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Abstract 

Fully decoupled architectures present a possible solution to the problems posed by the growing 

disparity between memory and processor speeds. In this thesis the performance of this class of fully 

decoupled architectures is examined in detail. The causes and effects of both access/execute and 

control decoupling are investigated using simulation and modelling, and techniques for their more 

efficient exploitation are proposed. A similar investigation is made of losses of decoupling (LODs), 

which eliminate many of the advantages of decoupling, and particular attention is given to a number 

of methods for the removal of LODs or the reduction of their effects. Finally, a number of 

architectural techniques to enhance the performance of this class of architectures is presented. 
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1. Overview 

Fully decoupled processor architectures present one possible solution to the problems posed by the 

growing disparity between memory and processor speeds. Full decoupling is a fusion of two separate 

architectural techniques - access/execute decoupling and control decoupling. 

The first of these separates program execution into two distinct sub-tasks - the access of data and the 

execution of arithmetic operations upon the data - and allows these sub-tasks to run asynchronously 

on dedicated processing units. This can in principle allow the access sub-task to run ahead of the 

execution sub-task, fetching data from memory sufficiently far in advance of the point in time at 

which it will be needed that memory latency can be hidden. 

Control decoupling applies a similar asynchrony to the sub-tasks of control and calculation. In a 

control decoupled system, a dedicated processing unit traverses the program's control flow graph, 

attempting to determine the path that program execution will take sufficiently far in advance of the 

calculation sub-task that instructions can be fetched far enough in advance to hide their memory 

latency. 

When both techniques are combined they can, in theory at least, produce a processor architecture 

with a high tolerance for long memory latencies, where the pre-fetching permitted by decoupling 

hides the latency of memory accesses for both instructions and data. 

In this thesis I illustrate the capabilities of this class of architectures, examining which architectural 

parameters affect performance most strongly, and highlighting potential weaknesses in the 

architecture. 

In Chapter 2 the problems associated with high memory latencies are examined, and a number of 

existing architectural techniques that aim to either hide or reduce memory latency are discussed. 

Chapter 3 presents the ideas behind both access-execute and control decoupling in more detail. 

Chapter 4 examines a number of possible techniques for modelling the behaviour of decoupled 

architectures, including analytical modelling, simulation, and a fusion of both techniques. The 



model derived in this chapter is put to use in Chapter 5, in which a series of experiments are 

performed to determine the architectural parameters which most strongly influence the degree to 

which a decoupled processor can exploit both access/execute and control decoupling. A number of 

techniques to enhance decoupling, both software- and hardware-based, are presented. 

Chapter 6 addresses the problem of loss of decoupling, a phenomenon whereby the two decoupled 

sub-tasks must resynchronize and thus temporarily lose their ability to mask memory latency. A 

further series of detailed experiments is performed to determine the causes and effects of loss of 

decoupling, as well as to examine the potential of a number of software- and hardware-based 

techniques to remove or reduce the impact of losses of decoupling. 

The decoupling experiments in Chapters 5 and 6 were based upon the examination of a number of 

program kernels, short segments of code that illustrate some fundamental behaviour characteristic of 

certain classes of program. In Chapter 7 these results are validated in the context of real programs, 

by conducting a series of experiments based upon full-sized programs. The decoupling behaviour of 

these is analyzed with respect to the fundamental behaviours examined in the previous two chapters. 

Finally, in Chapter 8, conclusions are drawn as to the potential of fully-decoupled architectures as 

well as their drawbacks, and several possible avenues for future research are described. 
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2. Introduction 

2.1 The Problem 

As the 1990s have progressed the disparity between processor and main memory performance has 

increased inexorably. While the speed of main memory has risen for a number of reasons, this has 

been more than offset by the increased demands made of it by modern high-performance processors. 

The improvements in memory performance are due to a number of factors. A fortuitous side effect of 

the drive for ever larger capacity memory ICs is a decrease in feature size which has in turn reduced 

memory cycle times. Page-mode dynamic RAM chips which allow sequential data to be accessed 

more efficiently have become commonplace, and DRAMs have also appeared which incorporate 

small internal caches of fast static memory. 

At the same time, however, processor clock speeds have risen considerably. High-end 

microprocessors are at the time of writing typically clocked at somewhere between 300 and 400 

MHz, and projections for the end of the 1990s show a steady climb towards clock speeds in the 500-

700 MHz range. These high clock speeds place a heavy load on memory in terms of the instruction 

and data memory bandwidth required. Add to this the emergence of superscalar instruction issue, 

with several instructions being initiated per processor cycle and potentially issuing multiple requests 

to memory for data, and the gap between the low memory latencies that processors require and what 

a realistic memory system can provide becomes wider still. 

A number of solutions have been proposed to deal with this problem. Most of these fall into two 

distinct categories: memory latency reduction and memory latency tolerance. 

2.2 Latency Reduction 

Up until now the main thrust of research into improving computer performance has been closing the 

processor-memory gap, largely through the use of memory hierarchies such as caches. These work 

on the principle that, due to spatial and temporal locality in memory reference patterns, the vast 

majority of memory requests will be met by a fast, local cache. A penalty will be paid when there is 



a cache miss, but these are sufficiently infrequent in most cases to have little effect on performance. 

The concept of caches and their behaviour are well understood and have been covered in detail in the 

literature, so the topic will not be covered in any depth here. Detailed coverage of the issues involved 

in cache design can be found in Chapter 8 of Hennessy and Patterson's Computer Architecture: A 

Quantitative Approach [HP90] and also in Hennessy, Horowitz and Przybylski's paper on cache 

design tradeoffs [Pr88] amongst others [Smth82]. 

The usefulness of caches is limited, however, since Amdahl's Law places a strict bound on the 

performance gains that can be obtained. Some proportion of memory accesses will always miss the 

cache and, as the gap between processor and memory speeds widens, the effect of these cache misses 

on overall performance increases. Even if the proportion of accesses that cause cache misses were to 

remain constant (which is by no means certain when dealing with shared memory multiprocessors 

and their requirements for cache coherency), processor performance will become increasingly limited 

by the disparity between processor and memory speeds due to the effects of these cache misses. 

2.3 Latency Tolerance 

Most current techniques to close the gap in speed are, alas, only partially successful in treating the 

symptoms of this disparity. Also, these techniques attempt only to reduce the symptoms, not to cure 

the problem itself. In fact, it appears that no complete cure is yet possible, unless an unexpected 

technological breakthrough leads to a drastic reduction in memory latencies. There is another 

approach to the problem though - the development of processor architectures which are "immune" to 

long memory latencies. Heavily-interleaved memory systems are, once up to speed, quite capable of 

providing sufficient memory bandwidth to keep a modern processor supplied. The problem lies in 

creating a situation in which this high potential bandwidth can be reliably exploited, and the high 

latency (which no amount of interleaving can remove) of memory accesses has little or no effect on 

processor performance. 

One way of achieving this is to dispense with the idea that a memory access is atomic. In most 

conventional modern processors, a load is a single indivisible operation, from the placing of the 



address on the address bus to the arrival of the requested data on the data bus. If the data is not 

immediately available, the processor must stall until it arrives. Thus the latency of a load operation 

is directly determined by the latency of memory and it is through this method that the effects of slow 

memory are transmitted directly into the most immediate measure of processor performance, 

program execution time. 

Similarly, when a store operation is initiated the processor waits for it to complete before proceeding. 

This is due to the need to prevent any subsequent store instruction from changing the contents of the 

address and/or data bus before the current store has completed. 

The use of a cache mitigates these effects somewhat, since with a reasonably efficient (write-back 

rather than write-through) cache, most loads and stores complete within a cycle or two. However, on 

those loads that miss the cache and those stores that force a write-back (or all stores in a system with 

a write-through cache) the full latency of these operations becomes apparent and the processor is 

stalled, wasting many processor cycles that could conceivably have been used to perform other 

operations. By overlapping the load or store latency with other subsequent operations and thus 

hiding or masking the latency, its effect on the program's execution time could be reduced 

considerably. 

Historically, a number of approaches have been tried that attempt to do this. They vary considerably, 

but all rely on the use of some form of non-blocking or decoupled load or store. 

2.4 Non-Blocking Stores 

The idea of non-blocking stores is far from new, and is frequently encountered in the form of write 

buffers. In a system with a write buffer, the store address and data are placed in a temporary buffer 

until the store has been committed to memory. The processor can continue unhindered while the 

store completes. It is only necessary for the processor to stall if it tries to execute a load from the 

same memory location as the pending store (which would cause a read-after-write hazard) or if a 

second store is attempted before the first has completed. 



However, even these two situations can be exploited in certain circumstances. A lOad attempting to 

access a location to which a store is still pending can take its data directly from the buffer, 

eliminating the need to stall. A second store to the same memory location can overwrite the value in 

the buffer, since no reads of the old value have been performed in the intervening time. By 

substituting a queue for the simple buffer and thus allowing multiple stores to be pending at any one 

time, stalls on stores can be eliminated in the vast majority of cases, although the need to compare 

any subsequent loads with the addresses of all pending stores requires additional hardware and also 

makes it difficult for a load to take its data directly from the buffer should a pending store to the 

same location be present. 

The benefits of write buffers are particularly apparent in systems with write-through caches. In these 

systems the processor can potentially be stalled for a considerable amount of time, since all stores go 

directly to main memory as well as the cache. However, even in systems with a write-back cache the 

presence of a write buffer can help to mask the high latency of a cache miss. As will be seen later, 

the techniques used to mask store latencies in fully decoupled architectures are a natural extension of 

the write buffer concept. 

24.1 Non-Blocking Loads 

The techniques that have been used to mask load latencies are more varied than those used to mask 

store latencies although, presumably due to the prevalence of caches, the area has been less widely 

explored. Historically, a number of approaches have been tried and these are briefly surveyed. 

2.4.2 The CDC 6600 Address Unit 

Perhaps the simplest form of latency masking load appeared as long ago as the late 1960s, in the 

Control Data Corporation's CDC 6600 supercomputer [1bb82]. This architecture implicitly split 

each load into two decoupled operations by virtue of its unconventional approach to memory 

accesses. The CDC 6600 possessed three distinct sets of registers. The A (address) registers were 

used, as their name suggests, for specifying addresses for memory accesses, although the method by 

which this was accomplished was unusual. The X (operand) registers were used to store the 
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operands for arithmetic operations, while the B (index) registers were used as offsets to memory 

accesses. 

Loads were performed by storing an address (with an optional offset specified by a B register) into 

one of a certain subset of the A registers. This initiated the load operation, and the requested value 

appeared in the corresponding X register some number of cycles later (that is, write to Al and the 

value at the address specified by Al will eventually appear in XI). In the meantime, other 

operations could be performed, hiding the latency of the load. The register scoreboarding 

mechanism used in the CDC 6600 ensured that any instruction attempting to read the contents of a 

register in the process of being loaded from memory would stall until the access had completed. 

A similar mechanism was used for stores, whereby storing an address to a certain subset of the A 

registers would cause the contents of the corresponding X register to be written to memory. Again, 

the scoreboard prevented either of the registers involved being overwritten before the operation had 

completed while allowing other operations that did not use those registers to proceed unhindered. 

2.4.3 Cache Preloading 

In more recent times similar techniques [Sk92] [Smth82] [Chen95] has been employed by a number 

of architectures to preload data into the data cache. While this is not quite the same as decoupling a 

load into two distinct parts (the generation of the address and the fetching of the data), it does give 

similar benefits. 

Preload instructions are statically inserted in the instruction stream some time before the data they 

access will actually be needed. Hopefully this will lead to the requested data being present in the 

data cache by the time it is needed. 

This approach fulls midway between reducing the actual latency through the use of a cache and 

reducing the effective latency by hiding the true latency of a possible cache fill underneath other 

operations. As such it combines elements of both latency reduction and latency tolerance and 

attempts to use some techniques commonly associated with the latter to improve the performance of 

the former. 
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An architecture that employs cache preloading may still occasionally block. There is no guarantee 

that the requested data will be fetched in time or, indeed, that it will be fetched at all. However, if 

the preload Operation can be started sufficiently far in advance of the point at which the data is 

needed, the increased latency that might result from a cache miss and subsequent cache line fill will 

be hidden underneath any instructions executed between the issuing of the preload operation and the 

execution of the operation that will use the preloaded data. 

This approach has both advantages and disadvantages. The primary advantage is, of course, the 

decrease in the number of visible cache misses and the subsequent reduction of the average effective 

latency. The technique also has the rather less obvious benefit of having no effect on the semantics 

of the load operation. There is no requirement that a memory access be preceded by a preload 

operation, which is little more than a hint to the memory system that the specified data is likely to be 

accessed in the near future and should be fetched into the data cache if possible. Preloads may be 

safely ignored without any change in program semantics. The only effect of ignoring a preload is a 

change in the effective memory latency. 

This makes it practical to build a family of processors with the same instruction set architecture 

[A92] where, depending on how much money the customer wishes to spend on their processor, the 

preload operation may result in nothing happening at all, in a preload to cache being attempted, or in 

the specified data being moved up a single level in a multi-level memory hierarchy. 

Those architectures which currently implement cache hints of this sort (such as Digital's Alpha 

architecture and the PA-RISC architecture from Hewlett Packard) tend to use them to provide an 

approximation of vector registers using the data cache. The preload operation (FETCH in the Alpha) 

optionally loads an aligned block around a specified address into cache which can then be accessed 

by the processor at cache speeds. 

However, if the data cache has limited associativity or limited size problems can arise when 

preloading large data structures, such as long vectors or even fairly modest matrices. If the preload 

operation is executed sufficiently far in advance of the time at which the data will be required, a later 



preload operation might cause data loaded by the first preload to be overwritten before it has been 

used. When the instructions that use the first preloaded data are reached not only will the full 

memory latency be visible, but the reloading of that data due to the cache miss may also result in the 

data that had been loaded by the second preload being overwritten before it is needed, necessitating 

that that data also be reloaded. 

On the face of it, this may seem to be no worse than the well known situation in which two regularly 

accessed memory addresses cause a cache to "thrash" due to insufficient associativity. However, on 

closer inspection it can be seen that preloading means that each cache line would be loaded not once 

but twice per access, wasting considerable amounts of memory bandwidth and severely reducing 

performance. For this reason, the effectiveness of preloading is limited by the need to ensure that 

cache contention of this sort will not occur frequently, since in some cases the use of cache 

preloading can actually reduce performance. 

The cache thrashing problem reveals another limitation of preloading. The need to ensure that cache 

contention or thrashing does not occur make it necessary that programmers or compilers take upon 

themselves the responsibility for explicitly managing the cache. This requires an awareness of the 

physical structure of the cache, such as the line size, number of lines, and associativity, and even 

then is likely to produce sub-optimal results due to the effects of non-preloaded cache accesses and 

those memory access characteristics that cannot be determined at compile time. 

In addition, carefully tweaked code that goes to great pains to prevent cache contention may, if run 

on a machine with a larger or smaller cache (or even one with a differing degree of associativity), 

either fail to take advantage of the greater cache size or perform poorly. It could even be suggested 

that an architecture employing preloading would be better to dispense entirely with the notion of a 

separate cache and instead use an explicitly mapped and accessed area of fast scratchpad RAM, with 

data being loaded into the scratchpad by a decoupled load of the form described in Section 2.4.2. 

A further limitation of cache preloading centres around the required distance between the preload 

instruction itself and the first use of preloaded data. It is frequently impossible to move the preload 



far enough from the first use for the latency to be completely masked. For example, the Alpha 

architecture manual recommends that there should be no fewer than 64 unrelated instructions 

between a FETCH instruction and the first operation that uses the prefetched data. While it is true 

that this high figure is at least partly due to the Alpha FETCH operation preloading data in blocks of 

512 bytes, it still illustrates the general principle that the required distance between preload and use 

may be large. 

The problems this can cause are particularly noticeable in the case of tight loops. A tight program 

loop may result in it being impossible to separate a preload from the first use of the preloaded data by 

more than a handful of instructions, greatly reducing the usefulness of the technique. Techniques 

such as loop unrolling can reduce the effects of this problem but cannot always eliminate them. 

There will always be some cases in which there just are not enough instructions available between 

initiating the preload and the data being required to keep the processor busy. 

2.4.4 Dataflow 

Finding plenty of instructions to execute is, however, the forte of dataflow architectures [Arv9 1]. 

These machines are, by their very nature, tolerant of long-memory latencies. Rather than 

instructions fetching their operands, the availability of operands results in the execution of 

instructions that act upon those operands. An instruction cannot wait for a value to return from 

memory in a dataflow architecture, since the instruction will not even be activated until its operands 

become available. 

On the surface it would seem that dataflow, with its ability to exploit parallelism to the full and 

tolerate slow memory is the solution to all the problems of long memory latencies. However, this is 

not the case in practice. For one thing, the apparently non-existent memory access latency for 

instructions is due more to cleverly restating the problem than actually eliminating the latency. Also 

the complexity of dataflow architectures, both from an implementation and programming viewpoint, 

means that to date dataflow has failed to move beyond the realm of research and into the commercial 

sphere. 
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24.5 Conteri Flow And Multi-Threading 

Another architectural technique which has yet to be fully commercially exploited, but which at the 

time of writing seems to be a topic of considerable research interest in both industry and academia, is 

variously known as context flow or multi-threading [Dub94]. 

Multi-threaded architectures aim to obtain high throughput with the processor consistently running 

at near peak performance. They do this through the use of multiple independent processor contexts 

(each corresponding to one hardware thread of execution) which can be rapidly switched should the 

currently-running thread run into a possible delay. By the use of multiple threads, the processor can 

be kept busy until the cause of the delay (the latency of a memory access, or an inter-instruction 

dependency) has passed. Analogies can be drawn between the decoupled load mechanism of the 

CDC 6600 (where the gap between load initiation and completion is filled with instructions from the 

same process) and loads on a multi-threaded architecture where the gap between load initiation and 

completion is filled with instructions from a number of other, independent, threads. 

Exactly what constitutes a "possible delay" can vary from architecture to architecture. At the 

pessimistic end of the spectrum, the assumption is that every single instruction can potentially cause 

a delay and that an implicit context switch should occur between each instruction regardless of 

whether any delay actually exists. More optimistically, there are architectures where context 

switches happen only on memory accesses or branches and the delays due to inter-instruction 

dependencies are tolerated. Both approaches have advantages and disadvantages [Lau94]. 

2.4.5.1 Pessimistic Multi-Threading 

The pessimistic approach can potentially achieve very high throughput if sufficient threads of 

execution are available. By ensuring that no two instructions in the processor pipeline are from the 

same context, delays due to inter-instruction dependencies are eliminated. Conditional branch 

penalties also vanish, since each instruction is completed before-the next starts, which makes the 

architecture very suitable for superpipelining [Jou89]. Even memory latencies are hidden, as threads 

that are waiting for values to return from memory are suspended until such time as their data 

becomes available. From the point of view of a single thread, all memory accesses have zero latency. 
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As long as sufficient threads are available to keep the pipeline full, the processor can be kept busy 

continuously. This can be seen graphically in Figure 1, which shows the theoretical maximum 

throughput of a context-flow architecture for various numbers of available threads and hardware 

contexts. Note that when the number of threads exceeds the number of available contexts, 

throughput levels out onto a high plateau. The model used to produce this graph relies on the 

assumption that no thread will experience a delay longer than c cycles, where c is the number of 

hardware contexts available, but the general principle is clearly illustrated. 
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Figure 1 - Total throughput vs. contexts vs. threads 

The pessimistic approach to multi-threading has two major shortcomings. The first is in the amount 

of silicon real-estate taken up by the large number of contexts. Since a context switch occurs 

between each and every instruction it is imperative that the switch be performed as quickly as 

possible [Gru96]. This rules out context switching techniques in which the thread's register set is 

completely or even partly written out to memory and reloaded when the context is next switched in. 

Generally the only practical way of implementing multiple contexts with no time penalty is through 

the use of a large partitioned register set. The implicit context switching would be implemented by 

associating a unique numeric tag with each hardware context. This tag would follow each 
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instruction from that context down the pipeline and also follow each memory reference to memory. 

It would be prepended to any register identifiers specified in the instruction to specify the appropriate 

partition of the register file to access. When sent to memory it would be used to reassociate a 

returning value from memory with the appropriate context. 

If there were 64 hardware contexts, each of which had access to 32 64-bit general purpose registers, 

the register file would contain no less than 2048 64-bit registers. While this not inconsiderable size 

is well within the reach of mid-90s technology it is open to question as to whether this is a good use 

to put such a large area of silicon, especially since the register file utilisation will remain constant 

regardless of how large it becomes. 

The second shortcoming is not a technical one but a result of the architecture's semantics. By 

ensuring that no single process has more than one instruction in the processor pipeline at any time, 

we ensure that at best each thread can only use a small fraction of the processing power available. 

On a processor with n pipeline stages and I hardware contexts, each thread can at best use only th 

of the processor's total throughput, in the case where exactly n threads monopolise the processor and 

no delay is greater than n cycles. In the worst case, where there are more software threads than 

hardware contexts, each context can use only 	of the total throughput available (assuming that I> 

n) with the available throughput per software thread dropping in inverse proportion to the increase in 

the number of software threads competing for the available contexts. 

So, while the throughput of the architecture as a whole may be high, no individual thread can attain 

more than a fraction of this performance. Thus, unless the application that is being run is inherently 

highly parallel, peak performance will be difficult to achieve, since a reduction in the number of 

runnable software threads will not produce a corresponding increase in per-thread performance. 

Although a typical workstation may be running many processes at a time (user shells and 

applications, a window manager, assorted daemons) these heavyweight processes would be unable to 

exploit multi-threading, other than internally, since their enlarged contexts would contain additional 
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information such as cache TLB entries, which would have to be switched in the conventional 

manner. To obtain high performance from a multi-tasking system would also require that each of 

the processes was itself multi-threaded. 

2 
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Figure 2 - Per thread throughput vs. contexts vs. threads. 

If the number of active threads in a multi-threaded processor drops below the length of the processor 

pipeline, bubbles will form due to the one instruction per thread restriction. The effect of this on per-

thread performance is illustrated in Figure 2. This shows the proportion of total throughput available 

to a single thread as the number of hardware contexts and runnable software threads are varied. No 

account has been taken here of the additional performance penalty that would be incurred by having 

to save and restore hardware contexts in the conventional sense when there are more threads than 

contexts, and it is also assumed that the processor has a CPI of 1, and is thus capable of 100% 

throughout. For this reason, Figure 2 actually gives an optimistic estimate of per-thread throughput. 

2.4.5.2 Optimistic Multi-Threading 

An optimistic approach to multi-threading overcomes many of the shortcomings of pessimistic multi-

threading, at the expense of additional complexity. Exactly what constitutes "optimistic" can vary, 
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but the general guideline is that a context switch should be performed only when necessary. It is in 

the precise definition of "necessary" and the measure of what constitutes an unacceptable delay in 

execution that variations arise. 

In the most extreme form of optimistic multi-threading, contexts are switched whenever a real delay, 

of whatever kind, is encountered. This has the advantage over pessimistic multi-threading that 

contexts are switched only when real, rather than potential, delays are encountered. The restriction 

on the number of active instructions from a single context is relaxed, allowing several instructions 

from the same context to be in the processor pipeline at any one time, as long as none but the last 

will cause any pipeline stalls. 

This means that, as long as delay-causing instructions do not occur too frequently, it should be 

possible to keep the pipeline full with a smaller number of active threads, and for each of those 

threads to potentially use a greater proportion of the total processor throughput. This in turn means 

that fewer hardware contexts may be required. In an extreme case, a single thread with no 

instructions that cause delays can utilise 100% of the processor throughput if all the other threads are 

stalled for some reason. 

While the optimistic approach to multi-threading is undoubtedly more flexible than the pessimistic 

one, there are costs associated with this added flexibility. The pipeline requires some form of 

scoreboard to identify inter-instruction dependencies and switch contexts as necessary, as well as a 

mechanism for switching contexts on a cache miss and restarting the delaying instructions when the 

hazard or delay has passed. It may also be necessary to provide some form of pre-emptive switch 

between contexts (in addition to any higher level pre-emptive multi-tasking), otherwise a number of 

threads with long runs of non-delaying instructions could monopolise the processor, starving the 

other threads. 

There are, of course, a number of variations in between the extremes of "switch context on every 

potential delay", "switch context on every real delay" and "do not switch context at all". Since 

delays can be caused by a number of events (an instruction dependency, a branch in control flow, a 
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long latency memory access) and these delays all have differing costs, it maybe desirable to choose 

from the three possibilities listed above. 

An architecture may ignore the delays due to inter-instruction dependencies and conditional 

branches and allow pipeline bubbles to form, since the delays due to these are usually short, while 

switching context whenever a memory access instruction is encountered. Alternatively, it may 

ignore the delays due to inter-instruction dependencies, always switch contexts when a conditional 

branch is encountered, but only switch contexts if a memory access results in a cache miss. There 

are many possible combinations. 

A detailed examination of multi-threading is, however, outside the context of this thesis. There is, 

however, much in the literature on this topic, ranging from discussion of multi-threading in multi-

processors [Kur9 1] to more rigourous analytical examinations of the performance aspects of multi-

threading [Dub94]. 

It should be stressed that multi-threading is being examined here only as an alternative latency 

tolerance technique. It is by no means considered inferior to the latency tolerance technique with 

which this thesis is primarily concerned, namely decoupling. The not-inconsiderable volume of 

research underway in the multi-threading field in the mid-90s is ample evidence of the technique's 

potential and, as we will see later, there is no reason that multi-threading cannot be combined with 

decoupling. 

2.4.6 Decoupling 

The concept of decoupling is far from new. As described in Section 2.3.3., the CDC 6600 

architecture used a form of decoupled memory access to provide some tolerance of high memory 

latencies. Several contemporary architectures have also introduced some form of decoupling between 

the integer and floating point (FP) units of the processor, to "smooth out" differing rates of integer 

and FP computation and prevent integer operations being delayed by unrelated high latency floating 

point instructions. 
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The architectures with which this thesis is concerned use two forms of decoupling - control 

decoupling and access/execute decoupling. The combination of these two is known as full 

decoupling. These are described in detail in Chapter 3. Simply stated, the first of these separates the 

task of traversing a program's control flow graph from the actual computation that occurs at each 

node of that graph. One processor follows the flow graph, dispatching high-level descriptions of the 

code to be executed at that node in the graph to "work processors" which execute the code itself. 

Access/execute decoupling [Ben9 1], on the other hand, separates the work allocated by the control 

processor into the task of generating the addresses for memory accesses and that of performing the 

actual computation. Both of these provide a natural method of extracting low-level parallelism and, 

as will be shown, are possible sources of latency tolerance for instruction and data memory accesses 

respectively [Kur94]. 

While fully decoupled architectures are a novelty (only one, the ACifi- 1, has begun development to 

date [T0p95] [Bird93], machines using access/execute decoupling are not a new development. 

The origins of access/execute decoupled architectures can be traced to the early 80s with the PIPE 

architecture [Goo85] [You88] [Far91] and its successor MISC [Tys92], and the work of James E. 

Smith at the University Of Wisconsin, who wrote several seminal papers on the subject [Smit82] 

[Smit84]. This research eventually gave rise to the Astronautics ZS-1, an access/execute decoupled 

mini-supercomputer. Although this is amply described in the literature ([Smit87] [Smit89] 

[Mang9 1]) this architecture, being the only decoupled architecture to reach full commercial 

production to date, is worthy of closer examination and will be discussed in some detail in the next 

chapter. More recent access/execute architectures include the Rockwell/DARPA funded research 

into the H1DISC architecture at the University of Southern California [Cra96] and W.A. Wolf s WM 

architecture [Wo192]. 
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3. Decoupled Architectures 

3.1 Access/Execute Decoupled Architectures 

Access/Execute decoupled architectures, as their name suggests, exploit the relatively independent 

nature of the memory access and data manipulation (or execution) tasks that make up a program. By 

separating, or decoupling, these tasks and running them concurrently, considerable performance 

gains can be obtained. 

The first of these, the access task, is responsible for generating the memory address of data that is to 

be used by the execute task and either initiating the loading of that data from memory or providing 

the store address for a store operation. The generation of memory addresses may be straightforward, 

requiring only that the access task send the address of a scalar variable to memory, or it may be 

complex and require additional computation to convert the indices of a multi-dimensional array into 

a linear offset which, when added to the base address of the matrix, gives the actual address of the 

memory location to be accessed. 

The second of these tasks, the data task, takes data arriving from memory, performs operations on it, 

then stores the result to memory. Since, for the most part, these two tasks are relatively independent 

and require very little in the way of inter-task communication, they provide an excellent source of 

low-level parallelism. In an access/execute architecture, each task runs on a separate specialised sub-

processor, a processing unit that has much of the functionality of a conventional processor yet is 

unable to function without its companion sub-processor. These sub-processors may be further 

optimised for their role, with the mixture of available functional units and the design of their internal 

data path and instruction set reflecting their role. They are also likely to include certain specialised 

architectural structures which will be described shortly. 

The splitting of a program into access and execute tasks is a relatively straightforward process, since 

the two tasks are naturally partitioned. This is not, however, immediately obvious from conventional 

architectures since these typically arbitrarily mix together instructions from the two tasks. This lack 
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of separation of the two tasks can even inhibit performance, since it complicates the scheduling of 

instructions on today's superscalar architectures [Far931. However, superscalar instruction issue and 

access/execute decoupling are by no means mutually exclusive. There is no reason why the two sub-

processors of an AtE decoupled machine cannot themselves be superscalar, and it is possible that the 

separation of the two tasks might even allow a greater degree of low-level parallelism to be extracted 

from them. 

The main benefits of access/execute decoupling are that it allows the easy exploitation of this natural 

low-level parallelism, and that since the two tasks are now running (almost) independently and 

asynchronously, the access sub-processor can run ahead of the data sub-processor and fetch operands 

from memory before they are actually needed. This is particularly advantageous when the system's 

memory latency is high, since it allows the address sub-processor to fetch data sufficiently far in 

advance that the required data is delivered to the data sub-processor before it actually needs it. The 

data sub-processor is thus able to use it immediately, with no noticeable delay due to memory 

latency. The memory latency is thus hidden and, as long as the address sub-processor can run 

sufficiently far ahead of its companion, the architecture exhibits latency tolerance. 

This characteristic is valuable in high performance uniprocessors, where the processor clock cycle 

may be considerably smaller than the memory cycle time. For example, a mid-90s high performance 

processor may have a processor cycle time of 3ns or lower yet still use 60ns DRAM for its main 

memory. Latency tolerance is also of use in multiprocessor systems, where accesses to memory that 

is not local to a processing node may have a very high latency due to it having to traverse an 

interconnection network. 

At the time of writing, access/execute architectures represent the state of the art with regard to the 

commercial use of decoupling. Although fully decoupled architectures, which will be described in 

the next section, have been designed, only access/execute decoupling has reached the marketplace so 

far, albeit with little commercial success. 
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Figure 3 - The Astronautics ZS-1 CPU. 

Two distinct families of access/execute decoupled architectures have emerged. These differ primarily 

in the degree to which they separate the address and data sub-processors. 

3.1.1 Single instruction stream architectures 

The first of the two families of access/execute decoupled architectures considers the two sub-

processors to be little more than functional units of a conventional processor, or even just a particular 

partitioning of the functional units of a conventional processor. The resulting processor appears 

relatively conventional externally, with a single instruction data path. However, it splits the 

instruction stream internally and routes each instruction to either the address or the execute unit. 

The Astronautics ZS- 1 (discussed briefly in Chapter 2) is the most important example of this type of 

"instruction-splitting" decoupled AJE architecture. This machine, shown in Figure 3, has a single 

instruction stream. Instructions are fetched from a small 16K instruction cache (which in turn 

fetches them from a larger 64K unified cache) and fed into an instruction splitter. This decodes the 

instruction opcode and routes it to one or the other of the units, depending upon the operation to be 

performed. Compare instructions also set a branch bit in the splitter unit, allowing later conditional 

branch instructions to test the value before splitting occurs. The various queues allow decoupled 
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loading and storing, loading and storing directly to/from the access unit and the transfer of data 

between the two units. 

The primary advantage of this particular form of decoupled A/E architecture is that it can exploit the 

parallelism and latency tolerance inherent in access/execute decoupling, whilst appearing relative.ly 

conventional externally. The only oddity in the ZS- 1 instruction set is the unconventional approach 

to load and store operations, whereby the load instruction implicitly stores a value in the appropriate 

queue on the access unit with loaded data being accessed explicitly via top-of-queue registers on the 

execute unit. There is, however, no reason that a processor of this type could not use the instruction 

set of an existing processor. Additional decoding of loads and stores in the splitter unit would result 

in appropriate instructions being placed in the instruction queues and copies between address and 

data registers could be achieved via the copy queues (again by decoding and splitting internally). 

Architectures with unified, general purpose register files would present a problem, although it is 

possible that some form of run-time dependency analysis along with a register renaming scheme 

could work around the possible implicit inter-unit dependencies that might result. 

One problem with this approach, however, is that the use of a single instruction stream severely 

limits the degree to which the two units can decouple, with the inter-unit asynchrony (or, to use the 

term coined by Smith, dynamic slippage) being limited by the size of the internal instruction queue. 

Dual instruction stream architectures represent one way of increasing the degree to which decoupling 

can be exploited. 

3.1.2 Dual instruction stream architectures 

The second approach to access/execute decoupling separates the two tasks more completely and is 

illustrated in Figure 4. Rather than treating the two units as functional units of a single processor, 

they become more independent. Each has its own instruction stream and the asynchrony is bounded 

not by the size of internal queues but by dependencies within the program itself. These dependencies 

occur when the two units must communicate. This can happen if the address unit requires a data 

value for one of its calculations (e.g. indirection, list following) or if a control decision must be 

made. The control decision can either be made by collaboration between the two instruction fetch 
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units (which handle control flow) or on the sub-processors themselves. In the majority of cases only 

one of the two units will make the control decision, however, and the result of this decision must be 

communicated to the other sub-processor. 

Address Sub-Processor 

	

Instruction I 	Instruction 

H 
Main 	- 	Cache 	I 	I 	Fetch 	I I 	I 	I 	 I 

Memory 
Instruction 

	

Queues 	 H 
I-  0 

- Instruction 	- 	Instruction 	I I I 	I 

Cache 	I 	I 	Fetch 

Data Sub-Processor 

Figure 4 - A dual instruction stream access/execute decoupled architecture. 

