
Abstract As the largest river basin on Earth, the Amazon is of major importance to the world's 
climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have 
brought our understanding of its terrestrial water cycle and the associated hydrological processes to a 
new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We 
show how RS played a major role in supporting new research and key findings regarding the Amazon 
water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite 
retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only 
possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the 
Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater 
storage. These results strongly contribute to the recent advances of hydrological models and to our new 
understanding of the Amazon water budget and aquatic environments. In the context of upcoming 
hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new 
observations with finer space-time resolution, this review aims to guide future research agenda toward 
integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary 
studies, fostered by international collaborations, set up future directions to tackle the great challenges the 
Amazon is currently facing, from climate change to increased anthropogenic pressure.

Plain Language Summary The Amazon basin is the largest river basin in the world, 
characterized by complex hydrological processes that connect high rates of precipitation, extensive 
floodplains, dense tropical forests, complex topography, and large variations in freshwater storage and 
discharge. It plays a key role in the water, energy, and carbon cycles and interacts with the global climate 
system. Earth observations have played a major role in supporting research in Amazon hydrology, and the 
characterization of several hydrological processes was only possible with the help of remote sensing data. 
The basin is now facing great risk under current climate change and increased anthropogenic pressure 
and the resulting environmental alterations require a better understanding of the overall basin's water 
cycle across scales. We review the strengths and limitations of observations from satellites in the context 
of the current and upcoming hydrology-oriented satellite missions, and we make recommendations for 
improving satellite observations of the Amazon basin water cycle, along with an interdisciplinary and 
stepwise approach to guide research for the next decades.

FASSONI-ANDRADE ET AL.

© 2021 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided 
the original work is properly cited and 
is not used for commercial purposes.

Amazon Hydrology From Space: Scientific Advances and 
Future Challenges
Alice César Fassoni-Andrade1,2,3 , Ayan Santos Fleischmann3 , Fabrice Papa1,2 , 
Rodrigo Cauduro Dias de Paiva3 , Sly Wongchuig4 , John M. Melack5, 
Adriana Aparecida Moreira3, Adrien Paris6,1 , Anderson Ruhoff3, Claudio Barbosa7 , 
Daniel Andrade Maciel7 , Evlyn Novo7 , Fabien Durand1,2, Frédéric Frappart1 , 
Filipe Aires8 , Gabriel Medeiros Abrahão9,10 , Jefferson Ferreira-Ferreira11 , 
Jhan Carlo Espinoza4 , Leonardo Laipelt3 , Marcos Heil Costa9 , 
Raul Espinoza-Villar12, Stéphane Calmant1 , and Victor Pellet13,8 

1Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université Toulouse, IRD, CNRS, CNES, 
UPS, Toulouse, France, 2University of Brasília (UnB), Institute of Geosciences, Brasília, Brazil, 3Federal University 
of Rio Grande do Sul (UFRGS), Institute of Hydraulic Research, Porto Alegre, Brazil, 4University of Grenoble 
Alpes, IRD, CNRS, Grenoble INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, France, 
5University of California Santa Barbara, Earth Research Institute, Santa Barbara, CA, USA, 6Hydro Matters, Le Faget, 
France, 7Instrumentation Lab for Aquatic Systems (LabISA), Earth Observation Coordination of National Institute 
for Space Research (INPE), São José dos Campos, Brazil, 8Laboratoire d'Etudes du Rayonnement et de la Matière 
en Astrophysique et Atmosphères, Paris, France, 9Federal University of Viçosa (UFV), Viçosa, Brazil, 10Potsdam 
Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany, 11Mamirauá Institute 
for Sustainable Development, Tefé, Brazil, 12Departamento de Ordenamiento Territorial y Construcción, Universidad 
Nacional Agraria La Molina (UNALM), Lima, Perú, 13Institute of Industrial Science, The University of Tokyo, Tokyo, 
Japan

Key Points:
•  Integrated view of scientific 

advances in Amazon hydrology with 
remote sensing

•  Expected progress to understand 
the water cycle, aquatic ecosystems, 
and environmental changes with 
upcoming hydrology-oriented 
missions

•  Need to translate advanced 
knowledge from remote sensing 
to support water management and 
environmental governance

Correspondence to:
A. C. Fassoni-Andrade,
alice.fassoni@gmail.com;
alice.fassoni@legos.obs-mip.fr

Citation:
Fassoni-Andrade, A. C., Fleischmann, 
A. S., Papa, F., Paiva, R. C. D. d., 
Wongchuig, S., Melack, J. M., et al. 
(2021). Amazon hydrology from 
space: Scientific advances and future 
challenges. Reviews of Geophysics, 
59, e2020RG000728. https://doi.
org/10.1029/2020RG000728

Received 16 MAR 2021
Accepted 29 SEP 2021

10.1029/2020RG000728

COMMISSIONED 
MANUSCRIPT

1 of 97

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-3233-8781
https://orcid.org/0000-0002-8547-4736
https://orcid.org/0000-0001-6305-6253
https://orcid.org/0000-0003-2918-6681
https://orcid.org/0000-0002-1116-0742
https://orcid.org/0000-0003-2304-5132
https://orcid.org/0000-0002-3221-9774
https://orcid.org/0000-0003-4543-5908
https://orcid.org/0000-0002-1223-9276
https://orcid.org/0000-0002-4661-8274
https://orcid.org/0000-0002-9426-866X
https://orcid.org/0000-0003-0336-6246
https://orcid.org/0000-0003-2582-4391
https://orcid.org/0000-0001-7732-8504
https://orcid.org/0000-0002-5735-4809
https://orcid.org/0000-0001-6874-9315
https://orcid.org/0000-0001-6439-4174
https://orcid.org/0000-0001-6996-0032
https://doi.org/10.1029/2020RG000728
https://doi.org/10.1029/2020RG000728
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020RG000728&domain=pdf&date_stamp=2021-11-05


Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

2 of 97

1. Introduction
The Amazon River basin is a major hydrological system (∼6 million km2) with diverse rivers, floodplains, 
and wetlands (Junk et al., 2011; Reis et al., 2019, Figure 1). It spans seven countries and hosts four of the 10 
largest rivers in the world, namely the Solimões-Amazonas, Madeira, Negro, and Japurá rivers (Figure 2). 
It receives high annual rainfall (∼2,200 mm year−1, Builes-Jaramillo & Poveda, 2018; Espinoza et al., 2009) 
and around 30%–40% of the precipitation in the basin is recycled by local evapotranspiration (Eltahir & 
Bras, 1994; Salati et al., 1979; Satyamurty, da Costa, & Manzi, 2013) providing moisture to southern parts 
of South America. The Amazon River flows into the Atlantic Ocean with an average annual discharge of 
206 × 103 m3s−1 (Callède et al., 2010), amounting to almost 20% of the total global freshwater reaching the 
ocean annually and exports a large number of sediments to the ocean (1.1 × 109 tons per year; Armijos 
et al., 2020).

The high rates of precipitation, evapotranspiration and large variations in freshwater storage and river dis-
charge make the Amazon basin a key player in the global climate system, with large contributions to the wa-
ter, energy, and carbon cycles (Gash et al., 2013; Gatti et al., 2021; Nagy et al., 2016). Amazon surface waters, 
for instance, are a major source and sink of carbon dioxide (Abril et al., 2014; Amaral et al., 2020; Guilhen 
et al., 2020; Raymond et al., 2013; Richey et al., 2002) and the largest natural geographic source of methane 
in the tropics (Kirschke et al., 2013; Melack et al., 2004; Pangala et al., 2017; Pison et al., 2013). Seasonal var-
iations in the water contribute to the formation of tropical forests (Leite et al., 2012), maintain high aquatic 
productivity (Melack & Forsberg, 2001) and biodiversity (Junk, 1997; Junk et al., 2010), and influence fish 
distributions and fisheries yield (Junk et al., 2010; Lobón-Cerviá et al., 2015; Figure 1). The Amazon hosts 
∼40% of the world's tropical forest and ∼15% of global land biodiversity (Marengo et al., 2018). It is also the 
home of local people that rely on rivers as transportation corridors, and utilize these environments for their 
subsistence (Anderson et al., 1991; Campos-Silva et al., 2020; Endo et al., 2016). Amazon also serves the 
broader South American population in terms of energy, food, and other forest products.

The region is now facing risks under climate and anthropogenic changes, and changes in Amazon hydrol-
ogy could have substantial impacts globally (Jimenez et al., 2019). In the past decades, the basin experi-
enced several intense climatic events, such as extreme droughts and floods, with no equivalent in the last 
100 years (Barichivich et al., 2018; Marengo & Espinoza, 2016). Severe droughts can lead to environmental 
disturbances, from increased fire occurrence (Zeng et al., 2008) to abrupt shifts in fish assemblages (Röpke 
et al., 2017). Moreover, the accumulated negative impacts of increased human interventions across the re-
gion, such as damming (Forsberg et al., 2017; Latrubesse et al., 2017), deforestation (Arias et al., 2020; Coe 
et al., 2009; Gutierrez-Cori et al., 2021; Leite-Filho et al., 2020; Leite et al., 2012), fires (Aragão et al., 2008; 
Libonati et al., 2021; Xu et al., 2020; Zeng et al., 2008), and mining (Abe et al., 2019; Lobo et al., 2015), will 
possibly trigger major modifications that could affect the Amazon water cycle.

Characterizing and understanding the dynamics of the Amazon water cycle is of primary importance for 
climate and ecology research and for the management of water resources. Consequently, there is a need for 
comprehensive monitoring of the spatial-temporal dynamics of the Amazon water cycle components and 
how they interact with climate variability and anthropogenic pressure. In large and remote tropical water-
sheds such as the Amazon, in situ observational networks are difficult to operate and maintain, and remote 
sensing observations have brought opportunities for monitoring the various components of the water cycle, 
although many technical challenges still need to be overcome.

While the Amazon basin was in the spotlight of international scientific discussion during the last decades, 
the understanding of Amazon hydrology coevolved with another groundbreaking field: the remote sensing 
(RS) of the terrestrial water cycle. In this context, the Amazon basin has been an ideal natural laboratory for 
the seminal development of RS techniques with the advent of Earth observations (EO) and these advances 
have fostered the scientific understanding of Amazon hydrology, ecosystems, and environmental chang-
es. For example, the first applications of altimeter and gravimetric satellites to characterize, respectively, 
surface water elevation (Guzkowska et  al.,  1990) and total water storage variations (Tapley et  al.,  2004) 
were performed in the basin due to its wide river and large spatial and temporal changes of freshwater. 
Pioneering RS applications also include microwave, synthetic-aperture radar (SAR), and interferometric 
mapping of large-scale flood inundation and characterization of sediment dynamics (Alsdorf et al., 2000; 



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

3 of 97

Figure 1. Amazon River basin diversity. (a) Moderate Resolution Imaging Spectroradiometer (MODIS) image of the 
central Amazon basin, characterized by large floodplains (Source: National Aeronautics and Space Administration 
[NASA] catalog; https://visibleearth.nasa.gov/images/62101/the-amazon-brazil/62104l); (b) Sentinel-1 image of rivers 
and lakes of the upper Solimões River (Source: ESA catalog; https://www.esa.int/ESA_Multimedia/Images/2020/09/
Amazon_River); (c) MODIS image showing the reduced cloud cover over water bodies (Source: NASA catalog; https://
earthobservatory.nasa.gov/images/145649/mapping-the-amazon); (d) Aerial view of Branco River (Photo by Thiago 
Laranjeira); (e) Floodplain during the high water (Photo by João Paulo Borges Pedro); (f) Channel (Photo by Jefferson 
Ferreira-Ferreira); (g) Community at the river bank (Photo by Thiago Laranjeira); (h) Manatee (Photo by Amanda 
Lelis); (i) Arapaima (Pirarucu) fish, the largest scaled freshwater fish in the world (Photo by Bernardo Oliveira).
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Hess et al., 2003; Mertes et al., 1993; Sippel et al., 1994). Since then, several applications using RS data have 
been carried out in other basins worldwide (e.g., Alsdorf et al., 2021). All these important developments 
have been done by a diverse community of scientists with different interests and views on the Amazon 
water cycle, and surprisingly, there is a lack of review analyzing the continuous growth of publications that 
make use of RS observations to study the hydrology of the region.

Here, we review the various achievements of more than three decades of scientific advances on the hydrol-
ogy of the Amazon basin from RS (Figure 2), and present perspectives, currently fostered by an unprece-
dented availability of satellite observations and the upcoming launch of dedicated hydrology satellites, such 
as the Surface Water and Ocean Topography (SWOT) and the NASA-ISRO SAR mission (NISAR). This work 
reunited experts on RS of different hydrological processes of the Amazon basin to review specific topics and 
discuss paths toward scientific advances as well as the opportunities shaping this field for the next decades. 
Reviews account for variables of the hydrological cycle such as precipitation, evapotranspiration, surface 
water elevation, surface water extent, floodplain and river channels topography, water quality (e.g., estima-
tion of sediments, chlorophyll, and dissolved organic matter), total water storage and groundwater storage 
that is presented in separate sections (Figure 2). Each section describes how the variable is retrieved from 
RS observations, presents the scientific advances that have been achieved from this information, as well as 

Figure 2. Location of the Amazon basin in South America, and representation of the hydrological variables observed 
by remote sensing techniques, with the respective section numbers as addressed in this review.
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various applications in the basin, and discusses future challenges. Then, four sections are dedicated to the 
integration of RS data in the fields of water budget closure, hydrological and hydraulic modeling, aquatic 
environments, and environmental changes over the Amazon. Section 7 summarizes the scientific advances, 
the knowledge gaps, and the research opportunities regarding Amazon hydrology and ecosystems, includ-
ing the forthcoming satellite missions. It also presents how the lessons learned from Amazon experiences 
are benefiting other large river basins worldwide. The two final parts discuss how to move forward from the 
scientific advances toward basin-scale water resources planning and new environment monitoring tools, 
and highlight our recommendations that set forward the research agenda of Amazon hydrology from space 
for the coming decade.

2. Precipitation
Precipitation is a crucial component of the water cycle (Bookhagen & Strecker, 2008; Espinoza Villar, Ron-
chail, et al., 2009; Salati & Vose, 1984; Trenberth, 2011), characterized by high spatial and temporal varia-
bility. In the Amazon basin, precipitation is related to complex interactions of various large-scale physical 
and dynamic processes as well as local features, which are responsible for the temporal and spatial dis-
tribution of precipitation (Figueroa & Nobre, 1990). For instance, in addition to the orographic rains that 
occur in the transition between the Andes mountains and the Amazon, the substantial transpiration from 
the forest contributes to abundant water fluxes to the atmosphere, which eventually returns to the land as 
recycled precipitation and contributes up to around 30% of the basin's rainfall (Bosilovich & Chern, 2006; 
Eltahir & Bras, 1994; Fisher et al., 2009; Salati & Nobre, 1991; Staal et al., 2018; Van Der Ent et al., 2010; 
Yang & Dominguez, 2019; Zemp et al., 2014). This contribution is normally presented as a convection pro-
cess, which helps to maintain a climatological upper-level, large-scale circulation known as the Bolivian 
high (Lenters & Cook, 1997; Virji, 1981), and together with other related precipitation patterns are affected 
by both global-scale phenomena (e.g., El Niño-Southern Oscillation [ENSO], Tropical Atlantic sea surface 
temperature [SSTemp]) and local forcing, such as land cover structures (Aceituno,  1988; Gutierrez-Cori 
et al., 2021; Koren et al., 2008; Leite-Filho et al., 2020; Lin et al., 2006).

Mainly because of its large extent, precipitation regimes in the basin differ from one region to another in 
terms of the seasonal pattern (Figures 3c–3f), and on a more local scale, rainfall regimes are highly variable 
in space (Arias et al., 2021; Espinoza et al., 2009). Therefore, accurate and reliable rainfall measurements 
are crucial for the study of climate trends and variability, and also for the management of water resources 
and weather, climate, and hydrological forecasting in this region (Jiang et al., 2012; Liu et al., 2017; Yilmaz 
et al., 2005).

Gauge observations are traditionally used to measure precipitation directly at the land surface (Kidd, 2001), 
and various large-scale data sets at different scales have been developed from these in situ observations 
(Becker et al., 2013; Kidd et al., 2017). However, in situ measurements have several drawbacks, such as 
incomplete cover over sparsely populated areas, a common feature of Amazonian countries, or in remote re-
gions at high altitudes in the Andes (Condom et al., 2020). In addition, the variability of rainfall means that 
the measurements from in situ stations are typically not representative of the surrounding areas, or maybe 
inaccurate (Kidd et al., 2017; Prabhakara et al., 1986). In the Amazon basin, for instance, rainfall stations are 
typically located in the cities, placed near to the main tributaries, and low density of stations is observed in 
tropical forests and in regions not accessible. Therefore, the low density of the rain gauge network and the 
lack of homogeneity in the time series prevent reliable monitoring using ground data (Debortoli et al., 2015; 
Delahaye et al., 2015; Espinoza Villar, Ronchail, et al., 2009; Ronchail et al., 2002). Collecting complemen-
tary observations to in situ measurements is then fundamental to obtain an estimation of rainfall over the 
continent's surfaces (Kidd & Levizzani, 2011; Van Dijk & Renzullo, 2011; Wanders et al., 2014).

Satellite observations of precipitation have become available on a global scale in recent decades. These 
satellites mainly use infrared (IR) and microwave (MW) sensors to provide precipitation estimates using 
different techniques (Kidd & Huffman, 2011). The sensors used to estimate precipitation can be classified 
in three categories (Prigent, 2010): (a) visible/IR (VIS/IR) sensors on geostationary (GEO) and low Earth 
orbit (LEO) satellites, (b) passive MW (PMW) sensors on LEO satellites, and (c) active MW (AMW) sensors 
on LEO satellites. Imaging systems on GEO provide the rapid temporal update cycle needed to capture the 
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Figure 3. (a) Schematic representation of remote sensors for precipitation estimation onboard satellites. (b) Illustration of the VIS/IR and microwave coverage 
range for different cloud types. Precipitation climatology for (c) Annual, (d) Austral summer (DJF), and (e) Austral winter (JJA) from CHIRP v2 data set 
(1981–2020) at 5 km spatial resolution and HOP data set (1981–2009) (Espinoza et al., 2016; Guimberteau et al., 2012) in small boxes at left-bottom at ∼100 km 
spatial resolution. (f) The annual regime for 11 large basins of the Amazon, based on HOP data sets (1981–2009) (bars) and the CHIRP based (1981–2020) in 
magenta lines. (g) Annual average negative (red scale) and positive (blue scale) bias of six precipitation RS-based and non-gauged-corrected products in the 
Amazon basin for the period 2000–2016, adapted from (Beck, Vergopolan, et al., 2017).
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growth and decay of precipitating cloud systems on a scale of several kilometers. Current systems provide 
rapid hourly updates in the VIS and IR spectrum, and for optically thick clouds the precipitation can be in-
ferred from the energy reflected by the clouds and the temperature of the cloud top, respectively. MW-based 
imagers on board LEO satellites are better suited than IR sensors for quantitative measurements of precipi-
tation due to the well-established physical connection between the upwelling radiation and the underlying 
cloud precipitation structure (Turk et al., 2000; Figures 3a and 3b).

From these sensors, a diverse range of retrieval algorithms has been developed to estimate precipitation, 
which requires careful validation and provides information about their quality, limitations, and associated 
uncertainties. These algorithms are mainly divided into the so-called “microwave-calibrated” and “mor-
phing” methods (Huffman et  al.,  2007; Joyce et  al.,  2004; Kidd et  al.,  2003; Marzano et  al.,  2004; Paola 
et al., 2012). However, there are differences among these data sets due to shortcomings in the sources and 
in the generation of the products. Therefore, LEO MW, GEO VIS/IR, gauge-based, and reanalysis data have 
been blended together to take advantage of the inherent relative benefits of each type of sensor and product 
(Figure  3a). This can increase accuracy, coverage, spatial-temporal resolution, spatial homogeneity, and 
temporal continuity (Adler et al., 1994; Huffman et al., 1995; Joyce et al., 2004; Levizzani et al., 2007; So-
rooshian et al., 2002; Tapiador et al., 2004; Vicente et al., 1998; Xie et al., 2003).

In terms of operationally available data sets, these include the Tropical Rainfall Measuring Mission (TRMM; 
Huffman et al., 2007), the Climate Hazards Group InfraRed Precipitation (CHIRP; Funk et al., 2015), the 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN; 
Ashouri et  al.,  2015), Integrated Multi-satellite Retrievals for GPM (IMERG; Huffman, Bolvin, & Nel-
kin, 2015; Huffman, Bolvin, Braithwaite, et al., 2015), Multi-Source Weighted-Ensemble Precipitation near-
real-time (MSWEP-NRT; Beck et al., 2018) and the Climate Prediction Center (CPC) morphing technique 
(CMORPH; Joyce et al., 2004) products, among others. Although an increasing number of precipitation data 
sets with higher spatial and temporal resolution has been constructed and compared directly or through the 
application of hydrological models, uncertainty and inconsistency are found among the different data sets 
(Beck et al., 2018; Beck, Vergopolan, et al., 2017; Collischonn et al., 2008; Correa et al., 2017; Sun et al., 2018; 
Tapiador et al., 2017). A summary of satellite-derived rainfall data sets currently available for the Amazon 
region is provided in Table 1.

Precipitation information based on RS has contributed substantially in the last decades to the understand-
ing of key processes causing spatial and temporal variability of precipitation, as well as local and regional 
atmospheric processes related to precipitations. These global or quasi global data sets generally provide 
records of precipitation suitable for the climate and hydrological studies, such as hydrological reanalysis 
initiatives evaluated in the Amazon on regional (e.g., Correa et al., 2017; Wongchuig et al., 2019) and global 
scales (e.g., Balsamo et al., 2015; Rodell et al., 2004; Van Huijgevoort et al., 2013). For instance, many studies 
have used satellite rainfall databases to force hydrological models. One of the first studies was done in the 
Tapajós River basin, one of the major tributaries of the Amazon basin, using TRMM precipitation estimates 
as input to a precipitation-runoff model (Collischonn et al., 2008). In order to represent the interannual, 
intraseasonal (30–70 days, Kiladis & Mo, 1998) and multidecadal series in the Amazon, different research 
has been evaluated (Correa et al., 2017). Satellite-based data sets were also used in water balance approach-
es to evaluate long-term trends (Espinoza, Ronchail, et al., 2019; Heerspink et al., 2020; Pacada et al., 2020; 
X. Y. Wang et al., 2018) and monthly variations of runoff (Builes-Jaramillo & Poveda, 2018). In addition, 
hydrological extreme events have been reported in the Amazon basin during the last decades, which has 
been possible by using satellite-based rainfall estimates (Barichivich et al., 2018; Espinoza et al., 2012, 2014; 
Funatsu et al., 2021; Gloor et al., 2013; Marengo & Espinoza, 2016; Satyamurty, da Costa, Manzi, & Candi-
do, 2013; Sena et al., 2012). Applications of precipitation databases to the understanding of the hydrologic 
cycle through modeling are described in Section 6.2.

However, due to inconsistencies between different databases, several evaluations of rainfall data sets were 
performed that consider the Amazon basin, from global evaluations (e.g., Beck et al., 2018, Beck, Van Dijk, 
et al., 2017; Beck, Vergopolan, et al., 2017; Sun et al., 2018), only Amazon (e.g., Cavalcante et al., 2020; Cor-
rea et al., 2017; Espinoza, Ronchail, et al., 2019; Haghtalab et al., 2020; Mayta et al., 2019; Pacada et al., 2019; 
Zubieta et al., 2019) and in particular regions of Amazon (e.g., Avila-Diaz et al., 2020; Bookhagen & Streck-
er, 2008; Chavez & Takahashi, 2017; Espinoza et al., 2015; Getirana et al., 2011; Killeen et al., 2007; Manz 



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

8 of 97

N
am

e
Ex

te
nd

ed
 n

am
e

Sa
te

lli
te

 a
dj

us
te

d 
w

ith
C

ov
er

ag
e

Sp
at

ia
l 

re
so

lu
tio

n
Te

m
po

ra
l 

re
so

lu
tio

n
Te

m
po

ra
l 

co
ve

ra
ge

Re
fe

re
nc

e/
Li

nk

C
M

O
R

PH
 v

1.
0

C
PC

 M
O

R
PH

in
g 

te
ch

ni
qu

e 
(C

M
O

R
PH

) V
1.

0

–
60

°N
/S

0.
07

°
30

 m
in

19
98

–N
RT

Jo
yc

e 
et

 a
l. 

(2
00

4)
; J

oy
ce

 a
nd

 X
ie

 (2
01

1)
; X

ie
 

et
 a

l. 
(2

01
7)

; w
w

w
.c

pc
.n

ce
p.

no
aa

.g
ov

; h
ttp

s:/
/r

da
.

uc
ar

.e
du

/d
at

as
et

s/
ds

50
2.

2;
 ft

p:
//

ftp
.c

pc
.n

ce
p.

no
aa

.
go

v/
pr

ec
ip

/C
M

O
R

PH
_V

1.
0/

C
RT

/

C
M

O
R

PH
-C

RT
 

v1
.0

C
PC

 M
O

R
PH

in
g 

te
ch

ni
qu

e 
(C

M
O

R
PH

) b
ia

s 
co

rr
ec

te
d 

(C
RT

) V
1.

0

G
au

ge
60

°N
/S

0.
07

°
30

 m
in

19
98

–2
01

9

G
SM

aP
-S

td
 v

6
G

lo
ba

l S
at

el
lit

e 
M

ap
pi

ng
 

of
 P

re
ci

pi
ta

tio
n 

(G
SM

aP
) M

ov
in

g 
Ve

ct
or

 w
ith

 K
al

m
an

 
M

V
K

) S
ta

nd
ar

d 
V

6

–
60

° N
/S

0.
1°

H
ou

rl
y

20
00

-N
RT

U
sh

io
 e

t a
l. 

(2
00

9)
; h

ttp
://

sh
ar

ak
u.

eo
rc

.ja
xa

.jp
/

G
SM

aP
/

G
SM

aP
-S

td
 G

au
ge

 
v7

G
lo

ba
l S

at
el

lit
e 

M
ap

pi
ng

 
of

 P
re

ci
pi

ta
tio

n 
(G

SM
aP

) M
ov

in
g 

Ve
ct

or
 w

ith
 K

al
m

an
 

(M
V

K
) S

ta
nd

ar
d 

ga
ug

e-
co

rr
ec

te
d 

V
7

G
au

ge
60

°N
/S

0.
1°

H
ou

rl
y

20
00

–N
RT

IM
ER

G
H

H
E 

v0
6

In
te

gr
at

ed
 M

ul
ti-

sa
te

lli
tE

 
Re

tr
ie

va
ls

 fo
r G

PM
 

(I
M

ER
G

) e
ar

ly
 ru

n 
V

06

–
G

lo
ba

l
0.

1°
30

 m
in

20
10

-N
RT

H
uf

fm
an

, B
ol

vi
n,

 a
nd

 N
el

ki
n 

(2
01

5)
; H

uf
fm

an
, 

Bo
lv

in
, B

ra
ith

w
ai

te
, e

t a
l. 

(2
01

5)
; T

an
 e

t a
l. 

(2
01

9)
; 

ht
tp

s:/
/g

pm
1.

ge
sd

is
c.

eo
sd

is
.n

as
a.

go
v/

da
ta

/
G

PM
_L

3/
G

PM
_3

IM
ER

G
H

H
E.

06
/; 

ht
tp

s:/
/

gp
m

1.
ge

sd
is

c.
eo

sd
is

.n
as

a.
go

v/
da

ta
/G

PM
_L

3/
G

PM
_3

IM
ER

G
D

F.
06

/

IM
ER

G
D

F 
v0

6
In

te
gr

at
ed

 M
ul

ti-
sa

te
lli

tE
 

Re
tr

ie
va

ls
 fo

r G
PM

 
(I

M
ER

G
) f

in
al

 ru
n 

V
06

G
au

ge
G

lo
ba

l
0.

1°
D

ai
ly

06
/2

00
0–

pr
es

en
t

PE
R

SI
A

N
N

Pr
ec

ip
ita

tio
n 

Es
tim

at
io

n 
fr

om
 R

em
ot

el
y 

Se
ns

ed
 In

fo
rm

at
io

n 
us

in
g 

A
rt

ifi
ci

al
 

N
eu

ra
l N

et
w

or
ks

 
(P

ER
SI

A
N

N
)

–
60

°N
/S

0.
25

°
H

ou
rl

y
03

/2
00

0-
N

RT
A

sh
ou

ri
 e

t a
l. 

(2
01

5)
; N

gu
ye

n 
et

 a
l. 

(2
01

9)
; S

or
oo

sh
ia

n 
et

 a
l.,

 2
00

0)
; h

ttp
s:/

/c
hr

sd
at

a.
en

g.
uc

i.e
du

/

PE
R

SI
A

N
N

-C
C

S
Pr

ec
ip

ita
tio

n 
Es

tim
at

io
n 

fr
om

 R
em

ot
el

y 
Se

ns
ed

 In
fo

rm
at

io
n 

us
in

g 
A

rt
ifi

ci
al

 
N

eu
ra

l N
et

w
or

ks
 

(P
ER

SI
A

N
N

) C
lo

ud
 

C
la

ss
ifi

ca
tio

n 
Sy

st
em

 
(C

C
S)

–
60

°N
/S

0.
04

°
H

ou
rl

y
01

/2
00

3-
N

RT

Ta
bl

e 
1 

M
iss

io
ns

 a
nd

 P
ro

du
ct

s T
ha

t P
ro

vi
de

 R
ai

nf
al

l E
st

im
at

es
 D

er
iv

ed
 F

ro
m

 R
em

ot
e S

en
sin

g 
D

at
a,

 In
cl

ud
in

g T
em

po
ra

l-S
pa

tia
l R

es
ol

ut
io

n,
 D

at
a 

Re
co

rd
, S

at
el

lit
es

 U
se

d,
 A

lg
or

ith
m

 R
et

ri
ev

al
 a

nd
 

Re
po

sit
or

y 
Li

nk
s (

N
RT

—
N

ea
r R

ea
l T

im
e)



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

9 of 97

Ta
bl

e 
1 

Co
nt

in
ue

d

N
am

e
Ex

te
nd

ed
 n

am
e

Sa
te

lli
te

 a
dj

us
te

d 
w

ith
C

ov
er

ag
e

Sp
at

ia
l 

re
so

lu
tio

n
Te

m
po

ra
l 

re
so

lu
tio

n
Te

m
po

ra
l 

co
ve

ra
ge

Re
fe

re
nc

e/
Li

nk

PE
R

SI
A

N
N

 C
D

R
 

v1
R

1
Pr

ec
ip

ita
tio

n 
Es

tim
at

io
n 

fr
om

 R
em

ot
el

y 
Se

ns
ed

 In
fo

rm
at

io
n 

us
in

g 
A

rt
ifi

ci
al

 
N

eu
ra

l N
et

w
or

ks
 

(P
ER

SI
A

N
N

) C
lim

at
e 

D
at

a 
Re

co
rd

 (C
D

R
) 

V
1R

1

G
au

ge
60

°N
/S

0.
25

°
D

ai
ly

19
83

–p
re

se
nt

SM
2R

A
IN

-C
C

I v
2

R
ai

nf
al

l i
nf

er
re

d 
fr

om
 

Eu
ro

pe
an

 S
pa

ce
 

A
ge

nc
y'

s C
lim

at
e 

C
ha

ng
e 

In
iti

at
iv

e 
(C

C
I)

 sa
te

lli
te

 n
ea

r-
su

rf
ac

e 
so

il 
m

oi
st

ur
e 

V
2

So
il 

M
oi

st
ur

e
Q

ua
si

 G
lo

ba
l/

La
nd

0.
25

°
D

ai
ly

01
/1

99
8–

12
/2

01
5

Br
oc

ca
 e

t a
l. 

(2
01

4)
; C

ia
ba

tta
 e

t a
l. 

(2
01

8)
; h

ttp
s:/

/
ze

no
do

.o
rg

/r
ec

or
d/

84
62

60
; h

ttp
s:/

/d
oi

.o
rg

/1
0.

52
81

/
ze

no
do

.8
46

25
9

SM
2R

A
IN

-A
SC

A
T 

v1
.2

R
ai

nf
al

l i
nf

er
re

d 
fr

om
 A

dv
an

ce
d 

SC
A

Tt
er

om
et

er
 so

il 
m

oi
st

ur
e

So
il 

M
oi

st
ur

e
G

lo
ba

l
12

.5
 k

m
D

ai
ly

20
07

–2
01

9
Br

oc
ca

 e
t a

l. 
(2

01
9)

; h
ttp

s:/
/d

oi
.o

rg
/1

0.
52

81
/

ze
no

do
.3

63
59

32

G
PM

 +
 S

M
2R

A
IN

 
v0

.1
R

ai
nf

al
l i

nf
er

re
d 

fr
om

 
A

SC
A

T 
H

11
3 

H
-S

A
F,

 
SM

O
S 

L3
 a

nd
 S

M
A

P 
L3

 so
il 

m
oi

st
ur

e

So
il 

M
oi

st
ur

e
G

lo
ba

l
0.

25
°

D
ai

ly
20

07
–2

01
8

M
as

sa
ri

 (2
02

0)
; h

ttp
s:/

/d
oi

.o
rg

/1
0.

52
81

/
ze

no
do

.3
85

48
17

TM
PA

-3
B4

2R
T 

v7
TR

M
M

 M
ul

ti-
sa

te
lli

te
 

Pr
ec

ip
ita

tio
n 

A
na

ly
si

s (
TM

PA
) 

3B
42

RT
 V

7

–
60

°N
/S

0.
25

°
3-

hr
03

/2
00

0-
N

RT
H

uf
fm

an
 e

t a
l. 

