
The Limits of a Decoupled Out-of-Order
Superscalar Architecture

Graham P. Jones

Doctor of Philosophy
University of Edinburgh

1999

c.)

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Graham P. Jones)

Abstract
This thesis presents a study into a technique for improving performance in out-

of-order superscalar architectures. It identifies three technological trends limiting

superscalar performance; they are the increasing cost of a main memory access,

control dependencies and the greater hardware complexity of out-of-order execu-

tion.

Decoupling is a technique that can provide higher performance through the

mechanism of dynamically reordering, asynchronous instruction streams. It of-

fers the capability to improve ILP, through effective latency hiding and dynamic

scheduling, and to reduce hardware complexity, through decentralised logic. This

thesis evaluates this capability, by investigating the effectiveness of decoupled

out-of-order superscalar architectures.

This thesis identifies the degree to which operations can reorder (the degree of

reordering) as the critical dimension to an out-of-order superscalar architecture. It

investigates the effectiveness of decoupling by focusing on those design issues that

determine the degree of reordering, and relaxes all other architectural constraints.

This approach allows us to establish the limitations of decoupled out-of-order

superscalar architectures.

This thesis shows that a decoupled architecture, through its dynamically re-

ordering instructions windows, provides a possible solution to the problem of

latency hiding and issue logic complexity. This thesis demonstrate that for large

memory latencies, a decoupled architecture with 2 instruction streams is less

sensitive to increases in memory latency than a conventional single stream su-

perscalar architecture. The results also show that for memory latencies greater

than 20 cycles, a decoupled architecture can achieve a higher speedup than a

conventional superscalar architecture with twice the individual window sizes of a

decoupled unit. An explanation for this effect is provided through the concept of

the Effective Window Size.

The thesis also investigates a 3-stream decoupled superscalar architecture,

that provides dedicated hardware support for resolving control dependencies. The

results show that for the partitioning algorithm used in this thesis, the load

balancing is poor and the extra hardware resources are under utilised. For this

reason the majority of the thesis focuses on a 2 stream decoupled architecture.

Acknowledgements

I dedicate this thesis to my wife Kate, our children Jack, Joseph and Rebecca.

I would also like to dedicate it to my mother and father, and to Kate's parents.

Unfortunately, this work does not do justice to the time and inconvience it has

caused them over the years; in this sense the thesis fails, in that their efforts

cannot be read in the lines.

I would especially like to thank my supervisor, Nigel Topham, without whose

advice and support these acknowledgements would never have been written.

I would also like thank my fellow office mate and friend, Steve Cussack for

helping me stay sane during the long days in 3419. In all that time I can not

recall a cross word coming between us.

Table of Contents

List of Tables
	

iv

List of Figures 	 vi

Chapter 1 Introduction 	 1

	

1.1 	Thesis methodology3

	

1.2 	Thesis structure4

Chapter 2 Background 7

2.1 A typical superscalar architecture 8

2.2 Latency hiding technology 9

2.3 Increasing the degree of reordering 11

2.4 Reducing reordering logic complexity 13

2.5 The decoupling paradigm 14

2.6 Original contribution 16

2.7 Summary 17

Chapter 3 Three Superscalar Architecture Models 	 18

3.1 Multi-streamed decoupled architectures19

3.2 A single stream superscalar architecture20

3.3 The memory system21

3.4 The design issues for the reordering factors22

Chapter 4 	Description of the Simulation technique 25

4.1 	Experimental framework 26

4.1.1 	FOrtran Code Annotation Tool (FOCAT) 26

4.1.2 	Modelling EnviroNment for Decoupled Out-of-order Super-

scalar Architectures (MENDOSA) 31

4.2 	Advantages of the simulation technique 32

4.3 	Disadvantages of the simulation technique 33

4.4 	Benchmark programs 34

Chapter 5 	The Limits of Decoupling 36

5.1 A model for latency hiding 37

5.1.1 	Write back (WB) cache 39

5.1.2 	Write through (WT) cache 39

5.1.3 	0 for the decoupled model 40

5.2 Simulation technique 42

5.3 Experimental results 43

5.3.1 	Bandwidth filtering 46

5.3.2 	Comparisons of latency hiding efficiency 48

5.3.3 	Decoupled fetch schemes 50

5.3.4 	Temporal behaviour of 0fl 50

5.4 Implications of the experimental findings 51

5.5 Summary 53

Chapter 6 Determining Balanced Configurations for a Decoupled

Architecture 	 55

6.1 	Simulation technique55

6.2 	Experimental results56

6.2.1 Estimating good issue width configurations57

6.2.2 IPCR and latency hiding effectiveness58

6.3 	Summary 61

Chapter7 Design Issues for a Decoupled Architecture 67

7.1 Design 	issues 67

7.2 Simulation technique 70

7.3 Experiment results 71

7.3.1 	Data dependency and renaming 72

7.3.2 	Memory reordering and barriers 74

7.3.3 	Individual program behaviour 76

7.4 Design implications for the dual stream system 81

7.4.1 	Out-of-order decoupled loads 81

7.4.2 	Out-of-order decoupled stores 83

7.5 Summary 84

Chapter 8 Reducing Hardware Complexity through Decoupling 86

	

8.1 	The effective single window 88

	

8.2 	Simulation technique88

	

8.3 	Issue width 89

11

8.4 Window size and memory latency 	 93

8.5 Reordering scope and instruction window98

8.6 	Summary 100

Chapter 9 Reducing Hardware Complexity: a Sensitivity Analysis 104

9.1 	Experimental results 104

9.1.1 The effect of load data buffer capacity 105

9.1.2 The effect of code expansion 107

9.1.3 Effective communication bandwidth 109

9.1.4 The effect of memory reordering 110

9.1.5 Dynamic versus static code partitioning 111

9.1.6 Speedup and latency hiding effectiveness 112

9.2 	Summary 113

Chapter 10 Conclusions 120

10.1 	Thesis findings 120

10.2 	Related work 122

10.3 	Future work 125

Appendix A Program Characteristics
	 127

Appendix B Derivation of fi for Two Cache Models 	 129

13.1 0 for a write back cache129

13.2 13 for a write through cache 130

Appendix C Simulation Sampling
	 131

Appendix D Balanced Configurations: Additional Data 	136

Appendix E Reducing Hardware Complexity: Additional Data 138

Appendix F Sensitivity Analysis : Additional Data 	 139

Bibliography
	

WK

111

List of Tables

3.1 Design issues for out-of-order machines 	 . 23

4.1 Critical path times for different annotation tools32

4.2 Benchmark programs from PERFECT club suite35

5.1 Characteristics of the benchmark programs43

5.2 Decoupled loads for benchmark programs48

5.3 3 versus WB cache hit rate for different block size49

54 73read for ElF and LIF schemes51

5.5 Program characteristics54

6.1 Configurations for the 2-stream decoupled architecture56

6.2 Program IPCR57

6.3 IPC and LHE for best configurations of AU and DU with and

without the optimised decoupled memory66

7.1 Configurations for the 2-stream decoupled architecture71

7.2 IPC and LHE for different reordering scope; dependency analysis

is perfect with renaming80

8.1 Comparison of single and dual instruction streams when RS=3 	93

8.2 Comparison of single and dual instruction streams when RS=6 	93

8.3 Average window size when RS=694

8.4 The effect of code expansion on speedup when RS=694

8.5 IPC and LHE for varying window size (WS)103

9.1 Base-line : architectural configurations for the dual and single

stream systems 105

9.2 Sensitivity analysis: architectural configurations for the dual and

single stream systems106

9.3 Occupancy of the decoupled memory and prefetch buffer107

9.4 Effectiveness of various load data buffer capacities108

iv

9.5 Equivalent single window ratio without code expansion117

9..6 Equivalent single window ratio with code expansion117

9.7 Equivalent single window ratio for various bus and memory latenciesl18

9.8 Speedup of the dual over the single stream system for various access

ordering schemes 119

A.1 Percentage increase in the number of operations executed by the

dual stream system127

A.2 Operation breakdown as percentages128

A.3 Absolute count of operations (x10 6) 128

C.1 Program sampled sections134

C.2 Program characteristics for different length of simulation (F=full,

S=sampled, C=continuous)135

V

List of Figures

2.1 Model of execution for a typical superscalar machine9

2.2 Predicted average memory access times for a range of hit ratios

(expressed as percentages)10

3.1 A 3-stream decoupled architecture 21

3.2 A 2-stream decoupled architecture 22

3.3 Model of the basic decoupled memory 22

3.4 Model of the optimised decoupled memory 23

3.5 Single window superscalar machine 24

4.1 Basic statement 28

4.2 After annotation 28

4.3 Code annotation for superscalar architectures 30

4.4 Code without WAR dependency 34

4.5 Code with WAR dependency 34

5.1 x memory system 38

5.2 0 for WT and WB cache, for various values of a 40

5.3, Time lines for the ith decoupled load during execution 42

5.4 Basic decoupled memory model; FP latency = 1 44

5.5 Optimised decoupled memory; FP latency = 1 cycle 45

5.6 Optimised decoupled memory; FP latency=5 cycles 46

5.7 AU and DU with decoupled loads; FP latency=5 cycles 47

5.8 Relative increase in execution time with no CU for QCD2 48

5.9 Relative increase in execution time with no CU 49

5.10 QCD2 	interval variation of ,3,,,d
 52

5.11 QCD2 	cumulative variation of 53

6.1 ADM normalised speedup for MD=060

6.2 QCD2 normalised speedup for MD=061

6.3 ADM normalised speedup for MD=60 cycles62

vi

6.4 QCD2 normalised speedup for MD=60 cycles 	 63

6.5 Issue width utilisation when DU 1W = 564

6.6 Average 1W utilisation64

6.7 Latency hiding effectiveness for the basic decoupled memory (MD=60

cycles) 65

6.8 Latency hiding effectiveness for the optimised decoupled memory

(MD=60 cycles)65

7.1 Average IPC when MD=0 74

7.2 Average IPC when MD=60 75

7.3 Average Latency Hiding Effectiveness (RS=1) 76

7.4 Average Latency Hiding Effectiveness (RS=6) 77

7.5 Average IPC when MD=0 78

7.6 Average IPC when MD=60 78

7.7 Average Latency Hiding Effectiveness (RS=1) 79

7.8 Average Latency Hiding Effectiveness (RS=3) 79

7.9 Support for out of order memory access in a dual stream system 83

8.1 Effective single window 89

8.2 Latency hiding effectiveness MD=60 cycles 94

8.3 Speedup of FL052Q for varying window size 97

8.4 Speedup of MDC for varying window size 98

8.5 Speedup of TRACK for varying window size 99

8.6 Equivalent window ratio for FL052Q 100

8.7 Equivalent window ratio for MDC 101

8.8 Equivalent window ratio for TRACK 102

9.1 Effectiveness of various load data buffer sizes 108

9.2 FL052Q speedup 113

9.3 MDC speedup 114

9.4 TRACK speedup 115

9.5 Speedup of static over dynamic code partition 116

9.6 Average speedup of baseline dual and single stream systems . 	 116

C.1 ADM profile of load operations 132

C.2 DYFESM profile of load operations 132

C.3 FL052Q profile of load operations 132

C.4 MDC profile of load operations 132

C.5 QCD2 profile of load operations 133

vii

C.6 TRFD profile of load operations 133

C.7 TRACK profile of load operations 133

D.1 DYFESM MD=O 136

D.2 DYFESM MD=60 136

D.3 FL052Q MD=O 136

D.4 FL052Q MD=60 136

D.5 MDG MD=O 137

D.6 MDG MD=60 137

D.7 TRACK MD=O 137

D.8 TRACK MD=60 137

D.9 TRFD MD=O 137

D.10 TRFD MD=60 137

E.1 ADM 138

E.2 DYFESM 138

E.3 QCD2 138

E.4 TRFD 138

F.1 ADM speedup 139

F.2 DYFESM speedup 139

F.3 QCD2 speedup 139

F.4 TRFD speedup 139

vi"

Chapter 1

Introduction

This thesis presents a study into a technique for improving instruction level par-

allelism (ILP) and reducing the hardware complexity of out-of-order execution in

high performance superscalar architectures. Since the mid-80's we have witnessed

a rapid increase in processor performance (on average about 35% per year [451).

To sustain this rate of increase will require innovative techniques capable of detect-

ing greater levels of parallelism and hiding the effect of deleterious technological

trends. This thesis explores the application of one such technique, the decoupling

paradigm, in superscalar architectures. Decoupling is a technique that provides

high ILP and latency tolerance through dynamically reordering, asynchronous

instruction streams.

This chapter identifies the technological trends that represent major bottle-

necks to superscalar performance. It describes how decoupling could be a poten-

tial solution to these problems and outlines the methodology used in the thesis.

The current generation of superscalar architectures, the Alpha 21264 [42],PA-

RISC [27],PowerPC 604 [76],SPARC-64 [85],MIPS R10000 [91], all achieve high

performance through a hardware scheduling mechanism. This mechanism dynami-

cally resolves data dependencies, issues operations out-of-order and executes multi-

ple operations per cycle. Decoded instructions are placed in a buffer known as the

instruction issue window, where they wait until their operands become available.

Arbitration logic then selects and issues ready operations to the function units. The

maximum number of instructions issued per cycle is known as the issue width; an

architecture with an issue width of size ii is also referred to as an n-way super-

scalar machine. To increase ILP in future machines will require larger instruction

issue widths and instruction issue windows; this will need greater hardware com-

plexity and increase the length of paths critical to the processor clock speed [64].

To resolve this problem designers are considering the use of decentralised control

logic to increase ILP without effecting clock speed [39, 42, 75, 51, 811. However

1

this will not solve some of the other bottlenecks to higher ILP.

The exponentially widening gap between memory and processor speeds means

that the cost of a main memory access, in terms of missed instruction issue slots, is

becoming more expensive. Wulf [89] has referred to the long term consequences

of the speed disparity as hitting the memory wail; the point at which making

the processor faster produces no performance gain because memory latencies will

dominate. Under one scenario Wulf predicts this could occur shortly after the

millennium. In addition, the wider issue widths of future superscalar architec-

tures will place greater pressure on the memory system, requiring high sustained

bandwidth and low access latency. For these reasons latency hiding techniques such

as non-blocking loads [36], stream buffers [50, 77] and data prefetching [18, 16],

will remain an important area for architectural research. In the future software

and hardware technology will provide greater opportunities for these techniques

to optimise memory accesses and hide latencies.

Another bottleneck to detecting parallelism is control dependencies [57]. These

dependencies exist between conditional branches and those operations whose ex-

ecution is dependent on their outcome. Control dependencies limit the amount of

reordering that can take place between operations; in [45] the ratio of conditional

statements to other operations for the SPEC92 benchmarks is given as 1 in 5

and 1 in 10 for integer and floating point programs, respectively. To resolve this

problem designers have used techniques like loop unrolling, branch prediction and

speculative execution.

This thesis postulates that the decoupling paradigm could offer a solution to

the three fundamental problems;

high memory latencies.

control dependencies.

issue logic complexity.

The decoupling paradigm comprises two types of decoupling, access and con-

trol. Access decoupling [37, 72, 80, 90], the most familiar type of decoupling, is a

latency hiding technique that partitions - statically or dynamically - a program

into two instruction streams to aggressively prefetch data. One stream executed

on an address unit (AU) fetches data for the second stream, executed on a data

unit (DU). Memory accesses can then be pipelined to tolerate large memory la-

tencies provided the two streams can decouple sufficiently. The decoupling of the

streams is also referred to as the slippage [71].

011

In [9] it was suggested that the decoupling paradigm could be extended to

hide the latency of control operations. This technique requires generating an

additional stream of operations responsible for resolving control decisions ahead

of the computation streams (AU and DU). This stream, loosely coupled from the

computation streams, executes on a control unit (CU). This technique is referred

to as control decoupling.

This thesis investigates, for the first time, a decoupled architecture in which

the processing units are capable of n-way out-of-order superscalar execution. This

means operation reordering can occur between (inter) and within (intra) instruc-

tion streams. The former is supported by decentralised control logic which allows

the loosely coupled streams to slip relative to each other. The latter is supported

through each unit having separate instruction windows and issue logic. Previous

work on decoupling [81, 7, 37, 72] had only considered the use of single issue, in-

order processing units with the compiler being responsible for generating compact

schedules for each stream. In 1997, Tyson's thesis [81], suggested that future work

should investigate the use of superscalar units in a decoupled machine. The major

contribution of this thesis is to provide a detailed analysis of such an architecture.

1.1 Thesis methodology

The most critical dimension to an out-of-order superscalar machine's performance

is the degree to which operations can reorder. The degree of reordering is the

*listance, measured in numbers of instructions, between the oldest and earliest

instruction visible to the issuing hardware. A machine with a large degree of

reordering will have greater opportunities for detecting the independent opera-

tions necessary for parallel execution. The degree of reordering will determine

the memory latency tolerance and the ILP for a given machine.

The approach adopted in this thesis focuses the experimental analysis on

those factors that determine the degree of reordering, and hence the ILP, in an

out-of-order superscalar machine. These factors are referred to as the reordering

factors. Ultimately the ILP and performance is bounded by the algorithms used

in the program; there is little short of restructuring the code that can be done to

improve on this limit. The ability to reorder operations and hence increase ILP

in an out-of-order superscalar architecture is primarily determined by:

1. The number of operations in the instruction window that are visible to the

scheduling hardware. A large, densely packed window offers greater oppor-

tunities for lookahead, reordering and detecting the independent operations

3

necessary for parallel execution.

2. The data dependencies that exist between operations in the window. Data

dependencies impose a partial ordering on the execution of operations. The

importance of data dependencies has been well documented in the litera-

ture [65, 10]. Flow dependencies exist between operations that produce and

consume data values. They represent the minimum ordering of the program

that preserves program semantics. However false dependencies may be in-

troduced because of the complexities of memory disambiguation for array

variables [69].

An out-of-order decoupled architecture supports mechanisms for inter and

intra stream reordering. This extra complexity introduces additional reordering

factors that limit the slippage between streams. These factors are

The communication traffic and bandwidth between streams. Large levels

of communication increase the data dependencies between streams, limiting

slippage.

The frequency of synchronisation points, also known as loss of decouplings

(LOD), between the instruction streams.

Other architectural issues, such as the size of the register file and the available

memory bandwidth, are also important, but the reordering factors listed above

will determine the maximum amount of ILP. As a limitation study, this thesis

only considers those design issues that influence the reordering factors and relaxes

all other architectural constraints 1

The advantage of this approach is that it allows the thesis to focus on the limits

of the decoupling paradigm, rather than, as in previous studies [37, 72, 80, 901,

a specific implementation of a decoupled architecture. A disadvantage of this

approach is that it could be criticised for being too idealistic. However, given

the scope of previous work on decoupling [37, 72, 80, 90] and the technological

trends described above, the time is right for a quantitative analysis of the limits

of decoupled out-of-order superscalar architectures.

1.2 Thesis structure

The narrative of this thesis is presented in the following way. Chapter 2 provides

a contextual background to the thesis, reviewing published work on superscalar

'However, issue widths were constrained to within projected future values for next generation
superscalar architectures.

El

architecture design and latency hiding technology. It also discusses previous work

on decoupling and summarises the original contribution of this thesis.

Chapter 3 describes the three out-of-order superscalar architectures modelled

in this thesis. The architectures are characterised by the number of instruction

streams executed on the superscalar units. It describes a 3-stream and 2-stream

decoupled architecture as well as a typical single stream architecture.

Chapter 4 provides a detailed description of the simulation technique, bench-

mark programs, software tools and experimental methodology. It explains how

correctness of the tools was verified by comparing their output with a simulator

used in previous published work. This chapter also describes the three architec-

tures modelled in the thesis.

The remaining chapters present the experimental results and findings. Chap-

ters 5 and 6 provide the groundwork to thesis, developing an understanding of the

behaviour and characteristics of the out-of-order decoupled architectures. Chap-

ters 7, 8 and 9 draw on this work to present the key findings of the thesis.

Chapter 5 describes a limitation study into access decoupling under maximum

ILP and unlimited resources. The purpose of this study is to ascertain whether

- decoupling is an effective latency hiding technique for large ILP. This chapter in-

troduces a latency hiding model to enable comparisons between different latency

hiding techniques. The experiments show control decoupling to be impractical

because of it's under-utilisation of the CU. This chapter discusses how the decou-

pled architecture and simulation technique were revised in the light of the results

from the experiments. These results were presented at the EuroPar'97

conference [49].

Chapters 6 extends the work of the previous chapter by considering more real-

istic architectural constraints. It investigates the effect of superscalar issue width

and identifies balanced configurations of AU and DU issue width that maintain

maximum throughput. These results were presented at ParCo97 [48].

In Chapter 7 a series of simulations are used to investigate the effect of dif-

ferent levels of compiler and hardware complexity in extracting latent parallelism

in a decoupled architecture. This chapter demonstrates the importance of ar-

chitectural support for out-of-order memory accesses and describes how such a

mechanism could be implemented in a decoupled architecture without increasing

instruction issue logic complexity.

A single instruction stream, out-of-order superscalar architecture could in

principle achieve the same level of reordering as a decoupled out-of-order su-

perscalar machine. Chapter 8 provides a qualitative argument for the use of

5

decoupling through the notion of the effective single window. This chapter sub-

stantiates this notion by using an analytical model and simulation studies to

compare performance. It shows that for large latencies there is a significant per-

formance gain from decoupling. The single stream machine is shown to require

significantly larger instruction issue windows to achieve equivalent performance.

These results were presented at MICRO-30 [471

The experiments in Chapter 8 relax those design issues particular to decoupled

architectures (see Section 1.1 above) in order not to restrict the slippage between

streams. Chapter 9 explores the sensitivity of the previous chapter's findings

under more realistic conditions for these design issues. Drawing on the findings

from Chapter 7, it also examines the sensitivity of the results to memory ordering.

Chapter 10 summarises the major findings of this thesis, discusses their im-

plications in the context of related research and concludes with a discussion of

suggested future work.

Chapter 2

Background

The potential to overlap the execution of independent instructions is known as in-

struction level parallelism. Multithreaded [31], VLIW [22, 6] and Superscalar [42]

architectures all try to improve performance by exploiting latent ILP. Since the

early 1990s out-of-order superscalar 1 architectures have come to dominate single

processor high performance computing. In 1995, superscalar technology entered

the mass production world of personal computing, with the release of the Pentium

Pro [8]. Given the historical success and expertise that has been built around su-

perscalar architectures, it is believed that they will continue to be one of the

foremost principles of single processor designs. Section 2.1 describes the typical

execution of a superscalar machine with reference to current architectures.

Processor performance since the 1980's has grown exponentially at 35% [45] a

year. If that rate of increase is to be sustained, superscalar architectures will have

to be designed with faster clock speeds and higher ILP. This will require ma-

chines with larger issue widths and a larger degree of reordering (see Section 1.1).

However, unless some of the complexity for scheduling operations is migrated to

the.compiler, this extra complexity will introduce delays critical to the processor

clock speed. Section 2.4 describes some of the current techniques being considered

to reduce the complexity of future out-of-order machines.

Higher performance is also limited by the exponentially widening gap between

memory and processor speeds. This gap means that the cost of a main memory

access in terms of missed instruction issues slots is becoming more expensive.

Wulf [89] has predicted that without technological shift, future processors are in

danger of hitting the memory wall. Section 2.2 explains the notion of the memory

wall and outlines some of the techniques currently being used to hide memory

latency.

'This work is only concerned with out-of-order superscalar machines so the prefix out-of-
order will not be used in the rest of the thesis

7

Chapter 1 argued that the degree of reordering was the critical dimension

to the performance of a superscalar machine. Section 2.3 presents some of the

software and hardware techniques used to increase the degree of reordering.

The author believes that the decoupling paradigm in superscalar architec-

tures could increase the degree of reordering and tolerate large memory latencies.

Section 2.5 discusses previous work on decoupling, identifies the benefits of the

technique and describes this thesis' original contribution.

2.1 A typical superscalar architecture

Figure 2.1 2 shows the model of execution for a typical superscalar machine. In-

structions are initially fetched from a cache using branch prediction techniques [59]

to reduce the effect of control dependencies. In the next stage, instructions are

decoded and their operands renamed to eliminate false register dependencies.

Register renaming can be implemented using a mapping from physical to logical

registers: as used in the Alpha 21264 [42] and the MIPS 1110000 [91]. Renaming

can also be implemented using the reorder buffer, as in the PowerPC 604 [76].

After renaming, the decode logic dispatches instructions to the issue window,

where operations wait for their operands to become available.

Wake-up logic broadcasts the results of completed operations, and once an

operations operands becomes available, it is flagged as ready for execution. Ar-

bitration logic is then used to issue ready operations to the execution units. To

reduce the impact of control dependencies many superscalar machines such as

the Alpha 21264 [91] now implement speculative execution. Speculative execu-

tion is a technique that predicts an operation will be executed even though control

dependencies are unresolved [84].

While operations may be issued and speculatively executed out-of-order, the

machine state must be updated in-order. This process is known as committing the

instruction. An instruction is committed, once it is known that it would have have

executed if the program had been executed sequentially. The reason why instruc-

tions are committed in-order is to ensure a precise state, if an interrupt should

occur. This can be implemented using techniques such as checkpointing [85].

diagram has been taken from Palacharla [771

[ii

0

Ri I0 0 lo

Li

Figure 2.1: Model of execution for a typical superscalar machine

2.2 Latency hiding technology

Wulf [89] developed a simple model of program execution that neatly conveyed

the critical importance of memory latency to machine performance. Wulf's model

used the equation for the average access time tavg to a data cache

tavg = a * t + (1 - a) * tm

where a is the hit ratio, and t, and tm are the cost of an access to main memory

and cache, respectively. Since, typically 1 in 5 operation are memory accesses,

when tavg is greater than 5 cycles the memory latency will dominate the critical

path; this point Wulf poetically refers to as hitting the memory wall. Wulf predicts

from the base year of 1994 that even with a hit ratio of 99.8%, the memory wall

would be reached in 10-12 years.

Processor and memory performance are known to be growing at 35% and 7%,

respectively [45]. Using Wulf's model Figure 2.2 shows the predicted average

access times from the base architecture, the Alpha 21164; the base year is 1995

and the characteristics of the Alpha 21164 [19] are used as an example of a high

performance architecture from that year. The 21164 had a clock frequency of 300

MHz and a main memory latency of 253ns 1 . Figure 2.2 also shows that when

t jvg is 60 cycles 4; it can be seen even with hit rates of 95%, average access times

could reach 60 cycles in the year 2005. Wulf's paper and Figure 2.2 clearly show

that latency hiding technology will continue to be a pivotal component of future

computer architectures.

There are two types of latency hiding techniques, latency tolerance and latency

reduction. Latency tolerance techniques try to overlap access and data operations

in order to hide latencies. Latency reduction techniques use memory hierarchies

to store frequently used data close to the processing unit.

3 lnterestingly, the latency for a single DRAM component was only 60ns, but the additional
overhead of the memory controller, multiplexing addresses to DRAM and the time to drive the
DRAM pins increased the latency by a factor of 4

'This is the value used in the majority of the simulation studies in this thesis

300

250

200

>'
C
C
0

• 	150
0
E
0

100

50

0
1994

80% .-
90% --i---
95% -0--

99% x-

M.

1996 	 1998 	 2000 	 2002 	 2004 	 2006
year

Figure 2.2: Predicted average memory access times for a range of hit ratios (ex-
pressed as percentages)

The cache is the most widely used and successful latency reduction technique.

It exploits spatial and temporal locality in order to hide the main memory access

time. Superscalar architectures with large issue widths and extensive reordering

require support for non-blocking loads and multiple accesses per cycle. Non-

blocking loads [74, 36, 301 with lock-up free caches [53] reduce miss penalties by

servicing accesses while misses remain in-flight.

Cache technology is also being driven by the need to provide high bandwidth

multi-ported caches. A multi-ported cache can be implemented by maintain-

ing multiple copies of the data [42], though to ensure coherence writes must be

performed in all banks of the cache. The disadvantage of this technique is the

large amount of die space required to duplicate the data. Another multi-ported

implementation is the interleaved cache used in the HP PA-8000 [27] and MIPS

1110000 [91]. Under this scheme accesses to different banks can be serviced si-

multaneously but conflicts can occur for poor access patterns. However, Rivers et

al. [68] argued that interleaved banking offered the best cost/performance for

a multi-ported cache. The frequency of bank conflicts can be reduced through

techniques such as access combining [68] and reordering [81].

10

A scheme for reordering memory references was also proposed in [81] to reduce

the effect of bank conflicts. The Alpha 21264 [42] cache operates at twice the

clock speed and therefore logically appears as a dual ported cache. However,

with growing working set sizes and increasing ILP, the cost of a miss to first and

second cache level has grown. To resolve this problem most high performance

architectures include latency tolerance techniques such as data prefetching. These

schemes allow data to be prefetched so that cache miss penalties can be tolerated.

Data prefetching techniques tolerate memory latencies by overlapping mem-

ory and data operations. It can be implemented in either software [16] or hard-

ware [50]. Software prefetching is a compiler driven technique that places non-

blocking loads ahead of the actual data reference. The distance between the

non-blocking load and the reference is dependent on static analysis of the loop

execution time and memory latency [52]. The disadvantage of software prefetch-

ing is the extra overhead of the prefetch instructions [17]. To reduce this effect,

heuristics can be used to determine those loads that are likely to result in cache

miss [62].

Hardware prefetching [50, 77, 18] has the advantage of dynamically prefetching

liàta according to the run-time conditions of the machine. The simplest form of

hardware prefetching is to prefetch the next ii blocks after a cache [201. The

disadvantage of the hardware scheme is that it increases memory traffic because

prefetched data is less likely to be used [17]. To reduce memory traffic techniques

have been developed to detect non-unit strides [41] and to filter out unnecessary

prefetching using history tables [77].

Results show that software prefetching is less sensitive to increases in mem-

ory latency and introduces less memory traffic [17]. In [56] a comparison of

software latency hiding techniques found that when memory latencies are large

software prefetching outperforms software pipelining and loop unrolling. At low

memory latencies, software pipelining outperforms software prefetching due to

the overhead associated with the extra prefetch instructions. Although software

prefetching does introduce additional overhead by consuming processor cycles,

the relative cost is expected to decrease, as issue widths become larger.

2.3 Increasing the degree of reordering

Chapter 1 identified those factors that determine the degree of reordering, namely

data dependencies and the number of operations visible to the scheduling hard-

ware. This sections discusses some of the software and hardware techniques that

11

influence these factors.

Control dependencies limit the scope of operation reordering to a single basic

block. For floating point applications the number of operations in basic blocks

is typically in the range 1 to 10. This means that for block scheduling ILP is

small. The effect of control dependencies has been reported in [57]. Techniques

to remove control dependencies can be implemented in hardware and/or soft-

ware. Branch prediction and speculative execution [59, 84] are commonly used

techniques to ensure the instruction pipeline is fully utilised. Compiler directed

if-conversion [2], procedure inlining [43] and loop parallelisation techniques [4, 26]

allow more operations to be exposed to the reordering hardware. For example,

loop unrolling which replicates the body of a loop and transforms the iteration

conditions, has been shown to benefit ILP in superscalar architectures [21].

