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Abstract 

Enhanced and effective hydrological monitoring plays a crucial role in understanding water-related processes 

in a rapidly changing world. Within this context, image-based river monitoring has shown to significantly 

enhance data collection, improve analysis and accuracy, and support effective and timely decision-making. The 

integration of remote and proximal sensing technologies, with citizen science, and artificial intelligence may 

revolutionize monitoring practices. Therefore, it is crucial to quantify the quality of current research and 

ongoing initiatives to envision the potential trajectories for research activities within this specific field. The 

evolution of monitoring strategies is progressing in multiple directions that should converge to build critical 

mass around relevant challenges to meet the need for innovative solutions to overcome limitations of 

traditional approaches. The present study reviews showcases and good practices of enhanced hydrological 

monitoring in different applications, reflecting the strengths and limitations of new approaches.   

 

Keywords: river monitoring; image-based techniques; remote sensing; water quality; artificial intelligence; 

citizen science  

 

1 Introduction 

Water resources management is facing critical challenges due to the combined effects of global warming, 

population growth, human pressures, and increased pollution. These factors collectively contribute to the 

global rise in hydrological extremes, including droughts and floods. Furthermore, they exacerbate the declining 

trend in water availability and degradation of water quality, which could ultimately result in chronic water 

scarcity affecting a substantial portion of the world's population. Already, around four billion people, 

approximately half of the global population, are affected by severe water scarcity (Mekonnen & Hoekstra, 

2016), and future climate scenarios are expected to amplify this situation (Wheater & Gober, 2015; Lu et al., 

2019; Tramblay et al., 2020; Boretti & Rosa, 2019), which poses an escalating risk to  human health and rights, 

ecosystems, cultural heritage, and the global economy (e.g., Cammalleri et al., 2020). In addition, water quality 

is being degraded more rapidly and diversely than ever with an increasing number of pollutants such as 

nutrients, pesticides, plastics, and emerging contaminants (Bhateria & Jain, 2016; Hannah et al., 2022). To 

address these challenges effectively, the field of water resources monitoring must evolve by considering the 

complex interconnections between the environment and human society (Montanari et al., 2013; Ross & 

Chang, 2020).  

Although the commonly used and existing monitoring systems have laid the foundation for our knowledge, 

these have been designed under different hydrological conditions compared to today's needs and challenges. 
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These monitoring systems are laborious, expensive, and often provide discontinuous data in space and time 

(Sergeant & Nagorski, 2014). For example, current low-frequency water quality sampling methods fail to 

capture occasional pollution events or changes induced by urban floods, while high-frequency monitoring 

approach using in-situ water quality sensors is more likely to detect these dynamics in a detailed manner (e.g. 

Outram et al, 2014; Rode et al. 2016). However, these approaches are prone to instrument degradation (e.g., 

bio-fouling, calibration issues) and human error, if no adequate instrumental maintenance and technical staff 

training are ensured. Thus, it is necessary to adopt new observational strategies, benefiting from the 

increasing technological development, to deepen comprehension and gain further insights on river ecosystems 

and dynamics. 

Advancements are expected to enhance the spatio-temporal resolution of observations in order to improve 

'near real-time' water quality and quantity monitoring to move towards a more equitable, sustainable and 

efficient water management. In fact, water management practices face limitations concerning data availability 

and timely data sharing, especially in rapidly changing environments. Increasing in-depth knowledge of how 

climate change, as well as human pressures, impact the environment, both in time and space, cannot be 

achieved solely with traditionally used instruments. Furthermore, the absence of a data-sharing policy in 

certain regions, coupled with the lack of common standards and protocols for hydrological monitoring, 

metadata storage, and exchanges—especially for qualitative monitoring—still presents additional challenges 

to achieving effective and sustainable water management.  

Recent advancements in Earth Observation (EO) technologies, environmental tracers (isotopes and 

biomarkers), new sensor technologies, and unmanned aerial systems (UAS), present promising opportunities 

to revolutionize environmental monitoring (Demarchi et al., 2017; Manfreda et al., 2018; Koparan et al., 2018; 

Wang & Yang, 2019; Koparan et al., 2020; Perks et al., 2020; Taramelli et al., 2020; Piegay et al., 2020; 

Strelnikova et al., 2023). Furthermore, the integration of ground-based measurements with remotely acquired 

data makes it possible to characterize environmental processes much more accurately than in the recent past. 

In recent years, there have been strong investments aimed at managing and maintaining EO missions, EO-

derived services, and products, designing and launching new satellite missions or making operational new EO-

based reliable tools (McCabe et al., 2017) and financing space research programmes. At the EU level,  the 

European Copernicus Programme (https://www.copernicus.eu/) provides EO data and information services for 

different domains, and the EUMETSAT Satellite Application Facilities (SAFs) provides datasets and products for 

operational hydrological applications (referred to as H SAF; https://hsaf.meteoam.it/). Similar investments are 

also ongoing at national levels. For instance, Italy is pursuing investments in its space economy through the 

Mirror Copernicus Programme, focusing on national downstream services tailored to end user requirements. 

Part of this program, known as the IRIDE Program, is now being put into action as part of the Italian National 

Recovery and Resilience Plan. This initiative aims to enhance hydrological monitoring by launching a hybrid 

satellite constellation and providing EO services, with a particular focus on water management (Mariani & 

Bussettini, 2021). At global scale, a large effort was spent to accelerate EO uptake and impact by fully 

capitalising on the power of satellite EO in international development assistance operations such as the Global 

Development Assistance (GDA) program (https://gda.esa.int/). The GDA program is powered by the European 

https://www.copernicus.eu/
https://hsaf.meteoam.it/
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Space Agency (ESA) and implemented in partnership with the World Bank and the Asian Development Bank 

through complementary thematic areas, including water resources (https://gda.esa.int/thematic-area/water-

resources/).  

Like how smartphones revolutionized communication, the field of remote sensing has undergone a significant 

transformation with the emergence of miniaturized technology. In this context, CubeSats and UASs have 

boosted widespread adoption of these systems in academia, in operational institutional services, and in the 

commercial sector (Acharya et al., 2021; Eltner et al., 2022; Manfreda & Ben Dor, 2023). Therefore, there is a 

growing number of new users for such new technologies which still require harmonising effort in monitoring 

practices and accuracy assessment procedures (Tmusic et al., 2020). 

The objective is to highlight the potential, limitations, and challenges of new technologies in hydrological 

monitoring by exploiting the capabilities of remote sensing, camera systems mounted on board of UAS or in 

fixed locations, image processing, and Artificial Intelligence (AI) algorithms. These methods and approaches 

may provide complementary and valuable information as well as processing capabilities to comprehensively 

monitor fluvial systems.  This study is built upon the experiences of the authors who have been involved in 

European and national projects and are collaborating within the MOXXI Working Group of the International 

Association of Hydrological Sciences (IAHS – https://iahs.info/Initiatives/Working-Groups/MOXXI/).  

 

2 Challenges in hydrological monitoring 

Effective hydrological monitoring faces several challenges to ensure sustainable and equitable water resources 

management. This section will discuss three key challenges: data scarcity and institutional limitations, spatial 

and temporal variability, and increasing demands for water resources. 

 

2.1   Data scarcity and institutional limitations 

The primary challenge in hydrological monitoring is the data scarcity. Traditional monitoring systems often 

suffer from inadequate spatial coverage, limited temporal resolution, and insufficient availability of data. This 

scarcity of data hinders the accurate assessment of water resources and their quality, making it difficult to 

develop robust management strategies. 

One of the most pressing concerns in data collection is the fragmentation of agencies and institutions 

responsible for overseeing distinct monitoring networks aimed at various objectives while tracking the same 

variables. This results in a heterogeneous and non-uniform distribution of monitoring stations, which often 

lack connections to a shared database or are installed at locations not suitable for specific objectives (Kirchner, 

2006). Despite the overall increase in the number of sensors deployed over time, the availability of pertinent 

information has not shown significant improvement.  