(2
00

7)
; h

ttp
s:/

/d
is

c.
gs

fc
.n

as
a.

go
v/

da
ta

se
ts

/T
R

M
M

_3
B4

2R
T_

7/
su

m
m

ar
y;

 h
ttp

s:/
/d

is
c.

gs
fc

.n
as

a.
go

v/
da

ta
se

ts
/T

R
M

M
_3

B4
2_

7/
su

m
m

ar
y

TM
PA

-3
B4

2 
v7

TR
M

M
 M

ul
ti-

sa
te

lli
te

 
Pr

ec
ip

ita
tio

n 
A

na
ly

si
s (

TM
PA

) 
3B

42
 V

7

G
au

ge
50

° N
/S

0.
25

°
3-

ho
ur

ly
12

/1
99

7–
01

/2
02

0

TM
PA

-3
B4

3 
v7

TR
M

M
 M

ul
ti-

sa
te

lli
te

 
Pr

ec
ip

ita
tio

n 
A

na
ly

si
s (

TM
PA

) 
3B

43
 V

7

G
au

ge
50

°N
–5

0°
S

0.
25

°
M

on
th

ly
19

98
–2

02
0

H
uf

fm
an

 e
t a

l. 
(2

01
0)

; h
ttp

s:/
/d

is
c2

.g
es

di
sc

.e
os

di
s.

na
sa

.g
ov

/d
at

a/
TR

M
M

_L
3/

TR
M

M
_3

B4
3.

7/

G
ri

dS
at

 v
1.

0
P 

de
ri

ve
d 

fr
om

 th
e 

G
ri

dd
ed

 S
at

el
lit

e 
(G

ri
dS

at
) B

1 
th

er
m

al
 

in
fr

ar
ed

 a
rc

hi
ve

 
v0

2r
01

–
<

50
°

0.
1°

3-
hr

19
83

–2
01

6
K

na
pp

 e
t a

l. 
(2

01
1)

; h
ttp

s:/
/w

w
w

.n
cd

c.
no

aa
.g

ov
/

gr
id

sa
t/



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

10 of 97

Ta
bl

e 
1 

Co
nt

in
ue

d

N
am

e
Ex

te
nd

ed
 n

am
e

Sa
te

lli
te

 a
dj

us
te

d 
w

ith
C

ov
er

ag
e

Sp
at

ia
l 

re
so

lu
tio

n
Te

m
po

ra
l 

re
so

lu
tio

n
Te

m
po

ra
l 

co
ve

ra
ge

Re
fe

re
nc

e/
Li

nk

ER
A

5 
-H

R
ES

Eu
ro

pe
an

 C
en

te
r f

or
 

M
ed

iu
m

-r
an

ge
 

W
ea

th
er

 F
or

ec
as

ts
 

Re
A

na
ly

si
s 5

 (E
R

A
5)

 
H

ig
h 

R
ES

ol
ut

io
n 

(H
R

ES
)

Re
an

al
ys

is
G

lo
ba

l
0.

28
° 

(∼
31

 K
m

)
H

ou
rl

y
20

08
–N

RT
H

er
sb

ac
h 

et
 a

l. 
(2

01
8,

 2
02

0)

ER
A

5 
– 

ED
A

Eu
ro

pe
an

 C
en

te
r f

or
 

M
ed

iu
m

-r
an

ge
 

W
ea

th
er

 F
or

ec
as

ts
 

Re
A

na
ly

si
s 5

 
(E

R
A

5)
 E

ns
em

bl
e 

D
at

aA
ss

im
ila

tio
n 

(E
D

A
) e

ns
em

bl
e 

m
ea

n

Re
an

al
ys

is
G

lo
ba

l
∼

0.
56

°
H

ou
rl

y
20

08
–N

RT

ER
A

5-
La

nd
Eu

ro
pe

an
 C

en
te

r f
or

 
M

ed
iu

m
-r

an
ge

 
W

ea
th

er
 F

or
ec

as
ts

 
Re

A
na

ly
si

s 5
 (E

R
A

5)

Re
an

al
ys

is
G

lo
ba

l
0.

1°
H

ou
rl

y
01

/1
98

1–
pr

es
en

t
ht

tp
s:/

/c
ds

.c
lim

at
e.

co
pe

rn
ic

us
.e

u/
cd

sa
pp

#!
/d

at
as

et
/

re
an

al
ys

is
-e

ra
5-

la
nd

C
H

IR
P 

v2
.0

C
lim

at
e 

H
az

ar
ds

 
gr

ou
p 

In
fr

aR
ed

 
Pr

ec
ip

ita
tio

n 
(C

H
IR

P)
 V

2.
0

Re
an

al
ys

is
50

°N
/S

0.
05

°
D

ai
ly

19
81

-N
RT

Fu
nk

 e
t a

l. 
(2

01
5)

; h
ttp

s:/
/d

at
a.

ch
c.

uc
sb

.e
du

/p
ro

du
ct

s/
C

H
IR

P/
da

ily
/n

et
cd

f/
; h

ttp
s:/

/d
at

a.
ch

c.
uc

sb
.e

du
/

pr
od

uc
ts

/C
H

IR
PS

-2
.0

/g
lo

ba
l_

da
ily

/n
et

cd
f/

C
H

IR
PS

 v
2.

0
C

lim
at

e 
H

az
ar

ds
 

gr
ou

p 
In

fr
aR

ed
 

Pr
ec

ip
ita

tio
n 

w
ith

 
St

at
io

ns
 (C

H
IR

PS
) 

V
2.

0

G
au

ge
 +

 R
ea

na
ly

si
s

50
° N

/S
0.

05
°

D
ai

ly
01

/1
98

1–
pr

es
en

t

G
PC

P-
1D

D
 v

1.
2

G
lo

ba
l P

re
ci

pi
ta

tio
n 

C
lim

at
ol

og
y 

Pr
oj

ec
t 

(G
PC

P)
 1

-D
eg

re
e 

D
ai

ly
 (1

D
D

) 
C

om
bi

na
tio

n 
V

1.
2

G
au

ge
G

lo
ba

l
1°

D
ai

ly
10

/1
99

6–
11

/2
01

5
H

uf
fm

an
 e

t a
l. 

(2
00

1,
 2

01
6)

; h
ttp

s:/
/r

da
.u

ca
r.e

du
/

da
ta

se
ts

/d
s7

28
.3

G
PC

P-
PE

N
 v

2.
2

G
lo

ba
l P

re
ci

pi
ta

tio
n 

C
lim

at
ol

og
y 

Pr
oj

ec
t 

(G
PC

P)
 p

en
ta

d 
pr

ec
ip

ita
tio

n 
an

al
ys

is
 

(P
EN

)

G
au

ge
G

lo
ba

l
2.

5°
5-

da
ily

01
/1

97
9–

06
/2

01
7

X
ie

 e
t a

l. 
(2

01
1)

; h
ttp

s:/
/c

m
r.e

ar
th

da
ta

.n
as

a.
go

v/
se

ar
ch

/c
on

ce
pt

s/
C

12
14

56
64

85
-N

O
A

A
_N

C
EI

. 
ht

tp
://

ap
dr

c.
so

es
t.h

aw
ai

i.e
du

/d
ch

ar
t/

in
de

x.
ht

m
l?

ds
et

id
 =

 e
53

e3
2f

2c
76

0e
63

75
a4

de
86

bd
47

18
cb

a

M
ER

R
A

-2
M

od
er

n-
Er

a 
Re

tr
os

pe
ct

iv
e 

A
na

ly
si

s f
or

 R
es

ea
rc

h 
an

d 
A

pp
lic

at
io

ns
 2

G
au

ge
 +

 R
ea

na
ly

si
s

G
lo

ba
l

∼
0.

5°
H

ou
rl

y
19

80
–N

RT
G

el
ar

o 
et

 a
l. 

(2
01

7)
; R

ei
ch

le
 e

t a
l. 

(2
01

7)

M
SW

EP
 v

2.
2

M
ul

ti-
So

ur
ce

 
W

ei
gh

te
d-

En
se

m
bl

e 
Pr

ec
ip

ita
tio

n 
(M

SW
EP

) V
2.

2

G
au

ge
 +

 R
ea

na
ly

si
s

G
lo

ba
l

0.
1°

3-
hr

01
/1

97
9–

N
RT

Be
ck

 e
t a

l. 
(2

01
9)

; B
ec

k,
 V

an
 D

ijk
, e

t a
l. 

(2
01

7)
; w

w
w

.
gl

oh
2o

.o
rg



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

11 of 97

et al., 2017; Paccini et al., 2018; Zulkafli et al., 2014). These data sets perform differently according to the 
region and the time scale analyzed, which will be described in the following subsections together with the 
main scientific advances that have been elucidated.

Figures 3c–3e show the cumulative rainfall for the annual, wet (DJF) and dry (JJA) period, respectively, 
for the Amazon basin. In these figures, the Hydro-geodynamics of the Amazon basin Observatory (HY-
BAM) observed precipitation data set (HOP), comprised of 752 daily rain gauge stations throughout the 
Amazon at 1° spatial resolution (Espinoza et al., 2016; Guimberteau et al., 2012), and the 5 km resolution 
CHIRP data set, a non-gauged-corrected product, have been used.

Climatological studies in the basin that consider spatial patterns began in the 1980s. For instance, the 
evaluation of the outgoing longwave radiation (OLR) from polar orbiting satellites (mainly from NOAA), 
started in 1974, have been particularly useful for routine monitoring of cloudiness and deep convection ar-
eas over the tropics with pioneering work by Gruber and Krueger (1984) and Liebmann and Smith (1996). 
More regional rainfall patterns were revealed in the transition between the Andes and the Amazon in the 
so-called "rainfall hotspots" region, where rainfall can reach values higher than 6,000 mm year−1, the high-
est rainfall in the Amazon basin (Chavez & Takahashi, 2017; Espinoza et al., 2015; Killeen et al., 2007). 
This region is among the rainiest areas in the world according to the IMERG Grand Average Climatology 
data set that covers June 2000 to May 2019 and has the world's largest squall lines (quasi-linear convective 
systems; Garstang et al., 1994). Extreme vertical and horizontal structures occur due to the interactions 
between large-scale atmospheric circulation and massive topography that affect atmospheric convection, 
producing the rainfall hotspots during almost the whole year (Bookhagen & Strecker,  2008; Espinoza 
Villar, Guyot, et al., 2009; Killeen et al., 2007). In addition, changes in forest cover in the southern Am-
azon have been considered as a factor that may affect processes such as the presence of convective cells, 
resulting in marked spatial and temporal variability (Durieux et al., 2003; Funatsu et al., 2012; Laurance 
& Bruce Williamson, 2001; Staal et al., 2020).

Figure 3f shows the spatial distribution of the annual cycle of precipitation based on the CHIRP and 
HOP data sets. Annual cycles of precipitation over the basin vary significantly, mainly related to latitude, 
orography, and the influence of the large-scale atmospheric features (e.g., Intertropical Convergence Zone 
[ITCZ], South American Monsoon System [SAMS], South Atlantic convergence zone [SACZ]; Espinoza 
Villar, Ronchail, et al., 2009). The bias performance of the data sets is shown in Figure 3g, which consid-
ers six non-gauged-corrected data sets (PERSIANN-CCS, MSWEP-ng v2, CHIRP v2.0, CMORPH v1.0, 
SM2RAIN-ASCAT, and TMPA 3B42RT v7, adapted from Beck, Vergopolan, et al., 2017). The bias of total 
annual rainfall for the period 2000–2016 is plotted for negative and positive values, where at least one of 
these databases has detected an equal or greater value of bias. These satellite data sets were validated for 
the Amazon basin against global and local in situ stations (e.g., GHCN, the Global Summary of the Day 
[GSOD] database, the Latin American Climate Assessment & Dataset). The evaluation of these data sets 
showed large biases in the occidental and southern Amazon, covered by the Andean headwaters.

Over the Andes-Amazon transition region, RS rainfall data have contributed to understanding the main 
orographic processes related to anabatic and katabatic winds, which are essential to explain the diurnal 
cycle of precipitation in this region (Junquas et al., 2018). In this specific region, the bias patterns of the 
data sets are in agreement with other research (Chavez & Takahashi, 2017; Espinoza et al., 2015) only 
in the Peruvian rainfall hotspots, which underestimated total annual precipitation by about 35%–40% 
from the TRMM-PR data set for the period 1998–2012. The general bias in some Andes regions can be 
explained, in part, by the predominance of cirrus clouds (confused by satellites sensors with convective 
clouds such as cumulonimbus that have similar cloud top temperature (Paredes Trejo et al., 2016; Thiemig 
et al., 2013, Figure 3b), what occurs, for instance, over the east of the southern Andes mountains (Alti-
plano Plateau, which extends between 15° and 22°S). This mainly happens during the wet austral summer 
(Barahona et al., 2017; Dinku et al., 2011; Viale et al., 2019), and where these cloud formations are oro-
graphically dependent (Chavez & Takahashi, 2017; Giovannettone & Barros, 2009; Junquas et al., 2018; 
Saavedra et al., 2020; Satgé et al., 2016, 2017).

Mesoscale circulation between the land surface and large water bodies in the Amazon basin produces 
river and coastal breeze. These systems affect the moisture transport and the spatial rainfall pattern at a Ta
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local scale (Fitzjarrald et al., 2008; Santos et al., 2019; Silva Dias et al., 2004). RS data helped to reveal that 
river breezes reduced rainfall over the Amazon water bodies (rivers and large reservoirs) through the use of 
TRMM (Paiva, Collischonn, & Tucci, 2011).

Changes in land cover can produce complex mesoscale circulation patterns, including the so-called “de-
forestation breeze” that can happen over small deforested patches but loses strength at deforestation scales 
of around 100 km (Lawrence & Vandecar, 2015; Saad et al., 2010). These deforestation-induced circulation 
patterns can significantly alter rainfall trends at different scales (Leite-Filho et al., 2021). Rainfall patterns 
can also be affected from local to continental scales, with such changes being observed over the Amazon in 
recent decades (Butt et al., 2011; Khanna et al., 2017; Leite-Filho et al., 2019). The effects of deforestation on 
rainfall will be further discussed in Section 6.4.

Remotely sensed data have been used to evaluate the temporal variability on different time scales. For in-
stance, spatial synoptic changes in rainfall patterns were evaluated using RS information due to the heter-
ogeneous spatial distribution of weather stations and inconsistent temporal measurements of gauge data 
(Arvor et al., 2017; Silva Junior et al., 2018). Other studies on a daily scale focused on evaluating the per-
formance of the TMPA V7, TMPA RT, CMORPH, and PERSIANN data sets to represent the precipitation 
concentration index during the period 2001–2009 (Zubieta et al., 2019). This index is an indicator for tem-
poral precipitation distribution. The authors concluded that the best products (CMORPH and TMPA V7) 
can be an alternative source of data to detect changes in daily precipitation concentration during dry or wet 
seasons in regions of the basin that experience extreme events.

Considering that one of the main characteristics of convection processes in tropical regions is their strong 
relationship with the diurnal cycle (Duvel & Kandel, 1985; Minnis & Harrison, 1984), pioneer studies were 
performed since the 1990s for the understanding of convective patterns in the Amazon basin. Based on 9 
years (1983–1991) of data from GEO IR satellites (i.e., the B3 ISCCP product) with 3-hr temporal resolution, 
Garreaud and Wallace (1997) documented several features of the diurnal march of the frequency of con-
vective cloudiness. Data from SSM/I onboard the Defense Meteorological Satellite Program via application 
of the Goddard Profiling algorithm were also used to characterize the climatology (10-year) and the diurnal 
variability (6-year) of the rainfall in the basin (Negri et al., 2000). Oliveira et al. (2016) evaluated two GPM 
products in order to reproduce the diurnal cycle of precipitation in the central Amazon and obtained simi-
lar results to Angelis et al. (2004), who showed that rain tends to occur mainly during the afternoon in the 
central Amazon basin.

Rainfall information from RS has helped to identify the time of wet season beginning and ending (Wright 
et al., 2017), which is especially important because the prolongation of the dry season increases the vul-
nerability of local ecosystems and agriculture to drought and fire events (Arias et al., 2015; Fu et al., 2013; 
Marengo et al., 2011). One of the first RS-based assessments found that the onset of the Amazon wet season 
typically occurs within a single month (Horel et al., 1989). Negri et al. (1994) produced a regional precip-
itation climatology over the Amazon during the wet season (January–May) using three years of the twice 
daily Special Sensor Microwave/Imager (SSM/I) data. Changes in the seasonal cycle amplitude were also 
observed with the TRMM data (Liang et al., 2020).

RS information supported important developments in the understanding of the processes governing the 
seasonality of rainfall in the Amazon basin. The availability of satellite-derived precipitation, OLR, and re-
analysis allowed the description of the thermally-driven seasonal patterns that form the SAMS, which was 
previously not understood as a monsoon partly because it lacks the classical seasonal inversion of absolute 
zonal winds (Zhou & Lau, 1998). An uncommon characteristic of the monsoon over the Amazon elucidated 
by these RS products is that the onset of rains occurs before the southward migration of the ITCZ and that 
the Bolivian high-pressure zone characteristic of the SAMS is partly generated by the latent heat release 
from precipitation over the basin before the traditional monsoon onset (Fu et al., 1999).

At seasonal to intraseasonal scales, OLR data from NOAA polar-orbiting satellites was used to identify the 
intensity and spatial features of the SACZ in the Brazilian Amazon region (L. M. V. Carvalho et al., 2004). 
The SACZ is a northwest-southwest convection band that extends from the Amazon basin to the south-
eastern Atlantic Ocean, and its intensity and geographical distribution are associated with extreme rainfall 
events in the southern Amazon. At the intraseasonal scale, the large-scale Madden-Julian oscillation (MJO; 
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Madden & Julian, 1994) has been established as the dominant mode of variability across the tropics, mod-
ulating the SACZ and other climatological features over the basin. Mayta et al. (2019) and Vera et al. (2018) 
used OLR data as a proxy of convection to analyze the intraseasonal variability of precipitation in South 
America, and, in particular, De Souza and Ambrizzi (2006) showed that the MJO is the main atmospher-
ic mechanism of rainfall variability on intraseasonal timescales over the eastern Amazon during the wet 
season, which was confirmed through the use of rain gauge network by Mayta et al. (2019). Moreover, RS 
information has contributed to understanding the mechanisms of atmospheric circulation and rainfall data 
sets' performance of seasonal and intraseasonal precipitation data sets. For instance, in the Andes-Amazon 
transition region, particular atmospheric circulation patterns (CP) were described by Paccini et al. (2018), 
where particular meteorological situations are related to regional rainfall anomalies by using TRMM 3B42, 
TRMM 2A25 RP, and CHIRPS data sets.

Changes in the spatial and temporal distribution of rainfall in the Amazon basin may provide an indicator 
of climate variability and in turn are an indicator of hydrological variability, including extreme events, such 
as floods and droughts (e.g., Lewis et al., 2011; Marengo & Espinoza, 2016). Direct evaluation of these data 
sets have been done to assess the temporal evolution of rainfall through analysis of occurrence indexes such 
as the dry-day frequency and the wet-day frequency through the CHIRPS data set (Espinoza, Ronchail, 
et al., 2019); or the assessment of the trend in the length of the wet season in southern Amazon with the 
PERSIANN-CDR data set (Arvor et al., 2017). The interannual evolution of the hydrological processes, such 
as runoff coefficient, was evaluated through a water balance analysis by using the CHIRPS data set (Espino-
za, Sörensson, et al., 2019). A similar approach, the long-term surface water balance over the Andes-Ama-
zonia system, was performed by Builes-Jaramillo and Poveda (2018) through the use of in situ (precipitation 
from GPCC and runoff from HYBAM) and RS-based information (evapotranspiration from ORCHIDEE, 
GLEAM, MPI, and MOD16), which pointed out that failures and scarcity of information in the high Andes 
induce uncertainties and errors in the water budget. In addition, CHIRPS v2.0 was used to analyze precip-
itation anomalies for the identification of spatial patterns of drought over the basin related to the tropical 
Atlantic and Pacific SSTemp anomalies and different ENSO events (Jimenez et al., 2019).

Rainfall estimations by RS since the 1980s in the Amazon basin have depicted more amounts of rain in 
the north, particularly during the wet season (Espinoza, Ronchail, et al., 2019; Pacada et al., 2020; G. Wang 
et  al.,  2018) and lower amounts in the south, particularly during the dry season (Espinoza, Ronchail, 
et al., 2019; Leite-Filho et al., 2019). This north-south contrasting pattern is translated to the hydrological 
behavior of the main basins that show an intensification of the hydrological regime in the main course of 
the Amazon (Barichivich et al., 2018; Espinoza Villar, Guyot, et al., 2009; Heerspink et al., 2020).

Amazon characteristics pose unique challenges to satellite rainfall retrieval algorithms, both from IR and 
MW sensors, considering the contrast in terms of orography, climate, and changes in vegetative cover. For 
IR, challenges occur mainly for warm orographic rains (shown north of 10°S), where fixed brightness tem-
perature thresholds (cooler than warm orographic clouds) tend to underestimate rainfall amounts. This 
would be happening in the hot-spots regions in the Peruvian and Bolivian Andes-Amazon transition (Es-
pinoza et al., 2015). For the MW algorithms, rain overestimation comes from cold surfaces and ice over 
mountain tops which can be interpreted as precipitation (Dinku et al., 2011; Toté et al., 2015).

Since satellite-based rainfall estimates are adjusted based on observations from rain gauges, the accuracy of 
estimated rainfall values can be increased. However, this requires a network of rain gauges with adequate 
spatial coverage in key areas of the Amazonia and high-quality records for proper calibration and valida-
tion. In the case of in situ stations, some aspects should be considered, for instance, that rainfall estimates 
are likely to be biased by river breeze at some times of the year, as meteorological stations are usually lo-
cated near large rivers and close to most cities (Paiva, Buarque, et al., 2011; Santos et al., 2019; Silva Dias 
et al., 2004).

Current satellite-borne radar missions, such as TRMM Precipitation Radar, CloudSat's Cloud Profiling Ra-
dar, or GPM Dual frequency Precipitation Radar, have low temporal resolution, therefore are unable to 
observe the short-time evolution of weather processes. To overcome this limitation, using only radars on 
LEO, it is necessary to have a constellation of them. In recent years nanosatellites (e.g., SmallSat or CubeSat 
platforms) have the capability to miniaturize, reduce cost and simultaneously preserve the fundamental 
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requirements of their larger and more expensive peers. In this sense, RainCube is a potential technology 
demonstration mission to enable precipitation radar technologies on a low-cost platform (Peral et al., 2019).

Ground-based radars can measure the vertical structure of rain since its structure depends on the type of 
rain, but with better temporal resolution than MW on board satellites (Kumar et al., 2020). A recent exam-
ple is the operational algorithm RAdar INfrared Blending algorithm for Operational Weather monitoring, 
which merges ground radar network with VIS and IR images from satellites to provide rainfall patterns and 
intensity over Italy (Adderio et al., 2020). New methods have emerged that take advantage of the global cell 
phone network and its density to estimate rainfall intensities, mainly in urban areas, but which can also be 
used in regions with high topographical variability (Gosset et al., 2016; Overeem et al., 2013, 2016; van het 
Schip et al., 2017), however, they have not yet been explored in the Amazon basin. In general, monthly and 
annual data sets are useful because they have an adequate agreement to the observations, but not with daily 
and much less sub-daily data.

3. Evapotranspiration
Evapotranspiration (ET) has considerable importance for the terrestrial climate system, providing moisture 
to the atmosphere, linking the water, energy, and carbon cycles (Fisher et al., 2017; M. Jung et al., 2010), 
and driving precipitation and temperature at local and regional scales (Marengo et al., 2018). Studies have 
shown that around half of the precipitation in the Amazon basin is recycled by locals ET (Salati et al., 1979; 
Satyamurty, da Costa, & Manzi, 2013; Zemp et al., 2017). In addition, Amazon ET constitutes an important 
source of moisture for southeastern South America through atmospheric low-level (often referred to as “fly-
ing rivers''), providing around 70% of the precipitation in this region (Van Der Ent et al., 2010; Pearce, 2020). 
Especially during the dry season, Amazon ET seems to be more efficiently converted to precipitation in the 
La Plata River Basin than local ET (Martinez & Dominguez, 2014).

With the advent of satellite observations, ET has been estimated at multiple spatial and temporal scales. RS 
models to estimate ET can be divided into two main approaches: one based on surface energy balance (SEB) 
and another using physical equations. One well-known energy balance model is the Surface Energy Balance 
Algorithm for Land (SEBAL), proposed by Bastiaanssen (1995) to overcome most of the problems of the 
early surface energy balance models, which were suitable only for local scale due to their dependence on 
local measurements for calibration. Based on principles and methods adopted in SEBAL, Allen et al. (2007) 
proposed the Mapping evapotranspiration at high Resolution with Internalized Calibration (METRIC) al-
gorithm, including an internal calibration using Inverse Modeling at Extreme Conditions (CIMEC) and 
micrometeorological measurements to reduce computational biases inherent to energy models that use RS 
data (Allen et al., 2007, 2011). Other surface energy balance models were also proposed to use RS data, such 
as Surface Energy Balance Index (SEBI; Menenti & Choudhury, 1993), Simplified Surface Energy Balance 
Index (S-SEBI; Roerink et al., 2000), and Surface Energy Balance System (SEBS; Su et al., 2001).

SEB algorithms are generally defined as “One Source Surface Energy Balance” models, since they do not 
distinguish between soil evaporation and canopy transpiration, whereas the land surface is treated as a 
big leaf and as a single uniform layer (Tang et al., 2013; Zhang et al., 2016). In contrast, in the Two-Source 
Energy Balance (TSEB) models (Kustas & Norman, 1999; Norman et al., 1995), the soil-vegetation system is 
approximated as a two-layer model, where the energy fluxes are partitioned into soil and vegetation compo-
nents (Norman et al., 1995). Based on the TSEB approach, the Atmosphere-Land Exchange Inverse model 
(ALEXI) was developed by Anderson et al. (1997), designed to represent land-atmosphere exchange over a 
wide range of land cover conditions. Both approaches rely on thermal RS data, using meteorological inputs 
as ancillary data (Zhang et al., 2016).

RS models based on physical equations are generally divided into Penman-Monteith and Priestley- Taylor 
equation-based approaches. Penman (1948) was the first to formulate an equation to calculate evaporation 
based on a physical approach using two terms, an energy term related to radiation and an aerodynamic term 
related to the vapor pressure deficit and wind speed (Shuttleworth, 2012). While this equation represented 
open water evaporation, Monteith (1965) presented an extension by adding surface and aerodynamic re-
sistances, and thus the equation became more consistent with an estimation of ET from vegetated surfac-
es, resulting in the well-known Penman-Monteith equation (Monteith & Unsworth, 2013). Based on this 
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approach, the MOD16 algorithm was formulated by Mu et al. (2007, 2011), previously proposed by Cleugh 
et al. (2007), to calculate ET through the integrated use of global meteorological reanalysis and RS data from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, including leaf area index (LAI), a 
fraction of absorbed photosynthetically active radiation (fPAR), albedo and land cover classification. Leun-
ing et al. (2008) also proposed a similar ET algorithm based on this equation, the Penman-Monteith-Leun-
ing (PML) using a simple biophysical model to calculate surface conductance from MODIS LAI. Another 
approach is the Priestley-Taylor equation (Priestley & Taylor, 1972). This model uses an empirical parameter 
to simplify the Penman-Monteith approach, minimizing the uncertainties related to estimating aerodynam-
ic and surface resistances. Based on this equation, Fisher et al. (2008) developed the JPL-PT model, and Mi-
ralles et al. (2011) proposed the Global Land-Surface Evaporation Amsterdam Model (GLEAM), designed 
to estimate daily terrestrial evaporative fluxes and the root-zone soil moisture using maximum observations 
derived from RS (Martens et al., 2017). A summary of the main RS-based models to estimate ET in the South 
American tropics, with applications in the Amazon basin, is presented in Table 2.

RS-based ET models have improved our understanding of ET processes worldwide, allowing us to under-
stand hydrological processes from local to large spatial and multiple temporal scales. Energy balance mod-
els have the advantage provide fine spatial resolution. These models can estimate human impacts on the 
energy and water cycles and on the land-surface interactions. However, since they are dependent on ther-
mal RS data, they are generally restricted to clear-sky or cloud-free conditions, which is a major drawback, 
especially in tropical humid areas, such as the Amazon (Rocha et al., 2009). In addition, SEB models usually 
require the presence of hot and cold conditions in the satellite domain area. This requirement is a disadvan-
tage since the selection of the hot and cold endmembers for internal calibration using the CIMEC process 
on RS images can generate subjective results, especially under wet regions such as the Amazon basin, where 
the selection of hot endmembers during both wet and dry seasons is a challenge (Khand et al., 2017). Phys-
ically-based equations have the advantage to map ET at the high temporal resolution, enabling long-term 
and large-scale assessments of land-surface interactions. However, some limitations include the uncertain-
ty in parameterizing physical processes, as surface resistance and conductance, and, therefore, some models 
are dependent on the use of look-up tables biome-properties (Ruhoff et al., 2013). Error propagation derived 
from meteorological forcing data is also an issue (Gomis-Cebolla et al., 2019; Miralles et al., 2016; Panday 
et al., 2015; Talsma et al., 2018) since it can introduce large uncertainties in ET estimates, especially in the 
tropics.

In the Amazon, the spatial and temporal drivers of ET are not fully understood, and these uncertainties are 
reflected in how RS models estimates ET (Baker et al., 2021; Maeda et al., 2017; Sörensson & Ruscica, 2018). 
ET measurements have provided valuable information about seasonality and dynamics at local scales (Ro-
cha et al., 2009). Some national initiatives, as the Brazilian National Water Resource Information System 
(SINGREH) and the Meteorological Database for Research from the Brazilian National Water and Sani-
tation Agency (ANA) and the National Institute of Meteorology (INMET), respectively, and international 
research projects, as the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA; Davidson & 
Artaxo, 2004), provided standardized hydrometeorological and surface flux measurements to understand 
energy, water, and carbon exchanges across different tropical ecosystems (Gonçalves et al., 2013; Saleska 
et al., 2013). However, due to the high cost of eddy covariance measurements and maintenance difficulties, 
there are only a few towers located across the basin, and these do not cover the whole Amazon climate-veg-
etation complexity. Hence, through the calibration and validation of RS-based ET models, it has been pos-
sible to extend the spatial coverage of the ET, improving our knowledge about seasonality and patterns in 
data-scarce areas, covering long-term assessments.

RS models have shown that ET spatial pattern (Figure 4a), seasonality (Figure 4b), and main ET drivers vary 
across the basin, with monthly average rates ranging from 80 mm in the southern part (including Madeira 
and Tapajos basin) up to 160 mm in the northern part of the basin (Negro basin). Most models, as MOD16, 
usually show an increase in E ET  and forest greenness as the dry season progresses in the northeastern and 
central Amazon, where equatorial wet areas prevail, and spatial and temporal ET seasonality is mainly driv-
en by incident radiation and LAI (Maeda et al., 2017), corroborating with eddy covariance measurements 
(Christoffersen et al., 2014), despite not all models agree with this pattern (Figure 4c). For instance, while 
MOD16 ET seasonality is consistent with eddy covariance measurements (at K34 and K83), with higher 
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rates during the dry season, seasonality of the GLEAM model (at K34), peaks during the wet season in wet 
regions in Amazon, since this model has a dependence on water availability, following the rainfall seasonal-
ity(Miralles et al., 2016). Furthermore, in the south and southeastern parts of the Amazon basin (at Madeira 
and Tapajos basin), most of the RS-based models consistently indicate a decrease ET during the dry season, 
following water availability (Maeda et al., 2017; H. J. F. da Silva et al., 2019). However, when RS-based mod-
els estimate are compared to eddy covariance measurements (at local scale) or water balance estimates (at 
large scale), the representation of the ET seasonality is still uncertain, since most of the models are unable 
to consistently reproduce the seasonal cycles in tropical areas, considering that multiple drivers operate 
simultaneously across the Amazon. Overall, in the tropics, ET seasonality is mainly regulated by water 
and energy availability and how vegetation assimilates both (Christoffersen et al., 2014; Restrepo-Coupe 
et al., 2013). Alternatively, in large data scarce areas, estimating ET using multi-model ensembles and a 
dense observational network across the Amazon, RS-based models can be improved through calibration 
and validation, helping assess model uncertainties and to understand the land surface interactions in the 
tropics (Gonçalves et al., 2013; Pacada et al., 2019).

Figure 4. Spatial and temporal patterns of evapotranspiration (ET) are differently represented by RS models. (a) Spatial variability of ET annual average 
(2003–2017) for Global Land-Surface Evaporation Amsterdam Model , SSEBop, MOD16, and PML models; the numbers on the lower left corner of each subplot 
represent the annual average ET. (b) ET seasonality for major Amazon sub-basins. (c) Monthly average comparison between estimates and eddy covariance 
measurements from the LBA project, using data from Saleska et al. (2013). The dry season is highlighted in gray as monthly precipitation rates <100 mm 
month−1.
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While flux tower measurements have shown, at local scales, that land cover changes can impact water 
and energy fluxes (von Randow et al., 2004), large scale assessment with satellites based on both energy 
balance and physical-based equations driven by vegetation phenology and meteorological reanalysis have 
reinforced these findings (Baker & Spracklen,  2019; Khand et  al.,  2017; Laipelt et  al.,  2020; de Oliveira 
et al., 2019). All these studies demonstrated significantly lower ET rates under pasture, agricultural, and 
deforested areas than in primary and secondary forests (von Randow et al., 2020). These results indicate that 
less water returns to the atmosphere, thus affecting the precipitation recycling and contributing to changes 
in the dry-to-wet season, possibly making the dry season longer (Costa & Pires, 2010), while more of the 
precipitated water goes to runoff (Panday et al., 2015). In addition, RS-based assessments demonstrated that 
drought events tend to affect anthropogenic systems as pasture and agriculture areas more than primary 
and secondary forests, leading to an increase in air temperature, and a decrease in LAI and ET (Baker & 
Spracklen, 2019; de Oliveira et al., 2019). Results from MOD16 ET may assist in monitoring deforested areas 
in the Brazilian Amazon (H. J. F. da Silva et al., 2019). However, global remotely sensed ET, such as GLEAM, 
better reflect changes in vegetation greening and in air temperature increase than to deforestation, may due 
the lack of deforestation account in these models (Wu et al., 2020). Influence of land use changes on the 
water cycle will be discussed further in Section 6.4.