Unresolved data dependencies between memory references force compilers, in

the absence of any supporting hardware, to generate conservative code. While

compilers can disambiguate scalar references using variable names and equiva-

lence information, array references are difficult to resolve. A range of static data

dependency techniques have been developed [5, 92, 87, 67, 14] to disambiguate

array references by examining their subscript expressions. However, it has been

shown that in scientific applications, a small number of unresolved data depen-

dencies cause large reductions in ILP [65, 10]. One solution is for the compiler to

generate conservative and optimised code, and then select the appropriate code,

dependent on run-time checks [21, 151.

Dynamic disambiguation is a technique that removes the constraints imposed

by statically unresolved memory accesses. Typically this technique works by

memory operations being assigned a sequential number in program order. The

semantics of the program are preserved by prohibiting loads to reorder before

stores that have the same address and lower sequence number. In [3, 721 all loads

referencing memory performed an associative compare with active stores held in

a queue. However, the weakness of this scheme is that loads can not be reordered

before all preceding stores, and stores can not reorder relative to each other.

The difficulty of dynamic disambiguation in an out-of-order machine is that

addresses can be only be compared after they have been computed; this may result

in loads waiting for stores when no dependence exists between the reference pair.

Speculative disambiguation [40, 61] is a technique that allows references to re-

order even though load and store references have not been resolved. Franklin [40]

proposed a technique known as the Address Reorder Buffer (ARB) that supports

multiple accesses per cycle, using distributed bins. References are mapped to

12

the bins according to their instruction address, and the bins are used to detect

memory conflicts using sequence numbers. The ARB is designed to support spec-

ulative memory accesses and out-of-order execution of loads and stores. If a load

is incorrectly mispredicted to execute before a store, expensive recovery mecha-

nisms roll back the machine state. To reduce the cost of recovery, Moshovos [61]

has proposed the use of prediction techniques to detect references that are likely

to result in mis-speculation. Interestingly, this paper shows that the cost of mis-

speculation will become significant as instruction window sizes increase.

Data flow dependencies impose a partial ordering on the operations in a pro-

gram. However, scientific programs are written in imperative languages that

introduce false dependencies; these dependencies introduce unnecessary ordering

between operations. Register renaming [73] and array privatisation [23] can be

used to remove false dependencies. Array privatisation is a technique that elimi-

nates memory dependencies for scalars and arrays. In a study on the PERFECT

club suite it was found that the Polaris compiler could produce speedups com-

parable to manually written code, when array privatisation was included in the

optimisation suite [34].

2.4 Reducing reordering logic complexity

Increasing ILP in an out-of-order superscalar architecture requires larger issue

widths and instruction windows. However, Palacharla [77] has shown that delays

in components critical to the processor clock speeds vary quadratically with issue

width and window size. In his paper, Palacharla emphasised the point that it is

the product of IPC and clock speed that designers should maximise. Increased

logic complexity can improve IPC, but it may also introduce longer delays into

paths critical to the processor clock speed. For this reason, Palacharla anal-

ysed delays in those functions in the instruction pipeline whose complexity grows

with increasing ILP. These functions were renaming, wakeup/select and bypass.

Palacharla's key findings are described below.

The wakeup and select delay varies quadratically with window size and issue

width. This delay was found to dominate at 0.35 pm technology, and larger

issue width (8-way issue) and window size (64 instructions).

The bypass delay varies quadratically with issue width. For 0.18 pm tech-

nology the bypass delay dominates at large issue widths (8-way issue) and

window sizes (64 instructions).

13

Palacharla argues there is a need to consider complexity effective superscalar

processors; architecture that can facilitate faster clock speeds without reducing

ILP. Palacharla proposed a clustered architecture with centralised decoding and

steering logic. Each cluster has a set of FIFO instruction queues that receive

operations from the steering logic. The instruction window logic is simplified by

only needing to monitor operations at the heads of each queue. The disadvantage

of microclusters is the overhead of communicating values between register files

and the limited number of operations available for selection. Other work on

microclusters [42, 30] has explored the payoffs between simplified hardware and

communication hardware.

The Multiscalar [39, 12, 75], MISC [81, 80] and PEW [51] share the common

goal of trying to achieve high ILP through decentralised control logic. The MISC

and PEW architectures differ from the Multiscalar by using decentralised fetch

and decode logic. A detailed description of these architectures is postponed until

Chapter 10, where they are discussed in relation to the thesis' findings.

2.5 The decoupling paradigm

Access decoupling [7, 37, 58, 72, 71, 24, 70] is an asynchronous data prefetching

technique that tries to hide memory latency by overlapping data and memory

operations. Central to all decoupled architectures is an address unit (AU) and a

data unit (DU) that communicate, between themselves and memory through the

use of queues. Each unit has its own stream of instructions and program counter

allowing the AU to run ahead of the DU. The degree to which the AU is ahead

of the DU is called the slippage. At certain points in a program's execution, the

AU is forced to wait on values from the DU; these points are referred to as a loss

of decoupling.

All memory operations are executed by a split load instruction. The address

unit computes and sends load and store addresses to memory system via the load

and store address queues, respectively. The data from a load is returned from the

memory, after some latency, and placed in a data queue where it can be fetched

by the data unit. The memory latency can be tolerated, provided the address

unit can prefetch data sufficiently far ahead of the data unit. To execute a store

operation the address waits in a store address queue until it is matched with a

computed value from the data unit, when they are sent to memory.

The early decoupled machines like the ZS-1 [72, 71, 24, 70] and PIPE [37]

differed in how they split the instruction stream. The ZS-1 had a single instruction

14

stream with a splitter whereas PIPE had separate instruction caches for the access

and execute unit. The ZS-1, unlike PIPE, also included a data cache. These early

studies used synthetic loop kernels to look at the performance of the decoupled

architectures for different queue sizes and memory latencies. Recently decoupled

machines like the DAE [7], MISC [80, 81] and WM [88] have appeared. The

DAE and WM differ from the MISC in their emphasis on providing support for

structured data accesses; while the emphasis in the MISC architecture is on the

use of decentralised control logic to simplify out-of-order execution.

The DAE [7] includes speciklised hardware for efficient address generation of

structured data. Efficient generation of addresses is shown to increase slippage,

reduce DU stall time and increasing cache utilisation. The technique is similar

to the access mechanism in vector machines and therefore subject to the same

problems of data dependency analysis described in Section 2.3.

The WM [88] architecture consists of 12 asynchronously executing components

that communicate by FIFO queues. An integer and floating point unit execute 1

instruction in-order every cycle. Stream control units are used to execute vector

like operations for storing and reading data. The results show a factor of 2-9

increase in performance over a scalar architecture

Farrens [38] made a comparison between an in-order 2-way decoupled and

3-way out-of-order superscalar architecture using the Lawrence Livermore bench-

mark suite. His study showed that decoupled architectures outperformed super-

scalar architectures. The reasons given for the improvement were the dynamic

loop unrolling through unit slippage, the register renaming and the dynamic out-

of-order execution between decoupled units. However, this study limited the

amount of reordering in the superscalar architecture by making the instruction

window only large enough to hold one loop iteration and not allowing it to per-

form branch prediction. The study also did not consider wider issue widths, real

applications and large memory latencies.

In another study by Kurian [55] a comparison was made between a decou-

pled architecture and a cache based uniprocessor. Decoupled architectures were

observed to be more sensitive to memory latency than cache based systems es-

pecially with large memory latencies (15 cycles) when the memory becomes a

bottleneck. A decoupled architecture with a cache to capture locality was found

to be the best configuration.

Tyson, in [81, 80], discusses the MISC architecture. The MISC machine has

four asynchronous units each with their own instruction cache and a common

data cache. The motivation behind the MISC architecture was to use decen-

15

tralised control logic to increase ILP. MISC is a decoupled microprocessor that

exploits instruction level parallelism by executing streams in-order, on single issue

processing elements. The architecture relies on the compiler to schedule opera-

tions and to partition the code. In his thesis Tyson explored the use of different

algorithms for producing balanced work loads for the 4 processors. However,

he concluded that in order to utilise all the processors, perfect dependency and

inter-procedural analysis was required. Tyson also made a comparison between

MISC and an in-order Alpha architecture. His results showed that a 4 processor,

1-way in-order issue MISC architecture can achieve higher performance than 4-

way in-order issue on an Alpha 21164. However, these results were obtained with

a non-blocking cache for the Alpha. This means that the Alpha will stall shortly

after a cache miss, but MISC can continue initiating memory requests until the

cache queues are saturated.

Topham [79] performed a limitation study of the effectiveness of decoupling

for a range of compiler optimisations. The study was based on the static parti-

tioning algorithm in the OCTAVE compiler and an analytical model of decoupled

execution. From profiling information, estimates of the number of loss of decou-

plings in a program were used to calculate upper bounds on decoupling efficiency.

The results showed that for many of the PERFECT club suite it was possible

to hide large latencies. The partitioning algorithm differed from Tyson's work

by trying to reduce the frequency of loss of decouplings rather than ensuring a

balanced work load. This limitation study was however based on a static model

and used conservative data dependency analysis to estimate the number of loss

of decouplings.

Decoupling has gained currency in superscalar architectures like the MIPS

1110000 [91] and PA 8000 [27]. The R10000 is able to support a decoupled mode of

operation through out-of-order execution and a separate access instruction queue.

The HP PA 8000 has two 28 instruction reorder buffers, for data and memory

operations, and a large interleaved non-blocking cache. Both the 1110000 and

PA 8000 can decouple address and execute operations even though there is no

architecturally visible AU and DU.

2.6 Original contribution

This thesis is the first known study into the effectiveness of out-of-order execution

in decoupled superscalar architectures to improve latency hiding and increase TLP.

Exponents of decoupling have typically focused on latency hiding and inter stream

16

reordering; however, Smith [70] in his early paper argued that an additional

benefit of decoupling was the simplification of reordering hardware. This point

has been picked up by Tyson [81], but his MISC architecture had multiple streams

executing operations in-order. Tyson proposed that future work should consider

an out-of-order decoupled architecture. The main contributions of this thesis are:

To investigate out-of-order decoupled architectures, identifying those design

issues critical to their effectiveness at hiding memory latency and increasing

ILP.

To compare the effectiveness of an out-of-order decoupled and single-stream

superscalar architecture.

To investigate how the decoupling paradigm in out-of-order superscalar ar-

chitectures can reduce issue logic complexity without decreasing perfor-

mance.

2.7 Summary

This chapter has summarised the strategic problems facing future superscalar de-

signers and the techniques currently being considered to address these issues. It

has highlighted the competing tensions between extracting higher ILP and proces-

sor complexity, and has emphasised the importance of latency hiding technology.

-1 1 In summary, it is believed that the design goal for future superscalar archi-

tectures is: to build complexity sensitive [64], large issue width, latency tolerant

machines capable of wider degrees of reordering. The following chapters explore

whether this design goal can be met using the decoupling paradigm.

17

Chapter 3

Three Superscalar Architecture
Models

This chapter describes the three superscalar architectures modelled in this thesis.

The architectures are characterised by the number of instruction streams they can

support. Each instruction stream executes on a single out-of-order superscalar

unit, and each unit has a separate instruction issue window, register file and

function units. Section 3.1 describes the 3-stream and 2-stream (also referred to as

a dual stream) decoupled architectures. The former implements both control and

access decoupling, while the latter only implements access decoupling. Section 3.2

describes a 1-stream (single stream architecture) in which no decoupling occurs.

The benefit of the multi-stream architectures, is that reordering can take

place within (intra) or between (inter) instruction streams. However, this benefit

is bought at the price of extra of hardware and software complexity. Inter-unit

communication are implemented by queues as in previous decoupled machines [37,

72, 80, 90]. Separate instruction caches and fetch and decode mechanisms are

required to ensure the maximum amount of slippage.

Extra software complexity is also required in the compiler to partition the

code . The 3-stream and 2-stream architecture both rely upon the static code

partitioning obtained from the experimental OCTAVE compiler [79]. The OC-

TAVE compiler uses a set of heuristics that minimise communication and LODs

between instruction streams. A full discussion of how the compiler was integrated

with the simulation technique is described in Chapter 4.

Section 3.4 discusses the design issues that effect the reordering factors (dis-

cussed in Section 1.1) for each of the architectures. This section also describes

how these issues shaped the experimental methodology used in this thesis.

'Partition can also be performed in hardware as in the ZS-1 [72, 71, 24, 701

EII

Ii

3.1 Multi-streamed decoupled architectures

The 3-streamed decoupled superscalar architecture is based on the ACRI machine [91

and is illustrated in Figure 3.1. In this architecture three instruction streams ex-

ecute on the control unit (CU), address unit (AU) and data unit (DU). Each unit

maintains sufficient state to execute independently as an out-of-order superscalar

architecture. The bulk of the computational work is performed on the AU/DU

pair. The CU is capable of computing conditional branches ahead of the AU/DU

pair.

Figure 3.2 shows a 2-stream decoupled architecture similar to the ZS-1 [72]

and PIPE [3] machines. This architecture differs from the 3-stream by providing

no architectural support for the asynchronous execution of control operations. All

operations previously executed on the CU are performed on the AU.

The decoupled memory is capable of sending and receiving data from the

AU/DU pair and main memory. The AU and DU can both fetch and write data

into the decoupled memory but only the AU can access main memory. This chap-

ter avoids an implementation level description of the decoupled memory, instead

concentrating on the semantics necessary to support decoupling 2

A decoupled load to the DU is performed by way of a split instruction executed

on the AU and DU. The AU initiates the load by computing the load address

and sending it, via the decoupled memory, to main memory. Once the requested

data is returned it waits in the decoupled memory until it is fetched by the DU.

The AU is also capable of issuing decoupled self loads in a similar manner.

A decoupled store is performed by the AU sending an address to the decoupled

memory, where it waits until the DU computes the data. The decoupled store

completes when the address and data are paired and sent to main memory. The

CU performs its own accesses via the decoupled memory.

The decoupled memory guarantees that Read After Write (RAW) hazards

will be resolved, provided the AU and CU sends loads and stores to the same

address in program order. Loads to the same address are, however, allowed to

overtake each other. The decoupled memory detects RAW hazards by matching

load and store addresses. When a hazard is detected the load is suspended until

the store completes. This thesis investigates two different decoupled memory

models for handling RAW conflicts:

1. In the first memory model each load waits for completion of any outstanding

2 A full description of the decoupled memory is provided in Section 7.4
3 The simulation technique (see Chapter 4) can remove false dependencies so that Write After

Write (WAW) and Write After Read (WAR) data hazards do not need to be considered.

19

writes to the same address before going to main memory. This is referred

to as the basic decoupled memory since it relies only on the slippage between

the AU and DU to hide the main memory latency.

2. In the second memory model, information about future access patterns is

used to cache data close to the DU. The load is combined with the matching

store so that when a store datum is received, the load can be satisfied with-

out accessing main memory. This is referred to as the optimised decoupled

memory.

Figures 3.3 and 3.4 illustrate the effects of using the basic and optimised

decoupled memory, respectively. These diagrams use the following notation to

describe the times at which operations occur 4 ;

• 54U, sf" denote the times at which the AU and DU perform their respective

operations in a decoupled split store.

• 14U I` denote the times at which the AU and DU perform their respective

operations in a decoupled split load.

• 0DU denotes the time at which an operation on the DU actually uses the

loaded value.

• CM denotes the execution cost of a main memory access.

In Figure 3.3 the load address is sent to main memory and as a consequence

the DU fetch operation has to wait for the value to be returned by the memory

system. In Figure 3.4 the DU does not incur any delay because the copy is resident

in the decoupled memory. The optimised decoupled memory model also acts as

a bandwidth filter, reducing memory bandwidth requirements.

3.2 A single stream superscalar architecture

The single stream superscalar machine is shown in Figure 3.5. The architecture is an

out-of-order machine with a single instruction window for reordering operations.

In each cycle, independent operations that are ready to execute are issued to the

function units. Unlike the decoupled machine the full issue width is available for

issuing instructions every cycle.

'The subscript denotes the ith decoupled load during the execution, where 1 <i <N, when
N is the total numBer of executed decoupled loads.

20

CU 	 AU 	 DU
--

Width 	 WJt

I FntimUnit + 	 F..di ui6 + 	 [
FiI 	 Rptn 	 Rñt Fd"

Decoupled Memory

Memory System

Figure 3.1: A 3-stream decoupled architecture

There are different types of hardware, software and hybrid schemes for data

prefetching. The single stream architecture uses a hybrid scheme. Every load

operation comprises two instructions, a prefetch and an access operation. The

prefetch instruction pre-loads data into the prefetch buffer ahead of the access

operation. Prefetch operations, unlike software schemes, are allowed to begin

execution as soon as runtime resources allow. This scheme combines the benefits

of exact address computation with dynamic execution. The prefetch buffer is a

fully associative buffer responsible for storing prefetched data. Requests from the

prefetch buffer take 1 cycle.

3.3 The memory system

The memory system for all three architectures consists of the main memory but

may also be composed of multi-level caches. A detailed simulation of the memory

system is beyond the scope of this thesis; instead its execution is modelled by

considering every access to have a fixed cost.

It is recognised that this model is a simplification of the complex memory sys-

tems in high performance architectures. However, it is believed that this approach

is justified because most memory systems are composed of memory hierarchies

and each level in the hierarchy supplies a quality of service to higher levels. The

quality of service can be quantified as a constant term, the average access time

to that level. Using this simplification has the benefit that it allows the memory

system to be modelled with a high or low quality of service. This equates to the

processor interfacing with a complex (e.g. having multilevel caches) or basic (e.g.

21

AU _ 	[DU
Instruction 	 ________ Instruction
Issue 	 _________ Issue
Window 	 Window

Function Units + 	 Function Units +
Register Files 	 Register Files

Decoupled Memory

Memory System

Figure 3.2: A 2-stream decoupled architecture

time

DU DU

NJ 	
Si 	 1.

.

DU waits foe
value to be
returned

AV 	Au

AU

I load waits
-:

I 	C 51

cycle

Figure 3.3: Model of the basic decoupled memory

just the main memory) memory systems. It also allows the thesis to concentrate

on areas of the design space that have not previously been studied. Much of the

previous work on decoupling has concentrated on the size of queues [71] and the

use of data caches [55]

3.4 The design issues for the reordering factors

In Section 1.1 it was argued that the reordering factors were the critical determi-

nants of the maximum ILP in superscalar architectures. This section identifies

those design issues that influence the reordering factors; these issues are also

referred to as the degrees of freedom for reordering.

22

time

DU 	 DO

DU 	
Si

AU 	AU

AU

copy resides

in decoupled

memon'

Figure 3.4: Model of the optimised decoupled memory

The degrees of freedom are shown in Table 3.1. The third column shows where

they apply to a single stream architecture (SSA) or decoupled architecture (DA).

The final column shows the chapter in the thesis where these design issues are

considered.

The degrees of freedom are effected by hardware and software. Data de-

pendency analysis can be static [67], dynamic [40] or a hybrid of both [21]. The

number of operations in the instruction window is determined by hardware factors

such as its size, the use of speculative execution [84] and branch prediction [59].

Software optimisations [63, 4, 26] can also expose more parallelism to the hard-

ware through loop unrolling, inlining and loop transformations.

 parallelising optimisations SSA, DA ch. 7
 memory ordering schemes. SSA, DA ch. 7& ch.9
 data dependency analysis. SSA, DA ch. 7
 register and memory renaming. SSA, DA ch. 7
 synchronisation points DA ch. 7
 instruction window size. SSA, DA ch. 8 & ch. 9
 inter-unit bandwidth DA ch. 9
 partitioning and code expansion DA ch. 9
 decoupled memory/prefetch buffer capacity SSA, DA ch. 9

Table 3.1: Design issues for out-of-order machines

In this thesis the focus of the experiments is on the effect of the degrees of

freedom on the superscalar architectures (other architectural constraints were re-

laxed). The advantage of this approach is that it isolates decoupling from other

factors and allows the limits of the technique to be explored. The disadvantage

23

Jnstwctioi
Window

Issue
Width

Function Unit s +
Register Files

Prefetch Buffer

Memory System

Figure 3.5: Single window superscalar machine

is that it is open to the criticism of being idealistic. Given the scope of previous

studies into decoupling (see Section 2.5) and the technological developments dis-

cussed in this chapter it is believed the time is ripe for a quantitative analysis of

the limits of decoupling.

The approach adopted in the experiments was to initially assume an ideal

decoupled architecture where the only constraints were true dependencies, and

then to incrementally introduce each of the degrees of freedom from Table 3.1

into the experimental domain.

24

Chapter 4

Description of the Simulation
technique

The aim of the simulation methodology applied in this thesis was to identify

performance trends and design issues rather than provide a detailed exposi-

tion of a particular system design. This approach was used because previous

work [7, 37, 58, 72, 81] had concentrated on the specific implementation details

of access decoupling rather than the more generic paradigm of dynamically ex-

ecuting, asynchronous instruction streams. To provide a new perspective into

decoupling, it was decided to adopt a methodology that relaxed some of the

technological constraints of earlier work.

Modern high performance architectures comprise both sophisticated software

and hardware technology; therefore an experiment environment to evaluate a

novel architecture should model the design space for both aspects of technology.

The simulation tools developed for this thesis were designed to provide an exper-

imental framework capable of modeling a wide range of compiler and hardware

configurations. In keeping with the simulation methodology, the framework was

also designed to:

be independent of any native compiler.

model potential future improvements in compiler and hardware technology.

to relax technology bottlenecks important for latency tolerance technol-

ogy. For example, data prefetching depends on finding instruction level

parallelism in order to overlap operations and hide memory latency. Yet,

extracting instruction level parallelism is known to require sophisticated

restructuring and data dependency algorithms [11, 10, 23, 697

This chapter explains the implementation and operational details of the frame-

work and is developed in the following way. Section 4.1 provides a detail descrip-

25

tion of the experiment framework. It explains how scientific applications were

annotated so that execution of the compiled program would generate calls to a

simulator. The simulator was parameterized to model the execution of the 3

types of superscalar architectures, described in Chapter 3, under a wide range of

architectural configurations. Sections 4.2 and 4.3 discusses the advantages and

disadvantages of using this approach. Finally, Section 4.4 describes the bench-

mark programs used in the experiments.

4.1 Experimental framework

The experimental framework uses a technique adapted from work by Petersen [66].

The strength of Petersen's technique was that it provided an environment in which

to explore many different compiler issues. This method works by annotating

the source level code with calls to routines within an architecture simulator.

Shadow variables are inserted into the program to track the earliest time that

program values become available. Shadow variables are passed as arguments to

the simulator to enable operation start times to be computed. Simulation of the

system can then be performed by executing the annotated program.

Although, there were many advantages to using Petersen's technique in the

framework, his modelling tools could not be adapted to model out-of-order super-

scalar execution and therefore were not sufficient for the thesis requirements. For

this reason, the entire experimental framework was developed during the course

of the thesis. The techniques used to extend Petersen's method are original work.

The two components to the framework, the FOrtran Code Annotation Tool

(FOCAT) and Modelling EnviroNment for Decoupled Out-of-order Superscalar Ar-

chitectures (MENDOSA) are described in Section 4.1.1 and Section 4.1.2.

4.1.1 FOrtran Code Annotation Tool (FOCAT)

This section describes the basic concepts of Petersen's technique and explains

how it was extended and developed into a generic annotation tool. Extending

the technique involved identifying general annotation rules that allowed FOCAT

to be independent of the routines being inserted into the code. This extension

facilitated integration with the simulator and enabled FOCAT to be validated by

comparison with results from Petersen's annotator.

91

Basic Concepts

A program can be represented as a data flow graph in which the nodes and arcs

symbolize operations and the flow of data, respectively. Running a program can

be viewed as the dynamic execution of that data flow graph where the longest

path through the graph determines the minimum execution time of the program;

this is also known as the critical path length.

Petersen [65] developed a technique that annotated the source code so that

running the program modeled the dynamic execution of its data flow graph. Using

this approach Petersen was able to evaluate performance upper bounds for differ-

ent data dependency tests independent of any architectural model. He was also

able to use the technique to investigate the speedup from operation, statement

and loop level parallelism.

In Petersen's technique the execution of a data flow graph is modeled by using

shadow variables to enforce the data dependencies between operations. Shadow

variables are time stamps inserted into the program to track the earliest time

that program values become available. Each program variable has an associated

shadow variable to track it throughout the execution of the program.

Figures 4.1(a) and 4.1(b) show a small section of Fortran code respectively

before and after annotation. Figure 4.1(b) shows the shadow variables denoted

with the prefix v$, the generic max function and the cost function. The cost

function returns the time in cycles to compute the addition of the two operands.

When this section of code is executed v$d will hold the earliest time that the

value in d was made available.

The annotation process can be extended to different program constructs such

as if statements, procedure calls and do loops. Figure 4.2(a) shows how con-

ditional statements can be annotated to enforce control dependencies between

operations. An additional shadow variable is generated v$if to hold the earliest

time the branch was resolved. The control dependency is enforced by including

the shadow variable in the max function for all statements that are control de-

pendent on the branch. The do loop construct can be annotated in a similar

way.

To annotate a subroutine call the parameters' shadow variables are appended

to the procedure's argument list. A new shadow variable is also generated and

passed as an extra argument to the routine. The new variable enforces dependen-

cies between statements in the callee and called routines. Figure 4.2(b) illustrates

how a procedure call would be annotated.

For a full discussion of the technique the reader is referred to Petersen's the-

27

sis [65]. In order to develop the software tools necessary for the thesis, the

technique was extended and adapted into a generic annotator. The process of

designing and building FOCAT is described below.

a = b + c 	 a =b + c
v$a=niax(v$b ,v$c)+cost (ADD _OP)

d = a 	 d =a
v$d=v$a

(a) Before 	 (b) After

Figure 4.1: Basic statement

v$ifl = cost(COND_OP)+ v$c
if(c.gt.O.O) then

a = b + c
v$a = inax(v$b,vc,vifl)

+ cost(.ADDOP)

(a) Conditional statement

v$ifl = cost(COND_OP)+ v$c
if(c.gt.O.O) then

v$fx = v$ifl
call ft (a, va, vfx)

(b) Procedure call

Figure 4.2: After annotation

Designing and implementing FOCAT

FOCAT was written in C++ using an object oriented methodology to promote

a readily extensible design capable of meeting later experimental requirements.

The tool parsed Fortran code and annotated it with a set of user defined routines.

This generic functionality was provided by recognising the similarities between

Petersen's annotation technique and the general data flow analysis framework de-

scribed in [1]. This framework is often used as part of a compiler's analysis suite,

and it's most common application is for code optimizations such as copy prop-

agation and detecting loop invariant computations. The framework works by

iteratively traversing all the arcs of data flow graph and gathering information

about the way data flows through the program. The framework requires:

1. a set of values to be propagated along the arcs of the graph.

a confluence function that combines the sets of values from all the arcs

incident to a node.

for each node operator, a transfer function that maps a set of input values

to a set of output values.

an update function that updates a set of values.

Petersen's technique is similar to this framework in that execution of the

annotated program can be seen as an information gathering process. In his case

the information being propagated, via the shadow variables, is the time at which

program values become available. The confluence and transfer functions are the

max and cost routines, respectively. The update function was the assignment

operator. The framework differs by being a static technique which must follow

all paths in the data flow graph while Petersen's technique is dynamic and only

follows one path through the graph.

By recognising the parallels between the two techniques it was possible to

.design the tool based on a set of general rules for annotating Fortran code. Like

the data flow analysis framework, the user of the framework only needs to supply

a set of confluence and transfer routines to FOCAT. This design had the benefit

of hiding complexity and making it extensible to different types of annotation.

For the annotator to interface with the architecture simulator the program

had to be annotated with the following routines;

• idop, idload, idstore. These routines were responsible for simulating a

data operation, a load and a store address computation, respectively. These

routines provide the transfer functions.

• iddef. This routine was responsible for simulating store operations and for

updating shadow variables.

Each of the above routines accepted shadow variables as part of their argument

list. The max routine (the confluence operator) did not explicitly appear in the

annotated code, instead it was implicit in each one of the above routines. For the

decoupled architecture, shadow variables had to track the time at which values

became available on each of the units. One way to implement this would have

been to have three shadow variables for each program variable, but this would

have reduced the readability of the code. Instead the program was still annotated

with one shadow variable but this was a reference to a structure that contained

three timestamps, one for each unit.

Simulating the decoupled architecture required splitting the code between the

different units. This was performed statically by the partitioning algorithm in the

OCTAVE compiler [79]. The compiler assigned each node in the data flow graph

to one or more units. During the annotation process this information was inserted

into the argument list for the simulator routines. At runtime this argument was

used to execute operations on the designated unit.

The OCTAVE compiler was also used to identify where load operations oc-

curred in a program. Part of the optimization suite for the compiler was to detect

redundant loads in the program. This information was used by the annotator to

reduce the number of idload routines in the code. An example of the code an-

notation for the superscalar architectures can be seen in Figure 4.3. The code

placement information was ignored by the single stream architecture.

dy(iy)(dy(iy)+(da*dx(ix)))
call iddet(v$dy(iy) , D(J

idop(DU , ASSIGN-OP, FLOAT
idop(DU ADDOP, FLOAT

idload(DU ARRAY.LD, FLOAT , v$dy(iy) , v$iy)
idop(DU , MIJLLOP, FLOAT ,v$da,

idload(DU , ARRAY_LD, FLOAT , v$dx(ix) , v$ix)

),

idstore(DIJ , ARRAYST J FLOAT , v$iy)
)

Figure 4.3: Code annotation for superscalar architectures

Verification of FOCAT

Correctness of FOCAT was verified by replicating Petersen's experiments of crit-

ical path times. Both tools were used to annotate the programs with max and

cost functions. The annotated programs were run and the simulated critical path

times compared.

Table 4.1 shows the measured critical path times for the two annotators. The

results show that for 4 of the programs, DYFESM, FL052Q, TRFD and MDG the

difference between the annotators is marginal. However for four of the programs

the differences are large and need explanation. These differences were caused by

variations in the implementation of the two annotators. These were

. an optimization, used in Petersen's tool, to reduce experiment run-times

KID]

resulted in longer critical path measurements. The effect of the optimization

can be seen in a large compound statement. Consider a line of code

xa+b+c+d

If we assume that all operations take 1 cycle Petersen's annotator would

annotate the program with

v$x = max (v$a, vb, vc, v$d) + 4

whilst FOCAT would correctly generate

v$x = max C max (v$a, v$b) + 1, max (v$c, v$d) + 1) + 2

The difference is caused by Petersen's annotator trying to reduce the number

of function calls to max. The result is that the computed available time of

x is 1 cycle earlier in the code generated by FOCAT. The effect of this is

most apparent in QCD2, where the measured critical path time from the

code generated by FOCAT is less than that for Petersen.

• Petersen's annotator did not enforce control dependencies in while loops.

