33 research outputs found

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    An Introduction to the HydroGNSS GNSS Reflectometry Remote Sensing Mission

    Get PDF
    HydroGNSS (Hydrology using Global Navigation Satellite System reflections) has been selected as the second European Space Agency (ESA) Scout earth observation mission to demonstrate the capability of small satellites to deliver science. This article summarizes the case for HydroGNSS as developed during its system consolidation study. HydroGNSS is a high-value dual small satellite mission, which will prove new concepts and offer timely climate observations that supplement and complement the existing observations and are high in ESAs earth observation scientific priorities. The mission delivers the observations of four hydrological essential climate variables as defined by the global climate observing system using the new technique of GNSS reflectometry. These will cover the world's land mass to 25 km resolution, with a 15-day revisit. The variables are soil moisture, inundation or wetlands, freeze/thaw state, and above-ground biomass

    Smart green charging scheme of centralized electric vehicle stations

    Get PDF
    This paper presses a smart charging decision-making criterion that significantly contributes in enhancing the scheduling of the electric vehicles (EVs) during the charging process. The proposed criterion aims to optimize the charging time, select the charging methodology either DC constant current constant voltage (DC-CCCV) or DC multi-stage constant currents (DC-MSCC), maximize the charging capacity as well as minimize the queuing delay per EV, especially during peak hours. The decision-making algorithms have been developed by utilizing metaheuristic algorithms including the Genetic Algorithm (GA) and Water Cycle Optimization Algorithm (WCOA). The utility of the proposed models has been investigated while considering the Mixed Integer Linear Programming (MILP) as a benchmark. Furthermore, the proposed models are seeded using the Monte Carlo simulation technique by estimating the EVs arriving density to the EVS across the day. WCOA has shown an overall reduction of 13% and 8.5% in the total charging time while referring to MILP and GA respectively

    Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management

    Get PDF
    Global information on the spatio-temporal variation of parameters driving the Earth’s terrestrial water and energy cycles, such as evapotranspiration (ET) rates and surface soil moisture (SSM), is of key significance. The water and energy cycles underpin global food and water security and need to be fully understood as the climate changes. In the last few decades, Earth Observation (EO) technology has played an increasingly important role in determining both ET and SSM. This paper reviews the state of the art in the use specifically of operational EO of both ET and SSM estimates. We discuss the key technical and operational considerations to derive accurate estimates of those parameters from space. The review suggests significant progress has been made in the recent years in retrieving ET and SSM operationally; yet, further work is required to optimize parameter accuracy and to improve the operational capability of services developed using EO data. Emerging applications on which ET/SSM operational products may be included in the context specifically in relation to agriculture are also highlighted; the operational use of those operational products in such applications remains to be seen

    Modelling of Multi-Frequency Microwave Backscatter and Emission of Land Surface by a Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP)

    Get PDF
    Emission and backscattering signals of land surfaces at different frequencies have distinctive responses to soil and vegetation physical states. The use of multi-frequency combined active and passive microwave signals provides complementary information to better understand and interpret the observed signals in relation to surface states and the underlying physical processes. Such a capability also improves our ability to retrieve surface parameters and states such as soil moisture, freeze-thaw dynamics and vegetation biomass and vegetation water content (VWC) for ecosystem monitoring. We present here a prototype Community Land Active Passive Microwave Radiative Transfer Modelling platform (CLAP) for simulating both backscatter (&sigma;0) and emission (TB) signals of land surfaces, in which the CLAP is backboned by an air-to-soil transition model (ATS) (accounting for surface dielectric roughness) integrated with the Advanced Integral Equation Model (AIEM) for modelling soil surface scattering, and the Tor Vergata model for modelling vegetation scattering and the interaction between vegetation and soil parts. The CLAP was used to simulate both ground-based and space-borne multi-frequency microwave measurements collected at the Maqu observatory on the eastern Tibetan plateau. The ground-based systems include a scatterometer system (1&ndash;10 GHz) and an L-band microwave radiometer. The space-borne measurements are obtained from the X-band and C-band Advanced Microwave Scanning Radiometer 2 (AMSR2) radiation observations. The impacts of different vegetation properties (i.e., structure, water and temperature dynamics) and soil conditions (i.e., different moisture and temperature profiles) on the microwave signals were investigated by CLAP simulation for understanding factors that can account for diurnal variations of the observed signals. The results show that the dynamic VWC partially accounts for the diurnal variation of the observed signal at the low frequencies (i.e., S- and L-bands), while the diurnal variation of the observed signals at high frequencies (i.e., X- and C-bands) is more due to vegetation temperature changing, which implies the necessity to first disentangle the impact of vegetation temperature for the use of high frequency microwave signals. The model derived vegetation optical depth &tau; differs in terms of frequencies and different model parameterizations, while its diurnal variation depends on the diurnal variation of VWC regardless of frequency. After normalizing &tau; at multi-frequency by wavenumber, difference is still observed among different frequencies. This indicates that &tau; is indeed frequency-dependent, and &tau; for each frequency is suggested to be applied in the retrieval of soil and vegetation parameters. Moreover, &tau; at different frequencies (e.g., X-band and L-band) cannot be simply combined for constructing accurate long time series microwave-based vegetation product. To this purpose, it is suggested to investigate the role of the leaf water potential in regulating plant water use and its impact on the normalized &tau; at multi-frequency. Overall, the CLAP is expected to improve our capability for understanding and applying current and future multi-frequency space-borne microwave systems (e.g. those from ROSE-L and CIMR) for vegetation monitoring.</p

