17 research outputs found

    Performance of the decoupled ACRI-1 architecture: The perfect club

    Get PDF

    Recursos anchos: una técnica de bajo coste para explotar paralelismo agresivo en códigos numéricos

    Get PDF
    Els bucles son la part que més temps consumeix en les aplicacions numèriques. El rendiment dels bucles està limitat tant pels recursos oferts per l'arquitectura com per les recurrències del bucle en la computació. Per executar més operacions per cicle, els processadors actuals es dissenyen amb graus creixents de replicació de recursos (tècnica de replicació) para ports de memòria i unitats funcionals. En canvi, el gran cost en termes d'àrea i temps de cicle d'aquesta tècnica limita tenir alts graus de replicació: alts valors en temps de cicle contraresten els guanys deguts al decrement en el nombre de cicles, mentre que alts valors en l'àrea requerida poden portar a configuracions impossibles d'implementar. Una alternativa a la replicació de recursos, és fer los més amples (tècnica que anomenem "widening"), i que ha estat usada en alguns dissenys recents. Amb aquesta tècnica, l'amplitud dels recursos s'amplia, fent una mateixa operació sobre múltiples dades. Per altra banda, alguns microprocessadors escalars de propòsit general han estat implementats amb unitats de coma flotants que implementen la instrucció sumar i multiplicar unificada (tècnica de fusió), el que redueix la latència de la operació combinada, tanmateix com el nombre de recursos utilitzats. A aquest treball s'avaluen un ampli conjunt d'alternatives de disseny de processadors VLIW que combinen les tres tècniques. S'efectua una projecció tecnològica de les noves generacions de processadors per predir les possibles alternatives implementables. Com a conclusió, demostrem que tenint en compte el cost, combinar certs graus de replicació i "widening" als recursos hardware és més efectiu que aplicar únicament replicació. Així mateix, confirmem que fer servir unitats que fusionen multiplicació i suma pot tenir un impacte molt significatiu en l'increment de rendiment en futures arquitectures de processadors a un cost molt raonable.Loops are the main time-consuming part of numerical applications. The performance of the loops is limited either by the resources offered by the architecture or by recurrences in the computation. To execute more operations per cycle, current processors are designed with growing degrees of resource replication (replication technique) for memory ports and functional units. However, the high cost in terms of area and cycle time of this technique precludes the use of high degrees of replication. High values for the cycle time may clearly offset any gain in terms of number of execution cycles. High values for the area may lead to an unimplementable configuration. An alternative to resource replication is resource widening (widening technique), which has also been used in some recent designs in which the width of the resources is increased (i.e., a single operation is performed over multiple data). Moreover, several general-purpose superscalar microprocessors have been implemented with multiply-add fused floating point units (fusion technique), which reduces the latency of the combined operation and the number of resources used. On this thesis, we evaluate a broad set of VLIW processor design alternatives that combine the three techniques. We perform a technological projection for the next processor generations in order to foresee the possible implementable alternatives. From this study, we conclude that if the cost is taken into account, combining certain degrees of replication and widening in the hardware resources is more effective than applying only replication. Also, we confirm that multiply-add fused units will have a significant impact in raising the performance of future processor architectures with a reasonable increase in cost

    Efficient memory-level parallelism extraction with decoupled strands

    Get PDF
    We present Outrider, an architecture for throughput-oriented processors that exploits intra-thread memory-level parallelism (MLP) to improve performance efficiency on highly threaded workloads. Outrider enables a single thread of execution to be presented to the architecture as multiple decoupled instruction streams, consisting of either memory accessing or memory consuming instructions. The key insight is that by decoupling the instruction streams, the processor pipeline can expose MLP in a way similar to out-of-order designs while relying on a low-complexity in-order micro-architecture. Instead of adding more threads as is done in modern GPUs, Outrider can expose the same MLP with fewer threads and reduced contention for resources shared among threads. We demonstrate that Outrider can outperform single-threaded cores by 23-131% and a 4-way simultaneous multi-threaded core by up to 87% in data parallel applications in a 1024-core system. Outrider achieves these performance gains without incurring the overhead of additional hardware thread contexts, which results in improved efficiency compared to a multi-threaded core

    The Use of Caching in Decoupled Multiprocessors with Shared Memory

    Get PDF

    The Effectiveness of Decoupling

    Get PDF

    Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    Get PDF
    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time

    Empirical and Statistical Application Modeling Using on -Chip Performance Monitors.