If the sub-processor making the decision is the address unit, this is not a problem. This unit will 

typically attempt to run ahead of the data unit providing latency tolerance. Should it be responsible 

for making a control decision such as evaluating the branch at the end of a loop, it will pass the 

result of this to the other unit. This incurs no performance penalty, although the degree of 

decoupling may be limited by the size of the queues via which this information is transferred. 

However, if the control decision has to be made on the data unit, such as breaking out of a loop when 

a particular value is encountered, this information has to be communicated to the address unit. This 

will typically require the address unit to stop and wait until the data unit "catches up". This is 

known as a loss of decoupling (LOD) and, as we will see later, is the major drawback of decoupled 

architectures. Loss of decoupling appears to be less of a problem in single stream architectures, since 

control decisions are made before the decoupling point and all instructions in the instruction queues 
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can be safely executed without a LOD occurring. However, since there is less decoupling in a single 

stream architecture anyway, no performance improvement is obtained. 

The other main disadvantage of dual instruction stream architectures concerns the instruction fetch 

mechanism. Surprisingly, instruction bandwidth is not one of them, since instructions (other than 

those involved with memory accesses) appear in one or other of the instruction streams, but rarely 

both. Some code bloat is inevitable, but the increase in object code size is not prohibitive. However, 

the instruction fetch hardware itself must be duplicated and the memory access patterns produced by 

the fetching of instructions are less predictable than those of, for example, a dual-issue superscalar 

architecture. This can be mitigated somewhat through the use of separate instruction caches for each 

unit but this once again increases the complexity of the architecture. 

3.1.3 Decoupled loads and stores 

Having stated that decoupled loads and stores are a good thing, they will now be described and 

details given of exactly why this is the case. 

Before beginning, however, some terminology will be introduced. The two parts of a decoupled 

processor can be referred to by a number of names. Each part is known either as a sub-processor or 

a unit. The two terms are interchangeable although the former is preferable when discussing an 

architecture with multiple instruction streams and the latter is used only for brevity. The sub-

processor concerned with generating memory addresses is known as the address or access sub-

processor, while the other is known as the data or execute sub-processor. Generally the former term 

(which describes the type of data processed by the unit) is preferable, although the latter (which 

describes the task it performs) is also acceptable. 

Memory accesses are known as memory packets and are split into two types. The address sub-

processor generates load packets which contain the memory address to be accessed as well as other 

information, the purpose of which will be described later. When a load packet reaches memory the 

address is used to fetch the appropriate data and a load response packet is generated containing the 
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data and other information (some of which may be copied from the first packet). A store packet 

contains data and an address and is "absorbed" by memory. 

It should be noted that the use of the term "packet" in no way implies that the memory sub-system 

uses packet switching. In practice this may well be the case, especially if the processor is part of a 

multi-processor system, but the term has been chosen chiefly because in most cases the data or 

address is accompanied by additional information, the whole forming a "packet" of information. 

The ideas behind non-blocking loads were discussed in Section 2.4.1. By splitting a load operation 

into two parts - one that generates the address and one that uses the fetched data - a processor need 

not necessarily stall while waiting for data to arrive from memory. If the first part of the operation 

can be issued sufficiently far ahead of the second, the memory latency can be hidden entirely from 

the "receiving" instruction. In a decoupled access/execute architecture, the two parts of the operation 

execute on different sub-processors, and in a "good" program the address generating part of the 

operation can be issued far in advance of the time at which the other unit will need the data. Since 

the two units run asynchronously, the address sub-processor can potentially initiate many such loads 

ahead of the time at which the data will be required. Since all of these could complete before the 

data sub-processor executed its part of even the first load, queues are necessary to buffer load packets 

that have arrived but not yet been used. 

Two queues are used (see Figure 4). The first, the Load Address Queue or LAQ, is part of the 

address sub-processor and is used to store load packets that are waiting to be sent to the memory sub-

system. This provides some degree of decoupling between the address sub-processor and the memory 

sub-system should, for one reason or another, the memory be incapable of accepting load packets as 

quickly as the address sub-processor can produce them. The second queue is known as the Load 

Data Queue or LDQ. This is part of the data sub-processor and stores load packets that have arrived 

from memory but which have yet to be used. This decouples the data sub-processor from memory, 

acting as a buffer when packets arrive too quickly for it to cope. 

- 
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It can be seen above that the load path in fact consists of two decoupled processes, between address 

sub-processor and memory and memory and data sub-processor respectively. It is assumed that a 

well-specified memory sub-system will be capable of accepting load packets at least as fast as they 

can be produced, if the memory access pattern is reasonably uniform. On a machine with a single 

load path, this will be one load packet per cycle, or a multiple of this if there are multiple load paths. 

This is generally achieved through the use of highly banked, interleaved memory where the number 

of banks matches or exceeds the latency of the individual banks when measured in processor clock 

cycles. To use the example figures quoted earlier, if the processor has a cycle time of 3ns and 

memory has a cycle time of 60ns, each memory cycle takes 20 processor cycles to complete. If the 

address sub-processor generates a load packet on every cycle, it can initiate 20 loads during a single 

memory latency, which requires that memory be 20-way interleaved if full throughput is to be 

achieved even if memory accesses are "perfect" and access each bank in sequence. In practice some 

degree of over-banking will be required to handle the less-than-perfect access patterns typical of real 

programs. 

The two decoupled processes that make up the load path can generally be thought of as a single 

process as long as the memory is sufficiently well-specified. If it has insufficient bandwidth it is 

always going to stall the address sub-processor eventually, and the rate of production and 

consumption of load packets will be bounded by the rate at which the memory subsystem can process 

them. A well-specified memory sub-system will present no bottleneck to the two sub-processors, 

with load packets arriving at the data sub-processor at the same rate that they were sent by the 

address sub-processor. 

Two decoupled processes are also involved when data is stored to memory, although there is no 

"chain" between the two as with loading. When the address sub-processor executes a store 

instruction, it places the address to which the stored data should be sent in the Store Address Queue 

(SAQ). Similarly, when the data sub-processor encounters a store instruction, it places the 

appropriate data into the Store Data Queue (SDQ). The heads of both of these queues are paired and 
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assembled into a store packet containing both address and data information, which is then dispatched 

to memory. 

Both of the decoupling processes involved here are between a sub-processor and memory. The SAQ 

decouples the address sub-processor from memory and buffers addresses should they be generated 

faster than the memory sub-system can accept them, while the SDQ decouples the data sub-processor 

in a similar fashion. The rate at which store packets are actually dispatched to the memory sub-

system is the minimum of the rates at which the two sub-processors generate their respective halves 

of the store packet. Since the address sub-processor generally runs ahead of the data sub-processor, it 

will usually be the case that the SAQ will fill until the data sub-processor reaches its first store. At 

this point stores will begin to be dispatched to memory. This seems to suggest that the SDQ might 

be redundant, since arriving data will almost always be immediately paired with an address and sent 

to memory. Whether this is in fact the case will be investigated in the next chapter. 

Another design feature that will also be evaluated in a later chapter is one that appeared in the ZS-1 - 

a dedicated memory path for the address sub-processor. As can be seen in Figure 3, the address sub-

processor is connected to memory by two "extra" queues, the ALQ and ASQ, which allow it to load 

and store data directly from/to memory without requiring the co-operation of the data sub-processor. 

The standard justification for this design feature is that it allows the address sub-processor to perform 

such tasks as spilling or reloading registers, performing indirection and list following without 

causing a loss of decoupling. The alternative would be to perform a decoupled load then pass the 

value returned to the address sub-processor via the transfer queues, which are described in the next 

section. 

3.1.4 Inter-unit transfers 

From time to time it is necessary for information to be passed from one of the sub-processors to the 

other. There are two ways in which this can be achieved. The most straightforward method, and 

that employed by both the ZS-1 and the sample dual stream machine shown in Figure 3, is to use 

architectural queues. These are mapped into the sub-processor's register file and may be accessed as 

registers in a similar manner to those queues concerned with loading and storing. This method is 
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easy to use and lust but requires a considerable amount of additional hardware. Two extra queues are 

needed, and the internal data path of each sub-processor is complicated by the mapping of the queue 

heads onto register file. 

A cheaper alternative, if the address sub-processor has a dedicated path to memory, is to perform 

inter-unit transfers via memory. For example, to transfer data from the address sub-processor to the 

data unit, the address sub-processor would first issue a self-store then initiate a decoupled load to the 

other unit. A transfer in the other direction would be achieved by performing a decoupled store then 

executing a self-load on the address sub-processor. 

3.1.5 The problems of distributed control 

The main weakness of access/execute decoupling is the need to communicate control information 

from one sub-processor to the other on each control decision. The single stream architecture only 

suffers from this problem to a minor extent, since the state information required for control flow 

decisions can be centralised in the instruction splitter, through which instructions for both units flow. 

This single locus of control means that control flow decisions are only complicated on those 

occasions where a decision is made based on information from both of the sub-processors. 

In a dual stream architecture, however, the distributed nature of flow control is more of a problem. 

Each control decision must be communicated to the other unit, which can result in a loss of 

decoupling. One possible solution is to centralise the control. While this will not always eliminate 

the loss of decoupling, it does have many other advantages. Separating the execution of a program 

into three separate threads - access, execute and control - results in what is known as a Fully 

Decoupled Architecture. 

3.2 Fully Decoupled Architectures 

The ideas behind fully decoupled architectures are rather newer than those behind access/execute 

decoupling. The concept was first proposed by Peter Bird et al in 1991 [Bird9l] who termed this a 

"semantically-driven architecture". This name arose through the partitioning of the program onto 

specialised processing units closely following the various components of the computing formalism 
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known as Action Semantics [Moss94]. The control task corresponded closely to the interpretation of 

the structure of the action semantics "rules", the access task to the binding of variables and the 

execution task to the semantic evaluation. 

Address sub-processor 

Instruction 
Fetch 	

Control sub-processor K 	Instruction 
Queues 

Data sub-processor 

Figure 5 - A simple instruction dispatch mechanism. 

A fully decoupled architecture has three sub-processors. Two of these are already familiar from 

access/execute decoupling, while the control sub-processor performs all control flow decision making 

and dispatches instructions to the other sub-processors. It can do this in one of two ways. The first, 

and simplest, is illustrated in Figure 5. All instructions pass through the control unit and are either 

executed on the control sub-processor directly (control flow instructions) or passed to one of the other 

two units. In this respect the architecture differs little from the ZS-I, except that the control sub-

processor is more complex than a mere instruction splitter and that conditions are evaluated on the 

other sub-processors then passed back to the control SP to be acted upon. 

Given the similarity between this approach to control decoupling and the ZS-1 's treatment of 

access/execute decoupling, it should come as no surprise that this single instruction stream form of 

full decoupling suffers from the same problem - the available degree of decoupling between the 

control unit and the other units (and also between the sub-processors themselves) is limited by the 

size of the instruction queues. 
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The second approach to control decoupling rectifies this problem. It makes use of the fact that 

control flow instructions are only a small proportion of the total instructions that make up a program 

and each control instruction (a branch back to the beginning of a loop, a subroutine call) typically is 

followed by a sequence of uninterrupted instructions (a basic block). Since reaching a particular 

node in the control flow graph means that all of the instructions directly associated with that node 

are going to be executed, there is no need for the control processor to individually fetch and dispatch 

each instruction. Instead, as shown in Figure 6, it places "meta-instructions", high level basic-block 

descriptors that describe a sequence of sub-processor level instructions, in the meta-instruction 

queue, or MIQ. This queue does not feed directly into the sub-processor pipeline as with the simpler 

scheme but instead feeds into a specialised instruction fetch mechanism, or Fetch Engine. This is 

responsible for removing meta-instructions from the MILQ, decoding them and fetching the 

instructions which it then feeds to the sub-processor. Thus, a processor using this variety of full 

decoupling has three separate instruction streams. 

ii1iiii- 	Instruction 
Fetch 

Instruction 	Control sub-processor 	
11111 

________ CFQs Fetch 	 I 
111111 

Instruction 
Fetch 

MIQ 

Address sub-processor 

Data sub-processor 

Figure 6 - A meta-instruction dispatch mechanism. 

The access and execute sub-processors are known collectively as the work units because they do all 

the work, while the control sub-processor just tells them what to do. They are able to pass results 

back to the control SP which it then uses to make control flow decisions. This is done via yet 

another set of queues, the Condition Feedback Queues (or CFQs). These have the usual purpose of 

allowing some degree of decoupling to be maintained even if the rates at which results are produced 

and consumed differ. 
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3.2.1 MIQ and CFQ design issues 

Unlike the other queues discussed so far, where the width has depended entirely upon the data or 

address size for the particular architecture, the width of the CFQ and MIQ is a design parameter. 

Initially, a single bit wide CFQ was thought sufficient to pass the result of a simple test back to the 

control SP. However, it was noted that this rendered the efficient implementation of; for example, 

multi-way switch structures difficult. While control structures of this type could certainly be 

implemented, using a series of IF-THEN tests each of which would return a result to the control sub-

processor, this would be hugely inefficient. Far better to pass back a full data word and use this as a 

jump table index for an indirect jump implemented on the control sub-processor. 

The width of the MTQ is dictated by the meta-instruction format. The format of this depends upon 

whether the control sub-processor issues a single meta-instruction which goes to both work units, or 

issues one to each unit in turn. In the first case the meta-instruction must contain start addresses for 

the appropriate data and address sub-processor basic blocks and the lengths of each. In the second 

case, only a single start address and length are needed. 

"Raw" meta-instruction format 
DSP Start 	 DSP Length 	 ASP Start 	 ASP Length 

"Squashed" meta-instruction format 
DSP Start 	ASP Offset 	ASP Length 

60 	 12 1 	16 	1 16 
DSP Length 

Figure 7 - Two possible meta-instruction formats. 

In an architecture with a 64 bit address and which supports block lengths of up to 64K instructions 

(i.e. 16 bit block length) this requires a queue 160 bits wide. This "raw" format is shown in Figure 

7. If this is considered excessive, however, some compression may be performed and the meta-

instruction squashed. If basic blocks are likely to be over a certain length (say, 16 words), 4 bits can 

be stripped from each address if basic blocks are assumed to be aligned on a 16 word boundary. This 

will cause some fragmentation of memory, with dead space between blocks of code. If the sub- 
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processor code for the data and address sub-processor basic blocks is stored consecutively in memory, 

the start address information for both sub-processors could be represented by giving a start address 

for the first of the two consecutive blocks plus an offset for the second sub-processors code. Using 

the example sizes given above and alignment to 16-word boundaries, this would require 60 bits for 

the start address plus a 12 bit offset, as well as the block lengths. This format is also shown Figure 7 

and requires just 104 bits. 

The large size of meta-instructions raises some design issues concerning the control sub-processor 

instruction set. In recent years architectural trends have tended to favour architectures with fixed 

width instruction sets. This simplifies instruction decoding and removes problems with instructions 

straddling page boundaries in virtual memory systems. Given a typical RISC architecture, 32 bits is 

usually sufficient to implement a reasonably complete RISC instruction set. One would imagine that 

the control sub-processor would use such an instruction set, with the usual retinue of control flow 

and integer arithmetic operations. This seems to be at odds with the wide instructions required for 

meta-instruction issue. 

However, it should be remembered that from the point of view of the control sub-processor meta-

instructions are just pieces of data describing basic blocks rather than an intrinsic part of the sub-

processor. With this in mind, it may be more appropriate for the architecture of the control sub-

processor to reflect this, providing specialised wide registers to hold meta-instructions, mapping the 

MIQ into this bank of registers, and providing operations to load, store and manipulate the contents 

of these registers. 

At first glance, there may seem to be no advantage in providing so many operations that act upon 

meta-instructions. However, in the case of a tight loop it might be advantageous to issue meta-

instructions in this way. With wide instructions that treat the meta-instruction data as literal 

information, each instruction issue may take 4-6 cycles to issue (since the instruction will be 4-6 

words long) and the same literal data will be loaded on each iteration. With meta-instruction 

registers, the block descriptors could be loaded into registers before the loop was entered and each 

meta-instruction issue would take only a single cycle (since it would be achieved by a single register- 

31 



register copy). In fact, the control sub-processor instruction bandwidth could be reduced 

considerably for many subroutines which execute a small number of basic blocks repeatedly. Given 

the skeletal nature of control sub-processor programs, where issue operations constitute a large 

proportion of the instructions executed, the savings obtained by preloading the meta-instruction 

registers with the descriptors for all the blocks in a subroutine could be considerable. 

The meta-instruction formats described above can also be thought of as instructions for the sub-

processor fetch engines, with the operation (fetch x instructions starting at address y) being implicit. 

As later chapters will show, however, meta-instructions may contain additional information, such as 

an iteration count specifying how many times the basic block should be repeated, and condition or 

guard bits. Although these will be examined in detail later, they do have ai effect on the meta-

instruction format. They will require additional bits to store this information and will effectively add 

opcodes to the meta-instructions, changing the actions performed by the fetch engine accordingly. 

For this reason it may be advantageous to be able to modify meta-instructions dynamically (to set 

iteration counts, perhaps, or to specify conditions to be checked) in the control sub-processor. This is 

another advantage of the flexibility that could be provided by the use of meta-instruction registers. 

More detailed investigation of meta-instruction formats and the relative strengths of meta-

instructions as literals versus meta-instruction registers would form a major topic of study in itself. 

Their impact on performance is, however, of some interest and may be worthy of investigation at 

some later date. 
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4. The Modelling And Simulation Of Decoupled Architectures 

The use of modelling and simulation is very important to today's computer architect. The time and 

cost involved in physically implementing a new processor design mean that much of the initial work, 

perhaps even as far as the development of the operating system, will-be performed on a simulated 

processor, and much of the performance analysis done with a mathematical model. In the case of a 

whole new family of architectures, where general design concepts are being explored rather than the 

behaviour of a single design, modelling and simulation techniques are also useful because they allow 

various parameters of the system to be easily changed, and their effect on performance examined. 

There are a wide spectrum of modelling and simulation techniques available to the computer 

architect. At one extreme there are completely analytical models where the behaviour of the 

architecture is reduced to a system of equations. These can be used, with the variables that represent 

certain system parameters set accordingly, to obtain numerical values for a number of features of the 

system being modelled, or to analyse the system's steady state behaviour. 

The main advantage of the analytical approach is that once the appropriate systems of equations have 

been obtained, examining the effect of changes in various parameters is straightforward and quick, 

requiring only the solution of the system of equations that represents the system. In many analytical 

models it is also possible to see trends in the architecture's behaviour just from looking at the 

equations directly, which may illustrate clearly which factors dominate performance and give greater 

insight into the behaviour of the architecture. 

However, the areas in which a fully analytical model can be used are limited. Not all systems are 

amenable to analytical modelling. It may be the case that the system being modelled is very 

complex. This will usually require that the model of the system be simplified to make it possible to 

obtain the necessary equations. This simplification can result in a loss of realism and even then is 

not always possible. 
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At the other extreme we have architectural simulations and processor emulators. These may vary 

greatly in the level of detail at which they simulate the architecture. At one end of the detail 

spectrum we have high-level simulations. These deal entirely in abstract concepts ("a processing 

node", "a memory module") and provide a quick but approximate picture of system performance. At 

the other end are transistor level emulators. These simulate a specific processor architecture in great 

detail - right down to the transistor level - and very precise measurements can be obtained. 

The primary weakness of this type of modelling is that, although high-level simulations may provide 

a comparable degree of accuracy and speed to an analytical model, it is often far from clear how the 

various components that make up the system being modelled relate. In high-level simulations the 

processor, memory and other components may be little more than black boxes. You set the 

appropriate parameters, start the simulation running and at the end obtain some measurements. 

These measurements may accurately map out the performance envelope of the processor architecture 

being modelled but give little indication of the mechanisms by which the various components 

interact. Often intensive and exhaustive simulation will be required to obtain a reasonable feel for 

the system's behaviour and, if there are many variables involved, the resulting simulations may take 

a great deal of time to perform. 

Additionally, to produce a reasonable high level model may well require that we already understand 

certain of the fundamental principles governing the architecture's behaviour, in which case we may 

well already have had to produce an analytical model. 

More detailed simulations may provide more insight into the architecture's behaviour, since they 

"open" the black box components and allow their internal workings to be examined, but as the level 

of detail simulated increases, so does the run time of the simulation. Given that a fall transistor level 

simulation of a high performance architecture may run at perhaps 1,000,000 Ih   of the speed of the 

processor it represents, it is often impossible to simulate the execution of realistic workloads since 

the simulation of even just a second of processor time may take weeks. Additionally, the use of a 

low-level simulation requires that many (perhaps irrelevant) features of the architecture be defined in 
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detail. While this may be desirable towards the end of a processor's development, to test a design 

just before fabrication, it is probably overkill to use a simulator of this sort for initial investigatiçns. 

Between these two extremes lies a third option, the simulated analytical model. It may be the case 

that the basis for an analytical model, such as a queueing network, can be derived for a system, but 

that certain features of the model may make it impossible (or at least extremely difficult) to "solve" 

the model, make the model unacceptably inaccurate or make the equations very computationally 

intensive to solve. 

In this eventuality, a very high-level simulation model can be built. Rather than providing only an 

approximate simulation of the real system, this approach results in an accurate simulation of an 

analytical model of that system. While this approach lacks the transparency of a true analytical 

model, it is quicker to run and simpler than a full simulation model. These two factors in 

combination make running exhaustive simulation studies more practical, while the simplicity of the 

model makes the interactions between components more obvious than in a complex and detailed 

model. They also allow the validity of the analytical model to be established by comparison with a 

more detailed architectural simulation, even if the equations describing the model cannot be 

obtained. 

In the remainder of this chapter we will examine whether and how each of these approaches can be 

applied to the task of modelling a fijily-decoupled architecture. Their relative merits and 

applicability will be discussed, and details of the methods used to produce each model given. 

4.1 An Analytical Model 

Given the architectural features of a fully-decoupled architecture, the most obvious method of 

obtaining an analytical solution for this class of architecture is to model the system as a queueing 

network [Tri82] [Wa188]. 

On the face of it, it would seem that the architecture is ideally suited for this. The processors and 

memory modules can be modelled as servers, with finite queues directly corresponding to the 
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architectural queues in the system. However, as we will see some features of the architecture render 

precise modelling impossible and make even approximate modelling impractical. 

It was apparent from a fairly early stage that it would not be possible to build a single, unified 

analytical model for the architecture. Queueing networks excel when it comes to modelling the 

steady state of a system. However, the execution of a program on a fully decoupled architecture may 

have no single steady state. Loss of decoupling events, which we will discuss in detail in Chapter 6 

represent discontinuities in program execution. Between two loss of decoupling events the system 

may well reach a steady state before the discontinuity forces a recoupling. In any non-trivial 

program it is likely that there will be at least one loss of decoupling and that the steady state before 

and after each LOD may not be the same. 

Even if some way was discovered to remove the problem of the discontinuities caused by loss of 

decoupling events, analytical modelling of the system is still far from straightforward. To illustrate 

this, we will look at the problems associated with modelling only one small part of a fully decoupled 

architecture, the access/execute load path. 

We would ideally like to model the load path of our architecture using the queuing network shown in 

Figure 8. This models the path as a server (the address subprocessor) feeding loads at some Poisson 

distributed rate Ra  into a blocking finite queue (the LAQ) of length Qa with unit service time. The 

LAQ feeds these loads, with a uniform random distribution, into a system of m servers (the memory 

banks) each of which is preceded by a blocking finite queue of length Qm (the bank buffer). These 

servers process loads at some fixed rate R. and all the servers feed into a finite re-ordering buffer 

(the LDQ) of length Qd. This in turn feeds another server (the data subprocessor) which removes 

loads from the LDQ at some Poisson distributed rate Rd. The finite number of loads which may be 

active in the memory system at any time is set to q, and we keep these loads in the system by 

closing the network so that loads which have been removed from the system circulate back to the 

address subprocessor. 
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QM 

Figure 8 - Load path queueing model. 

This network has two problems which make analytical modelling difficult. These are the numerous 

blocking queues and the presence of a re-ordering buffer. In this section it will be shown that the 

complexity of an analytical model of this system is such that a simulation model is more effective, 

both in terms of the ease with which results can be obtained and the "visibility" of the processes that 

govern the system's behaviour. 

The use of blocking queues disrupts the system, as the arrival time of a customer in a queue is no 

longer independent of all previous arrivals. If the queue is full, the arrival of the next customer will 

be delayed until such time as space becomes available. The flow through a blocking queue 

corresponds to no known distribution. If we are willing to sacrifice accuracy and use a heuristic, the 

behavior of a blocking queue may be modelled in an approximate fashion. 

We do this by assuming that all flows in the network are independent Poisson processes, and adjust 

the rate through the queue i downwards to 2=2(l - B,(2)), where 2 is the unadjusted rate of 

the arrival process, and B1  is the probability that the queue will block. As queue length increases, 

the probability of the queue being in a blocked state decreases, and the adjusted arrival rate tends to 

the ideal arrival rate as queue length tends to infinity. Conversely, as the probability of the queue 

being blocked increases, the arrival rate tends to 0. The probability B1  is the probability that the 
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current queue length is q. - that the queue is full - and this can be determined using standard 

techniques for calculating the steady state probability of the queue being this particular length. 

However, even the approximation of the blocking queues by this technique does not remove all the 

problems. The second major difficulty surrounds the nature of the LDQ, which is a re-ordering 

buffer 

Just as it was possible to approximate the behaviour of a blocking queue by adjusting the queue 

arrival rate to take account of the likelihood that the queue is full, a similar approximation technique 

seems a likely candidate for modelling the effects of a re-ordering buffer. By adjusting the service 

rate of the DU server, we can compensate for the possibility that data may arrive in the LDQ out of 

order. 

The combination of a re-ordering buffer and a memory system with multiple banks, each possessing 

a small local buffer, enforces an unusual queueing discipline. Memory accesses can arrive in the 

buffer in almost any order, and are removed from the buffer in the order in which they entered the 

load path as a whole, rather than the order in which they arrived at the buffer itself. While it is no 

longer necessary to model blocking effects (the length of the queue is fixed at the maximum number 

of loads that may be active in the system at any time) it is necessary to take into account the 

possibility of loads overtaking each other in the memory subsystem. 

While an approximation can be obtained for the processing rate of a re-ordering queue, the end result 

is complex, requires an excessive number of simplifying assumptions, and is in all probability more 

opaque than a simulation would be. When this is coupled with the inaccuracies introduced by the 

approximation of the blocking queues used in the memory modules, the end result is an analytical 

solution that is both highly inaccurate and in which it is difficult to see the underlying behaviour of 

the system. It thus lacks both of the main advantages of an analytical model In addition, later 

experiments indicated that the model described here had further flaws, which would render a useful 

analytical solution still more unlikely. 
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4.2 A Simulation Model 

Although we have shown that analytical modelling of the queueing network shown in Figure 8 is 

either impossible or approximate and impractical, there is no reason that the behaviour of that 

queueing network cannot be modelled by simulation. 

With this in mind, a simulation model was built. The model was constructed using simplified 

implementations of the C++ objects used to build the full architectural simulator (which is described 

in Section 4.3). The model accurately reflected the queueing network, with the only major changes 

being the elimination of the feedback queue used to restrict the number of memory accesses in the 

network and a switch to discrete rather than continuous timing. Since each memory access had to be 

tagged anyway (to ensure correct re-ordering at the LDQ), a tag reservation scheme was used to 

restrict the number of active memory accesses. Each load access produced is assigned a numeric tag 

(actually its eventual LDQ position). If no tags were available (meaning that all LDQ positions were 

either occupied or reserved for accesses currently in other parts of the network) no load accesses were 

generated. This is equivalent to the closed network since if the entire population of loads is in the 

LDQ, LAQ and memory, there can be none in the feedback queue. If there are no loads in the 

feedback queue, the AU server cannot re-circulate them. 

There is no reason that the simulation model could not directly simulate the feedback queue (with the 

queue initially containing Qd accesses), but since the components from the architectural simulator 

already provided the necessary hooks to implement the tag reservation scheme, and the tags were 

required for re-ordering anyway, the method described was used. Since modelling the network by 

simulation was very straightforward compared to analytical techniques, the model was also extended 

to include the access/execute store path, something which would have been difficult to model 

analytically due to it requiring the pairing of access halves from the AU and DU. 

Load and store accesses are both generated in a producer object that represents the AU. It is possible 

to specify that accesses be generated either according to a Poisson process (for which the mean can 

be set) or at fixed intervals. The latter allows more accurate modelling of certain situations. For 
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example, it may be the case that in a process we wish to simulate the producer generates a load on 

every second cycle. To simulate this accurately we want loads generated at a fixed, deterministic 

interval, rather than distributed around this value, as would result if a Poisson distribution were used. 

In those situations where a Poisson distribution is used, the service times of the appropriate server 

(the gap between loads or stores) are rounded to the nearest time unit, due to the simulator using 

discrete rather than continuous time. 

Loads and stores are only generated if space is available in the appropriate queue. If either queue is 

flu!, the corresponding server stalls until space becomes available, whereupon an access is 

immediately generated. This is more accurate than the blocking approximation proposed in the 

previous section, since it no longer assumes that arrival times are independent. There is an 

additional restriction on the generation of loads that they may only be produced if there are less than 

Qd loads currently active in the memory subsystem. 

The LAQ and SAQ feed memory accesses into a network of memory modules. As each load or store 

reaches the front of the queue it is assigned a memory module as its destination. This assignment is 

produced in one of two ways. It can be randomly generated, with memory accesses being uniformly 

distributed over the available modules, or a deterministic distribution with a user-specified stride can 

be used. The latter would be difficult to model analytically but, as with the fixed interval access 

generation described above, can allow the more realistic modelling of program behaviour. Random, 

uniformly-distributed accesses are useful when modelling the behaviour of a system with an address 

remapping scheme, such as Rau's hashing scheme [Rau9l]. 

If the assigned module is busy and there is no space in its buffer, the load or store will be held and 

the queue stalled until such time as the module is idle or buffer space becomes available. Again, this 

models the stalling behaviour exactly, which is preferable to an approximation. 

The movement of memory accesses from queue to memory module is one area where the simulation 

model introduces inaccuracies. Modelling the pairing up of the two halves of a store would not be 

easy in an analytical model. Additionally, no check is made for the dependencies between loads and 
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stores which would occur in a real system. Modelling this analytically would be tricky, since it 

would involve stalling accesses if they caused a hazard, and implementing this in even a simulation 

model would require that the memory access patterns be modelled at a finer level of granularity than 

is desired. Finally, no check is made to see if the physical constraints that would be present in a 

queue-memory interconnect are violated, and it is quite possible in the simulation model for a load 

and a store to be transferred to the same bank at the same time. This would not happen in a real 

system. 

The memory modules themselves are modelled simply as a finite queue feeding into a server with a 

fixed service time. Both the queue length and the service time (memory latency) can be varied. The 

use of a simulation modelling technique also allows separate access and cycle times to be specified 

for the memory module. This could no doubt be modelled analytically, but would complicate the 

analytical model still further. 

Serviced loads are then transferred into the LDQ. The model makes a simplification here that, while 

accurate in terms of the queueing network that the simulation represents, does not accurately reflect 

the behaviour of a real system. No restriction is made on the number of loads that can be transferred 

from memory to the LDQ at a time. In principle, every module could finish processing a load and 

attempt to transfer a value to the LDQ during the same cycle. In practice, however, this is unlikely 

and tests with the module show double transfers being rare, triple transfers rarer still, and the 

transfer of more than three loads at a time is unknown. Thus the inaccuracies introduced are small. 

At the end of the load path, loads are removed from the LDQ and sent to the consumer server, where 

they are absorbed and their assigned tags freed. As with the producer, the consumer server can have 

its service time set to be Poisson distributed or set to a fixed interval for greater accuracy when 

modelling the execution of certain deterministic access patterns. 

The simulation model is heavily instrumented, which goes some way towards rectifying the lack of 

transparency compared to an analytical model. Data regarding various intermediate latencies (i.e. 

the time taken for a memory access to reach a specific point in the network) is collected, not only in 
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the form of the usual statistical values such as means and standard deviations, but also in the form of 

detailed information from which accurate pictures of latency distributions can be formed. 

4.3 An Architectural Simulator 

While high-level models, both analytical and simulation-based, allow performance trends in an 

architecture to be examined, they provide only an approximation of the architecture's behaviour. It 

is desirable to obtain more exact measurements by "fleshing out" a skeletal model into a full-blown 

architectural simulation from which it is possible to examine the behaviour of a less idealised system. 

With this in mind, an architectural simulator was developed to complement the simulation model. 

The simulator that was produced was known as fdps, an acronym for Fully Decoupled Processor 

Simulator, and was intended to allow the fast and flexible simulation of a reasonably clearly-defined 

processor architecture. 

The simulator had its origins in ades, a simulator developed by S. Manoharan as part of the ACffl-1 

project. Although fdps used the same language (C++), internal structure (direct mapping of 

hardware components to objects) and simulation method (time rather than event driven) as ades, by 

the time it was completed there was almost no code commonality. 

Both simulators were written in C++, since the object-oriented design approach is well suited to 

architectural simulation. It is relatively simple to map hardware components onto C++ objects, 

resulting in code that makes the relationships between hardware components explicit and easy to 

understand. 

The simulation methodology adopted was to simulate the architecture on a cycle by cycle basis, 

rather than using an event-driven approach. This decision had both advantages and disadvantages. 

The main argument against cycle by cycle simulation is that if a simulated component remains in the 

same state for a substantial period of time, it is unnecessary and wasteful to simulate that 

component's behaviour for every single cycle of that period. An event-driven approach would 

require only that the component be simulated at those times where its state changes. 
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An example of this is the simulation of a memory module. This accepts memory requests and, some 

fixed latency later, produces the requested data. When an event-driven approach is used, the arrival 

of a memory request at the memory module is an event which in turn schedules a second event (the 

production of the requested data) at some fixed time later. There is no need to simulate the memory 

module at any time between these two events. By contrast, the time-driven approach requires that 

each and every cycle of the memory access be simulated. The arrival of a memory access may set an 

internal counter which, when it reaches zero, causes the requested data to be output. In a time-

driven simulation, every component is simulated on every cycle, even if the component is idle or it is 

known that its state will not change for some time. 

On the face of it, the event-driven approach seems far superior. However, the case for event-driven 

simulation is not as strong as it at first seems, especially in architectural simulations. While the 

memory module simulation described above does seem to perform a lot of unnecessary work, in 

practice the overhead of performing a simple decrement-and-test operation is low. Also, at the 

opposite extreme we find simulated components such as processors where many events may take 

place per cycle. For example, in a simulation of a pipelined processor, each pipeline stage may 

produce several events on every cycle. 