Our understanding about energy partitioning in the Amazon biome has improved through RS models (de 
Oliveira et al., 2019; Laipelt et al., 2020). For example, high resolution ET estimates using SEBAL in the 
south-western Amazon demonstrated significant differences among energy and water fluxes in forests and 
non-forest areas, such as pasture and cropland. In these anthropogenic areas, soil and sensible heat fluxes 
were from two to four times higher than in forested areas (de Oliveira et al., 2019). In a transitional region 
between Amazon and Cerrado biomes, converted areas can substantially change the energy and water flux-
es, where latent heat flux is the major component in forested areas, while in deforested areas an increase 
in sensible heat flux is observed (Laipelt et al., 2020). These studies showed that change in land use and 
land cover, can significantly affect ET rates, and observed ET rates was almost two times lower in pasture 
than in tropical forest (Laipelt et al., 2020), and up to three times lower in non-forested areas (de Oliveira 
et al., 2019).

Fisher et al. (2017) summarized in 10 scientific questions the main outstanding knowledge gaps for the ET-
based science. To address these questions, ET estimations need to be improved, aiming for high accuracy, 
high spatial and temporal scales, covering large spatial and long-term monitoring. Recent research demon-
strated that RS models can estimate ET with reasonable accuracy and consistent agreement (Gomis-Cebolla 
et al., 2019; Martens et al., 2017; Michel et al., 2016; Zhang et al., 2019). However, for the individual ET com-
ponents (soil evaporation, transpiration, and interception), they diverge considerably (Miralles et al., 2016; 
Talsma et al., 2018). For example, Miralles et al. (2016) showed that in tropical forests, soil evaporation is 
almost non-existent in GLEAM and JPL models, whereas with MOD16 this component may exceed tran-
spiration. In the Amazon, canopy interception from JPL and MOD16 is nearly two times higher than in 
GLEAM model. Beyond the uncertainties related to canopy transpiration and soil evaporation, open water 
evaporation and ETestimation over Amazon wetlands is also a major knowledge gap. Wetland ET can be a 
complex process as it involves fluxes at different vegetation conditions for transpiration, evaporation from 
water intercepted in the canopy and from open and vegetated surface water. Changes in latent heat pat-
terns over water bodies (rivers, wetlands, lakes and artificial reservoirs) affect the local climate circulation 
patterns through a breeze effect (Silva Dias et al., 2004), and have the potential to affect regional climate 
through precipitation suppression over the wetlands and convection initiation over wetland borders (Taylor 
et al., 2018).Wetland-upland differences in ET are still poorly understood over the Amazon, and only a few 
in situ monitoring gauges are available on floodable environments (Borma et al., 2009) that could be used 
for model validation. Improvements of accuracy of ET components estimates lead us to better understand 
ET processes, and how these components are impacted by changes in temperature, green-house gases con-
centration, and in the hydrologic cycle (Fisher et al., 2017; Talsma et al., 2018).

Another challenge to RS-based ETis to minimize the use of land cover parameterization to improve input 
model accuracy. While the performance of Penman-Monteith models can be influenced by surface conduct-
ance parameterizations to scale stomatal conductance to canopy level, Priestley-Taylor models estimates 
have dependence on the α coefficient. Since ET models depend on meteorological inputs, errors can also be 
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related in both approaches by forcing data and algorithm's structure (Ershadi et al., 2015; Gomis-Cebolla 
et al., 2019). Moreover, measurements are still a significant limitation. In the Amazon biome, there are only 
eight public flux towers with data available, from the LBA project (Saleska et al., 2013), and they do not 
cover all vegetation and climate complexity in the Amazon basin. In addition, for surface energy balance 
models the main challenge, especially in the Amazon, is the requirement of clear sky conditions. However 
recent efforts to integrate microwave data to energy balance models are promising (Holmes et al., 2018), 
since microwaves are less affected by cloud cover than the thermal infrared wavelength.

RS is now supported by a range of sensors and satellites which provide thermal infrared images, and mete-
orological and surface observations, essential to estimate ET. In 2018 the Ecosystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS) mission was launched by National Aeronautics 
and Space Administration (NASA) and will provide information about how vegetation responds to stress 
and how it uses water, focusing on vegetation temperature measurement, allowing understanding of ET 
dynamics and processes at a good temporal and spatial resolution (Fisher et al., 2017; Sheffield et al., 2018). 
Other missions will improve ET estimates and will provide valuable information to validate current models. 
For example, the Joint Polar Satellite System (JPSS), a mission from National Oceanic and Atmospheric Ad-
ministration (NOAA) and NASA, includes a range of sensors, such as the Visible Infrared Imaging Radiom-
eter Suite (VIIRS), that collect visible and infrared imagery, providing useful global information to monitor 
vegetation, and as input to retrieval hydrological variables (McCabe et al., 2017; Sheffield et al., 2018; Zhou 
et al., 2016). The Water Cycle Observation Mission (WCOM) from China aims to acquire consistent meas-
urements of the water cycle components (Levizzani & Cattani, 2019; Shi et al., 2016). The FLourescence 
EXplorer (FLEX) mission by European Space Agency, that will map vegetation fluorescence, providing 
information about photosynthetic activity and vegetation stress and health, also helping to improve con-
straints on transpiration (Drusch et al., 2017; McCabe et al., 2017). Beyond continuity of Landsat (McCorkel 
et al., 2018) mission, will map long-term ET at high spatial scale, and the Gravity Recovery and Climate Ex-
periment (GRACE) Follow-on that will bring significant opportunity to estimate ET with the water balance 
approach (Landerer et al., 2020).

RS has been crucial to improve our understanding of surface-atmosphere interactions through ET, despite 
the challenges that still exist, and these future missions are an excellent opportunity to address important 
scientific questions from ET-based science, allowing us to improve techniques, approaches and our knowl-
edge about ET processes and how the impact of activities can affect the water cycle throughout the Earth, 
including the Amazon.

4. Surface Water
4.1. Surface Water Elevation

Surface water is a key resource for all the communities living along the Amazon River. Yet monitoring sur-
face water elevation (SWE) and discharge in the Amazon basin is a challenge. While the basin is facing pres-
sure on its water cycle due to human activities, the number of gauges decreased globally in the last decades 
(Vörösmarty et al., 2000). This threatens our capacity to understand natural and human-driven impacts of 
climate change on Amazonian rivers. Although, to this date, no satellite mission have been designed specif-
ically for retrieving inland water elevations, remotely-sensed observations of SWE from radar altimetry are 
complementary to the historical gauge network (Fekete et al., 2012) and improve monitoring of Amazonian 
rivers (Calmant & Seyler, 2006; Da Silva et al., 2014).

Amazon basin has become an ideal laboratory for pioneering studies that have demonstrated the capacity of 
retrieving accurate SWE at particular locations from radar echoes and adapted retracking procedures. The 
first studies over the Amazon used observations from Seasat (Sea Satellite from NASA), launched in 1978, 
to derive the low water gradient of the Amazon main stem (Guzkowska et al., 1990).

The configuration of the satellite altimeter orbit defines the intersections between the satellite ground 
tracks and the river reaches, the so-called virtual stations (VSs), where SWE can be estimated. At a given 
VS, the SWE is retrieved through the inversion of the signal round-trip propagation time that provides the 
range. Several uncertainty corrections (due to delay in the propagation caused by the atmosphere, dynamics 
of Earth's surface, etc.) must be applied to this range to retrieve the SWE. Stammer and Cazenave (2017) 
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provide an extensive discussion on SWE estimation from satellite altimetry and the associated errors. Since 
the first satellites, the accuracy of the orbit, which depends on the density of the atmosphere and on the res-
olution of the gravitational field, has improved, and is now around one centimeter (against 60 centimeters 
for Seasat). Yet calculating the correct range remains challenging, as it is necessary to track (on board) or 
retrack (on the ground) the altimetric waveform (Frappart et al., 2006; Zhang et al., 2010), using algorithms 
to best fit the highly variable distribution of the echo energy bounced back by the different types of surfaces 
in the satellite field of view (Calmant et al., 2016).

Since the first studies using Seasat data, we now have more than 30 years of monitoring of inland waters 
by satellite altimetry. After Seasat came GEodetic and Oceanographic SATellite (GEOSAT), that was used 
by Koblinsky et al. (1993) to retrieve SWE time series over the Amazon, with uncertainties ranging from 
0.19 to 1.09 m compared to in situ data. The European Remote Sensing satellite (ERS-1; launched in 1991) 
initiated a long family of satellites that followed the same 35-day repeat orbit (ERS-1, ERS-2, ENVISAT -En-
vironmental Satellite, and SARAL -Satellite with ARgos and ALtika), which covered the 1991–2016 period. 
A major advance was made by the Observations des Surfaces Continentales par Altimetrie Radar (OSCAR) 
project, that evaluated the ICE-2 specific retracking of radar echoes for ice caps (Legresy et al., 2005) -a 
re-tracker based on fitting the leading edge and the trailing edge slope of radar waveforms to a Brown func-
tion-for ERS-1, ERS-2 and ENVISAT, and promoted its delivery in the Geophysical Data Records (data files 
containing along-track altimeter measurements and the corrections that are needed to be applied to the 
range in order to retrieve WSE).

The retracking of radar echoes was analyzed by Frappart et al. (2006, 2016) and Da Silva et al. (2010) over 
70 ERS-2 and ENVISAT VSs and a large range of river widths (from tens of meters to kilometers). They 
reported that the proper selection of the data considered as representative of the water body is as important 
as the choice of the retracking algorithm. The data from the 10-day repeat orbit of Topex/Poseidon (T/P) 
and Jason-2/3 have also been assessed in the Amazon basin. Seyler et al. (2013) highlighted the gain of Ja-
son-2 (ranging from 2008 to 2016 on its nominal orbit) in comparison to T/P (from late 1992 to 2005), with 
an uncertainty around 0.35 m, possibly due to the sensor's better capacity to discriminate the surrounding 
floodplain from the river.

All these missions operated in low resolution mode, i.e., the footprint on ground is large (some kilome-
ters, depending on radar operating band) and the echoes returning to the antenna are influenced by the 
surroundings. The SAR mode, active on Sentinel-3 satellites, allows a reduction of the surrounding contri-
butions by slicing the disc illuminated by the echo at a given time (Raney, 1998). This reduction provides 
a much better along track resolution, however it does not resolve some issues such as cross-track sloping 
measurements (Bercher et al., 2013). The addition of a second antenna, as on Cryosat-2, allows the SAR 
Interferometric mode to correct these cross-track measurements, hence allowing an improvement in the 
accuracy of SWE time series. However, Croysat-2 is not popular for SWE monitoring over rivers since its 
orbit shifts around 30 km westward every 28.9 days, 7 km eastward every 89 days and comes back to the 
same place every 369 days. Indeed, most of the studies on the use of satellite altimetry in the Amazon basin 
have focused on repetitive orbits, even though some studies have explored the use of missions in drifting or 
long-term repetitive ones and found good accuracy for SWE monitoring (e.g., Bogning et al., 2018). As of 
today, main applications of drifting or long-term repetitive missions consist in constraining or calibrating 
hydrodynamic models, however no study has yet focused on the Amazon basin. Such missions, instead of 
providing a SWE observation on a 10-day or almost monthly basis with a large intertrack distance at the 
equator (between 60 and 100 km), provide a much denser spatial span but with observations separated 
from another in time. The use of ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry data was 
investigated by Hall et al.  (2012). They concluded that this mission can be a valuable source of data for 
monitoring rivers from the Amazon, with accuracies of some tens of centimeters when compared to gauges. 
The ICESat mission was continued by ICESat-2, launched in 2018. Studies by Bercher et al. (2013) and Jiang 
et al. (2017) concluded that the SAR mission CryoSat-2 offers new opportunities to monitor narrow rivers in 
the Amazon basin, and should help linking the present and future altimetry missions.

The differential interferometry technique with SAR data allows obtaining information about changes 
in surface displacements, such as topographic changes. Centimeter-scale measurements of water level 
changes throughout inundated floodplain vegetation using interferometric SAR were obtained over the 
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Amazon floodplains for the first time (Alsdorf, Birkett, et al., 2001; Alsdorf, Smith, & Melack, 2001; Alsdorf 
et al., 2000). This estimation is possible due to the radar pulse interactions with the water surface and the 
trunks of flooded vegetation causing a double-bounce path (Alsdorf et  al.,  2000; Hess et  al.,  1995). Lee 
et al., 2020 and Mohammadimanesh et al. (2018) reviewed the methods and limitations of the technique 
for applications in wetlands.

To date, SWE information is available as raw data and as processed data. Some groups or institutions pro-
vide processed SWE time series (see Table 3). Each data set provides SWE on selected water bodies, all over 
the world or in specific regions, and have different objectives in terms of operability. Processing and filtering 
procedures vary between each group, and time series of the same VSs can vary from one group to another.

Figure 5 provides the location of all virtual stations in the Amazon basin from the Hydroweb website. Fig-
ure 5a is a representation of the median amplitude of SWE at each VS. Amplitude of SWE measured by the 
satellites is lower in the headwaters (0–3 m) and medium size rivers (3–6 m) compared to Solimões-Ama-
zonas main stem and its tributaries (9–12 m). Largest values are found for the Purus River (>15 m), a right 
bank tributary. Figures 5b and 5c provide the mean month for high and low flows, respectively, indicating 
the influence of rainfall partition in the northern and southern parts of the basin and the gradual shift 
due to the flood travel time along the rivers and floodplains (∼1–3 months). Figures 5d and 5e provide 
multi-mission SWE time series ranging from 2002 to now with ENVISAT and Sentinel3-B and from 2008 to 
2020 with Jason-2 and Jason-3, respectively. It shows the strong seasonal signal of the gradual flood of the 
Amazon rivers, and interannual variability of maximum and minimum stages.

Owing to its relatively dense spatial cover (see Figure 5), satellite altimetry has been used for deriving the 
altimetric profiles of rivers throughout the basin. These profiles, computed for low and high waters for 
the Negro River from T/P VSs (Frappart et al.,  2005) and ENVISAT VSs (Leon et al.,  2006), indicated a 
lower slope for the Negro River over more than 500 km (from its mouth to upstream reaches) than for the 
Solimões River (confirmed by Callède et al., 2013). Such a difference explains the strong backwater effect 
that occurs in the lower section of the Negro River and alters the time of peak and low flows. Other back-
water effects, mainly from the Amazon main stem on its tributaries, were evident in the river profiles from 
satellite altimetry. However sparse in time, satellite altimetry observations now provide a dense enough 
network to monitor extreme events such as those that occurred in 2005 and 2010 in the Amazon (Frappart 
et al., 2012; Da Silva et al., 2012).

Name Producer Weblink Reference Target Delivery time

G-REALM USDA NASA https://ipad.fas.usda.
gov/cropexplorer/

global_reservoir/Default.
aspx#SatelliteRadarAltimetry

Birkett et al. (2017) Lakes and reservoirs NTC

River & Lake De Montfort University http://altimetry.esa.int/riverlake/
shared/main.html

Berry et al. (2005) Rivers, Lakes and 
reservoirs

SCT 
(discontinued)

DAHITI database German Geodetic Research 
Institute

https://dahiti.dgfi.tum.de/en/ Schwatke et al. (2015) Rivers, lakes 
reservoirs and 
wetlands

NTC & reanalysis

GRRATS product Ohio State University https://podaac.jpl.nasa.gov/
dataset/PRESWOT_HYDRO_

GRRATS_L2_VIRTUAL_
STATION_HEIGHTS_V2

Coss et al. (2020) Rivers Reanalysis only

Hidrosat ORE-HYBAM and ANA http://hidrosat.ana.gov.br/ Carvalho et al. (2015) Rivers NTC

Hydroweb IRD/LEGOS, CNES (French 
Space Agency), and 
Universidade do Estado 
de Amazonas

http://hydroweb.theia-land.fr/ Crétaux et al. (2011); 
Da Silva 

et al. (2010)

Rivers, lakes and 
reservoirs

STC & reanalysis

Note. STC, Slow-Time Critical - delivered at maximum after 3 days; NTC, Non-Time Critical -delivered typically within 1 month.

Table 3 
Data Sets of Surface Water Elevation Time Series Over the Water Bodies
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Figure 5. (a) Location of the virtual stations freely available on Theia-hydroweb (http://hydroweb.theia-land.fr/) and median amplitude of the time series. 
Dots are operational VSs (from currently flying missions and updated in near real time) and squares are research VSs (identified as reanalysis in table W). VSs 
rounded in black are drawn in (d and e; b) month of maximum surface water elevation (SWE) for the mean monthly time series at each VS; (c) Month of the 
minimum SWE for the mean monthly time series; (d) Composite time series of the VSs close one to each other on the lower Negro River, VSs NEGRO_KM1444, 
NEGRO_KM1420 and NEGRO_KM1404, (e) Time series on the Amazon middle reach and Amazon lower reach composed of Jason-2 and Jason-3 observation 
at VS AMAZONAS_KM1534 and AMAZONAS_KM0397, respectively.
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A straightforward application of these profiles is to derive the spatiotemporal variations of the water sur-
face slope. While former studies focused on the spatial variations of the surface water gradient, a first try 
to estimate the temporal variations of the Amazon main stem slope was performed in Birkett et al. (2002) 
using VSs from the T/P mission. They revealed changes in the sign of the rate of slope variation that were 
explained by the river not reaching equilibrium. Although the slopes from Birkett et al. (2002) compared 
well with slopes from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) - a 
snapshot of profiles and slopes in February 2000 (LeFavour & Alsdorf, 2005)—and with gauge data (Cal-
mant et al., 2013), these breaks in slope variation rate were not found in profiles extracted from more recent 
and complet. altimetric databases (Calmant et al., 2016). Paris et al.  (2016) estimated two different time 
series of slopes from satellite altimetry in the lower Negro River: the first was calculated using a daily 
interpolation of upstream and downstream SWE time series, providing a daily slope time series, and the 
second was calculated using the mean climatology of upstream and downstream VSs. Although the stage to 
discharge relationship was improved when considering the variation of slope with time estimated through 
both methods, it is the monthly means that provided the best improvement. This illustrates the difficulty in 
inferring slopes from non-daily uncertain observations.

By coupling satellite altimetry and a hydrologic and hydraulic model through stage to discharge rating 
curves, Paris et al. (2016) provided a map of estimated bottom of river in the entire Amazon basin using 
data from ENVISAT and Jason-2 missions. This map was then used by Garambois et al. (2017) on a reach 
of the Xingu River to parameterize a hydraulic model. Such cases where the satellite ground-track crosscuts 
several times the same river reach allow a more refined analysis of water surface slope. This occurs in sin-
uous rivers flowing from north to south (or the contrary) like the Xingu River, a right margin tributary of 
the Amazon River (Figure 2). Given these conditions, the authors verified that the presence of an obstacle 
in the river bed produces temporal changes in water surface slope observed by satellite altimetry. Brêda 
et al. (2019) proposed a benchmark of methods of altimetric data assimilation, ranging from direct insertion 
to a hydraulically based Kalman filter, to improve bathymetry estimates of the Madeira River. They conclud-
ed that satellite altimetry can be used for better constraining SWE and flood inundation simulations. An 
analysis of SWE from the ENVISAT mission revealed water passing from the Negro River to the Solimões 
River through their interconnected floodplains at high stages (Da Silva et al., 2012).

The capacity to observe channel-floodplain connectivity through altimetry was investigated by Park (2020). 
By observing seasonal changes in SWE in rivers and surrounding floodplains, they separated the role of 
channelized flows and of overbanks flows, which contributes to surface water storage and smooths the 
channelized-induced topography. The floodplain located between the Madre-de-Dios, the Beni, the Gua-
pore and the Mamore rivers in the upper Maderia basin was characterized using ENVISAT and SARAL 
data (Ovando et al., 2018). Water level differences between the frequently flooded regions, with no direct 
connection to the Andes, and the regions subject to sporadic though large flood events were distinguished. 
Recently, Fleischmann et al. (2020) produced SWE time series in the complex Negro River interfluvial wet-
lands from Sentinel3-A data. For the first time, they reported <1 m water level variations in these complex 
areas. Their results show that satellite altimetry can help understanding the hydraulic behavior of complex 
ungaged areas and help validate hydrologic and hydraulics models.

Alsdorf et al. (2000, 2005, 2007) applied for the first time interferometric SAR (InSAR) in the central Ama-
zon floodplains and showed that the water flows in the floodplains are dynamic in space and time, chang-
ing the direction with the flood wave of the river. Before the flood, the flows are controlled by the local 
topography and the surface water elevation in the floodplain is not equivalent to the river level (Alsdorf 
et al., 2007). By assuming that the water surface in the floodplain is equivalent to those in the main channel, 
estimates of water storage derived from flood routing can be overestimated, as shown by Alsdorf (2003). 
H. C. Jung et al. (2010) compared temporal changes in floodplain water in the Amazon and Congo basins. 
While the Amazon River is connected by many channels to the floodplains and has complex flow patterns, 
the Congo Rivers (and especially the Cuvette Centrale) have sparse connections with interfluvial areas and 
flow patterns that are not well defined and have diffuse boundaries. The patterns of water surface variations 
in the floodplains located on the Tapajós and Solimões rivers were examined by Wang et al. (2011) and Cao 
et al. (2018), respectively. The most recent SAR missions allowed monitoring of smaller water bodies.
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Through direct assessment or combination with other RS products, satellite altimetry can be used to de-
rive non-measured hydrological variables. Pfeffer et  al.  (2014) were able to infer the varying exchanges 
between surface water and the groundwater base-level from 491 ENVISAT VSs located all over the basin. 
Estimates of deviations from groundwater base-level reached up to 5 m. Frappart et al. (2012) made a joint 
use of satellite altimetry and inundation extent to derive variations of surface continental water storage 
(see Section 5). These two variables were used in Frappart et al. (2019) to estimate the spatiotemporal vari-
ability of groundwater storage in the Amazon basin. de Oliveira Campos et al. (2001) and Silva et al. (2019) 
found signatures of global climatic events such as ENSO and sea surface temperature variations in the T/P 
and Jason-2 SWE time series, respectively. Since the SWE estimates are now delivered in near real time, 
rating curves that relate SWE with discharge and depth, have been the focus of several studies (see details 
in Section 6.2). These rating curves were either computed using local gauges (Zakharova et al., 2006) or 
model outputs (Getirana et al., 2012; Leon et al., 2006). By constraining the rating curve parameters into 
Manning-realistic bounds, Paris et al. (2016) showed that discharges predicted from satellite altimetry are 
comparable to those measured in situ. The original SWE time series or their conversion into discharge offer 
an independent tool to validate hydrological models (Paris et al., 2016) and their rainfall inputs, and in situ 
data (Da Silva et al., 2014).

With its disruptive technology based on swath altimetry, almost-global coverage and joint observation of 
SWE, river width and slope, the SWOT mission, to be launched in 2022, will permit an unprecedented 
observation of SWE all along the river network and on major lakes and floodplains. As highlighted by 
Biancamaria et  al.  (2016), SWOT observation of SWE will permit a better monitoring of transboundary 
waters and wetlands in the Amazon. Dedicated to sample all rivers wider than 100 m and lakes larger than 
250 × 250 m, the mission will permit a consequent reduction of global and regional models, noteworthy 
through data assimilation (Emery et  al.,  2020; Wongchuig et  al.,  2020). The estimate of discharge from 
altimetry will benefit from SWOT data, both thanks to the global coverage and the observation of slopes, 
allowing a better constraining of uncertain hydraulics (Wilson et al., 2015).

Thanks to more than 20 years of studies, EO data sets, especially satellite altimetry, have been revealed as 
an unprecedented tool to monitor continental watersheds and their droughts and floods (Lopez et al., 2020). 
The current satellite altimetry missions opened the era of operational monitoring from space at large scale, 
and this will be of critical importance in the coming decades in the large tropical transboundary watershed 
that is the Amazon basin. With almost two thousand VSs distributed all over the basin and available for free 
on websites, and potentially hundreds more, satellite altimetry can favorably complement the traditional in 
situ network, whose location usually depends on the proximity to a city or town. However, to operationally 
monitor non-open waters such as permanently or seasonally flooded vegetated floodplains remains chal-
lenging. In fact, few lakes and reservoirs are monitored by altimetry routinely in the basin though more 
could be (Crétaux et al., 2011; Crétaux & Birkett, 2006). The forthcoming missions will benefit from past 
research to improve the accuracy of SWE time series and promote its use for monitoring more local phe-
nomena, such as floodplain-channel exchanges. Although limited due to availability of appropriate data, 
InSAR data sets help characterize floodplains/rivers connectivity and dynamics. The global coverage of the 
forthcoming SWOT mission will increase greatly our understanding on the global water cycle and should al-
low a better quantification of past and current inter-mission biases, helping turn satellite altimetry archives 
into a unique climatic data set and understanding the impacts of climate change and human activities on 
the basin. Such a task will benefit of the ongoing Validation of Altimetric Satellites for HYdrology in Brazil 
project (VASHYB, https://swot.jpl.nasa.gov/documents/1054/), which aims to validate SAR and InSAR ob-
servations. The SWOT mission will dramatically increase our capacity to model the Amazon basin and the 
variations of its water cycle, thanks to the new capacity to monitor hydrological variables (height, width, 
slope, and associated discharge) of hundreds of rivers 100 m wide (Biancamaria et al., 2016). The centimet-
ric accuracy in SWE and slope (Desai, 2018) should provide new insights on water fluxes in the Amazon. 
Since the main limitation for a broader use of satellite altimetry remains its relatively low temporal sam-
pling, future missions such as the SMall Altimetry Satellites for Hydrology mission (SMASH, Blumstein 
et al., 2019), broadcasted together with the current constellation, should help tackle this issue.

https://swot.jpl.nasa.gov/documents/1054/
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4.2. Surface Water Extent

Characterizing the extent and variation of surface water bodies and aquatic ecosystems, which include 
rivers, streams, lakes, wetlands, as well as seasonally inundated floodplains, forests and savannas, is of 
primary importance to the study of the water, energy and biogeochemical cycles of the Amazon River basin 
(Junk, 1997; Melack et al., 2009). Indeed, covering about 20% of basin's surface area, with large temporal 
variability, the surface waters of the Amazon play a key role in the climate and in the maintenance of bio-
diversity. Amazon surface waters are a major source and sink of carbon dioxide (Abril et al., 2014; Amaral 
et  al.,  2020; Raymond et  al.,  2013) and the largest natural geographic source of methane in the tropics 
(Kirschke et al., 2013; Melack et al., 2004; Pangala et al., 2017; Pison et al., 2013). In this context, under-
standing the dynamics of surface water extent is of primary importance to Amazon hydrology, biogeochem-
istry processes and their link with climate, for effective management of water and fisheries resources (see 
Section 6.3) and for a disaster management for cities which are under flood risk (e.g., Iquitos, Porto Velho, 
Rio Branco, Cruzeiro do Sul). This is particularly true in the context of current global changes that impact 
the Amazon (see Section 6.4), with intense drought and flood events that recently affected large areas of this 
region (Davidson et al., 2012; Jiménez-Muñoz et al., 2013; Marengo et al., 2008, 2011). In addition, monitor-
ing the variations of surface water hydrological conditions is key to support the development of models of 
the Amazon water cycle and its surface hydrology (see Section 6.2).

Characterizing the distribution and quantifying seasonal and interannual variations in the extent of sur-
face waters at the scale of the Amazon basin is a challenge given their large variety and variability, and the 
presence of cloud cover and forest vegetation. Early estimates of the distribution of surface water for large 
areas were based on static databases from aeronautical charts and aerial photographs, which often reflected 
the maximum open water extent (Cogley, 2013; Matthews & Fung, 1987) and did not provide information 
on their temporal and spatial variations. The Global Lakes and Wetlands Database (Lehner & Döll, 2004) 
estimates the extent of floodplains and wetlands in the Amazon of ∼300–350 × 103 km2, but with large un-
certainties (Davidson et al., 2018). The advent of satellite observations now allow monitoring the large-scale 
dynamic of surface waters, including those in the Amazon basin (Alsdorf et al., 2007; Prigent et al., 2007) 
enabling progress on understanding of the associated physical, biogeochemical, environmental and ecolog-
ical processes.

Different RS-based techniques, using observations made in a wide range of the electromagnetic spectrum 
(visible, infrared, and microwave; Melack et al., 2004; Prigent et al., 2016), have been developed, with var-
ying degrees of success, to derive quantitative estimates of the extent and dynamics of surface waters and 
aquatic systems in the Amazon (Table 4). They encompass a wide range of spatial and temporal resolutions, 
often based on a trade-off between temporal and spatial coverages. Observations with low spatial resolution 
(e.g., ∼10–50 km from passive microwave sensors) are generally limited to the detection of relatively large 
inundated areas, or regions where the cumulative area of small areas represents a fairly large portion of the 
satellite footprint. They have the advantage of frequent temporal coverage, sometimes daily. High-resolu-
tion observations (e.g., <100 m from SAR for instance) provide information at a fine spatial scale but have 
low temporal frequency, often limiting observations over large areas to a few times per season. Optical and 
infrared observations offer good spatial and temporal resolution but have limited capabilities in the tropical 
Amazon region as they are unable to penetrate clouds and dense vegetation.

Passive microwave observations have demonstrated their usefulness for observing surface water and flood 
extent and provided some of the first estimates of Amazon surface water extent from satellite (Giddings 
& Choudhury, 1989) as reviewed in Kandus et al. (2018). Emissivities (and brightness temperatures) are 
sensitive to the presence of surface water (Choudhury, 1991; Sippel et al., 1994) with a decrease in emissiv-
ity in both linear polarizations (horizontal and vertical) and an increase for the difference in polarization, 
especially at low frequencies, due to the different dielectric properties between water, soil and vegetation. 
Surface water and inundation patterns in the large floodplains of the central Amazon (Sippel et al., 1998) 
and South America (Hamilton et al., 2002) were derived by analysis of the 37-GHz polarization difference 
observed by the Scanning Multichannel Microwave Radiometer (SMMR; Nimbus-7 satellite, 1979–1987). 
By developing a relationship between the total flooded area along the Amazon River main stem and the 
monthly means of river stage at Manaus, they provided the first 94-year reconstruction of flooded area from 
the river stage in situ record, estimating the long-term mean of the flooded area along the Amazon River 
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RS approaches References
Sensors/Satellites 
(Product name) Original area of study

Spatial/temporal 
resolution Time span

Passive Microwaves Giddings and 
Choudhury (1989)

SMMR on Nimbus 7 4 major river basins 
of SA

∼25 km/Monthly 1979–1985

Sippel et al. (1994) SMMR on Nimbus 7 Central Amazon and 
floodplains

∼25 km/Monthly 1979–1985

Sippel et al. (1998) SMMR on Nimbus 7 Amazon River and 
tributaries

∼25 km/Monthly 1979-1985 (and 1902–
1995 reconstruction)

Hamilton et al. (2002) SMMR on Nimbus 7 6 major floodplains 
over SA.

∼25 km/Monthly 1979–1987

Brakenridge 
et al. (2007)

AMSR/E on Aqua Global ∼25 km/daily 2002–2011

Parrens et al. (2017) SMOS (SWAF) Amazon basin ∼25–50 km/3-day 2009–present

Active Microwaves Hess et al. (2003) SAR on JERS-1 Central Amazon 100 m/Sep–Oct 95 and 
May–Jun 96

Sept–Oct 95 and May–
Jun 96

Bourrel et al. (2009) SAR on ERS-2/
RADARSAT

Bolivian Amazon 2 RADARSAT (50 m)/3 
ERS (15 m) images

1996–1998

Arnesen et al. (2013) ScanSAR mode on 
ALOS/PALSAR

Lower Amazon River 
floodplain

100 m/12 ScanSAR 
images

2007–2010

Ferreira-Ferreira 
et al. (2015)

SAR on ALOS/PALSAR Central Amazon 
floodplain

12.5 m/13 ScanSAR fine 
bream images

2007–2010

(Hess et al., 2015) SAR on JERS-1 Amazon basin 100 m/Sept–Oct 1995 
and May–Jun 1996

Sept–Oct 1995 and 
May–Jun 1996

Chapman et al. (2015) ScanSAR mode on 
ALOS/PALSAR

Amazon basin 100 m/323 ScanSAR 
images

2007–2010

Ovando 
et al. (2016, 2018)

ScanSAR mode on 
ALOS/PALSAR and 
MODIS reflectance

Bolivian Amazon 
wetlands

100 m/45 ScanSAR and 
500 m/8-day MODIS 

images

2007–2009 and 
2001–2014

Park and 
Latrubesse (2017)

SAR on ALOS/PALSAR Amazon floodplain 
(Miratuba)

12–350 m/19 images 2006–2008

Pinel et al. (2019) SAR on ALOS/PALSAR Amazon/Solimoes 
River (Janauaca)

30 m/23 images 2007–2011

Resende et al. (2019) SAR on ALOS/PALSAR Central Amazon 25 m/56 images 2006–2011

Rosenqvist et al. (2020) ScanSAR on ALOS-2 
PALSAR-2

Amazon basin 50 m/Yearly minimum 
and maximum

2014–2017

Optical and infrared Yamazaki et al. (2015) Landsat (G3WBM) Global 90 m/4 scenes of 
surface body freq. at 

5-year interval

1990–2010

Pekel et al. (2016) Landsat (GSW) Global 30 m/Surface water 
occurence

1984–2015

Allen and 
Pavelsky (2018)

Landsat (GRWL) Global 30 m/static widths and 
areas

–

Souza et al. (2019) Landsat Amazon basin 30 m/Surface water 
changes

1985–2017

Multi-satellite 
techniques (passive 
microwaves in 
combination 
with other RS 
observations)

Prigent 
et al. (2007, 2020)

SSMI/AVHRR/ERS 
(GIEMS)

Global ∼25 km/monthly 1992–2015

Table 4 
RS-Based Approaches Developed to Monitor the Extent of Surface Water in the Amazon (Non-Exhaustive List)
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main stem to be ∼47,000 km2. Those studies have been followed by passive microwave-derived products of 
surface water extent over the Amazon, using Special Sensor Microwave/Imager (SSM/I), Advanced Micro-
wave Scanning Radiometer (AMSR-E; Brakenridge et al., 2007) and most recently Soil Moisture Ocean Sa-
linity (SMOS) observations (Parrens et al., 2017). Parrens et al. (2017) used the microwave L-band (1.4 GHz) 
observations from 2010 to 2017 to map the temporal evolution of the Amazon water bodies at coarse spatial 
resolution (∼50 km) and weekly temporal resolution (product named SWAF) with the ability, thanks to the 
L-Band frequency, to better retrieve water under dense canopy. Passive microwave observations have inher-
ent limitations because of their ground footprints in the typical order of 25–50 km, and their relatively low 
spatial resolution is often insufficient to observe small water bodies.

