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Performance of the Decoupled ACRI-1Architecture: the Perfect ClubNigel Topham1;y and Kenneth McDougall2;31 Department of Computer Science,University of Edinburgh,The King's Buildings, May�eld Road, Edinburgh EH9 3JZ,Scotland, UK.2 The Advanced Computer Research Institute,1, Boulevard Marius Vivier-Merle, 69443 Lyon,France.3 Department of Mathematical and Computational Sciences,University of St. Andrews,The North Haugh, St. Andrews, Fife KY16 9SS,Scotland, UK.Abstract. This paper examines the performance potential of decoupledcomputer architectures on real-world codes, and includes the �rst per-formance bounds calculations to be published for the highly-decoupledACRI-1 computer architecture. It also constitutes the �rst publishedwork to report on the e�ectiveness of a decoupling Fortran90 compiler.Decoupling is an architectural optimisation which o�ers very high sus-tained performance through large-scale latency hiding. This paper in-vestigates the applicability of access and control decoupling to real-worldcodes. We illustrate this with compiler-generated decoupling optimisa-tions for the Perfect Club benchmark suite on the Advanced ComputerResearch Institute's ACRI-1 system, utilising the frequency of loss of de-coupling (LOD) events as a measure of the e�ectiveness of decoupling toeach code. We derive bounds for the performance of these codes and showthat, whilst some exhibit performance roughly equivalent to that on vec-tor computers, others exhibit considerably higher performance potentialin a decoupled system.1 IntroductionA computer's instruction set may be conceptually partitioned into subsets whichmay then be assigned to specialised hardware for execution. That these subsetsare de�ned to maximise concurrence of hardware utilisation has meant that manydi�erent partitionings have been tried. Early high-performance computers suchas the Cray-1 overlapped memory access and arithmetic operations to an extent,but the trend towards more explicit separation of the instruction sets has led toy This research was supported by ESPRIT project P6253 and by UK EPSRC researchgrant number GR/K19723.



architectures such as PIPE [1], the Astronautics ZS-1 [2], and more recently theACRI-1, which is the subject of this paper.The ZS-1, PIPE and Wulf's WM architecture [3] are termed access decoupled.In such architectures, control transfers often require the synchronisation of theprocessing units. This occurs, for example, when a branch is dependent upon acomparison computed by the X-processor. A further architectural optimisation,termed control decoupling, is introduced in the Advanced Computer ResearchInstitute's ACRI-1 architecture [4]. In a control decoupled architecture there arethree independent units, responsible respectively for control, memory access andexecution. The additional bene�t of control decoupling is that the majority ofcontrol transfer decisions can be pre-computed, thus opening up many oppor-tunities for preparing the access and execute pipelines for the operations whichfollow. Access and control decoupling are fully described elsewhere [4], however,a brief introduction to each is provided in sections 1.1 and 1.2.Given the high degree of decoupling, the degree to which real-world applic-ations can exploit decoupling is of prime importance. In common with manyrecent architectural innovations, the performance of the architecture is greatlyinuenced by the capabilities of the compiler. In that sense our analysis in thispaper should be seen as a combined evaluation of the architecture and the pre-production version of the compiler for this architecture (scf90). Our analysisconsists of compiler-driven measurements and pro�le-driven modelling of thePerfect Club suite of scienti�c programs [5].As fully functional hardware for the ACRI-1 system was not available atthe time of writing, our performance results are derived from frequency-domainpro�ling of the test programs on another system, combined with event-domainpro�ling from the pre-production compiler. This provides us with the capabilityto determine the position of events of interest within the source code, and tomatch this with run-time frequency information. Frequency information is ar-chitecture independent, and was obtained from program measurements on a SunSPARC system. The event frequency measurements are presented in section 4.The dynamic event counts produced by this method then drive a simple linearmodel of execution time to produce bounds on execution times which are tight.These execution time bounds are presented in section 4.2.1.1 Access DecouplingIn a decoupled access/execute (DAE) architecture, the processes of accessingmemory and performing computations on values fetched from memory can bethought of as micro-threads implemented on separate asynchronous units. InACRI-1 terminology, the Address Unit (AU) computes addresses and issues memoryrequests. The Data Unit (DU) receives data from memory, computes new values,and sends new data back to memory. The AU and DU execute a program con-taining the instructions that are speci�c to each unit. The only constraint on theAU and DU programs is that the order in which operand addresses are issuedby the AU must match precisely the order in which operands are used by theDU.