Additionally, there are hidden overheads incurred by the use of event-driven simulation. Some 

mechanism must be provided to ensure that events occur in the correct order and using event-driven 

simulation in conjunction with an object-oriented simulation also requires some method of ensuring 

that events are delivered to the appropriate component. Often it is also the case that a simulation 

that would be straightforward to simulate on .a cycle by cycle basis requires considerable 

restructuring before it can be effectively simulated using an event-driven system. 

These issues, combined with the important fact that ades had already been written with cycle by 

cycle simulation in mind, lead to fdps adopting the same simulation methodology as its predecessor. 

As will be seen later, the cycle-based simulation approach does lead to some performance difficulties 

when large simulations are run, but on the whole fdps was found to perform very satisfactorily. 
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Another issue in the design of architectural simulators concerns the methods by which the simulator 

is made to run real programs. In the simplistic case it is often possible to avoid this issue altogether, 

producing a simulator where loads and stores are produced on a probabilistic basis. However, if we 

wish to examine the behaviour of an architecture running real programs (or even just standard 

benchmark kernels) there has to be some way to make the simulator's behaviour reflect that of a real 

machine running the real program. The two most common approaches to this problem are 

instruction emulation and the use of instruction traces. 

Instruction emulation involves producing a simulator that directly simulates the actual execution of a 

real program. Instructions are fetched from a simulated memory, decoded by a simulated instruction 

decode stage and passed down a simulated pipeline, setting simulated flags and operating on 

simulated registers as they do so. 

The main advantage of instruction emulation is that it allows very accurate simulation of the 

program behaviour, since we are effectively emulating the architecture rather than just simulating it. 

If we wish to simulate an architecture that uses an existing instruction set and encoding, we 'can use 

the standard tools (compiler, assembler etc.) for that architecture to produce object files that, with a 

little work, can be loaded into the simulator and run. 

However 1  these features of instruction emulation are also its main weakness. The level at which the 

architecture must usually be simulated may slow the simulation down considerably, while the 

problems associated with emulating a new instruction set are manifold. To produce usable object 

files will require at least the development of an assembler, the detailed definition of the instruction 

encoding and probably the development of a compiler too. The amount of work involved is large. If 

the architecture being simulated is likely to be built eventually, the costs associated with developing 

these tools may be reduced, since they would be required for the eventual machine too. However, in 

the common situation where a new architecture is in a state of almost continual flux with frequent 

design changes, it may be difficult for the assembler and compiler to keep up with instruction set 

changes. It is also not always desirable to tie an architecture down to a specific instruction set and 

encoding so early in its life cycle. 
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The other approach to running real programs is to use instruction traces. This involves in some way 

annotating a program (either by modifying the program source prior to compilation or by direct 

modification of the object code) so that when run it produces a log recording the behaviour of the 

program. This log may range in the level of details it records from a direct instruction-by-instruction 

list of those operations performed when the program was run to a record of the times at which certain 

events occurred, and all points in between. 

The primary disadvantage of using instruction traces is the size of the log files produced. Unless 

only a very small subset of program events are being recorded these may be very large indeed. For 

example, a complete instruction trace for a program that runs for just 20 seconds on a 50 MIPS 

architecture will produce a trace containing 100,000,000 instructions. If the instructions recorded 

are 32 bits each, this will require some 400MB of disc space. 

However, one of the good points of using instruction traces is that it is possible to record only that 

information which is needed. If a cache is being simulated the trace need only contain details of 

memory accesses. If a branch target buffer is being tested we only need details of branch 

instructions. It may also be the case that we are interested only in the program's behaviour in a very 

general sense, in which case a greatly simplified abstract instruction set may be used. The use of a 

simple abstract instruction set may also speed up the simulator being used which, when combined 

with the ability to use a single trace file for multiple simulations, can save a great deal of time. 

Object annotation is invariably done automatically - the task of manually modifying an object file, 

adjusting branch destinations and so forth is one that dates back to the pre-history of computing and 

that is nowadays done only in extreme circumstances. Source annotation can, however, be done 

either manually or automatically, although the practicality of the former depends largely on the 

format and complexity of the annotation information being generated and the size of the source being 

modified. 

In all but the simplest cases (single kernels from the Livermore loops, trivial test programs) it is best 

to use an automatic source annotator. Producing such a tool is not a minor task. At worst it may 
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require the implementation of the same optimisations as would be required by a full-blown compiler. 

However, it is generally easier to write an annotator capable of annotating a program with the 

equivalent of reasonably good code than to produce a compiler capable of actually generating that 

code. Also, with a suitable abstract instruction set, annotation may be greatly simplified. 

The relative merits of source and object annotation depend largely on the tools available to the 

programmer and to the desire for portability. Annotated sources are more portable than annotated 

objects. As long as a compiler for the language being annotated exists on the desired platform, 

portability can be achieved, although the end result may be slower to run than if object annotation 

had been used. 

4.33 The Source Annotator 

Before describing the structure of the simulator itself; it is useful to examine the tool that generates 

the instruction traces that it uses. 

The first approach tried was to modify an existing simulator for the (paper) DLX [HP90] architecture 

so that, when programs were run on it, traces were produced. A C compiler already existed for DLX, 

so this was seen as potentially being a low cost route to trace generation. 

However, there proved to be a number of weaknesses to this approach, which were mainly concerned 

with the supplied C compiler. While it proved easy to modify the simulator itself to generate trace 

information, the C compiler had a number of limitations. Foremost amongst these was a tendency to 

crash severely when asked to compile anything other than trivial code. Even when the compiler 

could be persuaded to compile code, the resulting object code (actually DLX assembly language) was 

far from optimal. 

Additionally, the approach taken required that an additional tool be developed to process the 

resulting traces (one each for the access and execute processors) into a fully decoupled trace, 

generating the control processor trace and blocking the other traces into meta-instructions at the 

same time. 
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In the end it seemed that this "low cost route" was in fact unnecessarily complex, and work on this 

approach to trace generation was abandoned. It was decided instead to develop a source annotator 

that would directly modify program sources, which could then be compiled and run to produce 

traces. 

The basis for this annotation tool was the Sigma toolkit [Gan92] developed by Professor Dennis 

Gannon and associates at the University Of Indiana. Sigma consists of two main components. The 

first of these, a compiler called cfp, reads in a source program (written in Fortran 90, and possibly 

consisting of several separate modules) and produces as output not an object file but a database that 

represents the parse tree of the program. 

The second component of Sigma is a C library that can be used by a user application to analyse 

and/or modify the database. After any desired changes have been made to the database, it can be 

unparsed to generate a modified source program. 

Although Sigma is primarily intended for analysing and modifying sources with a view to 

parallelising them, it proved very useful for developing a source annotator. 

The tool that was developed used Sigma to-traverse the parse tree of a Fortran program, annotating 

each procedure of the source in turn, to produce an annotated source which could be compiled, linked 

with a library and then run to produce a trace (see Figure 9). Each procedure is traversed in turn, 

statement by statement, and an internal list built up that describes the annotation of the source so far. 

When a basic block boundary is detected (generally a statement that affects control flow or is the 

destination of a jump from elsewhere) the corresponding annotation is placed in the database and a 

new internal list started. 

The annotator makes a small number of simplifying assumptions when analysing code. It is assumed 

that the vast majority of scalar accesses will be met either from a register file or a data cache, so 

scalar variable references generate no memory accesses and are treated in the same manner as 

arithmetic instructions. Similarly, it is assumed that no attempt will be made to cache array 

accesses, and a decoupled load is always generated for these. 
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The annotator performs a number of standard optimisations, such as constant and copy propagation, 

constant folding, common sub-expression elimination and a number of more specific peephole 

optimisations. The resulting traces correspond to those which might be generated by a compiler with 

an intermediate level of optimisation. Should more optimal tracing be required, individual annotated 

source routines can be modified by hand. 

The internal list that is built is, in fact, a collection of three lists, one for each sub-processor. 

Operations are placed on a particular list depending both on their type and their context. Control 

flow operations are always placed on the CU list, memory accesses are generally placed on both the 

AU and DU while expressions are placed on the DU trace. Obviously there are exceptions to this. 

Expressions that are used to calculate an array index are placed on the AU and, depending upon the 

level of optimisation specified, loop conditions may be placed on the CU list. 

Other placement decisions made by the annotator depend largely on which command line flags are 

specified. The most important of these allows the richness of the processor to memory 

interconnection to be specified, while others allow for processor architectures with conditional or 

guarded meta-instruction issue and for a number of methods of loop execution. These options 

Fortran Source Files 

Parsing 

Sigma Database 

Annotation 

Annotated Source File 	Trace Library 

Compilation & Linking 

Object File 

Execution 

Control Trace File 	Data Trace File 	Address Trace File 

Figure 9 - The annotation lifecycle. 
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collectively allow code to be annotated for all three levels of fully decoupled architecture (which will 

be described later). Additional flags allow the user to specify whether generated traces should be 

automatically compressed, and whether the trace information generated should be human-readable, 

numeric ASCII or in a binary format. Only the last option is supported by the simulator, but the 

others allow generated traces to be more readily examined. 

After annotation is complete, the annotator outputs a modified program source. Figure 10 shows the 

results of annotation for a short program (a SAXPY loop). The source is annotated by the addition 

of calls to externally defined procedures which correspond directly to the supported simulator 

primitives. The operation is specified by the name of the procedure while the parameters specify an 

operation count, a total cycle count (not present in all primitives) and, in the case of memory access 

operations, a memory address. 

Original source 

program example 
real y(100), x(100), a 
integer i 

do 10 i = 1, 100 
y(i) = a * x(i) + y(i) 

10 	continue 
end 

10 

Annotated source 

program example 
real y(100), x(100), a 
integer i 
call Open Trace (progi, 
call CU_Issue_AU () 
call CU Op (1, 1) 
call AU Wait CU () 
call AU_Op (1, 1) 
do 10 i = 1, 100, 1 

y(i) = a * x(i) + y(i) 
call CU—Issue () 
call CU Op (2, 2) 
call CU_LocalBranch (1, 1) 
call AU Wait CU () 
call AU DU Load (bc (x(i)), 
call AU DU Load (bc (y(i)), 
call AU_DU_Store (bc (y(i)), 
call AU_Op (1, 1) 
call DU Wait CU I) 
call DU Load (1) 
call DUOp (1, 1) 
call DU Load (1) 
call DU Op (1, 1) 
call DU Store (1) 

continue 
call CU End () 
call AU_End () 
call DU_End () 
call Close—Trace () 
end 

CU loop body 

0) AU loop body 

DU loop body 

Stop tracing 

Close program trace 

1, 0) ; Open program trace 

Loop prologue 

Figure 10- A sample source annotation. 



The modified source is then compiled and linked with a specially written trace library. This library 

provides definitions for all of the externally defined procedures in the annotated source. The use of a 

separate library allows for increased flexibility, since it places all the responsibility for the translation 

of the abstract information specified by the annotated source into whatever physical representation is 

required on the trace library. This means that a single annotated source may be linked with different 

trace libraries to produce different trace formats. 

The standard trace library is written in highly optimised C for speed. It generates three trace files 

(one for each sub-processor) although there is no reason why a trace library could not generate a 

single trace file and tag each trace element as being for a specific processor. As has already been 

mentioned, traces can be generated in human-readable format or in a considerably more compact 

format for simulator use. This, combined with compression, greatly reduces the size of traces. For 

example, the compressed trace for the first kernel in the Livermore loops manages to compress 

several thousand control sub-processor operations down to just 91 bytes. 

4.3.2 The Simulator Structure 

The object-oriented approach of the C++ language provides a very useful framework Within which an 

architectural simulation can be built. 

The top level object in the simulator is the system (class As im_Syst em) itself. Each system object 

contains a fully decoupled processor and memory subsystem. The main method for the system object 

cycles the entire system for a single cycle. This involves moving data between the processor and 

memory objects (enforcing the limitations of the interconnect as it does so), as well as the cycling of 

the processor and memory themselves. 

The system object is highly parameterisable. Most of these parameters configure the internal 

components of the object and will be listed when those are described, but those of interest only to the 

system object itself largely concern the format of the report that is generated at the end of a 

simulation, specifically the level of detail in the representation of memory access statistics. 
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Figure 11 - The simulated memory subsystem structure (5 segments). 

Within the system object, we find the memory subsystem (class Asim_Memory) and the fully 

decoupled processor itself (class As irn_Proce s sor). The interface to the memory object is 

straightforward, and provides methods to check the memory subsystem's readiness to produce or 

accept data, and to add or remove memory accesses. The internal structure of the memory system is 

invisible during operation, with all internal routine being handled by the object itself. The internal 

structure can, however, be specified when the memory object is first created. This allows the 

simulation of a variety of memory subsystems, although for the experiments carried out here a 

segmented and banked system was used. 

Internally, the memory is split into a number of segments, as shown in Figure 11. The number of 

segments (objects of class As im_Segment) in the subsystem can be parameterised, and is set 

(arbitrarily) to five in the example shown. There are two inputs to the basic memory subsystem, and 

these are assumed to be connected to the segments by a 2 —p n crossbar switch. This is implemented 

directly by the object, and a round-robin discipline is enforced to ensure that should both inputs wish 

to access the same segment each will get its turn. This becomes more important in the more 

elaborate variations of the architecture described in Sections 4.3.3.2 and 4.3.3.3, where there may be 

more than two input sources to the network. 
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At the other "end" of the memory subsystem the segments are connected to a single output port by an 

n -+ 1 crossbar switch (i.e. a demultiplexer). In the more elaborate variations of the architecture, the 

outdegree of the crossbar switch may be greater. A round-robin discipline is again enforced to 

ensure that if more than one segment wishes to output data, each gets its turn. Cycling the memory 

subsystem object results in memory accesses (if any are present) being moved from segments to 

output and from inputs to segments, as well as the individual segments themselves being cycled. 

Each segment of the memory subsystem (see Figure 12 for the structure of a segment with four 

banks) consists of an input buffer, an output buffer and a number of memory banks (class 

Asim_MemBank). Segments have only one input and output regardless of the number of banks they 

contain. New memory accesses are first placed in the input buffer. If the bank to which the access is 

to be routed is busy the segment input becomes blocked, otherwise the access is routed directly to the 

bank. It is possible to specify a delay in transferring the value from buffer to bank to allow for the 

simulation of transmission delays or address/data line setup times. As data becomes available from a 

bank, it is transferred to the segment output buffer (assuming that this is not occupied). If the output 

buffer is occupied, the bank will stall until the transfer can be accomplished. It is also possible to 

specify a delay for the transfer from bank to output buffer. 

Figure 12 - The simulated memory segment structure (4 banks). 

Methods provided for each segment include the ability to inquire whether a segment has output data 

waiting, whether it can accept a new access, the addition and removal of data from input and input 
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and the ability to cycle the segment. Cycling a segment object causes various internal data transfers 

to take place, as well as cycling the banks within the segment. 

The banks themselves are uncomplicated, consisting only of a small input queue and the memory 

bank itself. Each bank collects statistical information regarding the utilisation of its input queue and 

the latency of all store accesses that it receives. In the more elaborate architectural variations, where 

stores may come from any one of several sources, it is possible to record the latency of each type of 

store or gather statistical information regarding all types of store combined. Statistics regarding load 

latencies are gathered at the end of the load path rather than in the banks. 

If it is not required that per-bank latency and bank queue utilisation figures be gathered, segments 

can be instructed to gather and assimilate data from all their constituent banks. If even this is 

unnecessarily detailed, average latency and queue utilisation figures for the memory subsystem as a 

whole can be produced. 

Returning once again to the system level, the second major component of this object is the processor 

itself, which is of class As ira_Processor. This contains a number of components, namely the three 

sub-processors that make up a fully decoupled processor, plus the fetch engines used to break meta-

instructions down into their constituent instructions. Methods are provided for examining whether a 

specific sub-processor wishes to access memory, removing a memory access from a specific sub-

processor to deliver to memory, and delivering the result of a load access to the appropriate 

destination. 

The processor differs from most other objects in the simulator by having two cycle methods. This is 

required to ensure correct timing and is brought about by the fact that some components of the 

processor must be cycled before the memory object and some afterwards. 

The classes of the three sub-processor objects contained within the processor differ considerably, but 

all three are derived from the same parent class (class As im_SubProces sor). This parent class 

provides a number of features common to all three sub-processors, such as a processor pipeline and 
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an assortment of statistical variables used to keep track of cycles completed, the number of stalls and 

the frequency with which each type of operation has been executed. 

The first derived class represents the control sub-processor. This inherits the objects described above 

from its parent class and adds objects to represent the MIQ and CFQ, as well as additional 

architectural structures required by the higher level architectures which will be described later. 

Copious statistics are collected to measure pipeline utilisation, MIQ and CFQ lengths, stalls due to 

CFQ waits, and so forth. The usual retinue of input/output methods are provided, allowing memory 

accesses to be transferred to/from the sub-processor in architectural variations which allow this. The 

transfer of meta-instructions between the MIQ and the fetch engine is not modelled in the usual 

manner, however, as the fetch engine object is allowed direct access to the MIQ and requires no 

externally accessible method to do this. 

Most of the actions performed during the control sub-processor's cycle method are common to all 

three sub-processor designs. The pipeline is cycled and the operation "expelled" from the end is 

recorded in the table of instruction execution frequencies (used to determine the dynamic instruction 

mix). Then, if the pipeline is not stalled, a new operation is fetched and added to the pipeline. The 

control sub-processor is assumed to be directly connected to a perfect instruction cache. 

Each pipeline stage, from the first unstalled stage to the last, is then examined and one of a number 

of actions taken depending upon the operation and the stage it appears in. Operations may stall the 

pipeline. Once all the unstalled pipeline stages have been "run", various internal statistics are 

gathered, such as pipeline utilisation and number of cycles spent stalled. 
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Operation Description 
OP Generic CU arithmetic/logical operation. 
GUARD OP Guarded CU operation. 
WAIT DU Receive half of CU to DU transfer. 
WAIT AU Receive half of AU to CU transfer. 
ISSUE Issue meta-instruction. 
ISSUE AU Issue AU-only meta-instruction. 
ISSUE DU Issue DU-only meta-instruction. 
JMP Unconditional jump. 
BSR Branch to subroutine. 
RTS Return from subroutine. 
BRA Conditional branch. 
BRA AU Conditional branch on data from AU to CU transfer. 
BRA DU Conditional branch on data from DU to CU transfer. 

Table 1 - Level 1 control sub-processor operations. 

The operations which may be executed on the control sub-processor (at Architecture Level 1, at least) 

are shown in Table 1. As has already been explained, the simulator does not simulate the execution 

of a particular processor instruction set but rather runs a simplified, abstract instruction set that 

groups together instructions unimportant to the issues being investigated and distinguishes only 

between operations relevant to decoupling. All of the irrelevant operations are classified as one type 

of instruction, OP, and act as little more than spacers, to ensure that the correct amount of time 

elapses between "interesting" operations. This instruction type encompasses all arithmetic (integer 

and floating point) and logical operations. The control sub-processor assumes that one of these 

operations can be issued every cycle (pipeline stalls permitting) so inter-instruction dependencies are 

not explicitly modelled. However, as we will see when we examine the modelling of the fetch 

engine, the effect of stalls due to inter-instruction dependencies can be simulated in other ways. 

The other operations supported are relatively self-explanatory. The GUARD OP operation is 

functionally identical to OP (that is, it does nothing) but allows instructions which are not executed 

due to guarding to be distinguished from others. A selection of deliberately vague operations are 

provided for the modelling of meta-instruction issue and the return of data from the work sub-

processors. Standard control flow operations are also provided, although in the current simulator 

these are considered functionally equivalent to OP and do not actually cause any special action to be 

taken 
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The address sub-processor differs in a number of ways. Methods are provided for handling memory 

accesses, and the internal structure of the object reflects its different role, with queue objects to 

simulate the LAQ, SAQ and TRQ. The rather minimalist instruction set supported by the 

Asim_AddrSubProcessor class is show in Table 2. Perhaps the most important difference in the 

address sub-processor's operation, however, is that it takes new instructions not from the implicit 

perfect instruction cache used by the control sub-processor, but from a dedicated fetch engine, which 

may cause it to stall if no instructions are available. 

Operation Description 
OP Generic AU arithmetic/logical operation. 
GUARD OP Guarded AU operation. 
DC LD Addressing half of AU/DU decoupled load. 
DC ST Addressing half of AU/DU decoupled store. 
WAIT DU Receive half of AU/DU transfer. 
SIGNAL CU Send half of AU/CU transfer. 
SIGNAL DU Send half of AU/DU transfer. 

Table 2 - Level 1 address sub-processor operations. 

The data sub-processor works in a similar manner, and the instruction set supported by the simulated 

DU is shown in Table 3. 

Operation Description 
OP Generic DU arithmetic/logical operation. 
GUARD OP Guarded DU operation. 
LI) Data half of AU/DU decoupled load. 
ST Data half of AU/DU decoupled store. 
WAIT AU Receive half of AU/DU transfer. 
SIGNAL CU Send half of DU/CU transfer. 
SIGNAL AU Send half of DU/AU transfer. 

Table 3 - Level I data sub-processor operations. 

As has already been stated, each of the work sub-processor components contains a fetch engine 

object. This represents that part of the real hardware that would be responsible for translating meta-

instructions from the MIQ into a stream of sub-processor instructions. In principle the simulation of 

these objects could include the simulation of some of the interesting instruction caching techniques 

that will be described in Section 8.2, but in the current simulation it is assumed that the fetch 
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engines are connected to more of those magical perfect instruction caches that feed the control sub-

processor. 

The fetch engine object simulates this by reading an instruction trace for the sub-processor from a 

file. Details of the compression techniques used to compact the traces down to a manageable size 

were given in Section 4.3.1 but for the moment all that needs to be revealed is that the fetch engine 

reads tuples consisting of an operation, the number of times that operation is to be repeated, and a 

minimum cycle count. The last field of this tuple is generally set to be the same as the repetition 

count (implying that an instruction can be produced every cycle) but it is possible to manually alter 

the trace to increase this value and thus produce an approximation of the pipeline delays that might 

result from inter-instruction dependencies. 

The stream of decompressed instructions that the fetch engine reads consists almost entirely of 

instructions (as specified in Table 2 and Table 3) for one of the work sub-processors which are 

passed to the appropriate object on request. However, the instruction stream can also contain two 

additional instructions, both of which are filtered from the instruction stream that reaches the work 

sub-processor. 

The first of these is the WAIT CU operation, which is (implicitly) executed on the fetch engine 

itself. When the fetch engine encounters one of these in the instruction stream, it attempts to remove 

a meta-instruction from the MIQ. If none is available, the fetch engine stalls until one arrives. 

This filter mechanism allows the implicit synchronisation between the AU or DU and the CU that 

occurs when a meta-instruction is removed from the MIQ to be modelled. It effectively inserts into 

the work sub-processors instruction stream the synchronisations with the CU that result from control 

decoupling, without requiring that they be explicitly modelled on the work sub-processors. 

The second additional instruction is the END operation. The fetch engine, on receiving one of these, 

knows that the end of the instruction trace has been reached and "shuts down". The operation is 
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passed to the appropriate work sub-processor but is not considered a true instruction, since its only 

function is to halt the simulation when it reaches the end of the processor pipeline. 

Methods provided for the fetch engine include checks to see if it is stalled or finished, to read the 

next available instruction and to cycle it. 

4.3.3 The SimulatedArchilecture 

To provide a consistent base on which all experimental work could be based, a family of upwardly-

compatible abstract architectures was first defined. 

Three levels of architecture were defined. The Level I architecture is the simple baseline 

architecture and later levels increase the richness and complexity of the processor design. All three 

levels of architecture are assumed to use the same basic processing units, with minimal instruction 

set enhancements. 

4.3.3.1 The Level 1 Architecture 

The simplest of the three simulated architectures is the Level 1 architecture, which is illustrated in 

Figure 13. This was originally intended to correspond as closely as possible to the semantics-driven 

architecture already described [Bird91] but certain weaknesses in that architecture's capabilities lead 

to Level 1 having a rather richer degree of interconnection than was originally intended. 
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Figure 13 - Level 1 architecture. 

In this architecture the various sub-processors are minimally connected. The control processor does 

no computation itself and restricts its activities to performing the traversal of the program control 

flow graph. It is able to pass meta-instructions to the work units and can receive the results of 

computations back from either work unit. It is incapable of accessing memory itself; and if it 

requires to do this it must do so indirectly via the work units. This adheres closely to the purist view 

of the control processor, moving from node to node in the flow graph and performing no explicit 

computations other than the examination of the results of branch condition evaluations. 

In Bird's original semantics-driven architecture, there was no connectivity between the two work 

units. However, this made indirection difficult and required that such accesses be performed by the 

control processor, which moved away from the purist view of the control processor's role. In the 

Level 1 architecture, the control unit is unable to make such accesses, but a data path exists between 

the two work processors, allowing indirected values to be passed directly from the DU to the AU. 

To give an example of why this is necessary, the Fortran expression x = a (b (i)) would prove 

awkward to evaluate on Bird's architecture. The address processor could generate the address b (i) 

but we would then find the contents of this array element, which we wish to use as an index for our 

access of the array a stranded on the DU. This problem could be resolved by performing two non- 
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decoupled memory accesses on the CU, or possibly by performing a single non-decoupled load on the 

CU and then somehow passing this value to the AU if the meta-instruction format allowed the 

passing of parameters. This loses any control decoupling that may have arisen, however, and leaves 

the work processors idle. If indirections of this sort were infrequent, performance would not be 

noticeably effected, but such indirections are typical of many sparse algorithms, such as the particle 

in cell benchmarks in the Livermore loops, as well as in such menial tasks as list following. 

Indirection on the Level 1 architecture can be achieved by performing a standard decoupled load, 

then passing the loaded operand back through the transfer queue to the AU. This eliminates the loss 

of control decoupling but loses access/execute decoupling. Compiler optimisations could reduce the 

frequency of the loss of decoupling by splitting a series of indirect loads into a series of loads 

followed by a series of transfers followed by a second series of loads, but this would introduce the risk 

of deadlock unless the state (and length) of the queues used for the DU to AU transfer were known 

beforehand. A more robust approach to the problem of indirection appears in the definition of the 

Level 2 architecture. 

The Level 1 architecture is not intended as a serious proposal for a real computer architecture, but 

rather as a baseline from which the parameters which dictate the performance of a fully decoupled 

machine can be deduced, their effects analysed and comparisons made with more complex 

architectures. The simplicity of the Level 1 machine also makes the development of a model of a 

fully decoupled architecture more straightforward. 

4.3.3.2 The Level 2 Architecture 

The second level architecture differs from Level 1 chiefly in having more paths to memory. As can 

be seen in Figure 14 the address and control sub-processors both now have direct non-decoupled 

connections to memory. 
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Figure 14 - Level 2 architecture. 

This is intended to allow these sub-processors to access memory without forcing any losses of 

decoupling. The effective latency of these memory paths is high, since neither is decoupled, but if 

use of direct accesses of this sort is infrequent the performance penalty is considerably lower than the 

cost of repeated losses of decoupling. Additionally, the latency of these accesses might be reduced by 

conventional latency reduction techniques, such as the use of data caches, although this would 

introduce cache consistency difficulties. 

Operation Description 
SF LD CU/AU self load. 
SF ST CU/AU self store. 

Table 4 - Level 2 address and control sub-processor operations. 

The instruction set extensions in the Level 2 architecture are the same for both the address and 

control sub-processors and are shown in Table 4. Both can now perform conventional non-

decoupled loads and stores. This effects some other aspects of the simulated architecture, however. 

In addition to the minor changes in the instruction set "decoding" the sub-processor components are 

also equipped with single element data and address buffers which are connected to the memory 

subsystem in a similar manner to the queues used in decoupled accesses. The system object is 

modified so that memory accesses can be generated by four different sources and loads can return to 

one of three different destinations. 
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All three types of load (CU self load, AU self load and AU/DU decoupled load) are assigned identical 

priority, and a round-robin mechanism is used where multiple input sources wish to address the same 

bank. No such bottleneck occurs with returning loads, since only one self load of each type can be 

active in memory at any one time, due to the stalling nature of the self load operation. 

4.3.3.3 The Level 3 Architecture 

The third and final level of the architecture can be seen in Figure 15. It enriches the processor-

memory interconnection still further, by providing a means whereby the control sub-processor can 

initiate decoupled loads for the address sub-processor. How useful this will be in practice remains to 

be seen. This new memory path is supported by the addition of a DC LD operation on the CU and a 

LD operation on the AU (see Table 5). These behave identically to the equivalent operations for 

AU/DU decoupled loads. 

Figure 15 - Level 3 architecture. 

The Level 3 architecture also considerably extends those parts of the CU instruction set concerned 

with meta-instruction issue. The new instructions are listed in Table 6 and provide two new means 

of meta-instruction issue, guarded and conditional. The semantics of these operations will be 

explained in Chapter 5. 
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Operation Description 
LD 	Data half of CU/AU decoupled load. 

Table 5 - Level 3 address sub-processor operations. 

The additional features of the Level 3 architecture require a number of new sub-components for the 

address and control sub-processors. The control sub-processor requires a queue for the address half 

of CU/AU decoupled loads. This is known as the DLQ to distinguish it from the LDQ. The 

additional meta-instruction issues operations require no additional software components (although 

they would require considerable control logic in hardware) and are handled purely by changes in the 

instruction decoding. 

Operation Description 
DC LD Addressing half of CU/AU decoupled load. 
COND ISSUE Conditional meta-instruction issue. 
COND ISSUE AU Conditional AU-only meta-instruction issue. 
COND ISSUE DU Conditional DU-only meta-instruction issue. 
GUARD ISSUE Guarded meta-instruction issue. 
GUARD ISSUE AU Guarded AU-only meta-instruction issue. 
GUARD ISSUE DU Guarded DU-only meta-instruction issue. 

Table 6 - Level 3 control sub-processor operations. 
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5. Decoupling 

In Section 2.4.6 a brief introduction to the topic of decoupling was given. In this chapter decoupling 

will be discussed in greater detail, examining both of the forms of decoupling that occur in a fully 

decoupled architecture. The architectural and programming language features that affect the 

available degrees of decoupling will be examined in detail, showing both those features that cause 

decoupling in the first place and those that place limits on the extent to which it can be exploited. 

For each type of decoupling, a series of experiments will be run on the simulated queueing network 

model described in the previous chapter. In parallel with this, a second set of experiments will be 

run using the full architectural simulator described in Section 4.3, and the results thus obtained 

compared with those from the queueing network simulation. From these results the performance 

envelope of the architecture can be mapped, and the validity of the analytical model established. 

5.1 Access/Execute Decoupling 

Access/execute decoupling is the more thoroughly understood of the two forms of decoupling. Some 

of the ideas behind it have been in use since the 1960s and a number of machines have been built 

which make use of it. 

5.1.1 Experiments 1& 2: Load streaming 

For the purposes of the first two experiments, an artificial instruction trace was created by hand-

annotation that represented a sequence of 100,000 decoupled loads. This figure was felt to be high 

enough to allow the system to stabilise in a steady state while also being low enough for simulation 

not to require an excessive amount of time. 

The artificial trace was as minimal as possible, and designed only to test the characteristics of 

decoupled loads without involving any other features of the architecture which might skew the 

results obtained. The entire sequence of 100,000 loads was issued by a single meta-instruction on the 

control unit, and the other two units were configured so that, stalls within the system 

notwithstanding, one load packet would be generated on each cycle and one load packet consumed. 
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The memory subsystem was configured in the architectural simulator as sixteen segments of four 

banks each, and in the simulated model as 64 separate banks. 

Two experiments were run. The first (which we will henceforth refer to as Experiment 1) varied two 

parameters, the LAQ/LDQ size and the memory latency. The former was set in turn to 1, 2, 4, 8 and 

16 packets, then in increments of 16 up to 128 packets. The memory latency was varied between 8 

and 128 processor clock cycles, in increments of 8 cycles. Memory access time was set to be 80% of 

memory latency in each case. 

It seemed likely that, between them, these two parameters would allow the performance envelope of 

load streaming to be fatly mapped. The range of memory latencies simulated was chosen so that it 

spanned a wide range of memory system characteristics, from having only half the required 

bandwidth for peak performance to having twice the required bandwidth. The selection of queue 

lengths chosen allowed the modelling of both "undertagged 4' systems, where the number of active 

load packets is less than the maximum the memory system can cope with, and systems where the 

number of active load packets can potentially fill the memory pipeline. 

In each case, the processor was simulated both with and without address remapping. On the 

simulated model, this was modelled by the use of uniform random bank selection and unit stride 

bank assignment respectively. 

The second experiment (Experiment 2) conducted was essentially the same as the first but held the 

length of the LAQ at one packet while varying the LDQ length, allowing the behaviour of the 

processor with and without an LAQ to be compared. The hypothesis of the experiment was that 

while the presence of an LAQ might have a minor effect on the performance of the address sub-

processor, its absence would not adversely change the effective latency. Since the LAQ is a 

potentially expensive piece of hardware, it would seem desirable to eliminate it or even to reduce its 

size. 

65 



5.1.2 Unit stride accesses 

The experiment was first run using memory accesses with unit stride. In the case of the simulated 

model this was achieved by using the provided command line option to force load packets to be 

routed to the memory banks in this manner. The trace used meant that the architectural simulator 

used unit stride by default, unless Rau's address hashing was used. 

Running the experiment yielded some interesting results although in some cases they revealed more 

about the weaknesses of the model than the behaviour of the architecture. 

Perhaps the most obvious measure of performance is the total runtime for the test sequence. For this 

it suffices to use the runtime for the data sub-processor since, in the example trace, this is guaranteed 

to be the last active sub-processor. It was found that the model and simulator produced similar 

results for runtime when the system was undertagged, but that in situations where the LAQ/LDQ 

length are greater than the memory latency, it tended to overestimate. This is shown 

diagrammatically in Figure 16, which illustrates the model error, relative to the runtime for the 
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Figure 16 - Normalised model runtime error. (Ex. 1) 
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architectural simulator, for each combination of LAQILDQ length and memory latency. The error is 

due largely to small variations in the production/consumption rate on the AU and DU respectively 

which, combined with rounding errors, resulted in loads occasionally being inserted very two cycles 

rather than every cycle. Where the system was undertagged this had little effect since it was small 

compared to the effects of the undertagging, and when latency was high it was also too small to 

noticeably change the runtime. However, in those parts of the performance envelope where sufficient 

load tags were available, and memory latency was relatively short, it was found to introduce a 

considerable error. 

