
The Limits of a Decoupled Out-of-Order 
Superscalar Architecture 

Graham P. Jones 

Doctor of Philosophy 
University of Edinburgh 

1999 

c.) 



Declaration 

I declare that this thesis was composed by myself and that the work contained 

therein is my own, except where explicitly stated otherwise in the text. 

(Graham P. Jones) 



Abstract 
This thesis presents a study into a technique for improving performance in out-

of-order superscalar architectures. It identifies three technological trends limiting 

superscalar performance; they are the increasing cost of a main memory access, 

control dependencies and the greater hardware complexity of out-of-order execu-

tion. 

Decoupling is a technique that can provide higher performance through the 

mechanism of dynamically reordering, asynchronous instruction streams. It of-

fers the capability to improve ILP, through effective latency hiding and dynamic 

scheduling, and to reduce hardware complexity, through decentralised logic. This 

thesis evaluates this capability, by investigating the effectiveness of decoupled 

out-of-order superscalar architectures. 

This thesis identifies the degree to which operations can reorder (the degree of 

reordering) as the critical dimension to an out-of-order superscalar architecture. It 

investigates the effectiveness of decoupling by focusing on those design issues that 

determine the degree of reordering, and relaxes all other architectural constraints. 

This approach allows us to establish the limitations of decoupled out-of-order 

superscalar architectures. 

This thesis shows that a decoupled architecture, through its dynamically re-

ordering instructions windows, provides a possible solution to the problem of 

latency hiding and issue logic complexity. This thesis demonstrate that for large 

memory latencies, a decoupled architecture with 2 instruction streams is less 

sensitive to increases in memory latency than a conventional single stream su-

perscalar architecture. The results also show that for memory latencies greater 

than 20 cycles, a decoupled architecture can achieve a higher speedup than a 

conventional superscalar architecture with twice the individual window sizes of a 

decoupled unit. An explanation for this effect is provided through the concept of 

the Effective Window Size. 

The thesis also investigates a 3-stream decoupled superscalar architecture, 

that provides dedicated hardware support for resolving control dependencies. The 

results show that for the partitioning algorithm used in this thesis, the load 

balancing is poor and the extra hardware resources are under utilised. For this 

reason the majority of the thesis focuses on a 2 stream decoupled architecture. 
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Chapter 1 

Introduction 

This thesis presents a study into a technique for improving instruction level par-

allelism (ILP) and reducing the hardware complexity of out-of-order execution in 

high performance superscalar architectures. Since the mid-80's we have witnessed 

a rapid increase in processor performance (on average about 35% per year [451). 

To sustain this rate of increase will require innovative techniques capable of detect-

ing greater levels of parallelism and hiding the effect of deleterious technological 

trends. This thesis explores the application of one such technique, the decoupling 

paradigm, in superscalar architectures. Decoupling is a technique that provides 

high ILP and latency tolerance through dynamically reordering, asynchronous 

instruction streams. 

This chapter identifies the technological trends that represent major bottle-

necks to superscalar performance. It describes how decoupling could be a poten-

tial solution to these problems and outlines the methodology used in the thesis. 

The current generation of superscalar architectures, the Alpha 21264 [42],PA-

RISC [27],PowerPC 604 [76],SPARC-64 [85],MIPS R10000 [91], all achieve high 

performance through a hardware scheduling mechanism. This mechanism dynami-

cally resolves data dependencies, issues operations out-of-order and executes multi-

ple operations per cycle. Decoded instructions are placed in a buffer known as the 

instruction issue window, where they wait until their operands become available. 

Arbitration logic then selects and issues ready operations to the function units. The 

maximum number of instructions issued per cycle is known as the issue width; an 

architecture with an issue width of size ii is also referred to as an n-way super-

scalar machine. To increase ILP in future machines will require larger instruction 

issue widths and instruction issue windows; this will need greater hardware com-

plexity and increase the length of paths critical to the processor clock speed [64]. 

To resolve this problem designers are considering the use of decentralised control 

logic to increase ILP without effecting clock speed [39, 42, 75, 51, 811. However 
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this will not solve some of the other bottlenecks to higher ILP. 

The exponentially widening gap between memory and processor speeds means 

that the cost of a main memory access, in terms of missed instruction issue slots, is 

becoming more expensive. Wulf [89] has referred to the long term consequences 

of the speed disparity as hitting the memory wail; the point at which making 

the processor faster produces no performance gain because memory latencies will 

dominate. Under one scenario Wulf predicts this could occur shortly after the 

millennium. In addition, the wider issue widths of future superscalar architec-

tures will place greater pressure on the memory system, requiring high sustained 

bandwidth and low access latency. For these reasons latency hiding techniques such 

as non-blocking loads [36], stream buffers [50, 77] and data prefetching [18, 16], 

will remain an important area for architectural research. In the future software 

and hardware technology will provide greater opportunities for these techniques 

to optimise memory accesses and hide latencies. 

Another bottleneck to detecting parallelism is control dependencies [57]. These 

dependencies exist between conditional branches and those operations whose ex-

ecution is dependent on their outcome. Control dependencies limit the amount of 

reordering that can take place between operations; in [45] the ratio of conditional 

statements to other operations for the SPEC92 benchmarks is given as 1 in 5 

and 1 in 10 for integer and floating point programs, respectively. To resolve this 

problem designers have used techniques like loop unrolling, branch prediction and 

speculative execution. 

This thesis postulates that the decoupling paradigm could offer a solution to 

the three fundamental problems; 

high memory latencies. 

control dependencies. 

issue logic complexity. 

The decoupling paradigm comprises two types of decoupling, access and con-

trol. Access decoupling [37, 72, 80, 90], the most familiar type of decoupling, is a 

latency hiding technique that partitions - statically or dynamically - a program 

into two instruction streams to aggressively prefetch data. One stream executed 

on an address unit (AU) fetches data for the second stream, executed on a data 

unit (DU). Memory accesses can then be pipelined to tolerate large memory la-

tencies provided the two streams can decouple sufficiently. The decoupling of the 

streams is also referred to as the slippage [71]. 
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In [9] it was suggested that the decoupling paradigm could be extended to 

hide the latency of control operations. This technique requires generating an 

additional stream of operations responsible for resolving control decisions ahead 

of the computation streams (AU and DU). This stream, loosely coupled from the 

computation streams, executes on a control unit (CU). This technique is referred 

to as control decoupling. 

This thesis investigates, for the first time, a decoupled architecture in which 

the processing units are capable of n-way out-of-order superscalar execution. This 

means operation reordering can occur between (inter) and within (intra) instruc-

tion streams. The former is supported by decentralised control logic which allows 

the loosely coupled streams to slip relative to each other. The latter is supported 

through each unit having separate instruction windows and issue logic. Previous 

work on decoupling [81, 7, 37, 72] had only considered the use of single issue, in-

order processing units with the compiler being responsible for generating compact 

schedules for each stream. In 1997, Tyson's thesis [81], suggested that future work 

should investigate the use of superscalar units in a decoupled machine. The major 

contribution of this thesis is to provide a detailed analysis of such an architecture. 

1.1 Thesis methodology 

The most critical dimension to an out-of-order superscalar machine's performance 

is the degree to which operations can reorder. The degree of reordering is the 

*listance, measured in numbers of instructions, between the oldest and earliest 

instruction visible to the issuing hardware. A machine with a large degree of 

reordering will have greater opportunities for detecting the independent opera-

tions necessary for parallel execution. The degree of reordering will determine 

the memory latency tolerance and the ILP for a given machine. 

The approach adopted in this thesis focuses the experimental analysis on 

those factors that determine the degree of reordering, and hence the ILP, in an 

out-of-order superscalar machine. These factors are referred to as the reordering 

factors. Ultimately the ILP and performance is bounded by the algorithms used 

in the program; there is little short of restructuring the code that can be done to 

improve on this limit. The ability to reorder operations and hence increase ILP 

in an out-of-order superscalar architecture is primarily determined by: 

1. The number of operations in the instruction window that are visible to the 

scheduling hardware. A large, densely packed window offers greater oppor-

tunities for lookahead, reordering and detecting the independent operations 
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necessary for parallel execution. 

2. The data dependencies that exist between operations in the window. Data 

dependencies impose a partial ordering on the execution of operations. The 

importance of data dependencies has been well documented in the litera-

ture [65, 10]. Flow dependencies exist between operations that produce and 

consume data values. They represent the minimum ordering of the program 

that preserves program semantics. However false dependencies may be in-

troduced because of the complexities of memory disambiguation for array 

variables [69]. 

An out-of-order decoupled architecture supports mechanisms for inter and 

intra stream reordering. This extra complexity introduces additional reordering 

factors that limit the slippage between streams. These factors are 

The communication traffic and bandwidth between streams. Large levels 

of communication increase the data dependencies between streams, limiting 

slippage. 

The frequency of synchronisation points, also known as loss of decouplings 

(LOD), between the instruction streams. 

Other architectural issues, such as the size of the register file and the available 

memory bandwidth, are also important, but the reordering factors listed above 

will determine the maximum amount of ILP. As a limitation study, this thesis 

only considers those design issues that influence the reordering factors and relaxes 

all other architectural constraints 1  

The advantage of this approach is that it allows the thesis to focus on the limits 

of the decoupling paradigm, rather than, as in previous studies [37, 72, 80, 901, 

a specific implementation of a decoupled architecture. A disadvantage of this 

approach is that it could be criticised for being too idealistic. However, given 

the scope of previous work on decoupling [37, 72, 80, 90] and the technological 

trends described above, the time is right for a quantitative analysis of the limits 

of decoupled out-of-order superscalar architectures. 

1.2 Thesis structure 

The narrative of this thesis is presented in the following way. Chapter 2 provides 

a contextual background to the thesis, reviewing published work on superscalar 

'However, issue widths were constrained to within projected future values for next generation 
superscalar architectures. 
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architecture design and latency hiding technology. It also discusses previous work 

on decoupling and summarises the original contribution of this thesis. 

Chapter 3 describes the three out-of-order superscalar architectures modelled 

in this thesis. The architectures are characterised by the number of instruction 

streams executed on the superscalar units. It describes a 3-stream and 2-stream 

decoupled architecture as well as a typical single stream architecture. 

Chapter 4 provides a detailed description of the simulation technique, bench-

mark programs, software tools and experimental methodology. It explains how 

correctness of the tools was verified by comparing their output with a simulator 

used in previous published work. This chapter also describes the three architec-

tures modelled in the thesis. 

The remaining chapters present the experimental results and findings. Chap-

ters 5 and 6 provide the groundwork to thesis, developing an understanding of the 

behaviour and characteristics of the out-of-order decoupled architectures. Chap-

ters 7, 8 and 9 draw on this work to present the key findings of the thesis. 

Chapter 5 describes a limitation study into access decoupling under maximum 

ILP and unlimited resources. The purpose of this study is to ascertain whether 

- decoupling is an effective latency hiding technique for large ILP. This chapter in-

troduces a latency hiding model to enable comparisons between different latency 

hiding techniques. The experiments show control decoupling to be impractical 

because of it's under-utilisation of the CU. This chapter discusses how the decou-

pled architecture and simulation technique were revised in the light of the results 

from the experiments. These results were presented at the EuroPar'97 

conference [49]. 

Chapters 6 extends the work of the previous chapter by considering more real-

istic architectural constraints. It investigates the effect of superscalar issue width 

and identifies balanced configurations of AU and DU issue width that maintain 

maximum throughput. These results were presented at ParCo97 [48]. 

In Chapter 7 a series of simulations are used to investigate the effect of dif-

ferent levels of compiler and hardware complexity in extracting latent parallelism 

in a decoupled architecture. This chapter demonstrates the importance of ar-

chitectural support for out-of-order memory accesses and describes how such a 

mechanism could be implemented in a decoupled architecture without increasing 

instruction issue logic complexity. 

A single instruction stream, out-of-order superscalar architecture could in 

principle achieve the same level of reordering as a decoupled out-of-order su-

perscalar machine. Chapter 8 provides a qualitative argument for the use of 
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decoupling through the notion of the effective single window. This chapter sub-

stantiates this notion by using an analytical model and simulation studies to 

compare performance. It shows that for large latencies there is a significant per-

formance gain from decoupling. The single stream machine is shown to require 

significantly larger instruction issue windows to achieve equivalent performance. 

These results were presented at MICRO-30 [471 

The experiments in Chapter 8 relax those design issues particular to decoupled 

architectures (see Section 1.1 above) in order not to restrict the slippage between 

streams. Chapter 9 explores the sensitivity of the previous chapter's findings 

under more realistic conditions for these design issues. Drawing on the findings 

from Chapter 7, it also examines the sensitivity of the results to memory ordering. 

Chapter 10 summarises the major findings of this thesis, discusses their im-

plications in the context of related research and concludes with a discussion of 

suggested future work. 



Chapter 2 

Background 

The potential to overlap the execution of independent instructions is known as in-

struction level parallelism. Multithreaded [31], VLIW [22, 6] and Superscalar [42] 

architectures all try to improve performance by exploiting latent ILP. Since the 

early 1990s out-of-order superscalar 1 architectures have come to dominate single 

processor high performance computing. In 1995, superscalar technology entered 

the mass production world of personal computing, with the release of the Pentium 

Pro [8]. Given the historical success and expertise that has been built around  su-

perscalar architectures, it is believed that they will continue to be one of the 

foremost principles of single processor designs. Section 2.1 describes the typical 

execution of a superscalar machine with reference to current architectures. 

Processor performance since the 1980's has grown exponentially at 35% [45] a 

year. If that rate of increase is to be sustained, superscalar architectures will have 

to be designed with faster clock speeds and higher ILP. This will require ma-

chines with larger issue widths and a larger degree of reordering (see Section 1.1). 

However, unless some of the complexity for scheduling operations is migrated to 

the.compiler, this extra complexity will introduce delays critical to the processor 

clock speed. Section 2.4 describes some of the current techniques being considered 

to reduce the complexity of future out-of-order machines. 

Higher performance is also limited by the exponentially widening gap between 

memory and processor speeds. This gap means that the cost of a main memory 

access in terms of missed instruction issues slots is becoming more expensive. 

Wulf [89] has predicted that without technological shift, future processors are in 

danger of hitting the memory wall. Section 2.2 explains the notion of the memory 

wall and outlines some of the techniques currently being used to hide memory 

latency. 

'This work is only concerned with out-of-order superscalar machines so the prefix out-of-
order will not be used in the rest of the thesis 

7 



Chapter 1 argued that the degree of reordering was the critical dimension 

to the performance of a superscalar machine. Section 2.3 presents some of the 

software and hardware techniques used to increase the degree of reordering. 

The author believes that the decoupling paradigm in superscalar architec-

tures could increase the degree of reordering and tolerate large memory latencies. 

Section 2.5 discusses previous work on decoupling, identifies the benefits of the 

technique and describes this thesis' original contribution. 

2.1 A typical superscalar architecture 

Figure 2.1 2  shows the model of execution for a typical superscalar machine. In-

structions are initially fetched from a cache using branch prediction techniques [59] 

to reduce the effect of control dependencies. In the next stage, instructions are 

decoded and their operands renamed to eliminate false register dependencies. 

Register renaming can be implemented using a mapping from physical to logical 

registers: as used in the Alpha 21264 [42] and the MIPS 1110000 [91]. Renaming 

can also be implemented using the reorder buffer, as in the PowerPC 604 [76]. 

After renaming, the decode logic dispatches instructions to the issue window, 

where operations wait for their operands to become available. 

Wake-up logic broadcasts the results of completed operations, and once an 

operations operands becomes available, it is flagged as ready for execution. Ar-

bitration logic is then used to issue ready operations to the execution units. To 

reduce the impact of control dependencies many superscalar machines such as 

the Alpha 21264 [91] now implement speculative execution. Speculative execu-

tion is a technique that predicts an operation will be executed even though control 

dependencies are unresolved [84]. 

While operations may be issued and speculatively executed out-of-order, the 

machine state must be updated in-order. This process is known as committing the 

instruction. An instruction is committed, once it is known that it would have have 

executed if the program had been executed sequentially. The reason why instruc-

tions are committed in-order is to ensure a precise state, if an interrupt should 

occur. This can be implemented using techniques such as checkpointing [85]. 

diagram has been taken from Palacharla [771 
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Figure 2.1: Model of execution for a typical superscalar machine 

2.2 Latency hiding technology 

Wulf [89] developed a simple model of program execution that neatly conveyed 

the critical importance of memory latency to machine performance. Wulf's model 

used the equation for the average access time tavg  to a data cache 

tavg  = a * t + (1 - a) * tm  

where a is the hit ratio, and t, and tm  are the cost of an access to main memory 

and cache, respectively. Since, typically 1 in 5 operation are memory accesses, 

when tavg  is greater than 5 cycles the memory latency will dominate the critical 

path; this point Wulf poetically refers to as hitting the memory wall. Wulf predicts 

from the base year of 1994 that even with a hit ratio of 99.8%, the memory wall 

would be reached in 10-12 years. 

Processor and memory performance are known to be growing at 35% and 7%, 

respectively [45]. Using Wulf's model Figure 2.2 shows the predicted average 

access times from the base architecture, the Alpha 21164; the base year is 1995 

and the characteristics of the Alpha 21164 [19] are used as an example of a high 

performance architecture from that year. The 21164 had a clock frequency of 300 

MHz and a main memory latency of 253ns 1 . Figure 2.2 also shows that when 

t jvg  is 60 cycles 4;  it can be seen even with hit rates of 95%, average access times 

could reach 60 cycles in the year 2005. Wulf's paper and Figure 2.2 clearly show 

that latency hiding technology will continue to be a pivotal component of future 

computer architectures. 

There are two types of latency hiding techniques, latency tolerance and latency 

reduction. Latency tolerance techniques try to overlap access and data operations 

in order to hide latencies. Latency reduction techniques use memory hierarchies 

to store frequently used data close to the processing unit. 

3 lnterestingly, the latency for a single DRAM component was only 60ns, but the additional 
overhead of the memory controller, multiplexing addresses to DRAM and the time to drive the 
DRAM pins increased the latency by a factor of 4 

'This is the value used in the majority of the simulation studies in this thesis 
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Figure 2.2: Predicted average memory access times for a range of hit ratios (ex-
pressed as percentages) 

The cache is the most widely used and successful latency reduction technique. 

It exploits spatial and temporal locality in order to hide the main memory access 

time. Superscalar architectures with large issue widths and extensive reordering 

require support for non-blocking loads and multiple accesses per cycle. Non-

blocking loads [74, 36, 301 with lock-up free caches [53] reduce miss penalties by 

servicing accesses while misses remain in-flight. 

Cache technology is also being driven by the need to provide high bandwidth 

multi-ported caches. A multi-ported cache can be implemented by maintain-

ing multiple copies of the data [42], though to ensure coherence writes must be 

performed in all banks of the cache. The disadvantage of this technique is the 

large amount of die space required to duplicate the data. Another multi-ported 

implementation is the interleaved cache used in the HP PA-8000 [27] and MIPS 

1110000 [91]. Under this scheme accesses to different banks can be serviced si-

multaneously but conflicts can occur for poor access patterns. However, Rivers et 

al. [68] argued that interleaved banking offered the best cost/performance for 

a multi-ported cache. The frequency of bank conflicts can be reduced through 

techniques such as access combining [68] and reordering [81]. 
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A scheme for reordering memory references was also proposed in [81] to reduce 

the effect of bank conflicts. The Alpha 21264 [42] cache operates at twice the 

clock speed and therefore logically appears as a dual ported cache. However, 

with growing working set sizes and increasing ILP, the cost of a miss to first and 

second cache level has grown. To resolve this problem most high performance 

architectures include latency tolerance techniques such as data prefetching. These 

schemes allow data to be prefetched so that cache miss penalties can be tolerated. 

Data prefetching techniques tolerate memory latencies by overlapping mem-

ory and data operations. It can be implemented in either software [16] or hard-

ware [50]. Software prefetching is a compiler driven technique that places non-

blocking loads ahead of the actual data reference. The distance between the 

non-blocking load and the reference is dependent on static analysis of the loop 

execution time and memory latency [52]. The disadvantage of software prefetch-

ing is the extra overhead of the prefetch instructions [17]. To reduce this effect, 

heuristics can be used to determine those loads that are likely to result in cache 

miss [62]. 

Hardware prefetching [50, 77, 18] has the advantage of dynamically prefetching 

liàta according to the run-time conditions of the machine. The simplest form of 

hardware prefetching is to prefetch the next ii blocks after a cache [201. The 

disadvantage of the hardware scheme is that it increases memory traffic because 

prefetched data is less likely to be used [17]. To reduce memory traffic techniques 

have been developed to detect non-unit strides [41] and to filter out unnecessary 

prefetching using history tables [77]. 

Results show that software prefetching is less sensitive to increases in mem-

ory latency and introduces less memory traffic [17]. In [56] a comparison of 

software latency hiding techniques found that when memory latencies are large 

software prefetching outperforms software pipelining and loop unrolling. At low 

memory latencies, software pipelining outperforms software prefetching due to 

the overhead associated with the extra prefetch instructions. Although software 

prefetching does introduce additional overhead by consuming processor cycles, 

the relative cost is expected to decrease, as issue widths become larger. 

2.3 Increasing the degree of reordering 

Chapter 1 identified those factors that determine the degree of reordering, namely 

data dependencies and the number of operations visible to the scheduling hard- 

ware. This sections discusses some of the software and hardware techniques that 
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influence these factors. 

Control dependencies limit the scope of operation reordering to a single basic 

block. For floating point applications the number of operations in basic blocks 

is typically in the range 1 to 10. This means that for block scheduling ILP is 

small. The effect of control dependencies has been reported in [57]. Techniques 

to remove control dependencies can be implemented in hardware and/or soft-

ware. Branch prediction and speculative execution [59, 84] are commonly used 

techniques to ensure the instruction pipeline is fully utilised. Compiler directed 

if-conversion [2], procedure inlining [43] and loop parallelisation techniques [4, 26] 

allow more operations to be exposed to the reordering hardware. For example, 

loop unrolling which replicates the body of a loop and transforms the iteration 

conditions, has been shown to benefit ILP in superscalar architectures [21]. 

Unresolved data dependencies between memory references force compilers, in 

the absence of any supporting hardware, to generate conservative code. While 

compilers can disambiguate scalar references using variable names and equiva-

lence information, array references are difficult to resolve. A range of static data 

dependency techniques have been developed [5, 92, 87, 67, 14] to disambiguate 

array references by examining their subscript expressions. However, it has been 

shown that in scientific applications, a small number of unresolved data depen-

dencies cause large reductions in ILP [65, 10]. One solution is for the compiler to 

generate conservative and optimised code, and then select the appropriate code, 

dependent on run-time checks [21, 151. 

Dynamic disambiguation is a technique that removes the constraints imposed 

by statically unresolved memory accesses. Typically this technique works by 

memory operations being assigned a sequential number in program order. The 

semantics of the program are preserved by prohibiting loads to reorder before 

stores that have the same address and lower sequence number. In [3, 721 all loads 

referencing memory performed an associative compare with active stores held in 

a queue. However, the weakness of this scheme is that loads can not be reordered 

before all preceding stores, and stores can not reorder relative to each other. 

The difficulty of dynamic disambiguation in an out-of-order machine is that 

addresses can be only be compared after they have been computed; this may result 

in loads waiting for stores when no dependence exists between the reference pair. 

Speculative disambiguation [40, 61] is a technique that allows references to re-

order even though load and store references have not been resolved. Franklin [40] 

proposed a technique known as the Address Reorder Buffer (ARB) that supports 

multiple accesses per cycle, using distributed bins. References are mapped to 
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the bins according to their instruction address, and the bins are used to detect 

memory conflicts using sequence numbers. The ARB is designed to support spec-

ulative memory accesses and out-of-order execution of loads and stores. If a load 

is incorrectly mispredicted to execute before a store, expensive recovery mecha-

nisms roll back the machine state. To reduce the cost of recovery, Moshovos [61] 

has proposed the use of prediction techniques to detect references that are likely 

to result in mis-speculation. Interestingly, this paper shows that the cost of mis-

speculation will become significant as instruction window sizes increase. 

Data flow dependencies impose a partial ordering on the operations in a pro-

gram. However, scientific programs are written in imperative languages that 

introduce false dependencies; these dependencies introduce unnecessary ordering 

between operations. Register renaming [73] and array privatisation [23] can be 

used to remove false dependencies. Array privatisation is a technique that elimi-

nates memory dependencies for scalars and arrays. In a study on the PERFECT 

club suite it was found that the Polaris compiler could produce speedups com-

parable to manually written code, when array privatisation was included in the 

optimisation suite [34]. 

2.4 Reducing reordering logic complexity 

Increasing ILP in an out-of-order superscalar architecture requires larger issue 

widths and instruction windows. However, Palacharla [77] has shown that delays 

in components critical to the processor clock speeds vary quadratically with issue 

width and window size. In his paper, Palacharla emphasised the point that it is 

the product of IPC and clock speed that designers should maximise. Increased 

logic complexity can improve IPC, but it may also introduce longer delays into 

paths critical to the processor clock speed. For this reason, Palacharla anal-

ysed delays in those functions in the instruction pipeline whose complexity grows 

with increasing ILP. These functions were renaming, wakeup/select and bypass. 

Palacharla's key findings are described below. 

The wakeup and select delay varies quadratically with window size and issue 

width. This delay was found to dominate at 0.35 pm technology, and larger 

issue width (8-way issue) and window size (64 instructions). 

The bypass delay varies quadratically with issue width. For 0.18 pm tech-

nology the bypass delay dominates at large issue widths (8-way issue) and 

window sizes (64 instructions). 
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Palacharla argues there is a need to consider complexity effective superscalar 

processors; architecture that can facilitate faster clock speeds without reducing 

ILP. Palacharla proposed a clustered architecture with centralised decoding and 

steering logic. Each cluster has a set of FIFO instruction queues that receive 

operations from the steering logic. The instruction window logic is simplified by 

only needing to monitor operations at the heads of each queue. The disadvantage 

of microclusters is the overhead of communicating values between register files 

and the limited number of operations available for selection. Other work on 

microclusters [42, 30] has explored the payoffs between simplified hardware and 

communication hardware. 

The Multiscalar [39, 12, 75], MISC [81, 80] and PEW [51] share the common 

goal of trying to achieve high ILP through decentralised control logic. The MISC 

and PEW architectures differ from the Multiscalar by using decentralised fetch 

and decode logic. A detailed description of these architectures is postponed until 

Chapter 10, where they are discussed in relation to the thesis' findings. 

2.5 The decoupling paradigm 

Access decoupling [7, 37, 58, 72, 71, 24, 70] is an asynchronous data prefetching 

technique that tries to hide memory latency by overlapping data and memory 

operations. Central to all decoupled architectures is an address unit (AU) and a 

data unit (DU) that communicate, between themselves and memory through the 

use of queues. Each unit has its own stream of instructions and program counter 

allowing the AU to run ahead of the DU. The degree to which the AU is ahead 

of the DU is called the slippage. At certain points in a program's execution, the 

AU is forced to wait on values from the DU; these points are referred to as a loss 

of decoupling. 