Multi-satellite methodologies that combine the complementary strengths of different types of satellite ob-
servations to retrieve surface water extent and their dynamics expand the information provided by passive 
microwave radiometers (Table 4). Though designed originally for global scale applications, these approach-
es have been evaluated in the Amazon basin. The Global Inundation Extent from Multi-Satellite (GIEMS, 
Papa et al., 2010; Prigent et al., 2007, 2016, 2020) or the Surface WAter Microwave Product Series (SWAMPS) 
Inundated Area Fraction (Schroeder et al., 2015) detect and quantify multi-decadal variability of surface 
water extent over tropical environments (Frappart et al., 2008; Papa et al., 2008, 2013). The current version 
of GIEMS is available at ∼25 km spatial resolution on a monthly basis from 1992 to 2015 (GIEMS-2, Prigent 
et al., 2020, Figure 6a), while SWAMPS offers current and near-real-time information (Jensen et al., 2018). 
The use of these passive microwave-derived data sets helped reveal the sources and characteristics of the 
flood pulse and annual flood wave along the Amazon River and major tributaries. They contributed to 
show at basin scale the water extent seasonality, with a high flood season in May-June and low flood season 
in November in the central Amazon floodplain. At basin-scale, Amazon surface water extent (Figure 6b) 
varies from ∼100,000 km2 (low season) to almost ∼400,000 km2 (high season), but with large interannual 
variability, mainly driven by droughts (1998, 2005, and 2010) or floods (1997, 2014) extreme events (Papa 
et al., 2010; Prigent et al., 2020). However, the maximum surface water extent from GIEMS and SWAMPS 
are lower than those from SAR estimates (Figure 6b).

Prigent et al. (2007) showed that seasonal flooding differed between the north and south parts of the basin 
due to seasonal differences in precipitation. Papa et al. (2008) reported a phase lag in precipitation, flood 
extent, and peak flows at the basin scale, suggesting as in Richey et al. (1989), that floodplains in large ba-
sins such as the Amazon can store a large volume of water and alter the water transport. Richey et al. (1989) 
applied a simple water routing scheme and estimated that up to 30% of the discharge of the Amazon River 
is routed through the floodplains. However, studies such as Getirana et al. (2012), based on the large-scale 
hydrological model that used GIEMS to evaluate their floodplains simulations, suggested instead that the 

Table 4 
Continued

RS approaches References
Sensors/Satellites 
(Product name) Original area of study

Spatial/temporal 
resolution Time span

Schroeder et al. (2015) SSM/I, SSMIS, ERS, 
QuikSCAT, ASCAT 
(SWAMPS)

Gobal ∼25 km/monthly/daily 1992-present

Aires et al. (2013) GIEMS/JERS-1 SAR Central Amazon 500 m/monthly 1993–2007

Fluet-Chouinard 
et al. (2015)

GIEMS downscalled 
(named 
GIEMS-D15)

Global 500 m/max./min./
average

1993–2007

Aires et al. (2017) GIEMS downscalled 
(named 
GIEMS-D15)

Global 90 m/monthly 1993–2007

Parrens et al. (2019) SMOS downscalled 
(named SWAF-HR)

Amazon basin 1 km/3-day 2010–2016

Note. References, sensor/satellite name, product name (when available), original area of study, spatial/temporal resolution and time span of data availability 
are shown.
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actual value might be more than 5%. Furthermore, Sorribas et al. (2020) reported that the ratio between riv-
er-floodplain discharge and basin discharge ranged between 5% and 40%, which is comparable to the range 
estimated from observations by Richey et al. (1989) and Alsdorf et al. (2010) who used gravimetric and im-
aging satellite methods to estimate the amounts of water seasonally filling and draining from the mainstem 
Amazon floodplain. Hence, there is a need to better understand the processes that control Amazon inunda-
tions in order to quantify the various fluxes across floodplain environments, as is evident in applications of 
regional-scale flooding models (Rudorff et al., 2014b).

Synthetic aperture radars are active radar instruments that measure the backscatter of the observed surface 
at an angle of incidence (off-nadir), regardless of cloud cover, and allow delineation of open surface waters 

Figure 6. Surface water extent of the Amazon basin. (a) Map of maximum wetland and surface water extent (high water season) from JERS-1 SAR (Hess 
et al., 2015) and map of annual maximum surface water extent (fraction in km2 for each 773 km2 pixel) averaged over 1992–2015 from GIEMS2 (Prigent 
et al., 2020). (b) Basin-scale monthly mean surface water extent variability for 1992–2015 from GIEMS2 (solid black line) along with estimates of JERS-1 SAR-
derived wetland and flooded area for high-water (dashed blue line) and low-water (solid blue line) seasons. Also shown are the Global Surface Water (GSW, 
Pekel et al., 2016) permanent surface water extent (green line, GSW permanent) and the total (permanent plus transitory) surface water extent at maximum 
(red line, GSW Total). (c) Map of maximum surface water extent at regional scale (boxes in panel (a) indicate the locations) from GIEMS-D15 (Fluet-Chouinard 
et al., 2015) and SWAF-HR (Parrens et al., 2019).
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and inundated area with vegetation with a typical spatial resolution of 10–100 m (Behnamian et al., 2017; 
Hess et al., 1990; Kasischke et al., 1997) The Spaceborne Imaging Radar-C (SIR-C) experiment provided 
high quality, multi-band and multi-polarization data for the Amazon that led to the development of new 
approaches using SAR. Alsdorf et  al.  (2000) demonstrated the ability of interferometric analyses to de-
tect centimeter-scale variations in slope across the Amazon rivers and floodplains (see Section 4.1). Hess 
et al. (1995) developed algorithms to detect inundation and vegetation within Amazon wetlands that bene-
fitted from modeling of interactions between vegetation and radar, including the double-bounce effect, also 
done as part of SIR-C (Wang et al., 1995). Understanding derived from this led to the use of data provided 
by the Japan Earth Resources Satellite-1 (JERS-1) to produce the first high-resolution wetland map for the 
central Amazon region under low-water and high-water conditions at 100-m resolution (Hess et al., 2003). 
These results were validated with airborne, high-resolution, videography transects throughout the imaged 
area (Hess et al., 2003). Hess et al., (2003) found that 17% of the 1.77 million km2 study area is occupied 
by wetlands, of which 96% are inundated at high water and 26% at low water. Flooded forests accounted 
for nearly 70% of the overall wetland area, but proportions of the wetland habitats showed large regional 
variations related to floodplain geomorphology. Those new estimates of the large inundated area were of 
major importance to understand the outgassing of methane and carbon dioxide from Amazon flooded areas 
(see Section 6.3).

The JERS-1 SAR estimates were extended to the entire wetlands of the lowland Amazon basin (region 
<500 m asl) (Figure 6a; Hess et al., 2015), currently one of the standards for comparison with other satel-
lite-derived products. It estimates the flooded extent (Figure 6b) to be ∼2.85 × 105 km2 for the low water 
season (October–November 1995) and of ∼6.34 × 105 km2 for the high water season (May–July 1996). An 
interesting comparison is one made for the central corridor of the Amazon (Prigent et al., 2007) between 
GIEMS and the 100 m resolution L-band JERS-1 SAR mosaic of Hess et al. (2003) for low water (Septem-
ber-October 1995) and high water (May-June 1996). For both seasons, the spatial structures are similar but 
estimates of the surface water extent observed by SAR (118,000 km2 for the low water season, 243,000 km2 
for the high water season) are larger than the area estimated by GIEMS (105,000 km2 for the low water 
season, 171,000 km2 for the high water season). Thanks to its better spatial resolution, the SAR estimates 
are capable to discriminate smaller water bodies than GIEMS (typically water bodies smaller than 80 km2 
that is, 10% of a GIEMS pixel), especially for the low water season. For the entire Amazon basin, the ba-
sin-wide estimates from GIEMS do not match the basin-wide SAR (Figures 6a and 6b) as reported in Hess 
et al. (2015) which suggested that global data sets derived from lower-resolution sensors or optical sensors 
capture less than 25% of the wetland area mapped by the SAR.

The use of multi-temporal SAR coverage, such as the ScanSAR mode of ALOS/PALSAR, provide variations 
of flood extent at the scale of floodplain units, for example, Curuai floodplain along the lower Amazon River 
(Arnesen et al., 2013), Mamiraua floodplain (Ferreira-Ferreira et al., 2015) or inundation patterns in central 
Amazon (Pinel et al., 2019; Resende et al., 2019). Rosenqvist et al. (2020) generated annual maximum and 
minimum inundation extent maps over the Amazon using ALOS-2/PALSAR-2 ScanSAR, in line with previ-
ous inundation maps by L-band JERS-1 and ALOS/PALSAR radar classifications of the inundation (Chap-
man et al., 2015). At the regional scale, Bourrel et al. (2009) mapped the floods in the Bolivian Amazon from 
SAR C-Band microwave data of RADARSAT and ERS-2. Over the same region, the surface water dynamics 
of the Bolivian Amazon wetlands (Ovando et al., 2018), as well as the characterization of extreme flood 
events (Ovando et al., 2016) were investigated by combining ALOS/PALSAR SAR observations with MODIS 
multi-temporal flood maps and altimetry-derived water level variations (ENVISAT & SARAL). Other SAR 
satellite missions, such as the Copernicus Sentinel-1 SAR (launched in 2014), which offer a global revisit of 
6–12 days, have not been yet fully exploited in the Amazon but offers new opportunities for mapping the 
spatial and temporal variations of surface waters at a fine scale in tropical environments. The near-future 
launch of SAR satellites, such as NISAR and SWOT (Prigent et al., 2016), will offer new opportunities to 
monitor Amazon surface water with dedicated sensors.

Optical and infrared imagery observations (e.g., Landsat, SPOT, QuickBird, Ikonos, AVHRR, MODIS, and 
Sentinel 2A/B) offer high spatial and temporal resolutions (∼1–500 m, sub-daily to weekly) but in trop-
ical environments, they are generally limited by the inability to penetrate clouds and dense vegetation. 
Therefore, assembling cloud-free coverage during the rising flood season of the central Amazon remains 
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challenging (Asner, 2001; Hess et al., 2015; Klein et al., 2015). Nevertheless, classification of optical im-
agery using water indexes and related methods, as reviewed by Huang et al.  (2018), enables to estimate 
flood frequency based on temporal maps of surface water cover, and despite the limitations from vegetation 
canopy and cloud cover, this type of data can be of value to monitor open surface water. Several studies 
(Table 4) based on Landsat observations created global databases of the area of rivers (Global River Widths 
from Landsat -GRWL; Allen & Pavelsky, 2018) and surface water (Pekel et al., 2016; Yamazaki et al., 2015) 
which can be used at the basin scale. Based on the decadal-scale monitoring of Landsat missions, the Global 
Surface Water data set (GSW, Pekel et al., 2016) uses 3 million images over 32 years (from 1984 to 2015) at 
a 30 m spatial resolution to derive a monthly record of water presence in classifying each Landsat pixel as 
open water, land, or non-valid observation using an expert system. In the Amazon basin, GSW estimates of 
surface water extent (permanent and total as the sum of permanent and transitory water bodies) are lower 
than the estimates from other RS-based techniques such as SAR or GIEMS (Figure 6b) and comparison of 
GSW with GIEMS-D3 (see further below) found seasonal water bodies in savannas and forest floodplains 
were not detected properly (Aires et al., 2018). Souza et al. (2019) developed another Landsat classification 
to estimate long-term changes in Amazon surface waters revealing the recent increase in areas associated 
with hydropower lakes. Recent satellite missions such as Sentinel 2A/B (since 2015, with 10 m spatial res-
olution at 5–10-day intervals, Pham-Duc et al., 2020) or programs such as the RapidEye (since 2008, 5 m 
spatial resolution and a temporal resolution of 1–5.5 days, Garousi-Nejad et al., 2019) or the PlanetScope 
(CubeSats, since 2014, with 3–5 m spatial resolution and daily revisit time; Cooley et al., 2019) constellations 
might bring new opportunities to study fine scale surface water extent of the Amazon.

In order to take advantage of the complementary strengths of various observations, for instance, the low 
resolution but long-term estimates of passive microwave versus the high resolution but limited in time 
observations from SAR, a downscaling methodology combining both estimates have been developed to 
retrieve monthly central Amazon at ∼500 m spatial for the 1993–2007 period (Aires et al., 2013). Several 
other studies based on downscaling approaches using a floodability index provide high resolution maps of 
surface water extent over the Amazon, such as GIEMS-D15 (Fluet-Chouinard et al., 2015; ∼500 m spatial 
resolution and its 1-km adaptation as in Reis et al., 2019) and GIEMS-D3 (Aires et al., 2017, 90 m). Similarly, 
Parrens et al. (2019) proposed a downscaling methodology based on multi-source RS data (SMOS SWAF; 
combined with a global DEM and GSW data set) to map Amazon inland water under vegetation at ∼1 km 
spatial resolution every 3 days for 2010–2016 (named SWAF-HR). Figure 6c shows maps of maximum sur-
face water extent from GIEMS-D15 and SWAF-HR for three regions, including interfluvial wetlands. Such 
observations are valuable to wetland conservation decisions, as the timing and duration of inundation often 
determine ecological characteristics and the provision of ecosystem services. For instance, Reis et al. (2019) 
classified Amazon wetlands according to the timing and duration (months per year) of inundation detected 
with GIEMS-D15, and their link to precipitation regimes. It revealed that permanently inundated wetlands 
account for the largest area and are mainly floodplains located in the lowlands of the catchment. Seasonally 
inundated wetlands varied in the duration of inundation reflecting different rainfall and hydrological re-
gimes. These regional differences in inundation characteristics are important to conservation planning and 
wetland management especially in the context of anthropogenic interventions such as dams and waterway 
construction.

Finally, new RS techniques and methodologies are continuing to be developed and can help monitor the 
surface water extent of the Amazon basin. The potential for Global Navigation Satellite System-Reflectom-
etry (GNSS-R) has been explored (Chew & Small, 2020; Jensen et al., 2018; Rodriguez-Alvarez et al., 2019) 
using Cyclone GNSS (CYGNSS) constellation of GNSS-R satellites and a simple forward model that demon-
strates how surface reflectivity measured by CYGNSS can capture flooding dynamic over the region.

In Section 5.1 “Methods for Measuring Area” of Alsdorf et al. (2007), the authors suggested that "Perhaps 
the best opportunity in the next few years for routine measurements of inundated area will result from the 
Japan Aerospace Exploration Agency's ALOS mission". More than a decade later, it is worth noting that the 
extent and variability of surface water of the Amazon are still one of the most studied variables of the hy-
drological cycle, but that studies using ALOS observations remain recent and limited. Further studies and 
new observations are required to fully characterize Amazon surface water extent and the processes that 
drive the patterns and dynamics. In particular, polarimetric and interferometric L-band SAR data from the 
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forthcoming NASA/ISRO SAR mission and the Ka-band Radar Interferometer (KaRIn) swath observations 
from the forthcoming SWOT mission will be capable of enhanced monitoring and comprehensive survey of 
large-scale surface water extent and dynamics of the Amazon.

4.3. Floodplain and River Channels Topography

Along the Amazon River, the floodplain has many lakes and channels that vary in extent, depth, and con-
nectivity (Hess et al., 2015; Rudorff et al., 2014b; Trigg et al., 2012). This complex topography affects the 
water flow through river-floodplain water exchanges, which in turn, are important for carbon, nutrients, 
and sediment fluxes (Melack et al.,  2009; Walcker et al.,  2021). Accurate topographic information is es-
sential for the characterization of the surface water in the floodplain, particularly for hydraulic numerical 
modeling (Baugh et al., 2013; Paiva, Buarque, et al., 2013; Rudorff et al., 2014a). Furthermore, topographic 
mapping is required for understanding the morphology and morphodynamics of the river channels and 
lakes. The SRTM DEM is a global topographic data set with 30–90 m of spatial resolution and accuracy of 
8 m (Rodríguez et al., 2006) generated from C-band interferometry (Farr et al., 2007) and has been widely 
used in hydraulic simulations and geomorphic characterization of the Amazon floodplains (Figure  7a). 
However, the data are affected by vegetation cover and have errors such as absolute bias, speckle noise 
(granular aspect in the image due to the random presence of pixels with extreme values), and stripe noise 
(Rodríguez et al., 2006). It is also not capable of describing bathymetry of inland water bodies as it observed 
surface water elevation only once.

The application of topographic data, such as SRTM DEM, together with radar (e.g., RADAM, JERS-1) and 
optical (e.g., Landsat) images allowed the geomorphological characterization of floodplains and river chan-
nels of the Amazon basin. Sippel et al. (1992) described lakes of different shapes based on RADAM maps 
along different sections of the main stem Solimoes/Amazonas rivers and their major tributaries. Latrubesse 
and Franzinelli  (2002) and Mertes et al.  (1996), described geomorphologically distinct regions along the 
upper and middle reach of the Amazon River. Scroll-bar topography, which forms long and narrow lakes, 
and oxbow lakes, located in abandoned river meanders, are dominant in the upstream reaches (Mertes 
et al., 1996; Figure 7). Downstream reaches are characterized by large, shallow lakes formed by the over-
bank deposition of fine sediments in a very flat floodplain topography (Latrubesse & Franzinelli,  2002; 
Mertes et al., 1996; Figure 7). Active deposition of sediments across the floodplains was also identified and 
described by Lewin et al. (2017), Park and Latrubesse (2019), and Rudorff et al. (2018) using RS data. Ahmed 
et al. (2019), Constantine et al. (2014), Peixoto et al. (2009), Rozo et al. (2012), and Sylvester et al. (2019) 
characterized the channel's migration of rivers and floodplains. Sediment supplies play an important role in 
the evolution of Amazonian rivers, as the rivers with high sediment loads experience faster meander migra-
tion and higher cutoff rates than rivers with lower sediment loads (Constantine et al., 2014). Large and rap-
id geomorphological changes can also arise due to anthropogenic pressures such as livestock and channel 
irrigation. These may be the causes of the progressive erosion of a channel along the lower Amazon River 
that captured almost all discharge from the lower Araguari River, which previously had flowed directly to 
the Atlantic Ocean (dos Santos et al., 2018; described in more details in Section 6.4).

In order to improve the applicability of SRTM data to hydraulic modeling of the Amazon, various techniques 
were developed such as the removal of the vegetation height (Baugh et al., 2013; O'Loughlin et al., 2016; Pai-
va, Buarque, et al., 2013; Paiva, Collischonn, & Tucci, 2011; Pinel et al., 2015; Rudorff et al., 2014a; Yamaza-
ki et  al.,  2017), the interferometric bias (Pinel et  al.,  2015; Rudorff et  al.,  2014a), as well as smoothing 
and pit removal (Yamazaki, Baugh, et al., 2012). Despite the better topographic representation achieved by 
these methods, topographic information below the water surface cannot be recovered from SRTM. Also, the 
SRTM data set relies on one only overpass in February 2000. Therefore, some processes, such as infilling and 
drainage of the floodplain, may not be well represented in the numerical models. River bathymetry is also 
key information that is not systematically resolved. Recently Brêda et al. (2019) demonstrated the potential 
of assimilating satellite altimetry data into hydraulic models for its estimation. To estimate the topography 
in seasonally flooded areas, Bonnet et al.  (2008) combined SWE with flood extents derived from JERS-1 
images to estimate a bathymetric DEM of the Curuai floodplain. Park et al. (2020) related water depth and 
a flood frequency map, derived from surface water mapping, to infer the Curuai bathymetry. Fassoni-An-
drade, Paiva, Rudorff, et al. (2020) developed and applied a systematic method to estimate floodplain topog-
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raphy using a combination of flood frequency maps derived from optical RS and ancillary in situ water level 
data archives (Figure 7d). This was the first systematic and extensive mapping of a seasonally flooded area 
in a wetland, showing floodplain depths less than 5 m (15 m) in low (high) water, and that active storage 
volume in the open-water floodplain varies 104.3 km3 on average each year. This data set was complement-
ed over permanently flooded regions by a compilation of digitized nautical charts from the Brazilian Navy. 
Recently, Fassoni-Andrade et al. (2021) applied this methodology to the Amazon estuary showing the mor-
phology of the intertidal floodplain.

The bathymetric information in permanently flooded areas relies on in situ field surveys. Among the studies 
cited here, only a few obtained in situ bathymetric information in floodplains (Bonnet et al., 2008; Fricke 
et al., 2019; Pinel et al., 2015) and rivers (Wilson et al., 2007). Additional studies with detailed bathymetry 
include Lesack and Melack (1995), Barbosa et al. (2006), Panosso et al. (1995), and Trigg et al. (2012). As 

Figure 7. (a) Shuttle radar topography mission digital elevation model in central Amazon. (b) Oxbow lakes in Juruá River (Sentinel-2, October of 2020). 
(c) Channel width in the floodplain (adapted from Trigg et al., 2012). (d) Topography elevation of the floodplain channels and lakes (adapted from Fassoni-
Andrade, Paiva, Rudorff, et al., 2020).
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part of the first hydrological budget of an Amazon floodplain lake, Lesack and Melack  (1995) surveyed 
the lake's bathymetry, which was subsequently used in the hydrological model of Ji et al. (2019). Panosso 
et al. (1995) conducted a bathymetric survey of Lake Batata, located near the confluence of the Trombetas 
River and the Amazon River. This lake received tailings from bauxite processing and the estimate was used 
for conservation and recovery studies. Barbosa et al. (2006) conducted an extensive bathymetric survey of 
the Lake Grande do Curuai floodplain, in the eastern Amazon basin. The bathymetry was used to estimate 
volume, in hydraulic simulation (Rudorff et al., 2014a) and topographic assessment (Fassoni-Andrade, Pai-
va, & Fleischmann, 2020). Trigg et al. (2012) illustrated the first systematic characterization of floodplain 
channels in central Amazon based on Landsat imagery and field survey (Figure 7c). Floodplain channel 
widths vary considerably (10–1,000 m), and channel depths are related to the local amplitude of the Ama-
zon River flood wave (∼10 m), and deeper when subject to local runoff.

Many advances have been made to characterize the topography of rivers and floodplains using RS tech-
niques, among the promising prospects for new DEMs (e.g., The L-band reduces the systematic positive 
bias of vegetation due to its ability of penetrating the canopy. Images from the NISAR mission, a bi-band 
SAR satellite to be launched in 2022 with global coverage and revisiting periods of 12 days will improve 
the availability of L-band radar data. The SWOT mission will simultaneously measure the SWE and water 
extent, opening up new opportunities to create and improve new techniques to estimate river and floodplain 
topography. New unexplored data from ICESat-2 satellite (launched in 2018) could be useful for topography 
estimation and validation.

4.4. Water Quality: Sediments, Chlorophyll, and Colored Dissolved Organic Matter

According to their physical and chemical water characteristics, rivers of the Amazon basin are classified 
into three types: white, black, and clear-waters rivers (Junk et al., 2011; Sioli, 1956). Nutrient-rich white-
water rivers, such as Madeira and Solimões rivers, which account for 98% of Amazon River's sediment 
discharge to the Atlantic Ocean are dominated by inorganic sediments mainly originated from the Andes 
(Almeida et al., 2015; Meade, 1994). Blackwater rivers (e.g., Negro River; Figure 8a) are rich in dissolved 
organic matter derived from podzolic soils (Bouchez et al., 2011; Marinho et al., 2020). Clear-water rivers 
(e.g., Tapajós River; Figure  8b) are characterized by nutrient-poor, low sediment, and dissolved organic 
matter concentration (Junk et al., 2015). The water-type diversity and the pathways throughout the Amazon 
floodplain have significant implications for floodplain lakes and contribute to their high biodiversity (Junk 
et al., 2011; Thom et al., 2020).

A feasible way to monitor the aquatic system's biogeochemical properties and water paths between the 
rivers and floodplain lakes is through satellite RS. The interaction between electromagnetic radiation and 
water bodies, described by radiative transfer theory (Mobley, 1994), allows the development and calibration 
of algorithms for estimating optically active constituents (OACs: Total Suspended Sediments -TSS; Phyto-
plankton pigments such as Chlorophyll-a (Chl-a) and Phycocyanin; and Colored Dissolved Organic Matter 
[CDOM]) in the water bodies. These OACs influence the underwater light field and, therefore, the inherent 
(e.g., absorption and backscattering coefficient) and apparent optical properties (e.g., Remote Sensing Re-
flectance–Rrs) of the water bodies.

There are significant challenges applying RS to the monitoring of Amazon basin aquatic ecosystems: (a) 
frequent cloud cover makes it difficult to acquire images, (b)) the optical complexity of the waters that flow 
throughout the basin, characterized by high variability in the concentration of the OACs, (c) the lack of sen-
sors with high radiometric, spectral, spatial resolution, and signal-to-noise ratio to detect the small changes 
in upwelling radiance from the water column, and (d) the difficulty of using RS in narrow rivers and small 
lakes. These challenges have existed since the beginning of RS applications to study Amazonian aquatic 
ecosystems in the early 1980s when the studies were focused on calibration/validation of algorithms based 
on in situ data. These methods were based mostly on empirical approaches (Bayley & Moreira, 1978; Brad-
ley, 1980; Mertes et al., 1993), with acceptable accuracy limited in time and space to the data set for which the 
algorithm was developed (Matthews, 2011; Odermatt et al., 2012). In the last decade, efforts have been made 
to adapt ocean color protocols (Mueller et al., 2003) to acquire inherent optical properties (IOPs) of the Am-
azonian waters (de Carvalho et al., 2015; Costa et al., 2013; Jorge et al., 2017; Maciel, Barbosa, et al., 2020; 
Pinet et al., 2017; Valerio et al., 2018), allowing for the development of semi-analytical algorithms (SAA). As 
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the apparent optical properties (AOPs) are proportional to the IOPs, SAA uses an inversion process based on 
radiative transfer theory to obtain IOPs from the AOPs. Once the IOPs are known, they are used to retrieve 
the OAC concentrations. Therefore, SAA algorithms better identify each constituent contribution, provid-
ing more comprehensive temporal and spatial coverage (Dekker, 1993; Novoa et al., 2017).

The flourishing of satellite RS in the second decade of the 21st century is due to two crucial technological 
advances. First, a new generation of sensors was better designed to study complex aquatic environments, 
with improved spectral and radiometric resolution (Landsat-8, Sentinel-2, and CBERS-04A). Second, the 
unprecedented increase in computing performance and data storage has improved image processing ca-
pability. However, the low radiometric resolution provided by sensors onboard earlier Landsat (Landsat-5 

Figure 8. (a) Examples of white and black, and (b) Clear waters. (c) Examples of spectra of three water types (Source: Labisa; http://www.dpi.inpe.br/labisa/): 
white water - Amazon River (TSS of 288.5 mg L−1; Chl-a of 2.0 μg L−1; aCDOM in 440 nm of 1.3 m−1); clear water—Tapajós River (TSS 5.7 mg L−1; Chl-a 
of 10.8 μg L−1; aCDOM in 440 nm of 1.2 m−1); black water - Bua-Bua Lake (TSS 7.4 mg L−1; Chl-a of 3.6 μg L−1; aCDOM in 440 nm of 2.9 m−1). (d) Spatial 
variability of suspended sediments in the central Amazon (adapted from Fassoni-Andrade & Paiva, 2019). (e) Suspended sediment time-series in situ (observed) 
and satellite-based Moderate Resolution Imaging Spectroradiometer (estimated) obtained from the HYBAM monitoring system (http://hidrosat.ana.gov.br).
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and Landsat-7) satellites has not prevented the development of studies taking advantage of the substantial 
temporal database available (1972 to now) as reported in Lobo et al. (2015) and Montanher et al. (2018).

In preparation for new sensors, spectral behavior studies of Amazon water types among a wide range of 
OAC concentrations have been done (Barbosa, 2005; Nobrega, 2002; Rudorff, 2006). Those spectra were or-
ganized into a spectral library linked to OACs data to create reference spectra for water types classification 
(Lobo et al., 2012). The spectral library was used as input to a Spectral Angle Mapper algorithm for deriving 
water type maps from Hyperion and Medium Resolution Imaging Spectrometer (MERIS) images acquired 
simultaneously with field campaigns, with reasonable accuracies (48% and 67% for Hyperion and MER-
IS respectively). This updated library was applied to classify Brazilian water types (da Silva et al., 2020). 
In proof of concept studies, MODIS images from AQUA and TERRA satellites were successfully used for 
estimating Chl-a (Novo et al., 2006) and TSS (Espinoza-Villar et al., 2018; Fassoni-Andrade & Paiva, 2019; 
Marinho et al., 2018; Martinez et al., 2009) in Amazonian water bodies with a size compatible with the 
spatial resolution of the sensors.

Chl-a estimation, a proxy for phytoplankton abundance, remains challenging in the Amazon floodplain lakes 
due to high TSS masking chl-a spectral features (Lee et al., 2016) at some times (Barbosa et al., 2009, 2015; 
Bourgoin et al., 2007; Ferreira et al., 2013; Maciel et al., 2019). A spectral mixture algorithm was applied 
to overcome this problem in Curuai lake floodplain (Novo et al., 2006; Rudorff et al., 2006), and higher 
chlorophyll concentrations were observed in low water periods (November and December), as a result of 
lakes enriched by dissolved nutrients in less turbid waters (Novo et al., 2006). However, the empirical nature 
of those algorithms prevents their wide application. Therefore, new approaches have been investigated, 
including the use of semi-analytical algorithms (Flores Júnior, 2019). CDOM retrieval based on satellite 
imagery is scarce in Amazon lakes since the isolation of CDOM signature from the water leaving signal is 
complex in turbid waters (Jorge et al., 2021; Kutser et al., 2016). M. P. da Silva et al. (2019) proposed an em-
pirical algorithm for estimating CDOM absorption at 440 nm from Sentinel-2/MSI images. Table 5 presents 
a summary of these studies.

There are many studies on sediment retrieval from satellite data. These studies are mainly focused on 
TSS estimates for rivers (Bernini et al., 2019; Espinoza-Villar et al., 2018; Kilham & Roberts, 2011; Lobo 
et al., 2015; Maciel, Novo, et al., 2020; Maciel et al., 2019; Montanher et al., 2014; Park & Latrubesse, 2014; 
Villar et  al.,  2013; Yepez et  al.,  2018) rather than for Amazon floodplain lakes (Alcântara et  al.,  2009; 
Fassoni-Andrade & Paiva,  2019; Maciel et  al.,  2019; Rudorff et  al.,  2006,  2007). However, most of them 
are based on empirical algorithms, and only recently, some semi-analytical algorithms became available 
(Table 5). The HYBAM observatory provides an example of systematically derived TSS concentration us-
ing empirical algorithms from MODIS at 16 stations (TSS time-series; http://hidrosat.ana.gov.br) in the 
main sediment-contributing rivers, including Amazon-Andean rivers in Peru and Bolivia (Espinoza Villar 
et al., 2012, 2018; Martinez et al., 2009; Villar et al., 2013). Figure 8e is an example of a suspended sediment 
time-series obtained from the HYBAM monitoring system in Amazon River between 1999 and 2017 and 
illustrates substantial variability of TSS concentration, ranging from 25 up to 250 mg L−1.

Montanher et al. (2014) mapped TSS in five Amazonian rivers using multiple regression and observed that 
regional-calibrated algorithms performed better than global algorithms due to changes in the optical prop-
erties of rivers. Park and Latrubesse (2014) also observed that calibrating a separate empirical algorithm for 
low and high-water seasons provided better results for the Amazonian river waters. Marinho et al. (2021) 
calibrated an empirical algorithm using Sentinel −2/MSI red reflectance for retrieving sediment concentra-
tion in the Negro River (<10 mg·L−1), characterized by high colored dissolved organic matter absorption 
(aCDOM >7 m−1 at 440 nm) and very low Rrs signals. Marinho et al. (2020) also showed that the backwater 
effect of the Solimoes River on the Negro River is the main factor contributing to the retention of 55% of the 
sediment load in the Anavilhanas Archipelago due to the low water slope and reduced flow velocity.