Do 

I 
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Figure 17 - Total runtime. (Ex. 1) 

Figure 17 shows the simulated runtime of the test sequence for the range of memory latencies and 

queue lengths described above. The results indicate that, when the LAQ and LDQ are short, overall 

performance is strongly influenced by memory latency. This can be explained by the LDQ size 

limiting the number of active load packets that may be in the memory subsystem at any one time. If 

the LDQ is only a single element long, no more than one load packet may be active at any one time. 

This means that only a single bank will be busy at any time. Examining the "back" of the graph 
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shows the runtime varying linearly with memory latency, as load packets pass through memory 

serially. 

As the lengths of the queues increase, so does performance. More load packets may be active at any 

one time and this results in a rapid drop in runtime since more of the available memory bandwidth is 

being used. As can be seen in Figure 17 an increase in queue length reduces the rate at which 

runtime increases when the memory latency is increased. In other words, as the queues become 

longer the system becomes more latency tolerant. 

These runtime estimates do not, in themselves, give a particularly good indication of the performance 

benefits of decoupling. For this reason, the runtime of the decoupled machine was compared with 

estimated runtimes for two conventional architectures which act as reasonable upper and lower 

performance bounds for conventional non-decoupled architectures. The first of these was a non-

decoupled architecture with no cache. In this system loads are strictly sequential, regardless of how 

heavily banked the memory subsystem is. The performance for this architecture was found to be 

similar to that for the decoupled architecture (as shown in Figure 17) with an LDQ length of 1, 

which restricts the degree to which the available memory bandwidth can be used. It is reasonable to 

say that in this experiment the worst case performance of a decoupled architecture is comparable to 

that of a conventional processor without a cache. 

The other architecture examine was a conventional architecture with a data cache. The cache was 

assumed to have a block size of 64 words. This would be unrealistic in practice - shorter block sizes 

are usually considered superior for the relatively non-linear access patterns of data accesses. 

However, on a system with 64 banks (i.e. the simulated system) which is running a program with 

strictly unit stride accesses, this block size performs particularly well, with a hit rate of 98.5%. 

It was found that a processor with this near-optimal cache is clearly superior to a decoupled 

processor when the decoupled processor has a queue length of less than approximately 32 packets. 

This represents the point at which the penalties due to limitations imposed upon memory bandwidth 

utilisation by the LDQ size are comparable to those caused by cache misses on the conventional 
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architecture. For longer queues, and memory cycle times up to 32 cycles, caching remains superior 

(although only marginally so). This is due to the cache miss penalty being less than the additional 

memory latency incurred by the traversal of the LAQ and LDQ. 

However, outside those areas, decoupling is found to outperform even an unrealistically optimal 

cache (albeit only marginally). The small difference is due to the cache seeing a full memory access 

on each cache miss (i.e. every 64th  access incurs a full memory latency) whereas the decoupled 

architecture sees the full latency on only the first access in the stream. The runtime for both 

architectures increases once the system became underbanked. 
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Figure 18 - Effective load latency with unit stride (Ex. 1) 

Moving on to other aspects of system behaviour, the main influence on runtime in this experiment is 

the effective memory latency perceived by the data sub-processor. Regardless of the actual memory 

latency, it is the effective latency perceived by this unit that determines performance. Figure 18 

shows the effective latency seen by the data unit in this experiment. The graph shows the behaviour 

of the architectural simulator, although the behaviour of the simulated model was affected in a 
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similar manner to the runtime, and showed inaccuracies when actual latency was low and LAQ/LDQ 

length was high. A very strong correlation between effective latency and total runtime is apparent, 

with the graph being a replica of Figure 17 (albeit with a different scale). 

Of less immediate interest but still worthy of mention is the round-trip memory latency. This is 

shown in Figure 19. Two features dominate - the relatively-flat plain on the left of the graph and the 

steep "hill" on the right. 
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Figure 19 - Actual load latency with unit stride. (Ex. 1) 

The former indicates those areas of the performance envelope where the system has become 

decoupled to some degree. The two characteristics which influence this are the memory latency 

(which must be sufficiently small that the memory subsystem is not underbanked) and the LDQ 

length. A short LDQ limits the number of active load packets and thus limits the use of the total 

memory bandwidth that is available. This is illustrated by the raised area at the front of the graph, 

which flattens out as LDQ length increases and bandwidth can be more fully utilised. 
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As memory latency increases, the LDQ length required for the system to become decoupled 

increases. Once memory latency is such that the system becomes underbanked and is incapable of 

delivering one load datum per cycle in even the best of circumstances, latency increases rapidly as 

the memory subsystem clogs up. One feature of the "hill" caused by this is that once the system is 

underbanked, increasing the size of the LAQ also increases the latency. This is due to the memory 

subsystem having become a bottleneck, which results in the LAQ filling up. This substantially 

increases the time a load spends waiting in the LAQ, which in turn increases the round-trip latency. 

Experiment 2 investigates this result further, in an effort to demonstrate the redundancy of the LAQ. 

Looking at the behaviour of the queues themselves during the experiment produces some interesting 

results, as well as showing at least one flaw in the model. Figure 20 shows the average length of the 

LAQ during the simulation. The LAQ behaves much as expected and it should be noted that the 

shape of this graph show some resemblance to that describing the actual load latency (Figure 19). 

Cr 

Figure 20 - Average LAQ length with unit stride for simulator. (Ex. 1) 
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The flat plain on the left represents an area where the memory system is overbanked and capable of 

accepting new loads as soon as they arrive in the LAQ. This means that the LAQ never fills, 

although the "foothills" at the front of graph are due (as described earlier) to the limitations imposed 

by the low LDQ size. The peak at the right occurs when the memory subsystem becomes 

underbanked, and its height corresponds to the maximum queue length as the queue is full in this 

area of the performance envelope. 

Making a similar measurement of average length for the LDQ reveals some rather less predictable 

results. For example, the LDQ never fills in the simulator, since data always arrives in order and 

never arrives faster than the data sub-processor can remove it. However, on the simulated model, we 

can see in Figure 21 that the graph here is not flat and has a number of pronounced peaks, plus a 

clear ridge when the memory latency is around 70 cycles, with a raised plain beyond. 

This unusual behaviour is due to one of the simplifications apparent in the simulated model, namely 

the restriction on the number of load packets which may be transferred from the memory subsystem 
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Figure 21 - Average LDQ length with unit stride for model. (Ex. 1) 
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into the LDQ at a time. The architectural simulator allows only a single load packet to be transferred 

per cycle, which ensures that loads cannot arrive faster than the data sub-processor can remove them 

(although this is not the reason for the restriction). This, when coupled with unit stride memory 

accesses in Experiment 1 and the nature of the round-robin bank selection scheme used to resolve 

conflicts when more than one memory segment wishes to transfer a load packet, ensures that load 

packets never arrive out of order and always arrive singly. 

The simulated model allows as many load packets as are ready to be transferred in a single cycle. 

Typically this figure never exceeds two or three, but the cumulative effect of several packets being 

transferred every cycle for several cycles can result in the queue building up. The ridge on Figure 21 

is the result of this behaviour, and the flat plain beyond is due to the same phenomenon manifesting 

itself to a lesser degree. 
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5.1.3 Random accesses 

The same experiment, when repeated with random rather than unit stride accesses, also provides 

some interesting results. In some areas the measured performance is virtually identical to that 

obtained with unit stride accesses. For example, the total runtime matches that of the unit stride 

experiment very closely, so closely in fact that there is no discernible difference visible on a graph. 

Figure 22 shows the difference in runtime for the experiment when run with random and unit stride 

accesses. On an example where runtimes can exceed 1,000,000 clock cycles, the greatest difference 

is 20 cycles. Needless to say, the difference in effective latency is equally tiny, and was undetectable 

unless this metric was measured to four decimal places. 

Small differences begin to emerge when we examine the actual latency when random accesses are 

used. When we compare the actual latency for the simulator when using random accesses with the 

same value when unit stride accesses are used, we find very little difference at all. 

Figure 22 - Difference in runtime between random and unit stride accesses. (Ex. 1) 
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Figure 23 - Difference in actual latency for unit stride and random accesses. (Ex. 1) 

The difference between the two is shown in Figure 23. However, this difference is on the order of a 

fraction of a cycle in the worst case (which is, interestingly, at the point where the system becomes 

underbanked). This indicates one of the good features of the address remapping scheme used - while 

the effect of bad strides is greatly reduced, there is little effect on good strides. In this case, the 

distribution of the bank utilisation remains uniform, only the order in which the banks are accessed 

is permuted. Thus there is still a flat area in the overbanked, overtagged area of the graph, since all 

that has changed is the order in which the banks are accessed. 

This is not, however, true for the simulated model. Although load packets are routed to banks using 

a random uniform distribution, the access pattern is truly random rather than just a permutation and 

the distribution is guaranteed to be uniform only in the long term. Local irregularities in the access 

pattern can result in several load packets in a row going to the same bank. This, as can be clearly 

seen in Figure 24, causes the flat plain to disappear since it is now possible for the LAQ to fill due to 

localised non-uniformity in the access pattern even when the memory system is overbanked. Note 

also the general correspondence in shape between Figure 19 and Figure 24 for the area where the 
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Figure 24 - Actual latency for model with random stride. (Ex. 1) 

system is underbanked. In this part of the design space the two correspond quite closely, indicating 

that the effects of underbanking predominate over the irregularities caused by random bank accesses. 

5.1.4 Conclusions 

This experiment allows a number of useful conclusions to be drawn about both the experimental 

methodology used and decoupled architectures themselves. 

From a simulation and modelling point of view, the experiment was of interest for two main reasons. 

It allowed a comparison of the behaviour of a detailed architectural simulator with that of a much 

simpler simulated model, and it allowed the comparison of unit stride access patterns with random 

access patterns. The latter may seem like an architectural issue, but if it can be shown that the 

random access patterns and unit stride access patterns give comparable performance figures, then the 

more general random access pattern can be used instead of a specific deterministic one. 

As can be seen in the copious graphs which accompany this experiment, the simulated model 

appears to track the behaviour of the architectural simulator very closely in the large. The-estimates 

produced by the model for runtime, effective and actual latency are extremely accurate. However, the 
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correspondence between the two breaks down somewhat when the internal characteristics of the 

system are examined. While the modelled LAQ length accurately reflects the behaviour of the "real" 

system, the simplifications made in the model mean that the LDQ length is no longer accurately 

represented. This inaccuracy is acceptable if all that is required are measurements of performance 

for the system as a whole (for example, runtime) rather than specific internal measurements. 

The comparison between random and deterministic unit stride accesses yields similar results. The 

use of random access patterns has little effect on measurements such as runtime and effective latency, 

but the behaviour of the queues differs considerably, since the randomness of the memory access 

pattern blurs the distinction between areas of the performance envelope that are distinct when 

deterministic access patterns are used. Again, it appears that the random model can be used, unless 

details of internal behaviour are required, when a more deterministic model must be used. 

Even as simple an experiment as this allows us to observe some very important behaviours. It is 

clear that for the best performance the LDQ length must be sufficient that the available memory 

bandwidth can be fully exploited. If the LDQ is too short, the limit that this places on the number of 

load packets in the memory subsystem means that banks may become idle waiting for a packet to be 

removed from the LDQ and its associated tag freed. Many of the graphs shown here also exhibit a 

very clear boundary between the behaviour of the system when it is underbanked and when it is 

overbanked. As would be expected, the system performs better when there is excess memory 

bandwidth available. However, one notable quirk in the system's behaviour centres around the length 

of the LAQ. It appears to be the case that while a longer LAQ will generally result in no change (for 

better or worse) in system performance, it can substantially increase the actual latency of memory 

accesses. Before proceeding to investigate the behaviour of decoupled store operations, it is worth 

investigating this characteristic of the LAQ more closely. 
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5.1.5 Experiment 2: Is the LAQ really necessary? 

This second experiment is constructed in a similar manner to Experiment 1. The simulator and 

model both perform a number of simulation runs, with each run containing 100,000 decoupled loads. 

The memory cycle and access times are varied as before, as is the LDQ length. However, instead of 

varying the LAQ length along with the LDQ length, two sets of simulations are run, one with the 

LAQ set to unit length (effectively no LAQ) and one with it set to a length of 128. In all four 

simulations deterministic unit strides are used. 

Figure 25 is of particular interest, since this one graph shows the efficiency of both the address and 

data sub-processors for LAQ lengths of both 1 and 128. The significance of the fact that only one 

surface is shown is considerable - that the length of the LAQ makes very little difference to 

efficiency. Closer examination reveals that the data sub-processor efficiency is identical regardless of 

the queue size. 

Figure 25 - Sub-processor efficiency. (Ex. 2) 
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Examining the difference in address sub-processor efficiency for the two LAQ lengths (Figure 26) 

reveals a very small difference between the two, on the order of th  of a percent. The shape of this 10 

surface indicates that in the overtagged, overbanked area of the performance envelope there is no 

difference at all. The biggest improvement in efficiency (a whole 0.12%!) occurs when the system 

has just become underbanked, although this increased efficiency drops away rapidly as memory 

latency increases. With regard to the other dimension of the performance space, increasing the LDQ 

size gives a slight performance advantage when the LAQ is long in the undertagged part of the 

graph, with the difference in efficiency elsewhere being dependent entirely on memory latency. 

A similarly unvaried picture emerges when we examine the total runtime for the experiment. The 

architectural simulator shows no correlation whatsoever between LAQ length and runtime, with the 

experiment giving the same results whether the queue length is 1 or 128. The simulated model show 

a slightly less perfect correlation. Figure 27 shows that when the LDQ length is 64 and memory 
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Figure 26 - Difference in simulated AU efficiency for LAQ lengths 1 and 128. (Ex. 2) 

79 



' I 0000 

8000( 

6000( 

4000 

140000 

120000 

2000 

Memory Latency (cycles) 	 Do 

Figure 27 - Modelled runtime difference. (Ex. 2) 

latency is 88 cycles, the system with LAQ length 1 outperforms the system with an LAQ of length 

128, completing the test run some 500 processor cycles earlier. However, in terms of the total 

runtime for the experiment, this represents an error of some 0.003%. Comparison of the simulated 

model with the architectural simulator reveals negligible discrepancies, with the errors following the 

familiar distribution as shown in Figure 16 and others. 

As would be expected given the near-identical runtimes, there is no substantial variation in the 

effective latency. However, when the actual latency is examined, the difference between the two 

systems becomes apparent. Figure 28 and Figure 29 show the actual latency experienced by load 

packets in systems with LAQ lengths of 1 and 128 respectively. 

The shapes of the two graphs show the hypothesised behaviour. The actual latency for a queue 

length of 128 is very large indeed and is of the same order of magnitude as the figure obtained by 

multiplying the LAQ length by the memory latency. When the queue is a single element in size (that 

is, reduced to little more than an address buffer) actual latency is much lower. The latency does 

increase when the LDQ is short (due to undertagging) or when memory latency is high (due to the 
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address buffer having to wait for the desired memory bank to become free) but even in these cases the 

total latency for the memory packet is some two orders of magnitude lower than with the longer 

LAQ. 
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Figure 28 - Simulated actual latency for LAQ length I. (Ex. 2) 

5.1.6 Conclusions 

This result is of considerable importance. When the system is overbanked and has sufficient load 

tags available, the LAQ is unlikely to be used since most load packets arriving in the queue will be 

dispatched to the appropriate memory bank almost immediately. In the case where the system is 

underbanked and/or undertagged, the LAQ queue fills rapidly. The speed with which it fills will be 

determined by the rate at which load packets are added and the size of the queue. A longer LAQ will 

postpone the point at which the address sub-processor stalls due to a frill LAQ but this delay is likely 

to be negligible relative to the time the processor spends in this saturated state, adding new loads to 

the queue only when they are removed from the other end. 
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Figure 29 - Simulated actual latency for LAQ length 128. (Ex. 2) 

A number of other factors also weigh against the use of an LAQ. It represents a considerable 

increase in process state which must be saved or restored every time a context switch is performed. 

For example, the time taken to save 128 64 bit values, would be considerable since this represents an 

additional 1kB of context. The presence of an LAQ also considerably complicates the detection of 

RAW and WAR memory hazards. 

In a system with both an SAQ and an LAQ checks must be made to ensure that their possibly 

differing rates of progression do not lead to a store to some address overtaking a later load from that 

same address and vice versa. Some mechanisms for performing this were discussed in Section 2.4.6. 

If there is no LAQ, however, hazard avoidance becomes much more straightforward. Whenever a 

load is encountered, the address is checked against the (associative) SAQ. If a match is found, the 

load is stalled until such time as the matching store leaves the SAQ. If no match is found the load 

packet can be sent to memory. 

Perhaps the only real advantage in having an LAQ is one which will only be touched on briefly. In 

the simulated architecture described here it is assumed that all accesses to memory are accesses to 
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large aggregate structures such as vectors, matrices or lists. For the sake of simplicity, it has been 

assumed that all scalar variables are assigned to registers and that there are always enough registers. 

While this assumption makes little difference to the simulation results, in practice the LAQ and SAQ 

would contain the addresses of scalar accesses too. 

In cases where a particular scalar variable is frequently stored to or loaded from memory, or in the 

case of certain classes of vector operation, it may still be desirable to cache frequently accessed 

variables in conventional fashion. If a cache is present, the LAQ can take advantage of the fact that 

load requests may arrive in the queue some time before the access actually reaches the queue head. 

In this situation it may be possible to exploit this to provide an implicit cache preload feature, so that 

when the load reaches the head of the queue the data is already in the cache. 

Whether such a technique would be useful would depend on the frequency of access to scalar 

variables, the latency of memory and the average LAQ length. The last two of these would, in 

combination, determine just how much time was available to perform a preload. 

Overall, it seems to be the case that the LAQ may be considered redundant. It gives no noticeable 

increase in performance, its absence produces no drop in performance, and the only effect of its 

presence seems to be to greatly increase the actual latency of load packets. 
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5.1.7 Experiment 3: Store streaming 

Having examined the behaviour of a stream of decoupled loads, it is also worth investigating the 

behaviour of a similar stream of stores. This experiment was almost identical in form to Experiment 

1, consisting of a series of simulations of a sequence of 100,000 decoupled stores while varying the 

memory latency and SAQ/SDQ length. 

Building on the results of Experiment 1, all of the simulation runs used random (or pseudo-random) 

rather than unit stride accesses. Three separate runs were performed. The first varied the SAQ and 

SDQ length together, while the second and third held the SDQ length at 1 and 128 elements 

respectively. This was to test the hypothesis that just as the LAQ was redundant in the address sub-

processor, the SDQ was redundant in the data sub-processor. This would seem a reasonable 

behaviour to expect. The address sub-processor will generally try to run ahead of the data sub-

processor, meaning that the addresses for stores will already be available when the data sub-

processor produces the matching data. Thus, stores will be sent to memory as soon as the data sub-

processor completes the store packet unless the memory system is overloaded. If memory does 
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Figure 30 - Simulated runtime. (Ex. 3) 
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become saturated, longer queues will only postpone the inevitable and serve little purpose other than 

to delay the point at which the sub-processor stalls for a short while. 

A number of statistics were gathered for each run of the experiment. These included the total 

runtime for the data sub-processor, the average lengths of the SAQ and SDQ, and the actual store 

latency. It was found that neither queue particularly effected the total runtime. Figure 30 shows the 

runtime for all three runs. The runtime remains constant and low (a near flat plain) while the system 

is overbanked then starts to rise as underbanking sets in and the memory system begins to saturate. 

However, this behaviour seems to be completely independent of the length of the SAQ or SDQ. 

Closer examination of the data shows that there are differences, but that they are very small. Figure 

31 shows the difference between the runtime when the SDQ length is fixed at 128 elements and at 1 

element. Notice that the two are identical when the system is overbanked, with the system with a 

128 element SDQ gaining a tiny performance advantage once memory becomes underbanked. This 
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Figure 31 - Runtime difference for SDQ lengths of 1 and 128. (Ex.3) 
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Figure 32 - Difference between model and simulator runtime. (Ex. 3) 

small difference is due only to the larger queue postponing the point at which the data sub-processor 

begins to stall for a few cycles. At the point at which the data sub-processor executes its last store the 

SDQ will still be full and it will take some time for all of the pending stores to complete. This means 

that the actual runtime for the system as a whole is almost identical, regardless of the queue length 

although the data sub-processor runtime does not always reflect this very accurately in this 

experiment. 

Interestingly, the behaviour of the simulated model does not map very closely to that of the 

architectural simulator. The level of accuracy obtained is considerably lower than that in the 

previous two experiments. Initially the two models track well, but as memory latency increases the 

two drift apart, until the runtime when the memory latency is set to 128 processor cycles is a full 

50% greater for the simulated model than for the architectural simulator. This behaviour is 

illustrated in Figure 32, which shows the difference in runtime between the architectural simulator 

and the model. 
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The reason for this difference is not immediately obvious. The store path is one part of the simulator 

model which relies more heavily on an architectural model than a queueing network, so one would 

expect it to behave in a similar manner. The most likely explanation is that the difference is due to 

the architectural simulator using a pseudo-random address remapping scheme which is designed to 

have little effect on performance when used with a wide range of strides. The simulated model, on 

the other hand, uses a completely random bank assignment method, which can potentially lead to 

stores being distributed unevenly over the banks. This was verified by running the simulated model 

again, this time with a fixed unit stride access pattern. 
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Figure 33 - Simulator average SAQ length. (Ex. 3) 
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Figure 34 - Model average SAQ length. (Ex. 3) 

Despite these minor differences, the simulated model appears to verify the fact that the runtime is 

completely independent of the SDQ length, since all three runs produced identical runtimes on the 

simulated model. 

Other measurements taken included the average lengths of the SAQ and SDQ during the simulation 

run. Figure 33 and Figure 34 show the average SAQ length for the architectural simulator and 

simulated model respectively, while Figure 35 and Figure 36 show the average SDQ length when the 

maximum SDQ length varies with the SAQ length. Figure 37 and Figure 38 show the same 

measurement when the maximum SDQ length is held at 128 elements. 
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Figure 35 - Simulated SDQ length when SAQ and SDQ lengths are varied. (Ex. 3) 
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Figure 36- Modelled SDQ length when SAQ and SDQ lengths are varied. (Ex. 3) 
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In the case of the SAQ, the average length is much as would be expected, although the random 

access pattern used by the simulated model does produce some interesting differences. The 

architectural simulator has two distinct behaviours, depending on whether or not the memory 

subsystem is over or underbanked. When overbanked, the SAQ remains empty, as each arriving 

store address is paired with a store datum from the data sub-processor and sent immediately to 

memory. The overbanking in the memory subsystem combined with the remapping algorithm used 

means that the bank is always free, so no stalls of the SAQ occur. This is represented by the flat area 

on the left hand side of the graph. 

00 

Figure 37 - Simulated SDQ length when SDQ size is 128. (fix. 3) 

If the memory latency is increased to the point where the system becomes underbanked, the 

behaviour changes. Stalls begin to occur due to store packets being produced faster than the memory 

subsystem can accept them, and the SAQ begins to fill. Figure 33 confirms this, and shows that once 

the system becomes underbanked the average SAQ length grows until the queue is full. Around the 

balance point where the system's behaviour switches from the overbänked to underbanked mode, 
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there is an area of instability in which the SAQ does begin to fill but fails to reach its full potential 

length. 
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Figure 38 - Modelled SDQ length when SDQ size is 128. (Ex. 3) 

The behaviour of the simulated model (see Figure 34) is slightly different, due largely to the random 

access pattern used by the model. This pattern means that it is possible for consecutive stores to 

access the same bank, and results in the SAQ filling even when the system is overbanked. Once 

again there is an area of instability where the SAQ fills but not completely. However, when the 

memory access pattern is random this zone is clearly in the overbanked region of the design space. 

The SDQ length exhibits a similar behaviour to the SAQ and this is shown in Figure 35 and Figure 

36. The queue remains empty when the system is overbanked and simulated on the architectural 

simulator, but fills when the system becomes underbanked. When simulated using the simulated 

model, the queue fills before the system becomes underbanked, due to the random access patterns 

causing hot banks. Figure 37 and Figure 38 show the average length when the SDQ length is fixed 
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at 128 for both the simulator and model. Note that in both cases, once the point is reached at which 

stalls can occur, the queue fills. 

5.1.8 Conclusions 

This experiment shows some interesting features of store behaviour. It appears to be the case that the 

lengths of the SAQ and SDQ have absolutely no bearing on performance. If the memory subsystem 

is overbanked, neither queue fills and both are thus redundant. If the memory system is 

underbanked, both fill rapidly and will eventually saturate, stalling the appropriate sub-processor. 

Since saturation and stalling is inevitable in an underbanked system, regardless of queue length, it 

would seem sensible to eliminate the SAQ and SDQ entirely, thus reducing hardware costs. 

However, this experiment has looked only at streams of decoupled stores in isolation. In this case 

both sub-processors operate independently and the limiting factor is the speed at which the memory 

system can accept new store packets rather than the speed of either sub-processor. When decoupled 

loads are factored into the equation, this behaviour changes. It becomes advantageous for the 

address sub-processor to be able to run ahead of the data sub-processor. If this happens, it is 

undesirable for the address sub-processor to stall on the next store since this will block subsequent 

load operations. So while the presence or absence of the SAQ has no effect on the performance of 

store operations, its absence could be very damaging when a program is generating a more realistic 

mixture of loads and stores. This behaviour will be investigated further in the next experiment. 

The experiment also revealed a limitation in the simulated model, namely the inaccuracies caused 

when using random access patterns to approximate the pseudo-random permutation behaviour of the 

memory access hashing algorithm. While this had little effect in previous experiments, it produced 

noticeable differences in the behaviour of the model and simulator. 

This is not, however, felt to be a flaw in the model itself but rather an inaccuracy brought about by 

comparing random and pseudo-random addressing. Since the inaccuracies skewed the model results 

in a conservative rather than an optimistic direction, it was felt that this inaccuracy was acceptable, 

as long as additional tests were performed to verify that the inaccuracy was due to the access pattern 
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rather than some more serious flaw in the model. In more general examples where the model was 

used in isolation without the support of an accompanying simulation, it is felt that the fully random 

access pattern would still give a reasonable approximation of system behaviour and would, at least, 

not give misleadingly optimistic results. 
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5.1.9 Experiment 4: The SAXPY loop 

The SAXPY loop is one of the kernels that form the core of the standard (if rather simplistic) 

Unpack benchmark. It evaluates the equation z = a x x + y for vectors x, y and z and scalar a. 

While the limited capabilities of the Level 1 architecture prevent a truly high-performance 

implementation of SAXPY (for example, the ACRJ- I is capable of initiating one iteration per clock 

cycle) it provides a more realistic test loading of the memory subsystem than any of the earlier 
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Figure 39 - Data sub-processor runtime for first and second. (Ex. 4) 

experiments and gives a reasonable idea of the system's behaviour when running a typical vector-

based operation. 

For the purposes of this experiment, which is intended solely to show access/execute decoupling 

behaviour, the SAXPY loop has been fully unrolled. In practice this would be highly inefficient, 

since each of the vectors x, y and z have been set to have a length of 100,000 elements. However, 

these large vector lengths help to even out any localised irregularities in system behaviour, causing 

the results to approximate the steady state in the loop more accurately. 
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Three separate runs of the experiment were performed, with each run encompassing a range of 

memory latencies and SAQILDQ lengths. On the first run the LAQ and SDQ lengths were held at 1 

packet, thus effectively eliminating them, while on the second both were set at 128 packets. The 

purpose of these two runs was to establish whether the combination of load and store operations 

might produce measurable effects on performance that had not appeared in the previous three 

experiments. These showed that the LAQ and SDQ were redundant, but it was felt necessary to test 

this further in case the interaction of the two produced changes. The third test run held the LAQ, 

SDQ and the SAQ at unit length. Experiment 3 appeared to indicate that the SAQ was also 

redundant, however it was felt that this was unlikely. By comparing the third run with the first, it 

was possible to compare the behaviour of the system with/without an SAQ. 

Figure 39 and Figure 40 show the total data sub-processor runtime for all three runs. They appear to 

confirm the two principal hypotheses of the experiment: that the LAQ and SDQ are redundant, while 

the SAQ, despite the indications of Experiment 3, is necessary. For clarity, the runtimes for the first 

two runs have been combined into a single graph, since they differ by a very small amount. The 
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Figure 40 - Data sub-processor runtime for third run. (Ex. 4) 

95 



C) 

0) 

C) 

112 

Q Length 

Memory Latency (cycles) 	 2 

Figure 41 - Data sub-processor efficiency for first and second runs (Ex. 4). 

runtime for the third run is shown separately, to more clearly illustrate the differences. Note that in 

both graphs, the axis labelled "Queue Length" refers only to the lengths of those queues that are 

varied - the LDQ in all three experiments, and the SAQ in the first two runs. 

All three runs have similar performance for short queues. This is due to undertagging being the 

dominant characteristic of the system, with the processors unable to filly utilise the available 

bandwidth. However, as the queue length increases the runtime stabilises, with the first two runs 

demonstrating the characteristic performance of a decoupled system. For undertagged systems the 

performance is at least partly dependent on memory latency, but as the LDQ and SAQ lengths 

increase the performance improves, rapidly reaching a flat performance "plain" where increases in 

memory latency have no effect. 

The surface described by the runtime of the third run is very noticeably different from the first two. 

Past a certain point (LDQ length somewhere between 8 and 16) increases in queue length seem to 

have no effect, although the resulting plain has a marked slope, indicating that the system is not as 
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Figure 42 - Data sub-processor efficiency for third run (Ex. 4). 

effectively decoupled as the first two runs and that increases in memory latency produce a 

corresponding increase in runtime. 

Another measure of overall system performance in shown in Figure 41 and Figure 42. The first of 

these shows the data sub-processor efficiency (i.e. the percentage of time it spent actually doing 

something rather than sitting around stalled) for the first two runs, while the third shows the 

efficiency for the third run. 

As these figures show, the efficiency of the data sub-processor in the first two runs is largely 

independent of the presence or absence of an LAQ or SDQ. In both cases efficiency is high (close to 

100%) unless the system is underbanked or undertagged. Loss of efficiency due to undertagging sets 

in earlier for low memory latencies (the disparity between actual bandwidth and peak bandwidth 

being greater) with full efficiency being roughly limited to those systems with a queue length of 

greater than 64 (i.e. overtagged) and a memory latency of less than 64 cycles (i.e. overbanked). 

Outside this area of the performance envelope, efficiency suffers. In overtagged, underbanked 
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systems efficiency drops away steadily (and near linearly) as memory latency increases, while the 

performance dropoff in undertagged systems is steeper. 

The efficiency profile of a system where the SAQ is also held to a length, of I element differs greatly. 

With the exception of the case where theLDQ length is held to I (which adversely affects 

performance), the processor efficiency is independent of the length of the LDQ. This is due to the 

limited SAQ length effectively synchronising the two sub-processors and preventing decoupling from 

occurring. In the absence of any influence from the LDQ length, efficiency is related directly to the 

memory latency, with a value for a memory latency of 8 cycles of about 40% dropping rapidly to 

under 10% for a system with a latency of 128 cycles. 

The efficiency of the address sub-processor (Figure 43 and Figure 44) follows the same trends as the 

data sub-processor for all three runs but is correspondingly lower, with a maximum efficiency of 

around 70%. This is due to the loop being executed being limited (in an overtagged, overbanked 

system) by the rate at which the data sub-processor can accept data. Since the address sub-processor 
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Figure 43 - Address sub-processor efficiency for first and second runs. (Ex. 4) 
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loop takes at least three clock cycles and the data sub-processor loop at least four, the expected 

efficiency would be in the region of 75%. 
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Figure 44 - Address sub-processor efficiency for third run. (Ex. 4) 

Examining the actual and effective load latencies for all three runs reveals few surprises. The actual 

latencies are shown Figure 45, Figure 46 and Figure 47. The most distinctive of these is the actual 

latency for the third run. As would be expected given the absence of an LAQ and the forced 

synchronisation problems caused by the absence of either an SAQ or an SDQ, the system runs in a 

near-sequential mode, with little memory congestion and load packets being removed by the data 

sub-processor as soon as they arrive. Thus the surface shown is for the most part flat, with a slope 

that (unsurprisingly) indicates that the actual latency of loads corresponds closely to the memory 

access time. For an undertagged system with a short LDQ the actual latency increases due to each 

load having to wait for its predecessor to exit the system. 
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Figure 45 - Actual memory latency for first run. (Ex. 4) 
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Figure 46 - Actual memory latency for second run. (Ex. 4) 
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Figure 47 - Actual memory latency for third run. (Ex. 4) 

The first run, with an SAQ but no LAQ or SDQ, shows a higher latency due to the greater utilisation 

of the memory sub-system. This causes the LDQ to fill which in turn increases the latency of the 

load. Finally the second run represents a system with LAQ, LDQ, SAQ and SDQ. The SAQ and 

SDQ have no effect on load latency but the presence of the LAQ increases the latency of loads still 

further since they may potentially be queued there for some time before being dispatched to memory. 

The effective latency is much as expected, with the surfaces describing the latencies of the three runs 

being similar to those of the data sub-processor runtime. The first and second runs behave badly 

when the system is undertagged but the effective latency drops rapidly as the size of the LDQ 

increases, levelling out. In the system simulated in the third run, increasing the queue length causes 

the system to enter a similarly stable behaviour, where effective latency is dependent on memory 

access time. While some of the actual latency is hidden (contrast this Figure 47) it is not nearly as 

effective as in the other two runs. 
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Figure 48 - Effective memory latency for first and second runs. (Ex. 4) 
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Figure 49 - Effective memory latency for third run. (Ex. 4) 
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The LDQ itself behaves much as would be expected, with the queue during the first two runs (shown 

in Figure 50) being at its fullest with short memory latencies due to load packets arriving from 

memory faster than they can be used. As the memory latency increases the average LDQ length 

drops slowly until the system becomes underbanked, at which point the length drops off more 

rapidly. It seems to make no difference whether the system is overtagged or undertagged, as the 

average LDQ length varies almost linearly with the maximum LDQ size. 