All memory operations are executed by a split load instruction. The address 

unit computes and sends load and store addresses to memory system via the load 

and store address queues, respectively. The data from a load is returned from the 

memory, after some latency, and placed in a data queue where it can be fetched 

by the data unit. The memory latency can be tolerated, provided the address 

unit can prefetch data sufficiently far ahead of the data unit. To execute a store 

operation the address waits in a store address queue until it is matched with a 

computed value from the data unit, when they are sent to memory. 

The early decoupled machines like the ZS-1 [72, 71, 24, 70] and PIPE [37] 

differed in how they split the instruction stream. The ZS-1 had a single instruction 
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stream with a splitter whereas PIPE had separate instruction caches for the access 

and execute unit. The ZS-1, unlike PIPE, also included a data cache. These early 

studies used synthetic loop kernels to look at the performance of the decoupled 

architectures for different queue sizes and memory latencies. Recently decoupled 

machines like the DAE [7], MISC [80, 81] and WM [88] have appeared. The 

DAE and WM differ from the MISC in their emphasis on providing support for 

structured data accesses; while the emphasis in the MISC architecture is on the 

use of decentralised control logic to simplify out-of-order execution. 

The DAE [7] includes speciklised hardware for efficient address generation of 

structured data. Efficient generation of addresses is shown to increase slippage, 

reduce DU stall time and increasing cache utilisation. The technique is similar 

to the access mechanism in vector machines and therefore subject to the same 

problems of data dependency analysis described in Section 2.3. 

The WM [88] architecture consists of 12 asynchronously executing components 

that communicate by FIFO queues. An integer and floating point unit execute 1 

instruction in-order every cycle. Stream control units are used to execute vector 

like operations for storing and reading data. The results show a factor of 2-9 

increase in performance over a scalar architecture 

Farrens [38] made a comparison between an in-order 2-way decoupled and 

3-way out-of-order superscalar architecture using the Lawrence Livermore bench-

mark suite. His study showed that decoupled architectures outperformed super-

scalar architectures. The reasons given for the improvement were the dynamic 

loop unrolling through unit slippage, the register renaming and the dynamic out-

of-order execution between decoupled units. However, this study limited the 

amount of reordering in the superscalar architecture by making the instruction 

window only large enough to hold one loop iteration and not allowing it to per-

form branch prediction. The study also did not consider wider issue widths, real 

applications and large memory latencies. 

In another study by Kurian [55] a comparison was made between a decou-

pled architecture and a cache based uniprocessor. Decoupled architectures were 

observed to be more sensitive to memory latency than cache based systems es-

pecially with large memory latencies ( 15 cycles) when the memory becomes a 

bottleneck. A decoupled architecture with a cache to capture locality was found 

to be the best configuration. 

Tyson, in [81, 80], discusses the MISC architecture. The MISC machine has 

four asynchronous units each with their own instruction cache and a common 

data cache. The motivation behind the MISC architecture was to use decen- 
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tralised control logic to increase ILP. MISC is a decoupled microprocessor that 

exploits instruction level parallelism by executing streams in-order, on single issue 

processing elements. The architecture relies on the compiler to schedule opera-

tions and to partition the code. In his thesis Tyson explored the use of different 

algorithms for producing balanced work loads for the 4 processors. However, 

he concluded that in order to utilise all the processors, perfect dependency and 

inter-procedural analysis was required. Tyson also made a comparison between 

MISC and an in-order Alpha architecture. His results showed that a 4 processor, 

1-way in-order issue MISC architecture can achieve higher performance than 4-

way in-order issue on an Alpha 21164. However, these results were obtained with 

a non-blocking cache for the Alpha. This means that the Alpha will stall shortly 

after a cache miss, but MISC can continue initiating memory requests until the 

cache queues are saturated. 

Topham [79] performed a limitation study of the effectiveness of decoupling 

for a range of compiler optimisations. The study was based on the static parti-

tioning algorithm in the OCTAVE compiler and an analytical model of decoupled 

execution. From profiling information, estimates of the number of loss of decou-

plings in a program were used to calculate upper bounds on decoupling efficiency. 

The results showed that for many of the PERFECT club suite it was possible 

to hide large latencies. The partitioning algorithm differed from Tyson's work 

by trying to reduce the frequency of loss of decouplings rather than ensuring a 

balanced work load. This limitation study was however based on a static model 

and used conservative data dependency analysis to estimate the number of loss 

of decouplings. 

Decoupling has gained currency in superscalar architectures like the MIPS 

1110000 [91] and PA 8000 [27]. The R10000 is able to support a decoupled mode of 

operation through out-of-order execution and a separate access instruction queue. 

The HP PA 8000 has two 28 instruction reorder buffers, for data and memory 

operations, and a large interleaved non-blocking cache. Both the 1110000 and 

PA 8000 can decouple address and execute operations even though there is no 

architecturally visible AU and DU. 

2.6 Original contribution 

This thesis is the first known study into the effectiveness of out-of-order execution 

in decoupled superscalar architectures to improve latency hiding and increase TLP. 

Exponents of decoupling have typically focused on latency hiding and inter stream 
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reordering; however, Smith [70] in his early paper argued that an additional 

benefit of decoupling was the simplification of reordering hardware. This point 

has been picked up by Tyson [81], but his MISC architecture had multiple streams 

executing operations in-order. Tyson proposed that future work should consider 

an out-of-order decoupled architecture. The main contributions of this thesis are: 

To investigate out-of-order decoupled architectures, identifying those design 

issues critical to their effectiveness at hiding memory latency and increasing 

ILP. 

To compare the effectiveness of an out-of-order decoupled and single-stream 

superscalar architecture. 

To investigate how the decoupling paradigm in out-of-order superscalar ar-

chitectures can reduce issue logic complexity without decreasing perfor-

mance. 

2.7 Summary 

This chapter has summarised the strategic problems facing future superscalar de-

signers and the techniques currently being considered to address these issues. It 

has highlighted the competing tensions between extracting higher ILP and proces-

sor complexity, and has emphasised the importance of latency hiding technology. 

-1 1  In summary, it is believed that the design goal for future superscalar archi-

tectures is: to build complexity sensitive [64], large issue width, latency tolerant 

machines capable of wider degrees of reordering. The following chapters explore 

whether this design goal can be met using the decoupling paradigm. 
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Chapter 3 

Three Superscalar Architecture 
Models 

This chapter describes the three superscalar architectures modelled in this thesis. 

The architectures are characterised by the number of instruction streams they can 

support. Each instruction stream executes on a single out-of-order superscalar 

unit, and each unit has a separate instruction issue window, register file and 

function units. Section 3.1 describes the 3-stream and 2-stream (also referred to as 

a dual stream) decoupled architectures. The former implements both control and 

access decoupling, while the latter only implements access decoupling. Section 3.2 

describes a 1-stream (single stream architecture) in which no decoupling occurs. 

The benefit of the multi-stream architectures, is that reordering can take 

place within (intra) or between (inter) instruction streams. However, this benefit 

is bought at the price of extra of hardware and software complexity. Inter-unit 

communication are implemented by queues as in previous decoupled machines [37, 

72, 80, 90]. Separate instruction caches and fetch and decode mechanisms are 

required to ensure the maximum amount of slippage. 

Extra software complexity is also required in the compiler to partition the 

code . The 3-stream and 2-stream architecture both rely upon the static code 

partitioning obtained from the experimental OCTAVE compiler [79]. The OC-

TAVE compiler uses a set of heuristics that minimise communication and LODs 

between instruction streams. A full discussion of how the compiler was integrated 

with the simulation technique is described in Chapter 4. 

Section 3.4  discusses the design issues that effect the reordering factors (dis-

cussed in Section 1.1) for each of the architectures. This section also describes 

how these issues shaped the experimental methodology used in this thesis. 

'Partition can also be performed in hardware as in the ZS-1 [72, 71, 24, 701 
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3.1 Multi-streamed decoupled architectures 

The 3-streamed decoupled superscalar architecture is based on the ACRI machine [91 

and is illustrated in Figure 3.1. In this architecture three instruction streams ex-

ecute on the control unit (CU), address unit (AU) and data unit (DU). Each unit 

maintains sufficient state to execute independently as an out-of-order superscalar 

architecture. The bulk of the computational work is performed on the AU/DU 

pair. The CU is capable of computing conditional branches ahead of the AU/DU 

pair. 

Figure 3.2 shows a 2-stream decoupled architecture similar to the ZS-1 [72] 

and PIPE [3] machines. This architecture differs from the 3-stream by providing 

no architectural support for the asynchronous execution of control operations. All 

operations previously executed on the CU are performed on the AU. 

The decoupled memory is capable of sending and receiving data from the 

AU/DU pair and main memory. The AU and DU can both fetch and write data 

into the decoupled memory but only the AU can access main memory. This chap-

ter avoids an implementation level description of the decoupled memory, instead 

concentrating on the semantics necessary to support decoupling 2  

A decoupled load to the DU is performed by way of a split instruction executed 

on the AU and DU. The AU initiates the load by computing the load address 

and sending it, via the decoupled memory, to main memory. Once the requested 

data is returned it waits in the decoupled memory until it is fetched by the DU. 

The AU is also capable of issuing decoupled self loads in a similar manner. 

A decoupled store is performed by the AU sending an address to the decoupled 

memory, where it waits until the DU computes the data. The decoupled store 

completes when the address and data are paired and sent to main memory. The 

CU performs its own accesses via the decoupled memory. 

The decoupled memory guarantees that Read After Write (RAW) hazards 

will be resolved, provided the AU and CU sends loads and stores to the same 

address in program order. Loads to the same address are, however, allowed to 

overtake each other. The decoupled memory detects RAW hazards by matching 

load and store addresses. When a hazard is detected the load is suspended until 

the store completes. This thesis investigates two different decoupled memory 

models for handling RAW conflicts: 

1. In the first memory model each load waits for completion of any outstanding 

2 A full description of the decoupled memory is provided in Section 7.4 
3 The simulation technique (see Chapter 4) can remove false dependencies so that Write After 

Write (WAW) and Write After Read (WAR) data hazards do not need to be considered. 
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writes to the same address before going to main memory. This is referred 

to as the basic decoupled memory since it relies only on the slippage between 

the AU and DU to hide the main memory latency. 

2. In the second memory model, information about future access patterns is 

used to cache data close to the DU. The load is combined with the matching 

store so that when a store datum is received, the load can be satisfied with-

out accessing main memory. This is referred to as the optimised decoupled 

memory. 

Figures 3.3 and 3.4 illustrate the effects of using the basic and optimised 

decoupled memory, respectively. These diagrams use the following notation to 

describe the times at which operations occur 4 ; 

• 54U, sf" denote the times at which the AU and DU perform their respective 

operations in a decoupled split store. 

• 14U I` denote the times at which the AU and DU perform their respective 

operations in a decoupled split load. 

• 0DU denotes the time at which an operation on the DU actually uses the 

loaded value. 

• CM denotes the execution cost of a main memory access. 

In Figure 3.3 the load address is sent to main memory and as a consequence 

the DU fetch operation has to wait for the value to be returned by the memory 

system. In Figure 3.4 the DU does not incur any delay because the copy is resident 

in the decoupled memory. The optimised decoupled memory model also acts as 

a bandwidth filter, reducing memory bandwidth requirements. 

3.2 A single stream superscalar architecture 

The single stream superscalar machine is shown in Figure 3.5. The architecture is an 

out-of-order machine with a single instruction window for reordering operations. 

In each cycle, independent operations that are ready to execute are issued to the 

function units. Unlike the decoupled machine the full issue width is available for 

issuing instructions every cycle. 

'The subscript denotes the ith decoupled load during the execution, where 1 <i <N, when 
N is the total numBer of executed decoupled loads. 
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Figure 3.1: A 3-stream decoupled architecture 

There are different types of hardware, software and hybrid schemes for data 

prefetching. The single stream architecture uses a hybrid scheme. Every load 

operation comprises two instructions, a prefetch and an access operation. The 

prefetch instruction pre-loads data into the prefetch buffer ahead of the access 

operation. Prefetch operations, unlike software schemes, are allowed to begin 

execution as soon as runtime resources allow. This scheme combines the benefits 

of exact address computation with dynamic execution. The prefetch buffer is a 

fully associative buffer responsible for storing prefetched data. Requests from the 

prefetch buffer take 1 cycle. 

3.3 The memory system 

The memory system for all three architectures consists of the main memory but 

may also be composed of multi-level caches. A detailed simulation of the memory 

system is beyond the scope of this thesis; instead its execution is modelled by 

considering every access to have a fixed cost. 

It is recognised that this model is a simplification of the complex memory sys-

tems in high performance architectures. However, it is believed that this approach 

is justified because most memory systems are composed of memory hierarchies 

and each level in the hierarchy supplies a quality of service to higher levels. The 

quality of service can be quantified as a constant term, the average access time 

to that level. Using this simplification has the benefit that it allows the memory 

system to be modelled with a high or low quality of service. This equates to the 

processor interfacing with a complex (e.g. having multilevel caches) or basic (e.g. 
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Figure 3.2: A 2-stream decoupled architecture 

time 

DU DU 

NJ 	
Si 	 1. 

. 

DU waits foe 
value to be 
returned 

AV 	Au 

AU 

I load waits 
-: 

I 	C 51  

cycle 

Figure 3.3: Model of the basic decoupled memory 

just the main memory) memory systems. It also allows the thesis to concentrate 

on areas of the design space that have not previously been studied. Much of the 

previous work on decoupling has concentrated on the size of queues [71] and the 

use of data caches [55] 

3.4 The design issues for the reordering factors 

In Section 1.1 it was argued that the reordering factors were the critical determi-

nants of the maximum ILP in superscalar architectures. This section identifies 

those design issues that influence the reordering factors; these issues are also 

referred to as the degrees of freedom for reordering. 
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The degrees of freedom are shown in Table 3.1. The third column shows where 

they apply to a single stream architecture (SSA) or decoupled architecture (DA). 

The final column shows the chapter in the thesis where these design issues are 

considered. 

The degrees of freedom are effected by hardware and software. Data de-

pendency analysis can be static [67], dynamic [40] or a hybrid of both [21]. The 

number of operations in the instruction window is determined by hardware factors 

such as its size, the use of speculative execution [84] and branch prediction [59]. 

Software optimisations [63, 4, 26] can also expose more parallelism to the hard-

ware through loop unrolling, inlining and loop transformations. 

 parallelising optimisations SSA, DA ch. 7 
 memory ordering schemes. SSA, DA ch. 7& ch.9 
 data dependency analysis. SSA, DA ch. 7 
 register and memory renaming. SSA, DA ch. 7 
 synchronisation points DA ch. 7 
 instruction window size. SSA, DA ch. 8 & ch. 9 
 inter-unit bandwidth DA ch. 9 
 partitioning and code expansion DA ch. 9 
 decoupled memory/prefetch buffer capacity SSA, DA ch. 9 

Table 3.1: Design issues for out-of-order machines 

In this thesis the focus of the experiments is on the effect of the degrees of 

freedom on the superscalar architectures (other architectural constraints were re-

laxed). The advantage of this approach is that it isolates decoupling from other 

factors and allows the limits of the technique to be explored. The disadvantage 
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Figure 3.5: Single window superscalar machine 

is that it is open to the criticism of being idealistic. Given the scope of previous 

studies into decoupling (see Section 2.5) and the technological developments dis-

cussed in this chapter it is believed the time is ripe for a quantitative analysis of 

the limits of decoupling. 

The approach adopted in the experiments was to initially assume an ideal 

decoupled architecture where the only constraints were true dependencies, and 

then to incrementally introduce each of the degrees of freedom from Table 3.1 

into the experimental domain. 
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Chapter 4 

Description of the Simulation 
technique 

The aim of the simulation methodology applied in this thesis was to identify 

performance trends and design issues rather than provide a detailed exposi-

tion of a particular system design. This approach was used because previous 

work [7, 37, 58, 72, 81] had concentrated on the specific implementation details 

of access decoupling rather than the more generic paradigm of dynamically ex-

ecuting, asynchronous instruction streams. To provide a new perspective into 

decoupling, it was decided to adopt a methodology that relaxed some of the 

technological constraints of earlier work. 

Modern high performance architectures comprise both sophisticated software 

and hardware technology; therefore an experiment environment to evaluate a 

novel architecture should model the design space for both aspects of technology. 

The simulation tools developed for this thesis were designed to provide an exper-

imental framework capable of modeling a wide range of compiler and hardware 

configurations. In keeping with the simulation methodology, the framework was 

also designed to: 

be independent of any native compiler. 

model potential future improvements in compiler and hardware technology. 

to relax technology bottlenecks important for latency tolerance technol-

ogy. For example, data prefetching depends on finding instruction level 

parallelism in order to overlap operations and hide memory latency. Yet, 

extracting instruction level parallelism is known to require sophisticated 

restructuring and data dependency algorithms [11, 10, 23, 697 

This chapter explains the implementation and operational details of the frame-

work and is developed in the following way. Section 4.1 provides a detail descrip- 
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tion of the experiment framework. It explains how scientific applications were 

annotated so that execution of the compiled program would generate calls to a 

simulator. The simulator was parameterized to model the execution of the 3 

types of superscalar architectures, described in Chapter 3, under a wide range of 

architectural configurations. Sections 4.2 and 4.3 discusses the advantages and 

disadvantages of using this approach. Finally, Section 4.4 describes the bench-

mark programs used in the experiments. 

4.1 Experimental framework 

The experimental framework uses a technique adapted from work by Petersen [66]. 

The strength of Petersen's technique was that it provided an environment in which 

to explore many different compiler issues. This method works by annotating 

the source level code with calls to routines within an architecture simulator. 

Shadow variables are inserted into the program to track the earliest time that 

program values become available. Shadow variables are passed as arguments to 

the simulator to enable operation start times to be computed. Simulation of the 

system can then be performed by executing the annotated program. 

Although, there were many advantages to using Petersen's technique in the 

framework, his modelling tools could not be adapted to model out-of-order super-

scalar execution and therefore were not sufficient for the thesis requirements. For 

this reason, the entire experimental framework was developed during the course 

of the thesis. The techniques used to extend Petersen's method are original work. 

The two components to the framework, the FOrtran Code Annotation Tool 

(FOCAT) and Modelling EnviroNment for Decoupled Out-of-order Superscalar Ar-

chitectures (MENDOSA) are described in Section 4.1.1 and Section 4.1.2. 

4.1.1 FOrtran Code Annotation Tool (FOCAT) 

This section describes the basic concepts of Petersen's technique and explains 

how it was extended and developed into a generic annotation tool. Extending 

the technique involved identifying general annotation rules that allowed FOCAT 

to be independent of the routines being inserted into the code. This extension 

facilitated integration with the simulator and enabled FOCAT to be validated by 

comparison with results from Petersen's annotator. 
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Basic Concepts 

A program can be represented as a data flow graph in which the nodes and arcs 

symbolize operations and the flow of data, respectively. Running a program can 

be viewed as the dynamic execution of that data flow graph where the longest 

path through the graph determines the minimum execution time of the program; 

this is also known as the critical path length. 

Petersen [65] developed a technique that annotated the source code so that 

running the program modeled the dynamic execution of its data flow graph. Using 

this approach Petersen was able to evaluate performance upper bounds for differ-

ent data dependency tests independent of any architectural model. He was also 

able to use the technique to investigate the speedup from operation, statement 

and loop level parallelism. 

In Petersen's technique the execution of a data flow graph is modeled by using 

shadow variables to enforce the data dependencies between operations. Shadow 

variables are time stamps inserted into the program to track the earliest time 

that program values become available. Each program variable has an associated 

shadow variable to track it throughout the execution of the program. 

Figures 4.1(a) and 4.1(b) show a small section of Fortran code respectively 

before and after annotation. Figure 4.1(b) shows the shadow variables denoted 

with the prefix v$, the generic max function and the cost function. The cost 

function returns the time in cycles to compute the addition of the two operands. 

When this section of code is executed v$d will hold the earliest time that the 

value in d was made available. 

The annotation process can be extended to different program constructs such 

as if statements, procedure calls and do loops. Figure 4.2(a) shows how con-

ditional statements can be annotated to enforce control dependencies between 

operations. An additional shadow variable is generated v$if to hold the earliest 

time the branch was resolved. The control dependency is enforced by including 

the shadow variable in the max function for all statements that are control de-

pendent on the branch. The do loop construct can be annotated in a similar 

way. 

To annotate a subroutine call the parameters' shadow variables are appended 

to the procedure's argument list. A new shadow variable is also generated and 

passed as an extra argument to the routine. The new variable enforces dependen-

cies between statements in the callee and called routines. Figure 4.2(b) illustrates 

how a procedure call would be annotated. 

For a full discussion of the technique the reader is referred to Petersen's the- 
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sis [65]. In order to develop the software tools necessary for the thesis, the 

technique was extended and adapted into a generic annotator. The process of 

designing and building FOCAT is described below. 

a = b + c 	 a =b + c 
v$a=niax(v$b ,v$c)+cost (ADD _OP) 

d = a 	 d =a 
v$d=v$a 

(a) Before 	 (b) After 

Figure 4.1: Basic statement 

v$ifl = cost(COND_OP)+ v$c 
if( c.gt.O.O ) then 

a = b + c 
v$a = inax(v$b,v$c,v$ifl) 

+ cost(.ADDOP) 

(a) Conditional statement 

v$ifl = cost(COND_OP)+ v$c 
if( c.gt.O.O ) then 

v$fx = v$ifl 
call ft (a, v$a, v$fx) 

(b) Procedure call 

Figure 4.2: After annotation 

Designing and implementing FOCAT 

FOCAT was written in C++ using an object oriented methodology to promote 

a readily extensible design capable of meeting later experimental requirements. 

The tool parsed Fortran code and annotated it with a set of user defined routines. 

This generic functionality was provided by recognising the similarities between 

Petersen's annotation technique and the general data flow analysis framework de-

scribed in [1]. This framework is often used as part of a compiler's analysis suite, 

and it's most common application is for code optimizations such as copy prop-

agation and detecting loop invariant computations. The framework works by 

iteratively traversing all the arcs of data flow graph and gathering information 

about the way data flows through the program. The framework requires: 

1. a set of values to be propagated along the arcs of the graph. 



a confluence function that combines the sets of values from all the arcs 

incident to a node. 

for each node operator, a transfer function that maps a set of input values 

to a set of output values. 

an update function that updates a set of values. 

Petersen's technique is similar to this framework in that execution of the 

annotated program can be seen as an information gathering process. In his case 

the information being propagated, via the shadow variables, is the time at which 

program values become available. The confluence and transfer functions are the 

max and cost routines, respectively. The update function was the assignment 

operator. The framework differs by being a static technique which must follow 

all paths in the data flow graph while Petersen's technique is dynamic and only 

follows one path through the graph. 

By recognising the parallels between the two techniques it was possible to 

.design the tool based on a set of general rules for annotating Fortran code. Like 

the data flow analysis framework, the user of the framework only needs to supply 

a set of confluence and transfer routines to FOCAT. This design had the benefit 

of hiding complexity and making it extensible to different types of annotation. 

For the annotator to interface with the architecture simulator the program 

had to be annotated with the following routines; 

• idop, idload, idstore. These routines were responsible for simulating a 

data operation, a load and a store address computation, respectively. These 

routines provide the transfer functions. 

• iddef. This routine was responsible for simulating store operations and for 

updating shadow variables. 

Each of the above routines accepted shadow variables as part of their argument 

list. The max routine (the confluence operator) did not explicitly appear in the 

annotated code, instead it was implicit in each one of the above routines. For the 

decoupled architecture, shadow variables had to track the time at which values 

became available on each of the units. One way to implement this would have 

been to have three shadow variables for each program variable, but this would 

have reduced the readability of the code. Instead the program was still annotated 

with one shadow variable but this was a reference to a structure that contained 

three timestamps, one for each unit. 



Simulating the decoupled architecture required splitting the code between the 

different units. This was performed statically by the partitioning algorithm in the 

OCTAVE compiler [79]. The compiler assigned each node in the data flow graph 

to one or more units. During the annotation process this information was inserted 

into the argument list for the simulator routines. At runtime this argument was 

used to execute operations on the designated unit. 

The OCTAVE compiler was also used to identify where load operations oc-

curred in a program. Part of the optimization suite for the compiler was to detect 

redundant loads in the program. This information was used by the annotator to 

reduce the number of idload routines in the code. An example of the code an-

notation for the superscalar architectures can be seen in Figure 4.3. The code 

placement information was ignored by the single stream architecture. 

dy(iy)(dy(iy)+(da*dx(ix))) 
call iddet(v$dy(iy) , D(J 

idop(DU , ASSIGN-OP, FLOAT 
idop(DU ADDOP, FLOAT 

idload(DU ARRAY.LD, FLOAT , v$dy(iy) , v$iy) 
idop(DU , MIJLLOP, FLOAT ,v$da, 

idload(DU , ARRAY_LD, FLOAT , v$dx(ix) , v$ix) 

), 

idstore(DIJ , ARRAYST J  FLOAT , v$iy) 
) 

Figure 4.3: Code annotation for superscalar architectures 

Verification of FOCAT 

Correctness of FOCAT was verified by replicating Petersen's experiments of crit-

ical path times. Both tools were used to annotate the programs with max and 

cost functions. The annotated programs were run and the simulated critical path 

times compared. 

Table 4.1 shows the measured critical path times for the two annotators. The 

results show that for 4 of the programs, DYFESM, FL052Q, TRFD and MDG the 

difference between the annotators is marginal. However for four of the programs 

the differences are large and need explanation. These differences were caused by 

variations in the implementation of the two annotators. These were 

. an optimization, used in Petersen's tool, to reduce experiment run-times 
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resulted in longer critical path measurements. The effect of the optimization 

can be seen in a large compound statement. Consider a line of code 

xa+b+c+d 

If we assume that all operations take 1 cycle Petersen's annotator would 

annotate the program with 

v$x = max (v$a, v$b, v$c, v$d) + 4 

whilst FOCAT would correctly generate 

v$x = max C max (v$a, v$b) + 1, max (v$c, v$d) + 1) + 2 

The difference is caused by Petersen's annotator trying to reduce the number 

of function calls to max. The result is that the computed available time of 

x is 1 cycle earlier in the code generated by FOCAT. The effect of this is 

most apparent in QCD2, where the measured critical path time from the 

code generated by FOCAT is less than that for Petersen. 

• Petersen's annotator did not enforce control dependencies in while loops. 