The development of monitoring systems over time have been significantly shaped by political decisions and 

mono-sectorial water management criteria that leads to fragmented networks. For instance, the Italian hydro-

meteorological monitoring network, which transitioned from national to local control, has experienced 

relevant changes over time in the number of institutions involved, the number and distribution of monitoring 

stations (Braca et al., 2021).  

https://iahs.info/Initiatives/Working-Groups/MOXXI/
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In addition, it is not uncommon to observe the redundancy of investments in multiple monitoring networks 

carried out by various agencies (see the example of Basilicata Region in Fig. 1), with different purposes (e.g., 

hydrological monitoring, agrometeorological monitoring, civil protection, research). Even if these monitoring 

efforts have resulted in an increased number of monitoring stations, in-situ data fragmentation has increased 

over the course of time. These investments fail to enhance the quality and quantity of information provided 

because none of them are synchronized or optimized with each other. Due to the lack of coordination and 

data harmonisation, it is hard to have a comprehensive picture of this issue at a larger scale (e.g., at a national 

level or European level). 

Therefore, the final total number of sensors that may be available over a certain area could comprise the 

combination of multiple networks established over the years, culminating in an exceedingly inefficient 

monitoring system. The heterogeneity of the monitoring networks also brings to light problems relating to the 

quality and officiality of the data.  

The shift towards the digital age has unlocked the potential to construct extensive databases amalgamating 

measurements gathered from various origins. This could potentially overcome the existing constraints of 

current independently operational systems. However, substantial efforts are required for the reconstruction 

and harmonization of all available hydrological information, along with the digitization of historical data 

previously recorded on strip charts. In this context, certain automated techniques for data reconstruction have 

been formulated, which may help to reconstruct time-series reported on strip charts (e.g., Deidda et al., 2007; 

Jaklic et al., 2016). 

Despite the significant number of rain gauges distributed worldwide, which sum to a total number ranging 

between 150,000 and 250,000, the heterogeneity of rainfall fields challenges their ability to comprehensively 

capture precipitation patterns (Groisman & Legates, 1995; Kidd et al., 2017). These gauges, assuming each is 

independent and represents a 5 km radius area, cover only about 1% of Earth's land surface (Becker et al., 

2013). The number of river monitoring stations is smaller than rain gauges (e.g., in Italy, their number is 

approximately a third compared to approximately 3000 rain gauges available - Braca et al., 2021) and unevenly 

distributed across the globe. These stations are mainly concentrated in North America and Europe which 

represent about 50% of the global coverage, while Africa contains only 6% of the total (e.g., Herold & Mouton, 

2011). In addition, water level stations only provide indirect measurements of discharge and require yearly 

surveys to reconstruct the corresponding updated flow rating curve (Mosley & McKerchar, 1993; Manfreda, 

2018). This activity is time consuming and expensive and for this reason has been interrupted in several sites in 

recent years (Tauro et al., 2018a). Therefore, the real number of river monitoring stations useful for water 

assessment is even lower with respect to the number mentioned above. 

Water quality monitoring is probably one of the most complex activities which frequently implies field 

sampling standards, complex laboratory protocols and techniques as well as routine data analysis. The 

Waterbase European Environment Agency (EEA) databases report on the status and quality of Europe's rivers, 

lakes, groundwater bodies and transitional, coastal, and marine waters, on the quantity of Europe's water 

resources, and on the emissions to surface waters from point and diffuse sources of pollution (Waterbase - 

Water Quality ICM, 2022). It shows that there are about 1,550 monitoring locations, distributed over 24 
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European countries, having three or more years of data with an average of at least four samples per year. This 

database represents just a subset of the EU Water Quality Monitoring Network, but the limited temporal 

resolution of most of the Water Quality observations does not allow to capture variability of natural and 

anthropic processes especially with respect to pollution events (Alilou et al., 2019). At a global scale, the Global 

Database of Freshwater Quality GEMStat (https://gemstat.org/) is one of the most comprehensive repositories 

of measured water quality data and gathered with voluntary submissions from different countries and 

organizations. The GEMStat database contains over 15 million entries from about 130,000 stations gathered 

from more than 80 countries (https://gemstat.org/about/data-availability/). Even if many gauging stations 

contain only a small fraction of available data, the GEMStat database represents an important open-access and 

valuable reference for in-situ water quality at global scale.  

To address this limitation, the GlobeWQ project (https://www.globewq.info/) is a leading global initiative that 

proposes the integration of data from different sources, including in-situ, Earth observation (EO), and 

modeling results, to enhance water quality information and assessment globally. Additionally, the presence of 

macro- and micro-plastics in rivers poses one of the most critical challenges for ocean pollution. However, 

there are currently no standardized protocols and sustainable systems for monitoring it. 

A recent study by Hurley et al. (2023) highlighted that the total number of monitored sites for macroplastics is 

limited to approximately 57 rivers around the world, which is notably irrelevant given the scale of the problem. 

Therefore, it is vital to enhance monitoring efforts in both space and time to better understand regional and 

global plastic fates. 

 

2.2   Spatial and temporal variability 

Another significant challenge is represented by the spatial and temporal variability of hydrological processes 

and water resources. Their patterns exhibit substantial variations and are influenced by factors such as 

climate, land use, soil characteristics, morphology, human activities, and interventions. Traditional monitoring 

systems, often based on pointwise measurements or sampling, struggle to adequately capture this variability. 

In fact, the hydrological variables are mutually influenced and controlled by the spatial variability of physical 

factors (e.g., Rodriguez-Iturbe et al., 2006; Metzger et al., 2017; Meijer et al., 2021). Therefore, water 

resources regimes can differ significantly between and within river basins due to the heterogeneity of 

geological settings, land cover, soil types, and human pressures. To account for this variability, monitoring 

networks must be designed to capture such heterogeneities. This requires the optimal distribution and 

densification of monitoring stations, and the use and integration of remote sensing data to gather spatially 

explicit information. This is also a clear objective introduced by the Water Framework Directive 2000/60/EC 

(WFD), although not always fully implemented, due to tangible limitations (e.g., insufficient funding, lack of 

skilled human resources).  

Temporal variability also poses an additional challenge for water availability and quality monitoring. Infrequent 

sampling or sparse data collection fail to adequately capture water dynamics that can vary dramatically over 

different timescales ranging from hourly fluctuations to seasonal variations, and long-term trends. Therefore, 

https://www.globewq.info/
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high-frequency monitoring, enabled by advanced sensor technologies and automated data collection systems, 

is crucial for accurately capturing these processes (e.g., Sergeant & Nagorski, 2014; Rode et al. 2016).  

 

2.3   Increasing demands for water resources 

Population growth, urbanization, and industrial development exert pressure on water availability and quality. 

This pressure is emphasized by the current and likely future impacts of climate change on water resources. 

Balancing the competing demands for water resources while ensuring their sustainable use and allocation 

requires monitoring networks which can be expanded and upgraded to provide comprehensive coverage and 

real-time data. However, traditional monitoring approaches often struggle to keep pace with the increasing 

demands for data.  

Furthermore, as water scarcity becomes more and more pressing, efficient water management strategies are 

needed to optimize water allocation and minimize waste. Integrated monitoring systems that combine 

hydrological data with socio-economic information can facilitate informed decision-making and support 

sustainable water resources management. 

Addressing the challenges of data scarcity and limitations, spatial and temporal variability, and increasing 

demands for water resources requires a concerted effort from the scientific community, policy- and decision-

makers, and water resources managers. These challenges are clearly identified by IAHS Water Solutions 

Decade on “Science for Solutions: Hydrology Engaging Local People IN one Global world (HELPING)”. In this 

context, the theme 3 is promoting joint effort to integrate new technologies with existing ones (IAHS, 2023). 

 

3 Advancing hydrological monitoring 

Fast developing technologies such as remote sensing, UAS, advanced sensor networks, and wireless data 

networks offer opportunities to improve data availability and accessibility, and to collect data more efficiently 

and comprehensively. These technologies can also provide relatively high-resolution data over large spatial 

extents and properly capture temporal variations of hydrological processes. Integration of these technologies 

with data-driven approaches, such as artificial intelligence (AI), can enable more accurate and reliable 

hydrological monitoring. 

This section will explore key areas such as: remote sensing and satellite-based technologies, sensor networks 

and citizen science. 