High variability in the OACs in floodplain lakes makes algorithm parametrizations difficult. For example, 
in the Curuai floodplain (lower reach of the Amazon River), TSS concentrations can vary from ∼5 mg L−1 
in the high-water season up to 1,000 mg L−1 in the low water season due to sediment resuspension by winds 
(Bourgoin et al., 2007). Despite those issues, recent work provides successful TSS estimates in the flood-
plains of the lower Amazon River (Maciel, Novo, et al., 2020; Maciel et al., 2019).

http://hidrosat.ana.gov.br/
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Study area Sensor name OAC OAC range At Algorithm equation
Validation statistical 

results Reference

Low Amazon MODIS Terra Chl-a 10-120 μgL−1 E   0.0175 fphyChl 3.9E e R2 = 0.76, SE = 19 
μgL−1

Novo et al. (2006)

Mamirauá 
Sustainable 
Development 
Reserve

Sentinel-2 CDOM ∼1–6 m−1 E     2/ 3 6 / 5
cdom 440 4.39 0.59 6.67B B B BE a R2 = 0.75, 

MSE = 0.53 m−1, 
%NMSE = 15.12%

M. P. da Silva 
et al., (2019)

Curuai Lake Sentinel-2 
and 
Landsat-8

TSS and 
TSI

7–43.5 mgL−1 
(TSS)3.4–33.8 
mgL−1 (TSI)

E      ln 9.656 1.672 ln( 550 )OLI rsE TSS R R2 = 0.71, 
MAPE = 16.81%, 

RMSE = 3.54

Maciel et al. (2019)

      OLIln TSI 10.73 2.08 ln 550rsE R R2 = 0.86, 
MAPE = 18.08, 
RMSE = 1.97

      MSIln TSS 8.318 1.336 ln 550rsE R R2 = 0.69, 
MAPE = 16.67, 
RMSE = 3.58

      MSIln TSI 8.447 1.511 ln 550rsE R R2 = 0.81, 
MAPE = 18.62, 

RMSE = 3.1

Curuai Lake WFI 
CBERS–4

TSS 9-28 mgL−1 SAA

 


 


293.930 550
TSS 1.341

1 / 0.345
p

E
p

R2 = 0.75, 
MAPE = 27.08%, 

RMSE = 5.73 
mgL−1

Maciel et al. (2019)

Tapajós River Landsat-5/
TM 
LISS-III

TSS ∼0–120 mgL−1 E
     

0.452.64 2.27surf RedE p TSS R2 = 0.94, 
RMSE = 1.39 

mgL−1

Lobo et al. (2015)

Solimões River MODIS TSS 50–700 mgL−1 E   
1.92

nir redTSS 759.12 /E p p r = 0.89, 
RMSE = 70.23 

mgL−1

Villar et al. (2018)

Orinoco River Landsat-8 TSS ∼25–210 mgL−1 E    nirTSS 1.35512 1000 2.9385E p R2 = 0.94, 
MAPE = 19.8%, 

RMSE = 12.8 
mgL−1

Yepez et al. (2018)

Madeira River MODIS TSS 25–622 mgL−1 E   
2.94

nir redTSS 1020 /E p p r = 0.79 Villar et al. (2013)

Amazon River MODIS TSS 7–130 mgL−1 E TSS Fraction from spectral 
unmixing model

RE = 10 mgL−1 
(estimated)

Kilham & 
Roberts, (2011)

Amazon White 
water rivers

Landsat-5 TSS 0–3561 mgL−1 E Multiple regression R2 = 0.76 Montanher 
et al. (2014)

Madeira River TriOS Ramses 
(In situ)

TSS 0–450 mgL−1 SAA Relationship between 
backscattering coefficient at 

550 nm and TSS

R2 = 0.7345 Bernini et al. (2019)

Amazon white 
water rivers

TriOS Ramses 
(In situ)

TSS 5–620 mgL−1 E   
1.173

860TSS 20.41E p R2 = 0.89 Martinez 
et al. (2015)

Amazon rivers 
and lakes

MODIS Terra 
and Aqua

TSS 0–600 mgL−1 E      


20 7.68 0.31 /red nir red nirTSS exp p p p pE R2 = 0.7, 
RMSE = 75.6 

mgL−1

Fassoni-
Andrade and 
Paiva (2019)

Branco and 
Negro rivers

Sentinel-2 TSS 0.44–22.64 E TSS = 881.4 * Rrs(660) + 2.3 R2 = 0.85 Marinho 
et al. (2021)

Note. OAC range refers to the minimum and maximum values; Algorithm Type (AT) refers to Empirical (E) or Semi-Analytical (SAA). In the algorithm 
equation column, fphy refers to phytoplankton fraction from Linear Mixture Model, Rrs (λ) is the RS reflectance,p (λ) is water reflectance. R2 is the coefficient of 
determination, SE is the Standard Error, MSE is the mean square error, %NMSE is the normalized mean squared error, MAPE is the Mean Absolute Percentage 
Error, RMSE is the root mean square error, PE is the percentage error. For the equations of statistical metrics, the reader is referred to each reference.

Table 5 
OACs Algorithms for the Amazon Basin
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TSS trends have been documented in the Amazon River (Martinez et al., 2009; Montanher et al., 2018) and 
the Madeira River (Latrubesse et al., 2017; Li et al., 2020) that might be related to dam construction (see 
Section 6.4 for details). The seasonal and inter-annual dynamics of suspended sediment at the Amazon 
River estuary were studied using 8-day composite time series (2000–2013) of MODIS Aqua and Terra sat-
ellite continental products (Gensac et al., 2016). TSS concentrations were estimated using a near-infrared 
band algorithm previously developed for turbid water (Martinez et al., 2009). The results provided a better 
understanding of mud bank formation, migration, and coast geomorphology indicating the key role of sat-
ellite data combined with in situ measurements. RS data in Amazon were also used to evaluate siltation 
impacts caused by artisanal gold mining in the Tapajós River basin (Lobo et al., 2015, 2016; see Section 6.4 
for details). Furthermore, Fassoni-Andrade and Paiva (2019) mapped for the first time the spatial-temporal 
pattern of sediment in clear, white, and the black water of the Amazon rivers (Figure 8d). Despite errors 
in the empirical model, temporally filtered reflectance in red and infrared revealed sediment variations in 
rivers and lakes. Therefore, it was possible to characterize hydrological processes, such as backwater effects, 
overbank flow, and sediment resuspension in lakes. It was observed that depression lakes of the middle 
reach receive sediments-rich water by overbank flow during the flood, and resuspension of sediments oc-
curs in the low water period, as previously documented (Bourgoin et al., 2007). In ria lakes, the main water 
source comes from the local basin (surface runoff and local rainfall) with river inflows adding sediment 
during the low water period.

One of the main challenges regarding watercolor RS is identifying and separating each constituent contri-
bution from the water column emerging signal. The high sediment concentrations, which can mask the 
contributions of Chl-a and CDOM, make this challenge especially significant in Amazonian waters (Jorge 
et al., 2021). The semi-analytical approach, which has performed well in other complex waters (Gholizadeh 
et al., 2016; Werdell et al., 2018; Zheng & DiGiacomo, 2017), is an alternative to overcome this challenge. 
However, it depends on sensors with spectral, radiometric, and spatial characteristics suitable for inland 
waters for calibrating high-performance algorithms. Initial applications of this approach in Amazonian 
waters, using Landsat-8/OLI, Sentinel-2/MSI, and Sentinel-3/OLCI data, have shown promising results 
(Bernini et al., 2019; de Carvalho et al., 2015; Jorge et al., 2017; Maciel, Barbosa, et al., 2020). Furthermore, 
hyperspectral sensors missions such as NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE; Wer-
dell et al.,  2019) and recently launched ones such as PRISMA (Giardino et al.,  2020; Niroumand-Jadidi 
et al., 2020) may help to overcome this challenge. Due to the extensive temporal variability in the constit-
uent concentration, a promising approach is to integrate hybrid and semi-analytical algorithms to obtain 
adequate accuracy in a wide range of OACs. To cope with the frequent cloud coverage and obtain data 
compatible with aquatic dynamics, the concomitant use of inter-calibrated sensors data (Landsat-8/OLI, 
Sentinel-2/MSI, Sentinel-3/OLCI, and CBERS-4A/MUX), called the virtual constellation, can be a solution. 
In this sense, two ongoing initiatives are the Brazil Data Cube project (http://brazildatacube.dpi.inpe.br/
portal/explore) and the Harmonized Landsat Sentinel (Claverie et al., 2018), which propose to provide in-
tercalibrated data from different sensors. Moreover, to investigate dynamic processes in aquatic ecosystems, 
high spatiotemporal resolution nanosatellites represent a promising tool for understanding the short-term 
responses of floodplain lakes' biota to hydrological changes (Maciel, Novo, et al., 2020; Nagel et al., 2020).

All the improvements in RS technologies in the last decades have supported more accurate algorithms for 
suspended sediment retrieval in the Amazon. However, as demonstrated in Table 5, Chl-a and CDOM es-
timates are still a challenge in those optically complex waters. Furthermore, the accurate retrieval of Chl-a 
and CDOM is dependent on precise RS data, which demands the inversion of those OACs. In this sense, 
new sensors with the high radiometric and spectral resolution are imperative. Finally, more robust tech-
niques, such as semi-analytical algorithms, machine learning approaches, and cloud computing platforms 
(e.g., Google Earth Engine), can improve water quality RS studies in the Amazon basin.

5. Total Water Storage and Groundwater Storage
Water mass redistribution is a key parameter needed to understand the climate system and its temporal 
variations at monthly to multi-decadal time-scales. Over land, it corresponds to the continuous exchange of 
water masses between surface (i.e., rivers, lakes, wetlands, snow cover, and mountain glaciers) and sub-sur-
face (soil moisture and groundwater) storages, and with the atmosphere and the ocean through rainfall, 

http://brazildatacube.dpi.inpe.br/portal/explore
http://brazildatacube.dpi.inpe.br/portal/explore
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evapotranspiration, and runoff. Total water storage is the sum of the water contained in the different hy-
drological reservoirs. The importance of surface water in the Amazon basin was presented in Section 4. 
Groundwater storage also plays a major role in the hydrology of the Amazon and exerts a large influence on 
climate variability and rainforest ecosystems (Pokhrel et al., 2013). Strong memory effects of the Amazon 
groundwater system propagate climate anomalies over the region for several years (Frappart et al., 2019; 
Miguez-Macho & Fan, 2012; Pfeffer et al., 2014).

The GRACE mission, in operation from March 2002 to June 2017, and the GRACE Follow-On mission 
(GRACE FO), in orbit since May 2018, enable the monitoring of the spatio-temporal changes of Terrestrial 
Water Storage (TWS; Tapley et al., 2004). Its temporal anomaly is derived from GRACE observations which 
measure the very small variations in the Earth's gravity field (Tapley et al., 2004). GRACE-derived TWS 
Anomaly (TWSA) observations, in spite of their coarse spatial resolution of ∼200–300 km, have been widely 
used to analyze the impact of climate variability and global changes on the water masses redistribution over 
land (Tapley et al., 2019), and groundwater storages in combination with external observations (Frappart & 
Ramillien, 2018).

Over the whole Amazon basin, GRACE-derived TWS annual amplitude was found to range from 300 to 
450  mm (Figure  9; Chen et  al.,  2009; Crowley et  al.,  2008; Frappart, Seoane, & Ramillien,  2013; Xavier 
et al., 2010). This range corresponds to twice the annual amplitude of surface water storage of the whole 
basin (Frappart et al., 2012; Ndehedehe & Ferreira, 2020), meaning that the annual amplitude of the subsur-
face storage variations (soil moisture and groundwater) also represents half of the TWS annual amplitude. 
Large variations of this value were observed among the major Amazon sub-basins depending on the extent 
of floodplains (Frappart et al., 2011, 2019; Papa et al., 2013). Rainfall and GRACE-based TWSA were found 
to be highly correlated in the Amazon and its major sub-basins (over 2003–2010), even at interannual time-
scales with Pearson's correlation coefficients generally higher than 0.7 (except in the basins located in the 
Andes) with a time-lag varying from 0 to 3 months (Frappart, Ramillien, & Ronchail, 2013; Ndehedehe & 
Ferreira, 2020). Similar results were obtained between TWSA and river discharges over the same time spans 
(Frappart, Ramillien, & Ronchail, 2013). Good agreement was also observed between TWS and satellite-de-
rived surface water extent (from GIEMS), rainfall, and discharge over various time-span (Papa et al., 2008; 
Prigent et al., 2007, 2012; Tourian et al., 2018). These studies revealed the complexity of water transport 
among the different sub-basins of the Amazon with the presence of hysteresis in the relationship between 
surface water extent and TWSA.

The analysis of the spatio-temporal patterns of TWS changes provided new information on the impact of 
the extreme climate events (exceptional droughts and floods which occurred in 2005, 2010, 2012–2015, 
and 2009, 2012, respectively) on land water storage in the whole Amazon basin or in its major sub-basins 
(Chen et al., 2009, 2010; Espinoza et al., 2013; Ferreira et al., 2018; Frappart, Ramillien, & Ronchail, 2013). 
Examples of maps of difference in TWSA between a given month and its climatological mean are present-
ed in Figures 9a and 9b for May 2009, and October 2010, respectively. These months were chosen as they 
correspond to the extremum of these climate events (droughts of 2005, 2010, and 2015, flood of 2009). This 
information has been revealed to be complementary to what can be obtained using spatialized rainfall and 
in situ water levels and discharges. For instance, the patterns of minimum TWSA during the droughts of 
2005 and 2010 were found to be in good coincidence across the basin with the areas with large fire activity 
(Aragão et al., 2008; Zeng et al., 2008) and of considerable tree mortality (Phillips et al., 2009) as reported 
in Frappart, Ramillien, and Ronchail  (2013). TWSA also helped, jointly with hydrological modeling, to 
characterize the recent extreme droughts which occurred in the Amazon, highlighting the importance of 
the interactions between subsurface and surface water storages to mitigate the deficit in surface reservoirs 
(Chaudhari et al., 2019).

A direct approach to estimate GW storage anomalies is to remove the contribution of the different hydrolog-
ical compartments from GRACE-based TWSA as follows:

    ΔGW ΔTWS ΔSW ΔSM ΔCW ΔSWE (1)

where Δ represents the anomaly of water storage in the different hydrological compartments, SW is the sur-
face water storage, SM is the soil moisture or water contained in the root zone, CW is the water contained in 
the canopy, and SWE is the snow water equivalent. This latter term was neglected in the studies performed 
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in the Amazon basin as no reliable information on this water storage was available. In most cases, water 
from the other compartments (SW and SM) is provided by model outputs and/or in situ measurements. 
For Amazon, it is necessary to accurately take into account the SW component as it represents around 
half of the TWSA (Frappart et al., 2012, 2019). Using external information from hydrological models for 
SW, SM, and CW, groundwater storage anomalies were estimated over 2003–2015, revealing a strong link 

Figure 9. Maps of TWSA during two extreme events (a) The flood in May 2009, and (b) The drought in October 2010. Mean annual changes in groundwater 
storage anomaly - (c) GWSA and (d) associated standard deviation over 2003–2010 (adapted from Frappart et al., 2019). (e) Time series of GRACE-based TWSA 
(km3) over the Amazon basin between 2003 and 2016. The vertical lines show the months of maximum (May 2009) and minimum (October 2010) values.
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between geological properties and GW storage: the largest groundwater storage capacity in Brazil was found 
in regions with the highest permeability of the rock layers (e.g., the Guarani and Alter do Chão aquifers; 
Hu et al., 2017). But in these cases, SW storage was limited to river storage, neglecting the storage in the 
extensive floodplains of the Amazon basin. In order to adequately take into account the contribution of 
SW components, methodologies were developed to estimate SW storage variations from RS observations 
(Frappart et al., 2008, 2012; Ndehedehe & Ferreira, 2020). SW storage anomalies were obtained by combin-
ing surface water extent (generally from GIEMS, see Section 4.2) and altimetry-based time series of water 
levels (see Section 4.1) over rivers and floodplains. Frappart et al. (2012) estimated the monthly variations 
of SW storage at the basin scale during the 2005 drought and found that the amount of water stored in the 
river and floodplains of Amazon during this extreme event was 130 km3 (70%) below its 2003–2007 average, 
representing almost a half of the anomaly of minimum TWS as estimated by GRACE.

Using this newly external information on SW storage variations, along with SM storage estimates from 
hydrological models, GW storage anomalies were first estimated over 2003–2004 in the Negro River Basin, 
one of the largest tributaries to the Amazon basin (Frappart et al., 2011). The spatial pattern of the annual 
amplitude of GW anomalies agrees well with the regional hydrogeological maps and the amplitude are 
consistent with observations of water level at local wells and altimetry-based time series of water levels in 
two adjacent wetlands where the groundwater table reaches the surface during the whole hydrological cycle 
(Frappart et al., 2011).

This approach was then extended to the whole Amazon basin over 2003–2010, using about 1000 ENVISAT 
RA-2 altimetry VSs of surface water elevation (Frappart et al., 2019). SW storage over the entire basin had 
an annual amplitude ranging between 900 and 1,300 km3 (Frappart et al., 2012). GW estimates had good 
agreement with scarce in situ groundwater observations and low-water maps of the GW table (Frappart 
et al., 2008). At basin-scale, the results have realistic spatial patterns when compared to hydrogeological 
maps of Brazil (e.g., porosity maps, aquifer boundaries, GW recharge). The seasonal amplitude of GW was 
estimated to contribute between 20% and 35% of the GRACE-derived TWS amplitude in the Amazon basin(-
Frappart et al., 2019). The impact of the 2005 extreme drought on GW storage was also observed and lasted 
several years (Frappart et al., 2019).

Radar altimetry was used to estimate low-water maps of the GW table in the central part of the Amazon ba-
sin (Frappart et al., 2008). Owing to the connection between surface and groundwater during the low water 
period in the alluvial plains of the central Amazon (54°–70°W, 0°–5°S), annual lower water levels of 593 
altimetry VSs were interpolated to generate yearly maps of groundwater base level (GWBL) between 2003 
and 2009. The results show that GWBL is governed by the surface topography and that several years were 
needed for GWBL to recover from the extreme drought of 2005 (Pfeffer et al., 2014).

The recent launch of the GRACE Follow-On (GRACE-FO) offers an opportunity to extend the monitoring 
of TWS and GWS changes after 2018. Despite a lack of data between October 2017 (end of GRACE opera-
tion) and May 2018 (launch of GRACE-FO), two decades of TWSA will be soon available, allowing analysis 
of the impact of multi-year climatic events such as ENSO on land and ground water storages. The major 
drawbacks of these data are their low spatial (∼200 km) and temporal (1 month) resolutions which are not 
sufficient to study the dynamics of fast hydrological events. To overcome these drawbacks, the GRACE-FO 
payload contains advanced versions of the sensors present on-board GRACE and a novel laser ranging 
interferometer (LRI), measuring the satellite-to-satellite distance in parallel with the K-band radar instru-
ment. The LRI is expected to be 26-times more accurate than the K-band radar instrumentation on-board 
GRACE (Tapley et al., 2019). This better-expected accuracy is likely to improve the quality and the spatial 
resolution of the retrieved TWSA. New approaches based on the use of Kalman filter were developed to 
increase the TWSA temporal resolution to quasi-daily without degrading the spatial resolution (Ramillien 
et al., 2015, 2020).

6. Integrative and Interdisciplinary Studies
RS data have provided breakthrough advances in the understanding of the Amazon's hydrology and associ-
ated aquatic environments. In Sections 2–5, we have presented and discussed scientific advances for individ-
ual components. In this Section, we introduce research agendas that have benefited from the integration of 
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observations from multiple components of the Amazon water cycle. These include the computation of the 
water budget (Section 6.1), application of hydrological models (Section 6.2), understanding of aquatic eco-
systems (Section 6.3), and past and ongoing environmental changes over the Amazon basin (Section 6.4).

6.1. Water Budget

In order to better understand the complex hydrological processes in the Amazon basin, it is necessary to 
monitor each component of the water cycle and to understand how these components link and interact. 
Thus, studying the Amazon basin water budget (WB) requires the use of a large variety of observations, 
especially because the basin includes complex local environments (e.g., floodplains) and processes (e.g., soil 
moisture and canopy transpiration) that are difficult to characterize by satellite observations.

Among the WB literature, the Amazon basin has been one major region among global analyses of the wa-
ter cycle (Munier & Aires, 2018; Pan et al., 2012; Sahoo et al., 2011; Zhang et al., 2018) or the main focus 
of the analysis (Azarderakhsh et al., 2011; Builes-Jaramillo & Poveda, 2018; Moreira et al., 2019; Oliveira 
et al., 2014). Most WB studies used only one satellite product for each water component (Azarderakhsh 
et al., 2011; Builes-Jaramillo & Poveda, 2018; Maeda et al., 2015; Moreira et al., 2019; Oliveira et al., 2014; 
Rodell et al., 2011). The use of a multiplicity of the satellite products for each water component can reduce 
uncertainties, through an approach that is based on observations only (Aires, 2014) or integrating model 
simulations and re-analyses (Pan et al., 2012; Zhang et al., 2018).

Continuous quality improvement and increased use of satellite products, associated with more sophisti-
cated integration techniques, have allowed better characterization of the water cycle. WB analyses have 
been used to (a) directly estimate a missing water component such as ET (Maeda et  al.,  2017; Rodell 
et al., 2011), E R (Azarderakhsh et al., 2011; Oliveira et al., 2014), and terrestrial water storage change E dS 
(Moreira et al., 2019), (b) diagnose the hydrological coherence of a combination of RS-based estimates and 
investigating discrepancies (Builes-Jaramillo & Poveda, 2018; Moreira et al., 2019; Oliveira et al., 2014), and 
(c) to optimize RS-based estimates to obtain a hydrologically coherent water cycle (Munier & Aires, 2018; 
Pan et al., 2012; Pan & Wood, 2006; Pellet et al., 2021; Sahoo et al., 2011). The three main uses of WB closure 
are detailed in the following paragraphs.

When estimating missing water components, the objective can be to investigate seasonal patterns (Azard-
erakhsh et al., 2011; Moreira et al., 2019) and more complex features such as trends and impacts due to 
land use and land cover changes (Oliveira et al., 2014). The studies provide uncertainties for their estimates 
based on the relative uncertainties of the other components (Rodell et al., 2011). When focusing on ET, the 
literature stresses that ET is controlled by both E P and radiation without being limited by one of these two 
(Maeda et al., 2017); but the seasonality remains unclear due to large uncertainty E P . Nevertheless, the in-
direct estimation ET has been used by Rodell et al. (2011) to evaluate model ET outputs over the Tocantins 
basin and the authors concluded that much effort is still required on the ET modeling.

Diagnosing WB coherency by combining RS products is a useful tool to assess the quality of the RS prod-
ucts. For instance, Moreira et al. (2019) demonstrated that the MSWEP and GLEAM data sets reduce the 
WB imbalance. Oliveira et al. (2014) showed that recent versions of the TMPA also improve WB closure 
compared to older versions. Builes-Jaramillo and Poveda (2018) have jointly evaluated the surface and at-
mospheric water balances over the Amazon, and their diagnostic of the discrepancy between various ET 
estimates showed that RS-based ET products balance better the WB than the model and reanalysis outputs. 
As reported in Builes-Jaramillo and Poveda (2018) and Moreira et al. (2019), the WB imbalance relates at 
sub-basin to the drainage area and the climatic conditions (i.e., tropical or mountainous) which impact the 
signal-to-noise ratio of each water component.

Several studies have used the WB closure as a constraint for the optimization of satellite estimates, joint-
ly for each water component. Pan and Wood  (2006) developed an optimization of the satellite products 
using an assimilation scheme within a land surface model at the basin scale. This method has then been 
applied to the Amazon basin (Pan et al., 2012; Sahoo et al., 2011). Zhang et al. (2018) extended this scheme 
to the pixel scale by considering only simulated R. Similarly, Aires  (2014) described several approaches 
to integrate satellite observation (simple weighting, optimal interpolation, post-filtering, and neural net-
works) with the WB closure constraint but without the use of surface or hydrological models to obtain an 
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observational database. Munier and Aires (2018) investigated Amazon hydrology using this framework, and 
Pellet et al. (2021) added inter-basins constraints on the budget closure using river discharges over several 
stations in the basin. This technical framework allows for the optimization of the satellite data sets and can 
be used to develop new tools in hydrology such as the assimilation of GRACE data (Zhang et al., 2018). For 
instance, in Pellet et al. (2021), the spatial patterns of E P , ET and E dS were used to estimate the river discharge 
along the river network.

The estimation of the uncertainty of each water component is one of the main objectives of a WB analysis. 
Such characterizations are generally component- and site-specific. For instance, Moreira et al. (2019) ex-
tensively evaluated the satellite estimate uncertainty of E P and ET using in situ data (i.e., 300 precipitation 
gauges and fourteen eddy-covariance monitoring sites), however, this approach is limited due to the spar-
sity of the observation network. Sahoo et al. (2011) used the distance to non-satellite estimate while Zhang 
et al. (2018) and Pellet et al. (2021) used the spread of the satellite as a proxy for uncertainty. Azarderakhsh 
et al. (2011) or Munier and Aires (2018) used a literature review based on RS expertize to quantify the uncer-
tainties of the satellite products. Studies generally assume a value of 5%–10% of error for E R while E dS errors 
from GRACE are often computed following the specifications for leakage and measurement covariance 
errors (Rodell et al., 2004). All the studies agree on the relatively high contribution of the E P estimate in the 
total WB imbalance (∼40%). Moreira et al. (2019) and Oliveira et al. (2014) found a positive bias E P when 
comparing them to in situ data, but all the integration approaches (Pan et al., 2012; Pellet et al., 2021; Sahoo 
et al., 2011) result in an increased E P estimate. Furthermore, Moreira et al. (2019) considered that E dS is the 
second contributor to the WB imbalance (∼25%) while Sahoo et al. (2011) and Pellet et al. (2021) found a 
higher contribution from ET (∼30%). All the optimization strategies have shown that the WB can be bal-
anced within the range of the RS-based uncertainties.

Figure 10a represents the climatology of the four water components in three basins and using several data 
sets for each water component. The three basins are: northern Negro catchment upstream of the Serrinha 
station, the central basin upstream of the Manacapuru station (including the drainage area upstream of the 

Figure 10. (a) Seasonal climatology of all the water components: precipitation (E P ), evapotranspiration (ET), water storage change (E dS ), and discharge measured 
at in situ gauges (E R ) described by one or multiple data sets. (b) Probability Density Function (PDF) of the resulting WB imbalances are shown at the sub-basin 
scale (right). PDF provides the bias and variance of the imbalance.
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Tabatinga station), and the southern basin upstream of the Fazenda (Fz) Vista Alegre station (including 
the drainage area upstream of Porto-Velho station). The climatological season (i.e., annual cycle) of all the 
water components is represented in mm/month. All satellite products have bias and uncertainties, but this 
multi-component analysis can isolate the spatial patterns over the Amazon basin. For instance, the annual 
cycles of the WB differ on the northern and southern basins. As reported in the literature (Espinoza, Sörens-
son, et al., 2019; Marengo, 2005), over southern basin, E P is driven by the monsoon with a peak in January 
and has larger seasonal variations (e.g., min-max range) and lower annual average than on the northern ba-
sin, where E P peaks in May. The E P seasonality drives E R over all basins (north and south) with a time-lag of 1–2 
months. Over the central-western basin, E R can be higher than E P for a particular month, and the P-R peak is 
about 4 months related to the runoff and river discharge travel times inside the basin (Sorribas et al., 2020). 

E dS is in phase with E P in the southern basin, but shows a particular season over the Negro and Branco basins: 
E dS is equal to zero during the dry season and a linear transition exists between maximum and minimum. 

Over these basins, E dS become negative while E R was increasing, and reached its maximum 2 months later. 
This illustrates the effect of water storage in floodplain before releasing it into the river. ET seasonal varia-
tion is weaker but the ET peak seems to be in phase with E P over the southern basin arguing for a water-lim-
ited behavior while the ET peak follows the E P minimum month in the northern basin of an energy-limited 
system (Maeda et al., 2017). In Pellet et al. (2021), the correction ET based on the closure of the water cycle 
enhances the water limitation regime over the central Amazon basin and the energy limitation over the 
northern Amazon. In the south, during dry months (JJA), ET is higher than E P , and water that evaporates is 
provided by the soil storage which continues to lose water until November. For this season, the role of ET 
on the water cycle is relatively more important in the dry season than in the rainy season (Marengo, 2005).

To investigate the overall WB imbalance related to the bias and uncertainty of all the water components, 
Figure 10b shows the Probability Density Function (PDF) of these imbalances at sub-basins scale. Spatially, 
there is a gradient in the mean of the PDF between the western and southern sub-basins. Western sub-ba-
sins have a lack of water (negative bias in the PDF), while southern sub-basins have an excess of water (pos-
itive bias). This gradient was reported by Builes-Jaramillo and Poveda (2018). Furthermore, the variance of 
the WB imbalance increases from south to north with the annual mean of P suggesting that a large part of 
the imbalance is due to E P (Moreira et al., 2019; Pellet et al., 2021). The optimization strategy based on the 
closure of the WB leads to a bigger correction of the water component over western and central sub-basins 
(Pellet et al., 2021).

The remaining precipitation uncertainties of the globally calibrated satellite products are mainly due to the 
increase of the precipitation measurement errors by satellite products during the rainy season, and the lack 
of in situ gauges used in calibration (Moreira et al., 2019). The Amazon hydrology could benefit from the 
use of a dedicated network of precipitation gauges such as HYBAM Observatory Precipitation (Espinoza 
Villar, Ronchail, et al., 2009; Guimberteau et al., 2012) to obtain a regionally-calibrated satellite product for 
precipitation. Its gauges density over the Amazon basin is higher than the global gridded rainfall data set 
generally used to calibrate satellite products (Guimberteau et al., 2012).

Estimating ET in the Amazon basin remains a challenge (see Section 3). In Figure 10, the use of different ET 
data sets can lead to a difference of 30–50 mm/month which represents up to 50% of the ET value. Following 
Moreira et al. (2019), the establishment of generic methods for estimating uncertainties is of importance for 
improving our understanding of the terrestrial water cycle. As for E P , one source of the improvement will 
be the extensive use and increase of an eddy covariance network to better understand the uncertainties in 
ET models.

One technical improvement in the WB-based optimization approach might come with the spatial resolution 
of the analysis. WB analysis has been mostly done at the basin scale over the basin (Munier & Aires, 2018; 
Sahoo et al., 2011) even if several studies have been conducted in sub-basins defined by river discharge sta-
tions (Azarderakhsh et al., 2011; Pellet et al., 2021). Using topography information, it should be possible to 
consider the runoff over land and downscale the satellite products while closing the WB at a pixel level. The 
satellite data sets could even be downscaled temporally to obtain a better time resolution.

As discussed in Section  5, attempts have been made to decompose the TWS from GRACE into its sur-
face (Frappart et al., 2012; Papa et al., 2013) and groundwater (Frappart et al., 2019) components. Such 
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decomposition could also be attempted within a full terrestrial WB analysis, especially when reliable soil 
moisture satellite estimates over the Amazon will become available. As mentioned in Section 4, long-term 
surface water data sets would also be necessary (Aires et al., 2017; Parrens et al., 2019; Prigent et al., 2020).

The GRACE-FO mission launched in 2018, the extension of the TRMM data record with the GPM mission, 
and the launch of the SWOT mission will provide a comprehensive set of new observations. The continuity 
of these satellite missions monitoring the water components is mandatory to improve our understanding of 
spatial hydrology patterns through more precise WB analyses and assess potential long-term trends.

6.2. Modeling the Amazon Water Cycle and Its Wetlands

Hydrologic and hydraulic models represent the water cycle storages and fluxes through a set of mathemat-
ical equations. Such process-based models are suitable tools to understand Amazon hydrological process-
es such as river-floodplain water exchange and groundwater-surface water interactions (Miguez-Macho 
& Fan, 2012; Paiva, Buarque, et al., 2013) and past floods and droughts (Correa et al., 2017), to estimate 
variables in ungauged regions (e.g., distributed river discharge for the last century; Wongchuig et al., 2019), 
and to perform scenarios of hydrological alteration due to deforestation, flow regulation by reservoirs, and 
climate change (Arias et al., 2020; Guimberteau et al., 2017; Júnior et al., 2015; Lima et al., 2014; Mohor 
et al., 2015; Pokhrel et al., 2014; Pontes et al., 2019; Sorribas et al., 2016; Zulkafli et al., 2016).

During the last decades, many models have been applied in the Amazon at different scales, from reach 
(i.e., more detailed studies addressing a few kilometers long river-floodplain area) to the whole basin scale. 
Because of the basin's remoteness and vast dimensions, RS data sets are usually adopted as either forcing 
(e.g., precipitation), a priori information to estimate parameter values (e.g., topographic data), validation, or 
calibration/assimilation data (e.g., discharge, river water levels). A major distinction can be made between 
(a) hydrological models that simulate vertical processes as evapotranspiration, soil water infiltration, and 
runoff generation mechanisms and (b) hydraulic models of surface waters, which represent flow propaga-
tion along rivers and floodplains with physically-based equations and allow the computation of variables 
such as surface water elevation and slope, river discharge, and surface water extent and storage sizes the 
differences between the two approaches.

The first generation of models in the Amazon involved the development of large-scale hydrological models, 
starting with the studies by Vörösmarty et al. (1989), Costa and Foley (1997), and Coe et al. (2002). With the 
advent of RS data sets and higher computational capacity, several models have been developed, improving 
the physical representation of hydrological processes, increasing the model spatial resolution, and moving 
from monthly to daily estimates (Beighley et al., 2009; Coe et al., 2008; Luo et al., 2017; Miguez-Macho & 
Fan, 2012; Paiva, Buarque, et al., 2013). These models usually adopt the following RS-based input data: 
precipitation with the TMPA product (Collischonn et al., 2008; Getirana et al., 2012; Zubieta et al., 2015), 
and more recently GPM-IMERG (Zubieta et al., 2017) and MSWEP (Beck, Van Dijk, et al., 2017); landscape 
properties including terrain lengths and slopes, based on DEMs (most studies using SRTM DEM); and land 
use and vegetation maps (global maps as FAO, or regional ones as the Brazilian RadamBrasil soil maps). 
The most common validation data sets from RS are water level from satellite altimetry (Section 4.1), surface 
water extent (Section 4.2), and total water storage (Section 5).

These model applications deepened our comprehension of the water partition between soil, surface water, 
and groundwater, and acted as laboratories to improve global hydrological models, which in turn are funda-
mental elements of Earth System models. The assessment of land surface and global hydrological and hy-
drodynamic models in the Amazon has been a standard procedure in geoscientific model development and 
in model intercomparison projects (Alkama et al., 2010; Decharme et al., 2008; Getirana et al., 2012, 2014; 
Getirana, Peters-Lidard, et al., 2017; Guimberteau et al., 2014, 2017; Pilotto et al., 2015; Towner et al., 2019; 
Yamazaki, Baugh, et al., 2012; Yamazaki et al., 2011; Zulkafli et al., 2013). At the basin scale, the fraction of the 
total water storage corresponding to surface waters was estimated as 56%, 41%, and 27% by Paiva, Buarque, 
et al. (2013), Getirana, Peters-Lidard, et al. (2017); Getirana, Kumar, et al. (2017) and Pokhrel et al. (2013), 
respectively. These values have been compared to RS-based estimates (Frappart et  al.,  2012,  2019; Papa 
et al., 2013). Furthermore, basin-scale average ET estimated as 2.39–3.26 mm/day by an ensemble of land 
surface models (Getirana et al., 2014), and as 2.72 mm/day by Paiva, Buarque, et al. (2013), were slightly 
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lower than values by basin-scale RS (Pacada et al., 2019) and an in situ eddy-covariance networks (Costa 
et al., 2010), which estimated values of 3.11–3.58 mm/day across a gradient from southern dry to equatorial 
wet Amazon forests. The role of soil water storage to sustain dry season ET in the Amazon was shown by 
modeling experiments at local (Fang et al., 2017) and basin scale (Getirana et al., 2014). Some studies ad-
dressed the role of groundwater and soil storage on the water balance, and the importance of its representa-
tion into hydrological models. Applications at headwater basins showed the predominance of groundwater 
on headwater water storage (Cuartas et al., 2012; Niu et al., 2017), in agreement with in situ monitoring 
studies (Hodnett et al., 1997). Miguez-Macho and Fan (2012) suggested the same pattern at the whole basin 
scale. Their model also indicated important two-way feedback between floodwater and groundwater, and 
the existence of large areas not subject to surface flooding across the basin, but where a high water table 
level would be responsible for keeping high soil water content year-round. The simulation of multiple soil 
layers in the ORCHIDEE land surface model, in contrast to a simple 2-layer “bucket” model, was also shown 
to improve the representation of the soil water dynamics and the total water storage in the Amazon, espe-
cially for the drier regions in the southern sub-basins (Guimberteau et al., 2014).