    Northern Hemisphere surface freeze–thaw product from Aquarius L-band radiometers

    Get PDF
    In the Northern Hemisphere, seasonal changes in surface freeze–thaw (FT) cycles are an important component of surface energy, hydrological and eco-biogeochemical processes that must be accurately monitored. This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze–thaw product (FT-AP) distributed on the Equal-Area Scalable Earth Grid version 2.0, above the parallel 50∘&thinsp;N, with a spatial resolution of 36&thinsp;km&thinsp;×&thinsp;36&thinsp;km. The FT-AP classification algorithm is based on a seasonal threshold approach using the normalized polarization ratio, references for frozen and thawed conditions and optimized thresholds. To evaluate the uncertainties of the product, we compared it with another satellite FT product also derived from passive microwave observations but at higher frequency: the resampled 37&thinsp;GHz FT Earth Science Data Record (FT-ESDR). The assessment was carried out during the overlapping period between 2011 and 2014. Results show that 77.1&thinsp;% of their common grid cells have an agreement better than 80&thinsp;%. Their differences vary with land cover type (tundra, forest and open land) and freezing and thawing periods. The best agreement is obtained during the thawing transition and over forest areas, with differences between product mean freeze or thaw onsets of under 0.4 weeks. Over tundra, FT-AP tends to detect freeze onset 2–5 weeks earlier than FT-ESDR, likely due to FT sensitivity to the different frequencies used. Analysis with mean surface air temperature time series from six in situ meteorological stations shows that the main discrepancies between FT-AP and FT-ESDR are related to false frozen retrievals in summer for some regions with FT-AP. The Aquarius product is distributed by the U.S. National Snow and Ice Data Center (NSIDC) at https://nsidc.org/data/aq3_ft/versions/5 with the DOI https://doi.org/10.5067/OV4R18NL3BQR.</p

    Advancing river monitoring using image-based techniques: Challenges and opportunities

    Get PDF
    Enhanced and effective hydrological monitoring plays a crucial role in understanding water-related processes in a rapidly changing world. Within this context, image-based river monitoring has shown to significantly enhance data collection, improve analysis and accuracy, and support effective and timely decision-making. The integration of remote and proximal sensing technologies, with citizen science, and artificial intelligence may revolutionize monitoring practices. Therefore, it is crucial to quantify the quality of current research and ongoing initiatives to envision the potential trajectories for research activities within this specific field. The evolution of monitoring strategies is progressing in multiple directions that should converge to build critical mass around relevant challenges to meet the need for innovative solutions to overcome limitations of traditional approaches. The present study reviews showcases and good practices of enhanced hydrological monitoring in different applications, reflecting the strengths and limitations of new approaches

    Deriving vertical total electron content maps from SMOS full polarimetric data to compensate the Faraday rotation effect