The while loop construct is implemented in Fortran by a conditional branch

out of a DO loop. This construct means a cyclic control dependency exists

from one iteration to the next. If this dependency is removed, as in Pe-

tersen's annotator, there is more parallelism and hence a lower execution

time for the loop. In FOCAT the cyclic dependency is enforced. The net

effect of the difference in implementation is for the overall execution time

to be greater for FOCAT.

Table 4.1 shows that programs with while loops have longer execution

times. The most significant difference is in the program TRACK. This is

due to the routine extend, which executes for the largest percentage (24%)

of the total execution time, having 8 while loops in it's body.

4.1.2 Modelling EnviroNment for Decoupled Out-of-order
Superscalar Architectures (MENDOSA)

Software and hardware techniques must translate the data flow graph to a target

architecture so that all dependencies are preserved. Due to hardware constraints

and limitations in compiler technology the translation process introduces addi-

tional dependency arcs that cause the critical path time to increase.

In MENDOSA, resource conflicts and compiler restrictions are modeled as

additional dependency arcs; in this thesis these are referred to as architectural

31

Program
Name

Petersen's
annotator

Annotation
Tool

Difference
(%)

while
loops

ADM 0.369 0.410 +11 8
ARC21) 0.485 0.509 +5 2

DYFESM 17.314 17.348 +0.2 2

FL052Q 1.315 1.312 +0.2 1

TRFD 0.676 0.676 0.0 0

MDC 1.165 1.165 0.0 0

QCD2 17.555 16.334 -7 0
TRACK 0.676 28.767 +6716.8 14

Table 4.1: Critical path times for different annotation tools

dependencies. Like the false dependencies in data flow graphs these dependencies

can be removed with sufficient resources. In MENDOSA, operations can only

begin execution when all data flow and architectural dependencies are preserved.

The arguments to the interface routines are shadow variables and source level

information about operation type and code placement. At runtime this infor-

mation is used to translate source level operations into single instructions that

can be executed in the simulator. The OCTAVE code placement is used by the

decoupled architecture to execute instructions on the correct unit.

4.2 Advantages of the simulation technique

This section describes the advantages of the simulation technique implemented

in MENDOSA and FOCAT. For all the superscalar architectures discussed in

Chapter 3, good dependency analysis is essential for producing high levels of ILP,

but for the decoupled architecture it is also important for reducing the number

of loss of decouplings between the instruction streams (Chapter 2 explains the

phenomenon of a loss of decoupling).

One of the powerful aspects to this simulation technique is that it can model

the execution of a program in which the data dependency analysis is perfect;

this means that only true dependencies will exist between operations. Perfect

dependency analysis can be modeled because of the one-to-One mapping between

program and shadow variables, and the max function only taking operand shadow

variables as arguments.

The technique can also model data privatisation and renaming through the

use of shadow variables. This is illustrated in Figure 4.4 where the potential WAR

hazard from the read and write of a[i] is removed. The hazard is caused by a

32

name conflict and can be removed by renaming; the annotation technique allows

this section of code to be modeled as if renaming had been implemented. If a [ii

were included in the arguments to max this section of code could be modeled as

if the false dependency had not been resolved (see Figure 4.5).

The technique can also model loop transformations (i.e. loop unrolling and

loop merge) and inter-procedural analysis (i.e. inlining) by introducing additional

shadow dependencies. These shadow variables are inserted to carry the times at

which loops and procedures finish execution. They can then be used as arguments

to the annotated routines to enforce dependencies between high level constructs

such as loops and procedure calls. In this way operation level parallelism can be

modeled at different loop and procedural levels. Since a wider scope for reordering

operations represents increasing compiler sophistication this technique provides a

way of determining the accrued benefits of greater compiler development effort.

In summary the benefits of the simulation technique are:

• that it provides a mechanism for simulating a range of compiler optimiza-

tions known to be necessary for high instruction level parallelism and latency

hiding. These optimizations are

- data dependency analysis.

- inter-procedural analysis.

- loop transformations.

- data privatisation and renaming.

• the program is simulated at the source level allowing the experimenter to

concentrate on the high level semantics of access decoupling without bring-

ing in issues of assembly code generation.

• it remains independent of any particular native compiler.

• correctness of the annotation was verified with reference to previously pub-

lished work.

4.3 Disadvantages of the simulation technique

The difficulties and criticisms of using this simulation technique are:

• Code expansion due to the annotation routines and shadow variables in-

serted in the code. For example, FL052Q code size increased by approxi-

mately a factor of 8.

33

x 	y * a[i]
v$x = max(v$y,v$a[i1)

+ cost(MULTflP)

a[i] = b[iJ - c[i]
v$a[i] = max(v$b[i] , v$c[i])

+ cost(SUBTJ)P)

Figure 4.4: Code without WAR dependency

x =y * a[i]
v$x = max(v$y,v$a[i])

+ cost(MULTJJP)

a[i] = bUd - c[i]
v$a[i] = max(. . . , v$a[i])

+ cost(SUBTJJP)

Figure 4.5: Code with WAR dependency

• The increase in memory required to run the applications. This is due the

whole memory space of the original program being duplicated because of the

one-to-one mapping from program to shadow variables. When simulating

the decoupled architecture the memory requirements are higher because

each unit has it's own timestamp.

• The execution time of the programs. The large number of procedure calls re-

sults in much longer execution times for the program. In order to resolve this

problem a technique was developed that simulated a representative sample

of a program's behaviour. This technique is described in Appendix C.

• It could be argued that a source level simulation of the program removes

too much of the complexity inherent in assembly code. However, using as-

sembly code would have tied the experimental findings to a native compiler

and would have removed the benefits of modeling a wide range of different

compiler optimizations.

4.4 Benchmark programs

A selection of 8 scientific Fortran programs from the PERFECT club suite [25}

were chosen as the benchmark applications. These were chosen because they

represented a set of real applications composed of a wide range of scientific algo-

34

rithms. These benchmarks were selected to represent varying degrees of vectoriza-

tion and known degrees of decoupling. Table 4.2 shows the benchmark programs

with their reported proportion of vectorised operations (VU) obtained from [82]

and the decoupling efficiency (DE) obtained from [79]. The table also shows the

main algorithms used in each program.

In retrospect, multimedia applications would have been equally appropriate

as a benchmark suite. However, at the start of this thesis the majority of interest

was in the use of high performance architectures for scientific applications. It

is probable that future high performance architectures will be significantly influ-

enced by the requirements of multimedia applications. These applications will

involve data compression algorithms, 3D graphics, encryption and image process-

ing; all of which comprise some type of vector manipulation or use algorithms

such as FFT. There will therefore be strong similarities between the behaviour

of multimedia applications and the benchmarks shown in Table 4.2.

Program
Name

VU
(91o)

DE
(%)

Algorithms used
1 	2 	3 	4 	5 	6 	7 	8 	9

ADM 43 69 x
ARC21) 91 99 x 	x

DYFESM 69 77 x 	x 	 x
FL052Q 92 82 x 	x

MDG 8892 x.
QCD2 4 19

TRACK 14 14 x

.

TRFD 70 99 .x
.

Algorithms

1.Sparse linear systems solvers 2.Nonlinear algebraic system solvers
3.Fast Fourier Transforms 	4.11apid elliptic problem solvers
5.Multi-grid schemes 	6.Ordinary differential equation solvers
7.Monte Carlo schemes 	8.Integral transforms
9.Convolution

Table 4.2: Benchmark programs from PERFECT club suite

35

Chapter 5

The Limits of Decoupling

Studies into access decoupled architectures have shown it can successfully hide

memory latency when memory latencies are small, ILP is low and data depen-

dency analysis is conservative [55, 71, 791. Yet future high performance architec-

tures will be characterised by relatively slower memory speeds and increased ILP.

Increased ILP will place greater pressure on memory systems and require higher

sustained bandwidth. One can also predict that improvementaJ compiler tech-

nology and data dependency analysis may offer greater opportunities for latency

tolerance. Advances in technology will therefore create a tension for latency hid-

ing techniques; on the one hand increasing the pressure on the memory system

but also allowing greater operation overlap and latency tolerance. To evaluate the

effectiveness of access decoupling in future superscalar architectures one would

ideally assess it in relation to future compiler and hardware technology. Such an

assessment is clearly impractical. An alternative approach is to consider:

The effectiveness of access decoupling at tolerating large memory la-

tencies when all the software and hardware constraints to MP are

removed.

This chapter describes a study into the theoretical limits of latency hiding

through decoupled execution under maximum ILP. To focus on the limits of

access and control decoupling, the 3-stream decoupled architecture has unlimited

computational resources and ideal out-of-order execution.

This chapter is organised in the following way. Section 5.1 describes the

latency hiding model and introduces j3, an architecture independent measure of

the efficiency of a latency hiding technique. Section 5.2 discusses the simulation

technique and Section 5.3 presents the experiment results. As a consequence of

the findings in this chapter, Section 5.4 revises the architecture models used in the

experiments. It was observed that some programs had irregular behaviour and

36

therefore it was decided to simulate them in full. However, because this took an

excessive amount of time, only a subset of the benchmark programs were selected

from Table 4.2. Appendix C discusses a technique, known as sampled simulation,

that reduces execution time and yet captures a program's behaviour accurately.

Section 5.5 concludes with a summary of this chapters findings.

5.1 A model for latency hiding

The use of memory hierarchies in high performance architectures is a consequence

of the need to balance the cost, capacity and performance benefits of different

memory technologies. Latency hiding techniques try to hide the latency of the

slowest level of the memory hierarchy so that all accesses are perceived by the

CPU to occur at the speed of the fastest element. The difference between the

speeds of the fastest and slowest memory is referred to as the memory differential.

The criteria for assessing the efficiency of any latency hiding technique is the

extent to which the memory differential can be hidden. This section introduces a

new term called fi which is an architecture independent measure of the efficiency

of a latency hiding technique. fi is defined as the average fraction of the memory

differential hidden from a memory access and use it to quantify the latency hiding

efficiency.

A generic model of a memory hierarchy is shown in figure 5.1. The element x
is4 used to denote any number of levels and types of memory (e.g. queues, buffers,

caches) in the memory hierarchy. Since x characterises the type of memory sys-

tem, this will referred to it as a x memory system. First the following terms are

defined for an x memory system.

• CM, Cm are, respectively, the execution cost of a main memory and register

access.

• Sc is the memory differential. It is simply given by CM - Cm.

• H r , H are, respectively, the cost of a read and write hit in X.

• M r , M are, respectively, the cost of a read and write miss in x-

• 5 is the average perceived access time for the x memory system.

• 81 is the average hidden memory latency. It is given by

8lr8C-(P - Cm) zz CM - P

37

Registers

Main Memory

Figure 5.1: x memory system

• a,- and a are respectively, the read and write hit ratio for X.

The efficiency of a latency hiding technique is the fraction of the memory

differential hidden by x This is given by

Si
Sc

The average perceived access time is given by

(5.1)

p = (1 - w)[a,-H r + (1 - a,-)M,] 	
(5.2)

+w[aH + (1 - a)Mj

where w is the proportion of write accesses. It is known that for any memory

system H,, H > c. and M r , M w > CM. Substituting into equations 5.1 and 5.2

yields

fi < /3zdeal
	w)a,. + Wa 	 (5.3)

Where Oid,,1 is used to denote the upper bound on j3. When a,. = aw equa-

tion 5.3 reduces to fi < a, where a is the hit ratio (a = a,. = a,,,). This shows

that fi for any memory hierarchy is bounded by its hit ratio.

By comparing different latency hiding techniques using fi, it is possible to

predict the miss ratio required by a cache in order to attain the same level of

latency hiding through decoupling (see section 5.3).

An alternative and equivalent way of expressing 0 is (1 - w)Irs + w/3nzte

where 13read < a, and flwrite < a,,,. 13read and /Jwrite are the latency hiding

efficiency for, respectively, a read and write access.

BE

Having considered 0 for a generic memory hierarchy it is now shown how it

can be applied to write back and write through single level caches with block size

b words.

5.1.1 Write back (WB) cache

In this type of cache a write hit only writes to the cache. On a read or write miss

a block is chosen for replacement and if the block has been modified (referred to

as a dirty miss) it is copied back to main memory. Since most write back caches

operate a write allocate policy, the required block is loaded into the cache on both

a write and read miss. The proportion of dirty misses in a program is denoted

as wo. For a write back cache with a fully interleaved memory in which the first

word in a block takes MD cycles to arrive; all subsequent words from the block

are assumed to take a single cycle.

H r = Cm

H = Cm

M r = (1+Wb)CM+11+Wb)(b1)

M = (1+wb)CM+(1+wo)(b — l)

Therefore, for a write back cache (see Appendix B)

= /3idea(- (1 - ,
3ideal) (WbCM + (1 + Wb)(b - 1)) 	(5.4)

Let us consider a cache with 5 = 8 words, CM = 61 cycles, 8C = 60 cycles,

w = 0.12, nib = 0.5 and a,. = a,11 = 0.9 then fi = 0.83. This means that on

average 83% of Sc will be hidden by this write back cache.

5.1.2 Write through (WT) cache

In a write through cache, copies are kept consistent by writing values through to

the cache and main memory. Write through caches tend to operate a no write

allocate policy so that on a write miss the block is not loaded into cache. For a

fully interleaved memory.

H r = Cm

=
M r = CM+(b1)

= CM

Substituting into the equation (see Appendix B) for fi gives

39

(1— r)(1—w)(b-1)
(5.5) = pideal - wa

- 	

a

	 Sc

When the same values from the write back example above are inserted into

this equation, 3 = 0.78. Figure 5.2 shows a 2-dimensional representation of the

variation of 0 with a hit rate (denoted as a percentage) and memory differential.

It can be seen that for large values of Sc both types of caches saturate as the

memory differential becomes the dominant term in equations 5.4 and 5.5. It will

also be noticed that at high hit rates the WB cache has a higher 0 than the WT

cache. The situation is however reversed when the hit rate is below 82%.

0.8

0
Ce

Ce
0

0.4

0.2

I 	 I 	 I

0 -------------------G------- ------------ 0-------------------

900

90% 	
------------------ 0 ------------------ —

o- ---

0 -----------0 ------

-----o 0-

70016 Y.

VVB
WT

r1

0 	 20 	 40 	 60 	 80 	 100
Memory differential

Figure 5.2: 0 for WT and WB cache, for various values of a

5.1.3 0 for the decoupled model

This section describes how /3 was derived for the decoupled architecture. The

semantics of a decoupled store (see Chapter 2) are such that the cost of a store

operation is equal to the cost of writing a value to the decoupled memory. As-

suming this cost is equal to the time for a register access, Owrite = 1.

To derive /3T6 the notion of the decoupling distance is introduced. The de-

coupling distance is a function of the time the AU sends an address, the DU last

40

wrote a value, the DU fetches a value and the type of decoupled memory. The

decoupling distance for the ith load made via an optimised decoupled memory

can be defined using the same notation as in Section 3.1.

1DU_1AU if (IAU>5DU)

di 	i
cc 	 otherwise

When the load is made via a basic decoupled memory the decoupling distance

is given by

(1DU - 1AU 	if (1AU > 5DU) = k
	- 3DU - 1 	otherwise

The perceived load latency for a decoupled load of i can be defined as

I Cd if (d>cM)
2)11(d) = 	Sc + Cd 	if (d 	0) 	 (5.6)

[Sc - d + Cd 	otherwise

Using equation 5.6 the function p11 is bounded between Cd, the time to access

the decoupled memory and the maximum load latency cost SCM + Cd. The average

perceived load latency for a decoupled memory system is trivially given by

Fit
E1 p11(d)

N

where N is the total number of decoupled loads in the program. Figure 5.3

illustrates the three different regions of Equation 5.6 when 1 > 5DU The

diagram shows the time lines for the AU and DU. The points on the lines depict

the times at which operations occur in the execution of a decoupled load. Since

the fetch can occur anywhere between 52QU and oF' the AU and DU will be

• coupled in region 1.

• partially decoupled in region 2

fully decoupled in region 3.

5.1.3.1 Fetch schemes

The last operation in the decoupled load is the fetch instruction issued by the

DU. The fetch instruction occupies a single issue slot, tries to read data from

the decoupled memory and write it to the DU register file. Since the fetch can

be issued at anytime between sf U and of U (see figure 5.3) the upper and lower

bound of frad can be evaluated by considering two different fetch schemes:

41

The earliest issue fetch (ElF) scheme can only he used with the optimised

decoupled memory. In this scheme the DU tries to fetch the data at the

earliest possible time. This time is equal to s' plus the time for the store

to complete, s' + 1. The ElF scheme minimises the decoupling distance

and provides worst case results for 3read

The latest issue fetch (LIF) scheme. In this scheme the DU issues the fetch

at the earliest time the first operation uses the loaded datum less the time to

access the decoupled memory. The fetch time is given by O' - Cd. The LIF

scheme maximises the decoupling distance and provides best case results for
/3read

CM

lit' 	 DU
.0

Al

time

Figure 5.3: Time lines for the ith decoupled load during execution

5.2 Simulation technique

The purpose of the experiments was to find the limitations of access and control

decoupling in a 3-stream architecture when ILP is maximised. The experiments

simulated an idealised decoupled machine with unlimited resources, idealised out-

of-order execution and perfect data dependency analysis. This meant the machine

had maximum ILP and optimal slippage. The latter is a consequence of the un-

limited addressing resources and the perfect data dependency analysis removing

false synchronisation points.

There was no speculative execution but operations from different loop bod-

ies could execute in parallel if control dependencies permitted. Table 5.1 shows

the four programs selected from the benchmarks shown in Table 4.2. These were

chosen to represent varying degrees of vectorisation and decoupling efficiency (see

42

Table 4.2). It is recognised that this only represents a small subset of programs

but this restriction was felt to be acceptable for the following reasons. Researchers

typically only simulate part of a program's total execution time because full sim-

ulations can be prohibitive. In this chapter (see Section 5.3.4) it is shown that

some programs do need to be simulated in full because of identifiable phases in the

program which exhibit differing behaviour. It was therefore decided to perform

full simulation of a small number of programs to completion.

Table 5.1 shows the measured total number of operations, the total number

of loads, a breakdown by unit of the ILP ', the ftaction of loads (FOL) and

the fraction of operations (FOP). The measurements were made with a memory

differential of 0 cycles and a floating point cost of 5 cycles.

Program Measured
Ops. Loads ILP FOL(%) FOP(%)
(*io) (*108) cu an du cu an du cu an du

ARC21) 6.797 13.139 302 1255 2155 8 0.1 91.9 8 34 58
TRFD 1.857 4.419 3 1067 1676 0 0.1 99.9 0.1 38.9 61
FL052Q 2.244 4.626 30 156 224 7 0 93 7 38 55
QCD2 1.072 1.126 5 7 10 8 2 90 22 33 45

Table 5.1: Characteristics of the benchmark programs

5.3 Experimental results

The three major findings of the experiments into the effectiveness of access de-

coupling as a latency hiding technique under the pressure of maximum ILP are:

access decoupling with an optimised decoupled memory is potentially a

powerful latency hiding and bandwidth filtering mechanism.

fi for access decoupling is comparable to that of a write-back cache with hit

ratios between 88% and 99%.

access decoupling with a basic decoupled memory can not hide large memory

latency, even with optimal slippage.

To provide the most favourable conditions for latency hiding the execution cost

of AU loads and address computations were set to 1 and 0 cycles respectively.

'These JLP measurements are high but are within the bounds of previous studies [54]

43

The floating point and CU load latency were 1 cycle. Communication between

units carried no cost.

Figure 5.4 shows the variation of relative increase in execution time as a function

of the memory differential. The relative increase is given by

T(1) - T(0)
T(0)

where T(l) and T(0) are the times to execute the programs when the memory

differential is I and 0 respectively. It can be seen that, even with optimal slippage,

access decoupling using the basic decoupled memory model is sensitive to increases

in memory differential. Only TRFD has sufficient parallelism to hide latency upto

200 cycles. For FLO52Q, a memory differential of 80 cycles increases the program

execution time by a factor of 12, compared with a zero-cycle memory latency.

30

25

0
E

20
0

0
0
'C

I 15

10

5

0
0
	

20 	40 	60 	80 	100 	120 	140 	160 	180 	200
Memory differential (cycles)

Figure 5.4: Basic decoupled memory model; FP latency = 1

Figure 5.5 shows the effect of introducing the optimised decoupled memory.

It can be seen that all four programs show little variation with increases in the

memory differential. For FL052Q, a memory differential of 80 cycles only results

in a relative increase of 0.6% in execution time. Figure 5.6 shows that if the

floating point latency increases to 5 cycles, effectively slowing down the DU, the

sensitivity to memory latency decreases still further. This is due to there being

44

0.035

	

0.03
	

floS2q •-
arc2d

trfd --
qcd2 v

0.025

0.02
'C
0
C

0

0.015

0)
>
Ca 	0.01
0)

0.005

0

0 	20 	40 	60 	80 	100 	120 	140 	160 	180 	200
Memory differential

Figure 5.5: Optimised decoupled memory; FP latency = 1 cycle

more opportunity to overlap memory operations and therefore hide more of the

memory latency..

Figure 5.7 shows the simulation results for a more realistic case in which AU

loads are decoupled and AU address computations take a single cycle. The results

show that all the programs still remain insensitive to increases in the memory

differential.

One possible criticism of these findings is that the code partitioning has for-

tuitously biased the experimental results. If most of the loads on a program's

critical path were executed on the CU then the experiments would show positive

results for access decoupling (recall that CU loads perceive a fixed cost of 1 cy-

cle). To answer this criticism the experiments were repeated with all previous CU

loads executed on the DU. DU. Figure 5.8 and 5.9 show that whereas three of the

programs are still insensitive to the memory differential the increase in QCD2's

execution time is comparable to results for a basic decoupled memory model (see

figure 5.4).

The explanation for QCD2's poor results can be found in the routines LADD,

LMULT and PRANF where scalar loads previously executed on the CU dominate

the critical path. These loads, executed on entry to the routines, can not de-

couple and perceive all of the memory differential. The three routines are most

45

0.012

0.01

W
E

0.008
0

C,
a,
'C
a,
C

; 0.006
'a
a,
0
C

0.004

cc

0.002

0

I 	 I 	 P

flo52q
arc2d --

td -D --
qcd2 x....

II I I I

0 	20 . 	40 	60 	80 	100 	120 	140 	160 	180 	200
Memory differential

Figure 5.6: Optimised decoupled memory; FP latency=5 cycles

frequently called from inside a while loop in the CHOOS routine. By inlining the

three routines it is possible to hoist the loads out of the loop. The effect of this

simple optimisation can be seen in figure 5.9. The results show clearly that QCD2

is once again insensitive to increases in the memory differential.

It can concluded that under conditions of maximum ILP, access decoupling

with the optimised decoupled memory is still effective at hiding memory latency.

It has been shown that higher floating point latencies improve latency hiding and

that the results are indep.endent of the partitioning of loads between CU and DU.

5.3.1 Bandwidth filtering

The optimised decoupled memory also acts as a bandwidth filter by reducing the

number of accesses that need to go to main memory. This finding is reinforced

by the results in Table 5.2 which show the distribution of the decoupled loads in

the programs. The table shows the percentage of loads which are coupled (loads

perceive the full memory differential), fully decoupled(loads perceive a single cycle

latency) and partially decoupled (loads perceive part of the memory differential).

The column labelled 'cached' is the percentage of decoupled loads that are cached

in the optimised decoupled memory (see Chapter 3). Since cached decoupled loads

me

0.0 12

0.01

0
E

0.008
0

'C
0
C

; 0.006
0,
'U
0
C)
C

0.004

0.002

0l-4.rI-
0 	 50 	 100 	 150 	 200

Memory differential

Figure 5.7: AU and DU with decoupled loads; FP latency=5 cycles

will not access main memory this column also shows the bandwidth filtering.

It can be seen that, with the exception of TRFD, between 77% and 98% of

operations are satisfied in the decoupled memory.

In TRFD almost 50% of loads are either partially decoupled or coupled. This

phenomenon is due to induction variables serialising frequently executed loops.

These induction variables can be removed using generalised induction variable

elimination [23]. The effect of this optimisation can be seen in the row labelled

'optimised TRFD'. The increase in parallelism allows the AU to slip further ahead

of the DU, increasing the number of fully decoupled loads from 14.3% to 49.8%.

Clearly the unlimited resources in the decoupled model makes the levels of

bandwidth filtering unrealisable. For the four programs the experiments show

that the maximum capacity of the decoupled memory is between 65% and 75%

of the DU working set size. Although this capacity could not reasonably be

implemented, it is still expected that high filtering would occur for more realistic

degrees of ILP.

47

4
qcd2 -e-

3.5

3
a
E
C

2 	2.5

'C
0
C

0

0 a 1 1.5
0.5

0
0
	

20 	40 	60 	80 	100 	120 	140 	160 	180 	200
Memory differential (cycles)

Figure 5.8: Relative increase in execution time with no CU for QCD2

5.3.2 Comparisons of latency hiding efficiency

The motivation for deriving 6 was to provide a way of comparing the latency

hiding efficiency of different techniques. Since caches are the most widely used

technique for hiding latency it was decided to compare access decoupling against

a write back (WB) cache. A full derivation of [3 for a write back cache is discussed

in Appendix B.

In the experiments 13 was computed for the decoupled machine by measuring

the average perceived load latency. Table 5.3 shows a comparison of ,8 against

the VB cache hit rate required to achieve an equivalent degree of latency hiding.

Program Decoup led _load
cached Full Partial Coupled

(%) (%) (%) (%)
ARC21) 97.5 1.9 0.0 0.6
QCD2 77.3 1.8 0.4 20.5

FL052Q 89.6 3.5 0.4 6.4
TRFD 35.8 14.3 25.3 24.5

optimised TRFD 49.4 49.8 0.0 0.8

Table 5.2: Decoupled loads for benchmark programs

0.035

0.03

arc2d -0---

fIoS2q -4---

optimisedqcd2d -0--

trfd -* ...

0.025

U
0 X
	0.02

0)
C

0.015

0.005

0

-0.005 L

0 20 	40 	60 	80 	100 	120 	140 	160 	180 	200
Memory differential (cycles)

Figure 5.9: Relative increase in execution time with no CU

The term b in columns 3,4 and 6 is used to denote the cache block size. The

values in the columns labelled 0 are for the decoupled machine.

For example, in ARC2D, when the memory differential is 60 cycles 0 is 0.99.

]or comparable latency hiding efficiency, a WB cache with block size 8 words

would require a hit rate of 99.8%. It is clear that the comparable hit rates are

high, in the range 88% to 99%. The table also shows that when the memory

differential is reduced to 5 cycles the comparative WB hit rates increase. When

the block size is reduced to 2 words the comparative hit rates are similar to those

when Sc = 60 and b = 8. This observation reflects a well known result [45] that

the performance of WB caches degrades when blocks are too large.

program 6c=5 6c=60
/3 hit rate /3 hit rate

b=8

ARC2D 0.99 99.8 99.7 0.99 99.8
FL052Q 0.96 99.1 98.2 0.94 96.6

QCD2 0.82 95.1 90.4 0.82 89.2
TRFD 0.71 92.1 84.6 0.80 88.2

optimised TRFD 0.99 99.7 99.5 0.99 99.6

Table 5.3: 0 versus WB cache hit rate for different block size

EEG

5.3.3 Decoupled fetch schemes

Section 5.1.3.1 discussed the significance of the ElF and LIF schemes. These two

schemes, respectively, give the minimum and maximum latency hiding efficiency

of any static or dynamic scheduling technique. The measurements of fY° in

Table 5.4 show that for the optimised decoupled memory the difference between

the two schemes is small. The exception is TRFD.

In TRFD the difference is 0.36 and 0.41 for öc of 5 and 60 cycles respectively.

This indicates that value lifetimes (measured as the distance in cycles between

when a value is defined and used) are significantly greater in TRFD than for

the other programs. This finding is reinforced by the results in Table 5.2 which

show the distribution, by type, of the decoupled loads in the programs. The table

shows the percentage of loads which are coupled, fully decoupled and partially

decoupled. The column labelled 'cached' is the percentage of decoupled loads that

are cached in the optimised decoupled memory (see section 3.1). The table shows

that for TRFD less than 36% of decoupled loads are cached in the decoupled

memory. Whilst for ARC21) the figure is 97.5%. These results, plus the data

in Table 5.4, lead us to the conclusion that the temporal locality exposed by

decoupling in ARM, QCD2 and FL052Q is far higher than in TRFD.

The ElF scheme's poor latency hiding efficiency, in TRFD, is due to the

induction variables in the most frequently executed routine CHOOS. As described

in Section 5.3.1 the induction variables can be removed using generalised induction

variable elimination. The effect of this optimisation can be seen in the row labelled

'optimised TRFD' in Table 5.4 and 5.2. The optimisation has increased for

both schemes and improved the decoupling between the AU and DU, as seen by

the larger number of fully decoupled loads

5.3.4 Temporal behaviour of 0 .A

The results for QCD2 in Table 5.4 and figure 5.7 appear to show contradictory

results; low values of P'" in the former, but insensitivity to memory differential

in the latter. To investigate this apparent contradiction)3e was sampled at

constant intervals throughout the program's simulation. Figures 5.10 and 5.11

show respectively, the interval and cumulative variation of $'" with time.

It is noticeable in Figure 5.10 that there are distinctive phases in the program's

execution where /3r remains almost constant. For approximately 70% of the

execution time the latency hiding efficiency is greater than 90%. From figure 5.11

it can be seen that towards the end of the execution there is a sizeable reduction

in This is due to a large number of loads perceiving on average 34%

50

program fetch
scheme Sc = 5 Sc = 60

ARC21) LIF 099 0.99
ElF 0.98 0.98

FL052Q LIF 0.96 0.93
ElF 0.96 0.90

QCD2 LIF 0.79 0.79
ElF 0.77 0.77

TRFD LIF 0.67 0.77
ElF 0.29 0.36

optimised TRFD LIF 0.99 0.99
ElF 0.50 0.49

Table 5.4: ir° for ElF and LIF schemes

of the memory differential. Fortunately, most of these loads can be executed

concurrently so they have little effect on the critical path. This explains why

QCD2 is insensitive to memory differential but has a relatively low value 0
f)3

d

The different phases in the graphs justify the argument in section 5.2 that in

order to obtain reliable results it is sometimes necessary to perform full program

simulations. However such an approach is too expensive in terms of the compute

resources required per experiment. To solve the problem of these competing

demands a sampled simulation technique was developed. A description of the

technique is provided in Appendix C.

5.4 Implications of the experimental findings

Table 5.1 shows that the CU is under-utilised, only executing between 0.1 to 22%

and 0 to 8% of operations and loads, respectively. This suggests that that the

dedicated hardware support for control decoupling is unnecessary when using the

partitioning algorithm of the OCTAVE compiler. In all future experiments the

2-stream decoupled architecture was used with the latest issue fetch scheme.

Table 5.5 shows the characteristics of the benchmark programs for the 2-

stream decoupled architecture when using the sampled simulation technique. This

table shows the IPC, latency hiding effectiveness (LHE) and 0 values when ar-

chitectural resources are unlimited. The columns labelled yes and no denote if

the bypass mechanism is included. The IPC values represent the upper bound

for the decoupled architecture and indicate the average level of parallelism in the

programs.