Among hydraulic models of surface waters, a pioneer study by Wilson et al. (2007) is one of the first hydrau-
lic modeling experiments performed over large domains, which later prompted the development of many 
global hydrodynamic model applications (Bates et al., 2018). The authors applied the LISFLOOD-FP model 
to a 260 km reach of the Solimões River and estimated the river-floodplain water exchange as at least 40% of 
the river volume in that reach. For a relatively different reach in the Central Amazon (from São Paulo de Ol-
ivença to Óbidos), Richey et al. (1989) estimated this ratio as 30% based on a simpler routing method, while 
Sorribas et al. (2020) estimated a value of 40% for the Amazon system, based on large scale hydraulic mod-
eling (see below). The authors also found the model accuracy to be higher for the high water period, as has 
been also reported by recent studies (Pinel et al., 2019; Rudorff et al., 2014a), likely due to misrepresentation 
of the terrain heterogeneities and small disconnected lakes during the dry season. Furthermore, since the 
river-floodplain water exchange often occurs through floodplain channels and breached levees that hinder 
its conceptualization as a simple overbanking flow (Trigg et al., 2012), hydraulic models have the challenge 
to estimate effective channel parameters that represent these complex processes (Fleischmann et al., 2018; 
Trigg et al., 2009). Recent efforts have been addressing this topic, considering for instance the incorporation 
into models of different cross section shapes (Neal et al., 2015) as well as assimilation of satellite altimetry 
to infer bathymetry (Brêda et al., 2019; Garambois et al., 2020; Pujol et al., 2020). Other applications at reach 
or floodplain lake scale were developed by Bonnet et al. (2008, 2017), Ji et al. (2019), Trigg et al. (2009), and 
Wilson et al. (2007), and addressed the relative role of local runoff and river inflow as the main water input, 
ranging from local runoff-dominated systems in the Lago Calado (Ji et al., 2019; Lesack & Melack, 1995) 
to river-dominated ones in the Curuai (Figure 11d) and Janauacá systems (Bonnet et al., 2008, 2017; Pinel 
et al., 2019; Rudorff et al., 2014a, 2014b), through either channelized or diffuse flow patterns. In the case 
of Curuai and Janauacá, the Amazon or Solimões river was responsible for 82% and 93% of the floodplain 
annual influxes, respectively (Bonnet et al., 2017; Rudorff et al., 2014b).

The first basin-scale inundation model was introduced by Coe et al. (2002), and numerous hydrologic mod-
els were developed and coupled to inundation schemes afterward (Coe et al., 2008; Getirana et al., 2012; 
Getirana, Peters-Lidard, et al., 2017; Hoch et al., 2016; Luo et al., 2017; Miguez-Macho & Fan, 2012; Paiva, 
Buarque, et al., 2013; Yamazaki, Lee, et al., 2012; Yamazaki et al., 2011). The models featured varying de-
grees of physics representation, with the simulation of floodplains moving from simple storage components 
to dynamic hydraulic schemes, which can represent relevant processes such as backwater effects. For hy-
draulic models, additional RS-based information required as input data includes river channel geometry as 
width, and floodplain topography from DEMs (mainly SRTM and its derivatives with vegetation removal 
to represent the bare terrain; see Baugh et al. (2013), O'Loughlin et al. (2016), Yamazaki et al. (2019) and 
Fassoni-Andrade, Paiva, Rudorff, et al. (2020). For local scale hydraulic models, additional parameterization 
usually involves the definition of floodplain roughness based on land cover maps (Pinel et al., 2019; Rudorff 
et al., 2014a). RS validation data sets are typically surface water elevation and surface water extent (Hall 
et al., 2011; Schumann et al., 2009).

These hydraulic model applications revealed the combination of backwater effects and floodplain storage to 
drive the flood wave behavior along Amazon rivers (Paiva, Buarque, et al., 2013), causing strong attenuation 
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Figure 11. Recent applications of hydrologic and hydraulic models in the Amazon basin have added insights into the role of river floodplains on (a) 
Hydrograph shape (Fleischmann et al., 2016) and (c) In-stream travel times (Sorribas et al., 2020), and provided the estimation of (b) Long-term discharge 
climatology (Paiva, Buarque, et al., 2013), (c) Long-term water level time series (example for the location of Manaus; Wongchuig et al., 2019), and (d) Floodplain 
water depths (example for the Curuai Lake, 2014 high and low water seasons; Rudorff et al., 2014a).
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and delay up to 2.5 months. Floodplain storage is also responsible for the general negative hydrograph skew-
ness in the main Amazon rivers, with a slower rising and a faster falling limb (Fleischmann et al., 2016, 
Figure 11a). Sorribas et al.  (2020) used particle tracking methods to estimate surface water travel times 
along the Amazon basin as 45 days (median), with 20% of Amazon River waters flowing through flood-
plains (Figure 11c). While basin-scale applications have employed 1D models (longitudinal direction along 
rivers), the necessity of representing the 2D diffuse flow in floodplains, especially during receding waters, 
was highlighted by Alsdorf et al. (2005), who combined interferometry data with a simple continuity-based 
model to show that floodplain storage changes decrease with distance from the main channel. Generally, 
the water level in the river-floodplain system is not horizontal, and the river-floodplain is not homogene-
ously mixed (Alsdorf et al., 2007), as assumed by several 1D models. While a proper characterization of the 
complex river-floodplain interactions with hydraulic models has been done at local scales (Pinel et al., 2019; 
Rudorff et al., 2014a), it is still to be developed for the regional scale—for instance, to be able to infer hy-
perresolution (e.g., 30 m spatial resolution) flooding patterns for the whole central Amazon at weekly to 
monthly resolution. Finally, the full coupling between hydrologic and hydraulic models has been suggested 
to improve the representation of the floodplain-upland interactions, for instance through a more proper 
representation of open water evaporation in flooded areas (Getirana, Kumar, et al., 2017). However, recent 
studies have suggested that this process has a relatively low impact on the total ET estimates because of the 
general energy-limited (and not water-limited) ET in the Amazon (Fleischmann et al., 2020; Paiva, Buarque, 
et al., 2013). A different conclusion is expected for semi-arid wetlands (Fleischmann et al., 2018).

Regional scale validation of inundation models has been done with surface water extent (Getirana 
et al., 2012; Luo et al., 2017; Paiva, Collischonn, et al., 2013; Wilson et al., 2007; Yamazaki et al., 2011) based 
on the products by Hess et al. (2003), GIEMS from Prigent et al. (2007), and more recently with the SWAF 
database (Parrens et al., 2017) (see Section 4.2 for a description of these products). Although the flooding 
seasonal cycle is usually well captured by most models, estimates usually diverge in terms of magnitude 
(Fleischmann et al., 2020), and the fusion between different techniques is likely the optimal solution. How-
ever, more detailed validation experiments, for instance with maps based on SAR data, are needed, although 
many SAR data classifications were already developed for individual Amazon wetlands (Section 4.2). A re-
cent application used ALOS/PALSAR imagery for a local scale model validation in the Janauacá floodplain 
system (Pinel et al., 2019).

Regarding surface water elevation, hydraulic models are typically capable of representing anomalies sat-
isfactorily. Estimates of absolute values, however, are usually less accurate (Fleischmann et al., 2019), al-

Hydrological models Hydraulic models of surface waters

Main simulated process Vertical processes (e.g., evapotranspiration, soil water 
infiltration, and runoff generation mechanisms) and 
groundwater dynamics

River-floodplain interaction (e.g., floodplain storage, 
backwater effects)

Main forcing (boundary conditions) Precipitation River discharge, river water level, and precipitation

Main output variables Water balance, evapotranspiration, soil water, and 
groundwater storage, river discharges

Inundation maps, river-floodplain water depths, 
longitudinal water levels along rivers, river discharges

Typical scientific outcomes Quantification of water balance components, water 
storage partition between surface and subsurface 
reservoirs, evapotranspiration dynamics, impacts of 
human alteration on water balance components (e.g., 
changes in precipitation partition into ET and runoff)

Floodplain water storage and residence time, water travel 
times across river-floodplain systems, rating curves 
(water level-discharge relationships) for operational 
use, impacts of human alteration on flood dynamics

Examples of studies Beighley et al. (2009);, Coe et al. (2002); Costa and 
Foley (1997); Cuartas et al. (2012); Miguez-Macho 
and Fan (2012); Paiva, Buarque, et al. (2013); 
Vörösmarty et al. (1989)

Fleischmann et al. (2020); Garambois et al. (2017); 
Getirana et al. (2012); Miguez-Macho and Fan (2012); 
Paiva, Buarque, et al. (2013); Paris et al. (2016); 
Pinel et al. (2019); Rudorff et al. (2014a); Sorribas 
et al. (2020); Trigg et al. (2009); Wilson et al. (2007); 
Yamazaki, Lee, et al. (2012)

Note. Some examples are provided in both categories since they refer to hydrologic-hydraulic models.

Table 6 
Summary of Main Differences Between Hydrologic and Hydraulic Models of Surface Waters, With Examples of Model Applications in the Amazon Basin
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though good results have been achieved (Wilson et al., 2007). The hundreds of virtual stations available (see 
Section 4.1) have provided breakthrough improvements of modeling systems, especially in terms of distrib-
uted model validation with dozens of virtual stations (Fleischmann et al., 2020; Getirana, Peters-Lidard, 
et al., 2017; Paiva, Buarque, et al., 2013) and recent model calibration and assimilation (Brêda et al., 2019; 
Oliveira et al., 2021). Validation exercises yielded Nash-Sutcliffe coefficients higher than 0.6 for 60% of the 
212 ENVISAT virtual stations assessed by Paiva, Buarque, et al. (2013), and amplitude errors lower than 
0.8 m and absolute bias lower than 2.3 m for most of the stations analyzed by Yamazaki, Lee, et al. (2012). 
The combination of satellite altimetry with a hydraulic model for an ungauged reach of the Xingu River led 
Garambois et al. (2017) to propose the concept of hydraulic visibility through RS data sets, that is, the capa-
bility of current and future satellite altimetry data to properly estimate river hydraulic variables. Altimetry 
data were shown to be relevant for the understanding of the hydraulic functioning of ungauged braided 
reaches in Amazonian rivers, especially along stretches with heterogeneous bed morphology and strong 
downstream control, which have major effects on surface water elevation and slope (Birkett et al., 2002).

The main output variables that have been addressed by hydrologic-hydraulic models are ET, soil water 
storage, river discharge, surface water elevation, and surface water extent. However, other variables are also 
important for an effective understanding of the water cycle and need to be better constrained within mod-
eling systems. For instance, only a few studies have addressed simulated water velocity (Dias et al., 2011; 
Fassoni-Andrade, 2020; Pinel et al., 2019) and flood storage (Fleischmann et al., 2020; Getirana, Kumar, 
et  al.,  2017; Paiva, Buarque, et  al.,  2013) in the Amazon wetlands, which are fundamental variables to 
understand flood dynamics, even though the latter (flood storage) was already estimated by different RS 
methods (see Section 5).

As there are still uncertainties in both models and RS estimates, model calibration, and data assimilation 
(DA) techniques have been developed to improve model predictability, based on the optimal combination/
analysis of these two. Model calibration was performed with satellite altimetry by Getirana et al.  (2013) 
andOliveira et al. (2021), showing the benefits of using such data sets toward model general improvement 
in terms of discharge estimation. In turn, the evaluation of DA techniques (mainly the Kalman Filter-based 
methods) within the Amazon involved many experiments with RS data (e.g., satellite altimetry), from 
reach to regional scale (Brêda et al., 2019; Emery et al., 2018; Garambois et al., 2017; Paiva, Collischonn, 
et al., 2013). These studies showed the applicability of such methods to improve model estimates and rep-
resentation of the water cycle in general. The usefulness of DA schemes for better estimating discharges 
was demonstrated for forecasting (Paiva, Collischonn, et al., 2013), comprehension of past extreme events 
(Wongchuig et al., 2019), and near-real-time discharge estimation (Paris et al., 2016). The study by Wongchu-
ig et al. (2019) was the first to show discharge estimation in a spatially distributed way for the last 100 years 
(Figure 11e), estimating extreme drought and flood events in unrecorded locations. They follow a general 
pattern of the significant trend of increasing drought events in the south and flood events in the western 
and northwestern regions of the Amazon (Callède et al., 2004; Correa et al., 2017; Espinoza Villar, Guyot, 
et al., 2009; Lopes et al., 2016; Molina-Carpio et al., 2017). RS data other than discharge and water levels can 
also be used through DA and could be applied in the Amazon, e.g., soil moisture (Baguis & Roulin, 2017; 
Crowley et al., 2008; Massari et al., 2015); terrestrial water storage change (Khaki et al., 2018, 2019) and 
flooded water extent. Additionally, the forthcoming SWOT mission will provide breakthrough informa-
tion for the hydraulic modeling of the Amazon rivers. Many studies have been discussing the utility of 
the mission to better estimate hydraulic variables in the Amazon, from reach (lower Madeira River; Brêda 
et al., 2019) to the basin scale (Emery et al., 2020; Wongchuig et al., 2020). New frameworks for the incor-
poration of satellite altimetry water levels will set up the development of the next generation of hydraulic 
models for the Amazon, aiming at better representing local processes as water surface heterogeneities that 
occur due to hydraulic controls as channel width reductions (Garambois et al., 2017; Montazem et al., 2019; 
Pujol et al., 2020).

Most model applications in Amazon wetlands focused either on parts of the central Amazon floodplains 
or the whole Amazon basin. The simulation of river floodplains still has some limitations to be accurately 
performed over complex, dynamic river systems as in the Andes foothills, which are associated with mul-
tiple alluvial fans, wetlands disconnected from the main river in terms of surface waters but connected 
through groundwater (e.g., the groundwater-fed backswamp forests; Hamilton et al., 2007), and relatively 
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quick hydrographs, which in turn hamper RS-based monitoring of variables as inundation extent and water 
levels. More advances on the estimation of topography along forested wetlands and adjacent channels are 
necessary, as well as coupled surface-groundwater model techniques. In addition to river floodplains, other 
types of wetlands exist in the Amazon basin, which is often named interfluvial wetlands (Junk et al., 2011). 
They combine endogenous and exogenous flooding processes to different degrees (Bourrel et al., 2009), and 
are more subject to local rainfall and less connected to adjacent rivers (Reis et al., 2019). They are associated 
with varying vegetation and ecosystem types (e.g., savanna, forest, grasslands). While 1D hydraulic models 
have proven satisfactory to simulate flooding along river floodplains (Trigg et al., 2009), interfluvial wetlands 
require a 2D simulation to properly capture the wetland diffuse flow. Fleischmann et al. (2020) provided a 
first model assessment focusing on the Negro interfluvial wetlands, which are associated with neotectonic 
events and savanna environment within the Amazon rainforest (Rossetti et al., 2017), and thus largely differ 
from the central Amazon in terms of flooding, vegetation and soil characteristics. Belger et al. (2011) used a 
time series of Radarsat images and in situ measurements of water level and local rainfall to estimate chang-
es in inundation in an interfluvial wetland in the Negro basin. 1D models were shown to be unrealistic for 
simulating surface water elevation in these areas. Future studies should further address the hydrology of 
these complex wetland systems, including the Llanos de Moxos (Hamilton et al., 2004; Ovando et al., 2018), 
Roraima (Hamilton et al., 2002), and Peruvian (Kvist & Nebel, 2001) interfluvial wetlands, aiming at better 
understanding the hydrological differences between floodplains and interfluvial wetlands, which in turn 
will improve our understanding of the various particular Amazon ecosystems relying on them, and the 
differences in terms of river-wetland connectivity.

The downstream part of the Amazon basin remains relatively unexplored in terms of hydraulic modeling 
and RS. This can be explained by the intricate dynamics of the estuary, which has energetic behavior over a 
broad range of timescales from the intra-daily tides propagating upstream from the Atlantic Ocean through 
the Amazon delta to the seasonal-to-interannual timescales driven by the hydrology of the basin. Moreover, 
tidal effects remain sensible up to about 900 km upstream of the river mouth (Kosuth et al., 2009). One of 
the challenges in the hydraulic continuum of the lower Amazon is the understanding of the relative roles 
of the upstream forcing and of the oceanic influence in shaping the spatial and temporal patterns of varia-
bility of water level, flow velocity, and flooding extent along the course of the estuary. Promising initiatives 
have been made to model this complex estuary, mostly relying on coastal ocean circulation models, either 
in two-dimensional configurations (Gabioux et al., 2005; Gallo & Vinzon, 2005), or more recently through 
full-blown tri-dimensional modeling (Molinas et al., 2020). These studies in particular shed light on the 
distinct behavior of the tidal waves during their upstream propagation in the Amazon estuary. However, to 
date, a comprehensive, high-resolution hydraulic modeling framework embracing the complex geometry 
of the whole hydraulic continuum of the lower Amazon, and accounting for the full range of interactions 
between oceanic and riverine forcing factors, is lacking. This can be explained, at least partly, by the fact 
that the monitoring of water level variability is instrumental in the success of hydraulic modeling of the 
lower Amazon for calibration/validation purposes; however, spaceborne altimetry has been hardly used in 
the Amazon estuary.

Finally, new EO data as SWOT-derived water levels (Biancamaria et al., 2016), channel water widths (Allen & 
Pavelsky, 2018; Yamazaki et al., 2014), floodplain topography (Fassoni-Andrade, Paiva, Rudorff, et al., 2020), 
and soil moisture estimates (SMOS, SMAP), as well as new precipitation data sets (e.g., rainfall estimation 
using soil moisture data as the SM2RAIN Brocca et al., 2013, 2014), gravimetry missions (GRACE-FO), and 
techniques to retrieve groundwater storages (e.g., Frappart et al., 2019), open great opportunities for the 
next decade of hydrological and hydraulic modeling development in the Amazon basin. A major goal of 
the Amazon modeling community should be to move toward hyperresolution models, capable of providing 
locally relevant estimates everywhere (Bierkens et al., 2015; Fleischmann et al., 2019; Wood et al., 2011), as 
well as better representing all processes within the water cycle, including groundwater dynamics which has 
been misrepresented in most surface water-oriented hydrological models (Miguez-Macho & Fan, 2012; Su-
tanudjaja et al., 2018). The move to hyper-resolution models has been promoted at a global scale due to the 
development of new numerical techniques, equation sets, and software engineering, as well as increased 
computing power (Bates et al., 2018). Such modeling systems could then be coupled to models of other 
processes, as recently done by researchers aiming at understanding flooding impacts on photosynthesis and 
biosphere in general (Aderson de Castro et al., 2018), feedbacks between surface waters and atmosphere 
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(Santos et al., 2019), sediment exports and floodplain trapping (Fagundes et al., 2021; Rudorff et al., 2018), 
carbon storage and emissions through wetlands and uplands (Hastie et al., 2019; Lauerwald et al., 2020), 
and dynamics of biogeochemistry cycles at the basin scale or over wetlands (Guilhen et al., 2020). All these 
efforts will require additional RS data and will move forward our predictability of the effects of ongoing 
environmental changes in the Amazon basin.

6.3. Aquatic Ecosystems

Floodplains are the largest aquatic system in the Amazon basin, support a diverse biota, and are important 
to the biogeochemistry and economy (Hess et al., 2015; Junk, 1997; Junk et al., 2011; Melack et al., 2009). 
Amazon floodplains contain thousands of lakes, thousands of km2 of vegetated wetlands and are char-
acterized by large seasonal and inter-annual variations in depth and extent of inundation. Hydrological 
conditions are central to the ecological structure and function of these aquatic ecosystems, and floodplain 
hydrology is complex because it combines local inputs and regional-scale fluxes with large spatial variabil-
ity. Applications of innovations in RS and hydrological measurements and modeling to the investigation 
of Amazon floodplains have led to advances in the understanding of the ecology of floodplains, in general.

Key aspects of hydrology relevant to floodplain ecosystems in the Amazon and elsewhere are the amplitude, 
duration, frequency, and predictability of variations in discharge and inundation (Melack & Coe, 2021). Two 
conceptual frameworks of general relevance to river systems were motivated by studies in the Amazon. 
Junk et al. (1989) emphasized the flood pulse and defined floodplains in terms of river stage, associated 
physical and chemical conditions, and adaptions of organisms to these conditions; Junk (1997) elaborated 
these concepts for the central Amazon. Mertes (1997) examined hydrologic aspects of inundation of flood-
plain systems with RS and simple models and introduced the concept of the perirheic zone, the mixing 
zone of water from the river and local catchment. Both these conceptual developments are supported by hy-
drological measurements of Amazon floodplain lakes, the first by Lesack and Melack (1995), subsequently 
modeled by Ji et al. (2019) and Bonnet et al. (2008, 2017). Floodplains play an important role in the carbon 
balance and nitrogen biogeochemistry of the Amazon basin and are sites of large fluxes of methane and 
carbon dioxide to the troposphere and high rates of aquatic plant production. Studies designed to estimate 
the magnitude and variability of gas fluxes and productivity in the Amazon have combined RS with field 
data in innovative ways applicable to aquatic ecosystems in general. Melack et al. (2004) used habitat-spe-
cific methane fluxes in combination with seasonal changes in the surface water extent of the aquatic hab-
itats derived from active and passive microwave RS to estimate regional methane fluxes. On the mainstem 
Solimões-Amazonas rivers and their fringing floodplains, annual methane emissions were estimated to vary 
between approximately 0.7 and 2.4 TgC year−1 (Melack et al., 2004). Furthermore, methane fluxes per m2 
were higher during lower water levels than during high water in an Amazon floodplain lake, and fluxes in 
proximity to vegetation were higher than those from habitats in open water (Barbosa et al., 2020). Richey 
et al. (2002) and Melack (2016) also used estimates of surface water extent to calculate carbon dioxide flux-
es. Guilhen et al. (2020) estimated N2O emissions from denitrification in Amazonian wetlands by adapting a 
simple denitrification model forced by open water surface extent from the Soil Moisture and Ocean Salinity 
(SMOS) satellite and reported a pattern in denitrification linked to inundation.

Seminal approaches with RS data were used to delineate inundated area and extent of flooded forests, open 
water, and herbaceous plants (e.g., Hamilton et al., 2002; Hess et al., 1995, 2003, 2015; Section 4.2) and used 
to improve estimates of seasonal and interannual variations in methane fluxes. As described in Section 4.2, 
new satellite-borne sensors and remote-sensing products can now be used to update such approaches (e.g., 
Parrens et al., 2019; Prigent et al., 2020). These data can be combined with remotely sensed changes in 
aquatic habitats, recent field measurements (e.g., Amaral et al., 2020; Barbosa et al., 2020), and modeling 
(e.g., Potter et al., 2014) to significantly improve estimates of emissions. More generally, the vegetative-hy-
drologic classification scheme used in these analyses meets the criteria for a “functional parameteriza-
tion” of wetlands (Sahagian & Melack,  1998), with classes suitable for biogeochemical and biodiversity 
applications

The primary productivity of aquatic plants is often high but challenging to measure, especially for herba-
ceous plants with large seasonal and spatial variations. On Amazon floodplains, the productivity of her-
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baceous aquatic plants is strongly influenced by hydrological variations (Engle et al., 2008; Junk, 1997). 
For instance, the growth of herbaceous aquatic plants in floodplain lakes follows water level variation. 
Extending field measurements of plant productivity to a regional scale was first done by Costa (2005) using 
SAR estimates of plant biomass. Lower values were found in regions where plants developed only in the 
beginning of the flood season, and higher values in areas closer to the Amazon River, where the availability 
and influence of nutrient-rich water is greater. Further work by Silva et al. (2010, 2013) used C-band SAR 
combined and optical data to investigate responses of horizontal expansion and vertical growth of herba-
ceous plants to variations in the flooded area and water level in two large floodplains along the Amazon 

Figure 12. Major vegetation types and estimated mean flood duration maps in the Mamirauá Sustainable Development Reserve, Central Amazon, Brazil 
(adapted from Ferreira-Ferreira et al., 2015). The maps were based on a time series of ALOS/PALSAR-1 image data comprising nine dates between 2007 and 
2010 chosen to provide the largest and most uniform range of water level conditions within the available imagery for the area. The water bodies were derived 
from the flood class of 365 days per year on average, that is, permanent water bodies. More details on Ferreira-Ferreira et al. (2015).



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

55 of 97

River. Over the period from 1970 to 2011 vertical growth varied by a factor of 2 and maximum annual cover 
varied by a factor 1.5. Years with exceptionally large changes in water level resulted in the highest produc-
tivity because horizontal expansion and vertical growth were both enhanced.

The productivity of Amazon aquatic ecosystems is also related to nutrient supply and optical conditions 
within the water (Melack & Forsberg, 2001). Applications of satellite-borne imaging spectrometers to the 
optically complex waters of the Amazon have revealed chlorophyll and suspended sediment levels (e.g., Bar-
bosa et al., 2009; Novo et al., 2006; Section 4.4), which are related to planktonic productivity. Other studies 
employing data from optical sensors have been used to describe aquatic vegetation (e.g., Josse et al., 2007; 
Novo & Shimabukuro, 1997; Wittmann et al., 2002), and indicate fluvial dynamics (Constantine et al., 2014; 
Mertes et al., 1995), both important aspects of aquatic ecosystems. However, observations with optical RS 
are frequently impeded by cloud cover or smoke, and forest canopies are often too dense to allow detection 
of flooding. Alternatively, time series of SAR data are available for several subregions within the Amazon 
basin and can be used to generate high-resolution maps of vegetation and inundation. For example, Ferrei-
ra-Ferreira et al. (2015) used a hydrologically-based time series of ALOS/PALSAR-1 SAR data to distinguish 
between land cover classes and map water extent and mean flood duration (Figure 12). The authors depict-
ed the uneven distribution of flooded areas at different water levels, that is, some water level stages result in 
large expansions of the inundated areas while other stages have less effect.

Complex flow patterns, revealed by interferometric SAR analyses (Alsdorf et  al.,  2007), and differences 
in sources of water, evident in hydrological models (Bonnet et al., 2017; Ji et al., 2019), account, in part, 
for the variations in nutrients, suspended sediments, and productivity (Forsberg et  al.,  2017). A further 
example of how advances in hydrological modeling contributed to the understanding of Amazon flood-
plains is provided by Rudorff et al. (2014a, 2014b). They added a simple model of hydrological balance to 
the LISFLOOD-FP hydraulic flooding model and applied it over 15 years. This work also emphasized the 
importance of detailed topography which they derived from a combination of data from the SRTM with 
extensive echo-sounding. The model simulated well changes in water level, flooding extent, and river-flood-
plain flows. Rudorff et al. (2018) combined these results with measurements of suspended sediments to 
demonstrate variations in sediments supply and loss from the floodplain.

Variations in the distribution and inundation of floodplain habitats play a key role in the ecology and pro-
duction of many commercially important fish in Amazonia. Lobón-Cerviá et al. (2015) demonstrated that 
number of fish species and their abundance were directly related to the presence of flooded forests and 
inversely related to distance from the river. Arantes et al. (2018) used both Landsat and SAR data to char-
acterize aquatic habitats and found that spatial patterns of fish biodiversity on Amazon floodplains were 
associated with forest cover and landscape gradients. Additional examples of connections between fisheries 
and fish ecology are provided in Melack et al. (2009) and Melack et al. (2021).

Tree phenology on both fertile, eutrophic floodplains (várzea) and nutrient-poor, oligotrophic floodplains 
(igapó) follow variations in inundation (Junk et al., 2010). Seasonal inundation also provides connectivity 
that is critical for gamma diversity (Thomaz et al., 2007; Ward et al., 2002). Avian diversity varies among the 
aquatic habitats (Cintra, 2015; Laranjeiras et al., 2021). At the community level on large river floodplains, 
birds and fishes have more stable communities in environments with rhythmic annual floods (Jardine 
et al., 2015; Luz-Agostinho et al., 2009). In a floodplain lake near the confluence of Amazon and Negro riv-
ers, for instance, Röpke et al. (2017) detected an abrupt and persistent change in fish assemblage structure 
that lasted for more than a decade after the extreme drought of 2005.

Disturbances of the natural variations of the flooded area, hydrological connectivity, or land cover are dis-
ruptive for wetland systems. Resende et al. (2019) used SAR RS to assess the impacts of the Balbina dam on 
the downstream igapó forests in the Uatumã River. The authors showed that 12% of the floodplain forests 
died because of the altered flood pulse and another 29% of the remaining living forest stands may be under-
going mortality. Schöngart et al. (2021) provide further evidence for changes in floodplain forests below the 
Balbina dam over 35 years Castello et al. (2018) combined fisheries data and habitat coverage derived from 
SAR analyses to determine the effects of land cover change on fishery yields. They showed that the removal 
of flooded forests can reduce fish yields and that other floodplain habitat cannot replace forest removal to 
improve fish yields.
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Several challenges and knowledge gaps remain in the linkage of hydrology to the functioning of aquatic 
ecosystems in the Amazon basin and elsewhere. Wet soil without standing can have high rates of bioge-
ochemical processes such as methane release. While difficult to detect with RS, models offer promise if 
operating at the correct scales. Streams and small rivers, as well as ponds, can release disproportionally high 
amounts of carbon dioxide, but their surface areas are seldom known; high spatial resolution RS products 
will help alleviate this problem. Interfluvial and savanna wetlands, often inundated by rain rather than 
rivers, are not well represented by basin-scale hydrological models and will require fine-scale topographic 
data combined with multi-temporal RS of inundation. Within the Amazon basin, particularly large data 
gaps exist in the Llanos de Moxos (Bolivia), peatlands in the Pastaza-Marañón foreland basin (Peru), and 
coastal freshwater wetlands.

6.4. Environmental Changes

In the last decades, Amazon has been subject to large environmental changes. Extensive rainforest areas 
have been deforested, being converted to pasturelands, croplands, or mining. These land cover changes alter 
the partitioning of precipitation into evapotranspiration, surface runoff and deep drainage, transport of sed-
iments, river discharge, and river color, and influence the processes of formation of rainfall in Amazonia. At 
the same time, forest areas have been flooded by artificial dams to produce hydropower, affecting flood puls-
es downstream of the dam, while the forests' ecohydrology has adapted to the flood patterns. RS has been an 
important tool to detect and map these environmental changes and their impacts on the hydrological cycle.

The role of deforestation on the Amazon hydrological cycle could only be understood after large-scale map-
ping of land use and land cover (LULC) in Amazonia. The first of these maps were produced by Cardille 
et al. (2002). They merged RS imagery from AVHRR with agricultural census data to produce a spatially 
explicit LULC map for the Amazon and Tocantins basins for 1995. Based on this data set and agricultural 
census data for 1960, Costa et al.  (2003) evaluated how land use increases in the upper Tocantins basin 
affected its discharge from 1949–1969 to 1979–1999. Although precipitation did not change significantly 
from the former to the latter period, the annual mean discharge increased by 24% (P < 0.02), while the 
rainy season discharge increased by 28% (P < 0.01), and seasonal peaks occurred about one month earlier. 
Such variations could be credited both to reduced ET and reduced infiltration during the rainy season. The 
reduction in evapotranspiration is a consequence of three factors: the increased albedo reduces the net ra-
diation at the surface; the reduced roughness length decreases atmospheric turbulence, weakening vertical 
motions; and the reduced root depth leaves less soil moisture available to plants. Additional factors that can 
also influence local evapotranspiration include compaction of the soil surface or sub-surface and reduction 
of leaf area index through grazing (Costa, 2005).

Other LULC maps were produced for the Brazilian Amazon using similar techniques (Leite et al., 2011 
for 1940–1995; Dias et al., 2016 for 1940–2012, Figures 13a and 13b). Purely RS products are available for 
more recent periods, like the MODIS MOD44 tree cover product (2002-recent), Landsat-based PRODES 
(1988-recent, http://www.obt.inpe.br/prodes/) and TerraClass (2004–2014, https://www.terraclass.gov.br/) 
official government products for the Brazilian Amazon, and MapBiomas for the Pan-Amazonia (1985-re-
cent, https://mapbiomas.org/ —Figures 13c and 13d). Several authors have used these data sets to study 
the effects of LULC changes on the hydrological regime of several of the Amazon tributaries and the Ama-
zon-Cerrado arc-of-deforestation as a whole (Arias et al., 2018; Cavalcante et al., 2019; Coe et al., 2011; Levy 
et al., 2018; Panday et al., 2015; Silvério et al., 2015; Spera et al., 2016), generally finding increased mean and 
low-flow discharge and decreased basin-wide evapotranspiration with deforestation.

In addition to river discharge, LULC changes may also affect the precipitation, particularly during the be-
ginning and end of the rainy season. The first evidence of this was provided by Butt et al. (2011). They com-
pared four Landsat-based land cover maps from 1975 to 2005 against the rainy season onset dates calculated 
from daily rain gauge data, concluding that, for stations that lie inside the major deforested area, the rainy 
season's onset has significantly shifted to, on average, 11 days (and up to 18 days) later in the year over the 
last three decades. However, for stations that lie in areas that have not been heavily deforested, the onset has 
not shifted significantly. Recent studies confirmed these results. Repeating the same analysis for southern 
Amazonia from 1974 to 2012, and after removing regional trends and interannual variability, Leite-Filho 

http://www.obt.inpe.br/prodes/
https://www.terraclass.gov.br/
https://mapbiomas.org/
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et al. (2019) confirmed a delay in the onset of 1.2–1.7 days per each 10% increase in deforestation. In addi-
tion, the probability of occurrence of dry spells in the early and late rainy seasons is higher in areas with 
greater deforestation.

