9 research outputs found

    A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs

    Get PDF
    In this paper, we develop a new graph kernel, namely the Hierarchical Transitive-Aligned kernel, by transitively aligning the vertices between graphs through a family of hierarchical prototype graphs. Comparing to most existing state-of-the-art graph kernels, the proposed kernel has three theoretical advantages. First, it incorporates the locational correspondence information between graphs into the kernel computation, and thus overcomes the shortcoming of ignoring structural correspondences arising in most R-convolution kernels. Second, it guarantees the transitivity between the correspondence information that is not available for most existing matching kernels. Third, it incorporates the information of all graphs under comparisons into the kernel computation process, and thus encapsulates richer characteristics. By transductively training the C-SVM classifier, experimental evaluations demonstrate the effectiveness of the new transitive-aligned kernel. The proposed kernel can outperform state-of-the-art graph kernels on standard graph-based datasets in terms of the classification accuracy

    QESK: Quantum-based Entropic Subtree Kernels for Graph Classification

    Full text link
    In this paper, we propose a novel graph kernel, namely the Quantum-based Entropic Subtree Kernel (QESK), for Graph Classification. To this end, we commence by computing the Average Mixing Matrix (AMM) of the Continuous-time Quantum Walk (CTQW) evolved on each graph structure. Moreover, we show how this AMM matrix can be employed to compute a series of entropic subtree representations associated with the classical Weisfeiler-Lehman (WL) algorithm. For a pair of graphs, the QESK kernel is defined by computing the exponentiation of the negative Euclidean distance between their entropic subtree representations, theoretically resulting in a positive definite graph kernel. We show that the proposed QESK kernel not only encapsulates complicated intrinsic quantum-based structural characteristics of graph structures through the CTQW, but also theoretically addresses the shortcoming of ignoring the effects of unshared substructures arising in state-of-the-art R-convolution graph kernels. Moreover, unlike the classical R-convolution kernels, the proposed QESK can discriminate the distinctions of isomorphic subtrees in terms of the global graph structures, theoretically explaining the effectiveness. Experiments indicate that the proposed QESK kernel can significantly outperform state-of-the-art graph kernels and graph deep learning methods for graph classification problems

    HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph Classification

    Full text link
    In this work, we propose a family of novel quantum kernels, namely the Hierarchical Aligned Quantum Jensen-Shannon Kernels (HAQJSK), for un-attributed graphs. Different from most existing classical graph kernels, the proposed HAQJSK kernels can incorporate hierarchical aligned structure information between graphs and transform graphs of random sizes into fixed-sized aligned graph structures, i.e., the Hierarchical Transitive Aligned Adjacency Matrix of vertices and the Hierarchical Transitive Aligned Density Matrix of the Continuous-Time Quantum Walk (CTQW). For a pair of graphs to hand, the resulting HAQJSK kernels are defined by measuring the Quantum Jensen-Shannon Divergence (QJSD) between their transitive aligned graph structures. We show that the proposed HAQJSK kernels not only reflect richer intrinsic global graph characteristics in terms of the CTQW, but also address the drawback of neglecting structural correspondence information arising in most existing R-convolution kernels. Furthermore, unlike the previous Quantum Jensen-Shannon Kernels associated with the QJSD and the CTQW, the proposed HAQJSK kernels can simultaneously guarantee the properties of permutation invariant and positive definiteness, explaining the theoretical advantages of the HAQJSK kernels. Experiments indicate the effectiveness of the proposed kernels

    The Pyramid Quantized Weisfeiler-Lehman Graph Representation

    Get PDF
    International audienceGraphs are flexible and powerful representations for non-vectorial structured data. Graph kernels have been shown to enable efficient and accurate statistical learning on this important domain, but many graph kernel algorithms have high order polynomial time complexity. Efficient graph kernels rely on a discrete node labeling as a central assumption. However, many real world domains are naturally described by continuous or vector valued node labels. In this article, we propose an efficient graph representation and comparison scheme for large graphs with continuous vector labels, the pyramid quantized Weisfeiler-Lehman graph representation. Our algorithm considers statistics of subtree patterns with discrete labels based on the Weisfeiler-Lehman algorithm and uses a pyramid quantization strategy to determine a logarithmic number of discrete labelings that results in a representation that guarantees a multiplicative error bound on an approximation to the optimal partial matching. As a result, we approximate a graph representation with continuous vector labels as a sequence of graphs with increasingly granular discrete labels. We evaluate our proposed algorithm on two different tasks with real datasets, on a fMRI analysis task and on the generic problem of 3D shape classification. Source code of the implementation can be downloaded from. https://web.imis.athena-innovation.gr/~kgkirtzou/Projects/WLpyramid.htm