The AU tags each memory fetch request with the location in a load queuewithin the DU where the incoming data will be bu�ered. This tag permits thephysical memory system to process requests in any order; the DU load queuere-orders them as they arrive, ensuring that the AU-DU ordering constraintis always satis�ed. In the ACRI-1 architecture there are two independent loadpaths to memory, and two independent load queues in the DU.The AU is optimised to implement the most common operations on inductionvariables. Thus, it has a simple integer instruction set and instruction modeswhich permit operations of the formmem = ri = ri+C. In a single instruction aninduction variable ri can be incremented by some constant value (or the contentsof a register) and the result can be stored back to the induction variable as wellas being sent to memory as a load or store address. In the ACRI-1 architecturetwo load addresses and one store address can be computed and sent to memoryin each cycle.The memory of the ACRI-1 system is highly interleaved to provide the re-quired bandwidth of two loads and one store per cycle (per processor). In addi-tion, the bank selection logic implements a pseudo-random hashing function [6, 7]to ensure an even spread of addresses to banks; even in the presence of stridesthat would cause serious performance problems in traditional vector machines.1.2 Control DecouplingIn the ACRI-1 architecture, control transfers are partitioned into two groups;those which implement leaf-level loop control (leaf-level loops are those withoutinternal cycles), and those which implement all other control transfers. The AUand DU have the capability to implement simple looping constructs, and thispermits the compiler to target leaf-level loop control directly on to the AU andDU. All remaining control transfers are executed by a third unit, the ControlUnit (CU). E�ectively the CU controls the sequencing of the program throughits ow graph, dispatching leaf-level loops intact to the AU and the DU.Control decoupled architectures share some similarities with vector processors,in which a scalar unit dispatches vector instructions to a vector load pipeline andvector arithmetic pipelines, however, the di�erences are signi�cant. Firstly, thebody of the leaf loop on the AU and the DU is derived directly from the sourcecode without any need to vectorize. Secondly, the compiler's partitioning of codebetween units is driven by data dependencies and not by what instructions canor cannot be vectorized. Thirdly, there is a high degree of asynchrony betweenthe three units, and this permits the CU, for example, to enqueue loop dispatchblocks for the AU and DU well in advance of their being executed. The CU is,in many ways, a natural (pre�x) extension of the virtual pipeline connecting theAU to the DU through memory.2 Overview of the ACRI-1 implementationThe ACRI-1 architecture is a high performance implementation of a controland access decoupled architecture. Each DU has two independent oating point



units designed for a target clock period of 6ns. Each processor therefore hasa oating point throughput design peak of 333 MFLOPS (64-bit precision). Anode may contain up to 6 processors, for a peak oating point throughput of2 GFLOPS. This paper addresses the performance of a single processor in thismultiprocessor architecture; further information on the scalability implicationsof decoupling can be found in [8].The ACRI-1 memory system comprises up to eight boards, each containingup to eight segments. Each segment may contain up to 16 independently ad-dressable banks of DRAM. The memory boards are connected to the processorsand I/O subsystems via a two-stage parallel network. Both the network andthe memory boards contain request and response queues, and thus the round-trip latency for any particular request will depend to a certain degree on thememory loading. Register-transfer simulations of the network and memory sub-systems have shown that latencies will be in the range 100 to 200 processorcycles, and will vary dynamically during program execution. In the executiontime models presented in section 4.2, we use a nominal value of 150 cycles forthe mean cost of uncoupling the DU from the CU and the AU. This uncouplingtime is dominated by the round-trip delay of the memory system.The ACRI-1 processor contains a cache which is used primarily for commu-nication between the units, and as a level-2 instruction cache. The vast majorityof memory operands are obtained directly from memory. Further information onthe behaviour of caches in decoupled systems can be found in [9].3 Losses of Decoupling (LODs)In an access and control decoupled architecture, the CU \runs ahead" of theAU and DU, and the AU \runs ahead" of the DU. It is conceivable for the CUand the DU to be separated space and time by many thousands of programstatements. When the system is fully decoupled, the AU will typically be aheadof the DU by a time equal to the largest memory latency experienced by anyload operation since the last recoupling of the AU and DU. The CU, AU andDU therefore constitute an elastic pipeline, with the dispatch queue linking theCU to the AU and DU, and the memory system linking the AU to the DU.In �gure 1 the solid arrows show the typical direction of ow of informationduring decoupled execution. The broken arrows represent inter-unit dependen-cies which cause decoupling to temporarily break down, requiring the CU or AUto wait for operations to complete on a unit which is normally downstream inthe system pipeline. These dependencies can be carried either through registersor memory locations. For example, a value in a DU register which the compilerknows to be needed by the CU will cause a register-based ow dependence fromthe DU to the CU. This will be satis�ed by sending the value from the DUto the CU via a transfer queue. The CU must wait for this value, de�ning asynchronization point between DU and CU. This e�ectively ushes the memorypipeline and decoupling is lost. We term such a synchronization point a loss ofdecoupling (LOD).