 

3.1 Remote sensing  

Satellite-based technologies offer the main advantage of a wide-area coverage, capturing information on 

various hydrological variables such as precipitation, evapotranspiration, soil moisture, and surface water 

dynamics (Rango, 1994; Chen & Wang, 2018, Pereira et al., 2019; Albertini et al., 2022). This data, depending 

on the satellite mission characteristics, can be obtained at reasonable regular time intervals and at different 

costs (some data are also available for free, such as the Copernicus mission), allowing for the assessment of 

temporal changes and the characterization of spatial patterns. 
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Numerous observation systems are tailored for hydrological research. Within NASA's 19 Earth science 

missions, 9 are notably pertinent to hydrology, including AQUA, ICESat-2, GPM, GRACE, PMM, SLAP, SMAP, 

SWOT, and VIIRS (NASA, 2023). The European Space Agency (ESA) has 4 missions relevant to hydrology: 

CryoSat-2, EUMETSAT satellites, Copernicus Sentinel-1 and Sentinel-2, and SMOS (ESA, 2023). ESA intends to 

launch the EarthCARE mission to enhance understanding of clouds and aerosols' role in solar radiation 

reflection. China has made substantial progress in Earth hydrology-related observation with the Fengyun and 

Haiyang satellite series, which focuses on meteorological observations and oceanographic monitoring and 

plans to also launch the Water Cycle Observation Mission (WCOM) (Shi et al., 2016).  

In addition, various national and international initiatives aim to advance the intersection of Earth observation 

and hydrological science. These include the International Precipitation Working Group (IPWG), NASA Energy 

and Water Cycle Study (NEWS), European Union WATer and Global CHange (WATCH), and the Global Energy 

and Water Exchanges (GEWEX, 2018) initiative.  

The combined efforts of Earth observation missions and initiatives are propelling hydrology into the era of "Big 

Data" (Peters-Lidard et al., 2017). Big data techniques can handle vast amounts of data and extract meaningful 

insights and interpret complex hydrological datasets, leading to improved understanding and predictive 

capabilities. 

UAS, alongside satellites, are also valuable tools for hydrological monitoring (Manfreda & Ben Dor, 2023). 

These systems use advanced sensors to collect high-resolution data on a local scale, allowing for precise 

observations. UAS are versatile and agile, capable of capturing RGB and multi- or hyper-spectral data, thermal 

imagery, and LiDAR (Light Detection and Ranging) data. They excel in covering from local to large areas, 

reaching inaccessible regions and improving the spatial and temporal resolution of hydrological observations. 

Currently, one limitation for the use of UAS is still represented by the maximum extent of individual surveys. 

Swarm drone operations could overcome these limitations using multiple unmanned aerial flying platforms 

carrying sensors integrated as a single networked system.  

In this context, an intermediate level between satellites and UAS is represented by 'CubeSat' and High-Altitude 

Pseudo Satellites (HAPS), which offer the possibility of conducting surveys over larger surfaces with high 

resolution. CubeSats are a standard size and form factor nanosatellites which are increasingly utilised by space 

agencies (McCabe et al., 2017). HAPS, which typically fly at 15,000-30,000 m above ground level for several 

months at a time, are also currently in development and testing. Both systems have the potential to fill the gap 

between satellites and UAS for earth observation and hydrological monitoring, given their endurance and 

spatial resolution (Poghosyan & Golkar, 2017; Gonzalo et al., 2018; Baraniello et al., 2021).   

 

3.2 Internet of Things (IoT) and sensor networks  

The Internet of Things (IoT) represents a novel technological paradigm conceptualized as a worldwide network 

of machines and devices with the ability to engage in mutual interactions (Lee & Lee, 2015). It allows the 

integration of sensors interconnected through a variety of access networks, facilitated by cutting-edge 

technologies like embedded sensing and actuation, radio frequency identification (RFID), wireless networks, 

and semantic and real-time web services. The IoT's low-power wide area network (LPWAN) capabilities enable 
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the utilization of battery-powered sensors. Among these, Long Range Wide Area Network (LoRaWAN) stands 

out as it employs open-source technology and operates on unlicensed frequency bands, offering significantly 

greater range compared to WiFi or Bluetooth connections. LoRaWAN is particularly advantageous for 

applications in remote regions where cellular networks experience limited coverage. Given the extensive 

multitude of devices that can be connected, the number of local measurements may enormously increase 

offering the possibility to further explore complex dynamics of hydrological forcings (Perumal et al., 2015; 

McCabe et al., 2017; Balsamo et al., 2018; Tauro et al., 2018a; Tosi et al., 2020; Livoroi et al., 2021). 

Sensory networks, in conjunction with the Internet of Things (IoT), hold promising potential for adaptive 

monitoring strategies through dynamic adjustments to the spatial distribution and density of sensors based on 

evolving hydrological conditions. Such flexibility enables targeted data collection in response to specific events 

or areas of interest, incorporating event-based triggers for sensor readings. Consequently, this approach 

optimizes the allocation of monitoring resources (Zanella et al., 2023; Marino et al., 2023). 

 

3.3 Citizen science and crowd-sourced data 

Citizen science represents an innovative tool with a measurable influence on environmental stewardship and 

public policy advocacy. When integrated with crowdsourcing, involving the gathering of extensive data from a 

diverse array of participants, citizen engagement can lead to an immediate, real-time response to pressing 

issues, such as pollution and natural disasters. Engaging the public in data collection and classification does not 

only increase data coverage, but also promotes public awareness and participation in water resources 

management (e.g., Nardi et al., 2022, Sermet et al.,2020). 

Recently, several initiatives have stimulated the participation of volunteers in data collection through methods 

such as mobile applications, community-based monitoring programs, or distributed sensor networks, as is the 

case, for example, with the CrowdWater project (Strobl et al., 2019). Participants can measure water levels, 

discharge, report on water quality observations, and share hydrological data collected from their personal 

monitoring stations. This collaborative effort significantly boosts data availability and offers valuable insights 

into the specific hydrological conditions within local areas, while also providing an avenue for active 

participation of key stakeholders in the community to foster technology localization and sustainability. The use 

of crowd-sourced data also holds the potential to complement conventional monitoring networks by capturing 

detailed spatial and temporal data (e.g. Etter et al., 2020; Mapiam et al., 2022).  

In this context, citizen-acquired data may not always be comparable to professionally obtained data. To 

maintain high data quality standards, initiatives in citizen science consistently incorporate training and 

implement measures for quality control. This enables participants to contribute effectively, following simple 

and reliable procedures. Integration of these data with professional monitoring data, remote sensing 

observations, or model simulations can notably enhance the accuracy and resolution of hydrological analyses. 

Several private sensor networks have been growing significantly in the last few years offering many 

measurements that may be easily filtered and validated offering a dense network of observations (de Vos et 

al., 2019). Popular online platforms such as Netatmo (https://weathermap.netatmo.com) and Weather 

Underground (https://www.wunderground.com/) collect and visualize measurements from public and even 

https://www.sciencedirect.com/science/article/pii/S2214581821001129#bib0020
https://www.sciencedirect.com/science/article/pii/S2214581821001129#bib0255
https://weathermap.netatmo.com/
https://www.wunderground.com/
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personal weather stations (PWSs) every ∼5 to 10 min with a total number of sensors that exceeds one order of 

magnitude the number of stations of the national hydrological services (Graf et al., 2021; Coney et al., 2022). 

These private network of rainfall stations connected to a web service has been clearly assessed in a recent 

work by Graf et al. (2021). In fact, these opportunistic networks can lead, after filtering and sensor calibration 

(Krüger et al., 2023), to rainfall maps of higher accuracy and increased spatial variability, especially on smaller 

spatial and temporal scales.  

The successful use of citizen science's potential for hydrological monitoring relies on a crucial collaboration 

between scientists, water managers, and the public. This engagement with the public also proves to be an 

effective approach for fostering a deeper understanding on water level measurements, discharge estimates, 

water conservation and shoreline changes (Harley et al., 2019; Seibert et al., 2019; Wang et al., 2022).  

Several citizen science initiatives and crowd-sourced data collection platforms can contribute to data 

integration efforts (for instance, the largest people-powered research platform Zooniverse - 

https://www.zooniverse.org/). Engaging the public in data collection and monitoring processes can increase 

data coverage and improve community involvement in water management decisions. This approach has been 

used for instance for: for flood risk management in Argentina, France, and New Zealand (e.g., Le Coz et al., 

2016) or coastal litter monitoring (e.g., van Lieshout et al., 2020). 