When the system is running with no SAQ and no SDQ in the third run, the LDQ fails to fill 

regardless of memory latency or the LDQ length. This is due to the stores in the program acting as a 

restraint on performance, synchronising the two units with every store, and thus severely limiting the 

utilisation of the available memory bandwidth. The graph for this data is not shown. 

5.1.10 Comparisons with the simulated model 

While it was found that the behaviour of the simulated model for the first and second runs tracked 

that of the architectural simulator quite closely, this was not the case with the third run. Figure 51 

112 

SAQILD 

10 

'0 

00 	

Memory Latency (cycles) 

Figure 50 - LDQ length for first and second runs. (Ex. 4) 
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shows the modelled data sub-processor runtime for all three runs. The shape of this graph closely 

corresponds to that for the simulated architecture, but behaves differently for the case where the 

system has no LAQ, SDQ or SAQ. The architectural simulator showed that performance in this case 

was inferior due to the enforced synchronisations caused by the absence of an SAQ. 
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Figure 51 - Modelled data sub-processor runtime. (Ex. 4) 

This does not seem to be the case for the simulated model. The difference is due to the way in which 

the system is modelled. The actual program executes two loads followed by a store, on successive 

clock cycles, for each "loop iteration". The model knows only that it should initiate a load every 1.5 

cycles and a store every 3 cycles. If the store is unable to take place due to the last store not having 

completed this will delay subsequent stores but will not delay subsequent loads. This is not possible 

on the architectural simulator since the ordering of instructions ensures that the store has to complete 

before the loads can be issued. In the model the Poisson or deterministic sources for loads and stores 

are completely separate, and there is nothing to stall a load should the previous store operation have 

not yet completed. In short, the model fails to take account of the interaction between loads and 

stores that occurs in the real system. 
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Figure 52 - Modelled LDQ length for all three runs (Ex. 4). 

It is difficult to see how this interaction between the two streams of memory accesses can be 

modelled simply. It requires that individual accesses be ordered in some way (i.e. "generate two 

loads then a store, then another two loads, then another store") and, while this is easily done with a 

simulator, producing a queueing network to do so seems a non-trivial task. 

This result severely restricts the area in which the model can be effectively used. If there is a strong 

dependency between the ordering of the load and store streams, the model becomes inaccurate. 

There will always be some degree of dependency due to instruction ordering in the system being 

modelled, but when the system parameters are such that this ordering can be violated frequently (i.e. 

regular store stalls), the discrepancy will increase. Thus, while the model remains useful for 

predicting the behaviour of well-behaved systems, it is liable to become inaccurate when faced with a 

poorly configured system. 

The examination of a number of other measures of system behaviour, such as LDQ length, 

strengthens this hypothesis. Figure 52 shows the average LDQ length for all three runs. Once 

again, the third run tracks the first two closely (it differed in the simulator) due to the ordering 
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problem. The differences between this graph and those produced by the simulator may also be due to 

this problem, with the removal of loads from the LDQ happening more rapidly due to their not being 

blocked by stores. However, it is difficult to be sure if this is in tact the case, since LDQ behaviour in 

the model differs from that in the architectural simulator as has already been mentioned. 

5.1.11 Conclusions 

This experiment has two important results. The first is that, contrary to the results of the previous 

experiment, the presence of the SAQ is critical. This was not apparent in Experiment 3 because the 

SAQ only becomes useful when both loads and stores are present in a program's memory traffic. 

The SAQ's function is to prevent loads from being stalled due to an uncompleted store. In other 

words, the SAQ acts as a write buffer. 

Without an SAQ the system performs poorly. No address sub-processor store instruction can 

complete until the data sub-processor provides its half of the store operation. This causes the two 

units to become synchronised and severely restricts the degree of decoupling. 

The experiment also showed that by tailing to take account of the ordering of loads and stores 

explicitly, the model which had been developed was unable to predict the behaviour of a system with 

no SAQ. Fortunately the presence of an SAQ, in permitting loads to overtake stores and vice versa 

negates this weakness in the model and the model's estimates of program runtime were reasonably 

accurate for systems with an SAQ. 

5.1.12 Accesslexecule decoupling - a summary 

Through these experiments a number of important conclusions about access/execute decoupling can 

be drawn. Perhaps the most important of these is that, when given a simple stream of loads, even a 

poorly configured decoupled architecture performs at least as well as a conventional architecture with 

no data cache. When the decoupled architecture is configured in such a way that full decoupling can 

occur, and when the system is well configured, the performance of the (cacheless) architecture is at 

least as good as that of a conventional uniprocessor with a cache. 
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In the above paragraph the phrases "poorly configured" and "well configured" were used. The exact 

meanings of these, at least in the context of access/execute decoupling, were determined by the above 

experiments. To perform efficiently, the decoupled processor must not be underbanked or 

undertagged. What constitutes overtagged or undertagged, overbanked or underbanked, is 

determined by a number of factors - the rates at which the address and data sub-processors are 

capable of generating and removing memory access packets from the memory sub-system and the 

total bandwidth and capacity (that is, the number of simultaneously active memory requests) in the 

memory sub-system. 

An interleaved memory is considered to be underbanked if there are insufficient memory banks to 

cope with the maximum load under which the memory as a whole is likely to be placed. Typically, 

in a system with a maximum memory load of 1(1 memory packets are sent to memory on every 

processor clock cycle) and a bank cycle time of n processor clock cycles, we require at least / x n 

memory banks in order to avoid being underbanked. The actual value of 1 for a particular program 

will vary depending upon the architecture it is running on and the efficiency of the compiler used to 

compile it, but in the artificial example used above it is held at 1. That is, on every cycle either a 

load or a store is added to the memory subsystem. Although a load or a store can potentially be 

dispatched to memory in the same cycle (one from the LAQ, one from the SAQ), only one can 

actually be added to the memory queues in a single cycle, so although the load on memory may reach 

two on occasion, over the entire duration of the program's execution it will have an average value of 

Due to the way in which decoupled loads are re-ordered on arrival at the LDQ, the total number of 

loads in transit between the address sub-processor and the data sub-processor at any one time is 

limited to SLDQ,  the maximum size of the LDQ, since each in-transit load must be assigned a tag 

that records the position in the LDQ that it is to be stored at. If the number of available load tags is 

sufficiently small that the full available memory bandwidth cannot be used, performance will suffer. 

The best performance is obtained when SLDQ  is greater than n and it is possible for all memory 

banks to be simultaneously active. In practice the point at which a system ceases to be undertagged 
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may be slightly lower than n due to the difference between memory cycle times and memory access 

times, and also due to the presence of store operations, which keep banks busy without requiring 

tags. Some aspects of system performance will continue to improve as the "memory pipeline" fills. 

In the sub-system used in these experiments, the capacity of the memory pipeline is determined by 

the number of banks n and the size b of the buffer attached to each bank. In this case, the memory 

pipeline can contain up to n x b active memory requests at any one time. 

Many of the performance graphs show a distinctive shape, with a noticeable shift in behaviour as the 

system crosses the boundary from being undertagged (SLDQ <n) to overtagged (SLDQ > n). 

Performance may continue to improve as the degree of overtagging increases, until the total number 

of load tags equals the capacity of the memory pipeline (SLDQ = fl x b) at which point increasing 

the LDQ size has no effect. This is due to the saturation of the memory pipeline, which means that 

no new memory accesses can be added until older ones are removed. No matter how many tags are 

available, the number of active loads cannot exceed n x b. 

It was also shown that neither the Load Address Queue or Store Data Queue were necessary. 

The Store Data Queue, on the other hand, is redundant because, should the system be properly 

decoupled, any store data will immediately be paired with the address half of the store packet and 

dispatched to memory. The only circumstance where this will not happen is if the memory pipeline 

is saturated. If this happens frequently, then the memory system is underspecified and delays of this 

nature have to be expected. The presence of an SDQ would do little more than provide a short 

reprieve against an inevitable stall, in much the same way that the LAQ does on the address sub-

processor. In any event, the brief stalls that may occasionally occur due to short-term stalls of the 

memory pipeline are, in the overall scheme of things, unimportant and have little effect on 

performance. 

Experiment 3 gave some indications that the SAQ was also redundant. Further investigation of this 

led to the interesting discovery that the SAQ was important, but only if the memory workload 

consisted of a mixture of loads and stores. The SAQ was of no benefit whatsoever to store latency 
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and had no direct effect on decoupling or the performance of the data sub-processor, but instead 

affected these indirectly by preventing subsequent loads being held up. So, somewhat surprisingly, 

the SAQ's presence is important to decoupling through its effects on decoupled loads rather than on 

stores. 
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5.2 Control Decoupling 

5.2.1 Experiment 5: The SAXPY loop again 

In Experiment 4 the behaviour of a fully unrolled SAXPY loop was examined. In practice, fully 

unrolling a 100,000 iteration loop would be somewhat memory inefficient and, on a control 

decoupled architecture, the loop would be implemented in a manner similar to that shown in Figure 

53. 

Control Sub-Processor 	Address Sub-Processor 

ISSUE A0, E0 	A0 LD al, ADDR(x) 
LD ri, *1 	 LD a2, ADDR(y) 

Li ISSUE Al, El 	LD a3, ADDR(z) 
ADD rl, ri, *1 	LD rl, #0 
CMP ri, #bound Al LOAD ri + al 
BLE Li 	 LOAD rl + a2 
END 	 STORE ri + a3 

ADD ri, ri, %wordsize 

Data Sub-Processor 

E0 LD ri, *a 
El LOAD r2 

MUL r4, ri, r2 
LOAD r3 
ADD r4, r3, r4 
STORE r4 

Figure 53 - Fully decoupled pseudocode for SAXPY loop. 

This uses a method of control decoupling that is slightly impure when compared to Bird's original 

action semantics model, whereby the incrementing of the loop index variable and its comparison 

with the loop bound are performed on the control sub-processor. Although this marginally increases 

the workload for this unit, it removes the need for the control sub-processor to synchronise with the 

data unit on each iteration to transfer the result of the comparison from the DSP to the CSP. 

In this experiment the execution of a program similar to that shown in Figure 53 is simulated on a 

variety of related architectures. Three simulation runs were performed. In each run certain features 

were kept constant. The LDQ length was held at a constant value of 512 packets while the LAQ was 

set to length 1, effectively removing it. The memory sub-system was configured as 32 segments, 

each containing four banks. Hence, the system becomes undertagged if the number of potential 

active loads exceeds 512 and is underbanked if the memory latency exceeds 128 processor clock 

cycles. 

For each simulation run, two parameters were varied. These were the size of the meta-instruction 

queue, which ran from 8 to 64 meta-instructions in increments of 8, and the memory bank latency, 
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Figure 54 - Data sub-processor runtime for first and second runs. (Ex. 5) 

which was varied from 16 processor clock cycles up to 256 processor clock cycles in increments of 

16. 

The three runs differed in the lengths of the SAQ and SDQ. This was designed to test whether the 

known effects of varying the lengths of these queues (covered in earlier experiments) had an effect on 

control decoupling. During the first run, the SAQ and SDQ were both set to length 512. If the 

system behaved as expected, this should not have differed appreciably from the second run, which 

removed the SDQ while holding the SAQ at the same length. The third run, which removed the 

SAQ as well, was expected to have an effect on performance but it remained to be seen what effect 

this would have on control decoupling. 

The fully decoupled program shown in Figure 53 has potentially unbounded control decoupling, 

since no information has to be passed back from the work processors to the control sub-processor. 

However, as with access/execute decoupling there is a practical bound on the degree of decoupling 

available. For access/execute decoupling this was found to be the smaller of the capacity of the 
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Figure 55 - Data sub-processor runtime for third run. (Ex. 5) 

memory pipeline or the size of the LDQ. It would be expected that MIQ size limitations would have 

a similar effect on the amount of control decoupling available. 

As usual, the most obvious measure of the effects of varying the MIQ length on behaviour is to look 

at the program runtime. The runtime for the data sub-processor is used since, unless the data sub-

processor returns a value to the control sub-processor as its last action, this will always be the last 

sub-processor to finish. 

Figure 54 and Figure 55 show the simulated data sub-processor runtime for the first and second runs 

and the third run respectively. 

Looking first at Figure 54, the two runs are shown together as there is no difference in their 

runtimes. This appears to confirm the results of Experiment 4, that the SDQ is redundant, while 

extending it to show that the presence or absence of the SDQ has no secondary effects on control 

decoupling. 
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Performance seems to be strongly affected by both memory latency and the length of the MIQ. The 

reasons for the former are already well-known, and the fact that runtime seems to increase once the 

memory sub-system becomes underbanked (for reasonable MIQ lengths, at least) should come as no 

surprise. However, the reasons that cause the MIQ length to affect the total runtime are rather more 

complex. 

For a process to become decoupled, the "producer" must go faster than the "consumer". In this case, 

the producer is the control sub-processor and there are two consumers, the work units. Speed is 

measured, for the control sub-processor, by the rate at which new meta-instructions are placed in the 

MIQ and for the work units by the rate at which new iterations of the loop begin or the rate at which 

meta-instructions are removed from the MIQ. 

As can be seen from the code in Figure 53, the control sub-processor main loop takes four processor 

clock cycles to initiate (issue, increment, compare, branch) and thus a new meta-instruction is 

generated on every fourth cycle. The address sub-processor loop body also takes four clock cycles to 

initiate, while the data sub-processor takes five cycles. Thus, the address sub-processor and control 

sub-processor fail to decouple while the control sub-processor and the data sub-processor can 

potentially decouple by one instruction every iteration. 

In practice, however, the degree to which the control and data sub-processors can become decoupled 

is limited by the size of the MIQ. Once the MIQ has filled, the control sub-processor is only able to 

add a new meta-instruction to the queue when the data sub-processor fetch engine removes one from 

the other end of the queue. Once this happens, the control sub-processor loop iteration time 

increases to match that of the data sub-processor. In this case, it means that the control SP now takes 

five cycles per iteration, with each attempted write to the MIQ resulting in a single cycle stall. 

However, the limited size of the MIQ does not just effect the amount of control decoupling that is 

available. When the control sub-processor executes an issue instruction, it attempts to place meta-

instructions in the queues for both of the work sub-processors. If one or both of the MIQs is full, the 

operation will stall until there is space available in both queues. 
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In the SAXPY example used in this experiment, the address and control sub-processors fail to 

decouple due to their producing and consuming meta-instructions at the same rate. This means that 

the address sub-processor MIQ remains empty, with each meta-instruction being immediately 

expanded by the fetch engine as it arrives. However, when the data sub-processor MIQ fills, this 

causes the control sub-processor to stall, starving both of the work units even though the address SP 

has an empty MIQ. 

Once this state has been reached, a new meta-instruction will only arrive for the address sub-

processor when one is removed from the data SP's queue, thus allowing the control SP to proceed. 

The address SP iteration time increases to five cycles, matching that of the data and control units. 

Up until this point access/execute decoupling has been possible, since the address sub-processor has 

been initiating loads more quickly than the data sub-processor can accept the arriving data (two loads 

initiated every four cycles versus two loads removed every five cycles). When the two units become 

locked together like this, the degree of access/execute decoupling can increase no further and will at 

best remain at the same level it had reached prior to the data sub-processor's MTQ filling up. 

Memory L 
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Figure 56 - Data sub-processor effective latency for first and second runs. (Ex. 5) 
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The results of this can be seen in Figure 56, which shows the effective latency as perceived by the 

data sub-processor for the first and second runs of the experiment. When the MIQ length is short, 

the various sub-processors become locked together fairly rapidly, limiting the available decoupling. 

This means that the full memory latency cannot always be hidden and the resulting drop in latency 

tolerance causes the effective latency (and thus the overall runtime) to increase. As the MTQ length 

increases so does the memory tolerance, and the point at which the latency tolerance is lost increases 

with the MJQ length. However, in all cases here the effective latency becomes non-zero for memory 

latencies greater than around 150 processor clock cycles, this being the point at which the system 

becomes undertagged. 

As can be seen in Figure 55, the third run behaves very differently. In this run there is no SAQ or 

SDQ. As was shown in the previous experiment, this prevents the data and address sub-processors 

from decoupling fully. The graph shows clearly that in the absence of an SAQ, the limitations on 

access/execute decoupling dominate and the length of the MTQ has no effect on performance, since 

the system as a whole is in the "locked" state from the very beginning. Thus the data and address 

sub-processor runtimes are unvarying for any given latency, regardless of the MIQ length. The 

control sub-processor runtime varies slightly depending on the MIQ length, but the variation is 

accounted for by the time taken for the MIQ to fill and the control sub-processor to become locked to 

the other two sub-processors. When the MIQ is longer, it takes slightly longer for this to occur, but 

given that this difference amounts to at most a few thousand cycles over a total runtime of over 

10,000,000 cycles, it is negligible. 

5.2.1.1 Increasing The Available Decoupling 

In the above experiment it was shown that the length of the MTQ has a direct effect on the degree to 

which the available access/execute decoupling can be exploited. In the case of the SAXPY loop, the 

available decoupling is potentially infinite (or, at least, bounded by the total number of loop 

iterations) but in practice is bounded by the number of meta-instructions that can be held in the MIQ. 

Since each meta-instruction corresponds to a single iteration of the SAIXPY loop, the address sub- 
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processor cannot run more than n iterations ahead of the data sub-processor, where n is the length of 

the MTQ. 

This limitation can be largely removed by modifying the meta-instruction format and providing a 

more powerful instruction fetch engine. If each meta-instruction has an additional field,, specifying 

an iteration count for the block being issued, the bottleneck imposed by the meta-instruction queue is 

removed. Even if the iteration count was restricted to a 16 bit value, the entire 100,000 iterations of 

the SAXPY loop specified above could be issued with just two meta-instructions. A 32 bit iteration 

count would allow almost any loop that might feasibly be encountered to be issued with just a single 

meta-instruction. 

In addition to requiring an extra meta-instruction field for the iteration count, providing a loop mode 

would also entail modif,ing the instruction fetch engine on each work unit to repeatedly fetch the 

same block until all the loop iterations had been issued. This would be relatively straightforward, but 

may cause complications when used with the instruction pre-fetch mechanisms described in Chapter 

By way of an illustration of the performance gains that could be achieved through the use of a loop-

mode issue, the experiment was re-run, this time simulating the behaviour of an architecture with a 

loop mode. The MIQ length and memory latency were varied as before. Figure 57 shows the 

runtime that is achieved through the use of a loop mode in a system where LDQ and SAQ are 512 

elements in size, and there is no LAQ or SDQ. 
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Figure 57 - Data sub-processor runtime with hardware loop mode. (Ex. 5) 

As expected, the performance of the loop mode machine is unaffected by the MI[Q length, since the 

entire loop is issued by a single meta-instruction. The total runtime remains constant while the 

machine is overbanked and begins to increase slowly once underbanking sets in. However, even 

when the system is overbanked performance is superior, due to the system's ability to fully exploit 

the available access/execute decoupling. 
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Losses Of Decoupling 

6.1 Losses Of ME Decoupling 

6.1.1 Causes 

Access/execute decoupling relies on the natural "flow" of data from the address sub-processor to the 

data sub-processor. The vast majority of all communications between these two are memory 

accesses. Loads begin on the address sub-processor and end on the data sub-processor, while there is 

no obvious ordering between the address and data halves of a store operation. Since the addressing 

half of a load must always occur before the data half access/execute decoupling endeavours to move 

the addressing phase of a load as far ahead of the data use phase as is possible. Most of the time this 

works well, with the distance between the two being such that the memory latency is invisible to the 

data sub-processor. 

However, from time to time it is necessary to pass information against the flow of data, from the data 

sub-processor back to the address sub-processor. This can happen for a number of reasons. The 

majority of variables in a program can be split into one of two categories - data variables and address 

variables. Most frill into the first category with only a few types (such as array indices and pointers) 

filling into the latter. When a program is compiled for a decoupled architecture, address variables 

will be placed on the address sub-processor where possible, and data variables will be placed on the 

data sub-processor. There will be some cases, however, where a variable is both a data variable and 

an address variable. For example, the array reference b[i + vi x v2] accesses variables vi and v2 

which are used in (or are the result of) calculations on the data sub-processor. When the time comes 

to obtain their product, add it to the address variable i and use this as an array offset to access the 

data variable b[i + vi x v2] the values of v  and v2 must be transferred from the data sub-processor 

to the address sub-processor, against the flow of data. A similar situation can be encountered when a 

program is attempting to follow a linked list, or if an array is being used to provide indices into a 

second array. In the first of these cases, large numbers of loss of decoupling events may be caused as 

the processor attempts to follow the list. 
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k third type of AlE decoupling event results only if the architecture does not provide the address sub-

processor with a direct path to memory. In this case the address sub-processor can only load data by 

moving the data (via decoupled load) to the data sub-processor and then transferring it (via the 

TRQ). Stores are handled in a similar manner. 

All of the above situations where data must be passed against the flow result in loss of decoupling 

events, the effects of which can be serious. 

6.1.2 Effects 

A loss of decoupling event temporarily (for the time taken to transfer a single datum) reverses the 

direction of data flow within the system. It switches from a state where the address sub-processor is 

running ahead of the data sub-processor to one where the reverse is true. If the address sub-processor 

has become heavily decoupled, the cost of this will be high. It may take several hundred, or even 

several thousand, processor clock cycles for the data sub-processor to catch up to and overtake the 

address sub-processor. During this time the address sub-processor is idle, waiting for data to be 

transferred from the other unit. In addition to this "catch-up" delay, all decoupling will be lost, and 

the memory sub-system and queues will be drained. This means that even once the LOD has passed 

it will take some time for the system to reach peak efficiency again. If loss of decoupling occurs 

frequently (for example, in a loop) then the memory sub-system and queues may not even manage to 

reach a reasonable level of efficiency before if is forced to recouple. This may limit the performance 

of the memory sub-system to a fraction of its efficiency. 

By optimizing for a particular direction of data flow, access/execute decoupled architectures pay a 

heavy price on those rare occasions that data must travel in the other direction and performance will 

compare poorly with even a conventional architecture. The key to retaining a reasonable level of 

performance on an AlE decoupled architecture is to minimize the frequency with which these events 

occur. 
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5.1.3 Solutions 

There are two main avenues that can be explored in the elimination of loss of decoupling events. 

Software based solutions rely on code restructuring and optimization to either eliminate LODs 

entirely or move them to where they will have less effect. Hardware solutions enhance the 

architecture itself to bypass situations in which LODs may occur. 

6.1.3.1 Code replication 

In an ideal world, the placement of code on a fully decoupled architecture would follow Bird's 

original action semantics based model exactly, with only control flow calculations on the control sub-

processor, only binding of variables to addresses on the address sub-processor, and so forth. 

Unfortunately, the strict implementation of such a model leads to frequent loss of decoupling events, 

with a resulting loss of performance. The most theoretically pure model for code placement on a 

frilly decoupled architecture requires a very strict partitioning of operations over the three sub-

processors into the three aspects of action semantics - control, binding, and computation. The only 

instructions on the control sub-processor should be operations such as branches and jumps, tests on 

values returned from the work units, and the issuing of basic blocks to them. Similarly, the address 

sub-processor should perform arithmetic only in connection with the calculation of memory 

addresses. However, while this mapping of operations to processors is very pure with regard to the 

semantically-driven model, it neglects the potentially high cost of LODs. 

At the other extreme, we can imagine an architecture with a highly capable and largely conventional 

control processor. The compiler initially assumes that all code should be executed on the control SP 

and then migrates suitable "safe" code segments to the work units. A code segment is considered 

safe if it does not cause any losses of control decoupling. The most frequent example of a safe code 

segment is an innermost loop with no internal control flow or decision making, such as the SAXPY 

kernel. This code placement algorithm abandons the semantically-driven model and instead treats 

the work units as a powerful programmable vector co-processor, to which selected tasks can be 

dispatched for execution. It is much closer to a conventional programming model than the 

semantically-driven approach. A third, intermediate approach is to try to distribute work across the 
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three processors in a semantically-driven style but to selectively replicate calculations on multiple 

sub-processors where necessary so as to remove losses of decoupling. 

To give an artificial example, take a statement like x(y + z) = a + 2z. In this statement, the variable 

is required by the data sub-processor to determine the value that must be stored, and by the address 

sub-processor to determine the memory location that the value should be stored at. 

program lodi 
integer i 
real x(100010), z, v 	

Variable z used in data calculation 

do_1, 1000001 	Variable z used in address calculation 

x (z- 	= v + z/2 
continue 
end 

Figure 58- Kernel code. (Ex. 6) 

The pure semantically-driven approach would calculate z on the data sub-processor then pass it to the 

address sub-processor (causing a loss of decoupling) for use in the address calculation before 

calculating the rest of the expression and storing the result to memory. The conventional "co-

processor" approach would consider the loop safe (the only loss of decoupling is between the data 

and address units) and migrate the loop body to the work units. The iteration control (maintaining 

the loop index variable and testing it against the loop bounds) would remain on the control sub-

processor, which would issue the loop body once on each iteration of its own "local" loop. 

In the intermediate approach, both the data and address sub-processors would perform the 

calculation of z resulting in two copies of the variable. While this would increase the amount of 

work being performed on the address sub-processor, it is highly unlikely that the additional 

redundant calculation would take longer than the loss of decoupling that would otherwise result. 

All three of these approaches are examined in Experiment 6. For this experiment, the artificial 

kernel shown in Figure 58 was used. This kernel was designed to require the sharing of a variable 

between the data and address sub-processors in such a way that all three of the code placement 
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;trategies mentioned above could be tested. The actual operations performed on the data were 

Unimportant, what is relevant here was their placement. 

A total of five runs of the experiment were made. The first and third of these used a very simple 

control decoupling model where the control unit recouples with the work units after each iteration, 

while the second used no explicit model of control decoupling, since the loop control flow is 

automatically placed on the control processor under the co-processor approach. 

However, the lack of control decoupling in the first and third runs that resulted from the control 

decoupling model used was likely to severely inhibit the degree of access/execute decoupling 

available and thus adversely affect performance. The three experiments were thus re-run using a 

more flexible control decoupling model, where loop bound tests were made on the control sub-

processor rather than returned from one of the work units. In the case of the co-processor model, 

where this occurred anyway, a second test was made to examine how the model would have 

performed had, for example, the loop been considered unsafe and thus unsuitable for migration to the 

work units. Only five runs needed to be made because the placement that resulted from the co-

processor model and that which resulted from implementing the pure semantically-driven approach 

in a model with loop iteration handled by the control sub-processor were exactly the same. 

The five runs were thus: 

Semantically-driven model, array bounds tests on data sub-processor. 

Co-processor model, loop body considered safe to migrate. 

Semantically-driven model, array bounds tests on control sub-processor. 

Intermediate model, array bounds tests on data sub-processor. 

Co-processor model, loop body considered unsafe to migrate. 

5. Intermediate model, array bounds tests on control sub-processor. 
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['he memory latency on all five runs was varied from 16 to 256 processor clock cycles, in increments 

)f 16 cycles. On those runs where the TRQ was used (the first two), the length of the TRQ was 

iaried from 8 to 128 elements, in increments of 8. 
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Figure 59 - Total runtime for first run. (Ex. 6) 

Figure 59 shows the total runtime for the first run. That for the second run is similar in form, but is 

lower by a constant value.. The most noticeable features of this graph are the high runtime and the 

apparent independence of performance from TRQ length. Both of these are due to the repeated 

losses of decoupling between the address and data sub-processors. This makes the full memory 

latency visible on the data sub-processor on every iteration, as well as limiting the utilization of the 

TRQ to a single datum at  time. The difference in runtimes between the two runs is due to the first 

run causing both control and access/execute decoupling to be lost, while the second run features only 

the latter variety of LOD. One might expect that two losses of decoupling on each iteration would 

result in significantly inferior performance when compared with a single LOD, but the 

access/execute LOD masks most of the effects of the control LOD, resulting in only a small increase 

in total runtime. 
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Figure 60 - Total runthne for runs 3-5. (Ex. 6) 
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Figure 61 - Total runtime for run 5. (Ex. 6) 

124 



fte remaining three experimental runs were made over a one-dimensional data space, varying the 

nemory latency as befOre. There was no point in varying the TRQ length as was done in the first 

wo runs, since none of these runs actually made use of the TRQ. 

The relative runtimes of runs 3-5 are shown in Figure 60, and the runtime for run 5 is also shown 

separately in Figure 61, since the scale of Figure 60 makes the runtime for that run appear constant. 

What is immediately apparent from Figure 60 is that, while the runtimes for runs 3 and 4 are of 

comparable magnitude, the runtime for the fifth run is considerably lower. Dealing first with the 

runtimes for runs 3 and 4. While both demonstrate a similar gradient (which in this case indicates 

that both runtimes are determined largely by the memory latency), the fourth run is appreciably 

faster, requiring approximately 1,000,000 less processor cycles to execute. This is due to the loss of 

control decoupling that occurs on every iteration in the third run. While use of the intermediate code 

placement model has eliminated the access/execute LOD that occurred in run 1, there is still a 

control decoupling on every iteration when the data sub-processor returns the result of the array 

bounds test to the control sub-processor. This control LOD in turn inhibits access/execute 

decoupling, which makes the full memory latency visible. 

In the fourth run the entire program kernel is executed on the control sub-processor, with memory 

accesses using the control sub-processor self-load operation. There are no losses of decoupling since 

no decoupling occurs, and both work units remain idle throughout. The lack of a data cache on the 

control sub-processor means that once again, the full memory latency is visible on each access. The 

difference in runtime between runs 3 and 4 can be accounted for by the cost of the control LOD on 

the third run and also by any differences in the iteration time between the code that is run on the 

address/data sub-processors during run 3 and on the control sub-processor during run 4. 

The fifth run shows demonstrably different behaviour. Indeed, in Figure 60, the runtime for run 5 

appears to be independent of memory latency. Figure 61, which shows the run 5 runtime on a more 

useful scale, shows that there is indeed a small variation of runtime with memory latency. However, 

this is negligible. The combination of loop bound evaluation on the control sub-processor and the 
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eplication of code over the data and address sub-processor eliminates all loss of decoupling events. 

Performance here is limited only by the available control decoupling and memory latency. The small 

variation in runtime with memory latency shown in Figure 61 is due only to the startup time of the 

memory pipeline - the delay before the first load packet arrives at the data sub-processor from 

memory. These runtime figures are supported by Figure 62 which shows the effective load latency as 

perceived by the data sub-processor (or in the case of run 2, the control sub-processor). The effective 

latency for the second and third runs shows clearly that the entire memory latency is visible, with the 

small difference between the effective latency in the two runs being due to the slightly longer 

memory path for a decoupled load. By way of a contrast, the effective latency for run 5 is a constant 

two clock cycles. The effective latency is non-zero because of the relative loop iteration times on the 

data and address sub-processors, but remains constant regardless of the actual memory latency. 
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Figure 62 - Effective latency for runs 3 to 5. (Ex. 6) 

The results of this experiment show clearly the effects that loss of access/execute decoupling can 

cause. In this case, the entire memory latency is made visible, since the two units are unable to 

decouple by any noticeable amount before decoupling is lost. It is also shown that for any of the 
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ifferent code placement base solutions tested, the absence of both address/execute and LOD events 

ias required. For example, the code replication technique used in the intermediate placement model 

nd tested in runs 3 and 5 was only effective in the fifth run, when combined with the migration of 

he loop bound test to the control sub-processor, thus eliminating the control LOD. A comparison of 

he various experimental runs also makes obvious the great performance improvements that can be 

)btarned when LODs are eliminated (or, from a more pessimistic point of view, the huge penalties 

mposed by LOD events). 

This experiment illustrates the decoupling problems that can occur when data has to be shared by the 

two work units because a "data" variable is used in an "address" calculation. In this case, the 

dependencies between the two units were reduced somewhat by the assumption that the code being 

placed was sufficiently optimized that all scalar variables could be held in registers and were only 

loaded from memory once, before the loop was entered. However, this is not always possible. An 

array structure in memory might hold not data, but the addresses of data. This approach is common 

in the implementation of sparse data structures, where it would be impractical to store an entire 

matrix in memory, or in particle-in-cell problems where an array of "particles" records their position 

in a much larger matrix representing the space in which the particles are moving . Access to these 

structures requires that an entry in the "index" is examined, yielding either an index (or set of 

indices) into the second structure, or a pointer to another data structure in memory. Figure 63 shows 

a simple Fortran loop that uses indirection of this type. 

tot = 0 	 Indirection 
do 10 i = 1, 100000 

tot = tot + z(x(i)) 

10 	continue 
end 

Figure 63 - Indirection in a Fortran loop. 

Loss of decoupling problems arise because the data stored in this index is in fact address information, 

or at least is going to be used in the calculation of an address. Each element of the index array must 

in some way be moved to the address sub-processor and then used to access the actual data on which 
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data sub-processor is to operate. In this experiment, two ways of doing just this are examined. 

lie first is a hardware technique, the second is software-based. 

i.1.3.2 Address SP self-load and self-store operations 

viany LOD events occur because the address processor requires data that it cannot access directly 

tself and must instead fetch via the data sub-processor, causing a loss of decoupling in the process. 

Ef however, the address sub-processor has some means of accessing memory directly without the co- 

operation of the address sub-processor, this can be avoided. This is one of the features of the Level 2 

architecture described in Section 4.3.3.2. The instruction set of the address sub-processor is 

extended to include operations that allow the address sub-processor to load and store from memory 

directly. In this architecture the main loop (on the address sub-processor) of the example program 

described above would consist of a self-load to access the index array, followed by a decoupled load 

for the data access itself. No loss of decoupling would occur. This approach is not without its 

disadvantages however. It requires that the address sub-processor must have, in some form or other, 

two paths to memory, one for decoupled accesses and one for self-loads and self-stores. These may 

be implemented as a single physical path, with one form of load taking priority over the other, or as 

two separate paths, giving higher bandwidth to memory at the expense of a considerable extra cost in 

hardware. 

The use of self-loads re-introduces many of the memory access problems that decoupled 

access/execute architectures were designed to remove. Long memory latencies can once again 

adversely affect performance, and as will be shown in this example, the absence of a cache on the 

address sub-processor's memory path can cause severe performance problems, with the full latency 

being visible on every self-load. 

6.1.3.3 Strip Decoupling 

Strip decoupling is a restructuring technique that, in certain circumstances, can be used to rewrite 

code that uses limited degrees of indirection in such a way that the effects of the resulting losses of 

decoupling are hidden. 
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[he most basic requirement of strip decoupling is that the code to which it is to be applied has no 

oop carried dependencies. This effectively rules out the use of the technique for list following. 

