains like bioinformatics, information retrieval and social network analysis, one can find learning tasks where the goal consists of inferring a ranking of objects, conditioned on a particular target object. We present a general kernel framework for learning conditional rankings from various types of relational data, where rankings can be conditioned on unseen data objects. We propose efficient algorithms for conditional ranking by optimizing squared regression and ranking loss functions. We show theoretically, that learning with the ranking loss is likely to generalize better than with the regression loss. Further, we prove that symmetry or reciprocity properties of relations can be efficiently enforced in the learned models. Experiments on synthetic and real-world data illustrate that the proposed methods deliver state-of-the-art performance in terms of predictive power and computational efficiency. Moreover, we also show empirically that incorporating symmetry or reciprocity properties can improve the generalization performance

    DELPHI - fast and adaptive computational laser point detection and visual footprint quantification for arbitrary underwater image collections

    Get PDF
    Marine researchers continue to create large quantities of benthic images e.g., using AUVs (Autonomous Underwater Vehicles). In order to quantify the size of sessile objects in the images, a pixel-to-centimeter ratio is required for each image, often indirectly provided through a geometric laser point (LP) pattern, projected onto the seafloor. Manual annotation of these LPs in all images is too time-consuming and thus infeasible for nowadays data volumes. Because of the technical evolution of camera rigs, the LP's geometrical layout and color features vary for different expeditions and projects. This makes the application of one algorithm, tuned to a strictly defined LP pattern, also ineffective. Here we present the web-tool DELPHI, that efficiently learns the LP layout for one image transect/collection from just a small number of hand labeled LPs and applies this layout model to the rest of the data. The efficiency in adapting to new data allows to compute the LPs and the pixel-to-centimeter ratio fully automatic and with high accuracy. DELPHI is applied to two real-world examples and shows clear improvements regarding reduction of tuning effort for new LP patterns as well as increasing detection performance

    Advances in zooplankton studies- An overview

    Get PDF
    Zooplankton are free swimming animals that have a prominent role in the both fresh water and marine ecosystems. They are considered to be bio indicators and since the existence of zooplankton is more important along with their undeniable role in energy transfer through food chains and biogeochemical cycling. To know about different aspects about zooplankton the care should be taken from the level of collection and further in to their preservation, identification, sorting, enumeration and their analysis through different scientific procedures. Studies about zooplankton is still going on all around the world and there have been a lot of advances made at different aspects related to zooplankton study. A nutshell of field as well as laboratory procedures involving different techniques and instrumentation in zooplankton studies and advancements that have been made and currently followed by the researches are included in this review article

    Distance maps to estimate cell volume from two-dimensional plankton images

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 278-288, doi:10.4319/lom.2012.10.278.We describe and evaluate an algorithm that uses a distance map to automatically calculate the biovolume of a planktonic organism from its two-dimensional boundary. Compared with existing approaches, this algorithm dramatically increases the speed and accuracy of biomass estimates from plankton images, and is thus especially suited for use with automated cell imaging technologies that produce large quantities of data. The algorithm operates on a two-dimensional image processed to identify organism boundaries. First, the distance of each interior pixel to the nearest boundary is calculated; next these same distances are assumed to apply for projection in the third dimension; and finally the resulting volume is adjusted by a multiplicative factor assuming locally circular cross-sections in the third dimension. Other cross-sectional shape factors can be applied as needed. In this way, the simple, computationally efficient, volume calculation can be refined to include taxon-specific shape information if available. We show that compared to traditional manual microscopic analysis, the distance map algorithm is unbiased and accurate (mean difference = -0.25%, standard deviation = 17%) for a range of cell morphologies, including those with concave boundaries that deviate from simple geometric shapes and whose volumes are not well represented by a solid of revolution around a single axis. Automated calculation of cell volumes can now be implemented with a combination of this new distance map algorithm for complex shapes and the solid of revolution approach for simple shapes, with an automated decision criterion to choose the appropriate approach for each image.This research was supported by grants (to HMS) from the Gordon and Betty Moore Foundation and NASA’s Ocean Biology and Biogeochemistry program, and a Woods Hole Oceanographic Institution Summer Student Fellow award (to EAM)