 

4 The potential of image-based techniques for river monitoring   

The proliferation of modern optical sensors, present in satellites, on UAS, and in smartphones as well as 

attached to low-cost single board computers or micro-controllers, has sparked a compelling interest in utilizing 

imagery to greatly broaden the scope of possible hydrological observations (e.g., Manfreda et al., 2018; 

Strelnikova et al., 2023). Digital cameras have been successfully used in areas such as surveillance, facial 

recognition, object detection and tracking, inventory monitoring, and management. Additionally, some 

existing algorithms developed for general purposes have found intriguing applications in environmental 

monitoring, including the creation of 3D models (James et al., 2019), assessment of highway vehicle flux (Hsu 

et al., 2003), monitoring air pollution (Zhang et al., 2016), measuring rainfall intensity (Allamano et al., 2015; 

Kavian et al., 2018; Jiang et al., 2019), and mapping river velocity fields (Johnson & Cowen, 2017; Lewis & 

Rhoads, 2018), among others. 

Numerous researchers are currently delving into the field of river monitoring using image processing 

techniques. This includes a range of possibilities like traditional image processing methods from computer 

vision, but also new techniques utilizing Artificial Intelligence (AI). 3D reconstruction through Structure-from-

Motion and Multi-View Stereo (SfM-MVS) or photogrammetry is one of the most common applications. 

It is becoming increasingly common for ordinary hydrological stations to be associated with nearby installed 

optical cameras. New camera systems have the potential to capture a range of complementary information 

(e.g., water level, velocity, and water quality parameters) useful for interpreting natural phenomena. They may 

also be exploited to measure features with the support of an evolving range of software and tools (e.g., 

Segment Anything Model - https://segment-anything.com/). In Figure 2, we provide three examples of images 

taken on different rivers highlighting various phenomena such as a drought, plastic pollution, and a flood with 

https://www.zooniverse.org/
https://segment-anything.com/
https://segment-anything.com/


 

 

11 

 

associated intense wood transport. 

The following sections provide an in-depth exploration of various aspects that can be investigated using image-

based techniques, ranging from 3D reconstruction for analysing river morphology to monitoring water quality 

in rivers. 

 

4.1 River morphology 

Structure from Motion (SfM) with Multi-View Stereo (MVS) algorithms have produced a revolution in the field 

of high-resolution topographic reconstruction (Westoby et al. 2012). This integrated approach utilizes 

matching features in multiple overlapping images without requiring 3D location of ground control points, 

which is common in traditional photogrammetric methods. These methods may help estimating the area of 

the water surface in orthophotos (Niedzielski et al., 2016) and assessing the river morphology throughout time 

(Carrivick and Smith, 2019) allowing for frequent cross-section updates, which becomes especially important 

before and immediately after flood events (Bertalan et al., 2023). These surveys can be repeated several times 

over the year to define the cross-section geometry. To improve the change detection accuracies, multi-

temporal image matching techniques can be used (Feurer et al., 2018) and when combined with error 

propagation methods, such as M3C2-PM (James et al., 2017), enable the identification also of small-scale 

events (Blanch et al., 2021). The magnitude of morphological events that can be identified with change-

detection techniques depends on the resolution of the image and on the characteristics of the sensors. River 

morphological changes detection from satellite data (e.g. radar data) are not always easy to meet, showing 

limitations, potentials, and challenges in this field of study, still to be investigated (Marchetti et al., 2023; Rossi 

et al., 2023). The riverbed below the water surface can be reconstructed, using active or passive mapping 

approaches, and considering radiometric and geometric principles (Mandlburger, 2022). Geometric tools 

consider refraction impacts (Maas, 2015; Dietrich, 2017) and radiometric tools utilize the attenuation of light 

when travelling into deeper water (Flener et al., 2013; Legleiter, 2021; Mandlburger et al., 2021). Thus, images 

can be used to describe the observed river cross-section above and below the water surface (Eltner et al., 

2021a), including the change of grain size distributions of the exposed river sediment bars (Lang et al., 2021; 

Marchetti et al., 2022) or growth of submerged vegetation (e.g., Rowan and Kalacska, 2021) which controls 

hydraulic roughness and conveyance in many lowland rivers or the change in geomorphic unit assemblages, 

which compose the riverine habitats (Carbonneau & Bizzi, 2023; Latella et al., 2024; Crivellaro et al., 2024). 

  

4.2 Image velocimetry 

Image sequences can be used to trace flow velocities and paths tracking and measuring the displacement of 

visible structures on the water surface. Generally, natural patterns on free surfaces, such as wave crests, 

vortexes, bubbles, foams, or natural floating material (debris, vegetation) provide seeding for image 

processing. These conditions are especially prevalent during floods due to the presence of surface ripples 

caused by near-surface turbulence and pressure fluctuations. In case of missing tracers, they can also be added 

manually if the site conditions allow for it. 

In recent years, several image velocimetry methods have been developed, which include the classical 
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correlation-based algorithms such as Large Scale Particle Tracking Velocimetry (LSPTV - Brevis et al., 2011; 

Tauro et al., 2017; Eltner et al., 2021a) and Large Scale Particle Image Velocimetry (LSPIV - Fujita et al., 1998; 

Muste et al., 2008; Sabrina et al., 2021). Other approaches measure patterns of image intensity in 1D, i.e., 

Space-Time Image Velocimetry (STIV - Fujita et al., 2007) or use the well-known  computer vision technique of 

optical flow, e.g. implemented in the tools Optical Tracking Velocimetry (OTV - Tauro et al., 2018b) and 

Kanade–Lucas Tomasi Image Velocimetry (KLT-IV - Perks, 2020).  

These methodologies have demonstrated their successful implementation in continuous monitoring systems 

(e.g., Peña-Haro et al., 2021) and they have been effectively applied in remote or hard-to-reach areas using 

footage captured from UAS or on synthetic flow videos (e.g., Perks et al., 2016; Tauro et al., 2016; Pearce et al., 

2020; Ljubicic et al., 2024; Bodart et al., 2022). The introduction of deep learning-based algorithms, as 

highlighted by Ansari et al. (2023), has significantly reduced the need for extensive parameter configuration. It 

is important to note that the accuracy of these methods in reconstructing surface velocities is influenced by 

various factors, including camera setup, seeding density, lighting conditions and other environmental 

variables. Despite the associated errors being typically quite small, often lower than 10% (Manfreda et al., 

2019; Eltner et al., 2020), data collection can still be improved by taking into consideration relevant data 

optimization procedures. Since there is an emphasis on the need for higher seeding density, solutions to 

optimize frame selection using metric-based (Pizarro et al., 2020) and Artificial Neural Network (ANN) (Alongi 

et al., 2023) approaches may be beneficial to improve the quality of surface velocity reconstructions. 

Besides the usage of RGB imagery, thermal data is considered for the tracking tasks, which can become 

important in the case of low density or absence of floating features at the water surface (Lin et al., 2019) or in 

night-time conditions (Fujita, 2017). Thermal cameras can capture the inherent fluxes of river surface 

temperature and therefore trace the evolving vortices (Kinzel and Legleiter, 2019; Eltner et al., 2021c). 

Furthermore, these cameras have the potential to serve as valuable tools for monitoring the inflow of water 

with distinct thermal properties into the main river channel. 

 

4.3 River discharge 

The computation of river discharge primarily relies on integrating water velocity profiles with cross-sectional 

area. In this context, a crucial factor is the water level, which can be determined in various ways. One option is 

the imaging of a stage board for a straight-forward water level retrieval (Young et al., 2015; Leduc et al., 2018), 

or using synchronised cameras to 3D reconstruct the water surface (Ferreira et al., 2017). In ephemeral and 

intermittent streams, water level was monitored by applying automatic image thresholding to pictures of a 

reference thin pole installed in the stream (Noto et al., 2022; Tauro et al., 2022).  Another approach is the 

masking of the water area in the image to identify the boundary between water and other elements and then 

transforming this waterline to water level data. The process involves two steps: image segmentation, which 

classifies pixels as water or non-water using image sequences or CNNs (Stumpf et al. 2016; Elias et al., 2019; 

Vandaele et al., 2021); and water level retrieval, where the waterline contour is converted into water level 

data, often through the intersection with a 3D model (Eltner et al., 2021b).   