The while loop construct is implemented in Fortran by a conditional branch 

out of a DO loop. This construct means a cyclic control dependency exists 

from one iteration to the next. If this dependency is removed, as in Pe-

tersen's annotator, there is more parallelism and hence a lower execution 

time for the loop. In FOCAT the cyclic dependency is enforced. The net 

effect of the difference in implementation is for the overall execution time 

to be greater for FOCAT. 

Table 4.1 shows that programs with while loops have longer execution 

times. The most significant difference is in the program TRACK. This is 

due to the routine extend, which executes for the largest percentage (24%) 

of the total execution time, having 8 while loops in it's body. 

4.1.2 Modelling EnviroNment for Decoupled Out-of-order 
Superscalar Architectures (MENDOSA) 

Software and hardware techniques must translate the data flow graph to a target 

architecture so that all dependencies are preserved. Due to hardware constraints 

and limitations in compiler technology the translation process introduces addi-

tional dependency arcs that cause the critical path time to increase. 

In MENDOSA, resource conflicts and compiler restrictions are modeled as 

additional dependency arcs; in this thesis these are referred to as architectural 
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Program 
Name 

Petersen's 
annotator 

Annotation 
Tool 

Difference 
(%) 

while 
loops 

ADM 0.369 0.410 +11 8 
ARC21) 0.485 0.509 +5 2 

DYFESM 17.314 17.348 +0.2 2 

FL052Q 1.315 1.312 +0.2 1 

TRFD 0.676 0.676 0.0 0 

MDC 1.165 1.165 0.0 0 

QCD2 17.555 16.334 -7 0 
TRACK 0.676 28.767 +6716.8 14 

Table 4.1: Critical path times for different annotation tools 

dependencies. Like the false dependencies in data flow graphs these dependencies 

can be removed with sufficient resources. In MENDOSA, operations can only 

begin execution when all data flow and architectural dependencies are preserved. 

The arguments to the interface routines are shadow variables and source level 

information about operation type and code placement. At runtime this infor-

mation is used to translate source level operations into single instructions that 

can be executed in the simulator. The OCTAVE code placement is used by the 

decoupled architecture to execute instructions on the correct unit. 

4.2 Advantages of the simulation technique 

This section describes the advantages of the simulation technique implemented 

in MENDOSA and FOCAT. For all the superscalar architectures discussed in 

Chapter 3, good dependency analysis is essential for producing high levels of ILP, 

but for the decoupled architecture it is also important for reducing the number 

of loss of decouplings between the instruction streams (Chapter 2 explains the 

phenomenon of a loss of decoupling). 

One of the powerful aspects to this simulation technique is that it can model 

the execution of a program in which the data dependency analysis is perfect; 

this means that only true dependencies will exist between operations. Perfect 

dependency analysis can be modeled because of the one-to-One mapping between 

program and shadow variables, and the max function only taking operand shadow 

variables as arguments. 

The technique can also model data privatisation and renaming through the 

use of shadow variables. This is illustrated in Figure 4.4 where the potential WAR 

hazard from the read and write of a[i] is removed. The hazard is caused by a 

32 



name conflict and can be removed by renaming; the annotation technique allows 

this section of code to be modeled as if renaming had been implemented. If a [ii 

were included in the arguments to max this section of code could be modeled as 

if the false dependency had not been resolved (see Figure 4.5). 

The technique can also model loop transformations (i.e. loop unrolling and 

loop merge) and inter-procedural analysis (i.e. inlining) by introducing additional 

shadow dependencies. These shadow variables are inserted to carry the times at 

which loops and procedures finish execution. They can then be used as arguments 

to the annotated routines to enforce dependencies between high level constructs 

such as loops and procedure calls. In this way operation level parallelism can be 

modeled at different loop and procedural levels. Since a wider scope for reordering 

operations represents increasing compiler sophistication this technique provides a 

way of determining the accrued benefits of greater compiler development effort. 

In summary the benefits of the simulation technique are: 

• that it provides a mechanism for simulating a range of compiler optimiza-

tions known to be necessary for high instruction level parallelism and latency 

hiding. These optimizations are 

- data dependency analysis. 

- inter-procedural analysis. 

- loop transformations. 

- data privatisation and renaming. 

• the program is simulated at the source level allowing the experimenter to 

concentrate on the high level semantics of access decoupling without bring-

ing in issues of assembly code generation. 

• it remains independent of any particular native compiler. 

• correctness of the annotation was verified with reference to previously pub-

lished work. 

4.3 Disadvantages of the simulation technique 

The difficulties and criticisms of using this simulation technique are: 

• Code expansion due to the annotation routines and shadow variables in-

serted in the code. For example, FL052Q code size increased by approxi-

mately a factor of 8. 
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x 	y * a[i] 
v$x = max(v$y,v$a[i1) 

+ cost(MULTflP) 

a[i] = b[iJ - c[i] 
v$a[i] = max(v$b[i] , v$c[i]) 

+ cost(SUBTJ)P) 

Figure 4.4: Code without WAR dependency 

x =y * a[i] 
v$x = max(v$y,v$a[i]) 

+ cost(MULTJJP) 

a[i] = bUd - c[i] 
v$a[i] = max(. . . , v$a[i]) 

+ cost(SUBTJJP) 

Figure 4.5: Code with WAR dependency 

• The increase in memory required to run the applications. This is due the 

whole memory space of the original program being duplicated because of the 

one-to-one mapping from program to shadow variables. When simulating 

the decoupled architecture the memory requirements are higher because 

each unit has it's own timestamp. 

• The execution time of the programs. The large number of procedure calls re-

sults in much longer execution times for the program. In order to resolve  this 

problem a technique was developed that simulated a representative sample 

of a program's behaviour. This technique is described in Appendix C. 

• It could be argued that a source level simulation of the program removes 

too much of the complexity inherent in assembly code. However, using as-

sembly code would have tied the experimental findings to a native compiler 

and would have removed the benefits of modeling a wide range of different 

compiler optimizations. 

4.4 Benchmark programs 

A selection of 8 scientific Fortran programs from the PERFECT club suite [25} 

were chosen as the benchmark applications. These were chosen because they 

represented a set of real applications composed of a wide range of scientific algo- 
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rithms. These benchmarks were selected to represent varying degrees of vectoriza-

tion and known degrees of decoupling. Table 4.2 shows the benchmark programs 

with their reported proportion of vectorised operations (VU) obtained from [82] 

and the decoupling efficiency (DE) obtained from [79]. The table also shows the 

main algorithms used in each program. 

In retrospect, multimedia applications would have been equally appropriate 

as a benchmark suite. However, at the start of this thesis the majority of interest 

was in the use of high performance architectures for scientific applications. It 

is probable that future high performance architectures will be significantly influ-

enced by the requirements of multimedia applications. These applications will 

involve data compression algorithms, 3D graphics, encryption and image process-

ing; all of which comprise some type of vector manipulation or use algorithms 

such as FFT. There will therefore be strong similarities between the behaviour 

of multimedia applications and the benchmarks shown in Table 4.2. 

Program 
Name 

VU 
(91o) 

DE 
(%) 

Algorithms used 
1 	2 	3 	4 	5 	6 	7 	8 	9 

ADM 43 69 x 
ARC21) 91 99 x 	x 

DYFESM 69 77 x 	x 	 x 
FL052Q 92 82 x 	x 

MDG 8892 x. 
QCD2 4 19 

TRACK 14 14 x 

. 

TRFD 70 99 .x 
. 

Algorithms 

1.Sparse linear systems solvers 2.Nonlinear algebraic system solvers 
3.Fast Fourier Transforms 	4.11apid elliptic problem solvers 
5.Multi-grid schemes 	6.Ordinary differential equation solvers 
7.Monte Carlo schemes 	8.Integral transforms 
9.Convolution 

Table 4.2: Benchmark programs from PERFECT club suite 
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Chapter 5 

The Limits of Decoupling 

Studies into access decoupled architectures have shown it can successfully hide 

memory latency when memory latencies are small, ILP is low and data depen-

dency analysis is conservative [55, 71, 791. Yet future high performance architec-

tures will be characterised by relatively slower memory speeds and increased ILP. 

Increased ILP will place greater pressure on memory systems and require higher 

sustained bandwidth. One can also predict that improvementaJ compiler tech-

nology and data dependency analysis may offer greater opportunities for latency 

tolerance. Advances in technology will therefore create a tension for latency hid-

ing techniques; on the one hand increasing the pressure on the memory system 

but also allowing greater operation overlap and latency tolerance. To evaluate the 

effectiveness of access decoupling in future superscalar architectures one would 

ideally assess it in relation to future compiler and hardware technology. Such an 

assessment is clearly impractical. An alternative approach is to consider: 

The effectiveness of access decoupling at tolerating large memory la-

tencies when all the software and hardware constraints to MP are 

removed. 

This chapter describes a study into the theoretical limits of latency hiding 

through decoupled execution under maximum ILP. To focus on the limits of 

access and control decoupling, the 3-stream decoupled architecture has unlimited 

computational resources and ideal out-of-order execution. 

This chapter is organised in the following way. Section 5.1 describes the 

latency hiding model and introduces j3, an architecture independent measure of 

the efficiency of a latency hiding technique. Section 5.2 discusses the simulation 

technique and Section 5.3 presents the experiment results. As a consequence of 

the findings in this chapter, Section 5.4 revises the architecture models used in the 

experiments. It was observed that some programs had irregular behaviour and 
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therefore it was decided to simulate them in full. However, because this took an 

excessive amount of time, only a subset of the benchmark programs were selected 

from Table 4.2. Appendix C discusses a technique, known as sampled simulation, 

that reduces execution time and yet captures a program's behaviour accurately. 

Section 5.5 concludes with a summary of this chapters findings. 

5.1 A model for latency hiding 

The use of memory hierarchies in high performance architectures is a consequence 

of the need to balance the cost, capacity and performance benefits of different 

memory technologies. Latency hiding techniques try to hide the latency of the 

slowest level of the memory hierarchy so that all accesses are perceived by the 

CPU to occur at the speed of the fastest element. The difference between the 

speeds of the fastest and slowest memory is referred to as the memory differential. 

The criteria for assessing the efficiency of any latency hiding technique is the 

extent to which the memory differential can be hidden. This section introduces a 

new term called fi which is an architecture independent measure of the efficiency 

of a latency hiding technique. fi is defined as the average fraction of the memory 

differential hidden from a memory access and use it to quantify the latency hiding 

efficiency. 

A generic model of a memory hierarchy is shown in figure 5.1. The element x 
is4  used to denote any number of levels and types of memory (e.g. queues, buffers, 

caches) in the memory hierarchy. Since x characterises the type of memory sys-

tem, this will referred to it as a x memory system. First the following terms are 

defined for an x memory system. 

• CM, Cm are, respectively, the execution cost of a main memory and register 

access. 

• Sc is the memory differential. It is simply given by CM - Cm. 

• H r , H are, respectively, the cost of a read and write hit in X. 

• M r , M are, respectively, the cost of a read and write miss in x-

• 5 is the average perceived access time for the x memory system. 

• 81 is the average hidden memory latency. It is given by 

8lr8C-(P - Cm) zz CM - P 
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Registers 

Main Memory 

Figure 5.1: x memory system 

• a,- and a are respectively, the read and write hit ratio for X. 

The efficiency of a latency hiding technique is the fraction of the memory 

differential hidden by x This is given by 

Si 
Sc 

The average perceived access time is given by 

(5.1) 

p = (1 - w)[a,-H r  + ( 1 - a,-)M,] 	
(5.2) 

+w[aH + (1 - a)Mj 

where w is the proportion of write accesses. It is known that for any memory 

system H,, H > c. and M r , M w  > CM. Substituting into equations 5.1 and 5.2 

yields 

fi < /3zdeal 
	w)a,. + Wa 	 (5.3) 

Where Oid,,1  is used to denote the upper bound on j3. When a,. = aw  equa-

tion 5.3 reduces to fi < a, where a is the hit ratio (a = a,. = a,,,). This shows 

that fi for any memory hierarchy is bounded by its hit ratio. 

By comparing different latency hiding techniques using fi, it is possible to 

predict the miss ratio required by a cache in order to attain the same level of 

latency hiding through decoupling (see section 5.3). 

An alternative and equivalent way of expressing 0 is (1 - w)Irs + w/3nzte 

where 13read < a, and flwrite < a,,,. 13read and /Jwrite  are the latency hiding 

efficiency for, respectively, a read and write access. 
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Having considered 0 for a generic memory hierarchy it is now shown how it 

can be applied to write back and write through single level caches with block size 

b words. 

5.1.1 Write back (WB) cache 

In this type of cache a write hit only writes to the cache. On a read or write miss 

a block is chosen for replacement and if the block has been modified (referred to 

as a dirty miss) it is copied back to main memory. Since most write back caches 

operate a write allocate policy, the required block is loaded into the cache on both 

a write and read miss. The proportion of dirty misses in a program is denoted 

as wo. For a write back cache with a fully interleaved memory in which the first 

word in a block takes MD cycles to arrive; all subsequent words from the block 

are assumed to take a single cycle. 

H r  = Cm 

H = Cm 

M r  = (1+Wb)CM+11+Wb)(b1) 

M = ( 1+wb)CM+(1+wo)(b — l) 

Therefore, for a write back cache (see Appendix B) 

= /3idea( - ( 1 - ,
3ideal) (WbCM + ( 1 + Wb)(b - 1)) 	(5.4) 

Let us consider a cache with 5 = 8 words, CM = 61 cycles, 8C = 60 cycles, 

w = 0.12, nib = 0.5 and a,. = a,11  = 0.9 then fi = 0.83. This means that on 

average 83% of Sc will be hidden by this write back cache. 

5.1.2 Write through (WT) cache 

In a write through cache, copies are kept consistent by writing values through to 

the cache and main memory. Write through caches tend to operate a no write 

allocate policy so that on a write miss the block is not loaded into cache. For a 

fully interleaved memory. 

H r  = Cm 

= 
M r  = CM+(b1) 

= CM 

Substituting into the equation (see Appendix B) for fi gives 
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(1— r )(1—w)(b-1) 
(5.5) = pideal - wa 

- 	

a 

	 Sc 

When the same values from the write back example above are inserted into 

this equation, 3 = 0.78. Figure 5.2 shows a 2-dimensional representation of the 

variation of 0 with a hit rate (denoted as a percentage) and memory differential. 

It can be seen that for large values of Sc both types of caches saturate as the 

memory differential becomes the dominant term in equations 5.4 and 5.5. It will 

also be noticed that at high hit rates the WB cache has a higher 0 than the WT 

cache. The situation is however reversed when the hit rate is below 82%. 
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Figure 5.2: 0 for WT and WB cache, for various values of a 

5.1.3 0 for the decoupled model 

This section describes how /3 was derived for the decoupled architecture. The 

semantics of a decoupled store (see Chapter 2) are such that the cost of a store 

operation is equal to the cost of writing a value to the decoupled memory. As-

suming this cost is equal to the time for a register access, Owrite =  1. 

To derive /3T6 the notion of the decoupling distance is introduced. The de-

coupling distance is a function of the time the AU sends an address, the DU last 
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wrote a value, the DU fetches a value and the type of decoupled memory. The 

decoupling distance for the ith load made via an optimised decoupled memory 

can be defined using the same notation as in Section 3.1. 

1DU_1AU if (IAU>5DU) 

di 	i
cc 	 otherwise 

When the load is made via a basic decoupled memory the decoupling distance 

is given by 

( 1DU - 1AU 	if (1AU > 5DU) = k 
	- 3DU - 1 	otherwise 

The perceived load latency for a decoupled load of i can be defined as 

I Cd if (d>cM) 
2)11(d) = 	Sc + Cd 	if (d 	0) 	 (5.6) 

[ Sc - d + Cd 	otherwise 

Using equation 5.6 the function p11 is bounded between Cd, the time to access 

the decoupled memory and the maximum load latency cost SCM + Cd. The average 

perceived load latency for a decoupled memory system is trivially given by 

Fit 
E1 p11(d) 

N 

where N is the total number of decoupled loads in the program. Figure 5.3 

illustrates the three different regions of Equation 5.6 when 1 > 5DU The 

diagram shows the time lines for the AU and DU. The points on the lines depict 

the times at which operations occur in the execution of a decoupled load. Since 

the fetch can occur anywhere between 52QU  and oF'  the AU and DU will be 

• coupled in region 1. 

• partially decoupled in region 2 

fully decoupled in region 3. 

5.1.3.1 Fetch schemes 

The last operation in the decoupled load is the fetch instruction issued by the 

DU. The fetch instruction occupies a single issue slot, tries to read data from 

the decoupled memory and write it to the DU register file. Since the fetch can 

be issued at anytime between sf U  and of U  (see figure 5.3) the upper and lower 

bound of frad  can be evaluated by considering two different fetch schemes: 
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The earliest issue fetch (ElF) scheme can only he used with the optimised 

decoupled memory. In this scheme the DU tries to fetch the data at the 

earliest possible time. This time is equal to s' plus the time for the store 

to complete, s' + 1. The ElF scheme minimises the decoupling distance 

and provides worst case results for 3read 

The latest issue fetch (LIF) scheme. In this scheme the DU issues the fetch 

at the earliest time the first operation uses the loaded datum less the time to 

access the decoupled memory. The fetch time is given by O' - Cd. The LIF 

scheme maximises the decoupling distance and provides best case results for 
/3read 

CM 

lit' 	 DU 
.0 

Al 

time 

Figure 5.3: Time lines for the ith decoupled load during execution 

5.2 Simulation technique 

The purpose of the experiments was to find the limitations of access and control 

decoupling in a 3-stream architecture when ILP is maximised. The experiments 

simulated an idealised decoupled machine with unlimited resources, idealised out-

of-order execution and perfect data dependency analysis. This meant the machine 

had maximum ILP and optimal slippage. The latter is a consequence of the un-

limited addressing resources and the perfect data dependency analysis removing 

false synchronisation points. 

There was no speculative execution but operations from different loop bod-

ies could execute in parallel if control dependencies permitted. Table 5.1 shows 

the four programs selected from the benchmarks shown in Table 4.2. These were 

chosen to represent varying degrees of vectorisation and decoupling efficiency (see 
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Table 4.2). It is recognised that this only represents a small subset of programs 

but this restriction was felt to be acceptable for the following reasons. Researchers 

typically only simulate part of a program's total execution time because full sim-

ulations can be prohibitive. In this chapter (see Section 5.3.4) it is shown that 

some programs do need to be simulated in full because of identifiable phases in the 

program which exhibit differing behaviour. It was therefore decided to perform 

full simulation of a small number of programs to completion. 

Table 5.1 shows the measured total number of operations, the total number 

of loads, a breakdown by unit of the ILP ', the ftaction of loads (FOL) and 

the fraction of operations (FOP). The measurements were made with a memory 

differential of 0 cycles and a floating point cost of 5 cycles. 

Program   Measured 
Ops. Loads ILP  FOL(%) FOP(%) 
(*io) (*108)  cu an du cu an du cu an du 

ARC21) 6.797 13.139 302 1255 2155 8 0.1 91.9 8 34 58 
TRFD 1.857 4.419 3 1067 1676 0 0.1 99.9 0.1 38.9 61 
FL052Q 2.244 4.626 30 156 224 7 0 93 7 38 55 
QCD2 1.072 1.126 5 7 10 8 2 90 22 33 45 

Table 5.1: Characteristics of the benchmark programs 

5.3 Experimental results 

The three major findings of the experiments into the effectiveness of access de-

coupling as a latency hiding technique under the pressure of maximum ILP are: 

access decoupling with an optimised decoupled memory is potentially a 

powerful latency hiding and bandwidth filtering mechanism. 

fi for access decoupling is comparable to that of a write-back cache with hit 

ratios between 88% and 99%. 

access decoupling with a basic decoupled memory can not hide large memory 

latency, even with optimal slippage. 

To provide the most favourable conditions for latency hiding the execution cost 

of AU loads and address computations were set to 1 and 0 cycles respectively. 

'These JLP measurements are high but are within the bounds of previous studies [54] 
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The floating point and CU load latency were 1 cycle. Communication between 

units carried no cost. 

Figure 5.4 shows the variation of relative increase in execution time as a function 

of the memory differential. The relative increase is given by 

T(1) - T(0) 
T(0) 

where T(l) and T(0) are the times to execute the programs when the memory 

differential is I and 0 respectively. It can be seen that, even with optimal slippage, 

access decoupling using the basic decoupled memory model is sensitive to increases 

in memory differential. Only TRFD has sufficient parallelism to hide latency upto 

200 cycles. For FLO52Q, a memory differential of 80 cycles increases the program 

execution time by a factor of 12, compared with a zero-cycle memory latency. 
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Figure 5.4: Basic decoupled memory model; FP latency = 1 

Figure 5.5 shows the effect of introducing the optimised decoupled memory. 

It can be seen that all four programs show little variation with increases in the 

memory differential. For FL052Q, a memory differential of 80 cycles only results 

in a relative increase of 0.6% in execution time. Figure 5.6 shows that if the 

floating point latency increases to 5 cycles, effectively slowing down the DU, the 

sensitivity to memory latency decreases still further. This is due to there being 
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Figure 5.5: Optimised decoupled memory; FP latency = 1 cycle 

more opportunity to overlap memory operations and therefore hide more of the 

memory latency.. 

Figure 5.7 shows the simulation results for a more realistic case in which AU 

loads are decoupled and AU address computations take a single cycle. The results 

show that all the programs still remain insensitive to increases in the memory 

differential. 

One possible criticism of these findings is that the code partitioning has for-

tuitously biased the experimental results. If most of the loads on a program's 

critical path were executed on the CU then the experiments would show positive 

results for access decoupling (recall that CU loads perceive a fixed cost of 1 cy-

cle). To answer this criticism the experiments were repeated with all previous CU 

loads executed on the DU. DU. Figure 5.8 and 5.9 show that whereas three of the 

programs are still insensitive to the memory differential the increase in QCD2's 

execution time is comparable to results for a basic decoupled memory model (see 

figure 5.4). 

The explanation for QCD2's poor results can be found in the routines LADD, 

LMULT and PRANF where scalar loads previously executed on the CU dominate 

the critical path. These loads, executed on entry to the routines, can not de-

couple and perceive all of the memory differential. The three routines are most 
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Figure 5.6: Optimised decoupled memory; FP latency=5 cycles 

frequently called from inside a while loop in the CHOOS routine. By inlining the 

three routines it is possible to hoist the loads out of the loop. The effect of this 

simple optimisation can be seen in figure 5.9. The results show clearly that QCD2 

is once again insensitive to increases in the memory differential. 

It can concluded that under conditions of maximum ILP, access decoupling 

with the optimised decoupled memory is still effective at hiding memory latency. 

It has been shown that higher floating point latencies improve latency hiding and 

that the results are indep.endent of the partitioning of loads between CU and DU. 

5.3.1 Bandwidth filtering 

The optimised decoupled memory also acts as a bandwidth filter by reducing the 

number of accesses that need to go to main memory. This finding is reinforced 

by the results in Table 5.2 which show the distribution of the decoupled loads in 

the programs. The table shows the percentage of loads which are coupled (loads 

perceive the full memory differential), fully decoupled(loads perceive a single cycle 

latency) and partially decoupled (loads perceive part of the memory differential). 

The column labelled 'cached' is the percentage of decoupled loads that are cached 

in the optimised decoupled memory (see Chapter 3). Since cached decoupled loads 

me 



0.0 12 

0.01 

0 
E 

0.008 
0 

'C 
0 
C 

; 0.006 
0, 
'U 
0 
C) 
C 

0.004 

0.002 

0l-4.rI- 
0 	 50 	 100 	 150 	 200 

Memory differential 

Figure 5.7: AU and DU with decoupled loads; FP latency=5 cycles 

will not access main memory this column also shows the bandwidth filtering. 

It can be seen that, with the exception of TRFD, between 77% and 98% of 

operations are satisfied in the decoupled memory. 

In TRFD almost 50% of loads are either partially decoupled or coupled. This 

phenomenon is due to induction variables serialising frequently executed loops. 

These induction variables can be removed using generalised induction variable 

elimination [23]. The effect of this optimisation can be seen in the row labelled 

'optimised TRFD'. The increase in parallelism allows the AU to slip further ahead 

of the DU, increasing the number of fully decoupled loads from 14.3% to 49.8%. 

Clearly the unlimited resources in the decoupled model makes the levels of 

bandwidth filtering unrealisable. For the four programs the experiments show 

that the maximum capacity of the decoupled memory is between 65% and 75% 

of the DU working set size. Although this capacity could not reasonably be 

implemented, it is still expected that high filtering would occur for more realistic 

degrees of ILP. 
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Figure 5.8: Relative increase in execution time with no CU for QCD2 

5.3.2 Comparisons of latency hiding efficiency 

The motivation for deriving 6 was to provide a way of comparing the latency 

hiding efficiency of different techniques. Since caches are the most widely used 

technique for hiding latency it was decided to compare access decoupling against 

a write back (WB) cache. A full derivation of [3 for a write back cache is discussed 

in Appendix B. 

In the experiments 13 was computed for the decoupled machine by measuring 

the average perceived load latency. Table 5.3 shows a comparison of ,8 against 

the VB cache hit rate required to achieve an equivalent degree of latency hiding. 

Program  Decoup led _load 
cached Full Partial Coupled 

(%) (%) (%) (%) 
ARC21) 97.5 1.9 0.0 0.6 
QCD2 77.3 1.8 0.4 20.5 

FL052Q 89.6 3.5 0.4 6.4 
TRFD 35.8 14.3 25.3 24.5 

optimised TRFD 49.4 49.8 0.0 0.8 

Table 5.2: Decoupled loads for benchmark programs 
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Figure 5.9: Relative increase in execution time with no CU 

The term b in columns 3,4 and 6 is used to denote the cache block size. The 

values in the columns labelled 0 are for the decoupled machine. 

For example, in ARC2D, when the memory differential is 60 cycles 0 is 0.99. 

]or comparable latency hiding efficiency, a WB cache with block size 8 words 

would require a hit rate of 99.8%. It is clear that the comparable hit rates are 

high, in the range 88% to 99%. The table also shows that when the memory 

differential is reduced to 5 cycles the comparative WB hit rates increase. When 

the block size is reduced to 2 words the comparative hit rates are similar to those 

when Sc = 60 and b = 8. This observation reflects a well known result [45] that 

the performance of WB caches degrades when blocks are too large. 

program  6c=5 6c=60 
/3 hit rate /3 hit rate 

b=8 

ARC2D 0.99 99.8 99.7 0.99 99.8 
FL052Q 0.96 99.1 98.2 0.94 96.6 

QCD2 0.82 95.1 90.4 0.82 89.2 
TRFD 0.71 92.1 84.6 0.80 88.2 

optimised TRFD 0.99 99.7 99.5 0.99 99.6 

Table 5.3: 0 versus WB cache hit rate for different block size 
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5.3.3 Decoupled fetch schemes 

Section 5.1.3.1 discussed the significance of the ElF and LIF schemes. These two 

schemes, respectively, give the minimum and maximum latency hiding efficiency 

of any static or dynamic scheduling technique. The measurements of fY° in 

Table 5.4 show that for the optimised decoupled memory the difference between 

the two schemes is small. The exception is TRFD. 