Figure 13.
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Moreover, using daily rainfall data from the Tropical Rainfall Measurement Mission 3B42 product and 
the Dias et  al.  (2016) 1-km land-use data set, Leite-Filho et  al.  (2020) evaluated the quantitative effects 
of deforestation on the onset, demise, and length of the rainy season in southern Amazon for 1998–2012. 
After removing the effects of geographical position and year, they verified a relationship between onset, 
demise, and length of the rainy season and deforestation. Onset delays ∼0.4 ± 0.12 days, demise advances 
∼1.0 ± 0.22 days, and length decreases ∼0.9 ± 0.34 days per each 10% deforestation increase relative to the 
existing forested area (p < 10−5 in all three trends).

Another breakthrough owned to RS was identifying the “deforestation breeze” effect, which affects rainfall 
distribution. Khanna et al. (2017) used remotely-sensed land-use, precipitation, and cloudiness data com-
bined with a regional climate model, finding that small-scale deforestation patches trigger thermally-driven 
atmospheric circulation cells in Rondônia. This circulation creates a precipitation anomaly dipole over the 
deforested area, with enhanced precipitation downwind and suppressed precipitation upwind in the ther-
mal cell's descending branch. The observed dipole in Rondônia is substantial, with the precipitation change 
in the two regions being ±25% of the deforested area mean.

These regional circulation phenomena make the relationship between deforestation and rainfall totals de-
pendent on the scale of analysis. Combining TRMM 3B42 rainfall and PRODES land use data, Leite-Filho 
et al., (2021) found that this relationship is nonlinear at smaller scales but always leads to a decrease in 
southern Amazon total annual rainfall at larger scales. At the mesoscale (a 28-km TRMM grid cell), small 
deforested fractions (up to a 57% deforestation threshold) lead to a slight increase in rainfall (2.2 mm year−1 
per percent of the cell deforested, p < 10−5). However, for deforested fractions above this threshold, rainfall 
declines at about twice this rate, 5 mm year−1 per additional percent of the cell deforested (p < 10−5). Aggre-
gating both deforestation and rainfall to larger grid cells (56-km, 112-km) gradually reduces the nonlinear 
threshold for increase/decrease rainfall impacts. Upon reaching the sub-synoptic scale (224-km grid cell, or 
64 TRMM 3B42 pixels), deforestation consistently leads to a linear reduction in rainfall of 4.1 mm year−1 per 
additional percent of the cell deforested (p < 10−5) even for small deforestation fractions.

Although several techniques to infer surface water and channel properties from RS have been developed in 
recent years (as described in Section 4), relatively few studies apply these techniques to assess how anthrop-
ic and natural environmental changes affect these properties in the Amazon basin. Latrubesse et al. (2017) 
used tree cover data from Hansen et al. (2013), Landsat images, and RS estimates of TSS of Park and La-
trubesse (2014) to investigate the current and potential impacts of dams in the basin. They found that the 
Santo Antônio and Jirau dams caused a 20% reduction in mean surface suspended sediment concentration 
in the Madeira River, despite unusually high flood discharges in the years analyzed after their start-of-op-
eration. They also used Landsat images to calculate channel migration rates for each sub-basin, finding an 
average migration rate of 0.02 ± 20% channel widths per year.

Satellite retrieval of TSS has also been used to document trends in the Amazon River's main stem, although 
there is no apparent consensus on the causes of the observed trends. Such techniques allow for expansion 
and extrapolation of field data sets, being especially useful in the Amazon since runoff and TSS are poorly 
correlated at the Amazon River's lowest reaches due to asynchronism of the peak water discharges of the 
Solimões, Madeira, and Negro rivers (Filizola & Guyot, 2009). Martinez et al. (2009) used 18 TSS sampling 
campaigns from 1995 to 2003 and MODIS images to obtain a 12-year (1995–2007) continuous series of TSS 
at the Óbidos station, the last gauge station in the Amazon River before it reaches the Atlantic Ocean. They 
find a 20% increase in sediment discharge in the period with no discernible trends in water discharge and 
cite changes in land use and rainfall patterns as likely explanations. Recently, Li et al. (2020) used similar 

Figure 13. Examples of environmental changes in the Amazon are documented by remote sensing. Panels (a–d) show two different satellite-based land use 
data sets for the Amazon and Tocantins-Araguaia basins. On top, the Brazilian Historical Land Use data set (BHALU, Dias et al., 2016), which combines satellite 
and census data to estimate the fraction of each 1 × 1 km pixel occupied by different land uses from 1950 (a) to 2012 (b) in Brazil. The BHALU data set includes 
areas of natural vegetation, pastures, and croplands. Only total agricultural land use (pastures + crops) is shown. In the middle, the MapBiomas Amazonia 
data set (MapBiomas Amazonia Project, 2021; https://mapbiomas.org/), a detailed classification of land-use of the combined Pan-Amazonia rainforest area 
and the Amazon and Tocantins-Araguaia basins from 1985 (c) to 2018 (d). The data set distinguishes 15 land use classes, which were combined in four here for 
simplicity. The bottom four panels show a major recent hydro-morphological event in the Amazon, the capture of almost all of the water flow from the Araguari 
River by the Amazon River. The Araguari River used to flow directly to the Atlantic Ocean (e), (f). Starting with a major flood event in 2011, the Urucurituba 
channel grew until the Araguari River was connected to the Amazon mouth around 2015 (g), (h). Panels (e–h) were drawn using data from the Global Surface 
Water Explorer (https://global-surface-water.appspot.com, Pekel et al., 2016). See text for more details.
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techniques to obtain an updated (1996–2018) time series of TSS and find that sediment loading increased 
until 2007 but decreased afterward. They infer that this reversal is due to decreased sediment contribution 
from the Madeira river after the construction of the Santo Antônio and Jirau dams in the late 2000s, in 
agreement with Latrubesse et al. (2017).

Montanher et al. (2018) used similar techniques to generate an extended 32-year (1984–2016) time series 
of suspended sediment transport (SST, the product of TSS by river discharge). They argued that there is 
a recurrent pattern of SST rising and falling in cycles likely associated with climate fluctuations and that 
trends such as those observed by Martinez et al. (2009) are a consequence of short time series. However, SST 
depends on river discharge variability, and Martinez et al. (2009) and Li et al. (2020) found no trends in river 
discharge in their shorter time series.

Some studies also investigated the impact of mining on suspended solids in sub-basins of the Amazon. Arti-
sanal and small-scale mining, especially gold, is common in some regions, such as the Tapajós River basin. 
These small mining operations often use low-end techniques such as water jets and dredges that can cause 
proportionally high land degradation levels and water contamination (Lobo et al., 2018). They are also often 
illegal and unregistered, making RS an important tool for identifying and mapping these activities. The only 
publicly available data set (to our knowledge) on mining areas in the Amazon basin is the TerraClass pro-
ject, which is based on visual interpretation of Landsat images and is available only for a few years between 
2004 and 2014. Lobo et al. (2018) combined multiple data sets to develop an automated classification meth-
od that can distinguish between industrial and small-scale mining and ore types based on Sentinel-2. They 
found that in 2017 64% of the total mining area in the several key mining regions in the basin comprised 
small-scale gold and tin mining.

Lobo et al. (2015) estimated total suspended solids (TSS) in the Tapajós River basin based on Landsat im-
ages. They found that increases in TSS are strongly associated with reported increases in mining activity at 
seasonal and decadal timescales. Lobo et al. (2016) updated the Landsat-based identification of mining are-
as from the TerraClass project. They described the evolution of mining areas in the same basin, identifying 
different eras of mining impacts on TSS related to the introduction of different technologies and variations 
in the gold price. Comparing sub-basins with different kinds of land alteration, they also indicated that 
mining activities have a much higher effect on TSS than deforestation for agricultural purposes.

Landsat images have also been used to document and understand a major hydro-morphological event in 
the Amazon: the recent capture of almost all of the water flow from the Araguari River by the Amazon 
River (dos Santos et al., 2018). The Araguari is a large river, with an average annual discharge >1,000 m3 
s−1, which used to flow directly to the Atlantic Ocean until the rapid formation of the Urucurituba channel 
connecting it to the Amazon River in the early 2010s. The initial headwater migration of the proto-Urucu-
rituba was likely associated with deforestation for buffalo farming around 2007. The first connection to the 
Araguari was attributed to a high flow event in 2011. The rapid growth of the channel, which increased in 
width by about 5 m per month until 2015, is likely a consequence of complex hydro-morphodynamic pro-
cesses related to tidal currents and estuarine deposition that ultimately led to the blockage of the Araguari 
River mouth. This channel's formation caused large changes in the hydraulic pattern, sediment dynamics, 
and ecosystems in the Araguari estuary, being the first known observation of estuarine distributary network 
development by headwater erosion.

RS techniques contributed input, calibration, and validation data to many models that provided impor-
tant insights on the consequences of environmental changes in the Amazon basin (see Section 6.2). These 
models can integrate hydrological, hydraulic, climate, and land-use processes and are important tools in 
many studies investigating the impacts of past and future changes in the environment. One of the main 
applications of these models is to analyze future scenarios (e.g., climate change, deforestation). Another 
application is attributing the effects of different processes in the variability of the observed data.

Sorribas et al. (2016) examined climate change projections on discharge and inundation extent in the Ama-
zon basin using the regional hydrological model MGB with 1-dimensional river hydraulic and water storage 
simulation in floodplains forced by five GCMs IPCC's Fifth Assessment Report CMIP5. The model was vali-
dated against a mix of in situ and RS data. Results indicate an increased mean and maximum river discharge 
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Variable
Seminal developments in RS 

performed in Amazon

Breakthrough lessons about 
Amazon/General hydrology learned 

from RS
Knowledge gaps and new 

opportunities for the Amazon

Precipitation  1) Spatial distribution of rainfall 
at regional scale (Espinoza 
et al., 2009).
 2) Rain trend over the last few 
decades (Pacada et al., 2020).

 1) Spatial distribution of 
“hot-spot” regions (Chavez 
& Takahashi, 2017; Espinoza 
et al., 2015).
 2) Reduced rainfall over main 
rivers (Paiva, Collischonn, & 
Tucci, 2011; Paiva, Buarque, 
et al., 2011).
 3) Rainforest inducted early wet 
season onset (Wright et al., 2017).

 1) Improved algorithms for 
orographic rains (Dinku 
et al., 2011; Toté et al., 2015).
 2) Strategic network of rain 
gauges.
 3) Low-cost satellite constellation 
(Peral et al., 2019).

Evapotranspiration  1) Water flux estimates in the 
tropics at large scales (Fisher 
et al., 2009).
 2) Observational data for model 
calibration and validation 
and multi-model assessments 
(Gonçalves et al., 2013; Rocha 
et al., 2009)

 1) Understanding of 
environmental drivers and E ET  
seasonality basin-wide, with 
more energy limitation and 
small seasonality in the wettest 
parts (central Amazon), and the 
opposite in southern ones.
 2) Decreasing ET due to 
deforestation and cropland 
expansion (G. de Oliveira 
et al., 2019; Silvério et al., 2015; 
Spera et al., 2016; Zemp 
et al., 2017)

 1) Modeling high spatial 
resolution
 (<30 m) ET estimates on long 
time series (>40 years).
 2) Combining surface energy 
balance models and models 
less dependent on land cover 
parameterization.
 3) New data fusion techniques 
using multiple RS sources 
(multispectral, thermal and 
microwave) to reduce the cloud 
cover effects on SEB approaches.

Surface water elevation (SWE)  1) Large scale water level and 
slope estimates by radar altimetry 
(Birkett et al., 2002; Guzkowska 
et al., 1990).
 2) Water level changes from 
interferometry estimates (Alsdorf 
et al., 2000, 2007).
 3) Monitoring of SWE and 
level-discharge rating curves 
in ungauged rivers (Paris 
et al., 2016; Da Silva et al., 2014).

 1) Characterization of water level 
variation in rivers and wetland 
forests (Alsdorf et al., 2007; 
Birkett et al., 2002).
 2) River-floodplain connectivity 
(Alsdorf, 2003; Park, 2020).
 3) Flood storage in river-wetland 
systems (Alsdorf, 2003; Frappart 
et al., 2005).

 1) 2D characterization of water 
levels (SWOT swath data; 
(Biancamaria et al., 2016).
 2) Finer spatio-temporal 
resolution for water level and 
slope.
 3) New techniques for fusion 
with local to regional modeling 
(Paiva, Collischonn, et al., 2013; 
Yamazaki et al., 2011).

Surface water extent  1) First large scale extent and 
variability of surface water and 
inundations in floodplains (Hess 
et al., 2003; Sippel et al., 1994).
 2) Relationship between surface 
water extent and discharge 
(Sippel et al., 1998).
 3) High resolution floodplains 
dynamic and discrimination 
of aquatic vegetation types for 
large area (Ferreira-Ferreira 
et al., 2015).

 1) Seasonal and interannual 
inundation patterns in the 
Amazon basin (Aires et al., 2017; 
Hamilton et al., 2004; Hess 
et al., 2015).
 2) Contribution of inland water 
and floodplains variability to 
the Amazon Carbon cycle and 
emissions (Melack et al., 2004; 
Raymond et al., 2013; Richey 
et al., 2002).

 1) Finer spatio-temporal 
resolution of surface water and 
floodplain inundation extent 
variability with SWOT and 
NISAR.
 2) New development of fusion 
techniques with IA to combine 
various RS observations (visible, 
IR, passive and active microwave, 
GNSS-R).
 3) Ensure long-term observations 
to monitor climate/anthropogenic 
changes.

Floodplain and river channels 
topography

 1) Adjustment of Digital 
Elevation Models (Baugh 
et al., 2013; Yamazaki, Baugh, 
et al., 2012).
 2) Topography estimates 
in seasonally flooded areas 
(Fassoni-Andrade, Paiva, Rudorff, 
et al., 2020).

 1) Characterization of floodplain 
channels and lakes (Fassoni-
Andrade, Paiva, Rudorff, 
et al., 2020; Sippel et al., 1998; 
Trigg et al., 2012).
 2) Assessment of river channel 
migration (Constantine 
et al., 2014; dos Santos 
et al., 2018).

 1) Characterization of topography 
in flooded forests.
 2) Long-term estimation to 
monitor geomorphological 
changes in floodplain and river 
channels.

Table 7 
Synthesis of Scientific Advances in Understanding the Amazon Hydrology With Remote Sensing
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for large rivers draining the Andes in the northwest contributes to increased mean and maximum discharge 
and inundation extent over Peruvian wetlands (e.g., Pacaya-Samiria region) and Solimões River in western 
Amazon. In contrast, decreased river discharges (mostly dry season) are projected for eastern and southern 
basins and decreased inundation at low water in the central Amazon.

With the renewed interest in the last decades in constructing hydroelectric dams in the Amazon basin (Cas-
tello & Macedo, 2016), many modeling studies attempted to quantify the environmental impacts of new and 
existing dam projects. Forsberg et al. (2017) used several models to evaluate the impacts of six planned dams 
in the Andean region of the Amazon. Since a sizable portion of sediment production in the basin occurs 
in this region, these dams are predicted to reduce the basin-wide supply of sediments, phosphorus, and 
nitrogen by 64%, 51%, and 23%, respectively. Along with changes in nutrient and sediment supply, mercury 
dynamics and flood pulse attenuation are projected by the authors to cause major impacts on downstream 
aquatic and floodplain fertility and channel geomorphology. Indeed, Resende et al. (2019) found massive 
tree mortality in floodplain forests (igapó) downstream of the Balbina reservoir using SAR images, with 
about 40% of the igapó 49 km downstream of the reservoir either dead or undergoing mortality.

Expected environmental changes in the basin, such as deforestation and climate change, can also signif-
icantly impact hydropower production itself, often leading to generation well below the dam's expected 
capacity. Most recent dam designs follow a run-of-the-river concept, avoiding the large environmental im-
pacts of enormous reservoirs from older designs but making power generation more dependent on river 
discharge variations (Costa, 2020). Arias et al. (2020) combine a land-use and a hydrological model to assess 
the direct impacts of climate change and deforestation on hydropower production of existing and planned 
dams in the Tapajós basin. Although decreasing evapotranspiration from deforestation tends to increase 
annual mean discharge, reduced water retention increases surface runoff and flash flows during the rainy 
season and reduces discharge during the dry season. Since turbines are normally working at maximum 
capacity in the rainy season, this excess flow is wasted, and generation in the dry season is reduced. Arias 
et al. (2020) find that projected climate change and deforestation combined can delay peak energy genera-
tion by a month (worsening the mismatch between peak production and consumption), reduce dry season 
generation by 4%–7% and increase interannual variability of power production by 50%–69%.

Table 7 
Continued

Variable
Seminal developments in RS 

performed in Amazon

Breakthrough lessons about 
Amazon/General hydrology learned 

from RS
Knowledge gaps and new 

opportunities for the Amazon

Water quality: Sediments, 
chlorophyll and colored dissolved 
organic matter

 1) Estimates of sediment 
concentration in rivers (Bayley 
& Moreira, 1978; Mertes 
et al., 1993), chlorophyll 
in floodplain lakes (Novo 
et al., 2006), and colored 
dissolved organic material in 
lakes (M. P. da Silva et al., 2019).
 2) Semi-analytical algorithms 
for water quality estimates 
(Bernini et al., 2019; de Carvalho 
et al., 2015; Maciel, Barbosa, 
et al., 2020).

 1) Spatiotemporal dynamics maps 
of the underwater light field 
and optically active constituents 
(Fassoni-Andrade & Paiva, 2019; 
Maciel, Barbosa, et al., 2020; 
Martinez et al., 2009; Novo 
et al., 2006).
 2) Extended time-series of 
suspended sediments in the 
Amazon Region (Li et al., 2020; 
Martinez et al., 2009; Montanher 
et al., 2018).

 1) Evaluation of phytoplankton 
community dynamics using RS as 
a proxy for biodiversity indicator 
in Amazon waters.
 2) Robust algorithms for CDOM 
and Chlorophyll-a retrieval in 
optically complex inland waters.

Total water storage (TWS) and 
groundwater storage (GWS)

 1) Large scale estimates of the 
TWS using GRACE data (Tapley 
et al., 2004).
 2) Determination of GWS 
changes using RS products 
and model outputs (Frappart 
et al., 2011).

 1) Spatial signatures of droughts 
and floods in TWS (Chen 
et al., 2009).
 2) Spatio-temporal signatures of 
droughts on surface water storage 
(Frappart et al., 2012; Papa 
et al., 2013).
 3) Temporal variations of GWS 
(Frappart et al., 2019).

 1) More accurate estimates of 
surface water storage from SWOT 
will improve the determination of 
GWS anomalies.
 2) Long-term monitoring of 
TWS and GWS (GRACE and 
GRACE-FO).
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Deforestation has the indirect effect of reducing precipitation and delaying the onset of the rainy season, 
which further illustrates the dependency of hydropower generation on forests. Stickler et al. (2013) combine 
land-use, hydrological, and climate models to assess the direct and indirect effects of deforestation alone on 
hydropower generation of the Belo Monte energy complex in the Xingu River basin. They find that when 
considering only the direct effects of deforestation on river flow, a 20%–40% deforestation of the basin would 
lead to a 4%–12% increase in mean discharge with similar increases in power generation. However, when 
the climate effects of deforestation of the Amazon region were considered, rainfall inhibition in the basin 
counterbalanced the direct effects and led to a 6%–36% reduction in discharge. Under the business-as-usual 
deforestation scenario for 2050 (40% of the Amazon forest removed), they simulated that power generation 
was reduced to 25% of maximum plant output.

Breakthrough lessons about Amazon/General 
hydrology learned

Knowledge gaps and new opportunities for the 
Amazon

Water budget  1) Sub-basin scale water cycle analysis 
(Azarderakhsh et al., 2011).
 2) Water budget closure enforcement (Pan 
et al., 2012).
 3) Continuous river discharge estimate based 
on water cycle closure with satellite estimate.

 1) Finer spatio-temporal resolution of the 
water budget analysis using river map 
information.
 2) Sensitivity of the closure to the water 
component bias, in particular, ET estimate.
 3) Groundwater exchange estimate might be 
obtained at fine-scale in constraining the water 
cycle at the surface.

Modeling the Amazon water cycle and its 
wetlands

 1) River-floodplain hydrodynamic interactions 
at local and large scales (Paiva, Buarque, 
et al., 2013; Rudorff et al., 2014a; Sorribas 
et al., 2020; Wilson et al., 2007).
 2) Groundwater dynamics across scales 
and climates, and floodplain-groundwater 
interaction (Miguez-Macho & Fan, 2012).
 3) TWS components (surface, subsurface) 
at basin scale (Paiva, Buarque, et al., 2013; 
Pokhrel et al., 2013).

 1) Finer spatio-temporal resolution of 
flood dynamics, considering sedimentation 
processes, in diverse wetland types (floodplains 
and interfluvial).
 2) Better parameterization of groundwater 
processes across the Amazon basin.
 3) Lack of convergence among water storage 
partitions (e.g., divergent estimates of surface 
water fraction).

Aquatic ecosystems  1) Integration of temporal and spatial 
variations of inundation and associated aquatic 
habitats into the estimation of carbon dioxide 
and methane fluxes to the atmosphere (Melack 
et al., 2004; Richey et al., 2002).
 2) Areal estimation of major aquatic habitats 
in Amazon and seasonal and interannual 
variations in the areas (Hess et al., 2015; 
Melack & Hess, 2010).
 3) Biomass and growth of aquatic plants on 
floodplains (Costa, 2005; Silva et al., 2013).

 1) Extent of saturated soils under forests and in 
riparian corridors.
 2) Modeling of inundation variations in 
interfluvial wetlands and savanna wetlands.
 3) Areal extent of streams and small rivers, 
especially in the Andean region.
 4) High-resolution topographic data on 
floodplains.

Environmental changes  1) Effects of changes in land use on the river 
discharge (Costa et al., 2003).
 2) Influence on changes in land use on onset 
of the rainy season (Butt et al., 2011; Leite-
Filho et al., 2019), duration of the rainy season 
(Leite-Filho et al., 2020), and total rainfall 
(Leite-Filho et al., 2021).

 1) Need to better understand the interactions 
between local changes in land use and large-
scale climate mechanisms on the water cycle of 
the Amazon basin.
 2) Initiate monitoring of forest degradation in 
its different forms, so that the long-term effects 
on forest hydrology can be studied.
 3) Apply existing techniques to assess changes 
in water and floodplain properties caused by 
anthropic changes (land use change, damming, 
mining).

Table 8 
Synthesis of Scientific Advances in Multidisciplinary and Integrative Efforts in the Understanding of the Amazon Basin Hydrology and Ecosystems
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7. Synthesis of Scientific Advances, Future Challenges, and Priorities
The various achievements of more than three decades of scientific advances on the hydrology of the Ama-
zon basin with satellite data, along with the development of new RS techniques, and some selected research 
opportunities, are summarized in Table 7 and Table 8. Section 7.1 presents the main findings obtained in 
the Amazon, which has been a RS natural laboratory for hydrology advancement. Section 7.2 highlights 
how these experiences can be used to foster the understanding of the water cycle in other large river basins 
worldwide. Section 7.3 discusses the knowledge gaps and research opportunities on Amazon waters, thanks 
to an unprecedented and continued monitoring of the Amazon basin with upcoming and future satellite 
missions. Finally, Section 7.4 discusses how to move forward from scientific advances toward more sustain-
able water resources and risk management, and Section 7.5 highlights recommendations for future studies 
on Amazon waters from space.

7.1. The Amazon Basin as a Remote Sensing Laboratory for Hydrology

As the largest river basin in the world, characterized by strong hydrological signals in precipitation, evapo-
transpiration, water storage change, and discharge, the Amazon basin has been an ideal natural laboratory 
for the seminal development of RS techniques and their applications to foster our understanding of hydro-
logical processes. Table 7 summarizes for various hydrological variables key seminal developments made 
in the RS field over basin along with breakthrough lessons learned regarding Amazon hydrological func-
tioning. Additionally, Figure 14 illustrates the major characteristics of Amazon hydrological storages and 

Figure 14. Schematic illustration of the integrated hydrological processes of the water cycle in the Amazon basin. The main sensors on board orbiting satellites 
that have helped measure these processes are indicated. The annual estimates of each component averaged over the entire basin are shown. The references (*) 
related to these estimates are provided along with the text in Section 7.1.



Reviews of Geophysics

FASSONI-ANDRADE ET AL.

10.1029/2020RG000728

64 of 97

fluxes as characterized by RS observations and analyses. Over the past decades, the need to understand the 
ongoing environmental changes in the Amazon basin, that could impact the global water, energy, and car-
bon cycles, has motivated a series of multidisciplinary and integrative efforts that foster scientific advances 
in our understanding of Amazon hydrology and ecosystems (Table 8).

Advances in precipitation estimates from RS have allowed the characterization of the spatial and temporal 
distributions of rainfall at local to regional scales over the Amazon basin and provide records long enough 
to assess rainfall trends over the last few decades (Tables 2 and 7 for developed precipitation products). The 
average rainfall in the basin was estimated as 2,200 mm year−1 (Figure 3), and the heaviest rainfall occurs 
in hot-spot regions in the Andes mountain ranges initiated by convection processes altered by the topog-
raphy, where rainfall can reach values higher than 6,000 mm year−1 (Chavez & Takahashi, 2017; Espinoza 
et al., 2015; Figure 3). Large-scale analysis of RS-derived precipitation revealed the effect of winds over large 
water bodies that causes reduced rainfall over these areas (Paiva, Buarque, et al., 2011; Paiva, Collischonn, 
& Tucci, 2011).

RS observations were key to providing the first large-scale evapotranspiration estimates in tropical regions, 
especially over Amazon. Also, they provided unprecedented observational data for the evaluation, calibra-
tion, and validation of models (Table 2). Furthermore, RS allowed the characterization of ET temporal and 
spatial variability over the Amazon basin (Figure 4) and the understanding of its environmental drivers, 
revealing contrasting regimes between the more energy-limited ones in the equatorial part of the basin 
and more water-limited regimes in the southern areas (Maeda et al., 2017). Amazon basin annual average 
evapotranspiration is estimated as 1,100–1,500 mm year−1 (based on SSEBOp, MOD16, PML, and GLEAM 
global models—Figure 4, and water balance by Builes-Jaramillo and Poveda (2018), with higher rates in 
the northern portions, as in the Negro River basin, decreasing toward the southern parts (Baker et al., 2021; 
Maeda et al., 2017). Various RS-based approaches result in significant divergences in estimating evapotran-
spiration over the basin (Figures 4 and 10). For instance, RS-based ET annual rates at the basin scale were 
15%–37% higher than those obtained from water balances (Baker et al., 2021).

The characterization of continental water surfaces, including their elevation and extent, was possible 
thanks to adaptations of satellite techniques not primarily designed for hydrology or inland water moni-
toring applications. A striking example is that of altimetry satellite missions, initially designed to observe 
the ocean, but with promising applications to the large rivers of the Amazon (Guzkowska et al., 1990) and 
with the potential to derive SWE of rivers and lakes. Since then, various altimetry databases for the global 
monitoring of lakes and rivers have been developed (Table 3). The SAR differential interferometry tech-
nique, originally developed in geophysics, was also tested and applied for the first time in central Amazon 
floodplains to characterize SWE changes (Alsdorf et al., 2000). Both altimetry and SAR techniques were 
important to characterize SWE variations in Amazon rivers and their connectivity with the floodplains 
(Park, 2020). The water surface gradient of the Amazon River varies both spatially and temporally, with val-
ues ranging from 1.5 cm km−1 (800–1,020 km upstream) to 4.0 cm km−1 (2,900–4,000 km upstream; Birkett 
et al., 2002). The monomodal flood pulse of the main Amazon River is well captured with radar altimetry 
(∼4–12 m amplitude; Figure 5). This pulse controls the SWE variations in the central Amazon floodplains. 
During the annual flood, the SWE variations in rivers and adjacent floodplains, as seen from SAR or altim-
etry, are similar (Alsdorf et al., 2007), but connectivity is reduced during the low-water period (Park, 2020) 
as the flows are controlled by the local topography (Alsdorf et al., 2007) and SWE in both environments is 
not always equivalent (Alsdorf, 2003).

The first large-scale surface water extent mapping from RS was also carried out for the Amazon basin (Sip-
pel et al., 1994) using passive microwave observations. Using several sensors, many estimates and databases 
have been developed at different spatial and temporal scales (Table 4). These include innovative high-res-
olution mapping of wetlands and flooded vegetation using L-band SAR (Hess et al., 2003), which provided 
the first estimates of flood extent in the entire Amazon wetlands, ranging between 285 × 10³ and 635 × 10³ 
km2 in periods of low (Oct-Dec) and high waters (Apr-Jun), respectively (Hess et al., 2015; Figure 6). Signif-
icant differences among various RS-based estimates of surface water extent exist over basin (Figure 6), with 
in general lower maximum flooded area found by coarse-scale products than SAR-derived maps. Seminal 
approaches with RS data were used to delineate Amazon large-scale surface water area and extent of flood-
ed forests, open water, and herbaceous plants, revealing their complex seasonal and interannual patterns 
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influenced by local and regional-scale variability (Aires et al., 2017; Hamilton et al., 2004; Hess et al., 2015; 
Melack & Hess, 2010). While the width of the Amazon River floodplain is similar throughout the central 
Amazon, the area of flooded forest decreases from upstream to downstream, where both the number and 
size of open water lakes increases (Hess et al., 2015; Mertes et al., 1996).

In combination with field data, mapping surface water extent in the Amazon basin enabled pioneering re-
gional estimates of methane emissions (Table 7), with an estimate of methane emissions of ∼22 Tg C year−1 
for the lowland basin (Melack et al., 2004). The spatial configuration of the Amazon floodplain habitats in 
relation to vegetation types is related to flooding patterns (Figure 14; Ferreira-Ferreira et al., 2015). Herba-
ceous aquatic plants on central Amazon floodplains have a growth related to water level variation and the 
flood extent (Costa, 2005; Silva et al., 2013). Furthermore, the increasing effect of dams in the Amazon basin 
has been assessed through analyses of flood extent dynamics (Li et al., 2020; Souza et al., 2019) and impacts 
on tree mortality (Resende et al., 2019).

The first morphometric characterization in the Amazon basin using RS data showed that 11% of the 
floodplain along the Amazon River and lower reaches of major tributaries is covered with lakes (Sippel 
et al., 1992). In fact, the floodplain topography along the Amazon River is complex, with several channels 
and lakes connected to the river (Latrubesse, 2012; Mertes et al., 1996). Floodplain channel widths vary 
largely (10–1,000 m), and channel depths are tied closely to the local amplitude of the Amazon River flood 
pulse (8–12 m, Trigg et al., 2012; Figure 7). The recent capture of almost all of the water flow from the 
Araguari River by the Amazon River, the first known observation of estuarine distributary network devel-
opment by headwater erosion, was also documented with RS techniques (dos Santos et al., 2018). The need 
for accurate topographic data for hydrological applications was emphasized in several studies in the central 
Amazon (Baugh et al., 2013; Wilson et al., 2007; Yamazaki, Baugh, et al., 2012), in which key improvements 
such as vegetation removal were made. Global DEMs still do not accurately represent the floodplain to-
pography, but surface water extent data combined with WSE allowed the first topographic mapping in sea-
sonally flooded areas in the central Amazon with an accuracy of 0.89 m (Fassoni-Andrade, Paiva, Rudorff, 
et al., 2020). In these areas, 75% of the open-water areas have a depth of less than 2 m (8 m) in the low (high) 
water period (Fassoni-Andrade, Paiva, Rudorff, et al., 2020).

The Amazon River exports the largest sedimentary supply to the world's ocean (1.1 × 109 tons per year 
(Armijos et al., 2020; Figure 14). Several seminal studies and algorithm developments using RS to charac-
terize the water composition of rivers and lakes were primarily conducted in Amazon (see Table 5), such as 
the pioneering estimates of sediment concentration in rivers (Bayley & Moreira, 1978; Mertes et al., 1993), 
chlorophyll in floodplain lakes (Novo et al., 2006) and colored dissolved organic material (M. P. da Silva 
et  al.,  2019). The spatio-temporal pattern of these components is related to SWE variations and mixing 
processes from different sources. The shallow depths during the low water period and the large area of 
floodplain lakes favor conditions for sediment resuspension (Bourgoin et  al.,  2007; Fassoni-Andrade & 
Paiva,  2019; Figure  8). The chlorophyll mapping in floodplain lakes showed higher pigment concentra-
tions during the low water season (Novo et al., 2006). Increasing trends in sediment concentration in rivers 
were linked to changes in land use (Martinez et al., 2009; Amazon River) and the impact of mining (Lobo 
et al., 2015, 2016; Tapajós River). Conversely, the construction of the Santo Antônio and Jirau dams seems 
to have contributed to a reduction of sediment concentration in the Madeira River (Latrubesse et al., 2017; 
Li et al., 2020).

Due to large spatial and temporal changes of freshwater stored in surface, soil root zone, and aquifers, the 
Amazon basin is the ideal laboratory to explore measurements of gravity field variations from the GRACE 
satellite mission and derive TWS variations, linked to the redistribution of water mass over the continental 
surfaces (Figure 9). The first GRACE-derived estimates of TWS variations (Tapley et al., 2004) and ground-
water storage changes (Frappart et al., 2011) were presented for the Amazon basin. TWS change in the 
Amazon is estimated as ∼1,800–2,700  km3 year−1 (Figure  14) with different contributions from surface 
water storage (∼49%), root zone soil moisture (∼27%), and groundwater (∼24%) (Frappart et al., 2019). The 
residence time of the water stored in the Amazon basin, that is, the average time that the water remains in 
the basin before leaving by runoff or evapotranspiration was estimated at two months (Tourian et al., 2018). 
GRACE data helped to monitor periods of extreme droughts (e.g., 2009) and floods (e.g., 2005, 2010; Chen 
et  al.,  2009), quantify water deficit during such events (Frappart et  al.,  2012), understand groundwater 
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dynamics across different scales and climates, and the interaction between floodplains and groundwater 
(Miguez-Macho & Fan, 2012).