Once water levels and velocities are determined, discharge can be determined with various approaches. One 

https://doi.org/10.1007/s00348-010-0907-z
https://doi.org/10.1080/15715124.2007.9635310
https://doi.org/10.5194/gmd-13-6111-2020
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021
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straightforward method involves deriving depth-averaged velocity with correction parameters, subsequently 

applying the velocity-area method (Hauet et al., 2008; Detert et al., 2017). Alternatively, the entropy model 

reconstructs flow velocity profiles (Bahmanpouri et al., 2022), utilizing known conditions like surface velocity 

to accurately estimate average water flow speed (Moramarco et al., 2013). A more recent approach uses river 

wave patterns to directly estimate discharge, without the need for cross-section measurements or velocity 

data, solely relying on physical principles (Dolcetti et al., 2022). The last methodology may be useful during 

high flood flows, but it still provides errors larger than 30%. 

  

4.4 Water quality  

Numerous water quality (WQ) parameters serve as key pollution indicators.  Gholizadeh et al. (2016) identifies 

a list of most commonly measured qualitative parameters of water, which include: chlorophyll-a (CHL-a), 

Secchi Disk Depth (SDD), Temperature (T), Colored Dissolved Organic Matters (CDOM), Total Organic Carbon 

(TOC), Dissolved Organic Carbon (DOC), Total Suspended Matters (TSM), Turbidity (TUR), Sea Surface Salinity 

(SSS),  Total Phosphorus (TP),  Ortho-Phosphate (PO4), Chemical Oxygen Demand (COD), Biochemical Oxygen 

Demand (BOD), Electrical Conductivity (EC), and Ammonia Nitrogen (NH3-N).  Some, like CHL and CDOM, have 

optical properties detectable with RGB cameras (Goddijn & White, 2006), while non-optical parameters like 

Total Phosphorus (TP) can be remotely sensed by leveraging their relationship with optically active 

parameters, such as CHL (Niu et al., 2021). 

Furthermore, RGB cameras are effective in detecting floating materials, plumes, foam, or oil spills, with spatial 

image resolution matching object dimensions being the only limitation. Feature detection and labeling 

algorithms provide valuable insights into material density and distribution, aiding in prompt pollution event 

detection. 

A recent review by Blanco Ramirez et al. (2023) underscores the potential of citizen science in diverse 

hydrological applications, especially pollution detection and water quality modelling. The review highlights the 

need for guidelines and protocols to ensure data meets water quality standards and is comparable across 

projects. 

Additionally, integrating discharge and flow velocity measurements enhances pollutant concentration and 

propagation velocity evaluation. 

 

4.4.1 River turbidity 

Turbidity detection is an important indicator of WQ and assumes great significance for environmental 

protection and aquatic ecosystems. It is used as a relative indicator for other physical properties such as 

suspended sediment concentration (SSC) and total suspended solids (TSS) as well as other compounds present 

in water such as chlorophyll, organic matter, microorganisms, algae, or chemicals, etc. Since turbidity is 

generally closely related to these compounds, it can often be used for quantitative estimation. Turbidity often 

varies with seasons and rainfall events that can cloud the water. The growth of algae and other organisms in 

the summer can also cause an increase in turbidity. 

There are several applications of river turbidity monitoring from satellites which provide a clear overview 
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about opportunities offered by different spectral indices (e. g., Lacaux et al., 2007; Wang and Shi, 2007; Fraser, 

1998; Constantin et al.,  2016). Among others, Garg et al. (2020) investigated the change in spectral reflectance 

of water across the visible to NIR range along the Ganga River. The temporal analysis indicates a reduction in 

reflectance across the visible to NIR range, likely due to decreased water turbidity. While the blue and green 

bands struggle to map turbidity variations because of bottom interference, the red and NIR bands prove more 

sensitive for turbidity estimation, particularly in optically deep water. Ehmann et al. (2019) also confirmed 

these findings, emphasizing the red band's sensitivity in depicting turbidity gradients within UAS imagery. 

 

4.4.2 Macroplastics and litter 

The global concern about plastic pollution in rivers is increasing due to the escalating issue of plastics entering 

waterways through direct disposal, wind dispersal, runoff, and sewage discharge. Macroplastics, which are 

large particles of plastic debris (>2.5 cm), account for about 70 to 80 % of total debris that mainly enters the 

oceans via rivers, posing serious threats to the environment and human health (Haseler et al, 2018; GESAMP, 

2019; van Emmerik & Schwarz, 2020). This concerning issue is further compounded by an annual surge of 14 

million tons of plastic leakage at global scale. Notably, the yearly discharge of mismanaged plastic waste 

(MPW) from land into the ocean was estimated to vary between 0.41 up to 12.7 million metric tons (Jambeck 

et al., 2015; Lebreton et al., 2017; Schmidt et al., 2017). The range of variability is relatively large given the 

high uncertainty and low availability of reliable observations (Roebroek et al., 2022; González-Fernández et al., 

2023). It is also remarkable that the distribution of emissions is extremely uneven with few countries such as 

Philippines and India that contribute up to almost 50% of the pollution (Meijer et al., 2021). Recent work 

however suggests that a large part of plastic accumulates in and around rivers for years to decades before 

reaching the ocean (van Emmerik et al., 2022). Currently, the plastic mobilization, transport and accumulation 

processes remain largely unresolved.  

Flood events seem to play a key role, and globally lead to a 30-fold increase in plastic mobilization (Roebroek 

et al., 2021). Plastic transport can vary one to two orders of magnitude at daily, monthly, and yearly 

timescales. However, current methods only allow for sporadic observations with limited temporal and spatial 

coverage (van Calcar & van Emmerik, 2019; González-Fernández et al., 2021).  

Despite the low reflectance of plastic, RGB and multispectral imagery combined with machine learning tools 

(e.g., Gnann et. al., 2022)  or in some cases with simpler tools,  such as object detection (van Lieshout et al., 

2020), Spectral Angle Mapper (Gonçalves and Andriolo, 2022), Naïve Bayesian classification (Biermann et al., 

2020),  image masking (Schreyers et al., 2021), and other RGB markers such as microorganisms (Corbari et al., 

2020),  are valuable tools for effective macroplastic monitoring. To overcome the large uncertainties in plastic 

transport, retention and emissions into the ocean, increased monitoring efforts are crucial. 

 

5 Experimental activities and projects 

The large number of ongoing international initiatives highlights the worldwide effort aimed at developing new 

tools and methodologies for hydrological monitoring. In Table 1, we have listed the most promising recent 

research projects that exploit innovative technological solutions, including image processing, UAS, and citizen 

https://www.sciencedirect.com/science/article/pii/S0278434315301047?casa_token=hWIxDjE5QKMAAAAA:CGiA1JOEc9ECwwsF2MXbjcjh0MtDHsfWWhICAEErso4_SuO1ySDrhplc8A7DEbnR98_v6jZJUkw#bib54
https://doi.org/10.1080/19475705.2020.1782482
https://doi.org/10.1038/s41893-021-00722-6
https://doi.org/10.1029/2019EA000960
https://doi.org/10.1029/2019EA000960
https://doi.org/10.1038/s41598-020-62298-z
https://doi.org/10.1038/s41598-020-62298-z
https://doi.org/10.31223/X5789R
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science.  

Within this context, we are carrying out several experimental initiatives within international projects that are 

useful to underline the potential of alternative techniques with practical examples. Among others, we will 

mention: 1) ASI-ISPRA Habitat Mapping project; 2) the PRIMA-funded project named “OurMED: Sustainable 

water storage and distribution in the Mediterranean” and the 3) “RiverWatch: a citizen-science approach to 

river pollution monitoring” funded by Italian Ministry of University and Research PRIN. The first project aims to 

use remote sensing techniques for mapping terrestrial, aquatic, and transitional habitats, including 

characterizing fluvial hydromorphology. The second project aims to explore new water saving strategies over 

several demo sites distributed in different countries in the Mediterranean. Within each demo site, monitoring 

camera systems will be adopted to measure the water flow and turbidity. The third project will be focused on 

the monitoring of the Sarno River which is the most polluted river in Europe (Lofrano et al., 2015; Baldantoni 

et al., 2018). These examples trace the pace for a new trajectory in hydrological monitoring. These projects 

offer a unique opportunity to test new water monitoring ideas and tools.  