    Get PDF
    To analyze the performance of applications and architectures, both programmers and architects desire formal methods to explain anomalous behavior. To this end, we present various methods that utilize non-intrusive, performance-monitoring hardware only recently available on microprocessors to provide further explanations of observed behavior. All the methods attempt to characterize and explain the instruction-level parallelism achieved by codes on different architectures. We also present a prototype tool automating the analysis process to exploit the advantages of the empirical and statistical methods proposed. The empirical, statistical and hybrid methods are discussed and explained with case study results provided. The given methods further the wealth of tools available to programmer\u27s and architects for generally understanding the performance of scientific applications. Specifically, the models and tools presented provide new methods for evaluating and categorizing application performance. The empirical memory model serves to quantify the hierarchical memory performance of applications by inferring the incurred latencies of codes after the effect of latency hiding techniques are realized. The instruction-level model and its extensions model on-chip performance analytically giving insight into inherent performance bottlenecks in superscalar architectures. The statistical model and its hybrid extension provide other methods of categorizing codes via their statistical variations. The PTERA performance tool automates the use of performance counters for use by these methods across platforms making the modeling process easier still. These unique methods provide alternatives to performance modeling and categorizing not available previously in an attempt to utilize the inherent modeling capabilities of performance monitors on commodity processors for scientific applications

    Limits of a decoupled out-of-order superscalar architecture

    Get PDF

    Performance mapping of a class of fully decoupled architecture

    Get PDF

    Improving heterogeneous system efficiency : architecture, scheduling, and machine learning

    Get PDF
    Computer architects are beginning to embrace heterogeneous systems as an effective method to utilize increases in transistor densities for executing a diverse range of workloads under varying performance and energy constraints. As heterogeneous systems become more ubiquitous, architects will need to develop novel CPU scheduling techniques capable of exploiting the diversity of computational resources. In recognizing hardware diversity, state-of-the-art heterogeneous schedulers are able to produce significant performance improvements over their predecessors and enable more flexible system designs. Nearly all of these, however, are unable to efficiently identify the mapping schemes which will result in the highest system performance. Accurately estimating the performance of applications on different heterogeneous resources can provide a significant advantage to heterogeneous schedulers for identifying a performance maximizing mapping scheme to improve system performance. Recent advances in machine learning techniques including artificial neural networks have led to the development of powerful and practical prediction models for a variety of fields. As of yet, however, no significant leaps have been taken towards employing machine learning for heterogeneous scheduling in order to maximize system throughput. The core issue we approach is how to understand and utilize the rise of heterogeneous architectures, benefits of heterogeneous scheduling, and the promise of machine learning techniques with respect to maximizing system performance. We present studies that promote a future computing model capable of supporting massive hardware diversity, discuss the constraints faced by heterogeneous designers, explore the advantages and shortcomings of conventional heterogeneous schedulers, and pioneer applying machine learning to optimize mapping and system throughput. The goal of this thesis is to highlight the importance of efficiently exploiting heterogeneity and to validate the opportunities that machine learning can offer for various areas in computer architecture.Arquitectos de computadores estan empesando a diseñar systemas heterogeneos como una manera efficiente de usar los incrementos en densidades de transistors para ejecutar una gran diversidad de programas corriendo debajo de differentes condiciones y requisitos de energia y rendimiento (performance). En cuanto los sistemas heterogeneos van ganando popularidad de uso, arquitectos van a necesitar a diseñar nuevas formas de hacer el scheduling de las applicaciones en los cores distintos de los CPUs. Schedulers nuevos que tienen en cuenta la heterogeniedad de los recursos en el hardware logran importantes beneficios en terminos de rendimiento en comparacion con schedulers hecho para sistemas homogenios. Pero, casi todos de estos schedulers heterogeneos no son capaz de poder identificar la esquema de mapping que produce el rendimiento maximo dado el estado de los cores y las applicaciones. Estimando con precision el rendimiento de los programas ejecutando sobre diferentes cores de un CPU es un a gran ventaja para poder identificar el mapping para lograr el mejor rendimiento posible para el proximo scheduling quantum. Desarollos nuevos en la area de machine learning, como redes neurales, han producido predictores muy potentes y con gran precision in disciplinas numerosas. Pero en estos momentos, la aplicacion de metodos de machine learning no se han casi explorados para poder mejorar la eficiencia de los CPUs y menos para mejorar los schedulers para sistemas heterogeneos. El tema de enfoque en esta tesis es como poder entender y utilizar los sistemas heterogeneos, los beneficios de scheduling para estos sistemas, y como aprovechar las promesas de los metodos de machine learning con respeto a maximizer el redimiento de el Sistema. Presentamos estudios que dan una esquema para un modelo de computacion para el futuro capaz de dar suporte a recursos heterogeneos en gran escala, discutimos las restricciones enfrentados por diseñadores de sistemas heterogeneos, exploramos las ventajas y desventajas de las ultimas schedulers heterogeneos, y abrimos el camino de usar metodos de machine learning para optimizer el mapping y rendimiento de un sistema heterogeneo. El objetivo de esta tesis es destacar la imporancia de explotando eficientemente la heterogenidad de los recursos y tambien validar las oportunidades para mejorar la eficiencia en diferente areas de arquitectura de computadoras que pueden ser realizadas gracias a machine learning.Postprint (published version
    corecore