RS has proven to be a great complement to in situ observations that have traditionally been used to calibrate/
assimilate and validate hydrologic and hydrodynamic models (Table 6 and Figure 11). In the case of the 
Amazon basin, the pioneering development or application of models have provided a major understanding 
of basin-wide river-floodplain systems (Coe et al., 2002; Paiva, Buarque, et al., 2013; Rudorff et al., 2014a; 
Sorribas et al., 2020; Trigg et al., 2009; Wilson et al., 2007; Yamazaki et al., 2011), the role of groundwater in 
hydrological buffering and headwater basin dynamics (Cuartas et al., 2012), and partitioning of total water 
storage (Paiva, Buarque, et al., 2013; Pokhrel et al., 2013). While Wilson et al. (2007) developed one of the 
first large scale hydraulic models, the large-scale hydrologic-hydrodynamic model of the entire basin by 
Paiva, Buarque, et al. (2013) allowed the representation of physical processes such as the backwater effects 
in the main river and the attenuation of the flood wave due to water storage in the floodplains. These large-
scale applications set the way for global hydrodynamic model applications are used today to understand 
flood risk from continental to Earth scale (Bates et al., 2018, 2021). Applications of two-dimensional models 
in a reach of the Amazon River showed that the floodplain receives large amounts of water from the river, 
and small increases in peak discharge promote large changes in this flow (Rudorff et al., 2014b). Recently, 
Sorribas et al. (2020) estimated, using an innovative hydrological tracking model, surface water travel times 
along the Amazon basin as 45 days (median), with 20% of Amazon River waters flowing through flood-
plains. Furthermore, with the integration of RS data and shydrological modeling, the assessment of past 
floods and droughts was possible (Frappart et al., 2012; Wongchuig et al., 2019).

RS techniques were also important for understanding how the hydrological cycle responds to environmen-
tal changes. Long-term changes in discharge could be attributed to changes in land cover via changes in 
evapotranspiration, as first shown for the Tocantins River (Costa et al., 2003). The average annual discharge 
increased by 24% between 1949–1986 and 1979–1998, associated with increased agricultural land use in the 
basin (from 30% to 49%). The presence of the forest was established as important for determining precipita-
tion patterns both in and outside the region. The deep roots, low albedo, and high ET rates of the rainforest 
induce the wet season onset to be several weeks before what it would be without it, in a mechanism dubbed 
‘shallow convection moisture pump'(Wright et  al.,  2017). The changes in land-surface fluxes caused by 
deforestation were found to cause reductions in precipitation totals, delays on the rainy season onset, and 
longer dry spells during the wet season, with negative consequences for hydropower generation, regional 
agriculture, and the resilience of the forest itself (Arias et al., 2020; Butt et al., 2011; Costa, 2020; Leite-Filho 
et al., 2020; Spera et al., 2014; Stickler et al., 2013).

7.2. The Benefits of the Lessons Learned in the Amazon to Understand the Hydrology of Other 
Large Tropical River Basins

Amazon basin can be seen as a RS laboratory for fostering the understanding of the water cycle and hydrol-
ogy in general. While these advances have prompted the scientific understanding of Amazon hydrology, 
they have also set up new developments, techniques, and analyses that contribute to a better understanding 
of other large basins' hydrological cycles and at the global scale. Without being exhaustive, here we discuss 
some key studies that benefit from such advances and how they have contributed to hydrological progress 
in other regions. In particular, as the second-largest river basin in the world, with similar environmental 
characteristics as the Amazon basin, such as extensive floodplains and dense forests, the Congo River Basin 
is the new frontier of tropical hydrological research (Alsdorf et al., 2016), gaining more scientific attention 
in recent years and benefiting from the lessons learned from Amazon hydrology. The “Hydrologic Research 
in the Congo Basin” conference in Washington, D.C (USA) in 2018 delineated new research opportunities 
for the basin. This effort to gather African and international communities around a joint objective of a bet-
ter understanding of the Congo basin response to climate change led to an extensive monograph (Alsdorf 
et al., 2021) that indicates the usefulness of RS and model methodologies built for the Amazon basin.

The first development of satellite altimetry data sets (Section 4.1) in the Amazon basin was turned into free-
ly available global data sets providing long-term WSE at thousands of virtual stations (Table 3), enabling the 
characterization of the surface hydrology variability from altimetry in the Congo basin (Paris et al., 2020), 
Indian inland waters (Ghosh et al., 2017) and the Niger River basin (Normandin et al., 2018). The integra-
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tion of satellite altimetry and hydrological modeling had seminal advances in the Amazon, including model 
validation and development of rating curves for near real-time monitoring of discharges from the space 
(Section 6.2), that was further performed in other tropical basins as the Congo (Kim et al., 2019, 2021; Paris 
et al., 2020), Tsiribihina in Madagascar (Andriambeloson et al., 2020), Niger (Fleischmann et al., 2018), and 
Ogooué (Bogning et al., 2020).

Studies based on initial RS developments in the Amazon further performed comparative hydrology ap-
proaches, for instance, by studying jointly the floodplain dynamics in the central Amazon, the Congo, and 
the Brahmaputra wetlands with SAR (H. C. Jung et al., 2010) and GRACE (Lee et al., 2011), highlighting the 
unique features of each of these river systems. Amazon basin, with its extensive river floodplains, largely 
contrasts with Congo Cuvette Centrale, mainly dominated by interfluvial wetlands, with less river-wetland 
interaction (H. C. Jung et al., 2010). Following studies using SAR observations to map flood and wetlands 
extent and distinguish vegetation types in Amazon (Section 4.2), seasonal flooding dynamics, water level 
variations, water storage, and vegetation types over the Congo basin were derived from JERS-1 (Rosenqvist 
& Birkett, 2002), ALOS-PALSAR SAR and Envisat altimetry data (Kim et al., 2017; Lee et al., 2015; Yuan 
et al., 2015) or GRACE (Yuan et al., 2017)

The development of large-scale, multi-satellite RS techniques to monitor surface water storage variability, 
with initial techniques and analysis developed and assessed for the Amazon basin (Sections  4.1 and  5) 
were further applied to the Orinoco River in South America (Frappart et al., 2015), to study droughts in 
the Ganges-Brahmaputra River (Papa et al., 2015) and to quantify the relative contribution of surface and 
groundwater variations in the Mekong (Pham-Duc et al., 2019), the Chad (Pham-Duc et al., 2020) and the 
Congo (Becker et al., 2018; Yuan et al., 2017) basins.

Given the global relevance in terms of climate and ecosystems, the presence of large floodplains and dimen-
sions in accordance with the resolution of coarse-scale models, many advances and developments of land 
surface and hydrological models were first assessed over the Amazon basin (Section 6.2), and later prompt-
ed the development of global-scale models (Bates et al., 2018; Yamazaki et al., 2011). Examples include the 
introduction of basin-scale inundation schemes that were later introduced to other river basins (Andri-
ambeloson et al., 2020; Paris et al., 2020), at continental scale (Siqueira et al., 2018) and at the global-scale 
(Alkama et al., 2010; Decharme et al., 2012; Yamazaki et al., 2011). Recent advances in large-scale sediment 
transport using RS observations and modeling followed a similar path, with pioneering works in Amazon 
(Section 4.4) being followed by progress for all of South America (Fagundes et al., 2021).

7.3. Tackling the Current Knowledge Gaps With Future Satellite Missions

This review shows the tremendous achievements made during more than three decades of scientific ad-
vance on the hydrology and the water cycle of the Amazon basin with the help of RS. It also helped to 
identify the various knowledge gaps remaining to promote a comprehensive understanding of the Amazon 
hydrology. Here, we summarize these knowledge gaps (Tables 7 and 8) and present the new research oppor-
tunities with future satellite missions.

Regarding RS-based precipitation, current algorithm challenges involve the definition of dynamic thresh-
olds of temperature brightness in IR sensors and processing of MW data to avoid confusing the summit 
of the Andes snowy peaks with cold clouds (Dinku et al., 2011; Toté et al., 2015). Better algorithms for 
detecting solid precipitation are necessary for improved understanding of local processes in Amazon basin 
headwaters in the Andes Mountains (Hurley et al., 2015; Levizzani et al., 2011; Peng et al., 2014). In situ 
observations are fundamental for the calibration of remote sensors. Therefore a strategic network of tradi-
tional stations and ground-based radars in key points of the Amazon must necessarily be part of a future 
agenda. Finally, new low-cost technologies such as nanosatellites have proven viable while maintaining 
scientific requirements, which should continue to be encouraged for future missions (Peral et al., 2019).

RS models can reasonably estimate average ET rates in the Amazon basin, but correctly representing ET sea-
sonality is still challenging, and understanding differences among individual ET components as soil evap-
oration, transpiration, and an interception. More studies are needed to disentangle the controls ET across 
the basin (water and energy limitation, and vegetation phenology) since multiple drivers operate simultane-
ously (Maeda et al., 2017). Besides, a major knowledge gap is a difference between ET Amazon uplands and 
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wetlands, and the effect of open water evaporation on the regional climate. Current satellite-based models 
need to minimize the use of parameterization (or better constrain it), while the accuracy of input data must 
be improved. A major limitation of SEB models is their requirement of clear sky conditions, which may be 
improved by the use of microwave data (Holmes et al., 2018) and the combination with other types of ET 
models as those based on vegetation index models. In situ measurements are fundamental to achieve this 
goal, yet today there are only eight flux towers with publicly available data in the Amazon basin. For vegeta-
tion index-based models (e.g., MOD16, GLEAM), improving the understanding of soil water deficit controls 
ET across the basin is also necessary, given the high dependence of these products on soil moisture content. 
Some breakthrough ongoing and future missions will provide a new understanding of ET dynamics in the 
Amazon basin. The ECOSTRESS is addressing the response of vegetation to water deficit with unprecedent-
ed details, while the VIIRS collects visible and infrared imagery, extending the time series from its predeces-
sor MODIS and improving its estimates, and the FLEX mission will map vegetation fluorescence, a proxy of 
photosynthetic activity and vegetation stress and health. The continuity of the Landsat missions will ensure 
the development of long-term ET at a high spatial scale, while the GRACE-FO mission will provide new 
data for water balance approaches to estimate ET. This will ultimately allow us to model ET at high spatial 
resolution (<30 m) and for long time periods (>40 years).

The surface water bodies and aquatic ecosystems of Amazon are still challenging the current available RS 
observations. Despite the substantial progress in the last decades, there are still limitations. Currently, there 
is a trade-off over the Amazon basin between spatial and temporal resolutions in satellite observations, with 
generally high temporal sampling associated with lower spatial resolution and vice-versa. Therefore, there 
is a need for a finer spatio-temporal resolution to adequately monitor water extent, level, and slope of the 
surface water and floodplain inundation. There is also a need to improve the accuracy of these estimates 
to understand more local phenomena, such as floodplain-river exchanges and dynamics or the complex 
flooding processes of extensive interfluvial areas. Similarly, only a few lakes and reservoirs in Amazon are 
monitored routinely from space, using altimetry. With dense vegetation and cloud cover, the context of the 
Amazon basin makes it still challenging to monitor surface waters such as permanently or seasonally flood-
ed forests and floating herbaceous plants.

The forthcoming NASA/ISRO L-band SAR mission, with its combination of radar wavelengths and polari-
zations and 12-day orbit passes, will help to precisely measure small changes of surface water extent in the 
Amazon basin, including areas with standing vegetation. Furthermore, with its technology based on swath 
altimetry from the KaRIn, quasi-global coverage, and joint observation of surface water elevation, extent, 
river width, and slope, the SWOT mission, to be launched in 2022, will permit unprecedented monitoring 
of Amazon surface water and rivers at 100 m resolution in two horizontal dimensions. The centimetric 
accuracy in SWE and slope (Desai, 2018) will help to better characterize freshwater fluxes in the Amazon 
basin. The current satellite altimetry missions, especially the Copernicus program, are now setting the era 
of operational monitoring from space at large-scale for the coming decades, with clear benefits for large 
tropical transboundary watersheds such as the Amazon basin. With nearly two thousand virtual stations 
distributed over the basin, potentially hundreds more, freely available on multiple websites, conventional 
satellite altimetry can favorably complement the traditional and necessary in situ network. Since the main 
limitation for broader use of current satellite altimetry remains its relatively low temporal sampling, future 
missions in development, such as SMASH (Blumstein et al., 2019), broadcasted together with the current 
constellation, should help to tackle this issue. Further developments in satellite observations are neverthe-
less required to fully characterize Amazon surface water extent and elevation. They should combine, in the 
future, the benefits of SWOT swath global measurements with a high temporal sampling of SMASH-like 
constellation into a SWOT-like satellite constellation providing global and daily observations.

Besides the concept of new satellite missions, it is worth noticing that the upcoming unprecedented availa-
bility of information regarding Amazon surface water extent and elevations will challenge the current anal-
ysis capabilities. New development of analysis tools or fusion techniques with artificial intelligence to com-
bine various RS observations (visible, IR, MW, and GNSS-R) is needed. Similarly, new techniques for fusion 
with local to regional modeling, data assimilation, and better constraining of uncertain hydraulics should 
also dramatically increase our capacity to model the Amazon basin and the variations of its water cycle.
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Floodplain and river channel topography and bathymetry have not yet been fully characterized in the Am-
azon basin, despite recent efforts with local and regional estimates, preventing a better understanding of 
habitats related to flood pulse and limiting the accuracy of hydraulic models. In addition, the association 
between sediment concentration in rivers and channel migration is still poorly understood (Constantine 
et  al.,  2014). The development of new techniques and RS data for topography mapping is needed. The 
main challenge is vegetation removal, as many bands and sensors cannot penetrate vegetation. LiDAR and 
altimetric data, such as ICESat-2 (launched in 2018), which allow bare earth mapping, have still been little 
exploited in the Amazon basin for this task.

Interferometry and altimetry data have been used in the Congo basin to derive the floodplain bare earth 
DEM (Yuan et al., 2019), despite not being able to provide continuous topography. Furthermore, NISAR 
and SWOT satellites will open opportunities with more accurate estimates of the surface water extent and 
distributed SWE over water bodies. Thus, new methodologies for topographic mappings, such as the wa-
terline method (Salameh et al., 2019) and Flood2Topo (Fassoni-Andrade, Paiva, & Fleischmann, 2020), can 
be further developed. Nevertheless, observing river and floodplains bathymetry from space will remain a 
continuing challenge since adequate solutions for its direct measurement are still lacking, even if future 
altimetric observations seem to open a new way forward.

White, black, and clear water rivers of the Amazon basin have particular characteristics with large vari-
ations of COA (sediment, chlorophyll, and CDOM). Despite the development of many algorithms for es-
timating these components, little has been explored to implement those algorithms to address scientific 
questions, as Topp et al. (2020) reported worldwide. In addition, the characterization of natural processes, 
such as the spatio-temporal variation of phytoplankton in lakes, has not been widely explored. Sediment 
concentration estimates could be better exploited to assess the effects of dams, mining, and land use chang-
es in the Amazon basin. On the other hand, there are still technical challenges for these estimates using RS 
data, such as the high cloud cover in the basin. The main challenge is discretizing the COA spectra, which 
can be partially overcome with new sensors with high radiometric and spectral resolution.

The recent launch of the GRACE-FO mission offers an opportunity to extend the monitoring of TWS and 
GWS changes over more than two decades, allowing us to start analyzing the impact of multi-year cli-
matic events such as ENSO on land and groundwater storage throughout the Amazon basin. The major 
drawbacks of these data remain their low spatial and temporal (∼200 km and 1 month) resolutions which 
are not sufficient to study the dynamics of more local and rapid hydrological events. To overcome these 
drawbacks, the GRACE-FO payload contains advanced versions of the sensors used on GRACE, allowing 
a better-expected accuracy to improve the quality and the spatial resolution of the retrieved TWSA. Com-
bined with new methodological approaches based on a Kalman filter, it should increase the TWSA temporal 
resolution to quasi-daily without degrading the spatial resolution (Ramillien et al., 2015, 2020). With the 
upcoming availability of SWOT observations, unprecedented and finer estimates of surface water storage 
over large areas will improve the determination of GWS anomalies. They will allow us to understand better 
the interactions between flood dynamics and aquifer recharge in the Amazon basin. Groundwater exchange 
in the basin, which remains poorly characterized with satellites, should also benefit from integrating these 
new observations and could be further estimated in better constraining the water budget at the surface. A 
comprehensive set of observations dedicated to hydrology, with the continuity of the current satellite mis-
sions, is mandatory to improve our understanding of hydrology patterns through more precise water budget 
analyses and to assess long-term trends.

Given the uncertainties in both hydrological models and RS estimates, model calibration and data assimila-
tion techniques have been recently developed by incorporating mainly water level (satellite altimetry) data 
and, to a lesser extent, GRACE TWS. Other variables to be better assimilated are flood extent and storage, 
soil moisture, and evapotranspiration. While most hydrologic and hydraulic model applications have been 
used to estimate variables such as evapotranspiration, soil water storage, river discharge, surface water 
elevation, and extent, new studies must investigate other variables such as water flow velocity and flood 
storage. There is also a lack of convergence among water storage partitions (e.g., divergent estimates of sur-
face water fraction), which must be addressed by better constraining models with EO observations and by 
performing model intercomparison projects. On the other hand, while the Amazon wetlands were mainly 
studied for the central Amazon floodplains, other types of wetlands do exist, as the interfluvial ones in large 
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areas of the Llanos de Moxos, Pacaya-Samiria, and Negro. They deserve more efforts from the hydrological 
community, especially considering their particular flood dynamics, more dependent on local rainfall.

Furthermore, high-resolution 2D modeling of the full Amazon mainstem mapping velocity fields and the 
complex river-floodplain interactions still are not explored. The downstream part of the Amazon basin 
remains relatively unexplored in terms of hydrodynamic modeling and RS, for example, the relative roles 
of the upstream forcing and the oceanic influence on the dynamics of the river-estuary-ocean continu-
um. In addition to a better representation of hydrological processes, for example, groundwater dynamics 
that are poorly represented in surface hydrology-oriented models, hydrologic-hydrodynamic models' fu-
ture depends on the growing availability of new EO data. These include SWOT-derived water levels and 
discharges, channel water widths, floodplain topography, soil moisture (e.g., SMOS, SMAP), precipitation 
(e.g., SM2RAIN), gravimetry (GRACE-FO), and techniques to retrieve groundwater storages (e.g., Frappart 
et al., 2019). These data will promote the basis for modeling estimates at the high temporal and spatial 
resolution, aiming ultimately at providing locally relevant hydrological estimates everywhere (Bierkens 
et al., 2015; Wood et al., 2011).

While most major components of the water cycle have been relatively well addressed in the literature, as 
shown in this review, soil moisture stands out as the less reliable component. This low reliability relates to 
the difficulty of retrieving this variable under densely vegetated areas (Prigent et al., 2005). The relatively 
poor performance of current soil moisture data sets (e.g., SMAP, AMSR-E, and SMOS) in these environ-
ments is well known, even when products are combined (Liu et al., 2011) or merged (Aires et al., 2005; 
Kolassa et al., 2016). Most soil moisture-oriented studies were performed with hydrological models and in 
situ data in a few headwater locations. Moreover, there is an inherent ambiguity in passive microwave ob-
servations between water-saturated soils and surface waters. Consequently, the large surface water fraction 
in the Amazon basin affects the soil moisture retrievals by this type of observation. This ambiguity in the 
satellite observations has triggered the development of a product such as a SMOS-based surface water prod-
uct (Parrens et al., 2017). There is an urgent need to better monitor soil moisture at different spatial-tempo-
ral resolutions in the Amazon basin, especially considering its major role in controlling the Amazon forest 
dynamics and phenology, evapotranspiration, and the water cycle in general. This observation supports the 
development of SMOS-HR, the High-Resolution follow-on mission of SMOS, which is currently undergoing 
feasibility study by the French space agency and which goal is to ensure continuity of L-band measurements 
while increasing the spatial resolution to ∼10 km without degrading the radiometric sensitivity and keeping 
the revisit time of 3 days unchanged.

Similarly, river discharge, historically one of the first hydrological variables that have been observed in situ, 
is still not properly measured from space. This review stresses a need to accurately estimate river discharge 
using RS in Amazon with fine spatial and temporal resolution. River discharge has already been estimat-
ed indirectly by RS data (e.g., Brakenridge et al., 2007; LeFavour & Alsdorf, 2005; Tarpanelli et al., 2013; 
Zakharova et al., 2006), but still poorly complements the current in situ network of the Amazon basin. 
Upcoming missions, such as SWOT, in combination with current satellite missions, will soon help us move 
toward more comprehensive monitoring of river discharge in the Amazon basin.

The ongoing and future environmental alterations in the Amazon basin urge the understanding of the basin 
hydrology under the perspective of a changing system. The long-term effects of multiple human impacts 
(land use change, climate change, damming, mining, and fires) on the Amazon must be better understood. 
Changes in land-atmosphere feedback due to deforestation will affect the Amazon water cycle, but the 
magnitude of this change is still under debate. There is relatively little understanding of how they interact, 
especially in terms of how the impact of land-use changes in local climate can be different under large scale 
meteorological conditions that are changing with the global climate (e.g., Leite-Filho et al., 2020) and how 
these would affect the land and water ecosystems in the basin. Furthermore, techniques to map forest deg-
radation and discern primary and secondary vegetation are still relatively new. The impacts of those subtler 
but pervasive land-use changes on Amazon hydrology are yet to be understood. Finally, although the influ-
ence of the Amazon forest on the hydroclimate outside the Amazon has been increasingly documented, the 
consequences of its deforestation and degradation outside the basin are yet to be understood.
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Furthermore, the proliferation of dams in tropical basins as the Amazon, Congo, and the Mekong require ba-
sin-scale planning and analysis tools to foster mutual benefits in understanding these changes (e.g., Biswas 
et al., 2021; Latrubesse et al., 2017; Schmitt et al., 2019; Winemiller et al., 2016), and RS data stand out as 
powerful tool to monitor large scale impacts of existing man-made reservoirs (e.g., Resende et al., 2019), and 
infer their characteristics, such as water level and stage-area-volume relationships (e.g., Fassoni-Andrade, 
Paiva, & Fleischmann, 2020; Gao et al., 2012; Hoek et al., 2019). Better data and knowledge of these impacts 
are also the base for better hydro-geomorphological models that could quantify the expected impacts of 
planned reservoirs and, therefore, aid in creating designs that minimize environmental impacts.

7.4. How to Use RS-Based Scientific Advances to Foster Water Resources Management in the 
Amazon Basin?

While the Amazon basin served as an important natural laboratory for RS development that produced signifi-
cant scientific advances related to its hydrological processes in the last decades (Tables 7 and 8), the Amazon is 
currently undergoing extensive anthropogenic pressure (Section 6.4) and urgently calls for better basin-scale 
water resources planning and new environmental monitoring tools. RS has the potential to democratize 
essential information for decision-makers, for instance, to monitor “politically ungauged” regions where in-
formation is not publicly available (Gleason & Durand, 2020). Although RS is now a reality and documented 
knowledge on the Amazon basin is much better than decades ago, there is still an open road to move all these 
advances toward effective applications in decision making and water resources management.

Deforestation and fire monitoring may be the most advanced and promising examples in the context of Am-
azon environmental management. Since 1988, satellite-based monitoring systems using MODIS, Landsat 
and CBERS imagery as the DETER (Diniz et al., 2015, http://www.obt.inpe.br/OBT/assuntos/programas/
amazonia/deter/), PRODES (http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes), Ima-
zon (https://imazon.org.br/categorias/boletim-do-desmatamento/) and Queimadas (http://queimadas.dgi.
inpe.br/queimadas/portal) have been systematically supporting local governments and NGOs on the mon-
itoring and control of deforestation and fires. Technical advances made it possible to monitor deforestation 
in near real-time, on the scale of days, weeks, or months. However, institution building and related civil-so-
ciety engagement are still needed to facilitate effective actions within complex government frameworks and 
bridge the gap between technology and policy toward deforestation reduction (Finer et al., 2018).

Amazon neighborhood countries have mature Water Resources Agencies, Geology and Hydrometeorologi-
cal Services as the ANA, the Peruvian and Bolivian National Meteorology and Hydrology Services (SENAM-
HIs), and the Brazilian Geological Survey (CPRM). These institutions have dedicated efforts to the challeng-
ing task of systematically monitoring Amazon's vast territory and rivers and promoting open hydrological 
data sets. In this sense, RS is starting to be incorporated into operational monitoring (e.g., SIPAM http://
hidro.sipam.gov.br/, Hidrosat, Carvalho et  al.,  2015; near real-time flood simulations at sub-daily scale, 
Llauca et al., 2021). In particular, precipitation has been widely monitored through RS data by multiple 
meteorological agencies, while other water cycle variables have received less attention. These organizations 
have been developing technical reports about the national situation and water resources planning, includ-
ing the Amazon basin (e.g., Water Resources Situation Report, Agência Nacional de Águas, 2019a; National 
Water Security Plan, Agência Nacional de Águas, 2019b; flow forecasts at the national level and at hourly 
and daily scale by SENAMHI Peru available at: https://www.senamhi.gob.pe/?&p=pronostico-caudales). 
Currently, they are mostly supported by the national hydrometeorological networks that are still scarce and 
could be greatly enhanced with the data and knowledge produced by RS. Some of these countries also have 
advanced Water Resources Laws and regulations, such as the Brazilian National Water Resources Man-
agement System created by Law 9433, 1997 (Brasil, 1997), but most of the efforts on the development and 
implementation of such regulation are devoted to river basins in more densely populated regions and not in 
the context of the complexity of the international/transboundary and larger river basin of the world. Also, 
even though the Amazon basin is in the epicenter of international scientific discussion, it appears not to be 
the main focus of technical and scientific developments on the water resources field in the Amazon coun-
tries, as revealed by the recent synthesis of advances from Brazilian hydrology community (Paiva, 2020).

Most flooding studies in the Amazon aimed to understand ecosystem services and the natural system (Sec-
tions 4.2 and 6.2). Still, many Amazon urban centers are at flood risk (e.g., Amazon River at Iquitos, Ma-
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https://imazon.org.br/categorias/boletim-do-desmatamento/
http://queimadas.dgi.inpe.br/queimadas/portal
http://queimadas.dgi.inpe.br/queimadas/portal
http://hidro.sipam.gov.br/
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deira River at Porto Velho, Acre River at Rio Branco, Juruá river at Cruzeiro do Sul), and suffer annually 
from overbanking flow (Fleischmann et al., 2020). While this paper was being drafted, the Brazilian Acre 
state was recovering from a humanitarian crisis caused by floods at Acre River at Rio Branco, Juruá River at 
Cruzeiro do Sul, and Negro River at Manaus, enhanced by the COVID-19 pandemic. Thus, the several flood 
monitoring tools developed could be translated into effective flood risk mapping and real-time monitoring 
for disaster management. International initiatives such as the Copernicus Emergency Management Service 
(https://emergency.copernicus.eu/) and the International Charter “Space and Major Disasters” (https://
disasterscharter.org/) have the potential to provide important EO data for real-time disaster management. 
Furthermore, the transboundary character of many Amazon sub-basins (e.g., Madeira River, with floods at 
Porto Velho in Brazil being partially generated in upstream Bolivian reaches) makes RS data a fundamental 
tool to fulfill the disparity in data availability among countries. On the other hand, in many areas of the Am-
azon, droughts have a larger societal impact than floods, given the adaptation of livelihoods to the annual 
flooding regime and the interruption of the provision of goods and general transport through rivers during 
extremely dry periods (Zeng et al., 2008). Recent technical efforts include evaluation of hydrological fore-
casts from physically based hydrological models supported by RS (Section 6.2), development of site-specific 
statistical forecasting and real-time monitoring systems (e.g., SACE system from http://www.cprm.gov.br/
sace/; systems available for the Madeira, Acre, Xingu, Branco and some reaches of the Amazon mainstem), 
prototypes of hydrological model-based monitoring systems (e.g., South America River Discharge Moni-
tor - SARDIM https://sardim.herokuapp.com/; Reis et al., 2020), global flood forecast systems (e.g., GLO-
FAS, Alfieri et al., 2013) and efforts on monitoring and alerts of natural hazards by centers as CEMADEN 
from Brazil (Centro Nacional de Alerta e Monitoramento de Desastres Naturais). Drought monitor systems 
based on in situ and RS-based observations and local community interpretation (e.g., ANA Drought Mon-
itor http://monitordesecas.ana.gov.br/) are evolving, and there are no operational hydrological forecasting 
systems at the Amazon basin, national or continental scales (Fan et al., 2016).

Impacts from human activities may propagate through the Amazon River network and neighbor countries 
since the ongoing developments of hydropower projects, and agricultural expansion alters the hydrolog-
ical, sediments, and ecosystem dynamics (Anderson de Castro et al., 2018; Forsberg et al., 2017). Recent 
research has explored integrated planning looking for the best hydropower development solutions (Almeida 
et al., 2020; Winemiller et al., 2016), while organizations, like the Amazon Cooperation Treaty Organiza-
tion, aim to promote sustainable development at the Amazon basin with the participation of its neighboring 
countries. However, current national-scale policies and regulations do not promote fully integrated water 
resources planning, as new projects are usually accessed individually. RS can encourage a common and 
transparent understanding of Amazon water-related issues.

The RS scientific community now has the challenge to promote knowledge, data sets, and applications 
on water-environmental changes, aiming at enhanced water resources management and planning. Poten-
tial pathways include: (a) training decision-makers and multiple stakeholders on the language of RS (e.g., 
Applied Remote Sensing Training Program - ARSET https://appliedsciences.nasa.gov/what-we-do/capaci-
ty-building/arset), (b) encouraging local engagement by bridging the gap between RS based science and in 
situ and traditional knowledge (Runde et al., 2020), (c) initiatives of science communication and citizen sci-
ence (Buytaert et al., 2014; e.g., www.amazoniacienciaciudadana.org/, https://www.ufrgs.br/conexoesam-
azonicas/, https://ipam.org.br/biblioteca/?biblioteca=artigos-cientificos, https://imazon.org.br/categorias/
outros/, https://infoamazonia.org/), (d) development of open access data sets focused on specific applica-
tions (e.g., aquatic ecosystem conservation; Venticinque et al., 2016); (e) developing monitoring systems fo-
cused on environmental changes and water-related disasters, (f) developing open hydrological repositories 
(e.g., HYBAM, https://hybam.obs-mip.fr/, SERVIR-Amazonia, https://servir.ciat.cgiar.org/), and (g) devel-
oping a basin-scale research agenda focused on directly supporting water resources decision making (e.g., 
scenarios of hydropower development; Almeida et al., 2020).

7.5. Recommendations

Based on the knowledge gaps and the perspectives presented in the previous sections, we provide the fol-
lowing recommendations for future studies on Amazon waters from space.
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7.5.1. Recommendation 1: Observations

Current limitations of satellite data for the Amazon basin are often related to the space-time resolution (e.g., 
SWE and slope, surface water extent, ET), time span (e.g., surface water extent, TWS, GWS, ET, topography), 
and accuracy (e.g., surface water extent, GWS anomalies). The largest limitations in monitoring the Ama-
zon hydrology from space refer to soil moisture and river discharge, which have been poorly addressed due 
to vegetation interference in sensors or by the nature of the variable, respectively, which hampers its esti-
mation from the space. Similarly, river and floodplain channel bathymetry provides great challenges, that 
may be solved with the assimilation of altimetry data into models. The increasing availability of long-term 
archives of RS data sets should be ensured by national space and water agencies in complement to existing 
in situ monitoring networks, which are fundamental to properly calibrate and validate RS estimates. The 
latency time of RS data distribution (e.g., precipitation and SWE) should be reduced to a few hours to be 
used by water/risk management. Ensuring satellite observation to be archived into climatic data sets can 
foster the understanding of the impacts of climate change and human activities on the basin.

7.5.2. Recommendation 2: Models, Algorithms, and Integration

Technical limitations are related to the development of algorithms (e.g., orographic rains, CDOM and chlo-
rophyll retrieval, water budget closure, and hydrodynamic models), and data fusion (e.g., ET, SWE, and 
surface water extent). The recognition of uncertainties in multiple RS data and trade-offs between temporal 
and spatial resolution point to the need for more integrative approaches, for example, for mapping long-
term flooding and evapotranspiration patterns at high spatio-temporal resolutions, and artificial intelli-
gence will play a major role in this. The better coupling of EO data sets with hydrological-hydraulic models 
and land surface models (e.g., data assimilation, spatiotemporal interpolation) is also a necessary step for-
ward in Earth System modeling by considering the dynamic aspect of Amazon hydrology.

7.5.3. Recommendation 3: Characterization of Hydrological Processes in a Changing Amazon

The development of long-term data sets is fundamental to understand Amazon hydrological processes 
across multiple decades. While RS data currently focus on a set of a few hydrological variables, many others 
require more attention from the hydrologic community, such as river discharge and water velocity, surface 
and groundwater storage, soil moisture, CDOM, and Chlorophyll-a. Most studies in the Amazon basin also 
focus on a few areas (e.g., the várzea environment in the central Amazon floodplains), and many other com-
plex river-wetland systems or streams and small rivers, especially in the Andean region, also require atten-
tion. Upcoming and future satellite observations will bring new opportunities for the Amazon basin regard-
ing the characterization of natural processes, including phytoplankton in waters, floodplain topography, 
aquatic ecosystems, groundwater dynamics, and the monitoring of anthropogenic environmental changes.

7.5.4. Recommendation 4: Toward the Use of RS to Support Sustainable Science in the Amazon 
Basin

The Amazon basin harbors an incredibly large and still poorly known biodiversity, which provides massive 
ecosystem services for the globe and some of the most complex and intriguing river-wetland systems in the 
world. While EO through satellites has provided breakthrough scientific advances on the comprehension 
of the Amazon water cycle in the last decades, the forthcoming years with the new hydrology-oriented mis-
sions will provide a new milestone on monitoring Amazon waters from space. Advance knowledge from RS 
should be translated into valuable information and indicators to support the Amazon basin's environmental 
governance and sustainable science. RS has the potential to democratize essential information for deci-
sion-makers, moving toward a more sustainable future for the largest basin in the world.

Data Availability Statement
This is a review study for which no new data was generated. Data supporting the figures are available via 
the cited references.
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