F-lowever, it may be useful in cases where, for example, an index array is used to access a larger 

rray. The technique attempts to apply some conventional latency hiding techniques to the address 

sub-processor's access pattern, by separating the initial access to the pointer (or index) from the 

actual use of that data by as much time as possible. Hopefully, by the time the address sub-processor 

actually needs the pointer or index it will have been placed in the transfer queue by the data sub-

processor. In effect, strip decoupling is an attempt to perform execute/access decoupling, where the 

data sub-processor is temporarily running ahead of the address sub-processor. Just to make matters 

particularly tricky, the address sub-processor must be able to run ahead of the data sub-processor at 

the same time. It may seem to the casual observer that some minor problems, such as causality, 

might make this technique difficult to apply in practice. Strip decoupling avoids this problem by 

splitting the indirection into two separate phases. In the first phase, all of the initial accesses 

(fetching the pointers) to the array of indices (or analogous structure) are made. During this phase, 

the data sub-processor is largely idle and the only work it performs is to transfer each pointer 

arriving in the LDQ into the TRQ. During the second phase, the address sub-processor removes this 

data from the TRQ and uses it to perform the indirect access while the data sub-processor performs 

the "real" execute task. To obtain reasonable performance using this technique, a number of criteria 

must be met. In addition to there being no loop-carried dependencies, there must also be sufficiently 

many loads required that by the time the address sub-processor has finished executing the first phase, 

the data sub-processor has begun to copy the loaded pointers from the LDQ into the TRQ. 

Additionally, the second phase should not attempt to fetch data from the TRQ more quickly than the 

data sub-processor can place it there. Given the minimal nature of the data sub-processor's task 

during the first phase, this seems likely to occur only if the two units are unable to decouple properly 

on the first phase. 

The strip decoupling technique lends itself most readily to loops where there are a large number of 

single indirections and the indirections are independent of each other. If this is the case, a loop of n 
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:erations can be split into an outer loop of iterations and two inner loops of i iterations each. 

'hese two loops implement the corresponding phases of the strip decoupling technique and it is the 

orm of this nested loop, where a single dimensional loop is processed as a series of strips rather than 

n one go, that gives the technique its name. There is no reason why the technique could not be 

wended to multi-dimensional arrays, as long as there are no loop-carried dependencies. It should 

ilso be possible to extend strip decoupling to cope with multiple indirections (using multiple phases) 

as long as the chains of indirections are finite. However, as the number of indirections increases, the 

amount of time wasted copying values from one queue to another by the various sub-processors will 

increase, reducing efficiency. Figure 64 illustrates the behaviour of strip decoupling for part of the 

execution of a one-dimensional loop with a single indirection. The two phases of the inner loop for 

the address sub-processor take the same time to execute in ideal circumstances (when there are no 

stalls), while the data sub-processor's phases are of different lengths. The first is shorter, reflecting 

the simple copy task that the processor is performing, while the second is longer, reflecting the 

computation being performed on the indirected data. The arrows on the diagram illustrate the flow 

of data between the two units. 

Time 

Phase 	.i 

Phase 2 

Figure 64 - Strip decoupling. 

The address sub-processor begins its first strip and, after a period of time determined by the memory 

latency, data starts to arrive at the data sub-processor. This is immediately re-routed into the TRQ. 

Since the address sub-processor is still busy when the data sub-processor enters its first phase, the 

TRQ will begin to fill. Once the address sub-processor has finished the first phase, it immediately 

begins to remove values from the TRQ and initiate the second series of loads. In this example, these 

begin to arrive at the data sub-processor just as it finishes executing the first phase. This will not 
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lways be the case - depending upon the characteristics of the loop being transformed, the data might 

tart arriving before it is needed or the data sub-processor may stall waiting for data to arrive. Once 

he address sub-processor has finished this second phase it executes the first phase of the second 

;trip, and the data thus fetched begins to arrive at the data sub-processor just as it finishes the second 

phase of the first strip. 

The example used in Figure 64 is rather fortunate in that it manages to keep both work units 

constantly busy. However, only the first iteration illustrates the way in which it is possible to achieve 

both access/execute and execute/access decoupling simultaneously. From the point of view of the 

data sub-processor during its first phase, it is indeed access/execute decoupled from the address sub-

processor's first phase. However, from the perspective of the address sub-processor's second phase, 

it is also execute/access decoupled, since its source of data (the first phase on the data sub-processor) 

is running ahead of it. On later iterations the degree of execute/access decoupling is 0, but the low 

latency of the TRQ means this does not noticeably affect performance. Strip decoupling is not 

without its problems. In addition to the already-mentioned restrictions on the type of indirection it 

can be used to simplify, there is a potential for deadlock. There must always be space in the TRQ for 

all of the data in a strip, otherwise a deadlock may occur. Since the state of the TRQ may be difficult 

to predict, strip decoupling can only be safely used if it follows a loss of decoupling (which should 

result in the TRQ being flushed) and if the strip size is smaller than the TRQ length. This suggests 

that if strip decoupling is to be used effectively, the TRQ should be as long as is practically possible. 
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Figure 65 - Total runtime. (Ex. 7) 

A hardware-based variation on strip decoupling would involve equipping the address sub-processor 

with a more sophisticated, non-blocking self-load operation. Load packets arriving as a result of 

these loads would be stored in a dedicated queue on the address sub-processor rather than in the 

TRQ. This avoids the need to involve the data sub-processor in what is essentially an address sub-

processor operation. However, during the first phase the data sub-processor would still be wasted 

(doing nothing at all rather than executing a simple copy loop) and adding an extra queue while 

leaving the TRQ empty also seems wasteful of resources. Four runs were made in the course of the 

experiment, using the program loop shown in Figure 63. The first tested a naive implementation of 

the loop, with access/execute decoupling being lost on every single iteration. The second run added 

the address sub-processor self-load capability of the Level 2 architecture. The third and fourth runs 

used the basic Level 1 architecture in conjunction with code restructured to allow the use of strip 

decoupling. The third run split the 100,000 iterations of the loop into 1,000 strips of 100 accesses, 

while the fourth run split them into 200 strips of 500 accesses. 
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In all four runs a 128-way interleaved (32 segments of 4 banks) memory sub-system was used. 

Memory latency was varied from 16 processor cycles up to 256 processor cycles in increments of 16 

cycles. The LAQ was eliminated and the LDQ set to 512 packets in size. The MIQ was set to 512 

meta-instructions in size to reduce the effects of limited control decoupling. In all but the last 

experiment the TRQ size was set to 512 elements. In the fourth run it was felt that this might be 

insufficient, and the TRQ length was set to 1,024 elements. As usual, the most straightforward 

comparison between the varying runs is to examine their total runtimes. These are shown in Figure 

65. From the graph it can be seen that the first run, where an access/execute LOD occurs on every 

cycle, performs most poorly. The constant gradient of the line representing this experimental run 

indicates that the runtime here is dictated largely by the memory latency. This in turn implies that 

decoupling is not occurring to any noticeable degree (as would be expected with a loss of decoupling 

on every iteration). This is supported by an examination of the effective memory latency, as shown 

in Figure 66. This reveals that while the effective memory latency is high, perhaps 50% of it is 

hidden. This seems reasonable, since there can be two loads active in the memory sub-system at any 

one time - the second load of iteration i accessing the data itself; and the first load of iteration 1 + 1, 

performing the indirection. With two loads active simultaneously, the throughput of memory is 

doubled and the effective latency is (approximately) halved. 

The second run of the experiment, which uses the address sub-processor self-load instruction, 

performs only marginally better. The address sub-processor sees the full memory latency for both 

loads in each iteration. This is due to both the blocking nature of the self-load operation (which 

sequentialises the loads) and the lack of support for a cache on the address sub-processor. However, 

despite this apparent handicap, the runtime is still lower. This can be put down to two primary 

factors. The most important of these is that although the naive implementation used in the first run 

has a lower effective memory latency, it must also recouple on each and every iteration, considerably 

increasing runtime. In addition, the memory path for the self-load operation is slightly shorter than 

that for a full decoupled load, trimming a few cycles from the memory latency. 
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Figure 66 - Effective memory latency. (Ex. 7) 

The third and fourth runs of the experiment appear at the bottom of both Figure 65 and Figure 66. 

Due to the scale forced by the first two runs, the third and fourth runs appear overlaid in both cases. 

This is not in fact the case, and the difference in runtime between the two runs can be seen more 

clearly in Figure 67, which shows the runtime of the final two runs in isolation. As this graph 

clearly illustrates, the fourth run demonstrates a runtime that is consistently lower than that of the 

third. In both cases the runtime appears to be largely independent of the memory latency, indicating 

that full decoupling has been achieved. This is supported by an examination of the effective latency 

of the third and fourth runs on Figure 66 which shows that both have constant effective latencies of 

around 2 processor clock cycles. The slight slope in the runtime graphs that are noticeable in each 

case are due to the memory pipeline startup time, as discussed in the previous experiment. 
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It is readily apparent from the above results that, in this case at least, the provision of a self-load 

operation on the address sub-processor, even in the absence of a cache, provides a small (and 

apparently constant) performance advantage over a naive implementation of redirection. This 

performance improvement pales into insignificance however, when compared with that obtained 

through the use of strip decoupling. Figure 67 also shows that increasing the "degree" of strip 

decoupling using longer strips improves performance slightly. This is due to the manner in which 

strip decoupling, while eliminating the effects of loss of decoupling events, does not actually remove 

the LODs. There may still be some delay due to LODs between strips. However, if there are fewer, 

longer strips there will also be fewer inter-strip delays, and the runtime is reduced. 

This is once again analogous to strip-mining on a vector processor. Both the vector unit of a vector 

processor and the "soft pipeline" constructed by strip decoupling have a certain startup time. Longer 

vectors or strips reduce the impact of this startup time. Although this experiment clearly illustrates 

the potential benefit of strip decoupling, it remains to be soon how widely applicable this technique 
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Figure 67 - Total runtime for runs 3 and 4. (Ex. 7) 
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viii be in practice. 

,.1.3.4 Code motion 

Vhile code replication can be used to eliminate loss of decoupling events, it is also sometimes 

)ossible to reduce the number of LODs using conventional code motion techniques. Often a 

ompiler will perform this automatically, and code motion for other purposes may often eliminate 

LODs implicitly. For example, a variable might be calculated before entering a loop and placed on 

he data sub-processor. If it is then used on each loop iteration, and by the address sub-processor, 

there will be an LOD on each iteration. However, only the most naïve compiler would generate code 

that was this inefficient. An optimizing compiler would copy the valuable of the variable from the 

address unit to the data unit before the loop was entered, eliminating all but one of the LODs. The 

use of code motion to eliminate LODs is relatively straightforward, so no experiments were 

performed to illustrate this technique. The basics of code motion are well covered in the literature 

[Aho86] and easily adapted to remove LODs once information concerning code placement has been 

generated by the compiler. 

6.1.4 Conclusions 

In this section it has been shown that the effects of a loss of access/execute decoupling can be serious. 

In addition to making the memory latency more visible, the repeated synchronisations caused by loss 

of decoupling events in a loop can also severely hamper performance by limiting the utilization of 

the memory sub-system. For example, if a loop contains four decoupled loads followed by a loss of 

decoupling, then no more than four loads can be active in the memory sub-system at any one time. 

In a heavily interleaved system, which may potentially have hundreds of banks, this can restrict 

memory bandwidth to a fraction of its peak capacity. 

It has also been shown, however, that a number of techniques exist which can be used to eliminate, 

or reduce the effects of loss of decoupling. These include compiler optimizations such as code 

replication and code motion, code restructuring techniques such as strip decoupling, and the use of 
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idditional hardware such as the provision of a separate dedicated path to memory for the address 

ub-processor. 
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i.2 Losses Of Control Decoupling 

.2.1 Causes 

iosses of control decoupling occur for much the same reason as losses of access/execute decoupling. 

The filly decoupled architecture, optimized as it is for a particular "flow" of information from 

control sub-processor to address sub-processor to data sub-processor, performs badly when this flow 

must be temporarily reversed, and data passed from either the address or the data sub-processor back 

to the control sub-processor. 

The primary cause of control LODs are conditional branches. This encompasses a number of 

language structures such as IF-THEN-ELSE statements, switches and numerous forms of loop 

construct - in short, any construct where the control sub-processor's traversal of the control flow 

graph depends on the evaluation of a condition. Unlike access/execute decoupling, where variables 

can usually be easily classified as either address variables or data variables, there is no easily 

identifiable class of control variables. However, most condition evaluations can be thought of as a 

use of a single-use control variable, evaluated on the data and/or address sub-processors and where 

the result is passed to the control sub-processor for use. Any address or data variable involved in a 

condition evaluation may be thought of as a control variable, shared between its "correct" unit and 

the control sub-processor. 

6.2.2 Effects 

Control decoupling events are of two distinct types. Address/control LODs occur when the address 

sub-processor and control unit must synchronize so that data can be transferred. This forces the 

control sub-processor to stall until the address sub-processor has caught up with it and transferred the 

required information via its CFQ. During this stall time, the decoupling distance between both work 

units and the control sub-processor will reduce - to zero in the case of the address sub-processor. 

Whether a loss of decoupling of this type causes any decoupling that exists between the data sub-

processor and the control unit to be lost depends largely on the degree of decoupling present between 

the data and address units. The second form of control LOD is data/control decoupling, when the 

data and control sub-processors synchronize. This variety of LOD is particularly harmful, since it 
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Mocking nature of the queues could cause further difficulties. Attempting to read from an empty 

queue would cause the pipeline to stall. However, if the instruction attempting to read from the 

queue was to be suppressed anyway, there should be no need to stall. Unfortunately, there would be 

no way to tell until the guard condition had been set. Additionally, it may be necessary to propagate 

guard information from one unit to another. This will require a loss of decoupling. Even if a guard 

condition can be independently calculated on each of the work units (for example), decoupling itself 

could lead to problems, as a not-yet-suppressed instruction might read queue data that was intended 

to be read by an instruction in the other fork of the structure. 

It appears to be the case that for guards to be used on a decoupled architecture where instructions 

may attempt to read from queues, their use should be limited to situations where no attempt is made 

to access the queue. Alternatively, guard instructions should stall the pipeline until they have 

committed their results. In a conventional architecture this arrangement would be senseless - it 

would effectively restore the branch penalty that guarding had been introduced to remove - but on a 

decoupled architecture, where the penalty incurred may well be far higher, this approach may still 

have some merit. 

Guarding should thus be used on a case-by-case basis, examining (if possible) the likely result of the 

condition, the relative sizes of the blocks, the branch penalty and whether or not either of the forks 

accesses any of the queues. However, in the ease of an IF-THEN-ELSE construct that may cause a 

loss of decoupling event, the use of guarding seems preferable, since it appears to give easily superior 

performance when the branch penalty is large. 

This is examined in more detail in Experiment 8. For this experiment, three implementations of 

Livermore kernel 24 were compared. This kernel is designed to find the location of the minimum 

value in an array and consists of a loop over the array, testing the contents of each array element in 

turn against the smallest value previously encountered. The data in the array was fixed so that all 

but one elements of the array were set to zero, while an element with a negative value was placed at 
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ilso causes access/execute decoupling to be lost. When the LOD occurs, the control sub-processor 

stalls until the data sub-processor reaches the synchronization point. During this time the control 

sub-processor is unable to issue meta-instructions to the address sub-processor, with the result that 

both the control and address sub-processors will stall until the data sub-processor reaches the 

synchronization point, causing both forms of decoupling to be lost. 

Unfortunately, the vast majority of control LOD events are likely to cause a loss of decoupling of the 

second variety. Since this variety of loss of decoupling is even more costly than an access/execute 

LOD, eliminating or reducing the cost of losses of control decoupling is a high priority. 

6.2.3 Solutions 

As with losses of access/execute decoupling, both hardware and software techniques may be used in 

the elimination of control LODs. Many of these are analogous to the solutions used to deal with 

access/execute LODs, but the rather different nature of control decoupling, and the situations in 

which control LODs are likely to occur also mean that some rather different techniques may be used, 

while others such as strip decoupling have no obvious analogue in control decoupling. 

6.2.3.1 Code Replication 

The use of code replication to eliminate losses of control decoupling has already been touched upon, 

and was used in several of the examples in the previous section to make the processing of loops more 

efficient and thus prevent control LODs from masking the effects of the various access/execute LOD 

elimination techniques that were being tested. Deterministic loops are particularly well-suited to this 

optimization technique. The comparison of the loop index variable and the loop bounds can be 

migrated in its entirety to the control sub-processor, eliminating the control LOD that would 

otherwise have occurred after each loop iteration. In most cases, the only variable that must be 

shared is the loop index variable itself which in many cases is required only on the address sub-

processor. The code that must be replicated is often simple and usually requires only that both sub-

processors increment the variable after each iteration. Once the replication has been performed, it is 

safe to perform any further required optimizations on expressions using the variable on the address 

sub-processor (i.e. strength reduction, scaling, the use of auto-incrementing instructions) as long as 
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my uses of the variable on the address sub-processor after the loop obtain a fresh copy of the 

,ariable. 

vlore general code replication, where an address or data variable is used in a condition, can also be 

7erformed in a manner analogous to that for access/execute decoupling. As with that technique, the 

applicability of the technique is limited by the cascade effect, whereby replicating one variable may 

cause others to require replication, which may cause others to require replication, and so on. This 

can eventually lead to large chunks of code requiring replication, which limits the usefulness of the 

techniques, especially if the replicated code accesses memory. If the cost of the control LODs in such 

situations is prohibitively high, it may even make more sense to migrate the code concerned to the 

control sub-processor in its entirety. The migrated code is unlikely to be fast, but will perform at 

least as well as it would if replicated. 

6.2.3.2 Guarding 

Guarding is a well-established hardware technique designed to allow the elimination of conditional 

branches in conventional architectures. It is also of use in a fully decoupled architecture, where it 

can be used to eliminate certain types of control LOD. The principle of guarding is straightforward - 

every guarded instruction becomes conditional and is executed only if the guard condition is fulfilled. 

The guard condition varies from implementation to implementation but could be one of the standard 

arithmetic flags, the contents of a guard or condition register (or one of a number of guard registers) 

or even a combination of several guard bits. Depending upon the condition of the specified flag(s), 

the guarded instruction will either execute as normal or be suppressed, effectively becoming a null 

operation. While the nullifying of the instruction results in a pipeline bubble, the cost of the guarded 

instruction is generally lower than that of the branch delay caused by a conditional branch. In a fully 

decoupled architecture, where loss of decoupling can potentially make the cost of a conditional 

branch astronomically high, guarding is potentially a very useful technique. Guarding is best suited 

to conditions where as few guarded operations will be suppressed as possible. If tCOND  is the time 

(in processor clock cycles) taken to evaluate the condition of a typical IF-THEN--ELSE construct, 

tBP41.,CJ] the branch delay, tTHEN  the execution time of the first branch and tEISE  the execution 
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;une of the ELSE branch, we can approximately compare the performance of guarding with a 

onditional branch. If a conditional branch is used, the total execution time t of the construct is 

given by t = tCOND + tBWCH + (Pr(THEN) X tTHFJ.,T) + (Pr(ELSE) x t j j,sj). That is, we 

always evaluate the branch condition and wait for the branch delay, then follow one of the branches. 

With guarding, on the other hand, the execution time is always t = tcOND + tTHEJ'J + tELSE.  Of 

this time, on average Pr(THEN) x tELSE  + Pr(ELSE) X t 77j7  cycles are spent executing 

suppressed instructions versus the tBJ4J,,rcH cycles wasted when a conventional conditional branch 

is used. A comparison between conditional branching and guarding can be seen in Figure 68, which 

shows the execution time of a conditional branch tCOND = 10, tTHEN = 50 and tEE = 5, as 

might occur where, following a test, a variable is either set to a constant value or its value calculated 

by some more complex and time-consuming method. The branch penalty tBPJCH is varied from 0 

to 256 clock cycles, covering a wide range from the delays of a few cycles typical of branch delays in 

a conventional processor, to the large delays caused by a loss of decoupling. Finally, the probability 

of taking the THEN fork of the branch is varied from 0 to 1, allowing the comparison of performance 

when the more complex of the two possible forks is taken more or less frequently. 

The performance obtained with guarding is not shown, since this is a constant value determined by 

t = tcoT + tTHEN + tESE , which evaluates to 65 clock cycles for this example. It is apparent that 

guarding produces superior performance in most cases, while the use of a conditional branch is most 

advantageous when the branch penalty is low and it is more likely that the shorter of the two forks is 

taken. This is expected -both implementations of the IF-THEN-ELSE structure require the 

evaluation of the condition. The conditional branch then suffers the branch delay, before following 

one or other fork. As the branch delay tends to zero, the execution time is given by the sum of the 

condition evaluation and the fork taken. If the shorter fork is taken more frequently, the execution 

time will drop. The execution when guarding is used, however, is independent of both the branch 

penalty (since no branch occurs) and the probability of one particular fork being taken (since, in 

effect, both branches are taken every time). 
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Figure 68 - Execution time for conditional branch. 

Guarding faces several other limitations on a decoupled architecture. The most common method of 

suppressing the execution of a guarded instruction is to prevent it writing a result to its destination 

register or altering any condition flags. Performing either of these actions would change processor 

state. Reads from the register need not be suppressed, since they have no effect other than on local 

pipeline state, and throwing this information away when the instruction is ignored should have no 

effect. However, in a decoupled architecture it may well be the case that several of the registers in 

the register file are in fact the tops of queues. This poses a number of problems. When the queue is 

read this modifies global state - it removes a value from the queue - and this should not be done if the 

instruction is to be suppressed. Unfortunately, if the instruction setting the guard is the previous 

instruction, it may not be discovered that the instruction should be suppressed (and thus should not 

have read the queue) until after the read has been performed. There is no obvious solution to this 

problem. If the update of queue pointers could be delayed until such time as the status of the reading 

instruction was known, any subsequent instructions that wished to access the queue would be stalled 

since it would not be possible to determine the correct value for them to read until the status of the 

reading instruction itself was known. Even if it was possible to get around this somehow, the 
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he array's midpoint. This meant that in the vast majority of cases, the ELSE branch was taken and 

hat Pr(THEW) was very low. 

['he basic loop, over an array size of 1000 elements, was repeated 100 times. The first of the three 

mplementations of the kernel tested was the most straightforward. The main loops were migrated to 

he control sub-processor but the test itself was implemented in a naive manner, with the comparison 

A each element with the current minimum being performed on the data sub-processor and passed 

back to the control sub-processor on every iteration. The control sub-processor then examined the 

result and, if a new minimum had been found, issued the basic block to update the value of the 

current minimum. Once this had been done, the control sub-processor then (locally) incremented 

and tested the loop index variable and either started the next iteration or exited the loop. 

The second implementation of the loop made use of guarding to avoid a loss of decoupling on each 

iteration. The basic nested loop structure was the same as before, with loop bound tests being 

performed on the control sub-processor. However, rather than passing the result of the test between 

the value currently being examined and the current minimum value back to the control sub-

processor, a flag was set locally and the update of the variable performed under a guard. Since the 

guarded operations do not access any queues, it is safe to use a guard. 

The third implementation was essentially similar to the second. No new control LOD eliminating 

technique was used, but it was assumed that the architecture supported an iteration count on issued 

meta-instructions and that the entire inner loop could thus be issued with a single meta-instruction 

(something that would not have been possible had the control LOD not been eliminated). This third 

run of the experiment was designed to highlight the performance improvements that could be 

achieved through not only the elimination of the control LOD but also the use of the other techniques 

that can only be used when LODs have been eliminated. 
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In all three cases, memory latency was varied between 16 and 256 clock cycles (in increments of 16 

cycles), while the MIQ length was varied between 32 and 512 elements, in increments of 32 

elements. While the primary interest was in the effect of variation in memory latency, the variation 

in the MIQ also allowed any performance variation due to limitations in the maximum possible 

degree of control decoupling to be measured. Those queues related to access/execute decoupling 

were held at a fixed size of 512 elements. The memory subsystem used had 32 segments, each with 4 

banks, for a total of 128 banks. 
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Figure 69 - Data sub-processor runtime for first run (Ex. 8). 

The results of this experiment were largely as would be expected. As can be seen by contrasting 

Figure 69 and Figure 70, guarding produces a performance improvement when the memory 

subsystem is well-balanced. As the memory bandwidth becomes saturated, the benefits of guarding 

are reduced until, at the saturation point, memory latency dominates and there is no advantage in 

using guarding. The difference in runtimes between the second and third run (shown in Figure 71) 

appears negligible. This is what would be expected, since the control decoupling characteristics of 

the kernel are such that using a loop-mode block issue has little advantage. Note that while Figure 
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Figure 70 - Data sub-processor runtime for second run (Ex. 8). 

70 and Figure 71 appear to show very different behaviours, this is an illusion due to their differing 

scales. Other than in the area where memory is saturated and latency dominates, the two behave 

identically. 

6.2.3.3 Control SP self-load and self-store operations 

In Section 6.1.3.2 the provision of a dedicated path to memory for the address sub-processor was 

examined. It was shown that while allowing the unit to directly access memory through the use of 

self-load and self-store instructions could eliminate losses of decoupling, it also made the frill 

memory latency visible once more. Obtaining reasonable performance required the addition of a 

cache to reduce the effective latency. 

This also applies to the addition of a self-load and self-store path on the control sub-processor. 

Losses of control decoupling due to data sharing between the control sub-processor and another unit 

can be eliminated, but in the absence of a data cache on the control sub-processor, the latency of self-

loads may be considerable. 
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Figure 71 - Data sub-processor runtime for third run (Ex. 8). 

However, the penalty thus imposed may be of considerably less impact relative to a full loss of 

decoupling. This is due to a number of factors. Although all loss of decoupling events are 

potentially expensive, control LODs are particularly so, since they cause both control and 

access/execute decoupling to be lost. While the memory latency of control and address self-loads 

may be the same, the former may represent a much greater saving in time over a loss of decoupling 

than the latter. Additionally, control LODs may occur in different places, and with a lower 

frequency. The example used for access/execute decoupling was that of an indirected array access, 

performed on every iteration of a loop. This, potentially causing an LOD on every iteration, made 

reducing the impact of any LOD elimination technique of great importance. However, although 

Livermore kernel 24, as used above, also causes on LOD on every iteration, many control LODs 

occur with rather less frequency. An LOD-causing control decision may be followed by a 

considerable amount of work, none of which causes an LOD. With a lower LOD frequency, it 

becomes more acceptable to use an LOD elimination technique that still has a high latency, or even 

to leave the LOD alone. 
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.2.3.4 Guarded meta-instructions 

The primary disadvantage of guarding is that, for a typical IF-THEN-ELSE construct, both the THEN 

and ELSE must be executed in their entirety, with any state-modifying actions of one or other of the 

forks being suppressed. If the two forks in the construct are of disparate size, the usefulness of 

guarding becomes very strongly dependent on the frequency with which the longer fork is taken. If 

one fork of the construct contains 250 instructions and the other 5, a situation where we execute the 

shorter fork 95% of the time and thereby suppress 250 instructions every time we execute the 

construct is clearly undesirable. 

However, it is worth noting that in constructs such as an IF-THEN-ELSE the minimum unit of 

computation is the basic block. The very semantics of the construct break each fork into one or more 

distinct basic blocks. Since each meta-instruction represents a basic block, this suggests that by 

guarding the meta-instructions, rather than the individual instructions that they are expanded into, 

less effort will be wasted suppressing instructions. All that will be suppressed will be a single meta-

instruction, rather than the hundreds of instructions it may represent. This is particularly important 

if the architecture supports iteration counts in meta-instructions, where one meta-instruction may be 

expanded into hundreds of thousands of sub-processor level instructions. Guarded meta-instructions 

would solve this problem, although they would also introduce difficulties of their own. Each meta-

instruction would contain a guard mask of some form, determining either the guard register or 

combination of guard bits to be checked. This would be compared against the appropriate register or 

flags in the sub-processor by the fetch engine associated with that processor before the meta-

instruction was expanded. If the meta-instruction was to be suppressed, it would be discarded and the 

fetch engine would begin processing the next meta-instruction in the queue. Using this approach, an 

I F-THEN-ELSE construct could be implemented by first issuing the meta-instruction(s) to evaluate 

the IF condition, then issuing two guarded meta-instructions, one for the THEN block and one for the 

ELSE block. The first of these would have its guard mask set so that it would be expanded only if the 

condition evaluated to true, the second so that it would be expanded only if the condition was false. 

Having issued these three meta-instructions, the control sub-processor could then continue 

unhindered by the control LOD that would have been required had guarding not been used. Guarded 
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neta-instructions would, however, have a number of limitations. The fetch engine would be unable 

o determine the status of a guarded meta-instruction until the appropriate flag or register on the sub-

rocessor had been set. In addition to requiring a close coupling of the fetch engine and the sub-

rocessor to allow the fetch engine direct access to the flag or register, this may also introduce 

7ipelne bubbles. The condition will normally only be written into the flag or register in one of the 

later stages of the pipeline. This will result either in the pipeline having emptied before the guarded 

meta-instruction can be expanded or something analogous to branch delay slots being required, so 

that some useful work can be performed while waiting for the condition to commit and the fetch 

engine to expand the next meta-instruction. 

Although there may be a delay of several cycles between the condition being evaluated and the status 

of the next meta-instruction being determined, this delay will generally be no worse than would be 

caused by the evaluation of a conditional branch in a conventional processor. Additionally, many of 

the tricks and optimizations that have been used in the past to limit the delays caused by conditional 

branches, such as making the test that sets the flag as early in the pipeline as possible, can be used. 

The resulting delay would also be considerably less than that caused by a loss of decoupling and is 

also superior to at least one of the two forms of instruction-level guarding already discussed. The 

penalty incurred when a guarded instruction has to wait for the previous (flag setting) instruction to 

store its result is of similar magnitude to that which would be incurred by a guarded meta-

instruction. Additionally, the use of a guarded meta-instruction would avoid the penalty of executing 

then discarding the results of large numbers of guarded instruction, producing a considerable saving. 

The other primary limitation of guarded meta-instructions is a result of the manner in which the 

control decision is only partially migrated to the fetch engine. If each branch of an IF-THEN-ELSE 

construct consists of several separate basic blocks a guarded meta-instruction must be issued for each 

block. Once again the situation is encountered where both paths of the construct are executed, and a 

number of instructions suppressed. While the number of meta-instructions is fir smaller than the 

number of sub-processor level instructions that would be suppressed were instruction-level guarding 

used, it is still wasteful. 
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Finally, it must be stressed that the use of guarding, whether at the instruction or the meta-

instruction level, is not practical in all situations. While multi-way branches could be implemented 

in this manner, using multiple guards, the ratio of executed/suppressed instructions would be worse 

than in a simple two-way branch. There are also many situations in which the result of a condition 

evaluation must be passed back to the control sub-processor. For example, in a non-deterministic 

loop the condition must be passed back so that the loop can be terminated. Each individual iteration 

could be implemented using guarding (with the loop body and the loop footer having complemented 

guards) but there would be no way to place the meta-instructions for the next iteration into the MIQ 

(or prevent the control sub-processor from issuing any further iterations) without passing the result of 

each iteration back. Such losses of decoupling seem unavoidable. 

6.2.3.5 Conditional meta-instructions 

Since the majority of situations in which guarded meta-instructions would seem to be useful are 

simple IF-THEN-ELSE constructs, it may be the case that optimizing for this particular case would 

be beneficial. Such a conditional meta-instruction would be generally similar to a pair of guarded 

meta-instructions with the minor difference that the two meta-instructions would be implicitly paired 

and would require only one check of the guard flags since only one of the two would ever be 

executed. Whether such meta-instructions would be issued as a single operation on the control sub-

processor or separately is an implementation dependent issue. 

6.2.3.6 Performance of meta-instruction level guarding 

Having outlined the concept of meta-instruction level guarding in the previous section, an 

experiment was carried out to evaluate the relative performance of conventional instruction-level 

guarding, guarded meta-instructions and conditional meta-instructions. Experiment 9 consisted of 

three simulations of a kernel based on Livermore kernel 24, which was previously used in 

Experiment 8. However, to accentuate the effects of guarding, the relative weights of the two 

branches in the IF-THEN-ELSE that lies at the core of this kernel were altered to skew the cost 

towards the less frequently taken branch. This better illustrates the inefficiency of instruction-level 
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guarding, since on the majority of iterations the loop suppresses a large number of guarded 

instructions. 

The first of the three simulation runs used conventional instruction-level guarding. The second used 

guarded meta-instructions, with the control processor issuing two meta-instructions (with 

complementary guard values) on each iteration. The third and final run was similar to the second, 

but used conditional meta-instructions, where the two guarded meta-instructions are combined into a 

single instruction at the control sub-processor. How this instruction would be implemented in 

practice would depend upon the specific architecture in question. Two possibilities would be the use 

of a wide meta-instruction queue (although this would seem wasteful), or the implicit queuing of 

complementary guarded meta-instructions. The latter approach is the one taken by the architecture 

simulated by fdps. 

It was expected that the performance of the second and third runs would be very similar. From the 

perspective of the work sub-processors there is in fact no difference between the use of guarded and 

conditional meta-instructions. However, the use of conditional meta-instructions should reduce the 

instruction count on the control sub-processor. 

Each simulation run was performed 64 times, varying the memory latency between 32 and 256 clock 

cycles (in increments of 32 cycles). Since the previous experiment had shown little variation in 

performance due to meta-instruction queue length, this was held constant at 512 elements. Other 

aspects of the simulated processor were held to the baseline used in earlier experiments. The first 

measure of performance examined was the total runtime of the data sub-processor. As can be seen 

from Figure 72, the performance of the simulations using guarded and conditional meta-instructions 

is almost identical. This was as expected, and the runtimes of the second and third batch of 

simulations appears to depend linearly on memory latency. The only part of the performance 

envelope where the use of guarded meta-instructions was noticeably superior to that of conventional 

guarding is where the memory latency is low. With higher latencies, the effects of the memory bank 

conflicts on performance mask any improvements due to the use of guarded meta-instructions. 
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Figure 72 - Data sub-processor runtime. (Ex. 9) 

Further insight into the behaviour of the various forms of guarding was gained by examining the 

control processor efficiency. This showed greater efficiency when using guarded meta-instructions 

than conditional meta-instructions. While this might at first seem to be counter-intuitive, it is due 

primarily to the time it takes to fill the MIQ. With guarded meta-instructions each iteration requires 

the issue of two meta-instructions, which in turn requires the execution of two instructions on the 

control sub-processor. The issue of a conditional meta-instruction, however, still stores two values to 

the MIQ but requires only a single instruction to be executed on the control sub-processor. Thus, the 

use of conditional meta-instructions fills the MIQ at twice the rate of a program using guarded meta-

instructions. Once the queue is full both approaches proceed at a similar rate, only adding meta-

instructions when space is available. Since the third simulation run spent more time in an idle state 

(because it filled the queue earlier), efficiency was reduced. 
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.2.3.7 Decoupling-specific guarding techniques 

the combination of guarding and decoupling has both drawbacks and advantages. Perhaps the 

biggest drawback to its use occurs when code on both the address and data sub-processors must be 

guarded. This might happen if the code that is to be guarded attempts to access memory, or even if it 

has to update some register variables. Generally this will require that the result of the guard 

condition be shared between both sub-processors, causing a loss of access/execute decoupling. 