51 	r

0.95

0.9

0.85

0

cc
0.8

ci)
.0

0.75

0.7

0.65

0.6
0 1e+07 	2e+07 	3e+07 	4e+07 	5e+07 	6e+07

Time (cycles)

Figure 5.10: QCD2 : interval variation of /3'"

Table 5.5 shows that for all programs the optimised decoupled memory im-

proves 0 by between 190% and 380%. The latency hiding effectiveness is seen to

improve in some cases by a factor of 6. However, ADM shows that even though

fi increases by almost 240%, the latency hiding effectiveness remains unchanged.

It can be speculated that this is due to the nature of the two measurements.

is a function of the average perceived latency for all loads while the latency hid-

ing effectiveness is only dependent on accesses on the critical path. This finding

shows that concentrating on the average access time can be misleading, it is only

the loads on the critical path that matter.

It can also be observed that ARC2D has been removed from the benchmark

suite. This was due to the program behaving in a similar way to TRFD, high ILP

and decoupling well, and long execution times required (approximately 2 hours

per data point), even with sampling. Since it contributed little to the spectrum

of program behaviour being investigated, it was decided to remove it from the

benchmark suite.

52

•1

0.95

0.9

0

'U

'U
a)
.0

0.85

0.8

0.75
0 le-i-07 	29-i-07 	3e+07 	4e+07 	5e-i-07 	6e-i-07

Time (cycles)

Figure 5.11: QCD2 : cumulative variation of 3'°"

5.5 Summary

This chapter las described a study into the theoretical limits of latency hiding

through decoupled execution when ILP is pushed to a maximum. To focus on

the limits of decoupling, the machine model had unlimited address computation

resources, ideal out-of-order execution and perfect data dependency analysis.

It has been shown that when ILP is a maximum and dependency analysis is

perfect, access decoupling with an optimised decoupled memory remains a pow-

erful latency hiding and bandwidth filtering technique. The optimised decoupled

memory uses information about future access patterns to cache data close to the

AU and DU. However, unlike a typical cache where resident data may not be

accessed, the cached data in the decoupled memory will definitely be used. In [70]

a similar technique was discussed but no empirical evidence was given to support

its use. The SUNDER architecture employed a similar technique through the use

of pending store and load queues in the prefetch engine [18].

This study has also shown that access decoupling with a basic decoupled

memory model is not capable of hiding large memory latencies. This result can

be made more general by observing that there are no resource constraints or

speculative execution, and under these conditions decoupling is identical to any

53

Program MD=0 MD=60
IPC IPC LHE (%) 0

no yes no I yes no yes
ADM 587 104 104 18 18 0.31 0.74

DYFESM 24 10 23 44 97 0.17 0.65
FLO52Q 312 65 311 21 99 0.42 0.94

MDG 36 6 36 16 100 0.35 0.84
QCD2 22 6 7 25 30 0.20 0.61

TRACK 2 0.5 0.5 21 22 0.10 0.22
TRFD 619 619 619 100 1 100 0.5 0.97

Table 5.5: Program characteristics

other data prefetching technique. It can be stated, for the applications considered

when ILP is a maximum, that any data prefetching technique without speculative

execution can not hide large memory latencies.

This chapter has also shown that there is no advantage to control decoupling

using the partitioning algorithm in the OCTAVE compiler. Results have shown

that the low utilisation of the control unit means there is little justification for

its inclusion in the decoupled architecture. The 3-stream decoupled architecture

and control decoupling are therefore not considered in the rest of this thesis.

It can be concluded that if future designers are able to obtain the levels of

ILP and dependency analysis outlined in this paper, access decoupling could still

be an effective latency hiding technique.

54

Chapter 6

Determining Balanced
Configurations for a Decoupled

Architecture

The previous chapter presented a study into the theoretical limits of access de-

coupling. This chapter extends the previous study by investigating the effect

of superscalar instruction issue on the decoupled architecture. The results show

how the speedup varies as a function of the issue width and memory latency.

It is found that each program's instruction per cycle ratio (IPCR), the ratio of

DU instructions per cycle (IPC) to the AU IPC, is constant. This result allows

estimates of good AU and DU issue width configurations. These estimates are

verified through experimental simulation and a range of issue widths for which the

estimates prove valid are identified. IPCR is also found to be a useful indicator of

the effectiveness of access decoupling at hiding memory latency. Programs with

high/low IPCRs are found to decouple well/poorly and are more/less effective at

hiding memory latencies. Finally, for balanced AU and DU issue width configu-

rations, it is shown how the effectiveness of the latency hiding and IPC varies as

a function of the issue width.

6.1 Simulation technique

The experiments use the base-line configuration for the 2-stream architecture

shown in Table 6.1. The table also shows the range of architectural parameters

investigated in this chapter.

The key aspects of the base-line configuration are that the decoupled memory

does not include a bypass mechanism; decoupling is therefore the only mechanism

used for latency hiding. There is no speculative execution; instead the cost of

loop closing branches is assumed to have been removed by optimisations like

55

loop unrolling and branch prediction. Data dependency analysis is perfect and

false dependencies are removed by renaming. The purpose of examining such

an ideal case is to provide the best opportunity for prefetching data, to have

high instruction level parallelism (ILP) and to place the greatest pressure on the

latency hiding mechanism.

Architecture
Components

Base-line
Values

Other Values
Considered

Floating operation latency (cycles) 5
Integer/Address op. latency (cycles) 1
Function units cc {DU,AU} = {1,3,5,7,9}
Issue width cc {D1J,AU} = {1,3,5,7,9}
Register file cc
Window size cc
Comm. bus latency 0
Comm. bus width cc
Decoupled memory cc
Memory bandwidth cc
Decoupled memory access latency (cycles) 1
Bypass mechanism No Yes
Memory differential (cycles) 60
Dependency analysis perfect
Renaming yes
Code partition static

Table 6.1: Configurations for the 2-stream decoupled architecture

6.2 Experimental results

This section describes the experimental findings into the effect of issue width and

memory latency on normalised speedup; defined as the speedup relative to a 2-

stream decoupled architecture with 1-way issue for the AU and DU. Simulations

were performed for all the programs in Table 5.5.

Figures 6.1 and 6.3 show the speedup for ADM for the cases when the memory

differential is 0 cycles' and 60 cycles 2, respectively. The graphs show how the

speedup varies as a function of the AU and DU issue width values. From the

similarity of the two graphs it can be inferred that for programs with high TLP

access decoupling can completely hide the memory differential. The graphs also

show that there is some point, always in the region where the AU issue width

MD of 0 cycles is used to determine an upper bound on machine performance.
2 An MD of 60 was chosen because it is comparable to the cost of a second level cache miss

(e.g the Pentium Pro has a 50 cycle L2 miss latency[81) and it assumes a memory system capable
of capturing no locality. In practice for a high performance architecture the memory system
will be able to reduce the average access time by using first and second level caches.

56

is less than the DU issue width, beyond which additional AU issue slots provide

only a small increase in performance. Figures 6.1 and 6.3 show that for ADM it

is possible to find an AU issue width which gives a normalised speedup equal to

the number of DU issue slots. For a DU issue width of 9, this point is reached

once the AU issue width is 7. This can be interpreted to mean that it takes 7 AU

issue slots to provide sufficient data to keep a DU, with an issue width of 9, fully

utilised.

Figures 6.2 and 6.4 show the speedup for QCD2 when the memory differential

is 0 and 60 cycles, respectively. Figure 6.2 shows that even when MD is 0, there

is insufficient parallelism in the program to utilise large AU and DU issue widths;

the normalised speedup is only equal to the number of DU issue slots in the region

between 1 and 5 slots. Figure 6.4 shows the performance impact of the large 60

cycle memory latency on a program with limited ILP. The graph shows that

for QCD2 none of the issue width configurations are able to achieve a speedup

greater than 2.5. Figure 6.4 clearly show that there is little performance to be

gained by increasing the AU and DU issue widths above 3 instruction slots.

Program
Name

IPCR
average gTh

ADM 1.323 -

DYFESM 1.428 -

FL052Q 1.343 +0.007
MDG 1.222 +0.002
QCD2 1.057 +0.002

TRACK 0.873 -

TRFD 1.546 -

Table 6.2: Program IPCR

6.2.1 Estimating good issue width configurations

This section shows how the IPCR can be used to estimate good AU and DU issue

width configurations and how these estimates can be experimentally verified to

be optimal for a range of DU issue widths

Table 6.2 shows the measured IPCR and the variance (o) for all the programs.

This ratio has been found to be a program constant and is useful for estimating

balanced AU and DU issue width configurations. It can be seen that most of the

programs have an IPCR greater than 1; this indicates that the AU issue width

would be under utilised in an architecture which had equal AU and DU issue

57

widths. It can be deduced that possible good configurations of AU and DU issue

width would be (1,1), (2,3), (4,5), (5,7) and (7,9) 3.

To find the configuration which ensured the maximum usage of the issue width

the total utilisation was chosen as the objective function. The total utilisation is

defined as the sum of the utilisation functions for the AU and DU; where the

utilisation function is the ratio of the IPC to the issue width. For a DU issue

width of 5 Figure 6.5 shows the total utilisation for different AU issue widths. It

can be seen that all programs, excluding TRACK, behave in a similar manner.

There are identifiable peaks in the graphs corresponding to an AU issue width

of 3 and 4 slots. The former peak is caused by the graphs for DYFESM and

TRFD which have large IPCRs of 1.43 and 1.55, respectively. It would therefore

be expected that the number of AU instruction slots required to keep the DU

busy would be lower.

Figure 6.6 shows the average utilisation for various AU and DU issue widths.

The graphs show identifiable peaks at AU issue widths of 1, 2, 4 and 5 for DU

issue widths of 1, 3, 5 and 7 respectively. For a DU issue width of 9 the optimal

AU issue width is less obvious with 6 and 7 giving equal total utilisation values of

1.55. This effect is due to the lack of parallelism in MDG, QCD2 and DYFESM.

At large issue widths the law of diminishing return begins to apply. This causes

the utilisation function to flatten and makes the optimal issue width configuration

harder to determine. It can be concluded therefore that the IPCR is useful for

pinpointing good configurations when the DU issue width is in the range 1 to 7.

However, for large issue width configurations it serves as a useful initial point to

explore the search space. Figure 6.6 also shows that the peak utilisation reduces

from 1.7 to 1.5 when the DU issue width is 3 and 9, respectively. This result

is a manifestation of the law of diminishing returns, as issue widths increase the

utilisation of the available issue width decreases.

6.2.2 IPCR and latency hiding effectiveness

Using the optimal configurations of AU and DU issue widths measurements, this

section quantifies the latency hiding effectiveness of decoupling and deduces a

relationship between the IPCR and the effectiveness of access decoupling.

Figure 6.7 shows for each program how the latency hiding effectiveness 4 varies

'The first and second terms in the brackets are the AU and DU issue width respectively.
This estimate is made by finding the ratio of DU and AU issue width which are greater than
or approximately equal to the average IPCR of 1.26.

'The latency hiding effectiveness is defined as E = Tperiect/Tactual where Tactual is the
actual execution time for the decoupled machine. Tperjce t is the execution time with a perfect

[1•I

as a function of the different issue width configurations. It can be seen for large

issue widths that access decoupling can almost completely hide a memory latency

of 60 cycles for ADM, TRFD and FL052Q. However, for MDC, QCD2 and

TRACK, access decoupling is shown to be very poor at hiding latency for large

issue widths. DYFESM can be seen to fall between these two groups of programs.

Figure 6.7 shows that some programs experience a deterioration in the latency

hiding effectiveness as the issue widths increase. This occurs because although

more memory accesses can be executed in parallel, the DU is also able to consume

data at a faster rate; this means that more independent operations are required

to hide the memory latency.

It can also be observed from Figure 6.7 that for an issue width configuration

of (2,3) the system is at least 80% as efficient as a perfect latency hiding mecha-

nism. This result shows that at low issue width configuration access decoupling

is reasonably effective at hiding large memory latencies.

Examining Figure 6.7 and Table 6.2 it can be observed that those programs

with an IPCR greater than 1.33 are more effective at hiding latency. Whilst

QCD2, MDC and TRACK have a lower TPCR and lower latency hiding effec-

tiveness for issue width configurations larger than (4,5). DYFESM is a slight

exception to this finding since it has a large IPCR, but as issue widths increase

its latency hiding effectiveness reduces faster than programs like ADM .

It can be deduced therefore that there appears to be a relationship between

the IPCR and latency hiding effectiveness; programs with high/low IPCR appear

tote more/less effective at hiding memory latency. This is an intuitive result,

if \ve perceive the IPCR as the number of AU issues slots required to keep the

DU issue slots supplied with data. When the IPCR is large the delay between

data fetches will on average be larger than if the IPCR is small. This provides

greater opportunities for overlapping memory operations and therefore improves

the latency hiding effectiveness of decoupling.

Table 6.3 shows the IPC and latency hiding effectiveness of each of the pro-

grams. The columns labelled no and yes denote if the optimised decoupled mem-

ory is included. The major observations are that, with unlimited reordering and

restricted issue width, access decoupling can achieve high ILP. In the case of the

configuration (7,9), 5 of the programs achieve average IPC values greater than 10

latency hiding in which each memory access perceives a single cycle latency.
'This is due to there being less ILP in DYFESM which causes access decoupling to be less

effective at hiding memory latency when the DU issue width is 9. However even with a large
issue width configuration of (7,9) DYFESM is still 78% as effective as a perfect latency hiding
mechanism.

59

ADM
9

8

7

6
0 a)
a)
0.

I 	 I

du=1 t
du=3 -+--
du=5 -9--• -

du=7 •*•
du=9

0
7-

/
7

.7

 -fl - H

/

I
I

1 	 2 	3 	4 	5 	 6
	 a

au issue width

Figure 6.1: ADM normalised speedup for MD=O

when the optimised decoupled memory is used. The latency hiding effectiveness

is also seen to be greater than 93% for 5 of the programs. This shows that access

decoupling can achieve high IPC and latency tolerance for large memory latencies

even at large issue widths. Even in the case of the basic decoupled memory the

latency hiding effectiveness is greater than 72% for 4 of the programs. This is

in contrast to Chapter 5 which showed decoupling needs to be combined with an

optimised decoupled memory to be effective at tolerating latency.

Table 6.3 shows that there are two exceptions QCD2 and TRACK. At small

issue width configuration such as (2,3), QCD2 can achieve an IPC of 3.4 and a

latency hiding effectiveness of 84%. However, at larger issue width configurations,

the latency hiding effectiveness degrades rapidly.

When the MD is 60 cycles, Table 6.3 shows in 6 of the 7 programs the optimised

decoupled memory has a higher IPC than the basic decoupled memory. The one

exception is ADM which at large issue width configurations is less tolerant to

memory latency (see the column labelled LHE in Table 6.3). The reason for

this was found by monitoring the execution of the program on an operation by

operations basis. It was found that the optimised memory did reduce the average

access times 6, but that this allowed non-critical operations to be scheduled earlier,

6 TabIe 5.5 shows that 0 increased from 0.31 to 0.74 when the decoupled memory was opti-

7

6

5
0-

0
0)
0)
0.

:

2

2 	3 	4 	5 	6 	7 	8 	9
au issue width

Figure 6.2: QCD2 normalised speedup for MD=O

delaying the execution of operations on the critical path. This result is supported

by the findings in Table 5.5 that showed loads on the critical path for ADM did

not benefit from the optimised decoupled memory.

A comparison of Tables 5.5 and 6.3 shows that, as expected, the latency

hiding effectiveness improves with more realistic issue widths. This is due to the

resource constraints forcing data operations to overlap and hide the long memory

latencies. This effect is most pronounced in ADM, where the large amount of ILP

(see Table 5.1) improves the latency hiding effectiveness from 18% to 97% when

the issue width is limited to (7,9).

6.3 Summary

This chapter has explored the relationship between instruction issue width in a

decoupled architecture and the resulting latency hiding efficiency. In a decoupled

architecture the AU can be thought of as a prefetching engine which feeds the

DU with operands. Consequently, balanced rates of execution between these units

are required for maximum throughput. The notion of IPCR effectively defines a

balanced ratio of issue widths for optimum total utilisation.

mised

QCO2

B-

=

p--

- -I-- -

61

ADM
I 	 I 	 I 	 I

du=1 -
du=3
du=5 -El--

/ 	 du=7 •••x.... -

du=9

/
/

-----------------------------e-----------------------------

1 	 ..

2 	3 	4 	5 	5 	7 	 5 	 9
au issue width

Figure 6.3: ADM normalised speedup for MD=60 cycles

As with all prefetching techniques, the time between the initiation of a mem-

ory fetch and the use of its data defines the maximum physical latency that can

be hidden. As issue widths increase, the available prefetch time for a given pro-

gram will diminish. The results confirm that programs with lesser degrees of

parallelism see a deterioration in latency hiding effectiveness as instruction issue

widths increase.

It has also been shown that programs with high degrees of parallelism are able

to completely overlap computation with memory accesses, even for issue widths

up to (7,9). This result has been shown to apply even in the case where the

optimised decoupled memory is not used. This is in contrast to the results from

Chapter 5 where is was shown, when ILP is at a maximum, decoupling alone

can not effectively hide memory latency. When issue widths are restricted and

reordering unlimited, highly and moderately parallel programs can tolerate large

latencies. However as the issue constraints are relaxed we move into the realm

modelled in Chapter 5 and decoupling is no longer as effective; at this point the

benefits of the optimised memory become more prominent. The promising aspect

of this result is that decoupling is still effective in many of the programs even at

very high issue widths of (7,9).

It is worth noting that there was no speculative execution in the simulations

0-

D
0
0
0.
(0
0
0
0

Cu

0
C

2

62

QCD2
2.6

du=1 -0---

	

2.4
	

du7 •x
du=9

2.2

2
D
0
0 a
0

1.8
0,

2 	1.6

1.4

1.2

2 	3 	4 	5 	6 	7 	8 	9
au issue width

Figure 6.4: QCD2 normalised speedup for MD=60 cycles

presented in this chapter; all control dependencies except loop closing branches

are fully resolved before computation continues. This restricts the ability of the

system to decouple memory accesses, as well as constraining the amount of ILP

that can be exploited.

63

1.7
du=1 -0--

du=3 -+--
du=5

1.6
	

du=7 *-
du=9

1.5

x..

E1.

C

2 	1.4
(0
0

=

t 	1.3
I-

1.2

DU issue width = 5
2

1 .6

1 .6

1.4

ADM
DYFESM
FL052Q -a

MDG

TRFD
TRACK

C
0

12

ma 	1

(0

,2

0.8

0.6

0.4

02

0

8 	9 2 	3 	4 	5 	6 	7
au issue width

Figure 6.5: Issue width utilisation when DU 1W = 5

Average utilisation for varying DU and AU 1W

1.1

iL

2 	3 	4 	5 	6
au issue width

Figure 6.6: Average 1W utilisation

64

7 	8 	9

LHE for MD=60 (basic decoupled memory)
1 .2

0.8

uJ
z 	0.6
-J

ADM
TRFD ----

FLO52Q -n--
DYFESM +

QCD2 -A-.-

 MOO -*--
TRACK

AVERAGE --f --- -

--.x
N ------

•

	

0.4
	

- L -

	

0.2
	 4---0-

01 	 I 	 I 	 I 	 I

(1,1) 	 (2,3) 	 (4,5) 	 (5,7) 	 (79)
Configuration (AU,DU)

Figure 6.7: Latency hiding effectiveness for the basic decoupled memory (MD=60
cycles)

LHE for MO=60 (optimised decoupled memory)

	

1.2 	 I 	 I 	 I 	 I 	 I

0.8

ADM-0—N
TRFD ---

FLO52Q -o--
DYFESM 4--

QCD2 -s--
MOO -M--

TRACK
AVERAGE -+---

-4- -----------------------

w
I

J 	0.6
-

0.4

--

0-

0.2

0

Configuration (AU,DU)

Figure 6.8: Latency hiding effectiveness for the optimised decoupled memory
(MD=60 cycles)

BI

Program Config. MD-0 MD=60
(AU,DU) IPC IPC LHE (%)

no J 	yes no I yes

ADM (1,1) 1.7 1.7 1.7 100 100
(2,3) 4.7 4.7 4.7 100 100
(4,5) 8.6 8.6 8.5 100 99
(5,7) 11.6 11.4 11.2 98 96
(7,9) 15.3 14.8 14.2 97 93

DYFESM (1,1) 1.7 1.7 1.7 100 100
(2,3) 4.7 4.5 4.7 97 100
(4,5) 7.6 6.6 7.5 87 100
(5,7) 9.8 7.6 9.8 78 100
(7,9) 11.6 8.3 11.5 72 99

FL052Q (1,1) 1.7 1.7 1.7 100 100
(2,3) 4.7 4.6 4.7 99 100
(4,5) 8.6 8.4 8.6 97 100
(5,7) 11.6 11.1 11.6 96 100
(7,9) 15.6 14.5 15.6 93 100

MDG (1,1) 1.8 1.8 1.8 100 100
(2,3) 4.4 3.6 4.4 81 100
(4,5) 8.8 4.2 8.7 48 100
(5,7) 11.1 4.4 11.1 40 100

_______ (7,9) 15.5 4.6 15.5 30 100
-- C-D2 (1,1) 1.8 1.8 1.8 100 100

(2,3) 4.1 3.4 3.4 84 84
(4,5) 8.1 4.5 5.2 55 64
(5,7) 9.4 4.6 5.8 48 61
(7,9) 11.3 4.6 6.1 41 54 _T________

RACK (1,1) 1.3 0.4 0.4 31 32
(2,3) 1.8 0.4 0.4 24 25
(4,5) 1.9 0.4 0.5 22 24
(5,7) 2.0 0.4 0.5 22 23
(7,9) 20 0.4 0.5 22 23

TRFD (1,1) 1.6 1.6 1.6 100 100
(2,3) 4.9 4.9 4.9 100 100
(4,5) 8.2 8.2 8.2 100 100
(5,7) 11.4 11.4 11.4 100 100
(7,9) 14.7 14.7 14.7 100 100

Table 6.3: IPC and LHE for best conflgurtions of AU and DU with and without
the optimised decoupled memory

Chapter 7

Design Issues for a Decoupled
Architecture

Out-of-order superscalar architectures try to maximise ILP by reordering oper-

ations within the instruction stream. Software and hardware optimisations can

improve the degree of reordering by making more operations visible to the issuing

hardware.

This thesis is the first known study into a decoupled architecture with out-of-

order superscalar units. In the dual stream system, the degree to which operations

can reorder within, and between each of the instruction streams will determine

the systems overall performance. It is therefore necessary to investigate the dual

stream system in relation to hardware and software design issues that determine

the degree of reordering. This chapter identifies those issues, and through a series

of simulation studies quantifies their effect on TPC and latency hiding effective-

ness.

Section 7.1 identifies those design issues critical to reordering in the dual stream

system and Section 7.3 explores their effect on the latency hiding effectiveness and

scalability of access decoupling. The scalability of decoupling is defined as the

variation of latency hiding effectiveness with issue width. One of this chapters

findings is that out-of-order memory accesses are critical for hiding large memory

latencies. Section 7.4 describes a mechanism to support memory reordering in a

dual stream system.

7.1 Design issues

In Section 1.1 it was argued that the degree of reordering was the critical di-

mension for ILP in an out-of-order superscalar machine. It went on to discuss

the reordering factors that determine the degree of reordering. Section 3.4, then

67

listed those design issues that determine the reordering factors; these issues were

referred to as the degrees of freedom for reordering.

This section discusses in more detail the degrees of freedom for reordering in a

dual stream architecture. An holistic view is taken of these design issues; with the

boundary between hardware and software becoming blurred [32], it is important

to consider both hardware and software when investigating the design space of a

new machine. As per Table 3.1, the degrees of freedom for reordering are:

1. Parallelising Optimisations: Branch operations cause changes in control

flow and will, in the absence of parallelising optimisations, limit operation

reordering. Branches occur because of procedure calls and returns, loop clos-

ing branches and conditional statements. Parallelising optimisations can be

supported by hardware e.g. speculative execution, or by software. Software

optimisations [63, 4, 26] such as loop unrolling, loop transformations and

inlining can reduce the effect of branches, make more operations visible to

the reordering hardware and improve machine performance. However, this

compiler technology is prohibitively expensive to develop in the course of a

thesis; though it is expected that a high performance superscalar architec-

ture would incorporate this state-of-the-art compiler technology. To con-

sider the effect of different levels of compiler optimisations the notion of the

reordering scope was developed. Barriers were inserted into the code to re-

strict the amount of reordering that can occur within an instruction stream;

operations were not allowed to reorder across these barriers. The distance

between two barriers is referred to as the reordering scope. Increases in

reordering scope represents greater sophistication in compiler technology.

Conceptually the scope can be thought of as software window for reorder-

ing operations. Chapter 8 discusses this notion in comparison with the

hardware instruction window. The seven ranges of scope considered in this

chapter are:

RSO No out of order execution.

RS1 : Operations can reorder between different iterations of leaf level loops

but not across procedure call boundaries. Operations outside leaf level

loops can reorder within basic blocks.

RS2 : Operations can reorder between different iterations of leaf level loops.

Operations outside leaf level loops can reorder within basic blocks.

RS3 : Operations can reorder between different iterations of nested loops

but not across procedure boundaries. Operations outside nested loops

M.

can reorder within basic blocks.

RS4 : Operations can reorder between different iterations of nested loops.

Operations outside nested loops can reorder within basic blocks.

RS5 : Operations can reorder within the same procedure.

RS6 No restrictions on reordering.

2. Memory ordering. The sequence in which memory accesses are sent

to memory effects the amount of reordering that can take place between

memory references. Compiler technology can detect most memory depen-

dencies, but it has been found that in some scientific applications a small

number of array references can not be resolved because of complex array

subscripts [69]. These unresolved dependencies have been shown to cause a

significant reduction in performance. For this reason hardware is required

to disambiguate references at run-time. The complexity of this hardware is

dependent on the memory ordering scheme supported by the architecture.

The three memory ordering schemes considered are :-

Strong Ordering (STO) : Loads and Stores occur in program order so

there is no reordering of memory operations. This is the simplest case

requiring no additional hardware or software complexity.

Semi Strong Ordering (550): Loads/stores preserve their program order

with other loads/stores. Loads and Stores can reorder relative to each

other. In order to preserve flow dependencies this ordering scheme

requires additional hardware for dynamic memory disambiguation 1

The hardware is simplified by only needing to compare a load address

against all stores issued since the last load.

Weak Ordering (WKO): Loads and stores can reorder with any loads

and stores in the program, but loads and stores to the same location

occur in program order. This requires the most complex hardware.

The logic must be capable of comparing all loads against all issued but

not yet completed stores.

3. Data dependency analysis. There has been much research into the im-

portance of precise inter and intra procedural data dependency analysis for

program performance [54, 66, 69]. Memory dependencies can be resolved

'Preserving false dependencies is contingent on the use of memory renaming.

by dynamic disambiguation hardware and/or static analysis in the com-

piler; Chapter 2 presents a discussion of the types of techniques that have

been suggested in the literature. This study uses the same approach as in

Wall's limitation study [83] and examines the lower and upper bound for

any disambiguation technique. These bounds are referred to as conserva-

tive analysis (CTA) and perfect analysis (PFA), respectively. The difference

between them lies in how they handle array memory references.

In PFA, dependency arcs exist between references to the same element

of an array.

In CTA, a dependency arc exists between each pair of references to the

same array.

Register and Memory Renaming. False dependencies occur because

of the imperative and sequential nature of some programming languages.

These languages allow the programmer to reuse the same memory location.

All false dependencies can be removed by the introduction of new variables

i.e. by array privatisation [34].

Synchronisation points. The barriers that define the bounds of the re-

ordering scope could be either synchronisation or non-synchronisation barri-

ers. Both barriers enforce the normal barrier semantics within an instruction

stream. However the synchronising barrier imposes an additional constraint

that the AU must wait for the DU before issuing any further introductions.

This barrier introduces false loss of decoupling (LOD) events into the pro-

gram. Non-synchronising barriers allow the AU to retain some slippage

ahead of the DU.

7.2 Simulation technique

The experiments use the base-line configuration for the 2-stream architecture

shown in Table 7.1. This table also shows the range of architectural parameters

investigated in this chapter.

The key aspects of the base-line configuration are that the decoupled memory

does not include a bypass mechanism; decoupling is therefore the only mechanism

used for latency hiding. There is no speculative execution, but enforcing control

dependencies for loop closing branches is dependent on the reordering scope used

(see Section 7.1). The instruction issue width is restricted to realistic and pro-

jected future values. The results from Chapter 6 showed that one of the most

70

suitable configurations for maintaining maximal throughput was (4,5). The first

and second value in the brackets are respectively the AU and DU instruction issue

widths.

Architecture
make Components

Base-line
Values

Other Values
Considered

Floating operation latency (cycles) 5
Integer/Address op. latency (cycles) 1
Function units (4,5) (1,1),(2,2),(2,3)
Issue width (4,5) (1,1),(2,2),(2,3)
Register file 00

Window size oc
Comm. bus latency 0
Comm. bus width 00

Decoupled memory oo
Memory bandwidth 00

Decoupled memory access latency (cycles) 1
Bypass mechanism No
Memory differential (cycles) 60 0
Memory ordering wko {wko,sso,sto}
Dependency analysis pIca {pka,cta}
Renaming yes no
Reordering scope rs6 {rso,rsl ,rs2,rs3,rs4,rss}
Synchronisation points non-sync. sync
Code Partition static

Table 7.1: Configurations for the 2-stream decoupled architecture

7:..3 Experiment results

This section quantifies the performance impact of the different hardware and

software design issues described in section 7.1. In the following experiments the

combined issue width (CIW)for the decoupled architecture was 9 (AU and DU

issue width of 4 and 5, respectively). This configuration was chosen because it

is believed to be representative of future superscalar issue widths. Section 7.3.1

considers different data dependency and renaming configurations. Section 7.3.2

considers different memory ordering and barrier configurations. Each section

quantifies the performance of the configurations when the memory differential is

o and 60 cycles. An MD of 0 cycles was chosen in order to isolate the effect

of the different configurations from memory latency. An MD of 60 was chosen

because it is comparable to the cost of a second level cache miss 2 and it assumes

a weak memory system capable of capturing no locality. In practice, for a high

performance architecture, the memory system will be able to reduce the average

2 Typical Pentium pro systems have measured L2 miss latencies of 50 cycles[8

71

access time by using first and second level caches. Each section also discusses the

latency effectiveness and scalability of the configuration.

7.3.1 Data dependency and renaming

Figures 7.1 and 7.2 show the measured IPC levels for different data dependency

analysis and renaming configurations when the MD is 0 and 60 cycles, respectively.

The suffix '+rename' and '-rename' indicates where the configuration included or

excluded memory renaming. The measurements were made with weak memory

ordering and non-synchronising barriers.