In TRFD the difference is 0.36 and 0.41 for öc of 5 and 60 cycles respectively. 

This indicates that value lifetimes (measured as the distance in cycles between 

when a value is defined and used) are significantly greater in TRFD than for 

the other programs. This finding is reinforced by the results in Table 5.2 which 

show the distribution, by type, of the decoupled loads in the programs. The table 

shows the percentage of loads which are coupled, fully decoupled and partially 

decoupled. The column labelled 'cached' is the percentage of decoupled loads that 

are cached in the optimised decoupled memory (see section 3.1). The table shows 

that for TRFD less than 36% of decoupled loads are cached in the decoupled 

memory. Whilst for ARC21) the figure is 97.5%. These results, plus the data 

in Table 5.4, lead us to the conclusion that the temporal locality exposed by 

decoupling in ARM, QCD2 and FL052Q is far higher than in TRFD. 

The ElF scheme's poor latency hiding efficiency, in TRFD, is due to the 

induction variables in the most frequently executed routine CHOOS. As described 

in Section 5.3.1 the induction variables can be removed using generalised induction 

variable elimination. The effect of this optimisation can be seen in the row labelled 

'optimised TRFD' in Table 5.4 and 5.2. The optimisation has increased for 

both schemes and improved the decoupling between the AU and DU, as seen by 

the larger number of fully decoupled loads 

5.3.4 Temporal behaviour of 0 .A 

The results for QCD2 in Table 5.4 and figure 5.7 appear to show contradictory 

results; low values of P'" in the former, but insensitivity to memory differential 

in the latter. To investigate this apparent contradiction )3e was sampled at 

constant intervals throughout the program's simulation. Figures 5.10 and 5.11 

show respectively, the interval and cumulative variation of $'" with time. 

It is noticeable in Figure 5.10 that there are distinctive phases in the program's 

execution where /3r remains almost constant. For approximately 70% of the 

execution time the latency hiding efficiency is greater than 90%. From figure 5.11 

it can be seen that towards the end of the execution there is a sizeable reduction 

in This is due to a large number of loads perceiving on average 34% 
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program fetch 
scheme Sc = 5 Sc = 60 

ARC21) LIF 099 0.99 
ElF 0.98 0.98 

FL052Q LIF 0.96 0.93 
ElF 0.96 0.90 

QCD2 LIF 0.79 0.79 
ElF 0.77 0.77 

TRFD LIF 0.67 0.77 
ElF 0.29 0.36 

optimised TRFD LIF 0.99 0.99 
ElF 0.50 0.49 

Table 5.4: ir° for ElF and LIF schemes 

of the memory differential. Fortunately, most of these loads can be executed 

concurrently so they have little effect on the critical path. This explains why 

QCD2 is insensitive to memory differential but has a relatively low value 0
f)3

d  

The different phases in the graphs justify the argument in section 5.2 that in 

order to obtain reliable results it is sometimes necessary to perform full program 

simulations. However such an approach is too expensive in terms of the compute 

resources required per experiment. To solve the problem of these competing 

demands a sampled simulation technique was developed. A description of the 

technique is provided in Appendix C. 

5.4 Implications of the experimental findings 

Table 5.1 shows that the CU is under-utilised, only executing between 0.1 to 22% 

and 0 to 8% of operations and loads, respectively. This suggests that that the 

dedicated hardware support for control decoupling is unnecessary when using the 

partitioning algorithm of the OCTAVE compiler. In all future experiments the 

2-stream decoupled architecture was used with the latest issue fetch scheme. 

Table 5.5 shows the characteristics of the benchmark programs for the 2-

stream decoupled architecture when using the sampled simulation technique. This 

table shows the IPC, latency hiding effectiveness (LHE) and 0 values when ar-

chitectural resources are unlimited. The columns labelled yes and no denote if 

the bypass mechanism is included. The IPC values represent the upper bound 

for the decoupled architecture and indicate the average level of parallelism in the 

programs. 
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Figure 5.10: QCD2 : interval variation of /3'" 

Table 5.5 shows that for all programs the optimised decoupled memory im-

proves 0 by between 190% and 380%. The latency hiding effectiveness is seen to 

improve in some cases by a factor of 6. However, ADM shows that even though 

fi increases by almost 240%, the latency hiding effectiveness remains unchanged. 

It can be speculated that this is due to the nature of the two measurements. 

is a function of the average perceived latency for all loads while the latency hid-

ing effectiveness is only dependent on accesses on the critical path. This finding 

shows that concentrating on the average access time can be misleading, it is only 

the loads on the critical path that matter. 

It can also be observed that ARC2D has been removed from the benchmark 

suite. This was due to the program behaving in a similar way to TRFD, high ILP 

and decoupling well, and long execution times required (approximately 2 hours 

per data point), even with sampling. Since it contributed little to the spectrum 

of program behaviour being investigated, it was decided to remove it from the 

benchmark suite. 
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Figure 5.11: QCD2 : cumulative variation of 3'°" 

5.5 Summary 

This chapter las described a study into the theoretical limits of latency hiding 

through decoupled execution when ILP is pushed to a maximum. To focus on 

the limits of decoupling, the machine model had unlimited address computation 

resources, ideal out-of-order execution and perfect data dependency analysis. 

It has been shown that when ILP is a maximum and dependency analysis is 

perfect, access decoupling with an optimised decoupled memory remains a pow-

erful latency hiding and bandwidth filtering technique. The optimised decoupled 

memory uses information about future access patterns to cache data close to the 

AU and DU. However, unlike a typical cache where resident data may not be 

accessed, the cached data in the decoupled memory will definitely be used. In [70] 

a similar technique was discussed but no empirical evidence was given to support 

its use. The SUNDER architecture employed a similar technique through the use 

of pending store and load queues in the prefetch engine [18]. 

This study has also shown that access decoupling with a basic decoupled 

memory model is not capable of hiding large memory latencies. This result can 

be made more general by observing that there are no resource constraints or 

speculative execution, and under these conditions decoupling is identical to any 
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Program MD=0 MD=60 
IPC IPC LHE (%) 0 

no yes no I yes no yes 
ADM 587 104 104 18 18 0.31 0.74 

DYFESM 24 10 23 44 97 0.17 0.65 
FLO52Q 312 65 311 21 99 0.42 0.94 

MDG 36 6 36 16 100 0.35 0.84 
QCD2 22 6 7 25 30 0.20 0.61 

TRACK 2 0.5 0.5 21 22 0.10 0.22 
TRFD 619 619 619 100 1 100 0.5 0.97 

Table 5.5: Program characteristics 

other data prefetching technique. It can be stated, for the applications considered 

when ILP is a maximum, that any data prefetching technique without speculative 

execution can not hide large memory latencies. 

This chapter has also shown that there is no advantage to control decoupling 

using the partitioning algorithm in the OCTAVE compiler. Results have shown 

that the low utilisation of the control unit means there is little justification for 

its inclusion in the decoupled architecture. The 3-stream decoupled architecture 

and control decoupling are therefore not considered in the rest of this thesis. 

It can be concluded that if future designers are able to obtain the levels of 

ILP and dependency analysis outlined in this paper, access decoupling could still 

be an effective latency hiding technique. 
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Chapter 6 

Determining Balanced 
Configurations for a Decoupled 

Architecture 

The previous chapter presented a study into the theoretical limits of access de-

coupling. This chapter extends the previous study by investigating the effect 

of superscalar instruction issue on the decoupled architecture. The results show 

how the speedup varies as a function of the issue width and memory latency. 

It is found that each program's instruction per cycle ratio (IPCR), the ratio of 

DU instructions per cycle (IPC) to the AU IPC, is constant. This result allows 

estimates of good AU and DU issue width configurations. These estimates are 

verified through experimental simulation and a range of issue widths for which the 

estimates prove valid are identified. IPCR is also found to be a useful indicator of 

the effectiveness of access decoupling at hiding memory latency. Programs with 

high/low IPCRs are found to decouple well/poorly and are more/less effective at 

hiding memory latencies. Finally, for balanced AU and DU issue width configu-

rations, it is shown how the effectiveness of the latency hiding and IPC varies as 

a function of the issue width. 

6.1 Simulation technique 

The experiments use the base-line configuration for the 2-stream architecture 

shown in Table 6.1. The table also shows the range of architectural parameters 

investigated in this chapter. 

The key aspects of the base-line configuration are that the decoupled memory 

does not include a bypass mechanism; decoupling is therefore the only mechanism 

used for latency hiding. There is no speculative execution; instead the cost of 

loop closing branches is assumed to have been removed by optimisations like 
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loop unrolling and branch prediction. Data dependency analysis is perfect and 

false dependencies are removed by renaming. The purpose of examining such 

an ideal case is to provide the best opportunity for prefetching data, to have 

high instruction level parallelism (ILP) and to place the greatest pressure on the 

latency hiding mechanism. 

Architecture 
Components 

Base-line 
Values 

Other Values 
Considered 

Floating operation latency (cycles) 5 
Integer/Address op. latency (cycles) 1 
Function units cc {DU,AU} = {1,3,5,7,9} 
Issue width cc {D1J,AU} = {1,3,5,7,9} 
Register file cc 
Window size cc 
Comm. bus latency 0 
Comm. bus width cc 
Decoupled memory cc 
Memory bandwidth cc 
Decoupled memory access latency (cycles) 1 
Bypass mechanism No Yes 
Memory differential (cycles) 60 
Dependency analysis perfect 
Renaming yes 
Code partition static 

Table 6.1: Configurations for the 2-stream decoupled architecture 

6.2 Experimental results 

This section describes the experimental findings into the effect of issue width and 

memory latency on normalised speedup; defined as the speedup relative to a 2-

stream decoupled architecture with 1-way issue for the AU and DU. Simulations 

were performed for all the programs in Table 5.5. 

Figures 6.1 and 6.3 show the speedup for ADM for the cases when the memory 

differential is 0 cycles' and 60 cycles 2,  respectively. The graphs show how the 

speedup varies as a function of the AU and DU issue width values. From the 

similarity of the two graphs it can be inferred that for programs with high TLP 

access decoupling can completely hide the memory differential. The graphs also 

show that there  is some point, always in the region where the AU issue width 

MD of 0 cycles is used to determine an upper bound on machine performance. 
2 An MD of 60 was chosen because it is comparable to the cost of a second level cache miss 

(e.g the Pentium Pro has a 50 cycle L2 miss latency[81) and it assumes a memory system capable 
of capturing no locality. In practice for a high performance architecture the memory system 
will be able to reduce the average access time by using first and second level caches. 
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is less than the DU issue width, beyond which additional AU issue slots provide 

only a small increase in performance. Figures 6.1 and 6.3 show that for ADM it 

is possible to find an AU issue width which gives a normalised speedup equal to 

the number of DU issue slots. For a DU issue width of 9, this point is reached 

once the AU issue width is 7. This can be interpreted to mean that it takes 7 AU 

issue slots to provide sufficient data to keep a DU, with an issue width of 9, fully 

utilised. 

Figures 6.2 and 6.4 show the speedup for QCD2 when the memory differential 

is 0 and 60 cycles, respectively. Figure 6.2 shows that even when MD is 0, there 

is insufficient parallelism in the program to utilise large AU and DU issue widths; 

the normalised speedup is only equal to the number of DU issue slots in the region 

between 1 and 5 slots. Figure 6.4 shows the performance impact of the large 60 

cycle memory latency on a program with limited ILP. The graph shows that 

for QCD2 none of the issue width configurations are able to achieve a speedup 

greater than 2.5. Figure 6.4 clearly show that there is little performance to be 

gained by increasing the AU and DU issue widths above 3 instruction slots. 

Program 
Name 

IPCR 
average gTh 

ADM 1.323 - 

DYFESM 1.428 - 

FL052Q 1.343 +0.007 
MDG 1.222 +0.002 
QCD2 1.057 +0.002 

TRACK 0.873 - 

TRFD 1.546 - 

Table 6.2: Program IPCR 

6.2.1 Estimating good issue width configurations 

This section shows how the IPCR can be used to estimate good AU and DU issue 

width configurations and how these estimates can be experimentally verified to 

be optimal for a range of DU issue widths 

Table 6.2 shows the measured IPCR and the variance (o) for all the programs. 

This ratio has been found to be a program constant and is useful for estimating 

balanced AU and DU issue width configurations. It can be seen that most of the 

programs have an IPCR greater than 1; this indicates that the AU issue width 

would be under utilised in an architecture which had equal AU and DU issue 
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widths. It can be deduced that possible good configurations of AU and DU issue 

width would be (1,1), (2,3), (4,5), (5,7) and (7,9) 3. 

To find the configuration which ensured the maximum usage of the issue width 

the total utilisation was chosen as the objective function. The total utilisation is 

defined as the sum of the utilisation functions for the AU and DU; where the 

utilisation function is the ratio of the IPC to the issue width. For a DU issue 

width of 5 Figure 6.5 shows the total utilisation for different AU issue widths. It 

can be seen that all programs, excluding TRACK, behave in a similar manner. 

There are identifiable peaks in the graphs corresponding to an AU issue width 

of 3 and 4 slots. The former peak is caused by the graphs for DYFESM and 

TRFD which have large IPCRs of 1.43 and 1.55, respectively. It would therefore 

be expected that the number of AU instruction slots required to keep the DU 

busy would be lower. 

Figure 6.6 shows the average utilisation for various AU and DU issue widths. 

The graphs show identifiable peaks at AU issue widths of 1, 2, 4 and 5 for DU 

issue widths of 1, 3, 5 and 7 respectively. For a DU issue width of 9 the optimal 

AU issue width is less obvious with 6 and 7 giving equal total utilisation values of 

1.55. This effect is due to the lack of parallelism in MDG, QCD2 and DYFESM. 

At large issue widths the law of diminishing return begins to apply. This causes 

the utilisation function to flatten and makes the optimal issue width configuration 

harder to determine. It can be concluded therefore that the IPCR is useful for 

pinpointing good configurations when the DU issue width is in the range 1 to 7. 

However, for large issue width configurations it serves as a useful initial point to 

explore the search space. Figure 6.6 also shows that the peak utilisation reduces 

from 1.7 to 1.5 when the DU issue width is 3 and 9, respectively. This result 

is a manifestation of the law of diminishing returns, as issue widths increase the 

utilisation of the available issue width decreases. 

6.2.2 IPCR and latency hiding effectiveness 

Using the optimal configurations of AU and DU issue widths measurements, this 

section quantifies the latency hiding effectiveness of decoupling and deduces a 

relationship between the IPCR and the effectiveness of access decoupling. 

Figure 6.7 shows for each program how the latency hiding effectiveness 4  varies 

'The first and second terms in the brackets are the AU and DU issue width respectively. 
This estimate is made by finding the ratio of DU and AU issue width which are greater than 
or approximately equal to the average IPCR of 1.26. 

'The latency hiding effectiveness is defined as E = Tperiect/Tactual where Tactual is the 
actual execution time for the decoupled machine. Tperjce t is the execution time with a perfect 
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as a function of the different issue width configurations. It can be seen for large 

issue widths that access decoupling can almost completely hide a memory latency 

of 60 cycles for ADM, TRFD and FL052Q. However, for MDC, QCD2 and 

TRACK, access decoupling is shown to be very poor at hiding latency for large 

issue widths. DYFESM can be seen to fall between these two groups of programs. 

Figure 6.7 shows that some programs experience a deterioration in the latency 

hiding effectiveness as the issue widths increase. This occurs because although 

more memory accesses can be executed in parallel, the DU is also able to consume 

data at a faster rate; this means that more independent operations are required 

to hide the memory latency. 

It can also be observed from Figure 6.7 that for an issue width configuration 

of (2,3) the system is at least 80% as efficient as a perfect latency hiding mecha-

nism. This result shows that at low issue width configuration access decoupling 

is reasonably effective at hiding large memory latencies. 

Examining Figure 6.7 and Table 6.2 it can be observed that those programs 

with an IPCR greater than 1.33 are more effective at hiding latency. Whilst 

QCD2, MDC and TRACK have a lower TPCR and lower latency hiding effec-

tiveness for issue width configurations larger than (4,5). DYFESM is a slight 

exception to this finding since it has a large IPCR, but as issue widths increase 

its latency hiding effectiveness reduces faster than programs like ADM . 

It can be deduced therefore that there appears to be a relationship between 

the IPCR and latency hiding effectiveness; programs with high/low IPCR appear 

tote more/less effective at hiding memory latency. This is an intuitive result, 

if \ve perceive the IPCR as the number of AU issues slots required to keep the 

DU issue slots supplied with data. When the IPCR is large the delay between 

data fetches will on average be larger than if the IPCR is small. This provides 

greater opportunities for overlapping memory operations and therefore improves 

the latency hiding effectiveness of decoupling. 

Table 6.3 shows the IPC and latency hiding effectiveness of each of the pro-

grams. The columns labelled no and yes denote if the optimised decoupled mem-

ory is included. The major observations are that, with unlimited reordering and 

restricted issue width, access decoupling can achieve high ILP. In the case of the 

configuration (7,9), 5 of the programs achieve average IPC values greater than 10 

latency hiding in which each memory access perceives a single cycle latency. 
'This is due to there being less ILP in DYFESM which causes access decoupling to be less 

effective at hiding memory latency when the DU issue width is 9. However even with a large 
issue width configuration of (7,9) DYFESM is still 78% as effective as a perfect latency hiding 
mechanism. 
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Figure 6.1: ADM normalised speedup for MD=O 

when the optimised decoupled memory is used. The latency hiding effectiveness 

is also seen to be greater than 93% for 5 of the programs. This shows that access 

decoupling can achieve high IPC and latency tolerance for large memory latencies 

even at large issue widths. Even in the case of the basic decoupled memory the 

latency hiding effectiveness is greater than 72% for 4 of the programs. This is 

in contrast to Chapter 5 which showed decoupling needs to be combined with an 

optimised decoupled memory to be effective at tolerating latency. 

Table 6.3 shows that there are two exceptions QCD2 and TRACK. At small 

issue width configuration such as (2,3), QCD2 can achieve an IPC of 3.4 and a 

latency hiding effectiveness of 84%. However, at larger issue width configurations, 

the latency hiding effectiveness degrades rapidly. 

When the MD is 60 cycles, Table 6.3 shows in 6 of the 7 programs the optimised 

decoupled memory has a higher IPC than the basic decoupled memory. The one 

exception is ADM which at large issue width configurations is less tolerant to 

memory latency (see the column labelled LHE in Table 6.3). The reason for 

this was found by monitoring the execution of the program on an operation by 

operations basis. It was found that the optimised memory did reduce the average 

access times 6,  but that this allowed non-critical operations to be scheduled earlier, 

6 TabIe 5.5 shows that 0 increased from 0.31 to 0.74 when the decoupled memory was opti- 
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Figure 6.2: QCD2 normalised speedup for MD=O 

delaying the execution of operations on the critical path. This result is supported 

by the findings in Table 5.5 that showed loads on the critical path for ADM did 

not benefit from the optimised decoupled memory. 

A comparison of Tables 5.5 and 6.3 shows that, as expected, the latency 

hiding effectiveness improves with more realistic issue widths. This is due to the 

resource constraints forcing data operations to overlap and hide the long memory 

latencies. This effect is most pronounced in ADM, where the large amount of ILP 

(see Table 5.1) improves the latency hiding effectiveness from 18% to 97% when 

the issue width is limited to (7,9). 

6.3 Summary 

This chapter has explored the relationship between instruction issue width in a 

decoupled architecture and the resulting latency hiding efficiency. In a decoupled 

architecture the AU can be thought of as a prefetching engine which feeds the 

DU with operands. Consequently, balanced rates of execution between these units 

are required for maximum throughput. The notion of IPCR effectively defines a 

balanced ratio of issue widths for optimum total utilisation. 
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Figure 6.3: ADM normalised speedup for MD=60 cycles 

As with all prefetching techniques, the time between the initiation of a mem-

ory fetch and the use of its data defines the maximum physical latency that can 

be hidden. As issue widths increase, the available prefetch time for a given pro-

gram will diminish. The results confirm that programs with lesser degrees of 

parallelism see a deterioration in latency hiding effectiveness as instruction issue 

widths increase. 

It has also been shown that programs with high degrees of parallelism are able 

to completely overlap computation with memory accesses, even for issue widths 

up to (7,9). This result has been shown to apply even in the case where the 

optimised decoupled memory is not used. This is in contrast to the results from 

Chapter 5 where is was shown, when ILP is at a maximum, decoupling alone 

can not effectively hide memory latency. When issue widths are restricted and 

reordering unlimited, highly and moderately parallel programs can tolerate large 

latencies. However as the issue constraints are relaxed we move into the realm 

modelled in Chapter 5 and decoupling is no longer as effective; at this point the 

benefits of the optimised memory become more prominent. The promising aspect 

of this result is that decoupling is still effective in many of the programs even at 

very high issue widths of (7,9). 

It is worth noting that there was no speculative execution in the simulations 
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Figure 6.4: QCD2 normalised speedup for MD=60 cycles 

presented in this chapter; all control dependencies except loop closing branches 

are fully resolved before computation continues. This restricts the ability of the 

system to decouple memory accesses, as well as constraining the amount of ILP 

that can be exploited. 
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Program Config. MD-0 MD=60 
(AU,DU) IPC IPC LHE (%) 

no J 	yes no I yes 

ADM (1,1) 1.7 1.7 1.7 100 100 
(2,3) 4.7 4.7 4.7 100 100 
(4,5) 8.6 8.6 8.5 100 99 
(5,7) 11.6 11.4 11.2 98 96 
(7,9) 15.3 14.8 14.2 97 93 

DYFESM (1,1) 1.7 1.7 1.7 100 100 
(2,3) 4.7 4.5 4.7 97 100 
(4,5) 7.6 6.6 7.5 87 100 
(5,7) 9.8 7.6 9.8 78 100 
(7,9) 11.6 8.3 11.5 72 99 

FL052Q (1,1) 1.7 1.7 1.7 100 100 
(2,3) 4.7 4.6 4.7 99 100 
(4,5) 8.6 8.4 8.6 97 100 
(5,7) 11.6 11.1 11.6 96 100 
(7,9) 15.6 14.5 15.6 93 100 

MDG (1,1) 1.8 1.8 1.8 100 100 
(2,3) 4.4 3.6 4.4 81 100 
(4,5) 8.8 4.2 8.7 48 100 
(5,7) 11.1 4.4 11.1 40 100 

_______ (7,9) 15.5 4.6 15.5 30 100 
-- C-D2 (1,1) 1.8 1.8 1.8 100 100 

(2,3) 4.1 3.4 3.4 84 84 
(4,5) 8.1 4.5 5.2 55 64 
(5,7) 9.4 4.6 5.8 48 61 
(7,9) 11.3 4.6 6.1 41 54 _T________ 

RACK (1,1) 1.3 0.4 0.4 31 32 
(2,3) 1.8 0.4 0.4 24 25 
(4,5) 1.9 0.4 0.5 22 24 
(5,7) 2.0 0.4 0.5 22 23 
(7,9) 20 0.4 0.5 22 23 

TRFD (1,1) 1.6 1.6 1.6 100 100 
(2,3) 4.9 4.9 4.9 100 100 
(4,5) 8.2 8.2 8.2 100 100 
(5,7) 11.4 11.4 11.4 100 100 
(7,9) 14.7 14.7 14.7 100 100 

Table 6.3: IPC and LHE for best conflgurtions of AU and DU with and without 
the optimised decoupled memory 



Chapter 7 

Design Issues for a Decoupled 
Architecture 

Out-of-order superscalar architectures try to maximise ILP by reordering oper-

ations within the instruction stream. Software and hardware optimisations can 

improve the degree of reordering by making more operations visible to the issuing 

hardware. 

This thesis is the first known study into a decoupled architecture with out-of-

order superscalar units. In the dual stream system, the degree to which operations 

can reorder within, and between each of the instruction streams will determine 

the systems overall performance. It is therefore necessary to investigate the dual 

stream system in relation to hardware and software design issues that determine 

the degree of reordering. This chapter identifies those issues, and through a series 

of simulation studies quantifies their effect on TPC and latency hiding effective-

ness. 

Section 7.1 identifies those design issues critical to reordering in the dual stream 

system and Section 7.3 explores their effect on the latency hiding effectiveness and 

scalability of access decoupling. The scalability of decoupling is defined as the 

variation of latency hiding effectiveness with issue width. One of this chapters 

findings is that out-of-order memory accesses are critical for hiding large memory 

latencies. Section 7.4 describes a mechanism to support memory reordering in a 

dual stream system. 

7.1 Design issues 

In Section 1.1 it was argued that the degree of reordering was the critical di- 

mension for ILP in an out-of-order superscalar machine. It went on to discuss 

the reordering factors that determine the degree of reordering. Section 3.4, then 
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listed those design issues that determine the reordering factors; these issues were 

referred to as the degrees of freedom for reordering. 

This section discusses in more detail the degrees of freedom for reordering in a 

dual stream architecture. An holistic view is taken of these design issues; with the 

boundary between hardware and software becoming blurred [32], it is important 

to consider both hardware and software when investigating the design space of a 

new machine. As per Table 3.1, the degrees of freedom for reordering are: 

1. Parallelising Optimisations: Branch operations cause changes in control 

flow and will, in the absence of parallelising optimisations, limit operation 

reordering. Branches occur because of procedure calls and returns, loop clos-

ing branches and conditional statements. Parallelising optimisations can be 

supported by hardware e.g. speculative execution, or by software. Software 

optimisations [63, 4, 26] such as loop unrolling, loop transformations and 

inlining can reduce the effect of branches, make more operations visible to 

the reordering hardware and improve machine performance. However, this 

compiler technology is prohibitively expensive to develop in the course of a 

thesis; though it is expected that a high performance superscalar architec-

ture would incorporate this state-of-the-art compiler technology. To con-

sider the effect of different levels of compiler optimisations the notion of the 

reordering scope was developed. Barriers were inserted into the code to re-

strict the amount of reordering that can occur within an instruction stream; 

operations were not allowed to reorder across these barriers. The distance 

between two barriers is referred to as the reordering scope. Increases in 

reordering scope represents greater sophistication in compiler technology. 

Conceptually the scope can be thought of as software window for reorder-

ing operations. Chapter 8 discusses this notion in comparison with the 

hardware instruction window. The seven ranges of scope considered in this 

chapter are: 

RSO No out of order execution. 

RS1 : Operations can reorder between different iterations of leaf level loops 

but not across procedure call boundaries. Operations outside leaf level 

loops can reorder within basic blocks. 

RS2 : Operations can reorder between different iterations of leaf level loops. 