Alternatively, replicating the code that evaluates the condition over both units may be possible. This 

limitation may in many cases restrict the efficient use of guarding to basic blocks that are executed 

entirely on one processor, such as the manipulation of register variables on the data sub-processor. 

However, decoupling can also help as well as hinder the efficient guarded execution of certain 

structures, by virtue of it making it possible to guard parts of decoupled operations. 

This is best illustrated by a number of variations on the C tertiary operator a = x ? y : z. This is 

a simplified and specialized instance of an IF-THEN-ELSE construct where, depending upon the 

result of the evaluation of expression x, either y or z is assigned to a - it is equivalent to IF x THEN 

a = y ELSE a = z. In a conventional architecture with guarding, this would be implemented as a 

condition evaluation plus two guarded loads and two guarded store operations. This in itself is fairly 

efficient, but if calculating the address of a is more complex (for example if a is a reference to a 

multi-dimensional array rather than a scalar variable) efficiency will drop, since the expensive 

evaluation of a will be performed twice, once for the fork being executed, and once (although 

suppressed) for the guarded fork. 

This problem can be considerably reduced by "hoisting" the evaluation of the address of a out of the 

condition. However, it can be eliminated entirely on a decoupled architecture, by evaluating the 

guard only on the data sub-processor. The address sub-processor executes the code to evaluate the 

address of a regardless of the value of x and the guarded code on the data sub-processor generates 

the data value (either y or z) to be stored at that address. 
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Original Code 	 ASP Pseudo-code 	 DSP Pseudo-code 

IF x THEN 
IF y THEN 

a =m 
ELSE 
a m 

END IF 
ELSE 

IF y THEN 
b =m 

ELSE 
b  

END IF 
END IF 

gi = EVAL (x) 
gi: LAQ = ADDR (a) 
!gl: LAQ = ADDR (b) 

g2 	EVAL (y) 
g2: LDQ = m 
!g2: LDQ = n 

Figure 73 - Guarded pseudo-code for nested IF-THEN-ELSE. 

This principle can also work in reverse, storing a value at one of two addresses (IF x THEN a = y 

ELSE b = y). This would guard the address sub-processor code, but generate a single, unguarded 

store of y on the data sub-processor. In fact, both can be used together, so that the nested IF-THEN-

ELSE shown in Figure 73 can use a separate guard on each sub-processor to implement the construct 

extremely efficiently. 

6.2.4 Conclusions 

In this section it has been shown that losses of control decoupling are every bit as harmful to 

performance as losses of access/execute decoupling. In many cases control LODs also force an 

access/execute LOD, increasing the impact of these events. 

Many of the software techniques that can be used to eliminate access/execute LOD events are also 

applicable to control decoupling. Software techniques such as code motion, replication and hoisting 

can eliminate potential LODs. 

Hardware techniques such as the provision of a separate memory path for the control processor were 

also shown to be of use. Additionally, a number of hardware techniques specific to control 

decoupling were examined, such as the use of instruction guarding at both the instruction and meta-

instruction levels. While the use of both types of guarding was shown to have a positive effect on 

performance, other characteristics of the benchmark used to test the techniques predominated, 

making it difficult to quantify exactly how effective the various techniques were. Instruction-level 
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guarding is relatively easily implemented, and is a fir from uncommon feature in high-performance 

processors of the 90s. By contrast, meta-instruction level guarding is more involved and would 

require a tighter coupling between the processor's work units and their respective instruction fetch 

units than currently exists. This, coupled with what information could be gleaned from the limited 

results of Experiments 8 and 9, suggests that the benefits of meta-instruction level guarding 

(particularly the more involved forms, such as the use of conditional meta-instructions) are small and 

are outweighed by the additional hardware complexity that they require. Instruction-level guarding, 

by contrast, offers a straightforward means of eliminating some frequently occurring classes of LOD 

event. 

155 



The Decoupling Behaviour of Real Programs 

In the previous two chapters, the characteristics that permit uncoupling and the causes of losses of 

decoupling were examined for a number of typical scientific kernels. Simple code kernels such as 

those used are useful when examining the fundamental behaviour of an architecture, since they 

permit the isolation of the behavioural characteristic or architectural feature under examination. 

However, such kernels tell only part of the story of processor performance. This is particularly so in 

the case of fully decoupled architectures. The use of simple kernels provides an accurate estimate of 

processor behaviour in certain highly controlled situations. However, such situations are often 

unrealistically simple and fail to capture the behaviour of the processor when running real programs. 

Real programs, by contrast, may have a number of modes of behaviour that they switch between 

frequently. Loops may only be executed tens of times rather than the thousands of times that are 

typical of kernels, or they may be executed different numbers of times on different iterations of some 

outer loop. In the case of fully decoupled architectures, switching between different modes of 

behaviour may result in poor decoupling or loss of decoupling. Even a small change in the degree of 

available decoupling has the potential to reduce efficiency if the program switches rapidly between 

two modes with differing degrees of decoupling. A loop that might have the potential for full 

decoupling may be alternated with a section of code with poor decoupling characteristics, or even a 

loss of decoupling. Alternatively, the loop might only be executed twice, and thus fail to become 

fully decoupled. To determine the effects of such varied and complex behaviour, it is necessary to 

examine the decoupling characteristics of real programs. 

7.1 The problems of simulating the execution of real programs 

In this chapter, the behaviour of fully decoupled architectures when running realistic programs rather 

than simple kernels is examined. In the case of a decoupled architecture, "realistic programs" will 

typically be used refer to scientific or numerically intensive code, rather than interactive 110 driven 

applications such as editors or graphical user interfaces. A good example of the class of programs 
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that a decoupled architecture might typically run is given by the Perfect Club suite [Ber89] [Cyb90], 

a selection of real programs that are commonly used for benchmarking the behaviour of processor 

architectures. 

However, time constraints and the sheer size of some of the Perfect Club benchmarks make a wide-

ranging investigation of the Perfect Club suite impractical. Preliminary calculations showed that to 

simulate just one benchmark in the suite - the TRFD program - in the same manner as the 

experiments performed earlier in this research (typically 512 simulation runs for each of several 

possible architectural variations) would take approximately 30 years of continuous simulation on the 

available processors. 

It was decided instead to choose a single example from the Perfect Club benchmarks to examine 

processor behaviour at the level of a full-sized program. The choice of which benchmarks to use was 

based on the results presented in a paper by N.P. Topham and K. McDougall [Top95], an analytical 

survey of access/execute decoupling in the Perfect Club benchmarks. By using the results in this 

paper it was possible to select a single benchmark which had a relatively low runtime and which 

demonstrated both periods of decoupling and the presence of loss of decoupling events. 

The limitations of the tools available for the simulation of decoupled software and the potentially 

large size of real programs meant that it was impractical to analyze the behaviour of these real 

programs in their entirety via simulation. The annotated codes would grow enormously. The 

generation of traces would become time-consuming and require vast amounts of disk space for 

storage. Finally, and most importantly, the time required for the simulation itself would become 

unfeasibly large. It was instead decided to employ a number of techniques that would reduce the size 

of the traces generated without invalidating any of the results produced. 

7.1.1 Trace reduction techniques 

The first of these techniques involved the profiling of the program to be simulated to identify its most 

frequently executed routines, and to obtain a static approximation of its decoupling characteristics. 

Using this information, frequently executed sections of code with interesting decoupling behaviour 
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(specifically, those which contain LOD events) were then annotated, either automatically or by hand. 

This produced a program with a much reduced degree of annotation that still reproduced the 

behaviour of the most frequently executed routines, and thus paid due attention to the presence of the 

most important decoupling events. 

However, even this technique was insufficient to reduce the size of traces to manageable levels. To 

give an example, the TRFD program from the Perfect Club was minimally annotated using this 

technique and the resulting annotated program was run to generate traces. These trace files were 

compressed during generation using the gz ip utility set on its highest compression setting. The 

resulting trace files consumed roughly 3 gigabytes of disc space in their compressed form. Their 

uncompressed size would be larger by at least an order of magnitude. In addition to the storage 

problems posed by such large traces, the time taken for the trace-driven simulation became 

prohibitive. The simulator used throughout this research is capable, at best, of around 10,000 

simulated clock cycles per second for a typical decoupled architecture. For a simulation run 

containing billions of simulated instructions, simulation times of several weeks are typical even if it 

is assumed that the simulated architecture has perfect efficiency (that is, an instruction is issued on 

every sub-processor during every clock cycle and memory latency is unrealistically low). When the 

less-than-perfect behaviour of real programs is taken into account, coupled with the need to perform 

multiple runs of a simulation, even this reduced degree of annotation seems to be impractical. 

Two additional steps were thus taken to reduce simulation time. The first involved modifying both 

the trace generation library and the simulator itself so that trace information was passed directly 

between the two, bypassing the need for large amounts of disk space to store traces. 

This technique had both advantages and disadvantages. Since simulations were being run at off-

peak hours on a dual-processor Sparcstation 20, the need to have two processes running together did 

not in itself impact performance. The total simulation time for a run of n experiments was also 

reduced. Previously this had been tg  + n x t, where t g  was the time to generate the trace data and 

t was the average time for s single simulation run. With generation and simulation taking place in 
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parallel, the total simulation time became n x max(t g , ta). Since 'g 	in the vast majority of 

cases, this reduced to n x 1,, effectively removing the trace generation time from the equation. In the 

experiments performed in this chapter, where both trace generation time and simulation time were 

measured in days/weeks, this proved to be important. 

The disadvantages of this technique were of a more technical nature. Due to the inherently 

decoupled nature of the trace streams being produced by the annotated program, the buffers provided 

by the operating system for the exchange of data through sockets/streams proved too small to prevent 

deadlock. This necessitated the provision of program-maintained buffering, which was implemented 

in the annotation library. This in turn required the implementation of a throttling algorithm, to 

prevent the program-maintained buffers from growing arbitrarily large, while still ensuring the 

continuing flow of data from trace generator to simulator. This did not completely eliminate the 

possibility of deadlock - where two units were out of step by a very large amount (that is, greater than 

the maximum instruction capacity of the buffer), deadlock could still occur. However, it was felt that 

the buffer size used (a maximum of 6 megabytes per processing unit) was enough to prevent this, and 

this did in fact prove to be the case. Unfortunately, the implementation of program-maintainçd 

buffering, which required the simulator to busy-wait on the sockets from which it was receiving 

stream data, increased the simulation overhead noticeably, reducing performance by perhaps 5%. 

The final technique employed to reduce simulation time was perhaps the most drastic, and the only 

one of the three to noticeably effect how representative the results were of the behaviour of real 

programs. The large runtime of each simulation was due directly to the number of instructions that 

must be simulated. A substantial number of these instructions had little or no bearing on the 

program's decoupling behaviour or, if they did, affected only the degree of that decoupling, and not 

whether or not decoupling took place. 

By removing from the trace all instructions except those that were directly concerned with 

decoupling, runtime could be reduced still further. Instructions concerned with decoupling include 

memory accesses, the issuing of instruction blocks by the control unit, and the passing of information 
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from address and data units back to the control unit, or from the data unit to the address unit. 

Depending upon the specific processor architecture, subroutine calls and returns from subroutines 

may also need to be retained, since these can generate LODs in architectures where parameters are 

passed through memory. 

While the use of this technique greatly reduced the number of instructions that had to be simulated, it 

did distort the program's behaviour in a number of ways. It was no longer possible to accurately 

determine the rate at which two processors decoupled or recoupled, since this is determined by the 

frequency with which decoupled instructions are executed. Since we eliminated the non-decoupled 

instructions that dictate the spacing of these instructions, both processors involved in a decoupled 

operation would proceed at the highest frequency possible, with every instruction that was issued 

being half of a decoupled pair. In the absence of data concerning the relative frequency at which 

decoupled instructions are issued, it was not possible to determine the decoupling or recoupling rate 

of the original program. 

An additional effect of the elimination of non-decoupled instructions was an increase in the demand 

on resources in the decoupled data path. In the case of control decoupling this meant that the MIQ 

was accessed more frequently, potentially causing it to fill or empty with a greater frequency than in 

the real program. In the case of access/execute decoupling, the "pressure" on memory was 

increased, as memory accesses became more frequent. Unless the memory subsystem was adjusted to 

handle this increased pressure, measures of memory performance would have been distorted due to 

the LAQ and SAQ filling regularly (since the demands being made on memory exceeded its 

capabilities) and the LDQ emptying regularly (since the execute sub-processor would remove data 

more frequently). 

7.2 Decoupling behaviour at the program level 

The trace-reduction techniques described above were all used in the final experiment conducted in 

this research, which attempted to verify some of the small scale behaviours demonstrated in earlier 

experiments at the level of a real program. The aim of this experiment was to examine the effects of 
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varying the memory latency on the behaviour of the program TRFD. As has already been indicated, 

a complete run of this program was several billion simulated cycles in length, even in ideal 

circumstances. However, by examining the decoupling profile of the first two billion cycles of a 

simulated run of TRFD, it was possible to determine that the first half billion simulated clock cycles 

alone contained a sufficient variety of program behaviours to be worthy of examination. 

The architecture used in each run - of the simulation was the same. All queue lengths were kept long 

(512 elements) to reduce the effects of queue stalls on performance. The memory subsystem 

consisted of 16 segments, each possessing 8 banks. This 128-way interleaved system was used, in 

conjunction with Rau's hashing algorithm, to reduce the effects of bank contention and to ensure that 

ample memory bandwidth was available. Each memory bank was equipped with a 128 element local 

queue to localize the effects of bank contention. 

The high specification of the architecture used in the experiment was designed to eliminate as many 

subsidiary performance effects as possible. Memory latency, and the effect of this on decoupling 

performance, were the only factors being considered. 

The same code annotation for TRFD was used in every case. Static analysis and profiling had shown 

that the olda subroutine Within the program contained the vast majority of LOD events and was also 

where the program spent most of its time. Thus only this subroutine was annotated, in the minimally 

annotated form described in Section 7.1.1. No attempt was made to remove LOD events, or to hoist 

them to reduce their effects. 

Three runs were made of the simulation. The only parameter varied each time was the memory 

latency. This was set first to 16, then 32, then finally 48 processor clock cycles. These figures were 

deliberately chosen to be relatively low, as it was considered undesirable for the simulation to 

encounter the situation where performance was affected by a lack of available memory bandwidth. It 

was felt that all three of these latencies, while varying substantially, would not tax the memory 

subsystem unnecessarily. Each run simulated the execution of the annotated TRFD for 0.5 billion 

cycles, and took around a week of simulation time to complete. 
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In addition to the static performance information gathered in previous experiments, the simulator 

was also altered to dynamically gather a number of performance characteristics, to provide a profile 

of the system's behaviour over time. Three such characteristics were dynamically measured. 

The first of these was the degree of decoupling. A running total was maintained of the number of 

decoupled load and store operations issued on the access and execute units.. These totals were 

sampled every 1000 clock cycles (this being considered quite frequent in the context of a 0.5 billion 

cycle run) and the difference between the two was measured. This gave an estimate of the degree of 

decoupling between the access and execute units at that point, or how far ahead the access unit was 

running. 

The second characteristic measured was derived from this information. As has been mentioned 

earlier, one of the side-effects of reducing the trace size was to greatly skew the 

recoupling/decoupling behaviour of the annotated program. However, there was still some value in 

calculating the rate of recoupling/decoupling for the annotated program, to see if this varied for 

different memory latencies. Such information could be gathered directly from a graph of the degree 

of decoupling, where the rate would be given by the gradient. However, the initial test runs that 

indicated the impracticality of complete simulation of real programs also demonstrated that this 

gradient was very difficult to determine visually. Even if the degree of decoupling varied sharply 

(say, by several hundred) between two sampling points, there might be half a million such sampling 

points for an experiment, and any display of this data would greatly compress the time axis, 

rendering all such gradients near vertical. For this reason the decoupling rate information was 

calculated at runtime, although it could also have been derived after simulation from the 

accumulated degree of decoupling data. 

The final dynamic characteristic measured was that of effective memory latency. While the 

simulator already calculated the average effective latency over the complete simulation run, it was 

modified so that the effective latency information was reset at each sampling point, thus giving a 

measure of the average effective latency over the past 1000 clock cycles. The idea behind this was 

that it would now be possible to see the effect of losses of decoupling on effective latency. A loss of 
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decoupling should, in theory, have caused a sudden jump in effective latency as the latency-hiding 

effects of decoupling were lost. 

Once the three simulation runs had been performed, the results for each run in turn were collated. 

For such a huge volume of data (500,000 data points per measured characteristic per run) graphing 

of the results seemed to be the only way to visualize the program characteristics. Each characteristic 

was graphed for each run and, additionally, graphs were produced for each characteristic combining 

the data from all three runs. 

7.21 Results 

The dynamic degree of decoupling results measured for the 16, 32 and 48 cycle latency runs of 

TRFD are shown in Figure 74, Figure 75 and Figure 76 respectively. It is immediately apparent 

from these graphs that while the overall trend in behaviour is clear, interpretation of the results is far 

from easy. Contrary to appearances, these are not bar graphs. Each datum has been plotted as a 

point, and the apparently solid areas of the graph are due to the high data density. With a horizontal 
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Figure 74 - Degree of decoupling for 16 cycle memory latency. (Ex. 10) 
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Figure 75 - Degree of decoupling for 32 cycle memory latency. (Ex. 10) 

pixel resolution of around 1000 pixels, and 500,000 points to plot, each point along the x-axis must 

represent 500 data points, or 500,000 processor cycles. Where decoupling has varied greatly within 

this period of time, a solid vertical line results. 

However, even if we greatly magnify the graph, clarity is not noticeably improved. For example, the 

first million cycles from the first run were examined in isolation, the graph produced appeared no 

more meaningful than those shown here. 

The reason for this is due to the enormous gulf between the level at which changes in program 

behaviour can be accurately resolved, and the scope of the experiment. While 1000 cycles is a very 

short period of time in relation to the 0.5 billion cycles of the simulation, it is a very long time at the 

instruction level, long enough for the processor to issue a large number of loads (raising the 

decoupling level) then recouple without this showing in the measured data. In short, the required 

Nyquist frequency for the measurement of this information is at least a couple of orders of magnitude 

higher than that at which the measurements were made. It may even be the case that, to get a 

useably accurate representation of decoupling behaviour, we need to sample on a cycle-by-cycle 
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basis. This, of course, would generate such enormous volumes of data as to render even a 0.5 billion 

cycle simulation impractical. 

The incompatibility of these two requirements - to keep the data gathered to a reasonable size we 

need to sample relatively infrequently, but to get meaningful data we need to sample frequently 

appear to represent a severe problem to the analysis of the decoupling behaviour of real-life 

programs. It should be remembered that the benchmark chosen was one of the less demanding in the 

Perfect Club suite, and that the specific architecture used for the experiment was designed to be very 

fast indeed, with plentiful fast memory and large queues. The majority of real-world programs 

would experience this problem to an even greater degree, as would the use of a more realistic 

architecture. 

Are the results completely meaningless, however? Not necessarily. While the data density renders 

individual data points almost useless, the large number of these points lets us draw some conclusions 

from these graphs. The inaccuracies introduced by the low sampling frequency are offset somewhat 
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Figure 76 - Degree of decoupling for 48 cycle memory latency. (Ex. 10) 
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by the high number of data points, which has an averaging effect. For example, if we examine 

Figure 74 we can see several distinct phases to the program's behaviour. While it is, unfortunately, 

not possible to map these to specific program features (which exist on a much smaller time scale) we 

can see a number of periods of reasonably high decoupling, separated by brief bursts of low, or no 

decoupling. These distinct phases within the program are most probably the result of successive calls 

to olda by the main body of the program. We can tell that the degree of decoupling rarely exceeds 

80 and that within each individual phase of the program certain levels of decoupling occur more 

frequently than others (and that for some inexplicable reason - possibly an artifact of the sampling - 

the degree of decoupling is never 2). 
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Figure 77 - Degree of decoupling for all three runs. (Ex. 10) 

In isolation this information is of little use, but it becomes more meaningful when we examine the 

data for the three runs together. This is shown in Figure 77. It is clear from this graph that while a 

greater memory latency affects program behaviour strongly, the three data sets are similar, with each 

exhibiting the same basic features, albeit distorted by the different latencies. It can be seen that, 
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unsurprisingly, increased memory latency increases the runtime of the program, with the various 

program phases starting later as the latency increases. 

It is also quite noticeable that the maximum degree of decoupling achieved is higher for higher 

memory latencies. This is due to the manner in which data flows through the "memory pipeline" - 

the combination of LAQ, memory banks, and LDQ. Given the stripped down nature of the trace, 

both r0  , the rate at which the access unit generates addresses, and r0 , the rate at which the execute 

unit consumes data, tends towards unity. 

When the memory pipeline is initially empty (either at the beginning of the program, or after an 

LOD event) it begins to fill at rate r. At this point the degree of decoupling is linked directly to r. 

and the change in the degree of decoupling is given by r x I , where I is the elapsed time in cycles. 

The degree of decoupling increases at the rate specified by r0  until such time as the first loaded 

value passes from memory to the LDQ. The degree of decoupling is then determined by both Ta  and 

re - specifically by (r0  - re ) x I. In the case of the TRFD trace, most of the time both r0  and r, are 

close to unity, so the degree of decoupling is essentially fixed. At some point (depending upon the 

speed and architecture of the memory subsystem) the LDQ may fill, which will tie r not to the rate 

at which the program produces data, but to the rate at which the memory subsystem accepts new load 

addresses. In the case of the highly overbanked system used in this experiment, this will approach 

unity (the shortfall being due to bank conflicts). 

From this we can see that in the case of the TRFD experiment, peak decoupling will be reached 

immediately before the first value is returned from memory as the pipeline fills following a loss of 

decoupling. Since this time is dictated by the memory latency, it follows that peak decoupling in this 

situation is also dictated by the memory latency. The disparity between the memory latency in the 

example runs and the peak decoupling in each instance is due to the imperfect nature of the 

interleaved memory system. If bank conflicts occur they have no effect on Ta  (in the presence of 

large bank queues, at least) but a substantial effect on the rate at which data arrives at the LDQ and 
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thus on the effective re.  From Figure 74 we can see that since the degree of decoupling reaches 

almost 90, bank conflicts must be occurring. It is difficult to estimate the precise number of bank 

conflicts that might cause this increase in the degree of decoupling since individual conflicts can be 

masked to a greater or lesser degree depending on how busy the memory pipeline is at the time and 

the pattern in which memory accesses are occurring. 
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Figure 78 - Rate of decoupling for all three runs. (Ex. 10) 

The measurements of the rate of decoupling (the data for all three runs is shown superimposed in 

Figure 78 with the lightest grey representing the shortest memory latency) yielded no great surprises, 

with areas showing a high degree of decoupling tending to have higher rates of decoupling and 

recoupling than others. In all cases the rates were somewhat low, peaking at around ±0.1 decoupled 

operation per 1000 cycles. However, when it is considered that the maximum rate of decoupling 

possible is 1.0 (since it is not possible for the two units to separate by more than one load or store per 

cycle) these figures seem more reasonable, especially when it is remembered that a period of 1000 

cycles might see several decoupling/recoupling sequences. Also of note is the way in which the 

periods of high decoupling are characterised by a (nearly) symmetrical pattern of 
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decoupling/recoupling activity. This is not entirely unexpected, since anything else would indicate 

runaway decoupling or, alternatively, no decoupling at all. However, the symmetry of the pattern 

confirms the observation made earlier that these are in fact periods of fairly intensive 

decoupling/recoupling activity, the details of which are hidden due to the relatively low resolution of 

the experiment. It also suggests that the rate of recoupling is in most cases approximately equal to 

the rate of decoupling. This is explained by the rate of recoupling being governed by re , which like 

ra  is close to unity in the stripped-down annotation. 
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Figure 79 - Effective latency for 16 cycle memory latency. (Ex. 10) 

How does one explain the apparent increase in the rate  of decoupling when the memory latency 

increases, however? The rate at which the access unit issues loads is the same for all three latencies. 

This effect is due to the imprecision of the sampling technique used. The rate of decoupling that is 

calculated is not a precise measurement, but is obtained by comparing the level of decoupling at the 

start and end of each sample period and calculating the gradient. It has already been explained that 

higher memory latencies can lead to a higher degree of decoupling. If the two units are closely 

coupled at the start of a sample period, and at the end have decoupled to their limit, the higher 
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memory latency run will show a higher rate of decoupling. This is misleading. In the simulation 

run with the lower memory latency, the peak degree of decoupling may have been reached some time 

before the end of the sample period. The fact that both simulation runs in fact demonstrated the 

same rate of decoupling is hidden "in the gaps" between the sample points. 
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Figure 80 - Effective latency for 32 cycle memory latency. (Ex. 10) 

The final dynamic measurement made was that of the effective latency, as seen by the execution unit. 

This differed slightly from the other characteristics measured in that the value obtained at each 

sample point was the average of all latencies measured since the previous sample. This is more 

accurate and was possible because it involves only one of the work units - calculating the other 

statistics (which involve two units) measured on a per memory access basis would have required 

some changes in the simulator architecture which were not easily made. 

The behaviour of the effective latency over time is an interesting one. Periods of low effective 

latency match up not with periods of high decoupling, but with troughs in the degree of decoupling 

graph. Similarly, high effective latency appears to accompany a high degree of decoupling. This is 

illustrated in Figure 79, Figure 80 and Figure 81, which show the effective memory latency for each 
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memory latencies. 

£fect,, ly (eyl) 

35 

30 

25 

20 

1.5 

1.0 

S 

of the three simulation runs. All three sets of data are shown superimposed in Figure 82, which 

clearly illustrates a strong correlation between actual memory latency and the highest effective 
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Figure 81 - Effective latency for 48 cycle memory latency. (Ex. 10) 

The data gives an indication of what the degree of decoupling information shown in Figure 74 

through Figure 76 actually indicates. It is not, as would be assumed, a measure of where the 

program is poorly and badly decoupled. As has already been observed, the low sampling frequency 

is such that individual decoupling or recoupling events cannot be detected. The expected peak 

degree of decoupling for a system with ample memory bandwidth and ra  and  re  is directly related to 

memory latency as has already been shown. Thus, one would expect the degree of decoupling in 

Figure 74 to remain around 16, perhaps with occasional drops where the program was poorly 

decoupled. It has already been indicated that higher degrees of decoupling result when bank 

conflicts allow the access unit to race still further ahead of the execute unit. What the peaks and 

troughs on figures such as Figure 74 are showing is not whether the program is poorly or well 

decoupled, but the frequency with which bank conflicts are occurring. Whether the program is well 
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or poorly decoupled is hidden, both in the large expanses of program time between sample points, 

and in the solid areas of the decoupling graph. 
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Figure 82 - Effective memory latency for all three runs. (Ex. 10) 

This interpretation of the degree of decoupling information matches the effective latency 

measurements well. Where bank conflicts occur, the degree of decoupling increases for reasons 

already explained, and the effective latency increase as the bank interleaving becomes ineffective and 

the memory pipeline latency becomes visible (even if only for a single load) to the execution unit. 

The fact that the effective latencies remain consistently below the actual latencies for the systems 

being simulated is due to the averaging that takes place between each sample point. The increase in 

effective memory latency caused by a bank conflict is more localised than that caused by a loss of 

decoupling. The latter flushes the memory pipeline and the full latency shows in all subsequent 

loads until the memory pipeline fills again. Where a bank conflict occurs, an increase in latency is 

visible only to loads directly involved in the conflict - those that are held up in the bank's queue. 

The distribution of arrival times at a single bank (discussed in Chapter 4) and the distribution of 
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loads over the various banks can all serve to reduce the average effective latency between sample 

points. 

7.2.2 Conclusions 

The most important conclusion reached from this experiment was that, for general measures of 

behaviour at least, program-level examination via simulation is impractical. The experimenter is 

faced with a choice between collecting prohibitively large volumes of data, or collecting data at a 

lower frequency and losing a great deal of the more useful information contained therein. 

The use of a relatively low sampling frequency for the characteristics measured in this experiment 

obscured much of its detailed behaviour. That the resulting information can only be interpreted in 

the form of graphs gives some indication of the way in which only high-level trends can be 

examined. It was most disappointing that no clear mapping could be found between program 

features and the behaviour of the simulation, with the only visible structure being the differentiation 

of successive calls to the annotated subroutine in question. 

More meaning might have been gleaned from this high-level data had the trace generation and 

simulation tools supported some form of higher-level annotation, perhaps allowing the passing of 

markers from trace to simulator to indicate when different phases of program execution had been 

entered, such as top-level loops, or entry to/exit from annotated subroutines. 

However, it is still likely that even with this high-level annotation, little in the way of meaningful 

information could be extracted from a program-level simulation. This is illustrated by Figure 83. 

This shows the results of running a specially annotated version of TRFD. In this, each of the basic 

blocks within the olda subroutine had been assigned a unique numeric ID, and this was output 

whenever that block was entered. The accumulated block IDs thus gave a map of where program 

activity lay over time. The figure shows only the first million basic blocks in the program's 

execution. The limited display resolution means that each displayed point corresponds to 

approximately 1000 recorded block executions. As the figure shows, at this level it is extremely 
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difficult to map program activity onto program structures, other than perhaps to spot successive calls 

to the subroutine as a whole. 
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Figure 83 - Block execution activity for Ex. 10. 

It should also be considered that the typical basic block in the minimally annotated TRFD used in the 

main experiment contained at most four or five instructions per unit. This, coupled with the low 

effective latency shown in the likes of Figure 79, means that the typical basic block execution time is 

unlikely to have exceeded thirty of forty clock cycles. Thus, Figure 83 might represent 40,000,000 

clock cycles of the program's execution, or less than one tenth of the program execution time that 

was measured in the main experiment. When one imagines the data shown in this figure compressed 

to a tenth of its width, the scope of the problem of detecting program behaviour becomes even clearer 

- it is just too wide for analysis. When significant events can occur within a window of tens of clock 

cycles, spotting them within a 500,000,000 cycle simulation becomes even more difficult. 

Despite the problems of program-level simulation, some results were obtained from this experiment. 

The effects of memory access patterns on effective latency were shown to be of some significance, 
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and some basic results regarding the factors that determine the maximum rate of decoupling were 

shown. However, the minor significance of these results (which had been suspected previously, and 

could doubtless have been demonstrated through the use of simple kernels) did not warrant the large 

amount of computation that went into obtaining them. 

7.2.2.1 An alternative to program-level simulation 

That the raw, "brute force" simulation method failed to provide much insight into program-level 

behaviour does not, however, mean that it is impossible to determine such details. One possible 

alternative technique, which will be outlined here briefly, would use a combination of analysis and 

simulation to produce a model of program-level behaviour with greatly reduced computational 

requirements and more insight into the mapping of behaviour onto program structures. 

In the majority of the experiments performed during the course of this research, simple program 

kernels with one, or sometimes two, modes of behaviour were examined. As has been seen, the jump 

between this and the complex multi-modal behaviour of real programs is a large one. An 

intermediate solution to this problem would use a constructive approach. All basic blocks fall into a 

small number of categories, depending on their decoupling characteristics. A basic block may 

potentially increase access-execute decoupling (if ra  > re ), reduce decoupling (ra  <re ), leave 

decoupling unchanged (ra  = re ) or cause a loss of decoupling. Similar characteristics determine the 

decoupling between the control unit and each of the work units. 

Given this information for individual basic blocks, flow control analysis can be used to determine 

which blocks follow which in the program being analyzed. Simulation of simple bi-modal kernels 

for all possible combinations of basic block decoupling characteristics can be used to determine how 

transitions between different block behaviours affect decoupling. From this, it may be possible to 

derive a simple model that associates with each basic block or basic block transition some notion of 

how it is likely to affect decoupling. Program-level decoupling behaviour can then be determined by 

constructing basic blocks into ever larger units, with associated decoupling information. 
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The estimate given would admittedly be static, and highly dependent on accurate profiling. 

However, since overall program behaviour would be synthesized bottom-up, it might prove easier to 

determine detailed behaviour since such behaviour would be identified at the level it first became 

apparent, rather than by attempting to "delve down" into a very general top-level collection of data. 

Alternatively, a greatly simplified annotation/simulation approach could be used where each basic 

block was annotated to output some description of the way in which it affected decoupling, and the 

resulting "trace" fed into a simulator that could keep track of current decoupling levels, memory 

subsystem state, and so forth. While this would suffer some of the shortfalls of the approach taken in 

this experiment at a program level, the annotation of the program in terms of the information in 

which we are interested (decoupling characteristics) rather than at an instruction level would both 

reduce the cost of simulation and aid imerpration. For example, if a large-nested loop. was known 

to have highly predictable decoupling behaviour, it could be so annotated, removing the need to 

simulate the execution of individual iterations. 

Unrmnately, time constraints-have prevented a more detailed examina;ion of this possible approach 

to the examination of prdgtim4eve1 4eqoWtiag. 
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8. Conclusions & Future Work 

8.1 Conclusions 

In this thesis, the performance of a variety of fully decoupled architectures has been examined. The 

factors which determine the performance of these architectures depends largely on the type of 

decoupling with which we are concerned. The performance of access/execute architectures depends 

on the total memory throughput, the length of the LDQ and the frequency and cost of loss of 

decoupling events. The former determines whether the memory subsystem is able to keep the data 

sub-processor supplied with load packets at the same rate that the address sub-processor supplies 

them. Since the memory data path is in essence the combination of two decoupled processes - one 

connecting the address sub-processor to memory, the other connecting memory to the LDQ - the 

memory subsystem should not act as a bottleneck in the larger decoupled system formed from the two 

decoupling processes. In the systems examined, the banked and interleaved memory subsystem had 

to have sufficient banks that it could cope with a load address packet arriving on every clock cycle 

and be able to supply the data sub-processor with a load data packet at the same rate. This typically 

requires that the number of banks match the latency of a memory bank divided by the processor clock 

speed. 