More details about both case studies are given in the following with the aim to identify the expected impacts 

associated to the ongoing activities. 

 

5.1 Hydromorphological characterization through satellite and UAS data 

The ASI-ISPRA Habitat Mapping project (Table 1) established the “Italian Research and development Initiative 

for Spaceborne river monitoring” (IRIS) to develop a prototype of tools and algorithms able to map river forms 

and processes along hundreds of kilometres of river lengths. The combined use of Copernicus Sentinel-1 and 

Sentinel-2 data and UAS acquisitions (the latter used as “ground truth”, that is as the real feature collected at 

the imaged location) in a satellite-based classification algorithm has proven effective to identify, along the 

river corridor, the spatial units with similar textural and spectral characteristics that constitute the key river 

geomorphic macro‐units: “water”, “vegetation” and “exposed sediment” (Fig. 3, Carbonneau et al., 2020; 

Mariani & Bussettini, 2021). These key geomorphic macro-units represent the external envelope of river 

geomorphic units of the same type (Belletti et al., 2017), whose temporal evolution is necessary to identify 

river channel dynamics, better understand river processes and their future trajectories.  

The IRIS prototype was developed and tested on five Italian rivers characterized by different channel patterns, 

morphological types, and flow regimes, namely the Po and Sesia Rivers (in NW Italy), the Tagliamento River (in 

NE Italy), the Paglia River (in Central Italy), and the Bonamico Torrent (in Southern Italy). The operational 

implementation of these algorithms and tools is underway within the IRIDE Program (Table 1). The potential of 

this tool is to have continuous river monitoring and support the local authorities in the assessment of rivers 

morphological status, needed for the WFD implementation. 

The satellite-based algorithm developed in IRIS is typically applied to a mask of the river corridor, divided into 

specific river stretches of similar morphological types, following the IDRAIM methodological framework for 

stream hydromorphological assessment (Rinaldi et al., 2016, 2017). The identification of the three classes 

(water, vegetation, and sediments) in time (e.g., monthly, yearly) and space (river reach scale) allow to 

measure changes and interaction between them and extract hydromorphological indicators useful for river 
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monitoring. This can be done, for example, by calculating the ratio of "units submerged" to "units submerged + 

units emerged" and creating a spatio-temporal matrix of these values. Such analysis provides insights on the 

river dynamics and planimetric variations, useful for understanding past, current, and potential future river 

processes. In addition, exploiting a time series analysis of derived satellite data, the frequency map of each 

macro-unit class can be calculated. These products can be used for a variety of purposes, ranging from 

decision-making support to pre- and post-event assessments (e.g., assessing the impact of natural events such 

as droughts and/or floods).  

Figure 3, boxes A and B, presents a semi-quantitative assessment of the impact of the severe drought that 

affected North-western Italy between late 2021 and April 2023, focusing on a portion of the Po River. 

Specifically, it examines the ‘water frequency’ map calculated as the average frequency of the water 

component through time. By comparing the period of January-July 2022 vs January-July over the years 2016-

2021, the effect of the severe drought is shown by the decrease in the number of pixels belonging to the 

“water” class, compared with what was observed in the previous years. While not shown here, similar analyses 

and applications can be conducted for the “vegetation” and “sediment” classes. For example, the map of 

“exposed sediments” can be used to perform correlation analyses between satellite data and sediment 

characteristics (e.g., sediment size and shape, sediment provenance, lithology). A first application of this kind 

can be found in Marchetti et al. (2022), which shows the potential of Sentinel-2 multispectral data to derive 

gravel vs sand-dominated river bars. 

This study demonstrates the potential of Copernicus satellite data, including both multispectral (Sentinel-2) 

and radar (Sentinel-1), to support the hydromorphological characterization of watercourses as well as their 

integration with high resolution UAS data.  

On the one hand, the EU Copernicus program offers freely available, long-term satellite data with reasonably 

frequent acquisition, enabling the derivation of statistically robust results for river monitoring. Notably, these 

Sentinel-1 and Sentinel-2 missions have seen spatial resolution improvements in recent years, now ranging 

from 10 to 20 meters. 

Despite these enhancements, the current resolution still limits the applicability of the methodology to 

watercourses with active channels wider than 50 meters. Unfortunately, this excludes most mountain river 

basins. Higher resolution sensors, such as those offered by private satellite companies or CubeSats (with 

resolution up to 30 cm), exist but come at a significant cost. In mountain river basins, UAS acquisitions remain 

a valuable tool for detailed hydromorphological characterization, particularly before and after specific events. 

The future availability of higher satellite resolution imagery, such as those coming from the IRIDE satellite 

constellation (Table 1) for the Italian public administration, promises to significantly improve the recognition of 

river forms and processes through satellite-based algorithms. 

 

5.2 Water turbidity monitoring on the Bode River 

The Bode catchment is one of the meteorologically and hydrologically best-instrumented meso-scale 

catchments in Europe providing high resolution observation on water quantity and quality (Zacharias et al., 

2011; Wollschläger et al., 2017).  Within this catchment, the Meisdorf station has been chosen to assess the 
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viability of camera systems for continuous water quality monitoring. In addition, targeted experiments have 

been conducted inducing controlled changes in water turbidity to test potentials of camera systems.  

Preliminary results of the long-term study are given in figure 4 which describe the turbidity measurements in 

terms of Nephelometric Turbidity Units (NTU) obtained by a submerged turbidimeter and the water level 

gauges. Within this figure, we have selected 7 significant images obtained by the trap camera which provides 

evidence of the relative changes of the water body colours at different levels of turbidity (Miglino et al., 2022).   

In addition, supplementary tracer experiments were conducted adopting kaolin clay (a commonly used 

turbidity standard, which is readily available, safe, and cost-effective clay mineral) upstream of the monitored 

river cross-section. Figure 5 illustrates one of these simulated events. During these events, various sensors, 

including optical cameras, multispectral cameras, and a drone equipped with an optical camera, were 

employed to capture different perspectives of the synthetic turbidity event. The data collected from these 

cameras were compared with the records from existing turbidity sensors at the Selke River cross-section. 

Figure 5 provides an initial overview of the experiment results, emphasizing the phases of the experiment 

captured by RGB cameras. However, the UAS imagery offers a richer and more informative depiction of the 

water dynamic response, highlighting the advantages of zenithal camera positioning for comprehensive 

observations. 

This field campaign proved invaluable for developing and refining the image processing methodology. 

Integrating field results allowed us to test the camera monitoring system in diverse environmental and 

hydrological settings. This enabled us to generalize the procedure for potential application to other water 

quality parameters exhibiting spectral response changes. 

These experiments illuminated both the advantages and challenges of camera systems. Though they offer a 

wealth of information, they can also be susceptible to significant noise and difficulties. While initial findings 

clearly demonstrate the system's ability to provide insights into river system trends and dynamics, several 

practical issues require resolution: 

1) Significant variations in illumination cause notable differences in spectral signatures across days and 

seasons.  

2) Changing illumination direction and resulting tree shadows alter the scene during the day.  

3) Flow conditions and ripples may affect the spectral signature. 

4) Suspended sediment colour variations can also impact the camera signal.  

5) Wind, human activity, or animal presence might disrupt camera positioning or even induce vibrations. 

6) Shallow rivers' backgrounds, particularly the cross-section, can be challenging. 

These critical factors should be considered to refine camera systems' effectiveness establishing a robust 

workflow for high-quality measurements. This might involve optimizing camera angles, implementing effective 

image filtering and calibration, securing camera stability, and providing comprehensive training for floating 

object detection.  

 

5.3 Water quality monitoring on the Sarno River  
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The Sarno River is a formidable challenge: developing pioneering monitoring systems for Europe's most 

polluted river, situated within a complex and socioeconomically disadvantaged setting. The site has been 

subject to political disputes over remediation measures for a long time. It is considered the most polluted river 

in Europe and one of the ten most polluted rivers in the world. The river drains a watershed area of 540 km2 

densely populated with heavy agricultural and industrial activities. The distribution of different activities in the 

basin is clustered, which leads to strong spatial variability and temporal fluctuations of environmental 

conditions (Montuori et al., 2013; Cicchella et al., 2014; Baldantoni et al., 2018).  