The 'pfa+rename' configuration in Figure 7.1 shows a large increase in IPC,

from RSO to RS1, occurring as operation reordering within leaf level loops and

basic blocks is enabled. After RS1 the increasing scope for reordering operations

provides smaller gains in IPC. The other significant increase occurs, from RS5 to

RS6, when operations are allowed to reorder across procedure call boundaries.

Figures 7.1 and 7.2 show that even in the case of 'pfa+rename' a wide re-

ordering scope is required to achieve high IPC when the MD is large. This can

be seen clearly in the change for RS1. In Figure 7.1 RS1 has an IPC 70% of the

upper limit of 7.5 IPC. Compare this with Figure 7.2 where RS1 is only 37% of

the upper limit. The configuration with 'pfa-rename' exhibits a similar type of

behaviour. Wider reordering scope is therefore essentially for producing higher

IPC for both configurations even with perfect dependency analysis.

Reordering operations within leaf loops is insufficient at large latencies. How-

ever, it can yield a considerable percentage (70%) of the IPC upper limit when

latencies are small. When memory differentials are large operations must reorder

across nested loops in order to achieve greater than 50% of the IPC upper limit.

Figure 7.2 shows that even with perfect analysis and renaming, it is still

important to be able to reorder operations across nested loops and procedure

boundaries to achieve high IPC when MD=60. This result can be seen in the large

difference of 2.4 IPC (40% of the upper limit of 5.9 IPC) between RS3/RS4/RS5

and RS6.

The lower bound for any data dependency analysis technique is shown by the

configuration with 'cta-rename' in Figure 7.1 and 7.2. It can be seen that in this

case the scope for reordering operations is not the performance bottleneck. There

is therefore clearly no benefit to increasin& the scope for reordering operations

beyond RS1 in this case. The consequence is that for large memory differentials

the latency can not be hidden and the IPC drops to 0.5 (see Figure 7.2).

Renaming for both perfect and conservative dependency analysis only provides

72

additional IPC for R33 (barriers at nested loop and procedure boundaries) and

above. It can be conjectured, that the reason for this is due to the majority of false

dependency arcs crossing leaf level loop boundaries. For RS1 and RS2 barriers

are placed at leaf level loop boundaries. Renaming provides little benefit because

most of the false arcs cross these barriers. The ordering of memory operations is

therefore enforced by the barrier rather than the false dependency arc.

At large reordering scope (RS6), renaming compensates for conservative anal-

ysis when MD=0 (see Figure 7.1). However with large latencies there is little

difference between the 'cta+rename' and 'cta-rename' configurations. The same

is not true for perfect analysis where the gap for RS6 between 'pfa+rename' and

'pfa-rename' widens when MD is 60. This indicates, that for perfect dependency

analysis renaming is more important at large memory differentials. It also shows

that renaming is more important to perfect than conservative dependency anal-

ysis when MD is 60 (see Figure 7.2).

Figures 7.3 and 7.4 show the latency hiding effectiveness for different CIW

for RS1 and RS6, respectively. To varying degrees all configurations show a

deterioration in effectiveness as the CIW is increased. It can be seen that in both

Figures the gap between the conservative and perft analysis is large, indicating

the importance of high quality dependency analysis to latency hiding.

It will also be noticed that for both configurations of perfect analysis the

wider scope for reordering increases the latency hiding effectiveness. This can be

seen clearly by the difference iwthe Figures 7.3 and 7.4 where when CTW=2 the

effectiveness increases by about 20%.

For the configuration with perfect analysis, renaming improves the effective-

ness of the latency hiding only when the reordering scope and issue width are

large. This can be seen from the difference between Figure 7.3 and 7.4.

At large reordering scope (RS6) and perfect dependency analysis, renaming

is important for improving the scalability and latency hiding effectiveness of the

dual stream system. This can be seen from Figure 7.4, where for a CIW of 2 the

difference in effectiveness is only 1%. However when CIW is 9 the difference from

renaming is 16%. This indicates that the effectiveness and scalability of the dual

stream system becomes more dependent on renaming as the CIW increases. The

reduction in effectiveness for the configurations 'pfa+rename' and 'pfa-rename' is

14% and 28%, respectively.

The latency hiding effectiveness for RS6 and the configuration with perfect

dependency analysis and renaming exhibits behaviour favourable to the scalability

of access decoupling. Firstly when CIW < 5 the effectiveness is greater than

73

90%. Secondly when CIW is 9 the effectiveness, as would be expected for a large

memory differential, decreases, but only by 16%. To improve the effectiveness it

will be necessary to adopt other latency hiding techniques for high CIW, such as

the bypass mechanism described in Chapter 5.

Average I PC; AU,DU=4,5 md=O

pfa+rename -.-- 	 /
pta-rename ----• 	 / -
cta+renanie -0-- 	 /
cta-rename --x....

+ 	
-#
/

G --- ------ ---------- -

X..x

I 	 I 	 I

ASO 	 RS1 	 R52 	 RS3 	 RS4 	 RS5 	 RS6
Reordering Scope

Figure 7.1: Average IPC when MD=O

7.3.2 Memory reordering and barriers

Figures 7.5 and 7.6 show the IPC for different memory ordering and barrier

configurations when the MD is 0 and 60 cycles respectively. The measurements

were made with perfect dependency analysis andrenaming. The different barrier

configurations were measured using weak memory ordering.

The most significant result is that any future dual stream system machines

must support reordering of memory operations. This can be clearly seen in both

Figures 7.5 and 7.6 by the large gap between the WKO and, the SSO and STO

configurations. The 550 configuration has only a marginally higher JPC than

the ST0 configuration.

There is no advantage to reordering operations beyond leaf level loops for

STO and SSO configurations. Figures 7.5 and 7.6 both show that the SSO and

STO configurations show no change in performance for reordering scopes beyond

0

M

74

Average IPC AUDU=4,5 md=60

pfa+renanie -0---

pta-rename
cta+renarne -0--

cta-renarne .--

4

C) 3

Fl

o
RSo
	

RS1 	 RS2 	 RS3 	RS4 	RS5 	ASS
Reordering Scope

Figure 7.2: Average IPC when MD=60

RS1. Section 7.3.1 commented on the necessity of wide reordering scope in order

to hide the MD of 60 cycles. It can therefore be inferred that for wide scopes, the

STO and SSO configurations will have poor latency hiding capabilities because

of the restrictions they impose on operation reordering. This can be seen clearly

in the graph for latency hiding effectiveness in Figure 7.8.

Figure 7.6 shows for RS1 and RS2 the importance of the AU being able to

continue prefetching data across leaf level loop boundaries to hide large latencies.

This result follows from the large IPC difference between the configurations with

synchronising and non-synchronising barriers 3.

It was also noticed that the dual stream system synchronises between nested

loops and across procedure call boundaries due to data dependencies from the DU

to AU. This can be inferred from the converging lines for RS3 and R55 when the

configurations have synchronising and non-synchronising barriers (see Figure 7.5

and 7.6).

Figure 7.7 and 7.8 show the latency hiding effectiveness for different CIW for

RS1 and R53, respectively. As in the previous section, it can be observed that

there are varying degrees of reduction in effectiveness as the CIW increases.

'The line for non-synchronising barriers is coincident with the weakly ordered configuration
line.

Li

5

75

Average Latency Hiding Effectiveness (RS=1)
0.6

pfa+rename •-
pta-rename --'--
cta+rename EB--

0.7
	

cta-rename *-

0.6

U,

0.5

0.4

0.3

0.2

2 	 3 	 4 	 5 	 6 	 7 	 8 	 9
Combined Issue Width

Figure 7.3: Average Latency Hiding Effectiveness (RS=l)

The major differences between Figures 7.7 and 7.8 is the increasing effective-

ness of the configuration with synchronising barriers and the lack of variation in

the behaviour of SSO and STO. For RS1 the effectiveness of latency hiding is

poor when the configuration has synchronising barriers. As commented earlier

this results from the need to allow the AU to prefetch data across leaf level loop

boundaries, and from the dual stream system synchronising between nested loops

boundaries. The dual stream system does not scale well with this configuration,

reducing to below 40% when the CIW is 9. The effectiveness of SSO and STO

is independent of instruction reordering because, the IPC does not increase with

wider reordering scope and larger CIW, for these ordering schemes.

7.3.3 Individual program behaviour

The preceding analysis was based on the aggregate behaviour and therefore hides

some on the individual characteristics of the programs. Table 7.2 shows IPC and

LHE for different reordering schemes.

For the programs MDG, QCD2, ADM and DYFESM good inter-procedural

analysis and reordering operations across nested loop is critical to achieving high

IPC and latency hiding effectiveness. This can be clearly witnessed by the large

Cal

0- 9

0.8

0.7

0,
0)

2 	0.6

---------- -

C)
0
t
LU 	0.5

0.4

0.3

0.2

pfa+rename -e----
pta-rename -+--•
cta+rename -U--

cta-rename --x ----

c---

Average Latency Hiding Effectiveness (RS=6)

2 	 3 	 4 	 5 	 6 	 7 	 8 	 9
Combined Issue Width

Figure 7.4: Average Latency Hiding Effectiveness (RS=6)

gap between RS3/RS4/RS5 and RS6. For example, when the memory differential

is 60 cycles, ADM shows an increase of 140% in its effectiveness when reordering

operations across procedure boundaries is enabled.

For the programs FL052Q and TRFD most of the parallelism is located in

the innermost loops, 87% and 74%, respectively. However to achieve a latency

hiding effectiveness around 90% requires the ability to reorder operations within

nested loop boundaries. In TRFD this produces a significant improvement from

50% to 99%.

77

Average IPC AUDU=4,5 md=O

0
0

8

7

6

5

4

3

2

n

wko -0--

550 4---
sto -B--

 sync -x....

-----C- ---------- ------- - ---------------- C------

RSO 	RS1 	 952 	 RS3 	 R54 	 RS5 	 RS6
Reordering Scope

Figure 7.5: Average IPC when MD=O

Average PC AU,DU=4,5 md=60;
6

5

4

0
0- 	3

2

.1

0
RSO

wko .-
$60
sto -a--
 sync -k--

c ------------------ -0------------------- - ------------------

RS1 	 RS2 	 ASS 	 R54 	 RS5 	 RS6
Reordering Scope

Figure 7.6: Average TPC when MD=60

78

Average Latency Hiding Effectiveness (RS=1)
0.8

0.7

0.6

U,
0,

0.5

0.4

0.3

0.2

	

2 	 3 	 4 	 5 	 6 	 7 	 8
	

9
Combined Issue Width

Figure 7.7: Average Latency Hiding Effectiveness (RS=1)

Average Latency Hiding Effectiveness (RS--3)

	

O.8. 	 I 	 I 	 I 	 I

0.7

0.6

U,
U,

0.5

0.4

0.3

wko .-
550 -a---

sto -*
sync -0-

2 	 3 	 4 	 5 	 6 	 7 	 8
	

9
Combined Issue Width

Figure 7.8: Average Latency Hiding Effectiveness (RS=3)

79

RS Program MD=0 MD=60 Program MD=0 MD60
IPC IPC LHE (%) IPC IPC LHE (97o)

iif ADM 0.8 0.5 64 DYFESM 0.7 0.6 75
1 3.9 1.6 41 3.0 1.6 52
2 4.0 1.7 42 3.0 1.6 52
3 4.4 1.8 40 5.4 3.2 52
4 4.6 2.0 42 5.4 3.2 58
5 4.6 1.8 40 5.4 3.2 58
6 8.8 8.8 100 7.6 6.6 87
0 FL052Q 0.8 0.6 76 MDG 0.8 0.4 46
1 7.5 5.7 75 3.5 1.2 34
2 7.5 5.7 75 3.5 1.2 35
3 8.3 7.3 87 5.5 1.7 30
4 8.3 7.3 87 6.0 1.9 32
5 8.5 7.7 91 5.5 1.7 30
6. 8.6 8.4 97 1 8.8 4.2 48
0 QCD2 0.9 0.6 64 TRACK 0.8 0.3 35
1 4.3 1.7 39 1.7 0.4 22
2 4.7 1.9 41 1.8 0.4 21
3 4.7 1.8 37 1.7 0.4 23
4 5.1 2.1 39 1.8 0.4 22
5 4.9 1.8 37 1.7 0.4 23
6 8.1 4.5 55 1.9 0.4 22
0 TRFD 0.7 0.6 86 Average 0.8 0.5
1 6.1 3.0 50 4.3 2.2
2 6.1 3.0 50 4.4 2.2
3 8.2 8.2 99 5.5 3.5
4 8.2 8.2 99 5.6 3.6
5 8.2 8.2 99 5.5 3.5
6 8.2 8.2 100 1 7.4 5.9

Table 7.2: IPC and LHE for different reordering scope; dependency analysis is
perfect with renaming

EZi

7.4 Design implications for the dual stream sys-
tem

In Section 7.3.2 it was shown that the reordering of memory operations is critical

for hiding large memory latencies and achieving high IPC. The implication of

this result is that the decoupled memory (described in Section 3.1) must, like

the ARB [40] be capable of supporting multiple accesses, speculative loads and

stores, and dynamic memory disambiguation. The ARB could be placed in the

decoupled memory to support the aggressive reordering of memory operations of

a dual stream architecture '. However, by itself, the ARB is not sufficient to

support an out-of-order dual stream architecture. This is because the order in

which operations are executed on the AU, and the order in which data arrives in

the decoupled memory, must be communicated to the DU. There also has to be

additional support for waking up operations on the DU when data arrives in the

decoupled memory.

One of the postulates of this thesis is that the decoupling paradigm can sim-

plify instruction issue logic. Therefore, the central design requirement for this

additional wakeup logic is that it should not introduce greater complexity into the

instruction issue logic. This section proposes a mechanism that uses the sequence

numbering of memory accesses to support out-of-order decoupled execution.

Although operations are executed out-of-order, they are fetched and decoded

in-order. In a similar way to the ARB, a sequence number is assigned to each

AU and DU operation that accesses the decoupled memory. This results in the

AU and DU operations involved in a decoupled load having the same sequence

number. This sequence number is referred to as the order number, and is used

by the DU to detect if the data is available in the decoupled memory. The order

number has a maximum limit that restricts the number of accesses that can be

in-flight at any one time. The order number is a logical sequence modulo the

maximum limit.

7.4.1 Out-of-order decoupled loads

The diagram in Figure 7.9 shows how the order number can be used to support the

out-of-order execution of a decoupled load. The diagram shows a load data buffer

that is indexed by the order number. It also shows, in each of the decoupled units,

an order manager queue to control the assigning and releasing of order numbers.

'Interestingly, the ARB includes a mechanism to forward the values of store operations to
waiting loads; this is similar to the bypass mechanism in the optimised decoupled memory.
Section 9.1.6 has shown the benefits of this mechanism for a decoupled architecture.

JI

The number of entries in the order manager queue and load data buffer are equal,

so that no two in-flight accesses can map to the same slot in the buffer.

To illustrate how the load data buffer and order manager queues support out-

of-order accesses in a decoupled architecture, Diagram 7.9 shows the different

stages of a fully decoupled load I from an address X. At each of the labelled

stages in the diagram, the following operations would occur:

• In Stage 1 the address operation is decoded and placed in the AU instruction

window. During this stage, the operation is assigned the order number n+1,

and the tail is incremented (modulo the size of load data buffer) to point

to this latest instruction.

• In Stage 2 the address is sent to the decoupled memory with its order

number. Note, that because the load data buffer has the same number

of entries as the order manager queue, a slot is implicitly reserved for the

retrieved data in the load data buffer.

In Stage 3, the accessed data is placed in the decoupled memory where it

waits to be fetched by the DU.

• In Stage 4, the DU decodes the fetch of X and assigns it the order number

n+ 1. The order number is then tagged with the instruction window slot ID

where the fetch operation resides, and is sent to the load data buffer. The

result of the successful lookup is communicated, using the slot reference

(thereby avoiding an associative lookup), back to the instruction window

and the fetch operation is flagged as ready to execute.

• In Stage 5, the fetch operation executes and the data is retrieved successfully

from load data buffer.

• In Stage 6, once the data has been retrieved from the load data buffer the

order manager queues on both units are notified that this order number can

be released (marked as 'R'). The header is advanced when the order number

it points to is marked for release.

If the load is not fully decoupled (the DU instruction is decoded and placed in

the instruction window prior to the data arriving in the decoupled memory) then

the following operations occur. The load data buffer detects that the data hasn't

arrived and places the slot reference in the data area. When the data arrives from

'One in which the data is already resident in the decoupled memory when the DU operation
arrives in the instruction window

main memory, the load data buffer uses the reference to inform the DU that the

fetch operation can be now flagged as ready to execute. In parallel, the retrieved

data is also written to the data area.

The advantage of using the slot reference is that it does not require expensive

wakeup logic to broadcast a result to every operation in the instruction window 6

IustflIcIi(,II Wird.rw

4

.V LDX
	

+1 	FeichX

Order Mn.rr Queue
	 AU
	

£14

Decoupled Memo

Figure 7.9: Support for out of order memory access in a dual stream system

7.4.2 Out-of-order decoupled stores

An out-of-order decoupled store can also be implemented using the ARB. The

only additional complexity is the hardware support to match DU data with the

appropriate AU address. This will require an associative lookup on the order

sequence number of waiting store addresses in the decoupled memory (not shown

in Figure 7.9).

6 Palacharala [64] showed that the associative wakeup logic required in the issue window
introduced delays that increased quadratically with the window size.

7.5 Summary

This chapter has identified those design issues that determine the degree of re-

ordering and investigated their relationship to the latency hiding effectiveness,

scalability and IPC of the dual stream system; where scalability is defined as the

variation of the latency hiding effectiveness with the CIW.

The results from this chapter have shown the importance of memory order-

ing. The 550 and STO schemes have been shown to restrict the parallelism in

the dual stream system. For this reason this chapter has proposed a mechanism

to support out-of-order accesses in decoupled architecture. The key component

in the mechanism is a load data buffer that serves two functions: to hold data

retrieved from the main memory; and to hold references to slots in the DU in-

struction issue window. The latter functionality is required for DU fetches that

can not be serviced because the data is not resident in the decoupled memory.

The advantage of the proposed technique is that it can be combined with an

existing mechanism (the ARS [40]) while only introducing minimal complexity

into the instruction issue logic.

Interestingly, the 550 scheme was used in a previous decoupled architec-

ture [24], but operations were only allowed to be reordered from within leaf level

loops. This chapter has shown, that for the dual stream system this is the op-

timal configuration of reordering scope with the SSO scheme. Results show (see

Section 7.3.2) that providing a wider scope for reordering operations beyond leaf

level boundaries yields minimal benefit for the 550 scheme.

Renaming is only important to the latency hiding effectiveness of the dual

stream system for wide reordering scope and large CIW (> 5).

For a configuration with perfect dependency analysis, weak memory ordering

and renaming, behaviour favourable to the scalability of the dual stream system

has been observed. The latency hiding effectiveness has been shown to be greater

than 90% for CIW < 5 and only decrease by 14% when CIW is large (9-way

issue).

This chapter has also tried to quantify the effect of differing complexity of

parallel optimisations; where complexity has been modelled in terms of wider

reordering scope. The results show that when memory differentials are small

reordering operations in leaf level loops is sufficient to achieve 70% of the TPC

upper limit. For large memory differential, operations must be able to reorder

within nested loop boundaries to achieve greater than 50% of the TPC upper limit.

Wide reordering scopes can offer sufficient operations to hide latency but are

dependent on the memory ordering scheme and the data dependency analysis.

For configurations with STO, SSO and conservative analysis the benefits of wide

reordering scope can not be realised, due to the memory ordering scheme and

dependency analysis being the bottleneck.

In three of the programs, reordering operations across procedural boundaries

is critical to extracting ILP. For the same programs it has also been shown to be

necessary for tolerating large memory latencies. Highly parallel programs have

been found to have high (> 87%) latency hiding effectiveness when operations

are only able to reorder within nested loops.

For configuration with narrow reordering scopes, where barriers exist at leaf

level loops, results have shown that it is important to allow the AU to continue

prefetching data after the barrier. Synchronising barriers are observed to reduce

performance especially when the MD is large.

ME

Chapter 8

Reducing Hardware Complexity
through Decoupling

It can be speculated that future high performance microprocessors will improve

performance by extracting higher degrees of instruction level parallelism. In su-

perscalar architectures parallelism is exploited by reordering instructions within

an instruction window and issuing multiple independent instructions per cycle.

However as processor speeds increase and issue widths get larger the cost of a

main memory access is becoming relatively more expensive. One solution is to

hide memory latency by data prefetching.

Data prefetching is a technique that hides memory latency by overlapping

access and data operations. Data prefetching can be implemented in either hard-

ware [41] and software [161 or a hybrid [18] of both schemes. However as memory

accesses become relatively more expensive the number of independent overlapped

instructions required to hide access times increases. Larger instruction windows

are therefore required to detect independent instructions that can execute in par-

allel with memory access operations.

The pressure to increase window sizes is also driven by the goal of providing

ever larger issue widths. However, large windows and issue widths introduce

greater complexity in window issue logic. Palacharla [64] has shown that delays

in the issue logic vary quadratically with window and issue width size. Since

delays in issue logic will be critical to processor clock frequency there is a need

to consider architectures that simplify issue window logic.

To solve the window complexity problem some architectures use separate mi-

croclusters. Microclusters may share, or have a dedicated instruction window,

but each has its own register file and function units. This design simplifies win-

dow logic by flagging instructions for execution on particular microclusters. This

reduces the size of the instruction window but can limit the number of instruc-

tions issued per cycle. Other designs, like the MISC [81], Multiscalar [75] and

PEW [51] architectures, use decentralised control logic to simplify the window

hardware, and increase ILP without effecting clock speeds.

Since in principle the same level of prefetching in an decoupled machine could

be achieved with a single stream, out-of-order superscalar architecture; the ques-

tion is "why should designers consider using the decoupling paradigm?"

Memory latencies are typically 20-50 cycles whereas arithmetic function la-

tencies are 2-5 cycles (excluding divide and intrinsics). A system could easily

tolerate a small degree of out-of-order execution amongst arithmetic operations

provided loads could slip by a large amount with respect to arithmetic operations.

This slippage between arithmetic and load operations is exactly what occurs in

a decoupled machine. In other words, there can be small distinct instruction

windows for arithmetic and access operations, provided the latter can slip by a

large amount with respect to the former. To illustrate this idea section 8.1 in-

troduces the concept of the effective single window. The effective single window

is the minimum size of window required by a processor with a single window to

have the same instructions in flight as the decoupled machine. In answer to the

question posed in the paragraph above, it is believed that a decoupled architec-

ture's decentralised logic would produce high latency tolerance while reducing the

complexity of reordering hardware.

The disadvantage of decoupled architectures is the extra communication over-

head, and the smaller issue width and instruction window available to each of the

instructions streams. However, communication hardware can be implemented

cheaply through queues, and is not critical to processor clock speeds. Provided

the frequency of communication is low and the bandwidth is high, then the impact

of the communication overhead should be minimal. The OCTAVE compiler re-

duces communication by duplicating operations on both units . Current advances

in fabrication technology mean that with decreasing features sizes a single chip

multiprocessor could be built with an inter-unit communication latency of a few

cycles 2 However, narrower issue widths and smaller window sizes may increase

contention and limit reordering; this will reduce the latency hiding effectiveness

and possibly annul any of the benefits derived from simpler issue hardware.

This chapter justifies renewed interest in decoupling by comparing a single and

dual stream out-of-order superscalar architecture. Section 8.3 considers the effect

of issue width on both machines. In order to isolate its effect on performance all

'Though this optimisation can cause code expansion.
'Chapter 9 provides a series of simulation studies to analyse the effect of communication

cost on a decoupled machine.

FY4

resources are relaxed and unlimited reordering is permitted. Using an analytical

model and simulation studies, this section compares the performance of a single

and dual stream systems. The results show that although single stream systems

achieve slightly higher IPC, on average it requires much larger issue widths and

window sizes. This suggest that any performance loss could be more than com-

pensated for by simplifying the control hardware. Section 8.3 also shows that the

code expansion introduced by OCTAVE's static partitioning has little effect on

these findings when issue widths are large.

Section 8.4 compares the relationship between window size and memory la-

tency for the decoupled and a single stream superscalar machine. It also evaluates

the size of window required by the single stream architecture to achieve the same

performance as the dual stream architecture.

In the remaining sections; Section 8.1 discusses the notion of the effective

single window size to help explain some of the chapters findings and Section 8.2

describes the simulation technique. Section 8.6 concludes by summarising the

chapter findings.

8.1 The effective single window

An advantage of the decoupled machine is that the dynamic slippage between the

window of instructions on the AU and DU means that the effective single window

size can be. greater than the sum of the individual units' window sizes. Fig-

ure 8.1 illustrates the idea of the effective single window. The diagram shows the

streams for the AU, DU and a single instruction stream. For the single instruc-

tion stream, the instructions are shown in program order (with later instructions

appearing further down the page), labelled with the units on which they execute

in the decoupled machine. The diagram shows that, due to the dynamic slippage

between the units, the AU is executing instruction further into the instruction

stream than the DU. The effective single window is the minimum size of window

required to buffer all instructions from the oldest DU instruction to the youngest

AU instruction.

8.2 Simulation technique

In the dual stream system, loads and stores are executed as one instruction on

each of the units. On the single stream architecture, loads and stores generate

a prefetch and an access operation. Integer and address computations have a 1

cycle cost. Floating point operations take 5 cycles to complete.

E;f;3

	

DU instruction 	Single

Stream 	 i

DU 	_________
Window 	 ft 	11:-- nil 	I

•
I
I
I
I
I

Effective Single I

Window
I

Youngest AU
instruction

Instruction

Stream

AU Instruction

Stream

oldest DU - 	Instruction

I
I
I
I
I
I
I

- Lfi 	{ 	Au
-l---[- 	All 	Window
Ii 	ll

All

All

D1 I
DI I
All
DI I
AU
Di I
All

D11 I
All
DU

All
DI I

I 	D11

DIT

Figure 8.1: Effective single window

There is no speculative execution but it is assumed that loop closing branches

'have been removed by optimisations like loop unrolling and branch prediction.

Data dependency analysis is perfect and false dependencies are removed by re-

naming. The purpose of examining such an ideal case is to provide the best

opportunity for prefetching data, to have high instruction level parallelism (ILP)

and to place the greatest pressure on the latency hiding mechanism.

The results from Chapter 6 are used to select instruction issue widths. The

values selected were (4,5) for the decoupled and an issue width of 9 for the single

stream architecture.

8.3 Issue width

It can be argued that the degree of prefetching of an access decoupled machine

could be achieved with a single stream architecture. If this is the case why

introduce the additional complexity required to support asynchronous instruction

streams. This thesis postulates that the decoupled architecture will be able to

provide lower but comparable performance but with smaller window size and issue

widths; this will simplify the instruction issue logic and reduce the clock period.

The disadvantage of the decoupled architecture is that it uses a smaller issue

width for each stream, potentially increasing slot contention and reducing the

peak issue rate for data and access operations. One would anticipate that the net

result would be a drop in the IPC for a decoupled architecture. A key question is

whether the trade-off between simpler hardware is offset by the reduction in IPC.

To answer this question, the approach adopted in this chapter is to quantify

the reduction in IPC for the decoupled architecture. The rational behind this

approach is that we can speculate a small reduction in IPC will be compensated

for by a reduction in cycle times. However, a large reduction in IPC will require

analysing the hardware complexity of the two architectures in greater detail.

In the first study, the architectures were given the same combined issue width

but allowed unlimited instruction window size. In order to isolate this comparison

from other factors, the same number of operations were executed on both the dual

and single stream systems. Although there is some duplication of operations in

the case of the dual stream system, the increase is on average 9.2% (see Table A.1).

It is believed that the effect of this code expansion will decrease at the large issue

widths being considered in this chapter '. The programs were executed with

perfect data dependency analysis, renaming, weak ordering and non-synchronising

barriers.

Tables 8.1 and 8.2 show the average IPC measured for the 7 programs when

the reordering scope was RS3 and RS6 respectively ". The tables also show the

reduction in IPC for the dual stream system and the latency hiding effectiveness

of the two systems. The column labelled CIW is used to denote the combined

issue width for dual stream and the issue width for single stream. In the case of

the dual stream the combined issue width is the sum of the AU and DU issue

width. The experiments only looked at the cases when the dual stream combined

issue width was equal to single stream issue width.

It can be seen that in all cases the dual stream system's IPC is lower than

that of the single stream system. The reduction in performance is due to inflex-

ible scheduling during synchronising and startup phases. When the decoupled

machine is in the state where the AU is waiting for a result from the DU, its issue

slots are being wasted. However, for the single stream system the full issue width

is available at all times. During the startup phase after a synchronisation point,

the single stream system is able to initiate more accesses whilst the DU waits for

the first value to be returned from the memory system. It would be expected

therefore that as the number of synchronising points decreases the reduction in

IPC would be smaller. This can be seen in the difference between tables 8.1

and 8.2, where for a combined issue width of 9 and memory differential of 0,

'Code expansion and other design issues unique to decoupling are considered in Chapter 9
4 1n RS3, intra nested loop reordering is permitted, but operations can not migrate across

procedure call and nested loop boundaries. In RS6, there are no restrictions on reordering.

pill

the reduction in IPC has dropped from 9% to 6%. This is due to RS3 reducing

the slippage between the units and hence increasing the number of synchronising

points in the program.

The difference in IPC also varies with larger combined issue width. This is

due to the fact that when the combined issue width is 2 the AU and DU have an

issue width of 1, effectively serialising the code for each of the instruction streams

(some reordering will be possible but it will be small). When the combined issue

width is increased to 9, the benefit accrued to the single stream system by the

extra issue slots, available during synchronisation and startup phases, is relatively

smaller.

The tables also show that the latency hiding effectiveness is always marginally

smaller for the single stream architecture. It is believed that this is due to the

memory accesses (operations in the dual stream system would be executed on the

AU) having to contend with data computations (operations in the dual stream

system that would have been executed on the DU) for issue slots.

A large memory differential also reduces the performance difference between

dual and single stream architectures. Large memory differentials reduce the paral-

lelism in the program and limit the advantage gained by the single stream system

during synchronising and startup phases on the dual stream system.

This analysis permitted unlimited lookahead through the unconstrained in-

struction window. An estimate of the average window size can be computed

using an analytical model, the measured average perceived load latency and the

operation breakdown shown in Table A.2. The average length of time for an

Operation to execute Is given by

top = jill * atoad + 1 * as tor6 + 5 * afloat + 1 * ajn teger 	(8.1)

where the terms aload, astore, afloat and ainteger denote the fraction of load, store,

float and integer operations, respectively. The average length of time any oper-

ation will wait in the instruction issue window for a result will be equal to 7.

The number of instructions decoded per cycle is less than or equal to the the

issue width (1W); the inequality applies because branches will cause dependent

instructions to wait for the target address to be calculated, delaying their execu-

tion by the fetch/decode mechanisms. The average window size is therefore given

by

(8.2)

91

In the following experiments the fetch and decode is assumed to be perfect

so that the inequality becomes an equality in this equation. Table 8.3 shows

the computed average window size for the dual and single stream architectures

when RS=6. This table shows that the single stream system requires a larger

instruction window than the decoupled architecture. The average ratio of the

single to dual stream window size is 1.7 and 2 when the combined issue width is 5

and 9, respectively. This also shows that the ratio increases with larger combined

issue width.