    The Pyramid Quantized Weisfeiler-Lehman Graph Representation

    No full text
    © 2015 Elsevier B.V.. Graphs are flexible and powerful representations for non-vectorial structured data. Graph kernels have been shown to enable efficient and accurate statistical learning on this important domain, but many graph kernel algorithms have high order polynomial time complexity. Efficient graph kernels rely on a discrete node labeling as a central assumption. However, many real world domains are naturally described by continuous or vector valued node labels. In this paper, we propose an efficient graph representation and comparison scheme for large graphs with continuous vector labels, the pyramid quantized Weisfeiler-Lehman graph representation. Our algorithm considers statistics of subtree patterns with discrete labels based on the Weisfeiler-Lehman algorithm and uses a pyramid quantization strategy to determine a logarithmic number of discrete labelings that results in a representation that guarantees a multiplicative error bound on an approximation to the optimal partial matching. As a result, we approximate a graph representation with continuous vector labels as a sequence of graphs with increasingly granular discrete labels. We evaluate our proposed algorithm on two different tasks with real datasets, on a fMRI analysis task and on the generic problem of 3D shape classification. Source code of the implementation can be downloaded from https://web.imis.athena-innovation.gr/~kgkirtzou/Projects/WLpyramid.html.publisher: Elsevier articletitle: The pyramid quantized Weisfeiler–Lehman graph representation journaltitle: Neurocomputing articlelink: http://dx.doi.org/10.1016/j.neucom.2015.09.023 content_type: article copyright: Copyright © 2015 Elsevier B.V. All rights reserved.status: publishe

    La régularisation parcimonieuse et la représentation à base de graphiques dans l'imagerie médicale

    No full text
    Les images médicales sont utilisées afin de représenter l'anatomie. Le caractère non- linéaire d'imagerie médicale rendent leur analyse difficile. Dans cette thèse, nous nous intéressons à l'analyse d'images médicales du point de vue de la théorie statistique de l'apprentissage. Tout d'abord, nous examinons méthodes de régularisation. Dans cette direction, nous introduisons une nouvelle méthode de régularisation, la k-support regularized SVM. Cet algorithme étend la SVM régularisée 1 à une norme mixte de toutes les deux normes 1 et 2. Ensuite, nous nous intéressons un problème de comparaison des graphes. Les graphes sont une technique utilisée pour la représentation des données ayant une structure héritée. L'exploitation de ces données nécessite la capacité de comparer des graphes. Malgré le progrès dans le domaine des noyaux sur graphes, les noyaux sur graphes existants se concentrent à des graphes non-labellisés ou labellisés de façon discrète, tandis que la comparaison de graphes labellisés par des vecteurs continus, demeure un problème de recherche ouvert. Nous introduisons une nouvelle méthode, l'algorithme de Weisfeiler-Lehman pyramidal et quantifié afin d'aborder le problème de la comparaison des graphes labellisés par des vecteurs continus. Notre algorithme considère les statistiques de motifs sous arbre, basé sur l'algorithme Weisfeiler-Lehman ; il utilise une stratégie de quantification pyramidale pour déterminer un nombre logarithmique de labels discrets. Globalement, les graphes étant des objets mathématiques fondamentaux et les méthodes de régularisation étant utilisés pour contrôler des problèmes mal-posés, notre algorithmes pourraient appliqués sur un grand éventail d'applications.Medical images have been used to depict the anatomy or function. Their high-dimensionality and their non-linearity nature makes their analysis a challenging problem. In this thesis, we address the medical image analysis from the viewpoint of statistical learning theory. First, we examine regularization methods for analyzing MRI data. In this direction, we introduce a novel regularization method, the k-support regularized Support Vector Machine. This algorithm extends the 1 regularized SVM to a mixed norm of both 1 and 2 norms. We evaluate our algorithm in a neuromuscular disease classification task. Second, we approach the problem of graph representation and comparison for analyzing medical images. Graphs are a technique to represent data with inherited structure. Despite the significant progress in graph kernels, existing graph kernels focus on either unlabeled or discretely labeled graphs, while efficient and expressive representation and comparison of graphs with continuous high-dimensional vector labels, remains an open research problem. We introduce a novel method, the pyramid quantized Weisfeiler-Lehman graph representation to tackle the graph comparison problem for continuous vector labeled graphs. Our algorithm considers statistics of subtree patterns based on the Weisfeiler-Lehman algorithm and uses a pyramid quantization strategy to determine a logarithmic number of discrete labelings. We evaluate our algorithm on two different tasks with real datasets. Overall, as graphs are fundamental mathematical objects and regularization methods are used to control ill-pose problems, both proposed algorithms are potentially applicable to a wide range of domains.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    La régularisation parcimonieuse et la représentation à base de graphiques dans l'imagerie médicale