Figure 6 shows four images of the Sarno River at Scafati in different conditions: ordinary condition, dense 

presence of macroplastic (Polystyrene foams) and organic material, presence of plastic elements, and 

presence of foam on the surface.   

UAS and camera images have been instrumental in capturing a comprehensive view of water quality dynamics, 

encompassing factors such as turbidity levels, plastic presence, and pollutant transport. Notably, images offer 

a distinct advantage in their ability to reveal the spatial distribution of pollution. This capability enables us to 

precisely identify the sources of specific contaminants and accurately depict the intermingling processes 

between polluted and clean water. In this context, Figures 7 and 8 below provide a detailed representation of 

the mixing of contaminated water. Figure 7 illustrates the confluence of the Nocerino tributary into the Sarno 

River using thermal cameras, while Figure 8 depicts the outlet of the Sarno River using a turbidity index. 

Figure 7.A presents an RGB aerial image of the confluence of the Nocerino tributary and the Sarno River. The 

image clearly shows the distinct chromatic differences between the two water bodies, further confirmed by 

the thermal image in Figure 7.B. The higher temperature visible in the Nocerino tributary suggests a 

substantial inflow of sewer water, likely causing the thermal contrast. 

Downstream from the confluence, the river's turbidity noticeably increases, serving as a strong indicator of 

aquatic ecosystem pollution. As the river approaches its mouth at the Tyrrhenian Sea, a clear blending of this 

concentrated pollutant plume with seawater becomes evident. This mixing process is vividly illustrated in 

Figure 8.B, where the turbidity index (NDTI) derived from RGB UAS imagery visually depicts this phenomenon. 

 

Besides the characteristics of the fluid, feature detection and classification algorithms can support the 

identification of floating objects on the water surface. In fact, van Lieshout et al. (2020) compared automatic 

procedure with manual counting and obtained promising results in several monitored sites in Jakarta 

(Indonesia). They developed a deep learning algorithm that allowed them to estimate plastic density with a 

precision of 68.7%, when compared to human detection (see Figure 9).  

In the literature, numerous well-established algorithms for feature detection and classification are available. 

One notable example is the YOLO (You Only Look Once) algorithm, initially developed by Redmon et al. (2016). 

This algorithm stands out for its exceptional computational efficiency, making it a highly promising tool. 

The effectiveness of YOLO in plastic detection has been explored through the application of YOLOv7 (Wang et 

al., 2023), which demonstrated good performance in identifying plastic objects, as illustrated in Figure 10. 

Nonetheless, there remains room for improvement in enhancing its performance, especially when it comes to 
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adapting to the unique environmental characteristics of plastic objects. This can be achieved by incorporating 

environment-specific plastic training data that encompasses a wide range of colours and geometric variations. 

In this context, the activities along the Sarno river serve as an ideal source of new training data. Leveraging this 

data will contribute to optimizing the utilization of a tool that has rapidly evolved into an indispensable and 

versatile resource for a multitude of applications. 

In order to improve the training of these algorithms, there is a need for a large amount of training data which 

could be provided by any volunteer. With this aim, we are promoting the construction of an imagery 

repository for YOLO training collecting images of rivers with the presence of different pollutants or floating 

materials. This activity will be carried out within the project RiverWatch and is already available at the 

following link:  

https://forms.gle/WHvGvqQc6p3zdEuN9 .   

It is worthy to mention that several repositories of river images have been already implemented and these 

may represent a good starting point in future studies on plastic transport and identification of other pollutants. 

The most recent repositories developed within different EU or national projects are listed in Table 2.  

 

6 Discussion  

This paper addresses the challenges of hydrological monitoring, encompassing issues such as data scarcity, 

spatial and temporal variability, and the growing demand for water resource monitoring. These challenges are 

further exacerbated by climate change, which will have significant environmental and socioeconomic impacts. 

Our analysis emphasizes the need for high-resolution observations in this rapidly evolving environment, where 

river dynamics and water quality undergo constant changes. Developing new tools capable of providing a 

holistic picture of the river's state is crucial for securing water supply and ensuring environmental safety. 

In this context, the international community is actively exploring the potential of innovative approaches and 

technologies, including satellite-based technologies, unmanned aerial systems (UAS), camera systems, big data 

analytics, sensor networks, and citizen science. The integration of multiple data sources and the utilization of 

innovative approaches offer new prospects for addressing data scarcity, enhancing spatial and temporal 

resolution, and advancing our comprehension of complex hydrological processes. 

Combining remote sensing data with machine learning (ML) holds great potential for creating more 

comprehensive river monitoring systems (Maier & Keller, 2019; Arias-Rodriguez et al., 2020). Global 

experiments across diverse basins highlight both challenges and advantages of this approach. We have actively 

participated in and developed initiatives showcasing the convenience and wide applicability of remote sensing 

coupled with image processing techniques. These experiences lay the groundwork for a new generation of 

sensors—from RGB to hyperspectral and thermal—unlocking the power of image processing to extract diverse 

hydraulic, hydromorphological, and water-quality-related parameters. 

Reviewing existing activities and research reveals critical limitations and challenges in using innovative 

technologies for river monitoring: 

1. Developing systems flexible enough to handle diverse hydraulic, environmental, and climatic conditions 

remains a key challenge. Different river cross-sections within the same basin can have unique characteristics 

https://forms.gle/WHvGvqQc6p3zdEuN9
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due to upstream features or local specifics. This requires testing in diverse environments and sharing 

experiences and data openly with the research community. 

2. Although satellites are powerful tools for hydrological and hydromorphological monitoring, their limited 

spatial resolution often hinders their use in narrower river networks worldwide. Proximity sensors, however, 

offer a promising alternative to overcome this limitation. 

3. Image-based techniques are susceptible to local factors like illumination, surrounding environment, tree 

shadows, and cross-section background. Developing standardized pre-processing techniques is crucial to 

ensure consistent data quality and maximize information in each survey or measurement. 

4. Individual pollutants and their combinations within a specific location can complicate the interpretation of 

spectral signatures in any type of imagery, posing a significant challenge that needs to be addressed. 

5. The substantial volume of data collected by these sensors may lead to information overload, which may not 

always be useful for specific purposes. Consequently, there is a need to synthesize the information and 

develop meaningful metrics capable of retaining essential data. 

6. New techniques based on camera use or citizen participation can be susceptible to significant disturbances 

and procedural errors, potentially degrading the quality of the collected information. Therefore, establishing 

standardized protocols and sustainable systems for using such methods is critical. 

 

There are still many issues that require further investigation to bring these methods to operational use. 

However, numerous opportunities exist for advancing hydrological monitoring using these innovative 

techniques. Here, we highlight some of the key opportunities: 

1. Affordable Commercial Devices: The use of image-based techniques could lead to the development of cost-

effective commercial devices that can be integrated into sensor networks, even in remote regions around the 

world. 

2. Integration of Crowd-Sourced Data: The integration of crowd-sourced data with image processing appears 

to be a natural progression for the evolution of new monitoring techniques. 

3. Citizen-Friendly Tools: Creating user-friendly tools that could potentially be used on smartphones by the 

public may expand the overall number of hydrological sensors. This could have significant environmental 

benefits by fostering a community engaged in river monitoring, raising awareness about the state of aquatic 

ecosystems, and working towards their protection. Additionally, this approach could address some typical 

limitations often encountered in traditional techniques, such as thefts, vandalism, reliance on a power supply, 

and high acquisition and running costs. 

4. Multipurpose systems: Leveraging these innovative tools can yield a wealth of information regarding 

watercourse dynamics that surpasses the capabilities of traditional methods. Such data can be invaluable in 

bolstering the management of river systems, offering a comprehensive depiction of the river's current 

condition. 