Table 8.2 shows when RS=6, that for a combined issue width of 5 and 9 the

average degradation in TPC is 7% and 5%, respectively. Palacharla [64] has shown

that delays due to window logic increase quadratically with instruction window

size and issue width. He found that the performance degradation between a 2x4-

way clustered and a single 8-way architecture was only 2-12%. From his hardware

complexity analysis he was able to conclude that the 2x4-way architecture would

have a 25% faster clock speed, resulting in an average performance improvement

of 16%. It is therefore anticipated that the 7% to 5% reduction in TPC would be

more than compensated for by the simpler issue logic in the dual stream system.

By executing the same number of operations in the single and dual stream

architecture the effect of code expansion was isolated from the experimental find-

ings. Table 8.4 shows the average speedup of the single over the dual stream

architecture for the cases when the former was without and with the duplicated

operations of the dual stream architecture. Table 8.4 shows that with small com-

bined issue widths of 2 instructions the single stream, without code expansion,

has a significantly higher TPC than the dual stream architecture. To achieve

equivalent performance would require the dual stream to have a clock frequency

17-20% higher than the single stream architecture. However, with an issue width

of 9 and an MD of 60 cycles, the speedup of the single stream is reduced to be-

tween 4% and 6%. It is expected that such a small loss in performance would be

compensated for by the reduction in clock speed.

Table 8.4 also shows that with a CIW of 2, the speedup with and without code

expansion is 5.2% and 3.5% higher for an MD of 0 and 60 cycles, respectively. For

a CIW of 9 the speedup is only 2.8% and 2% higher, for an MD of 0 and 60 cycles,

respectively. It can be concluded therefore, that the effect of code expansion is

only small for large CIW. The assumption made above that code expansion is

not significant only applies for large combined issue widths. This result has been

inferred from simulations with unlimited window size. A discussion of the effect

of code expansion for a restricted window size is postponed until Section 9.1.2.

Instruction
Stream

CIW Average IPC Latency Hiding
Effectiveness (%) md=0 mcl=60

Single
Dual

2
2

1.86
1.56

1.44
1.24

77
79

IPC reduction (%) 0.3 (16) 0.2 (14)

Single
Dual

5
5

3.93
3.56

2.59
2.45

66
69

IPC reduction (%) 0.37 (9) 0.14 (5)

Single
Dual

9
9

5.97
5.44

3.7
3.46

62
64

IPC reduction (%) 0.53 (9) 1 0.24 (6)

Table 8.1: Comparison of single and dual instruction streams when RS=3

Instruction
Stream

CIW Average IPC Latency Hiding
Effectiveness (%) md=0 md=60

Single
Dual

2
2

1.92
1.68

1.76
1.55

92
92

IPC reduction (%) 0.24 (13) 0.21 (11)

Single
Dual

5
5

4.54
4.18

4.00
3.74

88
89

TPC reduction (%) 0.36 (8) 0.26 (7)

Single
Dual

9
9

7.94
7.43

6.16
5.87

78
79

IPC reduction (%) 0.51 (6) 0.29 (5)

Table 8.2: Comparison of single and dual instruction streams when RS=6

8.4 Window size and memory latency

The conclusions drawn from the previous section were that a decoupled system

could achieve slightly lower, but comparable performance to a single stream archi-

tecture, and that this could be achieved with a window of half the size. However,

these results were based on an analytical model and simulation studies of archi-

tectures with an unlimited reordering window. This section describes the effect

of window size and memory latency on the dual and single stream architectures.

The experiments simulated all the programs from Table 5.5, but for the purposes

of this chapter three representative piograms are selected that exhibit the range

of observed behaviour . The three selected programs were FL052Q, MDG and

TRACK. Figure 8.2 shows the latency hiding effectiveness of all seven programs

'Results from the other programs are shown in Appendix E

93

Program CIW=5 CIW=9
decoupled single decoupled single

au,du au,du
ADM 4,30 41 6,35 75

DYFESM 2,20 65 5,65 111
FL052Q 4,31 54 5,24 95

MDG 41 14,43 75
QCD2 36 8,52 66

TRACK
L4,33

56 30,76 100
TRFD 41 4,47 78

Table 8.3: Average window size when RS=6

CIW md=0 md=60
with without with without

2 1.14 1.20 1.13 1.17
5 1.08 1.13 1.07 1.09
9 1.07 1.10 1.04 1.06

Table 8.4: The effect of code expansion on speedup when RS=6

when the window size is unlimited and the memory differential is 60 cycles. It

can be seen there are three bands in which the programs are highly (80-100%),

moderately (40-60%) and poorly (cc 40%) effective at hiding latency. It can be

seen that the three programs fall within each of the bands.

0.I

I
24

3
3

0.2

Figure 8.2: Latency hiding effectiveness MD=60 cycles

Figures 8.3, 8.4 and 8.5 show the variation in speedup with window size for

the dual and single stream architectures when the memory differential is 0 and 60

cycles. When MD is Q it can be seen that for small window sizes the dual stream

system performs better than the single stream system with the same window

size. This is due to the dual stream system having two windows for reordering

operations compared to one for the single stream. This means there are fewer

resource conflicts for window slots and greater scope for reordering operations.

It can also be noticed that the graphs show diminishing returns for increasing

window size; once window sizes are above 10 instructions, doubling the size does

not double the speedup. All the programs reach a cut-off point for window sizes

between 40 and 80 instructions when the single stream system performs more

effectively. This is due the benefit of the larger instruction issue width available

to the single stream. This benefit is only realised once the instruction window is

large enough to utilise the available issue width.

Figures 8.3, 8.4 and 8.5 show that once MD reaches 60 cycles there is no cut-

off point at which the single stream system performs better than the decoupled

machine. This results applies even for very large windows of 100 instruction slots.

The difference between the performance of the two machines must be solely due

to the more effective data prefetching of the decoupled machine. Operations on

the single stream system, which on the decoupled system would have been exe-

cuted on the DU, are causing address computations to execute later, reducing the

pipelining of memory accesses and decreasing the effectiveness of data prefetch-

ing. The difference in performance between the two machines also depends on

the type of program. For FL052Q which is highly parallel, the gap between the

decoupled and single stream system is large. However, for TRACK which has

little parallelism, there is little difference between the two architectures.

It can be stated therefore that for all the simulated programs the decoupled

machine is more effective at hiding large memory latencies than the single stream

architecture. The difference in performance is dependent on the available par-

allelism and decoupling in the program. Programs that decouple well show the

largest improvement in performance for the decoupled machine.

Figures 8.6, 8.7 and 8.8 show, for a range of memory differentials, the equiv-

alent window ratio. This term is the ratio of the single stream and decoupled

window sizes that yield equivalent performance. The ratio was derived by pro-

jecting from the decoupled system to the single stream graph in Figures 8.3,8.4

and 8.5. The graphs show the way in which the ratio varies as a function of

the memory latency. It can be seen that as latencies approach 60 cycles the ra-

tio gets larger. This is due to the more effective data prefetching of the access

decoupled machine. As the memory latency increases, the DU waits longer for

data to arrive and the slippage between the two units grows. This means that

the effective single window size (see Figure 8.1) for the decoupled machine gets

E,1'1

larger. In order for the single stream system to achieve equivalent performance,

it requires a correspondingly larger window.

The graphs in Figures 8.6, 8.7 and 8.8 also show that as the decoupled window

size is increased the equivalent window ratio reduces. This is due to the single

stream architecture being able to reorder operations to a similar degree as the

decoupled machine, and also the benefits of the larger issue width.

Significantly, it can be observed that for a realistic decoupled window size of

30 instructions and a memory latency of 60 cycles, the equivalent window ratio

is dependent on the program, but is in the range 2.5 to 5. Experiments with

the other benchmark programs shown in Table 5.5 have also been found to fall

within this range (see Appendix E). Larger windows introduce extra hardware

complexity and longer window logic delays. It can be stated therefore that the

decoupled machine requires significantly smaller instruction windows and hence

simpler window logic.

For smaller memory latencies of 20 cycles the range for the equivalent win-

dow ratio is smaller, between 2.2 and 3.5 for 7 of the programs. However, for

TRACK the ratio drops below 2 to 1.9. This is due its low parallelism which

even with unlimited window size does not increase above 2 IPC. The effective

single window is clearly unable to provide any additional advantage because of

this low parallelism.

Having shown that the dual stream system performs consistently better than

the single stream architecture, a comparison is made between the latency hiding

effectiveness of the decoupled machine against a perfect latency hiding technique

(one in which all the memory differential is hidden). Table 8.5 shows the measured

LHE for different window sizes when the memory differential is 60 cydles.

The results show that when window sizes are small, increasing the window size

causes a reduction in the LHE. This is due to the extra parallelism on the DU

placing greater pressure on the memory system. The AU window is not yet large

enough allow the AU to pipeline accesses sufficiently to hide the latency. However

there eventually comes a point when the larger window size allows more operations

to execute in parallel and the LHE starts to improve. For MDG and FL052Q

that point occurs at 40 and 50 instructions respectively. This result suggests that

for realistic window sizes (1 to 30 instructions), increasing the window size will

result in the latency hiding mechanism of the dual stream system performing less

effectively. Table 8.5 also shows that even large window sizes do not approach

the latency hiding effectiveness of a decoupled machine with unlimited resources.

These findings show that for realistic window sizes the dual stream system

s1

90

80

70

60

a 	50
•0
0
0
0.

U) 40

30

20

10

0

EL052Q CIW=9 CL=99

dual md=0 -
single md=0 ----P
dual rnd=60 -9--

 single md=60 *-

/

/

10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Window Size

Figure 8.3: Speedup of FL052Q for varying window size

can hide latencies better than single stream architecture but that as the window

size increases its effectiveness at hiding latency deteriorates. This illustrates the

tensions that exist between having greater parallelism and the access decoupling

mechanism. As the window size gets larger, the instruction level parallelism

increases and the execution times fall. However, the extra parallelism places

greater pressure on the decoupling mechanism resulting in a decrease in LHE. The

result is the memory latency contributes more to the critical path time. There

comes a point however, when the AU window is large enough to compensate for

the extra parallelism on the DU, and more address operations can be pipelined

to hide the latency.

In the short to medium term high performance architectures will have window

sizes in the range that shows a reduction in the latency hiding effectiveness.

During this time frame designers will have to incorporate other latency hiding

techniques to improve the effectiveness of decoupled machines.

97

90

80

70

60

0. 	50
0
0
0
0.
U) 	40

30

20

10

0
0

MDC CIW=9 CL=99

dual nid=0 -0----

 single md=0 ---
dual md=60 -9--•

single nid=60 x....

a..---- ---------

9 _

10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Window Size

Figure 8.4: Speedup of MDG for varying window size

8.5 Reordering scope and instruction window

The reordering scope and instruction window impose constraints on the degree

of reordering in the instruction streams. The reordering scope which is explained

in Chapter 7, is used to model different levels of compiler complexity by intro-

ducing barriers into the instruction streams. An operation is not able to begin

execution until after all operations before the last barrier have executed. The re-

ordering scope can conceptually be thought of as a software window within which

operations are permitted to reorder.

Determining reordering scope and window sizes that give equivalent perfor-

mance allows comparisons to be made between different levels of compiler and

hardware complexity. Table 8.5 and 7.2 show the average IPC values for the

instruction window and reordering scope, respectively. The results show that on

average a window size of 20 to 30 instructions 6 is equivalent to the reordering

operations within leaf loops (RS1 and RS2) when the memory system is perfect

(md=0). To reorder operations within nested loop boundaries (RS3 and RS4)

6 The is approximately equal to the window size of the 1110000 (window size = 32 instruc-
tions) [91}

lxi]
vi.]

TRACK CIW=9 CL=99
14

12

10
	

dual md=0 -9---

 single md=0 -4--•

dual md=60 -El--

single md=60 ---x....

4

2 (

0
0
	

10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Window Size

Figure 8.5: Speedup of TRACK for varying window size

requires on average windows of 40 to 50 instructions. However, once the memory

differential becomes large (md=60) instruction windows have to be larger than

100 instructions to give the same performance as reordering within nested loops

(RS3 and RS4); a window size of 100 instructions has an IPC 83% of the value

for RS3.

The conclusion to be drawn from this comparison is that very large instruc-

tion windows will be required to achieve the latency hiding effectiveness latent

within nested loops. This suggests that while reordering hardware is sufficient

for small memory latencies, compiler techniques capable of inter-loop scheduling

and analysis are necessary for large memory latencies. The reordering hardware

is unable to provide a sufficient degree of reordering to detect the parallelism

necessary to tolerate very large memory latencies. To provide a higher degree

of reordering would require very large instruction windows that would certainly

restrict clock speeds. This result applies in the case of perfect branch prediction

for loop closing branches.

I
4

-o
C

C
0
(0 	 3
>

0•
Ui

2

n

MOM
LtM

FLO52Q
I I I P I 	 I I 	 P

md=0 -0-

rnd=10 	-4----•

rnd=20 -9--

- 	-- -. rnd=30 	--x-----
md=40 -A----

md=50 -E---

n,d=60 •o- -.

0.

--- --
----- -----

x....

-0- x
- 0 ---- 	-.------

-I-- -0- -
-I- 	- 0

-I- -

I I I I I 	 I

10 	20 	30 	40 	50 	60 	70 	80
	

90 	100
Access Decoupled Window Size

Figure 8.6: Equivalent window ratio for FLO52Q

Summary

This chapter has focused on two objectives in the design space of future micro-

processors; the need to hide large memory latencies and the need to reduce the

complexity of instruction issue logic. It has investigated the behaviour of data

prefetching on a decoupled machine and a single stream, out-of-order superscalar

architecture. It has examined the relationship between memory latency, window

size and speedup for the two architectures. In order to remove the impact of

other architectural issues the experiments have assumed an ideal environment.

This environment provides good conditions for data prefetching, high levels of

TLP and places the greatest pressure on the latency hiding mechanism.

It has been shown that when window sizes are unlimited, the single stream

system has a higher IPC than the dual stream system. However, the results show

that at large combined issue widths (9 issue slots), the dual stream system's IPC

is only 5-6% lower than the single stream system. At small combined issue widths

(2 instruction slots), the dual stream system's IPC is 11-13% lower than the single

stream system.

An analytical model has been used to estimate the average window size of the

100

MDG
4

3.5

3

0

C

2.5
•0
C

C
0

2
>

1.5

flR

I 	 I p

md=O
md=10
md=20
md=30
nid=40 -A..--

md=50 -*-•
md60 -0---

- A. ..0..

: ------I -
C

S
C

-f

I 	 I 	 I I 	 I

10 	20 	30 	40 	50 	80 	70 	80
	

7641']
Access Decoupled Window Size -

Figure 8.7: Equivalent window ratio for MDG

dual and single stream system. The results have shown that the single stream

system consistently has a larger average window size than the dual stream system.

It has been shown that the dual stream system is more effective at hiding

memory latency than the single stream architecture. For large memory differ-

entials (60 cycles) it has been shown that even for large window sizes of 100

instructions, the dual stream system consistently performs better than the single

stream. The results have also shown that to achieve the same speedup as a dual

stream architecture the single stream system needs a window size between 2.5 to

5 larger. The increase in window size required to achieve equivalent performance

on the single stream system was also found to increase with larger latencies.

It has been shown in [35] that architectures with p processing elements each

with a window size N can achieve lower but comparable IPC to a machine with

window size pN. This work argued that the simpler hardware would allow faster

clock speeds, and hence reduce execution times. However, the results from this

chapter allow a stronger claim to made, that the dual stream system can produce

higher IPC values than a single stream architecture with window size 2N.

The concept of the effective single window has been introduced to help inter-

pret the experiment results. The effective single window conceptually illustrates

101

3.5

0

2.5 0
0
C

C
0

0•
W

nid=0
rnd=10
md=20 .9..

md=30 ••x
md=40
rnd=50
md=60

TRACK

1.5

0.5 L

10
	

20 	30 	40 	50 	60 	70 	80 	90 	100
Access Decoupled Window Size

Figure 8.8: Equivalent window ratio for TRACK

how the dual stream system is able to perform better than an single stream system

with twice the size of instruction window.

The results have also shown how the latency hiding effectiveness of the dual

stream system decreases as the window size increases to 50 instructions. Though

the speedup did increase with larger window size the dual stream system was not

found to be as effective at hiding latency. However when windows were greater

than 50 instructions the LHE was found to improve. This behaviour illustrates

the tensions that exist between higher ILP and the access decoupling mechanism.

This chapter has shown that access decoupling can combine the benefits of

latency hiding with simplifying the window logic complexity. However, these con-

clusions have been drawn with the caveat, that the experiments were conducted

under conditions that did not restrict decoupling. The next chapter considers the

sensitivity of this chapters findings to design issues unique to decoupling.

102

WS Program MD=0 MD=60 Program MD=0 MD=60
IPC IPC LHE (%) IPC

1 ADM 0.6 0.4 72 DYFESM 0.6 0.4 81

10 2.5 1.3 51 2.5 1.5 59
20 3.7 1.6 43 3.5 1.9 53
30 4.4 1.8 41 4.3 2.1 49
40 4.9 1.9 39 4.6 2.2 48

50 5.3 2.0 38 4.8 2.4 50
60 5.4 2.1 38 5.0 2.4 49
100 5.9 2.3 39 5.3 2.6 49
Oc 8.8 8.8 100 7.6 6.6 87
1 FL052Q 0.6 0.5 82 MDG 0.6 0.3 56

10 2.7 2.1 79 2.6 1.1 41
20 4.5 3.3 74 4.2 1.4 33
30 5.8 4.2 72 5.5 1.8 32
40 6.8 4.8 70 6.4 2.1 32
50 7.3 5.1 70 6.9 2.3 34

:60 7.5 5.3 71 7.3 2.6 36
100 8.0 5.8 73 8.1 3.2 40

8.6 8.4 97 8.8 4.3 48
1 QCD2 0.6 0.4 76 TRACK 0.5 0.3 45

10 2.7 1.5 54 1.5 0.4 25
20 4.2 1.9 46 1.7 0.4 23
30 4.9 2.2 44 1.8 0.4 23
40 5.3 2.3 43 1.8 0.4 23
50 5.5 2.4 43 1.8 0.4 22
60 5.6 2.4 43 1.8 0.4 22
100 5.7 2.5 44 1.9 0.4 22
00 8.1 4.5 55 1.9 0.4 22

1 TRFD 0.6 0.5 90 Average 0.6 0.4
10 3.1 2.2 72 2.5 1.4
20 5.4 2.9 53 3.9 1.9
30 7.4 3.2 43 4.9 2.2
40 8.0 3.3 41 5.4 2.4
50 8.0 3.4 42 5.7 2.6
60 8.0 3.4 43 5.8 2.7
100 8.1 3.7 45 6.1 2.9
00 8.2 8.2 100 7.4 5.9

Table 8.5: IPC and LHE for varying window size (WS)

103

Chapter 9

Reducing Hardware Complexity:
a Sensitivity Analysis

In Chapter 8 it was shown that decoupling could achieve comparable performance

with a window size 2.5 to 5 times smaller than a single stream architecture. How-

ever, this assumed conditions that did not restrict decoupling. Critical design

issues such as decoupled memory capacity, code expansion, inter-unit communi-

cation bandwidth, and access ordering were relaxed to determine upper bounds on

performance. This chapter presents results from a series of studies that evaluate

the conclusions from Chapter 8 under more realistic conditions. Decoupling in-

troduces the additional complexity of partitioning the code into separate streams.

There is no known published work comparing the benefits of static and dynamic

partitioning algorithms . This chapter examines, for the first time, the effective-

ness of static and dynamic partitioning schemes on a decoupled architecture.

This chapter is structured in the following way. Section 9.1 presents the

experimental findings and Section 9.2 concludes with a discussion of its findings.

9.1 Experimental results

Chapter 8 assumed conditions that favoured decoupling; inter unit communication

cost was free, and by executing the same number of operations on both the dual

and single stream system the effect of code expansion was ignored. It was shown

that the effect of code expansion was small, but only where memory latencies and

issue widths were large. However, this result was based on modelling a dual and

single stream architecture with unlimited window size.

This chapter explores some of the design issues particular to the dual stream

architecture under more realistic constraints. Tables 9.1 and 9.2 show the different

'Tyson [81] investigated the effectiveness of different static partitioning algorithms, but did
not consider dynamic partitioning.

104

configurations of the dual and single stream systems used in the experiments.

Table 9.1 shows the base line architectural configuration. The column labelled

sequential shows the architectural configuration used for pure sequential execution

of the program. Table 9.2 shows the range of parameters investigated as part of

the sensitivity analysis in this chapter.

Table 9.1 and 9.2 shows that some components have unlimited capacity. Re-

laxing constraints on these resources has the benefit on removing 2nd order effects

from the experimental analysis, but could be criticised for being too idealistic.

However, in a comparative study, relaxing selective resource constraints benefits

both architectures equally and therefore does not prejudice either architecture.

The studies in this chapter consider memory differentials in the range between

o to 60 cycles. This range was selected because it represents a spectrum of

different types of memory system. The low end of the range, 5 to 10 cycles,

effectively represents processors integrated with a multilevel cache. The high end

of the range, 60 cycles, models processors that interface directly with the main

memory. Memory differentials of 0 cycles yield performance upper bounds.

Architecture
components

Base
sequential dual single

Floating operation latency (cycles) 5 5 5
Integer/Address op. latency (cycles) 1 1 1
Function Units 1 {4,5} 9
Issue Width 	. 1 {4,5} 9
Register File cc cc cc
Window size 1 30 30
Comm. bus latency N/A 0 N/A
Comm. bus width N/A cc N/A
Prefetch buffer N/A N/A cc
Decoupled Memory N/A cc N/A
Memory/Buffer bandwidth cc cc cc
Buffer access latency (cycles) 1 1 1
Memory differential (cycles) 60 60 60
Memory Ordering N/A wko wko
Dependency analysis perfect perfect perfect
Code Partition N/A static N/A

Table 9.1: Base-line architectural configurations for the dual and single stream
systems

9.1.1 The effect of load data buffer capacity

In Chapter 8 the decoupled memory and prefetch buffer were assumed to be of

unlimited size. However, this assumption could be criticised on the grounds that it

unfairly benefits the dual stream system, allowing it to decouple to an unrealistic

105

Architecture
components

Other Values Considered
dual single

Window size {20,30,40} {20,30,40}
Comm. bus latency {0.1,2,4,6} N/A
Comm. bus width {1,2,00} N/A
Load data buffer capacity 11, 10, 20, 30, 60, 90, 120, 180, 240, 300} N/A
Memory differential (cycles) {0,5,10,20,60} {0,5,10,20,60}
Memory Ordering {sto, sso, wko} {sto, sso, wko}
Code Partition {static,dynamic} N/A

Table 9.2: Sensitivity analysis : architectural configurations for the dual and
single stream systems

degree. This section describes a set of measurements that were made of the

occupancy of the decoupled memory and the prefetch buffer. The occupancy is

defined in terms of the number of concurrent active lifetimes in the decoupled

memory in a given cycle; where a lifetime is defined:

for a decoupled load, as the number of cycles between when an AU sends

an address to the decoupled memory and the DU fetches the result.

• for a decoupled store, as the number of cycles between the store address

being sent to the decoupled memory and it being matched with the corre-

sponding definition.

Table 9.3 shows for the decoupled memory and prefetch buffer, the occupancy

as a percentage of the total execution time. For example, in ADM the occupancy

was less than 291, 330 and 1,307 for 90%, 95% and 99%, respectively, of the total

execution time of the program. Whereas in TRACK, the occupancy of the decou-

pled memory was less than 113 for 99% of the entire execution of the program.

This result is to be expected, as programs with higher levels of parallelism will

have more inflight accesses than programs like TRFD.

Table 9.3 shows a striking difference between the occupancy of the decoupled

memory and prefetch buffer. It shows, that for the majority of programs the

occupancy of the decoupled memory is far in excess of the prefetch buffer. For

example, the column labelled 99% shows that for ADM the occupancy of the

decoupled memory is approximately a factor of 25 times larger than prefetch

buffer. This result is most apparent in highly parallel Ørograms like TRFD.

Highly parallel programs have few losses of decouplings, therefore, in the absence

of any resource constraints, the number of in-flight accesses increases to very large

values.

106

This finding clearly supports the criticism that relaxing the decoupled memory

and prefetch buffer size has skewed the experiments in favour of the dual stream

system. However, this result does not indicate the decoupled memory capacity

actually required to achieve optimal or near optimal performance.

The degree of decoupling between the AU and DU is mainly limited by the

number of loads that can be in-flight at any one time 2 This number is constrained

by the size of the load data buffer, described in Section 7.4. The load data buffer

is therefore the critical resource in the decoupled memory, that determines the

degree of decoupling in a dual stream system

Figure 9.1 and Table 9.4 show the effectiveness of the dual stream system for a

range of load data buffer capacities. The effectiveness is measured by T()/T(n),

where T() and T(n) are the times to execute the program with a load data

buffer of unlimited size and of size ii, respectively. Table 9.4 clearly shows, for

all programs, that a dual stream system with a load data buffer capacity of 120

can achieve greater than 97% of the optimal performance. This is an encourag-

ing result, as it demonstrates that we don't need to build very large decoupled

memories for the dual stream system to outperform the single stream system.

Percentage of Cycles
Program Decoupled_Memory Prefetch Buffer

90 % 95% 99% 90% 1 95% 99%
ADM 291 330 1,307 23 26 54

DYFESM 2,175 3,109 4,946 26 28 32
MDG 212 263 326 23 29 37
QCD2 139 250 603 43 48 57

TRACK 33 59 113 16 21 43
TRFD 35,260 44,252 64,971 22 24 33

Table 9.3: Occupancy of the decoupled memory and prefetch buffer

9.1.2 The effect of code expansion

This study uses the base line architecture to determine the effect of code expansion

and to compare them with the findings in Chapter 8. The speedup measurements

were made over the sequential architecture shown in Table 9.1. The size of the

code expansion introduced by the OCTAVE compiler is shown in Table A.1.

Figures 9.2 to 9.4 show, for three benchmark programs, the graph of super-

scalar speedup when the memory differential (MD) is 5 and 60 cycles. These

2 1n the dual stream system stores only take a single cycle and therefore will not contribute
to the degree of decoupling

107

0.9

0.6

0.7

0.6

0.5
t

LU 	
0.4

0.3

0.2

0.1

0
0 50 	 100 	 150 	 200 	 250 	 300

Load data buffer size (no. of elements)

ADM -
DYFESM -----
FLOS2Q

MOO

QCO2
TRACK -----

TRFO

Figure 9.1: Effectiveness of various load data buffer sizes

three benchmark programs, FLO52Q, MDC and TRFD were selected to illus-

trate, respectively, the behaviour of programs with high, moderate and low levels

of parallelism. The graphs show the law of diminishing returns with larger window

sizes providing lower performance gains. The horizontal lines show the speedup

of the dual stream system for a window size of 20, 30 and 40 instructions (the

window size is shown on each line). The single window size that produces equiv-

alent performance to the dual stream system can be derived by projecting down

to the x-axis from the point of intersection. The ratio of the the single stream

and dual stream window sizes that yield equivalent performance is referred to as

Program Load Data Buffer 	 of entries) _Capacity _(number
1 10 20 30 60 90 120 180 240 300

ADM 0.06 0.46 0.70 0.83 0.97 0.99 1.00 1.00 1.00 1.00
DYFESM 0.05 0.29 0.53 0.66 0.89 0.95 1.00 1.00 1.00 1.00
FL052Q 0.03 0.18 0.35 0.50 0.79 0.91 0.97 0.99 0.99 0.99

MDC 0.06 0.48 0.80 0.95 1.00 1.00 1.00 1.00 1.00 1.00
QCD2 0.06 0.53 0.79 0.92 0.98 0.99 1.00 1.00 1.00 1.00

TRACK 1 0.36 0.91 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
TRFD 0.03 0.20 0.39 0.56 0.87 0.96 1.00 1.00 1.00 1.00

Table 9.4: Effectiveness of various load data buffer capacities

the equivalent window ratio. As expected, for architectures with the same window

size 3 the dual stream architecture outperforms the single stream system.

Table 9.5 shows equivalent window ratio for a range of memory differentials.

The dual stream window size is shown on the column label. The results show

that on average, when memory differentials are 5 cycles, a dual stream system

with window of size 20 would achieve similar performance to a single stream

architecture with a window size 1.6 times larger. At a large memory differential

of 60 cycles the window would have to be 4.2 times larger. Given the quadratic

relationship between issue logic complexity and window size the dual stream

system offers the benefits of higher performance through faster clock speed and

greater reordering.

Table 9.5 also shows that for all programs the equivalent window ratio in-

creases with larger memory differentials. Larger latencies allow greater slippage

between the AU and DU providing a greater degree of reordering between the two

instruction windows. Another emergent trend is that larger window sizes result

in smaller equivalent window ratios. Large single stream window sizes provide

opportunities to utilise the full issue width and reorder operations to a similar

degree as the dynamic slippage on the dual stream system.

Table 9.6 shows the equivalent single window ratio when the single stream

system executes the same number of operations as the dual stream architecture ".

Comparing the results with Table 9.5 it can be seen that there is minimal differ-

ence between the equivalent single window ratio. This leads us to conclude that

the effect of the code expansion introduced by the OCTAVE compiler has little

effect on performance.

9.1.3 Effective communication bandwidth

This section quantifies the effect of inter-unit communication on the findings of

the previous section. Using the base line dual stream architecture, this section

explores issues of bus latency and width between the two units. The results from

this study are shown in Table 9.7. It shows the computed values of equivalent

single window ratio. The column labels show the memory differential.

It can be seen that in the majority of cases the dual stream system still per-

forms better than the single stream architecture. However there are cases such

as MDG, QCD2 and TRFD where the single stream system performs better than

the dual stream architecture. The average values show that for a bus width of

'The AU and DU have the same size of window as the single stream system
'This was the case in Chapter 8, where operations are duplicated on the AU and DU in the

dual stream system, two operations are also executed on the single stream architecture.

109

I word the single stream system outperforms the dual stream architecture when

the bus latency is between 2 to 6 cycles and the memory differential is between 0

to 5 cycles. The reason for this is due to the tradeoff between dynamic reordering

and communication overhead. The large overhead incurred by inter-unit com-

munication can not be offset by the benefits of dynamic reordering between AU

and DU instruction windows; small memory differentials limit the degree of inter-

window reordering. However, when the memory differential becomes greater than

5 cycles the degree of reordering increases and the dual stream system performs

better than the single stream system.

As expected, Table 9.7 also shows that the range in which dual stream ar-

chitecture outperforms the single stream system can be extended by increasing

the bus width to 2 words. For example, in QCD2, when the memory differential

is 5 cycles, a dual stream system only outperforms a single stream architecture

when the bus latency is 1-2 cycles. However, when the bus width is increased to

2 words, this range is increased to 1-4 cycles.