    Ant genera identification using an ensemble of convolutional neural networks

    Get PDF
    Works requiring taxonomic knowledge face several challenges, such as arduous identification of many taxa and an insufficient number of taxonomists to identify a great deal of collected organisms. Machine learning tools, particularly convolutional neural networks (CNNs), are then welcome to automatically generate high-performance classifiers from available data. Supported by the image datasets available at the largest online database on ant biology, the AntWeb (www.antweb.org), we propose here an ensemble of CNNs to identify ant genera directly from the head, profile and dorsal perspectives of ant images. Transfer learning is also considered to improve the individual performance of the CNN classifiers. The performance achieved by the classifiers is diverse enough to promote a reduction in the overall classification error when they are combined in an ensemble, achieving an accuracy rate of over 80% on top-1 classification and an accuracy of over 90% on top-3 classification131CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP141308/2014-1; 131488/2015-5; 311751/2013-0; 309115/2014-023038.002884/2013-382014/13533-

    Flash communication pattern analysis of fireflies based on computer vision

    Get PDF
    Previous methods for detecting the flashing behavior of fireflies were using either a photomultiplier tube, a stopwatch, or videography. Limitations and problems are associated with these methods, i.e., errors in data collection and analysis, and it is time-consuming. This study aims to applied a computer vision approach to reduce the time of data collection and analysis as compared to the videography methods by illuminance calculation, time of flash occurrence, and optimize the position coordinate automatically and tracking each firefly individually. The Validation of the approach was performed by comparing the flashing data of male fireflies, Sclerotia aquatilis that was obtained from the analysis of the behavioral video. The pulse duration, flash interval, and flash patterns of S. aquatilis were similar to a reference study. The accuracy ratio of the tracking algorithm for tracking multiple fireflies was 0.94. The time consumption required to analyze the video decreased up to 96.82% and 76.91% when compared with videography and the stopwatch method, respectively. Therefore, this program could be employed as an alternative technique for the study of fireflies flashing behavior

    Tracking fish abundance by underwater image recognition

    Get PDF
    Marine cabled video-observatories allow the non-destructive sampling of species at frequencies and durations that have never been attained before. Nevertheless, the lack of appropriate methods to automatically process video imagery limits this technology for the purposes of ecosystem monitoring. Automation is a prerequisite to deal with the huge quantities of video footage captured by cameras, which can then transform these devices into true autonomous sensors. In this study, we have developed a novel methodology that is based on genetic programming for content-based image analysis. Our aim was to capture the temporal dynamics of fish abundance. We processed more than 20,000 images that were acquired in a challenging real-world coastal scenario at the OBSEA-EMSO testing-site. The images were collected at 30-min. frequency, continuously for two years, over day and night. The highly variable environmental conditions allowed us to test the effectiveness of our approach under changing light radiation, water turbidity, background confusion, and bio-fouling growth on the camera housing. The automated recognition results were highly correlated with the manual counts and they were highly reliable when used to track fish variations at different hourly, daily, and monthly time scales. In addition, our methodology could be easily transferred to other cabled video-observatories.Peer ReviewedPostprint (published version

    Automated identification of insect vectors of Chagas disease in Brazil and Mexico: the Virtual Vector Lab

    Get PDF
    Identification of arthropods important in disease transmission is a crucial, yet difficult, task that can demand considerable training and experience. An important case in point is that of the 150+ species of Triatominae, vectors of Trypanosoma cruzi, causative agent of Chagas disease across the Americas. We present a fully automated system that is able to identify triatomine bugs from Mexico and Brazil with an accuracy consistently above 80%, and with considerable potential for further improvement. The system processes digital photographs from a photo apparatus into landmarks, and uses ratios of measurements among those landmarks, as well as (in a preliminary exploration) two measurements that approximate aspects of coloration, as the basis for classification. This project has thus produced a working prototype that achieves reasonably robust correct identification rates, although many more developments can and will be added, and—more broadly—the project illustrates the value of multidisciplinary collaborations in resolving difficult and complex challenges
    corecore