Operations outside leaf level loops can reorder within basic blocks. 

RS3 : Operations can reorder between different iterations of nested loops 

but not across procedure boundaries. Operations outside nested loops 
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can reorder within basic blocks. 

RS4 : Operations can reorder between different iterations of nested loops. 

Operations outside nested loops can reorder within basic blocks. 

RS5 : Operations can reorder within the same procedure. 

RS6 No restrictions on reordering. 

2. Memory ordering. The sequence in which memory accesses are sent 

to memory effects the amount of reordering that can take place between 

memory references. Compiler technology can detect most memory depen-

dencies, but it has been found that in some scientific applications a small 

number of array references can not be resolved because of complex array 

subscripts [69]. These unresolved dependencies have been shown to cause a 

significant reduction in performance. For this reason hardware is required 

to disambiguate references at run-time. The complexity of this hardware is 

dependent on the memory ordering scheme supported by the architecture. 

The three memory ordering schemes considered are :- 

Strong Ordering (STO) : Loads and Stores occur in program order so 

there is no reordering of memory operations. This is the simplest case 

requiring no additional hardware or software complexity. 

Semi Strong Ordering (550): Loads/stores preserve their program order 

with other loads/stores. Loads and Stores can reorder relative to each 

other. In order to preserve flow dependencies this ordering scheme 

requires additional hardware for dynamic memory disambiguation 1  

The hardware is simplified by only needing to compare a load address 

against all stores issued since the last load. 

Weak Ordering (WKO): Loads and stores can reorder with any loads 

and stores in the program, but loads and stores to the same location 

occur in program order. This requires the most complex hardware. 

The logic must be capable of comparing all loads against all issued but 

not yet completed stores. 

3. Data dependency analysis. There has been much research into the im-

portance of precise inter and intra procedural data dependency analysis for 

program performance [54, 66, 69]. Memory dependencies can be resolved 

'Preserving false dependencies is contingent on the use of memory renaming. 



by dynamic disambiguation hardware and/or static analysis in the com-

piler; Chapter 2 presents a discussion of the types of techniques that have 

been suggested in the literature. This study uses the same approach as in 

Wall's limitation study [83] and examines the lower and upper bound for 

any disambiguation technique. These bounds are referred to as conserva-

tive analysis (CTA) and perfect analysis (PFA), respectively. The difference 

between them lies in how they handle array memory references. 

In PFA, dependency arcs exist between references to the same element 

of an array. 

In CTA, a dependency arc exists between each pair of references to the 

same array. 

Register and Memory Renaming. False dependencies occur because 

of the imperative and sequential nature of some programming languages. 

These languages allow the programmer to reuse the same memory location. 

All false dependencies can be removed by the introduction of new variables 

i.e. by array privatisation [34]. 

Synchronisation points. The barriers that define the bounds of the re-

ordering scope could be either synchronisation or non-synchronisation barri-

ers. Both barriers enforce the normal barrier semantics within an instruction 

stream. However the synchronising barrier imposes an additional constraint 

that the AU must wait for the DU before issuing any further introductions. 

This barrier introduces false loss of decoupling (LOD) events into the pro-

gram. Non-synchronising barriers allow the AU to retain some slippage 

ahead of the DU. 

7.2 Simulation technique 

The experiments use the base-line configuration for the 2-stream architecture 

shown in Table 7.1. This table also shows the range of architectural parameters 

investigated in this chapter. 

The key aspects of the base-line configuration are that the decoupled memory 

does not include a bypass mechanism; decoupling is therefore the only mechanism 

used for latency hiding. There is no speculative execution, but enforcing control 

dependencies for loop closing branches is dependent on the reordering scope used 

(see Section 7.1). The instruction issue width is restricted to realistic and pro-

jected future values. The results from Chapter 6 showed that one of the most 
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suitable configurations for maintaining maximal throughput was (4,5). The first 

and second value in the brackets are respectively the AU and DU instruction issue 

widths. 

Architecture 
make Components 

Base-line 
Values 

Other Values 
Considered 

Floating operation latency (cycles) 5 
Integer/Address op. latency (cycles) 1 
Function units (4,5) (1,1),(2,2),(2,3) 
Issue width (4,5) (1,1),(2,2),(2,3) 
Register file 00 

Window size oc 
Comm. bus latency 0 
Comm. bus width 00 

Decoupled memory oo 
Memory bandwidth 00 

Decoupled memory access latency (cycles) 1 
Bypass mechanism No 
Memory differential (cycles) 60 0 
Memory ordering wko {wko,sso,sto} 
Dependency analysis pIca {pka,cta} 
Renaming yes no 
Reordering scope rs6 {rso,rsl ,rs2,rs3,rs4,rss} 
Synchronisation points non-sync. sync 
Code Partition static 

Table 7.1: Configurations for the 2-stream decoupled architecture 

7:..3 Experiment results 

This section quantifies the performance impact of the different hardware and 

software design issues described in section 7.1. In the following experiments the 

combined issue width (CIW)for the decoupled architecture was 9 (AU and DU 

issue width of 4 and 5, respectively). This configuration was chosen because it 

is believed to be representative of future superscalar issue widths. Section 7.3.1 

considers different data dependency and renaming configurations. Section 7.3.2 

considers different memory ordering and barrier configurations. Each section 

quantifies the performance of the configurations when the memory differential is 

o and 60 cycles. An MD of 0 cycles was chosen in order to isolate the effect 

of the different configurations from memory latency. An MD of 60 was chosen 

because it is comparable to the cost of a second level cache miss 2  and it assumes 

a weak memory system capable of capturing no locality. In practice, for a high 

performance architecture, the memory system will be able to reduce the average 

2 Typical Pentium pro systems have measured L2 miss latencies of 50 cycles[8 
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access time by using first and second level caches. Each section also discusses the 

latency effectiveness and scalability of the configuration. 

7.3.1 Data dependency and renaming 

Figures 7.1 and 7.2 show the measured IPC levels for different data dependency 

analysis and renaming configurations when the MD is 0 and 60 cycles, respectively. 

The suffix '+rename' and '-rename' indicates where the configuration included or 

excluded memory renaming. The measurements were made with weak memory 

ordering and non-synchronising barriers. 

The 'pfa+rename' configuration in Figure 7.1 shows a large increase in IPC, 

from RSO to RS1, occurring as operation reordering within leaf level loops and 

basic blocks is enabled. After RS1 the increasing scope for reordering operations 

provides smaller gains in IPC. The other significant increase occurs, from RS5 to 

RS6, when operations are allowed to reorder across procedure call boundaries. 

Figures 7.1 and 7.2 show that even in the case of 'pfa+rename' a wide re-

ordering scope is required to achieve high IPC when the MD is large. This can 

be seen clearly in the change for RS1. In Figure 7.1 RS1 has an IPC 70% of the 

upper limit of 7.5 IPC. Compare this with Figure 7.2 where RS1 is only 37% of 

the upper limit. The configuration with 'pfa-rename' exhibits a similar type of 

behaviour. Wider reordering scope is therefore essentially for producing higher 

IPC for both configurations even with perfect dependency analysis. 

Reordering operations within leaf loops is insufficient at large latencies. How-

ever, it can yield a considerable percentage ( 70%) of the IPC upper limit when 

latencies are small. When memory differentials are large operations must reorder 

across nested loops in order to achieve greater than 50% of the IPC upper limit. 

Figure 7.2 shows that even with perfect analysis and renaming, it is still 

important to be able to reorder operations across nested loops and procedure 

boundaries to achieve high IPC when MD=60. This result can be seen in the large 

difference of 2.4 IPC (40% of the upper limit of 5.9 IPC) between RS3/RS4/RS5 

and RS6. 

The lower bound for any data dependency analysis technique is shown by the 

configuration with 'cta-rename' in Figure 7.1 and 7.2. It can be seen that in this 

case the scope for reordering operations is not the performance bottleneck. There 

is therefore clearly no benefit to increasin& the scope for reordering operations 

beyond RS1 in this case. The consequence is that for large memory differentials 

the latency can not be hidden and the IPC drops to 0.5 (see Figure 7.2). 

Renaming for both perfect and conservative dependency analysis only provides 
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additional IPC for R33 (barriers at nested loop and procedure boundaries) and 

above. It can be conjectured, that the reason for this is due to the majority of false 

dependency arcs crossing leaf level loop boundaries. For RS1 and RS2 barriers 

are placed at leaf level loop boundaries. Renaming provides little benefit because 

most of the false arcs cross these barriers. The ordering of memory operations is 

therefore enforced by the barrier rather than the false dependency arc. 

At large reordering scope (RS6), renaming compensates for conservative anal-

ysis when MD=0 (see Figure 7.1). However with large latencies there is little 

difference between the 'cta+rename' and 'cta-rename' configurations. The same 

is not true for perfect analysis where the gap for RS6 between 'pfa+rename' and 

'pfa-rename' widens when MD is 60. This indicates, that for perfect dependency 

analysis renaming is more important at large memory differentials. It also shows 

that renaming is more important to perfect than conservative dependency anal-

ysis when MD is 60 (see Figure 7.2). 

Figures 7.3 and 7.4 show the latency hiding effectiveness for different CIW 

for RS1 and RS6, respectively. To varying degrees all configurations show a 

deterioration in effectiveness as the CIW is increased. It can be seen that in both 

Figures the gap between the conservative and perft analysis is large, indicating 

the importance of high quality dependency analysis to latency hiding. 

It will also be noticed that for both configurations of perfect analysis the 

wider scope for reordering increases the latency hiding effectiveness. This can be 

seen clearly by the difference iwthe  Figures 7.3 and 7.4 where when CTW=2 the 

effectiveness increases by about 20%. 

For the configuration with perfect analysis, renaming improves the effective-

ness of the latency hiding only when the reordering scope and issue width are 

large. This can be seen from the difference between Figure 7.3 and 7.4. 

At large reordering scope (RS6) and perfect dependency analysis, renaming 

is important for improving the scalability and latency hiding effectiveness of the 

dual stream system. This can be seen from Figure 7.4, where for a CIW of 2 the 

difference in effectiveness is only 1%. However when CIW is 9 the difference from 

renaming is 16%. This indicates that the effectiveness and scalability of the dual 

stream system becomes more dependent on renaming as the CIW increases. The 

reduction in effectiveness for the configurations 'pfa+rename' and 'pfa-rename' is 

14% and 28%, respectively. 

The latency hiding effectiveness for RS6 and the configuration with perfect 

dependency analysis and renaming exhibits behaviour favourable to the scalability 

of access decoupling. Firstly when CIW < 5 the effectiveness is greater than 
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90%. Secondly when CIW is 9 the effectiveness, as would be expected for a large 

memory differential, decreases, but only by 16%. To improve the effectiveness it 

will be necessary to adopt other latency hiding techniques for high CIW, such as 

the bypass mechanism described in Chapter 5. 

Average I PC; AU,DU=4,5 md=O 
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Figure 7.1: Average IPC when MD=O 

7.3.2 Memory reordering and barriers 

Figures 7.5 and 7.6 show the IPC for different memory ordering and barrier 

configurations when the MD is 0 and 60 cycles respectively. The measurements 

were made with perfect dependency analysis andrenaming. The different barrier 

configurations were measured using weak memory ordering. 

The most significant result is that any future dual stream system machines 

must support reordering of memory operations. This can be clearly seen in both 

Figures 7.5 and 7.6 by the large gap between the WKO and, the SSO and STO 

configurations. The 550 configuration has only a marginally higher JPC than 

the ST0 configuration. 

There is no advantage to reordering operations beyond leaf level loops for 

STO and SSO configurations. Figures 7.5 and 7.6 both show that the SSO and 

STO configurations show no change in performance for reordering scopes beyond 

0 

M 

74 



Average IPC AUDU=4,5 md=60 

pfa+renanie -0--- 

pta-rename 
cta+renarne -0-- 

cta-renarne .-- 

4 

C) 3 

Fl 

o 
RSo 
	

RS1 	 RS2 	 RS3 	RS4 	RS5 	ASS 
Reordering Scope 
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RS1. Section 7.3.1 commented on the necessity of wide reordering scope in order 

to hide the MD of 60 cycles. It can therefore be inferred that for wide scopes, the 

STO and SSO configurations will have poor latency hiding capabilities because 

of the restrictions they impose on operation reordering. This can be seen clearly 

in the graph for latency hiding effectiveness in Figure 7.8. 

Figure 7.6 shows for RS1 and RS2 the importance of the AU being able to 

continue prefetching data across leaf level loop boundaries to hide large latencies. 

This result follows from the large IPC difference between the configurations with 

synchronising and non-synchronising barriers 3. 

It was also noticed that the dual stream system synchronises between nested 

loops and across procedure call boundaries due to data dependencies from the DU 

to AU. This can be inferred from the converging lines for RS3 and R55 when the 

configurations have synchronising and non-synchronising barriers (see Figure 7.5 

and 7.6). 

Figure 7.7 and 7.8 show the latency hiding effectiveness for different CIW for 

RS1 and R53, respectively. As in the previous section, it can be observed that 

there are varying degrees of reduction in effectiveness as the CIW increases. 

'The line for non-synchronising barriers is coincident with the weakly ordered configuration 
line. 
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The major differences between Figures 7.7 and 7.8 is the increasing effective-

ness of the configuration with synchronising barriers and the lack of variation in 

the behaviour of SSO and STO. For RS1 the effectiveness of latency hiding is 

poor when the configuration has synchronising barriers. As commented earlier 

this results from the need to allow the AU to prefetch data across leaf level loop 

boundaries, and from the dual stream system synchronising between nested loops 

boundaries. The dual stream system does not scale well with this configuration, 

reducing to below 40% when the CIW is 9. The effectiveness of SSO and STO 

is independent of instruction reordering because, the IPC does not increase with 

wider reordering scope and larger CIW, for these ordering schemes. 

7.3.3 Individual program behaviour 

The preceding analysis was based on the aggregate behaviour and therefore hides 

some on the individual characteristics of the programs. Table 7.2 shows IPC and 

LHE for different reordering schemes. 

For the programs MDG, QCD2, ADM and DYFESM good inter-procedural 

analysis and reordering operations across nested loop is critical to achieving high 

IPC and latency hiding effectiveness. This can be clearly witnessed by the large 
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Figure 7.4: Average Latency Hiding Effectiveness (RS=6) 

gap between RS3/RS4/RS5 and RS6. For example, when the memory differential 

is 60 cycles, ADM shows an increase of 140% in its effectiveness when reordering 

operations across procedure boundaries is enabled. 

For the programs FL052Q and TRFD most of the parallelism is located in 

the innermost loops, 87% and 74%, respectively. However to achieve a latency 

hiding effectiveness around 90% requires the ability to reorder operations within 

nested loop boundaries. In TRFD this produces a significant improvement from 

50% to 99%. 
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RS Program MD=0 MD=60 Program MD=0 MD60 
IPC IPC LHE (%)  IPC IPC LHE (97o) 

iif ADM 0.8 0.5 64 DYFESM 0.7 0.6 75 
1 3.9 1.6 41 3.0 1.6 52 
2 4.0 1.7 42 3.0 1.6 52 
3 4.4 1.8 40 5.4 3.2 52 
4 4.6 2.0 42 5.4 3.2 58 
5 4.6 1.8 40 5.4 3.2 58 
6  8.8 8.8 100  7.6 6.6 87 
0 FL052Q 0.8 0.6 76 MDG 0.8 0.4 46 
1 7.5 5.7 75 3.5 1.2 34 
2 7.5 5.7 75 3.5 1.2 35 
3 8.3 7.3 87 5.5 1.7 30 
4 8.3 7.3 87 6.0 1.9 32 
5 8.5 7.7 91 5.5 1.7 30 
6.  8.6 8.4 97 1 8.8 4.2 48 
0 QCD2 0.9 0.6 64 TRACK 0.8 0.3 35 
1 4.3 1.7 39 1.7 0.4 22 
2 4.7 1.9 41 1.8 0.4 21 
3 4.7 1.8 37 1.7 0.4 23 
4 5.1 2.1 39 1.8 0.4 22 
5 4.9 1.8 37 1.7 0.4 23 
6  8.1 4.5 55 1.9 0.4 22 
0 TRFD 0.7 0.6 86 Average 0.8 0.5 
1 6.1 3.0 50 4.3 2.2 
2 6.1 3.0 50 4.4 2.2 
3 8.2 8.2 99 5.5 3.5 
4 8.2 8.2 99 5.6 3.6 
5 8.2 8.2 99 5.5 3.5 
6  8.2 8.2 100 1 7.4 5.9  

Table 7.2: IPC and LHE for different reordering scope; dependency analysis is 
perfect with renaming 

EZi 



7.4 Design implications for the dual stream sys-
tem 

In Section 7.3.2 it was shown that the reordering of memory operations is critical 

for hiding large memory latencies and achieving high IPC. The implication of 

this result is that the decoupled memory (described in Section 3.1) must, like 

the ARB [40] be capable of supporting multiple accesses, speculative loads and 

stores, and dynamic memory disambiguation. The ARB could be placed in the 

decoupled memory to support the aggressive reordering of memory operations of 

a dual stream architecture '. However, by itself, the ARB is not sufficient to 

support an out-of-order dual stream architecture. This is because the order in 

which operations are executed on the AU, and the order in which data arrives in 

the decoupled memory, must be communicated to the DU. There also has to be 

additional support for waking up operations on the DU when data arrives in the 

decoupled memory. 

One of the postulates of this thesis is that the decoupling paradigm can sim-

plify instruction issue logic. Therefore, the central design requirement for this 

additional wakeup logic is that it should not introduce greater complexity into the 

instruction issue logic. This section proposes a mechanism that uses the sequence 

numbering of memory accesses to support out-of-order decoupled execution. 

Although operations are executed out-of-order, they are fetched and decoded 

in-order. In a similar way to the ARB, a sequence number is assigned to each 

AU and DU operation that accesses the decoupled memory. This results in the 

AU and DU operations involved in a decoupled load having the same sequence 

number. This sequence number is referred to as the order number, and is used 

by the DU to detect if the data is available in the decoupled memory. The order 

number has a maximum limit that restricts the number of accesses that can be 

in-flight at any one time. The order number is a logical sequence modulo the 

maximum limit. 

7.4.1 Out-of-order decoupled loads 

The diagram in Figure 7.9 shows how the order number can be used to support the 

out-of-order execution of a decoupled load. The diagram shows a load data buffer 

that is indexed by the order number. It also shows, in each of the decoupled units, 

an order manager queue to control the assigning and releasing of order numbers. 

'Interestingly, the ARB includes a mechanism to forward the values of store operations to 
waiting loads; this is similar to the bypass mechanism in the optimised decoupled memory. 
Section 9.1.6 has shown the benefits of this mechanism for a decoupled architecture. 
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The number of entries in the order manager queue and load data buffer are equal, 

so that no two in-flight accesses can map to the same slot in the buffer. 

To illustrate how the load data buffer and order manager queues support out-

of-order accesses in a decoupled architecture, Diagram 7.9 shows the different 

stages of a fully decoupled load I from an address X. At each of the labelled 

stages in the diagram, the following operations would occur: 

• In Stage 1 the address operation is decoded and placed in the AU instruction 

window. During this stage, the operation is assigned the order number n+1, 

and the tail is incremented (modulo the size of load data buffer) to point 

to this latest instruction. 

• In Stage 2 the address is sent to the decoupled memory with its order 

number. Note, that because the load data buffer has the same number 

of entries as the order manager queue, a slot is implicitly reserved for the 

retrieved data in the load data buffer. 

In Stage 3, the accessed data is placed in the decoupled memory where it 

waits to be fetched by the DU. 

• In Stage 4, the DU decodes the fetch of X and assigns it the order number 

n+ 1. The order number is then tagged with the instruction window slot ID 

where the fetch operation resides, and is sent to the load data buffer. The 

result of the successful lookup is communicated, using the slot reference 

(thereby avoiding an associative lookup), back to the instruction window 

and the fetch operation is flagged as ready to execute. 

• In Stage 5, the fetch operation executes and the data is retrieved successfully 

from load data buffer. 

• In Stage 6, once the data has been retrieved from the load data buffer the 

order manager queues on both units are notified that this order number can 

be released (marked as 'R'). The header is advanced when the order number 

it points to is marked for release. 

If the load is not fully decoupled (the DU instruction is decoded and placed in 

the instruction window prior to the data arriving in the decoupled memory) then 

the following operations occur. The load data buffer detects that the data hasn't 

arrived and places the slot reference in the data area. When the data arrives from 

'One in which the data is already resident in the decoupled memory when the DU operation 
arrives in the instruction window 



main memory, the load data buffer uses the reference to inform the DU that the 

fetch operation can be now flagged as ready to execute. In parallel, the retrieved 

data is also written to the data area. 

The advantage of using the slot reference is that it does not require expensive 

wakeup logic to broadcast a result to every operation in the instruction window 6  
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Figure 7.9: Support for out of order memory access in a dual stream system 

7.4.2 Out-of-order decoupled stores 

An out-of-order decoupled store can also be implemented using the ARB. The 

only additional complexity is the hardware support to match DU data with the 

appropriate AU address. This will require an associative lookup on the order 

sequence number of waiting store addresses in the decoupled memory (not shown 

in Figure 7.9). 

6 Palacharala [64] showed that the associative wakeup logic required in the issue window 
introduced delays that increased quadratically with the window size. 



7.5 Summary 

This chapter has identified those design issues that determine the degree of re-

ordering and investigated their relationship to the latency hiding effectiveness, 

scalability and IPC of the dual stream system; where scalability is defined as the 

variation of the latency hiding effectiveness with the CIW. 

The results from this chapter have shown the importance of memory order-

ing. The 550 and STO schemes have been shown to restrict the parallelism in 

the dual stream system. For this reason this chapter has proposed a mechanism 

to support out-of-order accesses in decoupled architecture. The key component 

in the mechanism is a load data buffer that serves two functions: to hold data 

retrieved from the main memory; and to hold references to slots in the DU in-

struction issue window. The latter functionality is required for DU fetches that 

can not be serviced because the data is not resident in the decoupled memory. 

The advantage of the proposed technique is that it can be combined with an 

existing mechanism (the ARS [40]) while only introducing minimal complexity 

into the instruction issue logic. 

Interestingly, the 550 scheme was used in a previous decoupled architec-

ture [24], but operations were only allowed to be reordered from within leaf level 

loops. This chapter has shown, that for the dual stream system this is the op-

timal configuration of reordering scope with the SSO scheme. Results show (see 

Section 7.3.2) that providing a wider scope for reordering operations beyond leaf 

level boundaries yields minimal benefit for the 550 scheme. 

Renaming is only important to the latency hiding effectiveness of the dual 

stream system for wide reordering scope and large CIW (> 5). 

For a configuration with perfect dependency analysis, weak memory ordering 

and renaming, behaviour favourable to the scalability of the dual stream system 

has been observed. The latency hiding effectiveness has been shown to be greater 

than 90% for CIW < 5 and only decrease by 14% when CIW is large (9-way 

issue). 

This chapter has also tried to quantify the effect of differing complexity of 

parallel optimisations; where complexity has been modelled in terms of wider 

reordering scope. The results show that when memory differentials are small 

reordering operations in leaf level loops is sufficient to achieve 70% of the TPC 

upper limit. For large memory differential, operations must be able to reorder 

within nested loop boundaries to achieve greater than 50% of the TPC upper limit. 

Wide reordering scopes can offer sufficient operations to hide latency but are 

dependent on the memory ordering scheme and the data dependency analysis. 



For configurations with STO, SSO and conservative analysis the benefits of wide 

reordering scope can not be realised, due to the memory ordering scheme and 

dependency analysis being the bottleneck. 

In three of the programs, reordering operations across procedural boundaries 

is critical to extracting ILP. For the same programs it has also been shown to be 

necessary for tolerating large memory latencies. Highly parallel programs have 

been found to have high (> 87%) latency hiding effectiveness when operations 

are only able to reorder within nested loops. 

For configuration with narrow reordering scopes, where barriers exist at leaf 

level loops, results have shown that it is important to allow the AU to continue 

prefetching data after the barrier. Synchronising barriers are observed to reduce 

performance especially when the MD is large. 
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Chapter 8 

Reducing Hardware Complexity 
through Decoupling 

It can be speculated that future high performance microprocessors will improve 

performance by extracting higher degrees of instruction level parallelism. In su-

perscalar architectures parallelism is exploited by reordering instructions within 

an instruction window and issuing multiple independent instructions per cycle. 

However as processor speeds increase and issue widths get larger the cost of a 

main memory access is becoming relatively more expensive. One solution is to 

hide memory latency by data prefetching. 

Data prefetching is a technique that hides memory latency by overlapping 

access and data operations. Data prefetching can be implemented in either hard-

ware [41] and software [161 or a hybrid [18] of both schemes. However as memory 

accesses become relatively more expensive the number of independent overlapped 

instructions required to hide access times increases. Larger instruction windows 

are therefore required to detect independent instructions that can execute in par-

allel with memory access operations. 

The pressure to increase window sizes is also driven by the goal of providing 

ever larger issue widths. However, large windows and issue widths introduce 

greater complexity in window issue logic. Palacharla [64] has shown that delays 

in the issue logic vary quadratically with window and issue width size. Since 

delays in issue logic will be critical to processor clock frequency there is a need 

to consider architectures that simplify issue window logic. 

To solve the window complexity problem some architectures use separate mi-

croclusters. Microclusters may share, or have a dedicated instruction window, 

but each has its own register file and function units. This design simplifies win-

dow logic by flagging instructions for execution on particular microclusters. This 

reduces the size of the instruction window but can limit the number of instruc- 



tions issued per cycle. Other designs, like the MISC [81], Multiscalar [75] and 

PEW [51] architectures, use decentralised control logic to simplify the window 

hardware, and increase ILP without effecting clock speeds. 

Since in principle the same level of prefetching in an decoupled machine could 

be achieved with a single stream, out-of-order superscalar architecture; the ques-

tion is "why should designers consider using the decoupling paradigm?" 

Memory latencies are typically 20-50 cycles whereas arithmetic function la-

tencies are 2-5 cycles (excluding divide and intrinsics). A system could easily 

tolerate a small degree of out-of-order execution amongst arithmetic operations 

provided loads could slip by a large amount with respect to arithmetic operations. 

This slippage between arithmetic and load operations is exactly what occurs in 

a decoupled machine. In other words, there can be small distinct instruction 

windows for arithmetic and access operations, provided the latter can slip by a 

large amount with respect to the former. To illustrate this idea section 8.1 in-

troduces the concept of the effective single window. The effective single window 

is the minimum size of window required by a processor with a single window to 

have the same instructions in flight as the decoupled machine. In answer to the 

question posed in the paragraph above, it is believed that a decoupled architec-

ture's decentralised logic would produce high latency tolerance while reducing the 

complexity of reordering hardware. 