    No full text
    Medical images have been used to depict the anatomy or function. Their high-dimensionality and their non-linearity nature makes their analysis a challenging problem. In this thesis, we address the medical image analysis from the viewpoint of statistical learning theory. First, we examine regularization methods for analyzing MRI data. In this direction, we introduce a novel regularization method, the k-support regularized Support Vector Machine. This algorithm extends the 1 regularized SVM to a mixed norm of both `1 and `2 norms. We evaluate our algorithm in a neuromuscular disease classification task. Second, we approach the problem of graph representation and comparison for analyzing medical images. Graphs are a technique to represent data with inherited structure. Despite the significant progress in graph kernels, existing graph kernels focus on either unlabeled or discretely labeled graphs, while efficient and expressive representation and comparison of graphs with continuous high-dimensional vector labels, remains an open research problem. We introduce a novel method, the pyramid quantized Weisfeiler-Lehman graph representation to tackle the graph comparison problem for continuous vector labeled graphs. Our algorithm considers statistics of subtree patterns based on the Weisfeiler-Lehman algorithm and uses a pyramid quantization strategy to determine a logarithmic number of discrete labelings. We evaluate our algorithm on two different tasks with real datasets. Overall, as graphs are fundamental mathematical objects and regularization methods are used to control ill-pose problems, both proposed algorithms are potentially applicable to a wide range of domains.Les images médicales sont utilisées afin de représenter l'anatomie. Le caractère non- linéaire d'imagerie médicale rendent leur analyse difficile. Dans cette thèse, nous nous intéressons à l'analyse d'images médicales du point de vue de la théorie statistique de l'apprentissage. Tout d'abord, nous examinons méthodes de régularisation. Dans cette direction, nous introduisons une nouvelle méthode de régularisation, la k-support regularized SVM. Cet algorithme étend la SVM régularisée `1 à une norme mixte de toutes les deux normes `1 et `2. Ensuite, nous nous intéressons un problème de comparaison des graphes. Les graphes sont une technique utilisée pour la représentation des données ayant une structure héritée. L'exploitation de ces données nécessite la capacité de comparer des graphes. Malgré le progrès dans le domaine des noyaux sur graphes, les noyaux sur graphes existants se concentrent à des graphes non-labellisés ou labellisés de façon discrète, tandis que la comparaison de graphes labellisés par des vecteurs continus, demeure un problème de recherche ouvert. Nous introduisons une nouvelle méthode, l'algorithme de Weisfeiler-Lehman pyramidal et quantifié afin d'aborder le problème de la comparaison des graphes labellisés par des vecteurs continus. Notre algorithme considère les statistiques de motifs sous arbre, basé sur l'algorithme Weisfeiler-Lehman ; il utilise une stratégie de quantification pyramidale pour déterminer un nombre logarithmique de labels discrets. Globalement, les graphes étant des objets mathématiques fondamentaux et les méthodes de régularisation étant utilisés pour contrôler des problèmes mal-posés, notre algorithmes pourraient appliqués sur un grand éventail d'applications
    corecore