The columns labelled 30 in Table 9.5 effectively show the upper-bound on the

equivalent single window ratio. Comparing these results with Table 9.7 it can

be seen that, for a bus width of 1 word, near optimal results are achieved for

a range of bus latencies from 1 and 2 cycles. For a bus width of 2 words that

range increases from 1 to 4 cycles. It can be anticipated that with technology

permitting multiple processors per chip the communication cost will be between

1 to 4 cycles. In this range it can be seen that on average the effectiveness of the

dual stream system will be unaffected when the bus width is 2 words. For a lower

communication latency of 2 cycles, a bus width of one word would be sufficient.

9.1.4 The effect of memory reordering

Previous implementations of decoupling used a semi-strong ordering of memory

operations [24]. This section examines the effectiveness of this scheme by com-

paring it with strong and weak ordering schemes. These experiments used the

base line architectures for both machines. The dual stream system had a commu-

nication bus width and latency of 1 word and 2 cycles respectively. The results

are shown in Table 9.8; column labels show the memory differential.

The major finding is that the semi-strong ordering significantly reduces the

benefits of the dual stream architecture. For a memory differential of 10 cycles

the speedup of weak ordering is 44% higher than semi-strong ordering scheme.

The semi-strong scheme only proves to be noticeably more effective, than the

strong scheme, at high memory differentials of 60 cycles. Memory differentials

110

of 5 to 20 cycles would be typical of future high performance memory systems.

In this range the dual stream system offers minimal improvement over the single

stream architecture for the STO and SSO schemes.

Comparing the weak and semi-strong ordering schemes we observe three emer-

gent types of program behaviour. In highly parallel programs like ADM, TRFD

and FL052Q the speedup under weak ordering is significantly greater than the

semi-strong scheme. The average speedup of these programs for a memory differ-

ential of 10 cycles is 1.67 and 1.03 for the weak and semi-strong ordering, respec-

tively; representing an improvement of 62%. The moderately parallel programs,

MDG and QCD2, for the same memory differential have an average speedup of

1.22 and 0.99, respectively; representing an improvement of 23%. For TRACK,

with little parallelism, the difference between the schemes is negligible.

There is also clearly no benefit to using decoupling with a strong ordering

scheme.

9.1.5 Dynamic versus static code partitioning

This section compares the effectiveness of a static and dynamic code partitioning

algorithms on the dual stream architecture. The static partitioning is performed

by the OCTAVE compiler. Dynamic partitioning is implemented at run-time by

splitting the code according to the operation type. Integer and address compu-

tations are executed on the AU whilst floating point operations are executed on

the DU. The benefit of the static partitioning algorithm is that it tries to reduce

inter-unit communication at the cost of increasing code size; where a result is

required on both units the compiler may duplicate an operation. Code place-

ment is not based on operation or data type, but on a bi-directional data flow

algorithm that partitions in ways that would be impossible without knowledge

of "future" instruction sequences. The benefit of dynamic partitioning is that it

reduces code expansion but increases the communication traffic between units.

Dynamic partitioning was used in architectures like the ZS-1 [24].

These experiments used the base line dual stream architecture with a bus

latency and width of 4 cycles and 1 word, respectively. Figure 9.5 shows the

speedup of the static over the dynamic schemes. The columns are labelled with

the memory differential.

In general, as memory differential increases, the performance advantage of

static over dynamic partitioning decreases and tends to converge for large memory

differentials. On average the speedup decreases from 1.16 to 1.08 for a memory

'Some expansion still occurs because of operations for communicating results between units

111

differential of 5 to 60 cycles. This is due to the cost of transfers between units

becoming relatively cheaper at larger memory differentials. The benefits of lower

inter unit communication, provided by static partitioning, are reduced and the

effect of the code expansion becomes more significant. This can be witnessed by

the negative gradient of most of the graphs in Figure 9.5.

The major exception is MDG where dynamic partitioning performs better

than static partitioning. This is due to the static scheme increasing the commu-

nication traffic between units; the number of AU to DU and DU to AU transfers

increased by 11% and 31%, respectively. MDG is a program that requires sophis-

ticated compiler techniques to extract it's moderate levels of parallelism [10]. The

OCTAVE compiler only performs intra-procedural analysis when partitioning the

code. This limitation may explain the poor code placement of the static scheme

in this case.

QCD2 shows that even with large code expansion (15%) the static scheme

significantly improves the performance of the dual stream system. The large

volumes of communication traffic between units is the performance bottleneck for

the dynamic scheme. There are respectively, 2.7 and 4.2 times more transfers

from AU to DU and DU to AU using the dynamic scheme.

9.1.6 Speedup and latency hiding effectiveness

This section compares the speedup and latency hiding effectiveness of the dual

and single stream system. The latency hiding effectiveness is a measure of the

sensitivity of the architecture to increases in the memory latency.

These experiments were made with the base line architectures, with the dual

stream system having a communication bus latency and width of 2 cycles and

1 word respectively. To make reasonable comparisons between similar architec-

tural configurations, the single stream system used a window equal in size to the

combined AU and DU window sizes i.e. 60 instructions. The experiments also

considered the effect of the including a bypass mechanism (see Chapter 3) in the

decoupled memory and prefetch buffer. The speedup measurements were made

over the sequential architecture shown in Table 9.1.

Figure 9.6 shows the average speedup as a function of memory differential. In

the key, the yes and no denotes if the architecture includes the bypass mechanism.

It can be seen that the dual stream system is less sensitive to increases in the

memory differential and therefore more effective at hiding latency. At low memory

latencies (0 to 10 cycles) the single stream system has a larger speedup, but its

weaker latency hiding leads to poorer performance when memory differentials are

112

30 	40 	50 	60 	70
	

80 	90 	100
single stream window size

I I 	 I 	 I 	 I 	 I

dual nid=5 -0---

 dual md=60
singie. md=5.:O.. 	-

ws-dfl

-p--- single nid=60 	x....

p

.0 .
St40ws

p

=

--

--

.................
.............

x...
x.

I 	 I 	 I I 	 I 	 I 	 I
0-

20

99

80

70

60

a. 50
V
0)
0

40

30

20

10

greater than 10 cycles.

At large memory latencies the bypass mechanism improves the effectiveness

of both the dual and single stream architectures. However, the dual stream

system profits far more from this optimisation than the single stream architec-

ture. For a memory differential of 60 cycles the dual and single stream average

speedups increase by 69% and 11%, respectively. The bypass mechanism exploits

the temporal locality exposed by reordering operations to hide memory latencies

and reduce memory traffic. The dual stream system can reorder operations to a

greater degree, and is therefore able to uncover more temporal locality than the

single stream architecture.

FLO52Q

Figure 9.2: FL052Q speedup

9.2 Summary

This chapter has explored some important regions in the design space of a dual

stream decoupled architecture and analysed its effectiveness at reducing instruc-

tion issue logic complexity. Comparative studies have been made between a dual

and single stream architecture.

One of the significant results from this chapter is that for the dual stream

system it is possible to build a load data buffer of a realistic size to achieve near

113

MDG
80

70

60

50

0.

-t 	40

30

20

10

0-
20

dual md=5---e--
- 	 duaJ-rnd60

- D -- - 8ingle md=5 	-El--

single md=60 -e

ws=40 -

ws=30

Ws=20 -

'K4Q-- -

-

ws=2fl 	- 	
- 	 X 	- -- 	 -

I 	 I 	 I I 	 I

30 	40 	50 	60 	70 	80 	90 	100
single stream window size

Figure 9.3: MDG speedup

optimal performance. It has been found that a dual stream system with a load

data buffer of 120 elements can achieve greater than 97% of the performance of

the same architecture with an unlimited buffer.

It has also been shown that when memory differentials are greater than 20

cycles the dual stream architecture performs better than a single stream system

of twice the individual window size of a decoupled unit. For memory differentials

of between 5 to 20 cycles this factor decreases to between 1.4 to 1.8 times larger,

when the communication bus latency is a realistic value of 2 cycles. This factor

may actually be larger because savings in reordering logic will reduce delays and

allow faster clock speeds.

The results have shown that the code expansion, introduced by the complier,

has little influence on the effectiveness of decoupling. A more significant issue is

the communication bandwidth between units. It has been found that at small

memory differentials (1-5 cycles) and large bus latencies (2 to 6 cycles) between

AU and DU, the benefits of decoupling are completely removed. The experi-

ments have identified effective bus width and latencies that achieve near optimal

performance. -

Memory reordering has been shown to be the most critical design issue for the

dual stream architecture. Interestingly, the semi-strong ordering, which is similar

114

TRACK

11

10

9

8

7

6

5

4

3

0

e

0.

V
0
0
0.
(0

dual md=5 -i---
dual md=60 --i---
single md=5 -e--•

single md=60 *---

20 	30 	40 	50 	60 	70 	80 	90 	100
single stream window size

Figure 9.4: TRACK speedup

to a scheme used in previous implementations of decoupling [24], was found to

severely limit performance at lower memory latencies.

There has been no known published work that has compared dynamic and

static partitioning algorithms for a decoupled machine. It has been shown that

in general the static partitioning scheme performs 16% better than a dynamic

scheme that partitions by type.

115

Speedup of static over dynamic partition (bI=4bw=1)

0.

0
0
0
0.
Co

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0.9

OR

ADM -e---
DYFESM --
FL0520 9

MDG -*--
QCD2

-TRACK - ---
TRFO---

Average --*---

- -----I- --------------- *

0.

t
0
0
0.
Co

10 	 20 	 30 	 40 	 50
memory differential (cycles)

Figure 9.5: Speedup of static over dynamic code partition

Average speedup

I

{single ,no} -0--

{single yes} --1----

(dual,no) -0---

(dual,yes) --x----

0 	 10 	 20 	 30 	 40 	 60 	 60
memory differential (cycles)

Figure 9.6: Average speedup of baseline dual and single stream systems

0

60

55

50

45

40

35

30

25

20

15

In

116

program Equivalent single window ratio
md=0 md=5 md=10

20 30 1 	40 20 30 40 20 30 40

ADM 1.3 1.2 1.1 1.7 1.6 1.4 2.0 1.9 1.7
DYFESM 1.3 1.2 1.0 1.7 1.6 1.4 2.1 1.9 1.6
FL052Q 1.3 1.2 1.2 1.7 1.6 1.5 2.1 1.9 1.8
TRFD 1.3 1.2 1.0 2.0 1.9 1.5 2.6 2.5 2.0
MDG 1.2 1.1 1.1 1.5 1.4 1.4 1.7 1.7 1.6
QCD2 1.1 1.0 0.8 1.3 1.1 1.0 1.5 1.3 1.3

TRACK 1 	1.1 1.0 0.9 1.3 1.2 1.0 1.5 1.3 1.2

Average 1 	1.2 1.2 1 	1.0 1.6 1 	1.5 1 	1.3 1.9 1 	1.8 1 	1.6

program Equivalent single window ratio
md=20 md=60

20 30 40 20 30 40
ADM 2.8 2.4 2.2 4.4 3.7 3.1

DYFESM 2.9 2.6 2.1 4.7 3.5 2.8
FLO52Q 2.9 2.6 2.4 5.3 4.7 4.1
TRFD 3.8 3.5 2.8 5.9 4.3 3.4
MDG 2.1 2.0 1.9 2.6 2.4 2.5
QCD2 1.9 2.0 2.1 3.8 3.2 2.7

TRACK 1.8 1.6 1.4 1 	2.6 2.1 1.9
Average 2.6 2.4 2.1 1 4.2 3.4 2.9

Table 9.5: Equivalent single window ratio without code expansion

program Equivalent single window ratio
md=0 md=10 md=20 md=60

20 30 40 20 30 1 	40 20 	1 30 1 	40 20 	1 30 40

ADM 1.3 1.3 1.2 2.1 1.9 1.8 2.8 2.6 2.3 4.6 3.8 3.1

DYFESM 1.3 1.2 1.0 2.1 2.0 1.8 2.9 2.7 2.2 4.7 3.6 2.9

FL052Q 1.3 1.2 1.2 2.1 2.0 2.0 2.9 2.7 2.5 5.5 4.8 4.1

TRFD 1.4 1.3 1.1 2.7 2.7 2.2 3.9 3.5 2.8 5.8 4.3 3.3
MDG 1.4 1.3 1.2 1.9 1.8 1.8 2.2 2.1 2.1 2.8 2.6 2.4

QCD2 1.3 1.1 1.0 1.7 1.5 1.4 2.0 2.2 2.2 3.9 3.3 2.8

TRACK 1.2 1.1 1.0 1.7 1.6 1.4 2.1 1.9 1.9 3.0 2.9 2.4

flAverage 	11 1.3 1 1.2J1.1J 2.0 1.9 1.8ff 2.7 1 	2.5 1 	2.2 4.3 1 3.6 3

Table 9.6: Equivalent single window ratio with code expansion

117

Program Bus Equivalent single window ratio
Bus width =1 Bus width = 2 Latency

(cycles) . 0 1.i 10 .i 60 0 1 5 1 10 1 20 1 60
ADM 1 1.2 1.5 1.9 2.4 3.7 1.2 1.5 1.9 2.4 3.8

2 1.2 1.5 1.9 2.4 3.7 1.2 1.5 1.9 2.4 3.7
4 1.1 1.5 1.8 2.4 3.6 1.2 1.5 1.8 2.4 3.7
6 1.0 1.4 1.8 2.4 3.6 1.1 1.5 1.8 2.4 3.6

DYFESM 1 1.2 1.6 1.9 2.6 3.5 1.2 1.6 1.9 2.6 3.5
2 1.2 1.6 1.9 2.6 3.5 1.2 1.6 1.9 2.6 3.5
4 1.2 1.6 1.9 2.6 3.5 1.2 1.6 1.9 2.6 3.5
6 1.1 1.6 1.9 2.6 3.5 1.1 1.6 1.9 2.6 3.5

FL052Q 1 1.2 1.6 1.9 2.6 4.6 1.2 1.6 1.9 2.6 4.7
2 1.2 1.5 1.9 2.5 4.6 1.2 1.6 1.9 2.6 4.7
4 1.1 1.4 1.8 2.4 4.5 1.2 1.5 1.9 2.5 4.6
6 1.0 1.3 1.7 2.3 4.3 1.1 1.5 1.8 2.5 4.6

TRFD 1 1.2 1.9 2.5 3.5 4.3 1.2 1.9 2.5 3.5 4.3
2 1.2 1.9 2.5 3.5 4.3 1.2 1.9 2.5 3.5 4.3
4 1.2 1.9 2.5 3.5 4.3 1.2 1.9 2.5 3.5 4.3
6 1.2 1.8 2.5 3.4 4.3 1.2 1.8 2.5 3.4 4.3

MDG 1 1.1 1.4 1.6 1.9 2.4 1.1 1.4 1.6 1.9 2.4
2 1.0 1.3 1.5 1.9 2.4 1.0 1.3 1.6 1.9 2.4
4 0.8 1.0 1.3 1.7 2.3 0.9 1.2 1.4 1.8 2.3
6 0.6 0.8 1.0 1.4 2.2 0.8 1.1 1.3 1.7 2.3

QCD2 1 0.9 1.1 1.3 1.9 3.2 0.9 1.1 1.3 1.9 3.2
2 0.8 1.0 1.2 1.7 3.2 0.9 1.1 1.3 1.9 3.2
4 0.7 0.8 1.0 1.3 3.0 0.8 1.0 1.1 1.7 3.2

11

6 0.6 0.7 0.8 1.1 2.7 0.7 0.9 1.0 1.4 3.1
TRACK 1 1.0 1.2 1.4 2.1 0.9 1.1 1.2 1.5 2.1

2 0.9 1.1 1.3 2.0 0.8 1.0 1.2 1.4 2.0
4 LO.5 0.8 0.9 1.2 1.9 0.7 0.9 1.0 1.3 1.9
6 0.6 0.8 1.9

Average 1 1.1 1.4 1.8 2.3 3.4 1.1 1.5 1.8 2.3 3.4
2 1.1 1.4 1.7 2.3 3.4 1.1 1.4 1.8 2.3 3.4
4 0.9 1.3 1.6 2.2 3.3 1.0 1.4 1.7 2.3 3.4
6 0.8 1.2 1.5 2.0 3.2 0.9 1.3 1.6 2.2 3.3

Table 9.7: Equivalent single window ratio for various bus and memory latencies

Program Access order SpeeduD____
0 5 10 20 60 scheme

ADM wko 1.09 1.25 1.39 1.60 2.03
sso 0.96 0.99 1.04 1.15 1.56
sto 1.00 1.00 1.01 1.01 1.18

DYFESM wko 1.09 1.30 1.46 1.73 2.32
sso 1.00 1.01 1.01 1.01 1.42
sto 1.00 1.01 1.01 1.01 1.01

FL052Q wko 1.11 1.38 1.67 2.17 3.60
sso 0.99 1.03 1.08 1.21 1.95
sto 1.00 1.00 1.00 1.00 1.07

MDG wko 0.98 1.19 1.35 1.56 1.85
SSO 0.87 0.92 0.97 1.05 1.30
sto 1.00 1.00 1.00 1.01 1.02

QCD2 wko 0.90 0.99 1.09 1.25 1.55
sso 0.89 0.94 1.01 1.10 1.27
sto 0.91 0.93 0.95 0.97 1.15

TRACK wko 0.96 0.99 1.01 1.03 1.06
550 0.94 0.98 0.99 1.01 1.03
sto 0.96 0.99 1.00 1.01 1.02

TRFD wko 1.23 1.73 2.16 2.85 3.44
sso 1.00 1.00 1.00 1.00 1.78
sto 1.00 1.00 1.00 1 	1.00 1.01

Average wko 1.05 1.26 1.44 1.74 2.26
550 0.95 0.98 1.01 1.07 1.47
sto 0.98 0.99 1.00 1 	1.00 1.06

Table 9.8: Speedup of the dual over the single stream system for various access
ordering schemes

119

Chapter 10

Conclusions

This thesis is the first known study into the effectiveness of out-of-order decou-

pled superscalar architectures in achieving the objective of increasing ILP while

reducing issue logic complexity. The effectiveness of decoupling at achieving this

objective has been analysed through the perspective of a limitation study. This

study has been performed by focusing on those design issues that determine the

degree of reordering and relaxing other architectural constraints.

This thesis' narrative has been developed in the following way. Chapters 5

and 6 have provided the groundwork to the thesis, developing an understanding

of the behaviour and characteristics of the out-of-order decoupled architectures.

Chapters 7, 8 and 9 have built on this work to present the key findings of the

thesis.

In Chapter 1 it was postulated that out-of-order decoupled superscalar archi-

tectures could, through control and access decoupling provide a solution to the

problems caused by large memory latencies, issue logic complexity and control

dependencies. This chapter summarises the thesis findings in relation to this

original postulate.

During the course of this research it has been necessary not only to review the

work in relation to its experimental findings, but also to consider and respond to

the technological trends that have taken place during the period. Section 10.1

summarises the main original findings in the thesis and Section 10.2 situates

the work in the context of emerging technological trends. Finally, Section 10.3

outlines future work suggested by the thesis.

10.1 Thesis findings

The main findings from this thesis are as follows:

120

For large issue widths an access decoupled machine is less sensitive to in-

creases in memory latency than a single stream out-of-order superscalar

architecture.

A single stream out-of-order superscalar architecture requires an instruction

window 2.5 to 5 times larger than a decoupled machine to achieve equivalent

performance.

Memory access reordering is the most critical design issue for decoupled

architectures. A memory ordering scheme similar to one used in certain

previous implementations of decoupling severely limits performance at low

memory latencies.

Load data buffers in the decoupled memory, used to support out-of-order

accesses in the dual stream system, can be built at a realistic size to achieve

near optimal performance.

The static partitioning algorithm of the OCTAVE compiler performs 16%

better than a dynamic scheme that partitions by type, alone.

Communication bandwidth has a significant effect on the performance of the

decoupled architecture. At low memory latencies the benefits of decoupling

are completely removed.

The results from points 1 and 2 are only marginally effected by code expan-

sion.

For the functional decomposition used in the OCTAVE compiler control de-

coupling does not sufficiently utilise resources to merit dedicated hardware

support. Control decoupling is therefore not considered a practical tech-

nique for removing control dependencies with this partitioning algorithm.

Balanced configurations of AU and DU that ensure optimal throughput

have been identified.

In summary, these findings show that the dual stream system through dynamic

reordering within relatively small instruction windows provides one possible so-

lution to the problem of issue logic complexity and latency hiding and represents

a viable alternative to a single stream out-of-order superscalar architecture - at

least for the applications considered in this thesis. The significant advantage of

the dual stream system is that for memory differentials greater than 20 cycles it

121

can achieve a a higher speedup than a single stream system of twice the individual

window size of a decoupled unit. An explanation of this effect has been described

through the concept of the Effective Single Window. In the following section, this

thesis discusses how these findings relate to existing research.

10.2 Related work

Certain trends and developments during the last few years lend support to the

use of decoupling in superscalar architectures. The rest of this section discusses

these issues and relates the contributions of this thesis to these developments.

The gap between processor and memory speeds is still growing exponentially

which means we could hit the memory wall within the next decade [89]. Intelligent

DRAM (IRAM) has been proposed as a way of reducing memory access times [28]

by merging the processor and DRAM on a single chip. This has the benefit of

increasing memory bandwidth and reducing memory latency. The disadvantage

of TRAM is the reduction in speed of the processor logic. However, with it's high

bandwidth and low latency TRAM could service the multiple accesses of a large

issue width decoupled processor; the high ILP of such an architecture could then

compensate for the slower logic speed.

Latency hiding technology is as critical to high performance architectures in

1999 as it was when this research began in 1992. This thesis has shown, through

a limitation study (see Chapter 5), that a decoupled architecture is sensitive to

large memory latencies, but when combined with an optimised decoupled memory

sensitivity is almost completely removed . Kurian, in [55], showed that decou-

pling was more effective when used with a data cache. However, Kurian's study

assumed a non-interleaved memory and did not consider the effects of reordering

or issue width on performance.

The use of access decoupling has become increasingly more prevalent in su-

perscalar architectures. For example, a small degree of decoupling can be seen

in the use of non-blocking loads for lock-up free caches. Most high performance

machines can support between 4 to 8 outstanding loads to a first level cache. A

higher degree of decoupling can be seen in the PA-RISC architectures [27]. They

have a separate instruction window for memory operation and a dynamic buffer

for reordering accesses.

Superscalar architectures are being developed to support larger issue widths

and more aggressive operation reordering. However, extracting higher levels of

'However, this was in the case where all resource constraints were relaxed and only data
dependencies were enforced

122

ILP increases issue logic complexity introducing delays critical to processor clock

speeds. To solve this problem a number of designers have proposed the use of

decentralised issue logic. Palacharla et al. [64] proposed a dual clustered super-

scalar processor that simplified issue logic by using multiple FIFO queues in each

cluster. Centralised steering logic was used to pass decoded and renamed instruc-

tions to the clusters. Issue logic was simplified by only operations on the heads of

the queues checking for operand availability. The results from this paper showed

that a dual clustered architecture, with a window of size n, would suffer a per-

formance degradation of 12% over a architecture with window size 2n. However,

the improvements in clock speed would result in an average performance increase

of 16% for the smaller window machine. Clustering has been used in the Alpha

21264 to reduce the number of read ports to the integer register file. However the

21264 still uses a single integer instruction window to reorder operations.

Farkas et al. [35] describes a multicluster architecture that reduces cycle time

by employing distributed register files, instruction windows and function units.

However, the decode and register renaming is still centralised. The architecture

is found to consume more processor cycles than a single cluster machine, but the

increase is not sufficient to offset the benefits of a faster clock speed. Farkas com-

ments that the multicluster is similar to a decoupled architecture, but requires

that inter-unit data transfers be performed in order. This is more conservative

than it needs to be. A mechanism to convey the ordering of operations between

units could be implemented in a similar way to the scheme described in Sec-

tiôn 7.4. Instructions that moved data between units could be tagged with a

sequence number and sent to the target unit. The target unit could then use the

tag to wakeup the appropriate operation in its private instruction window.

Decentralised issue logic has also been proposed in the multiprocessor archi-

tectures like the Multiscalar [75], PEW [51] and MISC [81]. In the Multiscalar

architecture [12, 75, 78] an on chip multiprocessor increases ILP by speculatively

executing along a single control flow path in a task graph. Tasks are distributed

centrally, but the decode, fetch and issue functions are all performed by the

individual processors. The Multiscalar architecture supports a common physi-

cal register file, decentralised reordering logic, and provides queues for fast data

transfer between processing elements.

The PEW architecture [51] uses centralised decode and renaming logic, but

task distribution is finer grained than in the Multiscalar architecture. PEW

dispatches individual instructions to processors using an heuristic that ensures

dependent operations are executed on the same processor. The results confirm

123

the findings of Palacharla et al. [64] that decentralised reordering windows can

achieve comparable performance to a single window architecture. This paper

does not however keep the number of function units constant in all cases. The

author compares an architecture with a 64-instruction window and 8 function

units against 2 processors with window size 16 and 8 functions units. This means

the latter has a total issue width of 16.

The MISC machine is a 4 processor decoupled architecture which, like the

Multiscalar architecture, uses decentralised fetch, decode and renaming logic. ILP

extraction and code partitioning are, however, performed statically by the com-

piler. Each processor is a single issue in-order processing unit that communicates

values through the use of queues.

This thesis complements the work on decentralised reordering logic by con-

sidering a functional decomposition of the program. Through the functional de-

composition, dynamic slippage and latency tolerance mechanisms, a decoupled

architecture has been shown to produce higher performance than an architec-

ture with an instruction window twice the size. This result extends the work of

previous studies [64, 51] which showed a small degradation in performance. The

explanation for the additional performance is due to dynamic slippage that allows

the decoupled architecture to look further ahead in the instruction stream. This

concept has been explained through the effective single window.

Tyson's work on the MISC architecture has strong parallels with this thesis.

It is therefore necessary to discuss his work in detail to show this thesis' original

contribution. Tyson showed that a 4 processor, 1-way in-order issue decoupled

architecture outperforms a 4-way in-order issue Alpha 21164. This thesis extends

Tyson's findings by showing that a decoupled architecture can outperform a single

stream superscalar architecture.

Tyson also showed the importance of memory reordering, but this was in

relation to improving the performance of the MISC cache; all memory operations

were issued to the cache in program order.

Smaller silicon feature sizes mean that a single chip multiprocessor could be

built within the next few years [44, 29]. Inter-processor communication will all

be on-chip, reducing the cost of synchronisation and value passing. A single chip

decoupled architecture could therefore be possible in the near future, reducing

the effect of inter-unit communication on performance. Point (6) describes how

important transfer cost was to the performance of the decoupled architecture. A

single chip decoupled architecture would have a low transfer cost between units

removing one of the limitations to its performance.

124

Research into cache technology is showing interesting results into their effec-

tiveness at utilising on-chip resources effectively. Huang and Shen [46] have shown

that current superscalar architectures have sufficient bandwidth and memory but

inefficient use of resources means that over 50% of values loaded into a cache

are never used. The need for improved cache management is also discussed by

Burger [13]. Burger shows that the efficiency of a cache is less than 20%; where

efficiency is measured as the fraction of the cache that holds live data. The paper

shows that with a near optimal cache management scheme bandwidth can be

greatly reduced even with small amounts of memory (128-512 bytes). This study

argues for the use of decoupling as a technique for reducing memory latency and

compiler techniques for optimising cache utilisation.

Decoupling could be used as integral part of a cache management scheme.

In such a scheme decoupling would provide the lookahead mechanism to allow

specialised hardware, situated between the cache and the address unit, to optimise

cache performance. Hardware to perform this type of function is already being

discussed in the literature. Access Combining [86] is a technique used to combine

multiple accesses to a single cache line into a single access with multiple offsets.

The technique is used in multi-ported caches to provide multiple accesses per

cycle. Memory reordering, as shown in [81], can be used to ensure that accesses

can be dispersed across the cache banks to reduce conflicts. Another technique,

known as Stream Controllers [33, 601, reorders accesses to take advantage of the

nbn-uniform DRAM access times.

• Having discussed this thesis findings in relation to emerging technological

trends this thesis concludes with a discussion of suggested future work.

10.3 Future work

One of the significant findings from this thesis has been that through out-of-order

decoupled execution we can achieve higher performance than a single stream

stream system with a window size twice the size of one of the decoupled units.

This is a stronger claim than has been made in other studies [51, 64] into systems

with decentralised issue logic. They have measured small reductions in IPC, but

have rightly assumed that this would be compensated for by reductions in issue

logic complexity. However, the central requirement for allowing the AU and DU

to slip to a large degree is that the decoupled memory be able to support a large

number of inflight loads. Section 7.4 proposed a mechanism for supporting this

requirement and Section 9.1.1 showed that the size of this buffer did not have to

125

be excessively large to achieve comparable performance to a load data buffer of

unlimited size.

These results have, however been determined without a detailed modelling of

the entire decoupled and main memory system. Future work should therefore con-

sider investigating the effects of factors such as bank conflicts, restricted memory

bandwidth and variable memory latencies. It can be speculated, that the impact

of these factors will be to increase the required size of the load data buffer. It

will be important for future work to determine the extent of this increase.

126

Appendix A

Program Characteristics

This appendix shows a breakdown of the operations executed on the AU and DU

for the dual stream system. Table A.1 gives the code expansion over a single

stream architecture. It shows the percentage increase and a breakdown of the

increase by integer, float and data transfers operations. The average increase is

9.2 % of which on average 55%, 20% and 25% is due to additional integer, float

and transfer operations, respectively. Table A.2 shows the percentage breakdown

by type and decoupled unit. The value in brackets shows the percentage as a

total of all operations executed on the decoupled architecture. Table A.3 shows

the absolute count of operations executed in each of the benchmark programs.