The disadvantage of decoupled architectures is the extra communication over-

head, and the smaller issue width and instruction window available to each of the 

instructions streams. However, communication hardware can be implemented 

cheaply through queues, and is not critical to processor clock speeds. Provided 

the frequency of communication is low and the bandwidth is high, then the impact 

of the communication overhead should be minimal. The OCTAVE compiler re-

duces communication by duplicating operations on both units . Current advances 

in fabrication technology mean that with decreasing features sizes a single chip 

multiprocessor could be built with an inter-unit communication latency of a few 

cycles 2  However, narrower issue widths and smaller window sizes may increase 

contention and limit reordering; this will reduce the latency hiding effectiveness 

and possibly annul any of the benefits derived from simpler issue hardware. 

This chapter justifies renewed interest in decoupling by comparing a single and 

dual stream out-of-order superscalar architecture. Section 8.3 considers the effect 

of issue width on both machines. In order to isolate its effect on performance all 

'Though this optimisation can cause code expansion. 
'Chapter 9 provides a series of simulation studies to analyse the effect of communication 

cost on a decoupled machine. 
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resources are relaxed and unlimited reordering is permitted. Using an analytical 

model and simulation studies, this section compares the performance of a single 

and dual stream systems. The results show that although single stream systems 

achieve slightly higher IPC, on average it requires much larger issue widths and 

window sizes. This suggest that any performance loss could be more than com-

pensated for by simplifying the control hardware. Section 8.3 also shows that the 

code expansion introduced by OCTAVE's static partitioning has little effect on 

these findings when issue widths are large. 

Section 8.4 compares the relationship between window size and memory la-

tency for the decoupled and a single stream superscalar machine. It also evaluates 

the size of window required by the single stream architecture to achieve the same 

performance as the dual stream architecture. 

In the remaining sections; Section 8.1 discusses the notion of the effective 

single window size to help explain some of the chapters findings and Section 8.2 

describes the simulation technique. Section 8.6 concludes by summarising the 

chapter findings. 

8.1 The effective single window 

An advantage of the decoupled machine is that the dynamic slippage between the 

window of instructions on the AU and DU means that the effective single window 

size can be. greater than the sum of the individual units' window sizes. Fig-

ure 8.1 illustrates the idea of the effective single window. The diagram shows the 

streams for the AU, DU and a single instruction stream. For the single instruc-

tion stream, the instructions are shown in program order (with later instructions 

appearing further down the page), labelled with the units on which they execute 

in the decoupled machine. The diagram shows that, due to the dynamic slippage 

between the units, the AU is executing instruction further into the instruction 

stream than the DU. The effective single window is the minimum size of window 

required to buffer all instructions from the oldest DU instruction to the youngest 

AU instruction. 

8.2 Simulation technique 

In the dual stream system, loads and stores are executed as one instruction on 

each of the units. On the single stream architecture, loads and stores generate 

a prefetch and an access operation. Integer and address computations have a 1 

cycle cost. Floating point operations take 5 cycles to complete. 
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Figure 8.1: Effective single window 

There is no speculative execution but it is assumed that loop closing branches 

'have been removed by optimisations like loop unrolling and branch prediction. 

Data dependency analysis is perfect and false dependencies are removed by re-

naming. The purpose of examining such an ideal case is to provide the best 

opportunity for prefetching data, to have high instruction level parallelism (ILP) 

and to place the greatest pressure on the latency hiding mechanism. 

The results from Chapter 6 are used to select instruction issue widths. The 

values selected were (4,5) for the decoupled and an issue width of 9 for the single 

stream architecture. 

8.3 Issue width 

It can be argued that the degree of prefetching of an access decoupled machine 

could be achieved with a single stream architecture. If this is the case why 

introduce the additional complexity required to support asynchronous instruction 

streams. This thesis postulates that the decoupled architecture will be able to 

provide lower but comparable performance but with smaller window size and issue 

widths; this will simplify the instruction issue logic and reduce the clock period. 

The disadvantage of the decoupled architecture is that it uses a smaller issue 

width for each stream, potentially increasing slot contention and reducing the 

peak issue rate for data and access operations. One would anticipate that the net 



result would be a drop in the IPC for a decoupled architecture. A key question is 

whether the trade-off between simpler hardware is offset by the reduction in IPC. 

To answer this question, the approach adopted in this chapter is to quantify 

the reduction in IPC for the decoupled architecture. The rational behind this 

approach is that we can speculate a small reduction in IPC will be compensated 

for by a reduction in cycle times. However, a large reduction in IPC will require 

analysing the hardware complexity of the two architectures in greater detail. 

In the first study, the architectures were given the same combined issue width 

but allowed unlimited instruction window size. In order to isolate this comparison 

from other factors, the same number of operations were executed on both the dual 

and single stream systems. Although there is some duplication of operations in 

the case of the dual stream system, the increase is on average 9.2% (see Table A.1). 

It is believed that the effect of this code expansion will decrease at the large issue 

widths being considered in this chapter '. The programs were executed with 

perfect data dependency analysis, renaming, weak ordering and non-synchronising 

barriers. 

Tables 8.1 and 8.2 show the average IPC measured for the 7 programs when 

the reordering scope was RS3 and RS6 respectively ". The tables also show the 

reduction in IPC for the dual stream system and the latency hiding effectiveness 

of the two systems. The column labelled CIW is used to denote the combined 

issue width for dual stream and the issue width for single stream. In the case of 

the dual stream the combined issue width is the sum of the AU and DU issue 

width. The experiments only looked at the cases when the dual stream combined 

issue width was equal to single stream issue width. 

It can be seen that in all cases the dual stream system's IPC is lower than 

that of the single stream system. The reduction in performance is due to inflex-

ible scheduling during synchronising and startup phases. When the decoupled 

machine is in the state where the AU is waiting for a result from the DU, its issue 

slots are being wasted. However, for the single stream system the full issue width 

is available at all times. During the startup phase after a synchronisation point, 

the single stream system is able to initiate more accesses whilst the DU waits for 

the first value to be returned from the memory system. It would be expected 

therefore that as the number of synchronising points decreases the reduction in 

IPC would be smaller. This can be seen in the difference between tables 8.1 

and 8.2, where for a combined issue width of 9 and memory differential of 0, 

'Code expansion and other design issues unique to decoupling are considered in Chapter 9 
4 1n RS3, intra nested loop reordering is permitted, but operations can not migrate across 

procedure call and nested loop boundaries. In RS6, there are no restrictions on reordering. 
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the reduction in IPC has dropped from 9% to 6%. This is due to RS3 reducing 

the slippage between the units and hence increasing the number of synchronising 

points in the program. 

The difference in IPC also varies with larger combined issue width. This is 

due to the fact that when the combined issue width is 2 the AU and DU have an 

issue width of 1, effectively serialising the code for each of the instruction streams 

(some reordering will be possible but it will be small). When the combined issue 

width is increased to 9, the benefit accrued to the single stream system by the 

extra issue slots, available during synchronisation and startup phases, is relatively 

smaller. 

The tables also show that the latency hiding effectiveness is always marginally 

smaller for the single stream architecture. It is believed that this is due to the 

memory accesses (operations in the dual stream system would be executed on the 

AU) having to contend with data computations (operations in the dual stream 

system that would have been executed on the DU) for issue slots. 

A large memory differential also reduces the performance difference between 

dual and single stream architectures. Large memory differentials reduce the paral-

lelism in the program and limit the advantage gained by the single stream system 

during synchronising and startup phases on the dual stream system. 

This analysis permitted unlimited lookahead through the unconstrained in-

struction window. An estimate of the average window size can be computed 

using an analytical model, the measured average perceived load latency and the 

operation breakdown shown in Table A.2. The average length of time for an 

Operation to execute Is given by 

top = jill * atoad + 1 * as tor6  + 5 * afloat + 1 * ajn teger 	(8.1) 

where the terms aload, astore, afloat and ainteger denote the fraction of load, store, 

float and integer operations, respectively. The average length of time any oper-

ation will wait in the instruction issue window for a result will be equal to 7. 

The number of instructions decoded per cycle is less than or equal to the the 

issue width (1W); the inequality applies because branches will cause dependent 

instructions to wait for the target address to be calculated, delaying their execu-

tion by the fetch/decode mechanisms. The average window size is therefore given 

by 

(8.2) 
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In the following experiments the fetch and decode is assumed to be perfect 

so that the inequality becomes an equality in this equation. Table 8.3 shows 

the computed average window size for the dual and single stream architectures 

when RS=6. This table shows that the single stream system requires a larger 

instruction window than the decoupled architecture. The average ratio of the 

single to dual stream window size is 1.7 and 2 when the combined issue width is 5 

and 9, respectively. This also shows that the ratio increases with larger combined 

issue width. 

Table 8.2 shows when RS=6, that for a combined issue width of 5 and 9 the 

average degradation in TPC is 7% and 5%, respectively. Palacharla [64] has shown 

that delays due to window logic increase quadratically with instruction window 

size and issue width. He found that the performance degradation between a 2x4-

way clustered and a single 8-way architecture was only 2-12%. From his hardware 

complexity analysis he was able to conclude that the 2x4-way architecture would 

have a 25% faster clock speed, resulting in an average performance improvement 

of 16%. It is therefore anticipated that the 7% to 5% reduction in TPC would be 

more than compensated for by the simpler issue logic in the dual stream system. 

By executing the same number of operations in the single and dual stream 

architecture the effect of code expansion was isolated from the experimental find-

ings. Table 8.4 shows the average speedup of the single over the dual stream 

architecture for the cases when the former was without and with the duplicated 

operations of the dual stream architecture. Table 8.4 shows that with small com-

bined issue widths of 2 instructions the single stream, without code expansion, 

has a significantly higher TPC than the dual stream architecture. To achieve 

equivalent performance would require the dual stream to have a clock frequency 

17-20% higher than the single stream architecture. However, with an issue width 

of 9 and an MD of 60 cycles, the speedup of the single stream is reduced to be-

tween 4% and 6%. It is expected that such a small loss in performance would be 

compensated for by the reduction in clock speed. 

Table 8.4 also shows that with a CIW of 2, the speedup with and without code 

expansion is 5.2% and 3.5% higher for an MD of 0 and 60 cycles, respectively. For 

a CIW of 9 the speedup is only 2.8% and 2% higher, for an MD of 0 and 60 cycles, 

respectively. It can be concluded therefore, that the effect of code expansion is 

only small for large CIW. The assumption made above that code expansion is 

not significant only applies for large combined issue widths. This result has been 

inferred from simulations with unlimited window size. A discussion of the effect 

of code expansion for a restricted window size is postponed until Section 9.1.2. 



Instruction 
Stream 

CIW Average IPC Latency Hiding 
Effectiveness (%) md=0 mcl=60 

Single 
Dual 

2 
2 

1.86 
1.56 

1.44 
1.24 

77 
79 

IPC reduction (%)  0.3 (16) 0.2 (14)  

Single 
Dual 

5 
5 

3.93 
3.56 

2.59 
2.45 

66 
69 

IPC reduction (%) 0.37 (9) 0.14 (5)  

Single 
Dual 

9 
9 

5.97 
5.44 

3.7 
3.46 

62 
64 

IPC reduction (%)  0.53 (9) 1 0.24 (6)  

Table 8.1: Comparison of single and dual instruction streams when RS=3 

Instruction 
Stream 

CIW Average IPC Latency Hiding 
Effectiveness (%) md=0 md=60 

Single 
Dual 

2 
2 

1.92 
1.68 

1.76 
1.55 

92 
92 

IPC reduction (%)  0.24 (13) 0.21 (11)  

Single 
Dual 

5 
5 

4.54 
4.18 

4.00 
3.74 

88 
89 

TPC reduction (%)  0.36 (8) 0.26 (7)  

Single 
Dual 

9 
9 

7.94 
7.43 

6.16 
5.87 

78 
79 

IPC reduction (%)  0.51 (6) 0.29 (5)  

Table 8.2: Comparison of single and dual instruction streams when RS=6 

8.4 Window size and memory latency 

The conclusions drawn from the previous section were that a decoupled system 

could achieve slightly lower, but comparable performance to a single stream archi-

tecture, and that this could be achieved with a window of half the size. However, 

these results were based on an analytical model and simulation studies of archi-

tectures with an unlimited reordering window. This section describes the effect 

of window size and memory latency on the dual and single stream architectures. 

The experiments simulated all the programs from Table 5.5, but for the purposes 

of this chapter three representative piograms are selected that exhibit the range 

of observed behaviour . The three selected programs were FL052Q, MDG and 

TRACK. Figure 8.2 shows the latency hiding effectiveness of all seven programs 

'Results from the other programs are shown in Appendix E 
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Program CIW=5 CIW=9 
decoupled single decoupled single 

au,du  au,du  
ADM 4,30 41 6,35 75 

DYFESM 2,20 65 5,65 111 
FL052Q 4,31 54 5,24 95 

MDG 41 14,43 75 
QCD2 36 8,52 66 

TRACK 
L4,33 

56 30,76 100 
TRFD 41 4,47 78 

Table 8.3: Average window size when RS=6 

CIW md=0 md=60 
with without with without 

2 1.14 1.20 1.13 1.17 
5 1.08 1.13 1.07 1.09 
9 1.07 1.10 1.04 1.06 

Table 8.4: The effect of code expansion on speedup when RS=6 

when the window size is unlimited and the memory differential is 60 cycles. It 

can be seen there are three bands in which the programs are highly (80-100%), 

moderately (40-60%) and poorly (cc 40%) effective at hiding latency. It can be 

seen that the three programs fall within each of the bands. 

0.I 

I 
24 

3 
3 

0.2 

Figure 8.2: Latency hiding effectiveness MD=60 cycles 

Figures 8.3, 8.4 and 8.5 show the variation in speedup with window size for 

the dual and single stream architectures when the memory differential is 0 and 60 

cycles. When MD is Q it can be seen that for small window sizes the dual stream 

system performs better than the single stream system with the same window 



size. This is due to the dual stream system having two windows for reordering 

operations compared to one for the single stream. This means there are fewer 

resource conflicts for window slots and greater scope for reordering operations. 

It can also be noticed that the graphs show diminishing returns for increasing 

window size; once window sizes are above 10 instructions, doubling the size does 

not double the speedup. All the programs reach a cut-off point for window sizes 

between 40 and 80 instructions when the single stream system performs more 

effectively. This is due the benefit of the larger instruction issue width available 

to the single stream. This benefit is only realised once the instruction window is 

large enough to utilise the available issue width. 

Figures 8.3, 8.4 and 8.5 show that once MD reaches 60 cycles there is no cut-

off point at which the single stream system performs better than the decoupled 

machine. This results applies even for very large windows of 100 instruction slots. 

The difference between the performance of the two machines must be solely due 

to the more effective data prefetching of the decoupled machine. Operations on 

the single stream system, which on the decoupled system would have been exe-

cuted on the DU, are causing address computations to execute later, reducing the 

pipelining of memory accesses and decreasing the effectiveness of data prefetch-

ing. The difference in performance between the two machines also depends on 

the type of program. For FL052Q which is highly parallel, the gap between the 

decoupled and single stream system is large. However, for TRACK which has 

little parallelism, there is little difference between the two architectures. 

It can be stated therefore that for all the simulated programs the decoupled 

machine is more effective at hiding large memory latencies than the single stream 

architecture. The difference in performance is dependent on the available par-

allelism and decoupling in the program. Programs that decouple well show the 

largest improvement in performance for the decoupled machine. 

Figures 8.6, 8.7 and 8.8 show, for a range of memory differentials, the equiv-

alent window ratio. This term is the ratio of the single stream and decoupled 

window sizes that yield equivalent performance. The ratio was derived by pro-

jecting from the decoupled system to the single stream graph in Figures 8.3,8.4 

and 8.5. The graphs show the way in which the ratio varies as a function of 

the memory latency. It can be seen that as latencies approach 60 cycles the ra-

tio gets larger. This is due to the more effective data prefetching of the access 

decoupled machine. As the memory latency increases, the DU waits longer for 

data to arrive and the slippage between the two units grows. This means that 

the effective single window size (see Figure 8.1) for the decoupled machine gets 

E,1'1 



larger. In order for the single stream system to achieve equivalent performance, 

it requires a correspondingly larger window. 

The graphs in Figures 8.6, 8.7 and 8.8 also show that as the decoupled window 

size is increased the equivalent window ratio reduces. This is due to the single 

stream architecture being able to reorder operations to a similar degree as the 

decoupled machine, and also the benefits of the larger issue width. 

Significantly, it can be observed that for a realistic decoupled window size of 

30 instructions and a memory latency of 60 cycles, the equivalent window ratio 

is dependent on the program, but is in the range 2.5 to 5. Experiments with 

the other benchmark programs shown in Table 5.5 have also been found to fall 

within this range (see Appendix E). Larger windows introduce extra hardware 

complexity and longer window logic delays. It can be stated therefore that the 

decoupled machine requires significantly smaller instruction windows and hence 

simpler window logic. 

For smaller memory latencies of 20 cycles the range for the equivalent win-

dow ratio is smaller, between 2.2 and 3.5 for 7 of the programs. However, for 

TRACK the ratio drops below 2 to 1.9. This is due its low parallelism which 

even with unlimited window size does not increase above 2 IPC. The effective 

single window is clearly unable to provide any additional advantage because of 

this low parallelism. 

Having shown that the dual stream system performs consistently better than 

the single stream architecture, a comparison is made between the latency hiding 

effectiveness of the decoupled machine against a perfect latency hiding technique 

(one in which all the memory differential is hidden). Table 8.5 shows the measured 

LHE for different window sizes when the memory differential is 60 cydles. 

The results show that when window sizes are small, increasing the window size 

causes a reduction in the LHE. This is due to the extra parallelism on the DU 

placing greater pressure on the memory system. The AU window is not yet large 

enough allow the AU to pipeline accesses sufficiently to hide the latency. However 

there eventually comes a point when the larger window size allows more operations 

to execute in parallel and the LHE starts to improve. For MDG and FL052Q 

that point occurs at 40 and 50 instructions respectively. This result suggests that 

for realistic window sizes (1 to 30 instructions), increasing the window size will 

result in the latency hiding mechanism of the dual stream system performing less 

effectively. Table 8.5 also shows that even large window sizes do not approach 

the latency hiding effectiveness of a decoupled machine with unlimited resources. 

These findings show that for realistic window sizes the dual stream system 

s1 
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Figure 8.3: Speedup of FL052Q for varying window size 

can hide latencies better than single stream architecture but that as the window 

size increases its effectiveness at hiding latency deteriorates. This illustrates the 

tensions that exist between having greater parallelism and the access decoupling 

mechanism. As the window size gets larger, the instruction level parallelism 

increases and the execution times fall. However, the extra parallelism places 

greater pressure on the decoupling mechanism resulting in a decrease in LHE. The 

result is the memory latency contributes more to the critical path time. There 

comes a point however, when the AU window is large enough to compensate for 

the extra parallelism on the DU, and more address operations can be pipelined 

to hide the latency. 

In the short to medium term high performance architectures will have window 

sizes in the range that shows a reduction in the latency hiding effectiveness. 

During this time frame designers will have to incorporate other latency hiding 

techniques to improve the effectiveness of decoupled machines. 
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Figure 8.4: Speedup of MDG for varying window size 

8.5 Reordering scope and instruction window 

The reordering scope and instruction window impose constraints on the degree 

of reordering in the instruction streams. The reordering scope which is explained 

in Chapter 7, is used to model different levels of compiler complexity by intro-

ducing barriers into the instruction streams. An operation is not able to begin 

execution until after all operations before the last barrier have executed. The re-

ordering scope can conceptually be thought of as a software window within which 

operations are permitted to reorder. 

Determining reordering scope and window sizes that give equivalent perfor-

mance allows comparisons to be made between different levels of compiler and 

hardware complexity. Table 8.5 and 7.2 show the average IPC values for the 

instruction window and reordering scope, respectively. The results show that on 

average a window size of 20 to 30 instructions 6  is equivalent to the reordering 

operations within leaf loops (RS1 and RS2) when the memory system is perfect 

(md=0). To reorder operations within nested loop boundaries (RS3 and RS4) 

6 The is approximately equal to the window size of the 1110000 (window size = 32 instruc-
tions) [91} 
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Figure 8.5: Speedup of TRACK for varying window size 

requires on average windows of 40 to 50 instructions. However, once the memory 

differential becomes large (md=60) instruction windows have to be larger than 

100 instructions to give the same performance as reordering within nested loops 

(RS3 and RS4); a window size of 100 instructions has an IPC 83% of the value 

for RS3. 

The conclusion to be drawn from this comparison is that very large instruc-

tion windows will be required to achieve the latency hiding effectiveness latent 

within nested loops. This suggests that while reordering hardware is sufficient 

for small memory latencies, compiler techniques capable of inter-loop scheduling 

and analysis are necessary for large memory latencies. The reordering hardware 

is unable to provide a sufficient degree of reordering to detect the parallelism 

necessary to tolerate very large memory latencies. To provide a higher degree 

of reordering would require very large instruction windows that would certainly 

restrict clock speeds. This result applies in the case of perfect branch prediction 

for loop closing branches. 
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Figure 8.6: Equivalent window ratio for FLO52Q 

Summary 

This chapter has focused on two objectives in the design space of future micro-

processors; the need to hide large memory latencies and the need to reduce the 

complexity of instruction issue logic. It has investigated the behaviour of data 

prefetching on a decoupled machine and a single stream, out-of-order superscalar 

architecture. It has examined the relationship between memory latency, window 

size and speedup for the two architectures. In order to remove the impact of 

other architectural issues the experiments have assumed an ideal environment. 

This environment provides good conditions for data prefetching, high levels of 

TLP and places the greatest pressure on the latency hiding mechanism. 

It has been shown that when window sizes are unlimited, the single stream 

system has a higher IPC than the dual stream system. However, the results show 

that at large combined issue widths (9 issue slots), the dual stream system's IPC 

is only 5-6% lower than the single stream system. At small combined issue widths 

(2 instruction slots), the dual stream system's IPC is 11-13% lower than the single 

stream system. 

An analytical model has been used to estimate the average window size of the 
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Figure 8.7: Equivalent window ratio for MDG 

dual and single stream system. The results have shown that the single stream 

system consistently has a larger average window size than the dual stream system. 

It has been shown that the dual stream system is more effective at hiding 

memory latency than the single stream architecture. For large memory differ-

entials (60 cycles) it has been shown that even for large window sizes of 100 

instructions, the dual stream system consistently performs better than the single 

stream. The results have also shown that to achieve the same speedup as a dual 

stream architecture the single stream system needs a window size between 2.5 to 

5 larger. The increase in window size required to achieve equivalent performance 

on the single stream system was also found to increase with larger latencies. 

It has been shown in [35] that architectures with p processing elements each 

with a window size N can achieve lower but comparable IPC to a machine with 

window size pN. This work argued that the simpler hardware would allow faster 

clock speeds, and hence reduce execution times. However, the results from this 

chapter allow a stronger claim to made, that the dual stream system can produce 

higher IPC values than a single stream architecture with window size 2N. 

The concept of the effective single window has been introduced to help inter-

pret the experiment results. The effective single window conceptually illustrates 
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Figure 8.8: Equivalent window ratio for TRACK 

how the dual stream system is able to perform better than an single stream system 

with twice the size of instruction window. 

The results have also shown how the latency hiding effectiveness of the dual 

stream system decreases as the window size increases to 50 instructions. Though 

the speedup did increase with larger window size the dual stream system was not 

found to be as effective at hiding latency. However when windows were greater 

than 50 instructions the LHE was found to improve. This behaviour illustrates 

the tensions that exist between higher ILP and the access decoupling mechanism. 

This chapter has shown that access decoupling can combine the benefits of 

latency hiding with simplifying the window logic complexity. However, these con-

clusions have been drawn with the caveat, that the experiments were conducted 

under conditions that did not restrict decoupling. The next chapter considers the 

sensitivity of this chapters findings to design issues unique to decoupling. 
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WS Program MD=0 MD=60 Program MD=0 MD=60 
IPC IPC LHE (%)  IPC  

1 ADM 0.6 0.4 72 DYFESM 0.6 0.4 81 

10 2.5 1.3 51 2.5 1.5 59 
20 3.7 1.6 43 3.5 1.9 53 
30 4.4 1.8 41 4.3 2.1 49 
40 4.9 1.9 39 4.6 2.2 48 

50 5.3 2.0 38 4.8 2.4 50 
60 5.4 2.1 38 5.0 2.4 49 
100 5.9 2.3 39 5.3 2.6 49 
Oc 8.8 8.8 100 7.6 6.6 87 
1 FL052Q 0.6 0.5 82 MDG 0.6 0.3 56 

10 2.7 2.1 79 2.6 1.1 41 
20 4.5 3.3 74 4.2 1.4 33 
30 5.8 4.2 72 5.5 1.8 32 
40 6.8 4.8 70 6.4 2.1 32 
50 7.3 5.1 70 6.9 2.3 34 

:60 7.5 5.3 71 7.3 2.6 36 
100 8.0 5.8 73 8.1 3.2 40 

8.6 8.4 97  8.8 4.3 48 
1 QCD2 0.6 0.4 76 TRACK 0.5 0.3 45 

10 2.7 1.5 54 1.5 0.4 25 
20 4.2 1.9 46 1.7 0.4 23 
30 4.9 2.2 44 1.8 0.4 23 
40 5.3 2.3 43 1.8 0.4 23 
50 5.5 2.4 43 1.8 0.4 22 
60 5.6 2.4 43 1.8 0.4 22 
100 5.7 2.5 44 1.9 0.4 22 
00 8.1 4.5 55 1.9 0.4 22 

1 TRFD 0.6 0.5 90 Average 0.6 0.4 
10 3.1 2.2 72 2.5 1.4 
20 5.4 2.9 53 3.9 1.9 
30 7.4 3.2 43 4.9 2.2 
40 8.0 3.3 41 5.4 2.4 
50 8.0 3.4 42 5.7 2.6 
60 8.0 3.4 43 5.8 2.7 
100 8.1 3.7 45 6.1 2.9 
00 8.2 8.2 100 7.4 5.9  

Table 8.5: IPC and LHE for varying window size (WS) 
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Chapter 9 

Reducing Hardware Complexity: 
a Sensitivity Analysis 

In Chapter 8 it was shown that decoupling could achieve comparable performance 

with a window size 2.5 to 5 times smaller than a single stream architecture. How-

ever, this assumed conditions that did not restrict decoupling. Critical design 

issues such as decoupled memory capacity, code expansion, inter-unit communi-

cation bandwidth, and access ordering were relaxed to determine upper bounds on 

performance. This chapter presents results from a series of studies that evaluate 

the conclusions from Chapter 8 under more realistic conditions. Decoupling in-

troduces the additional complexity of partitioning the code into separate streams. 