The other requirement was imposed by the load tagging system used This required that each active 

load be assigned a unique tag which would allow it to be re-ordered in the LDQ upon arrival. The 

number of active loads was thus limited by the number of available tags which was in turn set by the 

LDQ size. Generally speaking, the longer the LDQ the better, although increasing the LDQ length 

beyond-the total "capacity" of the memory sub-system produced no gains, in. performance. 

Access/execute decoupling was found to be lost in a number of situations where data has to be shared 

between the two work sub-processors. This typically occurred when indirection or list following was 

performed, or when a variable used by the data sub-processor was also required for use in an address 

calculation. 
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The characteristics determining control decoupling were similar, although it was not possible to 

examine these in quite as great a degree of detail due to limitations in the simulation techniques 

used. The length of the MTQ was found to limit the degree of control decoupling possible in a 

similar manner to the LDQ. If it should prove necessary to implement some form of re-ordering 

scheme for the results of expanding a meta-instruction, the length of the instruction buffer into which 

sub-processor level instructions are to be delivered may also be of some import. Once again, it is 

important that the memory sub-system have sufficient bandwidth that the work sub-processor can be 

kept supplied with instructions. 

Control decoupling was lost both in situations similar to those encountered for access/execute 

decoupling, where a variable is shared between two units, and in certain fixed control-flow 

situations, where a decision about the execution of the program had to be made on one or other of the 

work processors. It was also found that a loss of control decoupling implicitly caused a loss of 

access/execute decoupling. 

A number of techniques for reducing the effects of LODs were examined. Some of these, such as the 

replication of code across two or more sub-processors and the provision of dedicated paths to 

memory, were common to both forms of decoupling. Others, such as strip decoupling and guarded 

execution were specific to one or other form of decoupling. 

The techniques for the elimination or reduction of LODs examined fell into two primary categories - 

software based and hardware based. The former, although often limited in application and 

effectiveness, were easily implemented on a basic architecture and are thus likely to be of use across 

a wide range of decoupled architectures. Hardware techniques, however, require that special 

provision be made in the architecture. While these techniques were generally at least as good as 

equivalent software techniques and often better, their potential cost and their additional complexity 

may well prove prohibitive. 

An examination of their actual costs would require a more detailed examination of decoupling, using 

full programs rather than the reduced kernels that were used in these experiments. The frequency 
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with which the various varieties of LOD occur and the actual decoupling available would have to be 

determined for a number of the programs which would comprise a typical workload for a decoupled 

processor. Detailed investigation would also need to be made into the hardware cost of the 

techniques investigated, and whether the performance gains they allow would be justified. 

In this thesis the behaviour of fully decoupled architectures with specific regard to decoupling and 

loss of decoupling has been examined. The results presented here detail the basic behaviour of this 

class of architectures. Determining their behaviour in real-life situations is a more complex task and 

one that may prove to be determinable only in an empirical manner. However, it is hoped that the 

material presented here can form a basis on which future studies can build, and which may lend a 

more solid foundation to empirical results. It is regrettable that attempts to derive a useful analytical 

model proved abortive. It may be that some method exists by which a tractable and exact analytical 

model can be obtained. However, this is unlikely to be easy to derive and may prove so complex as 

to be of limited practical use when compared with simulation techniques. 

8.2 Some possible future work 

While the bulk of this thesis has been concerned with an examination of the basic behaviours of fully 

decoupled architectures and straightforward solutions to some of their problems, a number of areas 

for possible future work arose during the course of the research. These are presented below,  in rough 

form only. 

8.2.1 Instruction caching mechanisms for decoupled architectures 

Both instruction and data caching rely on two principles - those of spatial and temporal locality - to 

improve performance. The first of these states that 90% of memory accesses are to only 10% of the 

memory used by a program (and this can be exploited by arranging for that 10% to be available in a 

fast cache) and that locations accessed in the recent past will be near to those we'll access in the near 

future, while the second states that if we've accessed a particular memory location in the recent past, 

we're likely to do so again in the near future. Yet both of these are little more than (good) heuristics 

used to predict the future pattern of accesses to the cache and are limited by the fact that they attempt 
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to predict the future based only on past behaviour. If it were possible to know the future behaviour of 

a program as well as the past, cache performance could be improved. 

The asynchronous nature of the sub-processors in a fully decoupled architecture can potentially make 

just such knowledge available. Since in most circumstances the control sub-processor is capable of 

"running ahead" of the data and address sub-processors, the meta-instruction queue will usually 

contain a partial future history of the execution of the corresponding sub-processor. Also, since each 

meta-instruction contains information that completely specifies the basic block (not only the start 

address, but also the length and in some cases the number of times the block will be executed) this 

"limited precognition" covers both temporal and spatial information. The execution order of the 

next n blocks is known in advance, as well as their memory requirements. In a system that allows 

loop iteration counts to be specified in the meta-instruction, the meta-instruction queue may contain 

the future history of the Sub-processor for hundreds of thousands of clock cycles in advance. 

With this information available, it may be possible to design a cache controller that can either obtain 

an extremely high instruction cache hit rate for a given cache size, or provide an acceptably high hit 

rate from a much smaller instruction cache. The information in the M[Q may be used to preload 

basic blocks long before they are actually required and to dispose of them as soon as they are no 

longer needed, allowing available cache memory to be managed far more efficiently and improving 

the hit rate. The additional information provided by the MIQ may also make it possible to explore 

new cache designs taking advantage of the unit of program execution being a basic block rather than 

a single instruction. 
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Figure 84 - An instruction cache preload mechanism. 

Figure 84 shows the block diagram of a possible fetch engine architecture that attempts to perform 

cache preloading. Meta-instructions, in addition to being queued in the MTQ, are also routed to the 

cache manager. This unit, through mechanisms which will be outlined later, checks to see if there is 

room for the block in the instruction cache and, if there is, begins to preload it into the instruction 

cache from memory. 

As meta-instructions reach the head of the queue they are passed to a block of decode logic. This 

breaks the meta-instruction down into a stream of sub-processor operations and fetches the 

appropriate instructions from the cache which it passes directly to the sub-processor (in this case, the 

address sub-processor). When the decode logic finishes processing a meta-instruction it informs the 

cache manager so that it may, if necessary, free the cache space used by the basic block. 

By recording the information in each meta-instruction as it arrives and noting the completion of each 

meta-instruction as the decode logic finishes with it, the cache manager is able to maintain a record 

of which blocks should be in the cache and when they can be safely removed. 

Since a decoupled processor deals with programs at a slightly higher level than a conventional 

architecture (the basic unit of execution from the control sub-processorfrvllQ point of view being a 

basic block), it may be possible to take advantage of this. In a conventional architecture there is no 

guarantee that the next instruction fetched into an instruction cache will actually be used. The 
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probability that a fetched instruction will actually be used is high until instruction / (where 1 is the 

average length of a basic block) of the basic block is fetched, then the likelihood of use drops away. 

Typically a well-designed instruction cache will fetch instructions in blocks of approximately / (or 

some multiple of!) instructions, hoping that a single cache line load will suffice to load the entire 

basic block. If the block turns out to be longer than / instructions in length, further cache miss 

penalties may be paid but this is usually considered preferable t o fetching instructions which will 

never be executed. When the block length is shorter than / internal fragmentation will occur in the 

instruction cache, wasting space. 

When blocks are specified by meta-instructions, however, the probability distribution changes. For a 

block of length 1, instructions 1 to / are certain to be executed while instruction 1+1 will never be 

executed. Thus it should in theory be possible to arrange the cache in such a way that no redundant 

instructions are loaded. In practice this is unlikely to be the case since, regardless of whether a 

conventional or novel cache architecture is used, it is likely that the memory -* cache bus will be 

some multiple of the word size in width and that internal fragmentation may still occur because of 

this. However, this fragmentation may be considerably less than that brought about by the loading of 

an entire cache line. 

It is the duty of the cache manager to do its best to ensure that each basic block is in memory by the 

time the corresponding meta-instruction is decoded, that the cache memory is used efficiently. To do 

this, the cache manager must ensure that each block is present only once in the cache, that there is 

minimal fragmentation (internal or external), that no preloaded block is overwritten until it has been 

used and that cache space allocated to a basic block is freed once that block has been executed. 

The above requirements suggest that the cache manager design may be quite complicated. It will 

need to maintain some record of the current contents of the cache, either in its own internal 

structures or via access to a cache TLB. It will require direct access to the meta-instruction queue 

itself and may require that it can interrogate the MIQ associatively. Finally, it will also need to co- 
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operate closely with the fetch engine to establish when the execution of each meta-instruction has 

completed. 

If the cache manager were as complex as indicated above, careful experimentation would be required 

to establish whether the performance improvements produced by the use of a "smart" high-level 

cache management scheme outweighed the high hardware cost. It may well be the case that a 

straightforward conventional instruction cache would function adequately in most situations and that 

the silicon area that the cache manager would require would be better used to increase the size of the 

1-cache. 

8.2.1.1 Multi-threaded decoupling 

In Chapter 2, the subject of multi-threading was briefly touched on. To recap, this technique 

involves the use of multiple hardware contexts with a rapid context switch to "bulletproof' a 

processor against long memory latencies. Whenever an unavoidable long delay is encountered, the 

processor switches contexts to another hardware thread and starts executing that instead, reactivating 

the previous thread only when the delay has passed. 

Although this technique has a number of problems, such as the limitations it places on per-thread 

throughput and the large areas of silicon required to maintain multiple contexts, it is a perfectly 

viable alternative to decoupling as a means of obtaining latency tolerance. In fact, since the two 

techniques are orthogonal, there is no reason that they cannot be combined. 

An architecture that combined both techniques would use decoupling to reduce the frequency with 

which context switches must be performed. The situations that might cause context switches would 

differ from processor to processor, roughly as follows: 

Control 

The control sub-processor can stall for two main reasons - being unable to store a meta-instruction 

into a full MIQ and waiting for a value to return from one of the work processors. 
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In the former situation multi-threading provides no advantages. The queue is full, and switching 

contexts will not cause it to empty (unless multiple queues were provided - this seems wasteful 

though). If there are many control sub-processor instructions between each meta-instruction issue 

some advantage may be gained from switching context, but it is unlikely that there will be 

sufficiently many to justify the cost of the context switch. However, a control LOD seems to provide 

an ideal opportunity to use multi-threading. If the control sub-processor attempts to read one of the 

CFQs and finds it empty it switches context and continues execution in that context. 

This will require some extra information to be passed around the system. Meta-instructions issued to 

the work-processors will need to contain a tag identifying the context in which they were issued and 

this information will in turn be used to ensure that the work processor are in the appropriate context 

while executing that block. Additionally some mechanism will be required to ensure that as values 

are added to the CFQ by the work processors the threads which were stalled awaiting their arrival are 

awakened ready for execution. 

In more sophisticated architectures (i.e. Levels 2 and 3) multi-threading could be extended to mask 

the latency of control sub-processor self-loads that miss the cache. 

Address 

The address sub-processor can stall for at least six reasons. It can be waiting for a value to be passed 

via the TRQ from the data sub-processor, it can be waiting for a meta-instruction from the control 

sub-processor to be expanded by the fetch engine, or it can be stalled by trying to store a datum into 

the CFQ, TRQ, LAQ or SAQ. There is little that can be done about the situation where the 

instruction fetch has not yet completed and it is probably best that no context switch occurs in this 

situation since the next thread activated will likely find itself in a similar quandary. The stall 

resulting from a DU - AU LOD seems like an ideal opportunity for a context switch, however, and 

it would seem reasonable to perform one whenever a read from the TRQ is attempted and no datum 

is present. 
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As for the other situations in which a stall can occur, the desirability of performing a context switch 

on these will depend largely on their frequency and the distance between operations which may cause 

them. Switching contexts because the LAQ is full will have little benefit if the next thread that is 

activated immediately tries to store to the LAQ and is itself suspended. The practicality of switching 

contexts in these situations is directly proportional to the distance between instructions that can cause 

stalls of this type. 

As with the control sub-processor, multi-threading could also be used in more sophisticated 

architectures to mask the latency of address sub-processor self-loads. 

Data 

The data sub-processor can stall if no instructions are available, if it is awaiting a datum from the 

TRQ or LDQ, or if it tries to write the SDQ or TRQ and finds it full. Little can be done in the first 

situation while the second seems a good candidate for a context switch and the appropriate actions 

for the third type of stall will depend, as for the other sub-processors, on the distance between 

operations of this type. 

Implementing multi-threading on a decoupled architecture will require a considerable amount of 

additional hardware. By far the largest proportion of this will be accounted for by the replicated 

register files. Each sub-processor will also require status information for each hardware thread that 

it possesses regarding whether it is running, stalled, ready or inactive. The format of meta-

instructions, memory packets and even data packets passed through the TRQ or CFQ will also need 

to be extended to include information indicating which context the packet is part of. 

The combination of both latency tolerance techniques seems to overcome some of their limitations. 

The primary failing of decoupling is the high penalty incurred when a loss of decoupling occurs. 

The use of multi-threading may allow this penalty to be masked. Multi-threading's weaknesses 

include the need to maintain a large number of hardware contexts due to a high rate of context 

switching and low per-thread throughput. If context switches occur only on LOD events and these 

are less frequent than the sort of event that would cause a context switch in a conventional multi- 
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threaded material (i.e. a cache miss) fewer contexts will be required and each thread will run for a 

longer time before forcing a context switch. 

Since the LOD cost is high, even when compared with the cost of a cache miss, it may also be 

practical to use low-cost context switching mechanisms that do not require multiple copies of the 

register set. It may be that only part of the register set is replicated and the rest is switched out to 

memory. While this is potentially expensive, its cost may be considerably lower than the total LOD 

penalty. 

8.2.1.2 Scheduling 

The scheduling of threads is complicated by the fact that, if we take the arrival of the "missing" 

datum that caused a thread to stall in the first place to be the event that causes it to be rescheduled or 

marked as ready to run, conflicts may occur. In a conventional multi-threaded architecture context 

switches are usually provoked by cache misses. The thread remains suspended until all the other 

ready threads have had their turn, by which time the requested data will hopefully have been loaded 

into the cache and execution may proceed. The arrival of the requested data results in the thread 

being rescheduled. 

This approach is perfectly acceptable for sub-processor self-loads and even (should we extend the 

multi-threading to cope with this) stalls due to unavailable instructions where the threads do not have 

to be rescheduled in any particular order for progression to be made. However, it is not particularly 

well suited to stalls caused by accesses to "ordered" data structures such as the LDQ, TRQ and CFQ. 

In these cases it would seem more efficient to schedule threads on the basis of the context of the next 

available datum. This can be seen as a variation on coarse-grained dataflow where the arrival of data 

actives a thread (which remains active until it encounters another stall) rather than a single 

instruction. 

However, if a sub-processor uses this data driven scheduling approach, what do we do when the data 

at the head of two queues (for example the LDQ and TRQ) are in different contexts? Whatever 
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scheduling algorithm was adopted would have to ensure fhirness, progression and be deadlock-free - 

the standard requirements of any multi-programming system. 

Staying with the subject of deadlock, while a system with a single load path and a single store path as 

described in this thesis would not be likely to deadlock, more complex decoupled architectures with 

multiple load paths could experience problems. For an example of this see Figure 85. The two 

LDQs are shown. Each entry in each LDQ is labelled with the context in which the load packet 

belongs. Also shown are the next instructions from two hardware threads, contexts 1 and 2. Assume 

that the arrival of a load packet at the head of LO has activated context 1. The processor checks to 

see if both the requested operands are available. They are not, since the head ofLl is a context 2 

packet. Context 1 is suspended and context 2 is activated. This also checks to see if both operands 

are available. They are not, since the head of LO is a context 1 packet. The processor deadlocks 

either because no other thread can get at operands "below" the head or because contexts 1 and 2 

alternately try to acquire both operands and fail. 

LO 
I 

Li 

Iii 
I 

12 
121 Iii 
131 3I 
15 	1 1 4 1 1 2 1 H  

Context I Context 2 
ADD R4, LO, Li ADD R3, LO, Li 
MUL R4, R4, R2 ADD SO, R3, RO 
Figure 85- Deadlock in a multi-threaded dual 

load path decoupled architecture. 

However, it may be possible to avoid deadlock if it is possible for an instruction to read only one of 

its operands (and set a flag accordingly) before stalling. If this were the case, the context 1 

instruction could read the head of LO and would then suspend since its second operand was not 

available. However, when context 2 was then activated it would be able to read both its operands. 

This would in turn move the second operand of the context 1 instruction to the head of the L  queue, 

allowing it to be read when context 1 is next scheduled. 

187 



Unfortunately a similar and less easily avoided deadlock problem can occur with stores, even on a 

single load/store path architecture. Stores are only sent to memory when both data and address 

halves of the store packet have been produced. With a single-threaded architecture it is guaranteed 

that the data and address parts of the packet will arrive in the correct order (even though the address 

half of the store may arrive before the data hall). This is not the case with a multi-threaded 

architecture, where the fact that the two sub-processors may be in different contexts at the same time 

means that the store address queue could fill with store addresses from context 1 while the data sub-

processor is in context 2. As soon as the data sub-processor produces the data half of a store the 

machine will deadlock. No further addresses can be added and the data cannot be stored to memory 

because there is no matching address in the queue. 

The elimination of the SDQ may present a solution, although it is not an elegant one. When the data 

sub-processor generates the data half of a store packet, this is compared associatively (matching on 

context ID) with the SAQ. If an address from this context is present, it is matched with the data and 

sent to memory. If no address is present, the thread is suspended and the next thread begins 

execution. This prevents deadlock but has a number of shortcomings. It may affect runtime 

adversely (since the two contexts will effectively become sequentialised) and the hardware to 

associatively match against the SAQ and return the address of the first matching entry would be 

quite complicated. 

A further problem arises when we consider the decoding of meta-instructions. A multi-threading 

decoupled architecture would associate with each meta-instruction the tag of the context in which it 

was issued. However, there is no guarantee that, when the meta-instruction at the head of the MIQ is 

decoded and expanded into a stream of sub-processor instructions, the appropriate sub-processor will 

be in that context. As has been described above, context switching would most likely be performed 

in a data-driven manner on the data sub-processor and whenever a LOD event was encountered on 

the address sub-processor. 

This suggests that the sub-processor instruction fetch engine will need to keep the first meta-

instruction for each possible context ready since there is no guarantee that the context ID of the 
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meta-instruction at the head of the MIQ will match that of the processor. This may be implemented 

through the use-of multiple (shorter) MTQs but seems to be an expensive solution. It also complicates 

the more sophisticated instruction cache management schemes outlined in Section 8.2.1. 

One possible approach to these problems might be to split the decoding of meta-instructions into two 

phases. In the first phase, meta-instructions are placed in the IvllQ by the control processor. At this 

point they may either be sorted by context ID (obtained from the control processor) into separate 

MLQs, or left unsorted in a single unified MIQ. This information is used by the fetch engine to 

preload the instruction cache. Once this has been done, meta-instructions are passed to a second set 

of MTQs. When the sub-processor requests instructions, the appropriate meta-instruction is decoded 

and the cache accessed. 

Since meta-instructions in the second set of queues have already been pre-loaded into the instruction 

cache, keeping these queues short in no way reduces the amount of lookahead available. The 

lookahead is still determined entirely by the first (set of) queues. The cache pre-loading mechanism 

is invisible to the sub-processor since it sees only those meta-instructions that have already pre-

loaded the cache. 

It remains the case, however, that even this approach requires a considerable amount of additional 

hardware. This may not be sufficient to justify its use. A considerable amount of research would be 

required to determine what quantifiable benefits, if any, would emerge from the use of multi-

threading on a decoupled architecture. 

8.2.1.3 Non-specialised decoupled processing 

Many of the problems of the fully decoupled architectures examined in this thesis can be traced, 

albeit indirectly, to the specialisation of the three sub-processors and, indeed, to the fact that there 

are only three sub-processors. 

The advantages of decoupled processing lie in the building of a "high-level pipeline", splitting the 

operations to be performed in a program into three separate phases, control, addressing and data 

manipulation. By running the control sub-processor ahead of the other two, and the address sub- 
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processor ahead of the data sub-processor, the three sub-processors form a pipeline with the 

processing of a datum (or series of data) starting on the control sub-processor, being passed to the 

address sub-processor and finishing up on the data sub-processor. While the address sub-processor is 

operating on a datum, the control sub-processor may be working on the next datum to be processed 

and the data sub-processor on the previous. 

Problems occur when the required high-level pipeline is more complex. The most simple pipeline, 

described above, can be written as C-)A-)D, with each datum flowing from control to address to 

data sub-processors. However, if the required high-level pipeline is along the lines of C4A4A4D 

(it requires an indirection) or CA4D4C4A4D (the processing of the datum requires a control 

decision), we find that loss of decoupling occurs since the required pipeline differs from that for 

which the architecture is optimised (C-*A-*D) and the pipeline is, in effect, being asked to run 

backwards in places. 

It has been shown that some of these problems can be eliminated by the technique of strip 

decoupling, which effectively time-slices the address sub-processor, allowing it to function as two 

stages in the pipeline. However, this technique is limited in its applicability, can cause deadlocks, 

and also requires that the combined execution time of the two pipeline stages on the address sub-

processor be less than that of the single stage on the data sub-processor for decoupling to occur. 

It appears to be the case that many of the problems of decoupled architectures arise from there being 

insufficient units of the correct type to efficiently implement the required "high-level pipeline". It 

would certainly be possible, for example, to produce an architecture containing two address sub-

processors that could implement the pipeline required for a single level of indirection efficiently and 

with no loss of decoupling. However, unless such a machine was to be used solely for the 

computation of a class of problems that performed a great deal of single-level indirection, it would be 

unnecessarily specialised, and the second address sub-processor would be idle for much of the time. 

Non-specialised decoupled processing would attempt to improve performance by providing an 

architecture from which a wider variety of high-level pipelines can be constructed. Rather than three 
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dedicated sub-processors, an NSDP machine would provide a number of configurable processing 

elements, similar to that shown in Figure 86. This element is a generalisation of the specialised 

units of a fully decoupled architecture, capable of acting as a data sub-processor, an address sub-

processor or a control sub-processor. A number of these elements, connected to a flexible 

interconnection network, could be configured to provide the required high-level pipeline for any 

particular epoch of program execution. 

Data In Data Out Load Addr Store Addr 

Figure 86 - NDSP processing element. 

Each element is connected to the interconnection network by a number of queues. These queues (and 

the network) can contain a number of different packet types. Load packets differ little from those in 

a conventional decoupled processor, and specify the address in memory to load from, as well as an 

LDQ position. However, in an architecture where the data read from memory may potentially be 

delivered to any one of a large number of processing elements, it will also be necessary to specify the 

identity of the unit to which the data element is to be delivered. 

The implementation of decoupled stores would require that the interconnection network be 

configurable in such a way that elements acting as address sub-processors and those acting as data 

sub-processors could be paired up to produce store packets. How this might be efficiently 

implemented has not yet been investigated. 
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Other required packet types would include a direct transfer packet, allowing an element to transfer a 

value directly to the Data In queue of another element, and a meta-instruction packet, allowing an 

element configured as a control sub-processor to send meta-instructions to its nominated work units. 

The Data In queue would be used to store both incoming load data packets and direct transfer 

packets. In a straightforward pipeline of processing elements there would be no problem with 

packets from different sources becoming mixed, since each element would have at most one source 

and one sink. The distribution of signals regarding tag availability (one feature with requires 

relatively close co-operation between two units in a conventional decoupled architecture) may pose a 

problem here, but could be achieved relatively easily in small or medium-scale NSDP systems 

through the use of a dedicated I-bit-per-element bus, with a pulse on the appropriate line indicating 

the removal of an element from the Data In queue of a particular processing element. 

The Data Out queue would be used store the data portion of store packets, outgoing direct transfer 

packets and meta-instruction packets. As has already been indicated, the implementation of a 

decoupled store may cause some problems due to it requiring the "linkage" of two processing 

elements to produce complete store packets, but the other two types of packet are unlikely to cause 

major difficulties. Both would pair their data with a destination address (containing only a 

processing element ID - no memory address would be required since no memory would be involved) 

taken from the Load Address queue of the same processing element. 

The Load Address queue is perhaps misleadingly named, since it would be used to buffer both the 

addresses and destinations for loads and the destinations for direct transfers and meta-instructions. 

The implementation of decoupled loads on a machine of this type would be straightforward, with 

load address packets being removed from the Load Address queue and sent to the memory subsystem 

in much the same way as in a conventional decoupled architecture. However, after a load request 

had been fulfilled by the memory subsystem, the load data packet would be routed (using information 

provided in the original load address packet) to the Data In queue of the appropriate processing 

element. 
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To perform a direct transfer, the address part of a transfer packet would be combined with the 

appropriate data part of the packet from the Data Out queue and the result routed directly to the Data 

In queue of the destination processing element. A similar procedure would be followed for the 

delivery of a meta-instruction packet, with the important difference that the packet thus assembled 

would be routed not to the Data In queue but to the Instruction In queue of the destination PE. 

The above assignment of roles to queues is only a very approximate one, designed to give a rough 

idea as to how an NSDP architecture would load, store and transfer data. Depending on the relative 

cost of components, the differing sizes of the various packet types and their relative importance, it 

may be more desirable to have queues dedicated to a particular packet type. 

Each processing element would be equipped with an instruction fetch engine capable of operating in 

two distinct modes. It would be able either to fetch instructions directly, functioning in the same 

manner as a conventional processor, or expand arriving meta-instructions and fetch the instructions 

thus specified for execution. Thus any processing element may function either independently, or as a 

slave sub-processor to another element. 

With all of the above implemented, the individual processing elements that would make up an NSDP 

architecture would be capable of behaving as conventional uniprocessors, or as any of the three types 

of sub-processor that makes up a fully decoupled architecture. Additionally, their greater flexibility 

and number would allow the construction of more complex high-level pipelines by chaining suitably 

configured units together. This would include not only pipelines implementing indirection or control 

decisions, but also more complex pseudo-pipelines or multiple pipelines. 

Take, for example, the implementation of an array operation for which the data part of the loop body 

had half the execution time of the address part. In a conventional decoupled architecture this would 

result in the data sub-processor spending much of its time idle and its effective iteration time would 

drop to that of the address sub-processor. However, it might be possible to configured an NSDP in 

such a way that two processing elements were assigned the address sub-processor role, each 

generating half of the addresses 'for the array. The receiving processing element, possibly using a 
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context switching mechanism as described in Section 8.2.1.1 to distinguish between load data 

packets from the two address sub-processors, would then be kept busy. 

Additionally, a system with 3n processing elements could be configured as n separate filly 

decoupled processors, each processing 	the array. A configurable NSDP architecture would 

combine the flexibility and power of an equivalent shared memory multiprocessor with the latency 

tolerance of a fully decoupled architecture. Although no research has yet been done into the 

practicality of such an architecture, or whether the performance improvements thus achieved would 

outweigh the technical problems that such an architecture would face, such a generalised approach to 

decoupling may offer an alternative to more conventional shared memory multiprocessors. 

194 



Bibliography 

[A921 Alpha Architecture Handbook, Digital Equipment Corporation, 1992. 

[Aho86] A.V. Aho, R Sethi, and J.D. Ullman, Compilers - Principles, Techniques and Tools. 
Addison-Wesley, 1986. 

[Arv9 1] Arvind, L. Bic, T. Ungerer, "Evolution of Dataflow Computers ". Advanced Topics In 

Data-Flow Computing, Prentice-Hall 1991. pp  3-33. 

[Ben9 11 M.E. Benitez and J.W. Davidson, "Code Execution for Streaming: An Access/Execute 

Mechanism". Proceedings of the 4th  International Conference on Architectural Support for 

Programming Languages and Operating Systems, 1991. pp.  132-141. 

[Ber89] M. Berry et al, "The Perfect Club Benchmarks: Effective Performance Evaluation of 

Supercomputers". Technical Report CSRD 827, Center for Supercomputing Research and 

Development, Illinois, May 1989. 

[Bird9l] P.L. Bird, U.F. Pleban, N.P. Topham and H. Scheuer, "Semantics Driven Computer 

Architecture". Proceedings of the. International Conference on Parallel Computing, September 

1991. 

[Bird93] P.L. Bird, A. Rawsthorne, & N.P. Topham, "The Effectiveness of Decoupling ". 

Proceedings of the International ACM Conference on Supercomputing '93, July 1993. 

[Cyb90] 0. Cybenko, L. Kipp, L. Pointer and D. Kuck, " Supercomputer Performance Evaluation 

and the Perfect Benchmarks". Proceedings of the International Conference On Supercomputing 

1990. 

[Dub94] Dubey, P.K.,Arvind Krishna and Flynn, M.J. "Analytical Modelling of Multithreaded 

Pipeline Performance". Proceedings Of The 27" Annual Conference On System Sciences, Vol 

L,1994. pp.  361-367. 

[Chen95] T.-F. Chen, "An Effective Programmable Prefetch Engine for On-Chip Caches". 

Proceedings of the 28th  International Symposium on Microarchitecture, December 1995. 

[Cra96] S.P. Crago and A.M. Despain, "A High-Performance, Hierarchical Decoupled Architecture". 

ACAL-TR-96-07. November, 1996. 

[Far9 1] M. Farrens and A. Pleszkun, "Overview of the PIPE Processor Implementation". 

Proceedings of the 24th Annual Hawaii International Conference on System Sciences, 1991. 

[Far93] M. Farrens, P. Nico and P. Ng, "A Comparison of Superscalar and Decoupled 

Access/Execute Architectures". Proceedings of the 26th Annual International Symposium on 

Microarchitecture, 1993. 

195 



[Gan92] D. Gannon, "SIGMA II: A Tool Kit for Building Parallelizing Compilers and Performance 

Analysis Systems ". IMP Transactions A-] 1, Programming Environments for Parallel Computing. 

North-Holland, 1992. 

[Goo85] J.R. Goodman, J.-T. Hsieh, K. Liou, A.R. Pleszkun, P. Schechter and H.C. Young, "PIPE: 

A Decoupled Architecture For VLSI ". Proceedings of the 12" International Symposium on 

Computer Architecture, May 1985. pp. 20-27. 

[Gru96] W. GrUnewald, T. Ungerer, "Towards Extremely Fast Context Switching in a Block-

Multithreaded Processor". Proceedings of the 22" Euromicro Conference, September 1996. pp 

592-599. 

[HP90] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach. 

Morgan Kaufman, 1990. 

[1bb82] R.N. Ibbett, The Architecture Of High-Performance Computers. Macmillan, 1982. 

[Jou89] N.P. Jouppi, D.W. Wall: "Available Instruction-Level Parallelism for Superscalar and 

Superpipelined Machines". ASPLOS, 1989: Pp.  272-282. 

[Kur94] L. Kurian, P.T. Ilulina and L.D. Caraor, "Memory Latency Effects In Decoupled 

Architectures". IEEE Transactions on Computers, October 1994. pp.  1129-1139. 

[Kur9l] K. Kurihara, D. Chaiken, and A. Agarwal, "Latency Tolerance through Multithreading in 

Large-Scale Multiprocessors ". Proceedings of the International Symposium on Shared Memory 

Multiprocessing, 1991. pp.  91-101. 

[Lau94] J.P. Laudon, Architectural and Implementation Tradeoffs for Multiple-Context Processors. 

Ph.D. Thesis, Stanford University Technical Report No. CSL-TR-94-634, September 1994. 

[Mang9l] W. Mangione-Smith, S.G. Abraham and E.S. Davidson, "A Performance Comparison Of 

The IBM RS/6000 And The Astronautics ZS-l". Computer, Jan. 1991. pp.  39-46. 

[Moss94] P.D. Mosses, "A Tutorial On Action Semantics". Course notes for tutorial given at FME 

'94 (Formal Methods Europe), October 1994. 

[Pr88] S.A. Przybylski, A. M. Horowitz and J. L. Hennessy, "Performance Tradeoffis in Cache 

Design". Proceedings of the 15th Symposium on Computer Architecture, 1988. pp.  290-298. 

[Rau91] B. R Rau, "Pseudo-Randomly Interleaved Memory", Proceedings of the 18" International. 

Symposium on Computer Architecture, May 1991. pp.  74-83. 

[Sk92] I. Skienar, "Prefetch Unit For Vector Operations On Scalar Computers". ACM SIGARCH, 

Sept 1992. pp. 31-37. 

[Smit82] J.E. Smith, "Decoupled Access/Execute Computer Architectures ". Proceedings Of The 

9th Annual Symposium on Computer Architecture, 1982. 

196 



[Smit84] J.E. Smith, "Decoupled Access/Execute Computer Architecture ". ACM Transactions on 

Computer Science Vol 2, 1984. pp.  289-308 

[Smit87] J.E. Smith, G.E. Dermer, B.D. Vanderwarn, S.D. Klinger, C.M. Rozewski, D.L. Fowler, 

K.R. Scidmore and J.P. Laudon, "The ZS-1 Central Processor". ACM SIGARCH, 1987. 

[Smit891 J.E. Smith, "Dynamic Instruction Scheduling And The Astronautics ZS-1". Computer, 

July 1989. pp. 21-35 . 

[5mth82} A. Smith, "Cache Memories". ACM Computing Surveys, March 1982. 

[Top95] N.P. Topham and K. McDougall, "Performance of the Decoupled ACRI-1 Architecture: the 

Perfect Club". Proc. HPCN - Europe, May 1995, LNCS 919, Springer-Verlag. pp. 472-480. 

[Tri82] K. S. Trivedi, Probability & Statistics With Reliability, Queuing And Computer Science 

Applications. Prentice-Hall, 1982. 

[Tys92] G. Tyson, M. Farrens and A. Pleszkun, "MISC: A Multiple Instruction Stream Computer". 

Proceedings of the 25th Annual International Symposium on Microarchitecture, 1992. 

[Wa188] J. Wairand, An Introduction To Queueing Networks. Prentice Hall, 1982. 

[Wo192} W.A. Wolf; "Evaluation of the WM Architecture ". Proceedings of the 19" Annual 

Symposium on Computer Architecture, 1992. pp.  382-390. 

[You88] ELC. Young, "Code Scheduling Methods For Some Architecture Features In PIPE". 

Microprocessors and flffic$oprogramming, January 1988. pp.  39-63. 

197 