    Get PDF
    The Faraday rotation is a geophysical effect that causes a rotation of the electromagnetic field components emitted by the Earth when it propagates through the ionosphere. It depends on the vertical total electron content (VTEC) of the ionosphere, the geomagnetic field, and the frequency. For satellite measurements at the L band, this effect is not negligible and must be compensated for. This is the case of the Soil Moisture and Ocean Salinity (SMOS) mission, where the measured polarimetric brightness temperature must be corrected from the Faraday rotation effect before the retrieval of the geophysical parameters. The Faraday rotation angle (FRA) can be estimated using a theoretical formulation that makes use of external sources for the VTEC and the geomagnetic field. Alternatively, it can be continuously retrieved from the SMOS full-polarimetric data. However, this is not straightforward due to the relatively poor radiometric sensitivity (thermal noise) and accuracy (spatial bias) of its payload MIRAS (Microwave Interferometer Radiometer by Aperture Synthesis). In this thesis, a methodology for estimating the total electron content of the ionosphere by using an inversion procedure from the measured rotation angle has been developed. These SMOS VTEC maps are derived from SMOS measurements in the Extended Alias-Free Field of View (EAF-FoV) by applying spatio-temporal filtering techniques to mitigate the radiometric errors present in the full-polarimetric measured brightness temperatures. Systematic error patterns found in the Faraday rotation angle retrieval have been characterized along the mission and corrected. The methodology is independent, not only of external databases and forward models, but also of the target that is being measured. Eventually, these SMOS-derived VTEC maps can then be used in the SMOS level 2 processors to improve the geophysical retrievals. The impact of using these SMOS VTEC maps to correct the FRA in the SMOS mission instead of the commonly used VTEC data from GPS has also been assessed, particularly over ocean, where the ionospheric effect is stronger. This assessment has demonstrated improvements in the spatial biases, in the stability of the brightness temperatures (especially in the third Stokes parameter), and in the reduction of the latitudinal gradient present in the third Stokes parameters. All these quality indicators point to a better quality of the geophysical retrievals.La rotación de Faraday es un efecto geofísico que causa un giro en las componentes del campo electromagnético emitido por la Tierra cuando éste se propaga a través de la ionosfera. Ésta depende del contenido vertical total de electrones (VTEC) en la ionosfera, el campo geomagnético y la frecuencia. En las medidas de los satélites que operan en banda L, este efecto no es despreciable y se debe compensar. Este es el caso de la misión SMOS (Soil Moisture and Ocean Salinity), por lo que el efecto de Faraday se tiene que corregir en las medidas polarimétricas captadas por el instrumento antes de obtener parámetros geofísicos. El ángulo de rotación de Faraday (FRA) se puede estimar con una fórmula teórica que usa bases de datos externas para el VTEC y el campo geomagnético. Alternativamente, se puede obtener de una manera continua a partir de los datos polarimétricos de SMOS. Sin embargo, esto no se logra con un cálculo directo debido a la pobre sensibilidad radiométrica (ruido térmico) y a la baja precisión (sesgos espaciales) que presenta el instrumento MIRAS (Microwave Interferometer Radiometer by apertura Synthesis), que se encuentra a bordo del satélite. En esta tesis, se desarrolla una metodología para estimar el VTEC de la ionosfera usando un proceso inverso a partir del ángulo de rotación medido. Estos mapas de VTEC se derivan de medidas en todo el campo de visión extendido en donde no hay aliasing. Para mitigar los errores radiométricos en las temperaturas de brillo polarimétricas, se aplican técnicas de filtrados temporales y espaciales. En el ángulo de rotación de Faraday recuperado se detectaron errores sistemáticos. Estos se caracterizaron a lo largo de la misión y se corrigieron. La metodología es independiente, no solo de bases de datos externas y modelos de océano, sino también de la superficie medida. Estos mapas de VTEC derivados de los datos SMOS se pueden usar en el procesador de nivel 2 para mejorar las recuperaciones geofísicas. Se ha evaluado el impacto de usar estos mapas para corregir el FRA en la misión, en vez de los datos de VTEC que comúnmente se emplean (mapas provenientes de datos de GPS), particularmente sobre océano, en donde los efectos de la ionosfera son más críticos. Esta verificación ha demostrado mejoras en el sesgo espacial, en la estabilidad de las temperaturas de brillo (especialmente en el tercer parámetro de Stokes) y en la reducción del gradiente latitudinal presente en el tercer parámetro de Stokes. Todos estos indicadores de calidad apuntan a la obtención de parámetros geofísicos de mejor calidad.Postprint (published version

    Amazon hydrology from space : scientific advances and future challenges

    Get PDF
    As the largest river basin on Earth, the Amazon is of major importance to the world's climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda toward integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure
    corecore