There is no known published work comparing the benefits of static and dynamic 

partitioning algorithms . This chapter examines, for the first time, the effective-

ness of static and dynamic partitioning schemes on a decoupled architecture. 

This chapter is structured in the following way. Section 9.1 presents the 

experimental findings and Section 9.2 concludes with a discussion of its findings. 

9.1 Experimental results 

Chapter 8 assumed conditions that favoured decoupling; inter unit communication 

cost was free, and by executing the same number of operations on both the dual 

and single stream system the effect of code expansion was ignored. It was shown 

that the effect of code expansion was small, but only where memory latencies and 

issue widths were large. However, this result was based on modelling a dual and 

single stream architecture with unlimited window size. 

This chapter explores some of the design issues particular to the dual stream 

architecture under more realistic constraints. Tables 9.1 and 9.2 show the different 

'Tyson [81] investigated the effectiveness of different static partitioning algorithms, but did 
not consider dynamic partitioning. 
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configurations of the dual and single stream systems used in the experiments. 

Table 9.1 shows the base line architectural configuration. The column labelled 

sequential shows the architectural configuration used for pure sequential execution 

of the program. Table 9.2 shows the range of parameters investigated as part of 

the sensitivity analysis in this chapter. 

Table 9.1 and 9.2 shows that some components have unlimited capacity. Re-

laxing constraints on these resources has the benefit on removing 2nd order effects 

from the experimental analysis, but could be criticised for being too idealistic. 

However, in a comparative study, relaxing selective resource constraints benefits 

both architectures equally and therefore does not prejudice either architecture. 

The studies in this chapter consider memory differentials in the range between 

o to 60 cycles. This range was selected because it represents a spectrum of 

different types of memory system. The low end of the range, 5 to 10 cycles, 

effectively represents processors integrated with a multilevel cache. The high end 

of the range, 60 cycles, models processors that interface directly with the main 

memory. Memory differentials of 0 cycles yield performance upper bounds. 

Architecture 
components 

Base 
sequential dual single 

Floating operation latency (cycles) 5 5 5 
Integer/Address op. latency (cycles) 1 1 1 
Function Units 1 {4,5} 9 
Issue Width 	. 1 {4,5} 9 
Register File cc cc cc 
Window size 1 30 30 
Comm. bus latency N/A 0 N/A 
Comm. bus width N/A cc N/A 
Prefetch buffer N/A N/A cc 
Decoupled Memory N/A cc N/A 
Memory/Buffer bandwidth cc cc cc 
Buffer access latency (cycles) 1 1 1 
Memory differential (cycles) 60 60 60 
Memory Ordering N/A wko wko 
Dependency analysis perfect perfect perfect 
Code Partition N/A static N/A 

Table 9.1: Base-line architectural configurations for the dual and single stream 
systems 

9.1.1 The effect of load data buffer capacity 

In Chapter 8 the decoupled memory and prefetch buffer were assumed to be of 

unlimited size. However, this assumption could be criticised on the grounds that it 

unfairly benefits the dual stream system, allowing it to decouple to an unrealistic 
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Architecture 
components 

Other Values Considered 
dual single 

Window size {20,30,40} {20,30,40} 
Comm. bus latency {0.1,2,4,6} N/A 
Comm. bus width {1,2,00} N/A 
Load data buffer capacity 11, 10, 20, 30, 60, 90, 120, 180, 240, 300} N/A 
Memory differential (cycles) {0,5,10,20,60} {0,5,10,20,60} 
Memory Ordering {sto, sso, wko} {sto, sso, wko} 
Code Partition {static,dynamic} N/A 

Table 9.2: Sensitivity analysis : architectural configurations for the dual and 
single stream systems 

degree. This section describes a set of measurements that were made of the 

occupancy of the decoupled memory and the prefetch buffer. The occupancy is 

defined in terms of the number of concurrent active lifetimes in the decoupled 

memory in a given cycle; where a lifetime is defined: 

for a decoupled load, as the number of cycles between when an AU sends 

an address to the decoupled memory and the DU fetches the result. 

• for a decoupled store, as the number of cycles between the store address 

being sent to the decoupled memory and it being matched with the corre-

sponding definition. 

Table 9.3 shows for the decoupled memory and prefetch buffer, the occupancy 

as a percentage of the total execution time. For example, in ADM the occupancy 

was less than 291, 330 and 1,307 for 90%, 95% and 99%, respectively, of the total 

execution time of the program. Whereas in TRACK, the occupancy of the decou-

pled memory was less than 113 for 99% of the entire execution of the program. 

This result is to be expected, as programs with higher levels of parallelism will 

have more inflight accesses than programs like TRFD. 

Table 9.3 shows a striking difference between the occupancy of the decoupled 

memory and prefetch buffer. It shows, that for the majority of programs the 

occupancy of the decoupled memory is far in excess of the prefetch buffer. For 

example, the column labelled 99% shows that for ADM the occupancy of the 

decoupled memory is approximately a factor of 25 times larger than prefetch 

buffer. This result is most apparent in highly parallel Ørograms like TRFD. 

Highly parallel programs have few losses of decouplings, therefore, in the absence 

of any resource constraints, the number of in-flight accesses increases to very large 

values. 
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This finding clearly supports the criticism that relaxing the decoupled memory 

and prefetch buffer size has skewed the experiments in favour of the dual stream 

system. However, this result does not indicate the decoupled memory capacity 

actually required to achieve optimal or near optimal performance. 

The degree of decoupling between the AU and DU is mainly limited by the 

number of loads that can be in-flight at any one time 2  This number is constrained 

by the size of the load data buffer, described in Section 7.4. The load data buffer 

is therefore the critical resource in the decoupled memory, that determines the 

degree of decoupling in a dual stream system 

Figure 9.1 and Table 9.4 show the effectiveness of the dual stream system for a 

range of load data buffer capacities. The effectiveness is measured by T()/T(n), 

where T() and T(n) are the times to execute the program with a load data 

buffer of unlimited size and of size ii, respectively. Table 9.4 clearly shows, for 

all programs, that a dual stream system with a load data buffer capacity of 120 

can achieve greater than 97% of the optimal performance. This is an encourag-

ing result, as it demonstrates that we don't need to build very large decoupled 

memories for the dual stream system to outperform the single stream system. 

Percentage of Cycles 
Program Decoupled_Memory Prefetch Buffer 

90 % 95% 99% 90% 1 95% 99% 
ADM 291 330 1,307 23 26 54 

DYFESM 2,175 3,109 4,946 26 28 32 
MDG 212 263 326 23 29 37 
QCD2 139 250 603 43 48 57 

TRACK 33 59 113 16 21 43 
TRFD 35,260 44,252 64,971 22 24 33 

Table 9.3: Occupancy of the decoupled memory and prefetch buffer 

9.1.2 The effect of code expansion 

This study uses the base line architecture to determine the effect of code expansion 

and to compare them with the findings in Chapter 8. The speedup measurements 

were made over the sequential architecture shown in Table 9.1. The size of the 

code expansion introduced by the OCTAVE compiler is shown in Table A.1. 

Figures 9.2 to 9.4 show, for three benchmark programs, the graph of super-

scalar speedup when the memory differential (MD) is 5 and 60 cycles. These 

2 1n the dual stream system stores only take a single cycle and therefore will not contribute 
to the degree of decoupling 
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Figure 9.1: Effectiveness of various load data buffer sizes 

three benchmark programs, FLO52Q, MDC and TRFD were selected to illus-

trate, respectively, the behaviour of programs with high, moderate and low levels 

of parallelism. The graphs show the law of diminishing returns with larger window 

sizes providing lower performance gains. The horizontal lines show the speedup 

of the dual stream system for a window size of 20, 30 and 40 instructions (the 

window size is shown on each line). The single window size that produces equiv-

alent performance to the dual stream system can be derived by projecting down 

to the x-axis from the point of intersection. The ratio of the the single stream 

and dual stream window sizes that yield equivalent performance is referred to as 

Program  Load Data Buffer 	 of entries) _Capacity _(number 
1 10 20 30 60 90 120 180 240 300 

ADM 0.06 0.46 0.70 0.83 0.97 0.99 1.00 1.00 1.00 1.00 
DYFESM 0.05 0.29 0.53 0.66 0.89 0.95 1.00 1.00 1.00 1.00 
FL052Q 0.03 0.18 0.35 0.50 0.79 0.91 0.97 0.99 0.99 0.99 

MDC 0.06 0.48 0.80 0.95 1.00 1.00 1.00 1.00 1.00 1.00 
QCD2 0.06 0.53 0.79 0.92 0.98 0.99 1.00 1.00 1.00 1.00 

TRACK 1 0.36 0.91 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 
TRFD 0.03 0.20 0.39 0.56 0.87 0.96 1.00 1.00 1.00 1.00 

Table 9.4: Effectiveness of various load data buffer capacities 



the equivalent window ratio. As expected, for architectures with the same window 

size 3  the dual stream architecture outperforms the single stream system. 

Table 9.5 shows equivalent window ratio for a range of memory differentials. 

The dual stream window size is shown on the column label. The results show 

that on average, when memory differentials are 5 cycles, a dual stream system 

with window of size 20 would achieve similar performance to a single stream 

architecture with a window size 1.6 times larger. At a large memory differential 

of 60 cycles the window would have to be 4.2 times larger. Given the quadratic 

relationship between issue logic complexity and window size the dual stream 

system offers the benefits of higher performance through faster clock speed and 

greater reordering. 

Table 9.5 also shows that for all programs the equivalent window ratio in-

creases with larger memory differentials. Larger latencies allow greater slippage 

between the AU and DU providing a greater degree of reordering between the two 

instruction windows. Another emergent trend is that larger window sizes result 

in smaller equivalent window ratios. Large single stream window sizes provide 

opportunities to utilise the full issue width and reorder operations to a similar 

degree as the dynamic slippage on the dual stream system. 

Table 9.6 shows the equivalent single window ratio when the single stream 

system executes the same number of operations as the dual stream architecture ". 

Comparing the results with Table 9.5 it can be seen that there is minimal differ-

ence between the equivalent single window ratio. This leads us to conclude that 

the effect of the code expansion introduced by the OCTAVE compiler has little 

effect on performance. 

9.1.3 Effective communication bandwidth 

This section quantifies the effect of inter-unit communication on the findings of 

the previous section. Using the base line dual stream architecture, this section 

explores issues of bus latency and width between the two units. The results from 

this study are shown in Table 9.7. It shows the computed values of equivalent 

single window ratio. The column labels show the memory differential. 

It can be seen that in the majority of cases the dual stream system still per-

forms better than the single stream architecture. However there are cases such 

as MDG, QCD2 and TRFD where the single stream system performs better than 

the dual stream architecture. The average values show that for a bus width of 

'The AU and DU have the same size of window as the single stream system 
'This was the case in Chapter 8, where operations are duplicated on the AU and DU in the 

dual stream system, two operations are also executed on the single stream architecture. 
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I word the single stream system outperforms the dual stream architecture when 

the bus latency is between 2 to 6 cycles and the memory differential is between 0 

to 5 cycles. The reason for this is due to the tradeoff between dynamic reordering 

and communication overhead. The large overhead incurred by inter-unit com-

munication can not be offset by the benefits of dynamic reordering between AU 

and DU instruction windows; small memory differentials limit the degree of inter-

window reordering. However, when the memory differential becomes greater than 

5 cycles the degree of reordering increases and the dual stream system performs 

better than the single stream system. 

As expected, Table 9.7 also shows that the range in which dual stream ar-

chitecture outperforms the single stream system can be extended by increasing 

the bus width to 2 words. For example, in QCD2, when the memory differential 

is 5 cycles, a dual stream system only outperforms a single stream architecture 

when the bus latency is 1-2 cycles. However, when the bus width is increased to 

2 words, this range is increased to 1-4 cycles. 

The columns labelled 30 in Table 9.5 effectively show the upper-bound on the 

equivalent single window ratio. Comparing these results with Table 9.7 it can 

be seen that, for a bus width of 1 word, near optimal results are achieved for 

a range of bus latencies from 1 and 2 cycles. For a bus width of 2 words that 

range increases from 1 to 4 cycles. It can be anticipated that with technology 

permitting multiple processors per chip the communication cost will be between 

1 to 4 cycles. In this range it can be seen that on average the effectiveness of the 

dual stream system will be unaffected when the bus width is 2 words. For a lower 

communication latency of 2 cycles, a bus width of one word would be sufficient. 

9.1.4 The effect of memory reordering 

Previous implementations of decoupling used a semi-strong ordering of memory 

operations [24]. This section examines the effectiveness of this scheme by com-

paring it with strong and weak ordering schemes. These experiments used the 

base line architectures for both machines. The dual stream system had a commu-

nication bus width and latency of 1 word and 2 cycles respectively. The results 

are shown in Table 9.8; column labels show the memory differential. 

The major finding is that the semi-strong ordering significantly reduces the 

benefits of the dual stream architecture. For a memory differential of 10 cycles 

the speedup of weak ordering is 44% higher than semi-strong ordering scheme. 

The semi-strong scheme only proves to be noticeably more effective, than the 

strong scheme, at high memory differentials of 60 cycles. Memory differentials 
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of 5 to 20 cycles would be typical of future high performance memory systems. 

In this range the dual stream system offers minimal improvement over the single 

stream architecture for the STO and SSO schemes. 

Comparing the weak and semi-strong ordering schemes we observe three emer-

gent types of program behaviour. In highly parallel programs like ADM, TRFD 

and FL052Q the speedup under weak ordering is significantly greater than the 

semi-strong scheme. The average speedup of these programs for a memory differ-

ential of 10 cycles is 1.67 and 1.03 for the weak and semi-strong ordering, respec-

tively; representing an improvement of 62%. The moderately parallel programs, 

MDG and QCD2, for the same memory differential have an average speedup of 

1.22 and 0.99, respectively; representing an improvement of 23%. For TRACK, 

with little parallelism, the difference between the schemes is negligible. 

There is also clearly no benefit to using decoupling with a strong ordering 

scheme. 

9.1.5 Dynamic versus static code partitioning 

This section compares the effectiveness of a static and dynamic code partitioning 

algorithms on the dual stream architecture. The static partitioning is performed 

by the OCTAVE compiler. Dynamic partitioning is implemented at run-time by 

splitting the code according to the operation type. Integer and address compu-

tations are executed on the AU whilst floating point operations are executed on 

the DU. The benefit of the static partitioning algorithm is that it tries to reduce 

inter-unit communication at the cost of increasing code size; where a result is 

required on both units the compiler may duplicate an operation. Code place-

ment is not based on operation or data type, but on a bi-directional data flow 

algorithm that partitions in ways that would be impossible without knowledge 

of "future" instruction sequences. The benefit of dynamic partitioning is that it 

reduces code expansion but increases the communication traffic between units. 

Dynamic partitioning was used in architectures like the ZS-1 [24]. 

These experiments used the base line dual stream architecture with a bus 

latency and width of 4 cycles and 1 word, respectively. Figure 9.5 shows the 

speedup of the static over the dynamic schemes. The columns are labelled with 

the memory differential. 

In general, as memory differential increases, the performance advantage of 

static over dynamic partitioning decreases and tends to converge for large memory 

differentials. On average the speedup decreases from 1.16 to 1.08 for a memory 

'Some expansion still occurs because of operations for communicating results between units 
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differential of 5 to 60 cycles. This is due to the cost of transfers between units 

becoming relatively cheaper at larger memory differentials. The benefits of lower 

inter unit communication, provided by static partitioning, are reduced and the 

effect of the code expansion becomes more significant. This can be witnessed by 

the negative gradient of most of the graphs in Figure 9.5. 

The major exception is MDG where dynamic partitioning performs better 

than static partitioning. This is due to the static scheme increasing the commu-

nication traffic between units; the number of AU to DU and DU to AU transfers 

increased by 11% and 31%, respectively. MDG is a program that requires sophis-

ticated compiler techniques to extract it's moderate levels of parallelism [10]. The 

OCTAVE compiler only performs intra-procedural analysis when partitioning the 

code. This limitation may explain the poor code placement of the static scheme 

in this case. 

QCD2 shows that even with large code expansion (15%) the static scheme 

significantly improves the performance of the dual stream system. The large 

volumes of communication traffic between units is the performance bottleneck for 

the dynamic scheme. There are respectively, 2.7 and 4.2 times more transfers 

from AU to DU and DU to AU using the dynamic scheme. 

9.1.6 Speedup and latency hiding effectiveness 

This section compares the speedup and latency hiding effectiveness of the dual 

and single stream system. The latency hiding effectiveness is a measure of the 

sensitivity of the architecture to increases in the memory latency. 

These experiments were made with the base line architectures, with the dual 

stream system having a communication bus latency and width of 2 cycles and 

1 word respectively. To make reasonable comparisons between similar architec-

tural configurations, the single stream system used a window equal in size to the 

combined AU and DU window sizes i.e. 60 instructions. The experiments also 

considered the effect of the including a bypass mechanism (see Chapter 3) in the 

decoupled memory and prefetch buffer. The speedup measurements were made 

over the sequential architecture shown in Table 9.1. 

Figure 9.6 shows the average speedup as a function of memory differential. In 

the key, the yes and no denotes if the architecture includes the bypass mechanism. 

It can be seen that the dual stream system is less sensitive to increases in the 

memory differential and therefore more effective at hiding latency. At low memory 

latencies (0 to 10 cycles) the single stream system has a larger speedup, but its 

weaker latency hiding leads to poorer performance when memory differentials are 
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greater than 10 cycles. 

At large memory latencies the bypass mechanism improves the effectiveness 

of both the dual and single stream architectures. However, the dual stream 

system profits far more from this optimisation than the single stream architec-

ture. For a memory differential of 60 cycles the dual and single stream average 

speedups increase by 69% and 11%, respectively. The bypass mechanism exploits 

the temporal locality exposed by reordering operations to hide memory latencies 

and reduce memory traffic. The dual stream system can reorder operations to a 

greater degree, and is therefore able to uncover more temporal locality than the 

single stream architecture. 

FLO52Q 

Figure 9.2: FL052Q speedup 

9.2 Summary 

This chapter has explored some important regions in the design space of a dual 

stream decoupled architecture and analysed its effectiveness at reducing instruc-

tion issue logic complexity. Comparative studies have been made between a dual 

and single stream architecture. 

One of the significant results from this chapter is that for the dual stream 

system it is possible to build a load data buffer of a realistic size to achieve near 
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Figure 9.3: MDG speedup 

optimal performance. It has been found that a dual stream system with a load 

data buffer of 120 elements can achieve greater than 97% of the performance of 

the same architecture with an unlimited buffer. 

It has also been shown that when memory differentials are greater than 20 

cycles the dual stream architecture performs better than a single stream system 

of twice the individual window size of a decoupled unit. For memory differentials 

of between 5 to 20 cycles this factor decreases to between 1.4 to 1.8 times larger, 

when the communication bus latency is a realistic value of 2 cycles. This factor 

may actually be larger because savings in reordering logic will reduce delays and 

allow faster clock speeds. 

The results have shown that the code expansion, introduced by the complier, 

has little influence on the effectiveness of decoupling. A more significant issue is 

the communication bandwidth between units. It has been found that at small 

memory differentials (1-5 cycles) and large bus latencies (2 to 6 cycles) between 

AU and DU, the benefits of decoupling are completely removed. The experi-

ments have identified effective bus width and latencies that achieve near optimal 

performance. - 

Memory reordering has been shown to be the most critical design issue for the 

dual stream architecture. Interestingly, the semi-strong ordering, which is similar 
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Figure 9.4: TRACK speedup 

to a scheme used in previous implementations of decoupling [24], was found to 

severely limit performance at lower memory latencies. 

There has been no known published work that has compared dynamic and 

static partitioning algorithms for a decoupled machine. It has been shown that 

in general the static partitioning scheme performs 16% better than a dynamic 

scheme that partitions by type. 
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program Equivalent single window ratio 
md=0 md=5 md=10 

20 30 1 	40 20 30 40 20 30 40 

ADM 1.3 1.2 1.1 1.7 1.6 1.4 2.0 1.9 1.7 
DYFESM 1.3 1.2 1.0 1.7 1.6 1.4 2.1 1.9 1.6 
FL052Q 1.3 1.2 1.2 1.7 1.6 1.5 2.1 1.9 1.8 
TRFD 1.3 1.2 1.0 2.0 1.9 1.5 2.6 2.5 2.0 
MDG 1.2 1.1 1.1 1.5 1.4 1.4 1.7 1.7 1.6 
QCD2 1.1 1.0 0.8 1.3 1.1 1.0 1.5 1.3 1.3 

TRACK 1 	1.1 1.0 0.9 1.3 1.2 1.0 1.5 1.3 1.2 

Average 1 	1.2 1.2 1 	1.0 1.6 1 	1.5 1 	1.3 1.9 1 	1.8 1 	1.6 

program Equivalent single window ratio 
md=20 md=60 

20 30 40 20 30 40 
ADM 2.8 2.4 2.2 4.4 3.7 3.1 

DYFESM 2.9 2.6 2.1 4.7 3.5 2.8 
FLO52Q 2.9 2.6 2.4 5.3 4.7 4.1 
TRFD 3.8 3.5 2.8 5.9 4.3 3.4 
MDG 2.1 2.0 1.9 2.6 2.4 2.5 
QCD2 1.9 2.0 2.1 3.8 3.2 2.7 

TRACK 1.8 1.6 1.4 1 	2.6 2.1 1.9 
Average 2.6 2.4 2.1 1 4.2 3.4 2.9 

Table 9.5: Equivalent single window ratio without code expansion 

program  Equivalent single window ratio 
md=0 md=10 md=20 md=60 

20 30 40 20 30 1 	40 20 	1 30 1 	40 20 	1 30 40 

ADM 1.3 1.3 1.2 2.1 1.9 1.8 2.8 2.6 2.3 4.6 3.8 3.1 

DYFESM 1.3 1.2 1.0 2.1 2.0 1.8 2.9 2.7 2.2 4.7 3.6 2.9 

FL052Q 1.3 1.2 1.2 2.1 2.0 2.0 2.9 2.7 2.5 5.5 4.8 4.1 

TRFD 1.4 1.3 1.1 2.7 2.7 2.2 3.9 3.5 2.8 5.8 4.3 3.3 
MDG 1.4 1.3 1.2 1.9 1.8 1.8 2.2 2.1 2.1 2.8 2.6 2.4 

QCD2 1.3 1.1 1.0 1.7 1.5 1.4 2.0 2.2 2.2 3.9 3.3 2.8 

TRACK 1.2 1.1 1.0 1.7 1.6 1.4 2.1 1.9 1.9 3.0 2.9 2.4 

flAverage 	11 1.3 1 1.2J1.1J 2.0 1.9 1.8ff 2.7 1 	2.5 1 	2.2 4.3 1 3.6 3 

Table 9.6: Equivalent single window ratio with code expansion 
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Program Bus Equivalent single window ratio 
Bus width =1 Bus width = 2 Latency 

(cycles) . 0 1.i 10 .i 60  0 1 5 1 10 1 20 1 60  
ADM 1 1.2 1.5 1.9 2.4 3.7 1.2 1.5 1.9 2.4 3.8 

2 1.2 1.5 1.9 2.4 3.7 1.2 1.5 1.9 2.4 3.7 
4 1.1 1.5 1.8 2.4 3.6 1.2 1.5 1.8 2.4 3.7 
6 1.0 1.4 1.8 2.4 3.6 1.1 1.5 1.8 2.4 3.6 

DYFESM 1 1.2 1.6 1.9 2.6 3.5 1.2 1.6 1.9 2.6 3.5 
2 1.2 1.6 1.9 2.6 3.5 1.2 1.6 1.9 2.6 3.5 
4 1.2 1.6 1.9 2.6 3.5 1.2 1.6 1.9 2.6 3.5 
6 1.1 1.6 1.9 2.6 3.5 1.1 1.6 1.9 2.6 3.5 

FL052Q 1 1.2 1.6 1.9 2.6 4.6 1.2 1.6 1.9 2.6 4.7 
2 1.2 1.5 1.9 2.5 4.6 1.2 1.6 1.9 2.6 4.7 
4 1.1 1.4 1.8 2.4 4.5 1.2 1.5 1.9 2.5 4.6 
6 1.0 1.3 1.7 2.3 4.3 1.1 1.5 1.8 2.5 4.6 

TRFD 1 1.2 1.9 2.5 3.5 4.3 1.2 1.9 2.5 3.5 4.3 
2 1.2 1.9 2.5 3.5 4.3 1.2 1.9 2.5 3.5 4.3 
4 1.2 1.9 2.5 3.5 4.3 1.2 1.9 2.5 3.5 4.3 
6 1.2 1.8 2.5 3.4 4.3 1.2 1.8 2.5 3.4 4.3 

MDG 1 1.1 1.4 1.6 1.9 2.4 1.1 1.4 1.6 1.9 2.4 
2 1.0 1.3 1.5 1.9 2.4 1.0 1.3 1.6 1.9 2.4 
4 0.8 1.0 1.3 1.7 2.3 0.9 1.2 1.4 1.8 2.3 
6 0.6 0.8 1.0 1.4 2.2 0.8 1.1 1.3 1.7 2.3 

QCD2 1 0.9 1.1 1.3 1.9 3.2 0.9 1.1 1.3 1.9 3.2 
2 0.8 1.0 1.2 1.7 3.2 0.9 1.1 1.3 1.9 3.2 
4 0.7 0.8 1.0 1.3 3.0 0.8 1.0 1.1 1.7 3.2 

11 
 

6 0.6 0.7 0.8 1.1 2.7 0.7 0.9 1.0 1.4 3.1 
TRACK 1 1.0 1.2 1.4 2.1 0.9 1.1 1.2 1.5 2.1 

2 0.9 1.1 1.3 2.0 0.8 1.0 1.2 1.4 2.0 
4 LO.5 0.8 0.9 1.2 1.9 0.7 0.9 1.0 1.3 1.9 
6 0.6 0.8 1.9 

Average 1 1.1 1.4 1.8 2.3 3.4 1.1 1.5 1.8 2.3 3.4 
2 1.1 1.4 1.7 2.3 3.4 1.1 1.4 1.8 2.3 3.4 
4 0.9 1.3 1.6 2.2 3.3 1.0 1.4 1.7 2.3 3.4 
6 0.8 1.2 1.5 2.0 3.2 0.9 1.3 1.6 2.2 3.3 

Table 9.7: Equivalent single window ratio for various bus and memory latencies 



Program Access order SpeeduD____ 
0 5 10 20 60 scheme 

ADM wko 1.09 1.25 1.39 1.60 2.03 
sso 0.96 0.99 1.04 1.15 1.56 
sto 1.00 1.00 1.01 1.01 1.18 

DYFESM wko 1.09 1.30 1.46 1.73 2.32 
sso 1.00 1.01 1.01 1.01 1.42 
sto 1.00 1.01 1.01 1.01 1.01 

FL052Q wko 1.11 1.38 1.67 2.17 3.60 
sso 0.99 1.03 1.08 1.21 1.95 
sto 1.00 1.00 1.00 1.00 1.07 

MDG wko 0.98 1.19 1.35 1.56 1.85 
SSO 0.87 0.92 0.97 1.05 1.30 
sto 1.00 1.00 1.00 1.01 1.02 

QCD2 wko 0.90 0.99 1.09 1.25 1.55 
sso 0.89 0.94 1.01 1.10 1.27 
sto 0.91 0.93 0.95 0.97 1.15 

TRACK wko 0.96 0.99 1.01 1.03 1.06 
550 0.94 0.98 0.99 1.01 1.03 
sto 0.96 0.99 1.00 1.01 1.02 

TRFD wko 1.23 1.73 2.16 2.85 3.44 
sso 1.00 1.00 1.00 1.00 1.78 
sto 1.00 1.00 1.00 1 	1.00 1.01 

Average wko 1.05 1.26 1.44 1.74 2.26 
550 0.95 0.98 1.01 1.07 1.47 
sto 0.98 0.99 1.00 1 	1.00 1.06 

Table 9.8: Speedup of the dual over the single stream system for various access 
ordering schemes 
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Chapter 10 

Conclusions 

This thesis is the first known study into the effectiveness of out-of-order decou-

pled superscalar architectures in achieving the objective of increasing ILP while 

reducing issue logic complexity. The effectiveness of decoupling at achieving this 

objective has been analysed through the perspective of a limitation study. This 

study has been performed by focusing on those design issues that determine the 

degree of reordering and relaxing other architectural constraints. 