 

Even with limitations and advantages considered, a critical challenge remains shifting from qualitative to 

quantitative assessments. This transition stands as arguably the biggest hurdle on our journey forward. 
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7 Conclusion 

Advanced hydrological monitoring techniques and technologies enable the timely identification of hydrological 

and hydromorphological patterns, anomalies, and critical events like floods, droughts, pollution incidents, and 

debris flows. This facilitates proactive responses and the implementation of appropriate measures to mitigate 

risks and minimize extreme event impacts on water resources. In addition, integrating citizen involvement in 

monitoring may encourage responsible behaviour. This information guides the development of adaptive water 

management strategies that account for uncertainties and future challenges.  

Conventional approaches have historically been limited by technical and financial constraints, hindering their 

ability to provide the needed detail on river dynamics, water conditions, and other hydrological variables. In 

contrast, the innovative technologies explored in this manuscript offer a range of advantages, presenting 

opportunities to complement and integrate existing traditional systems. Furthermore, combining remote and 

proximal sensing with crowd-sourced data holds immense potential for revolutionizing hydrological 

monitoring, enabling a comprehensive understanding of river systems. AI algorithms could further enhance 

the insights gleaned from this vast amount of data. 

We foresee exciting potential for initiatives like the IAHS MOXXI working group 

(https://iahs.info/Initiatives/Working-Groups/MOXXI/) to accelerate the development of cutting-edge 

hydrological monitoring solutions. This international collaboration can act as a catalyst for extensive data 

sharing and foster ground-breaking joint ventures in innovative solutions. Ultimately, such collective efforts 

could significantly deepen our understanding of the intricate water cycle dynamics, paving the way for truly 

adaptive, integrated, inclusive, and sustainable water management. 
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Table 1. Initiatives oriented in promoting the use of new technologies in hydrological monitoring.   

Project  Period  Aim of the Initiative/Project Partners Web-page 

Harmoniou

s COST 

Action 

(CA16219) 

2016-2022 Establish harmonized 

monitoring practices for UAS-

based observations. 

26 countries involved 

and about 200 

scientists 

www.costharmonious.

eu/ 

CrowdWat

er  

2016-2020 

2020-2024 

Citizens data collection as a 

supplement to existing 

measurements. 

University of Zurich, 

Switzerland 

https://crowdwater.ch

/  

Habitat 

Mapping 

2017-2021 Create innovative services for 

habitat mapping, including 

the hydromorphological 

characterizations of rivers 

(IRIS), through integration of 

Copernicus Sentinel images, 

UAS acquisitions and in situ 

and modelled data 

ISPRA and Italian 

Space Agency (ASI), 

Italy  

https://www.isprambi

ente.gov.it/en/project

s/emergency-and-

environmental-

surveillance/asi-ispra-

sentinel-collaborative-

gs-thematic-platform-

for-habitat-mapping-

2017-

2021?set_language=e

n  

Plastic 

Spotter 

2019-

present 

Engage citizens to spot, 

quantify and share data on 

plastics floating in the canals 

of Leiden using CrowdWater 

App. 

European Citizen 

Science Association 
12 partners 

9 affiliated entities 

15 countries 

https://eu-

citizen.science/project

/125 

Plastic 

Origins 

 Map plastic pollution in 

European rivers and share 

data to the public. 

Surfrider Foundation 

Europe, Private and 

Public organizations 

in France 

www.plasticorigins.eu

/ 

Plastic 

Pirates – 

Go Europe! 

2016-2024 Uniform plastic collection in 

riverbanks and areas near 

bodies of water using a 

guideline, and data upload. 

DLR Projektträger, 12 

EU countries 

www.plastic-

pirates.eu/ 

Pescadors 2022-2023 Promotion of the scientific 

method instruction applied to 

BETA Technological 

Center, University of 

https://mon.uvic.cat/p

escadors-de-plastic/ 

https://www.cost.eu/actions/CA16219/
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de Plàstic plastic pollution in rivers. Vic-Central University 

of Catalonia, 4 

private and public 

institutions and 

organizations in Spain 

EU H2020 

MONOCLE 

2018-2022 Collection of water quality 

and color utilizing citizen 

science. 

Plymouth Marine 

Laboratory Limited, 

12 private and public 

institutions and 

organizations in EU 

https://www.monocle

-h2020.eu/ 

IRIDE 

Program, 

under 

Italian 

PNRR 

2023-2026 Implementation of an end-to-

end system made up of a set 

of sub-constellations of LEO 

satellites, the operational 

infrastructure on the ground, 

and the services intended for 

the Italian Public 

Administration, including 

tools for hydrology and water 

resource management. 

Industrial teams, 

under ESA contracts, 

on behalf of the 

Italian government 

https://www.esa.int/S

pace_in_Member_Stat

es/Italy/IRIDE_La_squ

adra_e_al_completo  
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Table 2. Public repositories useful for image-based applications. 

Locations Project  Type of Data  Reference 

13 case studies 

across Europe 

Harmonious COST 

Action (CA16219) 

Imagery collected for image 

velocimetry analysis (along with 

reference data)  

https://doi.org/10.4121/uui

d:014d56f7-06dd-49ad-

a48c-2282ab10428e 

Five stations 

installed in Jakarta 

(Indonesia) 

Funded by The 

Ocean Cleanup  

Imagery and code for river 

plastic detection 

https://zenodo.org/record/

3817117 

Saigon river 

(Vietnam) 

 Dataset of about 3,688 UAS 

images 

https://data.4tu.nl/datasets

/eca46016-b303-4227-

9416-e70101dfd413 

Saigon river 

(Vietnam) 

River Plastic 

Monitoring Project 

(N. 18211) 

Floating material annotations https://data.4tu.nl/datasets

/217004df-49d0-4ed7-9367-

ed4f131679bd 

  

  

https://www.cost.eu/actions/CA16219/
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Figure 1. Stacked area graph with number of rain gauges installed over the Basilicata Region (Southern Italy) 

between 1916-2020. Initially, a national agency was in charge of the installation and maintenance of the 

monitoring network (SIMN-Servizio Idrografico e Mareografico Nazionale), while several additional networks 

have been introduced in more recent years addressing different purposes managed by different agencies.   

 

Figure 2. Three examples of cross-sections: (A) Alcantara River (Italy) during a recent drought observed in the 

summer of 2021; (B) Sarno River (Italy) with macroplastics and organic matter transport; (C) Flood with wood 

transport in northern Turkey, Ezine River. 

 

Figure 3. Example of satellite-based classification for the Po River (approximately from Morano at Po and 

Castelnuovo di Scrivia, NW Italy) and the Sesia River over the period January-July 2016-2021 using Copernicus 

Sentinel-2 data. The map in the bottom left corner displays the location of both rivers using star symbols. 

Water units are represented by shades of blue, vegetation (both riverbed and riparian) by shades of green, and 

sediments by shades of brown. Boxes A and B specifically focus on the impact of drought on the Po River's 

water presence. The map on the left of each box shows the frequency of "water" units from January to July 

across the years 2016-2021, while the map on the right depicts the same for January to July 2022. This 

comparison allows for easy visualization of changes in water distribution over time. 

 

Figure 4. Turbidity and water level diagram from February 2022- June 2022 with associated camera shooting 

taken in different levels of turbidity (Meisdorf station on the Selke river - tributary of the Bode River, 

Germany). 

 

Figure 5.  Turbidity diagram measured in February 2023 with associated camera shooting taken in different 

conditions from the trap-camera and UAS hovering. 

 

Figure 6. Examples of images taken on the Sarno River at Scafati (Italy) where the presence of suspended 

material is clearly visible: (A) ordinary condition; (B) dense presence of macroplastic (Polystyrene foams) and 

organic material; (C) presence of plastic elements; (D) presence of foam on the surface. 

 

Figure 7. Example of UAS-based imagery obtained with an RGB (A) and a thermal (B) camera at the confluence 

of the Nocerino River in the Sarno river. Imagery shows a clear flow of pollutants coming from the right 

tributary. 

 

Figure 8.  Outlet of the Sarno river: (A) RGB UAS image, (B) Normalized Difference Turbidity Index, NDTI=(R-

G)/(R+G) obtained as the ratio between the red (R) and green (G) bands. 

 

Figure 9. Performances of automatic feature detection for plastic detection applied on five different river 

locations across Jakarta, Indonesia (taken from van Lieshout et al., 2020). 
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Figure 10. Sample floating plastic bottles images in the environment with floating macroplastic processed with 

YOLOv7 algorithm. 
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