Frog. Total
Increase (%)

Breakdown of Expansion
Ints. (%) Fits (%) Trans. (%)

ADM 7 70 14 16

DYFESM 3 79 11 10

FLO52Q 4 58 23 19

MDG 14 12 15 73

QCD2 15 62 15 23

TRACK 20 8 65 27

TRFD 	1 1 2 96 1 	0 4

Table A.1: Percentage increase in the number of operations executed by the dual

stream system

127

Prog. Op AU DU
Type ops. loads stores total ops. loads stores total

ADM fits 3 (1) 2 (1) 1 (0) 6 (3) 70 (23) 26 (15) 23 (13) 89 (50)
_________ juts 91 (39) 1(0) 3(1) 94 (41) 11 (6) 0(0) 0(0) 11 (6)
DYFESM fits 0 (0) 0 (0) 0 (0) 1(0) 37 (22) 38 (22) 20 (12) 95 (56)

___________ ints 96 (40) 1 (0) 2 (1) 99 (41) 5 (3) 0 (0) 0 (0) 5 (3)
F'L052Q fits 4 (2) 3 (1) 1(0) 8 (3) 41 (24) 34 (20) 18 (10) 93 (53)

juts 92 (40) 0 (0) 0 (0) 92 (40) 6 (4) 0 (0) 0 (0) 7 (4) _M________
DC fits 13 (6) 7 (3) 0 (0) 20 (9) 38 (21) 23 (12) 19 (10) 80 (44)

_________ ints 78 (35) 0(0) 2(1) 80 (36) 20 (11) 0(0) 1(0) 20 (11)
QCD2 fits 6 (3) 0 (0) 1 (1) 8 (4) 43 (22) 17 (8) 14 (7) 74 (37)

_________ ints 86 (43) 2(1) 5(2) 92 (46) 18 (9) 4(2) 4 (2) 26 (13)
TRACK fits 14 (7) 10 (6) 6 (3) 30 (16) 37 (17) 23 (11) 19 (9) 79 (36)

___________ juts 68 (37) 1(0) 1(1) 70 (38) 17 (8) 1(0) 2 (1) 21 (9)
TRFD fits 0 (0) 0 (0) 0 (0) 0 (0) 37(23) 38 (23) 21 (13) 96 (59)

ints 98 (39) 0(0) 2(1) 100 (39) 3 (2) 0(0) 1 (0) 4 (2)

Table A.2: Operation breakdown as percentages

Prog. Op _ 	 AU DU
Type ops. loads stores total 11 	ops. loads stores total

ADM fits 1.130 0.775 0.323 2.228 19.465 12.613 11.222 43.299
juts. 33.615 0.189 1.041 34.845 5.271 0.046 0.129 5.446

__________ tot. 34.744 0.965 1.363 37.072 24.736 12.658 11.351 48.745
DYFESM fits 0.019 0.080 0.085 0.181 10.072 10.268 5.578 25.918

juts. 18.481 0.232 0.381 19.094 1.433 0 0 1.437
__________ tot. 18.501 0.308 0.466 19.275 1.151 10.269 5.582 27.356

FLO52Q fits 1.000 0.954 0.208 2.161 15.704 12.949 6.732 35.385
juts. 26.202 0 0.065 26.267 2.413 0 0.056 2.470

________ tot. 27.202 0.953 0.273 28.429 18.117 12.949 6.788 37.855
MDC fits 7.747 3.875 0.003 11.626 26.886 16.014 13.441 56.342

juts. 44.851 0.073 0.950 45.875 13.817 0.128 0.561 14.506
________ tot. 52.599 3.949 0.953 57.501 40.704 16.142 14.002 70.849
QCD2 fits 3.467 0.097 0.630 4.194 24.064 9.298 7.959 41.322

juts. 47.922 0.921 2.538 51.382 9.972 2.391 2.501 14.865
tot. 51.389 1.018 3.168 55.577 34.036 11.690 10.461 56.188

TRACK fits 1.394 1.078 0.601 3.074 3.173 1.988 1.674 6.836
jnts. 7.000 0.055 0.141 7.197 1.507 0.077 0.207 1.792
tot. 8.394 1.133 0.743 10.271 4.680 2.066 1.882 8.628

--T

RFD RFD fits 0.018 0 0 0.018 30.504 31.153 17.420 79.078

juts. 52.015 0.205 0.828 53.049 2.231 0.199 0.518 2.950
tot. 1 52.034 0.205 0.828 53.068 32.736 31.352 17.939 82.029

Table A.3: Absolute count of operations (x10 6)

128

Appendix B

Derivation of fi for Two Cache
Models

This appendix shows how 0 can be derived for a write back and write through

cache. The derivation assumes a fully interleaved pipelined main memory. After

an initial access time of CM cycles a word can be returned every cycle. The

derivations are presented here to illustrate how 0 can be used for different latency

hiding techniques. We use the equation for 0 given by

CM
where

SI = 8c(pcm)

and

= (1— W)[&rHr + (1 - Qr)M r] + w[aH + (1 -

B.1 0 for a write back cache

For a write allocate policy the cost functions H r , M r , H. and M are given by

H r = Cm
H W = Cm

Mr = (1 -- wb)CM+(1+wo)(b - 1)
- M = (1+wb)CM+(1+wo)(b-1)

substituting into the above equation for we get

/38C = Sc - [(1 - w) [arcm + (1 - ar)[CM + wbCM + (1 + w6)(b - 1)]]

129

+W[CEwCrn + (1 - aW)[c J f + tUbCzt,f + (1 + w6)(b - 1)]]] + Cm

= Sc - [(1 - w)[—(1 - a r)cm + (1 - Or)CM + (1 - ar)[wocM + (1 + wo)(b

- o)c,,2 + (1 - aW)c,f + (1 - a)[iuoci + (1 + wb)(b -

= Sc - [(1 - w)(1 - ar)Sc + w(1 - c1)Sc]

—[(1 - w)(1 - cx,) +w(1 - &W)][1v6c!Vf + (1 + VJb)(b - 1)}

= IjideaIo - (1 - Ijideal)(wc + (1 + w6)(b - 1))

/3 = pideal - (1 - j3ideat)

(wocvf + (1 + wb)(b —1))
JC

B.2 ,@ for a write through cache

For a no write allocate policy the cost functions H r , M r , H. and M are given by

H, = Cm
H,, = c7,+Sc
M, 	c(+(b-1)
M = CM

substituting into the above equation for 3 we get

/JSc = Sc—[(1—w)[c,c,+(1—a4(c,,+(b-1))]

+w[aw(cm + Sc) + (1 - cxW)cM]I + C.

= Sc - [(1 - 	- cir)cyn + (1 cxr)civ, + (1 - ar)(b - 1)]

- a)c. + aL,Sc + (1 - a)cM]]

= 6c— (1—tv)(1—a r)Sc— (1w)(1a r)(b1)

—w(1 - a)5c - wcxSc

(1—zv)(1—ct r)(b-1)
/3 = /Jideal -
	

- 	 Sc

130

Appendix C

Simulation Sampling

Section 5.3.4 showed that a full execution of the program is sometimes neces-

sary to capture all of a program's behaviour. However, the experimental run

time for a full simulation of a program could be as long as 12 hours, making it

prohibitively expensive for detailed studies of decoupled machines. To solve this

problem a sampling technique was developed that reduced experimental execu-

tion time while capturing different aspects of program behaviour. The technique

worked by identifying sampling sections in the program that needed to be simu-

lated and then switching the simulator on and off between these sections.

Each program was run to completion and the number of loads executed per

100,000 program statements were counted. The load count profiles for each of the

programs is shown in Figures Cl to C.7. It can be observed that the profiles show

in most cases different regions of periodic behaviour For example, in Figure C.5

the graph for QCD2 shows three distinct regions. The sampling technique works

by switching the simulator on for each distinctive region but only for the length

of the periodic behaviour; this length is known as the sampling section. Table C.l

shows the sampling sections for each of the programs. The column labelled sam-

pled sections shows the range of program statements for which the simulator was

switched on. For example, in ADM the simulator was switched on and off when,

respectively, the 42nd and 56th million program statement was reached.

Other modelling techniques reduce experiment execution times by a continu-

ous simulation of the first N operations (where N is some large number) or ensure

that the distribution of simulated operations is the same as the whole program.

However neither of these solve the problem of modelling the varying behaviour in

a program. To evaluate the benefits of the sampled simulation, a comparison was

made with a full and continuous simulation. Since one of the main interests is

latency hiding, a sensible comparative measurement is the average perceived load

latency. We also want to make sure that the the ratio of AU to DU operations

131

I I

is comparable to the full simulation. The simulations were run with 60 cycle

memory differential.

Table C.2 shows the program characteristics for the different types of simu-

lation; F, 8, C denotes a full, sampled and continuous simulation, respectively;

the number in brackets denotes the factor by which the number of statements

executed in the continuous simulation is greater than the sampled. It can be seen

that in programs with complex behaviour, QCD2 and TRACK, the sampling

technique provides considerable benefits over a continuous simulation approach.

For these programs sampling is shown to be within 6% of the T1 of the full simu-

lation at a lower execution cost. In QCD2 a 300% increase in execution time for

a continuous simulation fails to yield an F11 value better than the sampled run.

All the experiments in this section were run on the dual stream architecture

(see Figure 3.2) with unlimited resources and a floating point latency of 5 cycles.

ACiá

I I

I.

Figure C.1: ADM profile of load opera- Figure C.2: DYFESM profile of load op-
tions 	 erations

N. S

/
4'

/

Figure C.3: FLO52Q profile of load op- Figure C.4: MDC profile of load opera-
erations 	 tions

132

90000

80000

70000

60000

C

50000

t 40000
0
z

30000

20000

10000

0
0

QCD2

Decoupled loads

2e+07 	4e-i-07 	6e-i-07 	8e+07 	1 e+03 	1.2e+08 1.4e+08 1.6e+08 1.8e+08
No of statements

Figure C.5: QCD2 profile of load operations

TRCP(

I00000

I6o

I4ao

1 120000
00000

I
10000

00000

40000

10000

I
I

Figure CM: TRFD profile of load opera- Figure Cl: TRACK profile of load op-
tions 	 erations

133

Program No. of Sampled sections
Section From (xlOb) To (x106)

ADM 1 42 56
DYFESM 1 20 26.64
FL052Q 1 6 7.4

2 35 37
3 65 69

MDG 1 19.5 22.7
QCD2 1 10 12.3

2 30 32.3
3 60 64.6
4 90 94
5 122 128

TRACK 1 3 4.7
2 9 11
3 36 37

TRFD 1 40 60

N

Table C.1: Program sampled sections

134

Program Length p/I Operations _(x106) Time
of sim. (cycles) AU (%) DU (%) Loads (%) (hrs:mins)

ADM F 42 754.1 (43) 990.3 (57) 276.7 (16) 13:40
S 43 37.1 (43) 48.7 (57) 13.6 (16) 0:50

C (x 1) 41 37.0 (43) 48.7 (57) 13.6 (16) 0:40
DYFESM F 51 544.8 (41) 772.6 (59) 298.8 (23) 10:30

S 51 19.3 (41) 27.4 (59) 10.6 (23) 0:27
C (x 1) 50 19.3 (41) 27.2 (59) 10.5 (23) 0:25

FL052Q F 36 941.7 (43) 1254.5 (57) 462.6 (21) 19:40
S 36 28.4 (43) 37.9 (57) 13.9 (21) 0:36

C (x 1) 36 27.8 (44) 35.1 (56) 12.9 (20) 0:36
MDG F 39 2963 (38) 4917 (62) 1294 (16) 13:40

S 40 45.5 (38) 77.1 (62) 20.1 (16) 0:25
C (x 1) 41 49.5 (38) 82.1 (62) 21.6 (16) 0:21

QCD2 F 49 484.0 (50) 489.6 (50) 110.3 (11) 2:00
S 49 55.6 (50) 56.2 (50) 12.7 (11) 0:27

C (x 1) 44 47.3 (47) 52.6 (53) 12.5 (13) 0:13
C (x 2) 44 94.7 (47) 105.9 (53) 25.3 (13) 0:26
C (x 4) 44 189.5 (47) 213.3 (53) 51.2 (13) 0:53
C (x 8) 48 356.5 (48) 386.6 (52) 93.1 (13) 1:30

TRACK F 51 117.2 (48) 125.5 (52) 37.7 (16) 2:20
S 54 10.3 (54) 8.6 (46) 3.2 (17) 0:17

C (x 1) 59 12.3 (61) 7.9 (39) 4.1 (20) 0:13
C (x 2) 58 23.1 (58) 16.4 (42) 7.5 (19) 0:25
C (x 4) 56 42.6 (55) 35.2 (45) 13.6 (17) 0:55
C (x 8) 52 80.5 (50) 81.3 (50) 25.8 (16) 1:23

Table C.2: Program characteristics for different length of simulation (F=full,
S=sampled, C=continuous)

135

I

Figure D.2: DYFESM MD=60

FL0820

Figure D.1: DYFESM MD=O

FL0520

I
I
I

ft 	S

is

14

—
a.a

Figure D.4: FL052Q MD=60 Figure D.3: FL052Q MD=O

Appendix D

Balanced Configurations :
Additional Data

This appendix presents the data for the benchmark programs not shown in Chap-

ter 6. The graphs show the variation in normalised speedup for different configu-

rations of AU and DU issue width.

- 	 DYFESM

136

I

I

-
— —--

2.1 ---CT 0

a2 	 .

4-.

2 3 I 	 5 	 0 	 7 I 	 9

do.5

I
	

I
I
	

1

Figure D.6: MDC MD=6

IMUS

07

TT

Figure D.5: MDG MD=U

I I
I

MUG

Figure D.7: TRACK MD=

TRFD

0-I

—1

Figure D.8: TRACK MD=60

TAFO

do-I
do.1

01.7
00

10

;

	

15

- / ---

9 	 4 	 S

Figure D.9: TRFD MD=O 	 Figure D.10: TRFD MD=60

137

Appendix E

Reducing Hardware Complexity:
Additional Data

This appendix presents the data for the benchmark programs not shown in Chap-

ter 8. The graphs show the variation equivalent window ratio with window size

and memory differential (MD).

.0—

so 	 -

"—C—.

'0

NN>

I
I

- ---------. — 	

-

to 	 —

0I to
	 40 	00 	.0 	00 	•0 	so 	to

Figure El: ADM

0008
4 	.4 	

40--

• 	 ..- 	

a..-

3

a.

o .
 --4— ..
	 I

........
	 I

ton— 0.30.40 W40t.. Oo.

Figure E.3: QCD2

—

40--

a-

8

to 30 	40 	40 	.0 	00 	40

	

n 00.0 	Wt0 Ooo
so 	to

Figure E.2: DYFESM

Ipso

40--
to_to

t40
t0

Is 	 30

Figure E.4: TRFD

I
I

I
I

138

doM I'd_S

00 •••••••

'S

20

25

20

'S

I 1

20 	 40 	 50 	 60

Appendix F

Sensitivity Analysis : Additional
Data

This appendix shows additional data in support Chapter 9. The graphs for the

equivalent window ratio for ADM, DYFESM, QCD2 and TRFD are shown in

Figures Fl, F.2, F.3 and F.4, respectively.

ACM
	

DYFEBM

00-20

I
	

I

70 	 00 	 00 	 IC
	

2 	 30 	 40 	 00 	 00 	 70 	 00 	 60 	 00
6

Figure F.l: ADM speedup
	

Figure F.2: DYFESM speedup

OCD2

--A.

Figure F.3: QCD2 speedup
	

Figure F.4: TRFD speedup

139

Bibliography

A.V. Aho and R. Sethi J.D. Ullman. Compilers Principles, Techniques, and
Tools. Addison-Wesley publishing company, 1986.

J.R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Coversion of Control
Dependence to Data Dependence. In POPL, pages 177-189, Jan. 1983.

D. Anderson, F. Sparacio, and R. Tomasulo. The IBM System 360 Model
91: Machine Philosophy and Instruction Handling. IBM Journal of Research
and Development, pages 8-24, Jan. 1967.

D. Bacon, S. Graham, and 0. Sharp. Compiler transformations for high-
performance computing. Technical Report UCB/CSD-93-781, University of
California, Berkeley, California 94720, 1993.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, 1st edition, 1988.

G. Beck, D.W.L., and T.L. Anderson. The Cydra 5 Minisupercomputer: Ar-
chitecture an Implementation. The Journal of Supercomputing, 7(1/2):143-
180, 1993.

A. Berrached, L.D. Coraor, and P.T. Hulina. A Decoupled Access/Execute
Architecture for Efficient Access of Structured Data. In Proc. of the 26th
Hawai mt. Conf. on System Sciences, volume 1, pages 438-47, Los Alamitos,
CA, USA, Jan 1993. IEEE Press.

D. Bhandarkar and J. Ding. Performance Characterisation of the Pentium
Pro Processor. In Proc. of the 3rd mt. Symp. on High Performance Computer
Architecture, San Antonio, Texas, USA., Feb. 1997. IEEE.

P. Bird, A. Rawsthorne, and N.P. Topham. The Effectiveness of Decoupling.
In Proc. mt. Conf. on Supercomputing, Tokyo, Japan, May 1993.

W. Blume and R. Eigenmann. Performance Analysis of Parallelising Com-
pilers on the Perfect Benchmark Programs. IEEE Trans. on Parallel and
Distributed Systems., 3(6):643-656, Nov. 1992.

W. Blume and R. Eigenmann. Symbolic Analysis Techniques for the Effec-
tive Parallelisation of the Perfect Benchmarks. CSRD 1332, Center for Su-
percomputing Research and Development., University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801, Jan. 1994.

140

S.E. Breach, T.N. Vijaykumar, and G.S. Sohi. The Anatomy of the Register
File in a Multiscalar Processor. In 27th mt. Symp. on Microarchitecture
(MICRO-27), 1994.

D. Burger, J. Goodman, and A. Kagi. The Declining Effectiveness of Dy-
namic Caching for General Purpose Microprocessors. Technical Report 1261,
Uni. Wisconsin-Madison, Jan. 1995.

M. Burke and R. Cytron. Interprocedural Dependence Analysis and Par-
allelisation. In Proc. of SIGPLAN 1986 Symp. on Compiler Construction.,
pages 162-175, 1986.

M. Byler, J. Davis, C. Huson, B. Leasure, and D. Padua. Multiple version
loops. In Proc. of the 1987 Intenational Conf. on Parallel Processing, pages
312-318, Aug 1987.

D. Callahan, K. Kennedy, and A. Porterfield. Software Prefetching. In 4th
ASPLOS, pages 40-52, Santa Clara, California, Apr. 1991.

T. Chen and J. Baer. A Performance Study of Software and Hardware
Data Prefetching Schemes. In Proc. of the 21st Ann. mt. Symposioum on
Computer Architecture., pages 223-232, Los Alamitos, CA, USA, April 1994.
IEEE, ACM, IEEE Computer Press.

Tzi-cker Chiueh. Sunder : A Programmable Hardware Prefetch Architec-
ture for Numerical Loops. In Proc. Supercomputing '94, pages 488-497, Los
Alamitos, CA, USA, Nov 1994. IEEE Comput. Soc., ACM , SIAM, IEEE
Comput. Soc. Press.

Z. Cventanovic and D. Bhandarkar. Performance Characterisation of the
Alpha 21164 Microporocessor using TP and SPEC Workloads. In 2nd mt.
Symp. HFCA, pages 270-280, Feb. 1996.

F. Dahlgren and M. Dubois. Sequential Hardware Prefetching in Shared
Memory Multiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 6(7), Jul. 1995.

J. Davidson and S. Jinturkar. Improving Instruction Level Parallelism by
Loop Unrolling and Dynmaic Memory Disambiguation. In 28th mt. Symp.
on Microarchitecture (MICRO-28), pages 125-32, Nov. 1995.

J. Dehnert and R. Towle. Compiling for the Cydra 5. The Journal of Super-
computing, 7:181-227, 1993.

R. Eigenmann, J. Hoeflinger, L. Zhiyuan, and D. Padua. Experience in
the Automatic Parallelisation of Four Perfect-Benchmark Programs. CSRD
1193, Center for Computing Research and Development., University of Illi-
nois at Urbana-Champaign, Urbana Illinois., 1992.

J.E. Smith et al. The ZS-1 Central Processor. In 2nd ASPLOS, October
1987.

141

M. Berry et al. The Perfect Club Benchmarks, Effective Performance Eval-
uation of Supercomputers. Techreport 827, CSRD, University of Illinois,
Urbana-Chmpaign, Urbana, Illinois., May 1989.

U. Banerjee et al. Automatic Program Parallelisation. Proc. of the IEEE,
81(2):211-243, Feb. 1993.

A. Scott et at. Four-Way Superscalar PA-RISC Processors. Hewlett Packard
Journal, pages 1-9, Aug. 1997.

C. Kozyakis et at. Scalable Processors in the Billion-Transistor Era: IRAM.
IEEE Computer, 30(9):75-78, 1997.

K. Olukotun et at. The Case for a Single Chip Multiprocessor. In ASPLOS
VII, Oct. 1996.

K.I. Farkas et at. Memory System Design Considerations for Dynamically
Scheduled Processors. In 24th mt. Ann. Symp. on Computer Architecture
(ISCA-24), June 1997.

R. Alverson et at. The Tera Computer System. Proc. Int. Conf. on System
Science, pages 1-6, June 1990.

S. Adve et at. Changing Interaction of Compiler and Architecture. IEEE
Computer, 30(12) :51-57, Dec. 1997.

S. Mckee et at. Design and Evaluation of Dynamic Access Ordering Hard-
ware. In 10th mt. Corzf. on Supercornputing (ICS'96), May 1996.

W. Blume et at Automatic Detection of Parallelism: A Grand Challenge
for High Performance Computing. CSRD 1348, Center for SuperComputing
Research and Development., University of Illinois at Urbana-Champaign,
1308 W.Main St, Urbana, Illinois, July 1994.

K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The Multicluster Archi-
tecture: Reducing Cycle Time Through Partitioning. In MICRO-SO, Dec.
1997.

K.I. Farkas and N.P. Jouppi. Comlpexity/Peformance Tradeoffs with Non-
Blocking Loads. In Int. Symp. on Computer Architecture (ISCA-El), pages
211-222,1997.

M.K. Farrens and A.R. Pleszkun. Implementation of the PIPE Processor.
IEEE Computer, pages 65-70, Jan 1991.

M.K. Farrens, P.Ng, and P.Nico. A Comparison of Superscalar and De-
coupled Access/Execute Architectures. In kit. Symp. on Microarchitecture
(MICRO-26), Dec. 1993.

M. Franklin and G. Sohi. The Expandable Split Window Paradigm for Ex-
ploiting Fine-Grain Parallelism. In 19th Int. Symp. on Computer Architec-
ture, 1992.

142

M. Franklin and G.S. Sohi. ARB: A Hardware Mechanism for Dynamic
Rordering of Memory Reference. IEEE Trans. on Computers, 45(5), May
1996.

J.W.C. FU and J.H. Pate!. Data Prefetching Strategies for Vector Cache
Memories. In Proc. 5th mt. Parallel Processing Symp., pages 555-560, Los
Alamitos, CA, USA, April-May 1991. IEEE Computer Society Press.

L. Gwennap. Digital 21264 sets new standard. Microprocesor Report, 10(14),
Oct. 1996.

M. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. FIAT: A Frame-
work for Interprocedural Analysis and Transformation. In U. Banerjee,
D. Ge!ernter, A. Nico!au, and D. Padua, editors, Languages and Compilers
for Parallel Computing, 6th hit. Workshop, pages 522-545. Springer-Verlag,
Aug 1993.

L. Hammond, B. Nayfeh, and K. Olukotun. A Single Chip Multiprocessor.
IEEE Computer, 30(9):79-85, Sept. 1997.

J. Hennessy and D. Patterson. Computer Architecture A Qualitative Ap-
proach. Morgan Kaufmann, 2nd edition, 1996.

A. Huang and J. Shen. A Limit Study of Local Memory Requirements Using
Value Reuse Profiles. In 28th Jut. Symp. on Microarchitecture (MICRO-28),
Nov. 1995.

G.P. Jones and N.P. Topham. A comparison of data prefetching on an ac-
cess decoup!ed and superscalar machine. In mt. Sym. on Microarchitecture
(MICRO-SO), pages 65-71. IEEE Computer Society, Dec. 1997.

G.P. Jones and N.P. Topham. The Effect of Restricted Instruction Issue
Width on an Access Decoup!ed Architecture. In Parco97, pages 665-673,
Sept. 1997.

G.P. Jones and N.P. Topham. A Limitation Study into Access Decoupling.
In C. Lengauer, M. Grieb!, and S. Gor!atch, editors, Euro-Par'97 Parallel
Processing, pages 1102-1111. University of Passau, Germany, Springer, Aug.
1997.

N.P. Jouppi. Improving Direct Mapped Cache Performance by the Addition
of a Small Fully Associative Cache and Prefetch Buffers. In 17th Int. Symp.
on Computer Architecture (ISCA -1 7), pages 364-373, May 1990.

G. Kemp and M. Franklin. PEWs: A Decentralised Dynamic Scheduler for
ILP Processing. In Proc. Jut. Conf. on Parallel Processing, volume 1, pages
239-246,1996.

A. Klaiber and H. Levy. Architecure for Software Controlled Data Prefetch-
ing. In ISCA-18, pages 43-63, May 1991.

143

D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organisation. In
8th mt. Symp. on Computer Architecture, pages 81-87, 1981.

M. Kumar. Measuring Parallelism in Computation Intensive
Scientific/Engineering Applications. 	IEEE Trans. on Computers,
37(9):1088-1098, Sept. 1988.

L. ICurian, P.T. Hulina, and L.D. Coraor. Memory Latency Effects in De-
coupled Architectures. IEEE Trans. on Computers, 43(10):1129-39, Oct.
1994.

L. Kurian, V. Reddy, P.T. Hulina, and L.D. Coraor. A Comparative Eval-
uation of Software Techniques to Hide Memory Latency. In T. Mudge and
B.D. Shriver, editors, Proc. of the 28th Hawaii Internatonal Conference on
System Sciences, volume 1, pages 229-38, Los Alamitos, CA, USA, Jan 1995.
IEEE Computer Society Press.

M. Lam and R.P. Wilson. Limits of Control Flow on Parallelism. In Proc.
19th mt. Symp. on Computer Architecture., pages 46-57, May 1992.

W. Mangione-Smith, S.C. Abraham, and E.S. Davidson. A Performance
Comparison of the IBM RS6000 and the Astronautics ZS-1. IEEE Computer,
pages 39-46, Jan. 1991.

S. McFarling. Combing Branch Predictors. Technical Report TN-36, Digital
WRL, June 1993.

S. Mckee and V. Wulf. A Memory Controller for Imporved Performance of
Streamed Computations on Symmetric Multiprocessors. In 10th mt. Parallel
Processing Symp. (JPPS'96), Apr. 1996.

A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic Speculation
and Synchronisation of Data Dependencies. In ISCA-24, Jun. 1997.

T. Mowry, M. Lam, and A. Gupta. Design and Evaluation of a Compiler
Algorithm for Prefetching. In 5th ASPLOS, pages 62-73, Oct. 1992.

D. Padua and M. Wolfe. Advanced Compiler Optimizations for Supercom-
puters. Comminications of the ACM, 29(12):1184-1201, Dec. 1986.

S. Palacharla, N.P. Jouppi, and J.E. Smith. Complexity-Effective Superscalar
Processors. In 24th Ann. mt. Symp. on Computer Architecture, 1997.

P. Petersen. Evaluation of Programs and Parallelising Compilers using
Dynamic Analysis Techniques. PhD thesis, University of Illinois, Urbana-
Champaign, Illinois, 1993.

P.M. Petersen. and D.A. Padua. Evaluation of Parallelsing Compilers. CSRD
1279, Center for Supercomputing Research and Development., University of
Illinois at Champaign-Urbana, Urbana, Illinois, 61801, 1992.

144

W. Pugh. A Practical Algorithm for Exact Dependence Analysis. Commu-
nications of the ACM, 35(8):102-114, Aug. 1992.

J. Rivers, C. Tyson, and E. Davidson. On High Bandwidth Data Cache
Dseign for Multi-Issue Processors. In MICRO-SO. IEEE, Dec 1997.

Z. Shen, Z. Li, and P-C. Yew. An Empirical Study on Array Subscripts
and Data Dependences. In 1989 hit. Conf. on Parallel Processing, pages

11-145-11-152, 1989.

J.E. Smith. Decoupled Access/Execute Computer Architectures. ACM

Trans. on Computer Systems, 2(4):289-308, Nov. 1984.

J.E. Smith. A Simulation Study of Decoupled Architecture Computers. IEEE

Trans. on Computers, C-35(8):692-701, Aug. 1986.

J.E. Smith. Dynamic scheduling and the astronautics zs-1. IEEE Computer,

pages 21-35, July 1989.

J.E. Smith and G.S.Sohi. The Microarchitecture of Superscalar Processors.
Proceedings of IEEE, 83(12):1609-1624, Dec. 1995.

G. Sohi and M. Franklin. High-Bandwidth Data Memory Systems for Su-
perscalar Processors. In 4th ASPLOS, Apr. 1991.

G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar Processors. In
22nd mt. Symp. on Computer Architecture, 1995.

S. Song, M. Denman, and J. Chang. The PowerPC 604 RISC Microprocessor.
IEEE Micro, 14(5):8-17, Oct. 1994.

S.Palacharla and R.E. Kessler. Evaluating Steam Buffers as a Secondary
Cache Replacement. In Proc. of the 21st Ann. mt. Symp. on Computer
Architecture., pages 24-33, Los Alamitos, CA, USA, Apr. 1994. IEEE, ACM,
IEEE Computer Society Press.

K. Sundararaman and M. Franklin. Multiscalar Execution along a Single
Flow of Control. In mt. Conf. on Parallel Processing, volume 1, 1997.

N.P. Topham, A. Rawsthorne, C.E. McLean, M.J.R.G. Mewissen, and
P.Bird. Compiling and Optimising for Decoupled Architectures. In Proc.

of Supercomputing '95, San Diego, Dec. 1995. ACM press.

C. Tyson, M. Farrens, and A.R. Pleszkun. MISC : A Mutiple Instruction
Stream Computer. In hit. Sym. on Microarchitecture (MICRO-25, Portland,

Oregon, Dec 1-4 1992.

G.S. Tyson. Evaluation of a Scalable Decoupled Microprocessor Design. PhD

thesis, University of California Davis, 1997.

145

S. Vajapeyam, G.S. Sohi, and W-C Hsu. An Empirical Study of the CRAY
YMP Processor using the PERFECT Club Benchmarks. In Proc. of the 1991
ACM Jut. Conf. on Supercomputing, pages 170-179, Ner York, 1991. ACM,
ACM press.

D. Wall. Limits of Instruction Level Parallelism. In 4th Jut. Conf. on ASP-
LOS, pages 8-11, Apr 1991.

D. Wall. Speculative Execution and Instruction Level Parallelism. Technical
Report TN-42, Digital WRL, Mar. 1994.

T. Williams, N. Patkar, and G. Shen. SPARC64: A 64-b 64 Active Instruc-
tion Out-of-Order Execution MCM Processor. IEEE Journal of Solid-State
Circuits, 30(11):1215-26, Nov. 1995.

K. Wilson, K. Olukotun, and M. Rosenblum. Increasing Cache Port Ef-
ficiency for Dynamic Superscalar Microprocessors. In 23rd mt. Sym. on
Computer Architecture (ISCA-23), pages 147-157, May 1996.

M. Wolfe. Optimising Supercornpilers for Supercomputers. Research Mono-
graphs in Parallel and Distributed Computing. Pitman, 1 edition, 1989.

W.M. Wulf. An Evaluation of the WM Architecture. In Proceedings of
the Intenational Symposium on Computer Architecture, Palo Alto, CA, Oct.
1987.

Wm. Wulf and S. McKee. Hitting the Memory Wall: Implications of the
Obvious. Computer Architecture News, 23(1):20-24, Mar. 1995.

[01 Wm A. Wulf. An Evaluation of the WM Architecture. In Proc. mt. Symp.
on Computer Architecture, pages 382-390, Gold Coast, Australia, May 1992.

K.C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE micro,
16(2):28-41, April 1996.

H. Zima. Supercompilers for Parallel and Vector Computers. ACM press.
Addison-Wesley, 1 edition, 1990.

146