This thesis' narrative has been developed in the following way. Chapters 5 

and 6 have provided the groundwork to the thesis, developing an understanding 

of the behaviour and characteristics of the out-of-order decoupled architectures. 

Chapters 7, 8 and 9 have built on this work to present the key findings of the 

thesis. 

In Chapter 1 it was postulated that out-of-order decoupled superscalar archi-

tectures could, through control and access decoupling provide a solution to the 

problems caused by large memory latencies, issue logic complexity and control 

dependencies. This chapter summarises the thesis findings in relation to this 

original postulate. 

During the course of this research it has been necessary not only to review the 

work in relation to its experimental findings, but also to consider and respond to 

the technological trends that have taken place during the period. Section 10.1 

summarises the main original findings in the thesis and Section 10.2 situates 

the work in the context of emerging technological trends. Finally, Section 10.3 

outlines future work suggested by the thesis. 

10.1 Thesis findings 

The main findings from this thesis are as follows: 
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For large issue widths an access decoupled machine is less sensitive to in-

creases in memory latency than a single stream out-of-order superscalar 

architecture. 

A single stream out-of-order superscalar architecture requires an instruction 

window 2.5 to 5 times larger than a decoupled machine to achieve equivalent 

performance. 

Memory access reordering is the most critical design issue for decoupled 

architectures. A memory ordering scheme similar to one used in certain 

previous implementations of decoupling severely limits performance at low 

memory latencies. 

Load data buffers in the decoupled memory, used to support out-of-order 

accesses in the dual stream system, can be built at a realistic size to achieve 

near optimal performance. 

The static partitioning algorithm of the OCTAVE compiler performs 16% 

better than a dynamic scheme that partitions by type, alone. 

Communication bandwidth has a significant effect on the performance of the 

decoupled architecture. At low memory latencies the benefits of decoupling 

are completely removed. 

The results from points 1 and 2 are only marginally effected by code expan-

sion. 

For the functional decomposition used in the OCTAVE compiler control de-

coupling does not sufficiently utilise resources to merit dedicated hardware 

support. Control decoupling is therefore not considered a practical tech-

nique for removing control dependencies with this partitioning algorithm. 

Balanced configurations of AU and DU that ensure optimal throughput 

have been identified. 

In summary, these findings show that the dual stream system through dynamic 

reordering within relatively small instruction windows provides one possible so-

lution to the problem of issue logic complexity and latency hiding and represents 

a viable alternative to a single stream out-of-order superscalar architecture - at 

least for the applications considered in this thesis. The significant advantage of 

the dual stream system is that for memory differentials greater than 20 cycles it 
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can achieve a a higher speedup than a single stream system of twice the individual 

window size of a decoupled unit. An explanation of this effect has been described 

through the concept of the Effective Single Window. In the following section, this 

thesis discusses how these findings relate to existing research. 

10.2 Related work 

Certain trends and developments during the last few years lend support to the 

use of decoupling in superscalar architectures. The rest of this section discusses 

these issues and relates the contributions of this thesis to these developments. 

The gap between processor and memory speeds is still growing exponentially 

which means we could hit the memory wall within the next decade [89]. Intelligent 

DRAM (IRAM) has been proposed as a way of reducing memory access times [28] 

by merging the processor and DRAM on a single chip. This has the benefit of 

increasing memory bandwidth and reducing memory latency. The disadvantage 

of TRAM is the reduction in speed of the processor logic. However, with it's high 

bandwidth and low latency TRAM could service the multiple accesses of a large 

issue width decoupled processor; the high ILP of such an architecture could then 

compensate for the slower logic speed. 

Latency hiding technology is as critical to high performance architectures in 

1999 as it was when this research began in 1992. This thesis has shown, through 

a limitation study (see Chapter 5), that a decoupled architecture is sensitive to 

large memory latencies, but when combined with an optimised decoupled memory 

sensitivity is almost completely removed . Kurian, in [55], showed that decou-

pling was more effective when used with a data cache. However, Kurian's study 

assumed a non-interleaved memory and did not consider the effects of reordering 

or issue width on performance. 

The use of access decoupling has become increasingly more prevalent in su-

perscalar architectures. For example, a small degree of decoupling can be seen 

in the use of non-blocking loads for lock-up free caches. Most high performance 

machines can support between 4 to 8 outstanding loads to a first level cache. A 

higher degree of decoupling can be seen in the PA-RISC architectures [27]. They 

have a separate instruction window for memory operation and a dynamic buffer 

for reordering accesses. 

Superscalar architectures are being developed to support larger issue widths 

and more aggressive operation reordering. However, extracting higher levels of 

'However, this was in the case where all resource constraints were relaxed and only data 
dependencies were enforced 
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ILP increases issue logic complexity introducing delays critical to processor clock 

speeds. To solve this problem a number of designers have proposed the use of 

decentralised issue logic. Palacharla et al. [64] proposed a dual clustered super-

scalar processor that simplified issue logic by using multiple FIFO queues in each 

cluster. Centralised steering logic was used to pass decoded and renamed instruc-

tions to the clusters. Issue logic was simplified by only operations on the heads of 

the queues checking for operand availability. The results from this paper showed 

that a dual clustered architecture, with a window of size n, would suffer a per-

formance degradation of 12% over a architecture with window size 2n. However, 

the improvements in clock speed would result in an average performance increase 

of 16% for the smaller window machine. Clustering has been used in the Alpha 

21264 to reduce the number of read ports to the integer register file. However the 

21264 still uses a single integer instruction window to reorder operations. 

Farkas et al. [35] describes a multicluster architecture that reduces cycle time 

by employing distributed register files, instruction windows and function units. 

However, the decode and register renaming is still centralised. The architecture 

is found to consume more processor cycles than a single cluster machine, but the 

increase is not sufficient to offset the benefits of a faster clock speed. Farkas com-

ments that the multicluster is similar to a decoupled architecture, but requires 

that inter-unit data transfers be performed in order. This is more conservative 

than it needs to be. A mechanism to convey the ordering of operations between 

units could be implemented in a similar way to the scheme described in Sec-

tiôn 7.4. Instructions that moved data between units could be tagged with a 

sequence number and sent to the target unit. The target unit could then use the 

tag to wakeup the appropriate operation in its private instruction window. 

Decentralised issue logic has also been proposed in the multiprocessor archi-

tectures like the Multiscalar [75], PEW [51] and MISC [81]. In the Multiscalar 

architecture [12, 75, 78] an on chip multiprocessor increases ILP by speculatively 

executing along a single control flow path in a task graph. Tasks are distributed 

centrally, but the decode, fetch and issue functions are all performed by the 

individual processors. The Multiscalar architecture supports a common physi-

cal register file, decentralised reordering logic, and provides queues for fast data 

transfer between processing elements. 

The PEW architecture [51] uses centralised decode and renaming logic, but 

task distribution is finer grained than in the Multiscalar architecture. PEW 

dispatches individual instructions to processors using an heuristic that ensures 

dependent operations are executed on the same processor. The results confirm 
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the findings of Palacharla et al. [64] that decentralised reordering windows can 

achieve comparable performance to a single window architecture. This paper 

does not however keep the number of function units constant in all cases. The 

author compares an architecture with a 64-instruction window and 8 function 

units against 2 processors with window size 16 and 8 functions units. This means 

the latter has a total issue width of 16. 

The MISC machine is a 4 processor decoupled architecture which, like the 

Multiscalar architecture, uses decentralised fetch, decode and renaming logic. ILP 

extraction and code partitioning are, however, performed statically by the com-

piler. Each processor is a single issue in-order processing unit that communicates 

values through the use of queues. 

This thesis complements the work on decentralised reordering logic by con-

sidering a functional decomposition of the program. Through the functional de-

composition, dynamic slippage and latency tolerance mechanisms, a decoupled 

architecture has been shown to produce higher performance than an architec-

ture with an instruction window twice the size. This result extends the work of 

previous studies [64, 51] which showed a small degradation in performance. The 

explanation for the additional performance is due to dynamic slippage that allows 

the decoupled architecture to look further ahead in the instruction stream. This 

concept has been explained through the effective single window. 

Tyson's work on the MISC architecture has strong parallels with this thesis. 

It is therefore necessary to discuss his work in detail to show this thesis' original 

contribution. Tyson showed that a 4 processor, 1-way in-order issue decoupled 

architecture outperforms a 4-way in-order issue Alpha 21164. This thesis extends 

Tyson's findings by showing that a decoupled architecture can outperform a single 

stream superscalar architecture. 

Tyson also showed the importance of memory reordering, but this was in 

relation to improving the performance of the MISC cache; all memory operations 

were issued to the cache in program order. 

Smaller silicon feature sizes mean that a single chip multiprocessor could be 

built within the next few years [44, 29]. Inter-processor communication will all 

be on-chip, reducing the cost of synchronisation and value passing. A single chip 

decoupled architecture could therefore be possible in the near future, reducing 

the effect of inter-unit communication on performance. Point (6) describes how 

important transfer cost was to the performance of the decoupled architecture. A 

single chip decoupled architecture would have a low transfer cost between units 

removing one of the limitations to its performance. 
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Research into cache technology is showing interesting results into their effec-

tiveness at utilising on-chip resources effectively. Huang and Shen [46] have shown 

that current superscalar architectures have sufficient bandwidth and memory but 

inefficient use of resources means that over 50% of values loaded into a cache 

are never used. The need for improved cache management is also discussed by 

Burger [13]. Burger shows that the efficiency of a cache is less than 20%; where 

efficiency is measured as the fraction of the cache that holds live data. The paper 

shows that with a near optimal cache management scheme bandwidth can be 

greatly reduced even with small amounts of memory (128-512 bytes). This study 

argues for the use of decoupling as a technique for reducing memory latency and 

compiler techniques for optimising cache utilisation. 

Decoupling could be used as integral part of a cache management scheme. 

In such a scheme decoupling would provide the lookahead mechanism to allow 

specialised hardware, situated between the cache and the address unit, to optimise 

cache performance. Hardware to perform this type of function is already being 

discussed in the literature. Access Combining [86] is a technique used to combine 

multiple accesses to a single cache line into a single access with multiple offsets. 

The technique is used in multi-ported caches to provide multiple accesses per 

cycle. Memory reordering, as shown in [81], can be used to ensure that accesses 

can be dispersed across the cache banks to reduce conflicts. Another technique, 

known as Stream Controllers [33, 601, reorders accesses to take advantage of the 

nbn-uniform DRAM access times. 

• Having discussed this thesis findings in relation to emerging technological 

trends this thesis concludes with a discussion of suggested future work. 

10.3 Future work 

One of the significant findings from this thesis has been that through out-of-order 

decoupled execution we can achieve higher performance than a single stream 

stream system with a window size twice the size of one of the decoupled units. 

This is a stronger claim than has been made in other studies [51, 64] into systems 

with decentralised issue logic. They have measured small reductions in IPC, but 

have rightly assumed that this would be compensated for by reductions in issue 

logic complexity. However, the central requirement for allowing the AU and DU 

to slip to a large degree is that the decoupled memory be able to support a large 

number of inflight loads. Section 7.4 proposed a mechanism for supporting this 

requirement and Section 9.1.1 showed that the size of this buffer did not have to 
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be excessively large to achieve comparable performance to a load data buffer of 

unlimited size. 

These results have, however been determined without a detailed modelling of 

the entire decoupled and main memory system. Future work should therefore con-

sider investigating the effects of factors such as bank conflicts, restricted memory 

bandwidth and variable memory latencies. It can be speculated, that the impact 

of these factors will be to increase the required size of the load data buffer. It 

will be important for future work to determine the extent of this increase. 

126 



Appendix A 

Program Characteristics 

This appendix shows a breakdown of the operations executed on the AU and DU 

for the dual stream system. Table A.1 gives the code expansion over a single 

stream architecture. It shows the percentage increase and a breakdown of the 

increase by integer, float and data transfers operations. The average increase is 

9.2 % of which on average 55%, 20% and 25% is due to additional integer, float 

and transfer operations, respectively. Table A.2 shows the percentage breakdown 

by type and decoupled unit. The value in brackets shows the percentage as a 

total of all operations executed on the decoupled architecture. Table A.3 shows 

the absolute count of operations executed in each of the benchmark programs. 

Frog. Total 
Increase (%) 

Breakdown of Expansion 
Ints. (%) Fits (%) Trans. (%) 

ADM 7 70 14 16 

DYFESM 3 79 11 10 

FLO52Q 4 58 23 19 

MDG 14 12 15 73 

QCD2 15 62 15 23 

TRACK 20 8 65 27 

TRFD 	1 1  2 96 1 	0 4 

Table A.1: Percentage increase in the number of operations executed by the dual 

stream system 
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Prog. Op  AU  DU 
Type ops. loads stores total ops. loads stores total 

ADM fits 3 (1) 2 (1) 1 (0) 6 (3) 70 (23) 26 (15) 23 (13) 89 (50) 
_________ juts 91 (39) 1(0) 3(1) 94 (41) 11 (6) 0(0) 0(0) 11 (6) 
DYFESM fits 0 (0) 0 (0) 0 (0) 1(0) 37 (22) 38 (22) 20 (12) 95 (56) 

___________ ints 96 (40) 1 (0) 2 (1) 99 (41) 5 (3) 0 (0) 0 (0) 5 (3) 
F'L052Q fits 4 (2) 3 (1) 1(0) 8 (3) 41 (24) 34 (20) 18 (10) 93 (53) 

juts 92 (40) 0 (0) 0 (0) 92 (40) 6 (4) 0 (0) 0 (0) 7 (4) _M________ 
DC fits 13 (6) 7 (3) 0 (0) 20 (9) 38 (21) 23 (12) 19 (10) 80 (44) 

_________ ints 78 (35) 0(0) 2(1) 80 (36) 20 (11) 0(0) 1(0) 20 (11) 
QCD2 fits 6 (3) 0 (0) 1 (1) 8 (4) 43 (22) 17 (8) 14 (7) 74 (37) 

_________ ints 86 (43) 2(1) 5(2) 92 (46) 18 (9) 4(2) 4 (2) 26 (13) 
TRACK fits 14 (7) 10 (6) 6 (3) 30 (16) 37 (17) 23 (11) 19 (9) 79 (36) 

___________ juts 68 (37) 1(0) 1(1) 70 (38) 17 (8) 1(0) 2 (1) 21 (9)  
TRFD fits 0 (0) 0 (0) 0 (0) 0 (0) 37( 23) 38 (23) 21 (13) 96 (59) 

ints 98 (39) 0(0) 2(1) 100 (39) 3 (2) 0(0) 1 (0) 4 (2) 

Table A.2: Operation breakdown as percentages 

Prog. Op _ 	 AU  DU 
Type ops. loads stores total 11 	ops. loads stores total 

ADM fits 1.130 0.775 0.323 2.228 19.465 12.613 11.222 43.299 
juts. 33.615 0.189 1.041 34.845 5.271 0.046 0.129 5.446 

__________ tot. 34.744 0.965 1.363 37.072 24.736 12.658 11.351 48.745 
DYFESM fits 0.019 0.080 0.085 0.181 10.072 10.268 5.578 25.918 

juts. 18.481 0.232 0.381 19.094 1.433 0 0 1.437 
__________ tot. 18.501 0.308 0.466 19.275 1.151 10.269 5.582 27.356 

FLO52Q fits 1.000 0.954 0.208 2.161 15.704 12.949 6.732 35.385 
juts. 26.202 0 0.065 26.267 2.413 0 0.056 2.470 

________ tot. 27.202 0.953 0.273 28.429 18.117 12.949 6.788 37.855 
MDC fits 7.747 3.875 0.003 11.626 26.886 16.014 13.441 56.342 

juts. 44.851 0.073 0.950 45.875 13.817 0.128 0.561 14.506 
________ tot. 52.599 3.949 0.953 57.501 40.704 16.142 14.002 70.849 
QCD2 fits 3.467 0.097 0.630 4.194 24.064 9.298 7.959 41.322 

juts. 47.922 0.921 2.538 51.382 9.972 2.391 2.501 14.865 
tot. 51.389 1.018 3.168 55.577 34.036 11.690 10.461 56.188 

TRACK fits 1.394 1.078 0.601 3.074 3.173 1.988 1.674 6.836 
jnts. 7.000 0.055 0.141 7.197 1.507 0.077 0.207 1.792 
tot. 8.394 1.133 0.743 10.271 4.680 2.066 1.882 8.628 

--T 
 
RFD RFD fits 0.018 0 0 0.018 30.504 31.153 17.420 79.078 

juts. 52.015 0.205 0.828 53.049 2.231 0.199 0.518 2.950 
tot. 1  52.034 0.205 0.828 53.068 32.736 31.352 17.939 82.029 

Table A.3: Absolute count of operations (x10 6 ) 
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Appendix B 

Derivation of fi for Two Cache 
Models 

This appendix shows how 0 can be derived for a write back and write through 

cache. The derivation assumes a fully interleaved pipelined main memory. After 

an initial access time of CM cycles a word can be returned every cycle. The 

derivations are presented here to illustrate how 0 can be used for different latency 

hiding techniques. We use the equation for 0 given by 

CM 
where 

SI = 8c(pcm ) 

and 

= (1— W)[&rHr + (1 - Qr)M r ] + w[aH + (1 - 

B.1 0 for a write back cache 

For a write allocate policy the cost functions H r , M r , H. and M are given by 

H r  = Cm 
H W  = Cm 

Mr = (1 -- wb)CM+(1+wo)(b - 1) 
- M = (1+wb)CM+(1+wo)(b-1) 

substituting into the above equation for we get 

/38C = Sc - [(1 - w) [arcm  + ( 1 - ar)[CM + wbCM + (1 + w6)(b - 1)]] 
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+W[CEwCrn + (1 - aW)[c J f + tUbCzt,f + (1 + w6)(b - 1)]]] + Cm 

= Sc - [(1 - w)[—(1 - a r )cm  + ( 1 - Or)CM + ( 1 - ar )[wocM + (1 + wo)(b 

- o)c,,2 + (1 - aW )c,f + (1 - a)[iuoci + (1 + wb)(b - 

= Sc - [(1 - w)(1 - ar)Sc + w(1 - c1)Sc] 

—[(1 - w)(1 - cx,) +w(1 - &W)][1v6c!Vf + (1 + VJb)(b - 1)} 

= IjideaIo - ( 1 - Ijideal)(wc + ( 1 + w6 )(b - 1)) 

/3 = pideal - ( 1 - j3ideat) 

(wocvf + (1 + wb)(b —1)) 
JC 

B.2 ,@ for a write through cache 

For a no write allocate policy the cost functions H r , M r , H. and M are given by 

H, = Cm 
H,, = c7,+Sc 
M, 	c(+(b-1) 
M = CM 

substituting into the above equation for 3 we get 

/JSc = Sc—[(1—w)[c,c,+(1—a4(c,,+(b-1))] 

+w[aw(cm + Sc) + (1 - cxW)cM]I + C. 

= Sc - [(1 - 	- cir)cyn  + ( 1 cxr)civ, + (1 - ar)(b - 1)] 

- a)c. + aL,Sc + (1 - a)cM]] 

= 6c— (1—tv)(1—a r)Sc— (1w)(1a r)(b1) 

—w(1 - a)5c - wcxSc 

(1—zv)(1—ct r)(b-1) 
/3 = /Jideal - 
	

- 	 Sc 
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Appendix C 

Simulation Sampling 

Section 5.3.4 showed that a full execution of the program is sometimes neces-

sary to capture all of a program's behaviour. However, the experimental run 

time for a full simulation of a program could be as long as 12 hours, making it 

prohibitively expensive for detailed studies of decoupled machines. To solve this 

problem a sampling technique was developed that reduced experimental execu-

tion time while capturing different aspects of program behaviour. The technique 

worked by identifying sampling sections in the program that needed to be simu-

lated and then switching the simulator on and off between these sections. 

Each program was run to completion and the number of loads executed per 

100,000 program statements were counted. The load count profiles for each of the 

programs is shown in Figures Cl to C.7. It can be observed that the profiles show 

in most cases different regions of periodic behaviour For example, in Figure C.5 

the graph for QCD2 shows three distinct regions. The sampling technique works 

by switching the simulator on for each distinctive region but only for the length 

of the periodic behaviour; this length is known as the sampling section. Table C.l 

shows the sampling sections for each of the programs. The column labelled sam-

pled sections shows the range of program statements for which the simulator was 

switched on. For example, in ADM the simulator was switched on and off when, 

respectively, the 42nd and 56th million program statement was reached. 

Other modelling techniques reduce experiment execution times by a continu-

ous simulation of the first N operations (where N is some large number) or ensure 

that the distribution of simulated operations is the same as the whole program. 

However neither of these solve the problem of modelling the varying behaviour in 

a program. To evaluate the benefits of the sampled simulation, a comparison was 

made with a full and continuous simulation. Since one of the main interests is 

latency hiding, a sensible comparative measurement is the average perceived load 

latency. We also want to make sure that the the ratio of AU to DU operations 
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I I 

is comparable to the full simulation. The simulations were run with 60 cycle 

memory differential. 

Table C.2 shows the program characteristics for the different types of simu-

lation; F, 8, C denotes a full, sampled and continuous simulation, respectively; 

the number in brackets denotes the factor by which the number of statements 

executed in the continuous simulation is greater than the sampled. It can be seen 

that in programs with complex behaviour, QCD2 and TRACK, the sampling 

technique provides considerable benefits over a continuous simulation approach. 

For these programs sampling is shown to be within 6% of the T1 of the full simu-

lation at a lower execution cost. In QCD2 a 300% increase in execution time for 

a continuous simulation fails to yield an F11 value better than the sampled run. 

All the experiments in this section were run on the dual stream architecture 

(see Figure 3.2) with unlimited resources and a floating point latency of 5 cycles. 
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Program No. of Sampled sections 
Section From (xlOb)  To (x106 ) 

ADM 1 42 56 
DYFESM 1 20 26.64 
FL052Q 1 6 7.4 

2 35 37 
3 65 69 

MDG 1 19.5 22.7 
QCD2 1 10 12.3 

2 30 32.3 
3 60 64.6 
4 90 94 
5 122 128 

TRACK 1 3 4.7 
2 9 11 
3 36 37 

TRFD 1 40 60 

N 

Table C.1: Program sampled sections 
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Program Length p/I Operations _(x106 ) Time 
of sim. (cycles) AU (%) DU (%) Loads (%) (hrs:mins) 

ADM F 42 754.1 (43) 990.3 (57) 276.7 (16) 13:40 
S 43 37.1 (43) 48.7 (57) 13.6 (16) 0:50 

C (x 1) 41 37.0 (43) 48.7 (57) 13.6 (16) 0:40 
DYFESM F 51 544.8 (41) 772.6 (59) 298.8 (23) 10:30 

S 51 19.3 (41) 27.4 (59) 10.6 (23) 0:27 
C (x 1) 50 19.3 (41) 27.2 (59) 10.5 (23) 0:25 

FL052Q F 36 941.7 (43) 1254.5 (57) 462.6 (21) 19:40 
S 36 28.4 (43) 37.9 (57) 13.9 (21) 0:36 

C (x 1) 36 27.8 (44) 35.1 (56) 12.9 (20) 0:36 
MDG F 39 2963 (38) 4917 (62) 1294 (16) 13:40 

S 40 45.5 (38) 77.1 (62) 20.1 (16) 0:25 
C (x 1) 41 49.5 (38) 82.1 (62) 21.6 (16) 0:21 

QCD2 F 49 484.0 (50) 489.6 (50) 110.3 (11) 2:00 
S 49 55.6 (50) 56.2 (50) 12.7 (11) 0:27 

C (x 1) 44 47.3 (47) 52.6 (53) 12.5 (13) 0:13 
C (x 2) 44 94.7 (47) 105.9 (53) 25.3 (13) 0:26 
C (x 4) 44 189.5 (47) 213.3 (53) 51.2 (13) 0:53 
C (x 8) 48 356.5 (48) 386.6 (52) 93.1 (13) 1:30 

TRACK F 51 117.2 (48) 125.5 (52) 37.7 (16) 2:20 
S 54 10.3 (54) 8.6 (46) 3.2 (17) 0:17 

C (x 1) 59 12.3 (61) 7.9 (39) 4.1 (20) 0:13 
C (x 2) 58 23.1 (58) 16.4 (42) 7.5 (19) 0:25 
C (x 4) 56 42.6 (55) 35.2 (45) 13.6 (17) 0:55 
C (x 8) 52 80.5 (50) 81.3 (50) 25.8 (16) 1:23 

Table C.2: Program characteristics for different length of simulation (F=full, 
S=sampled, C=continuous) 
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Appendix D 

Balanced Configurations : 
Additional Data 

This appendix presents the data for the benchmark programs not shown in Chap-

ter 6. The graphs show the variation in normalised speedup for different configu-

rations of AU and DU issue width. 
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Appendix E 

Reducing Hardware Complexity: 
Additional Data 

This appendix presents the data for the benchmark programs not shown in Chap-

ter 8. The graphs show the variation equivalent window ratio with window size 

and memory differential (MD). 
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Appendix F 

Sensitivity Analysis : Additional 
Data 

This appendix shows additional data in support Chapter 9. The graphs for the 

equivalent window ratio for ADM, DYFESM, QCD2 and TRFD are shown in 

Figures Fl, F.2, F.3 and F.4, respectively. 
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