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dispatchFig. 1. Pipeline ow in a control and access decoupled architectureWhen the DU de�nes a location in memory and there is a reaching use ofthat location on the CU, then a read-write hazard exists between the CU andthe DU through that location. The compiler detects all such hazards and insertsexplicit synchronization operators at appropriate points in the code to force theCU to wait for the hazard to be resolved. This results in the DU and the CUbecoming synchronized, so this is also a form of LOD. Both of the above typesof LOD are termed algorithmic LODs, as their presence is a direct result of thestructure of the program. In the tables which follow, such LODs are labelledA-LODs.The calling standard of the ACRI-1 de�nes a common shared stack for theCU, the AU and the DU. This has implications for data synchronization acrossfunction call and return boundaries. When a function is called, and the CU andDU are decoupled, the CU will reach the stack frame manipulation code beforethe DU �nishes using the current stack frame. To prevent stack frame corruption,the CU must wait for the DU to reach the call point before the stack frame ismodi�ed. Again, this constitutes an LOD. In the tables which follow, we termthis a \call LOD" (or C-LOD). A similar situation may occur if the units areuncoupled at a function return point. Again, the CU would like to relinquisha stack frame, but the DU may not yet have �nished using some of the localvariables declared in that frame. The CU must therefore wait for the DU toreach the return point, and then perform the return sequence. This is a \returnLOD" (or R-LOD).Calls to external routines, such as I/O and timer calls, must also be synchron-ized. However, by appropriate engineering it is possible to avoid LODs acrossthe call boundaries with intrinsic functions (information on the use and modi�c-ation of parameters is more clearly speci�ed, and intrinsics do not modify globalvariables). In this analysis, LODs due to calls to external routines are termed\eXternal LODs" (or X-LODs). In this analysis intrinsic functions do not leadto LODs.To summarize, when a program is executing in a decoupled mode the per-ceived memory latency is zero; e�ectively the entire physical memory has anaccess time equivalent to the processor's register �le, and latency is completelyhidden. However, when an LOD occurs, the penalty is signi�cant. Our model



assumes a nominal penalty of 150 cycles, and this means that the frequency ofLODs is of paramount importance when determining the expected applicationperformance. We now present measurements of the LOD frequencies in the Per-fect Club, and in section 4.2 we use these frequencies to predict bounds on theexecution time of the Perfect Club programs on the ACRI-1 architecture.4 Perfect Club LODsThe Perfect Club consists of 13 Fortran programs, ranging in size from 509 to18,545 lines of source code. Each program was compiled using scf90 and theresulting dump of the intermediate representation was analyzed to determinethe type and source code position of each LOD. This information was combinedwith run-time statistics obtained by pro�ling each program with tcov on a SunSPARC architecture to obtain an accurate prediction of execution frequency foreach individual LOD in the compiled program. Table 1 below details the numberof each type of LOD that will be executed for each program in the Perfect Club.Program A-LODs C-LODs XC-LODs R-LODs Total LODsADM 117,353 2,773,739 80,003 2,914,874 5,885,969SPICE 6,452,950 187,681 277,420 1,042,677 7,960,728QCD 833,543 6,340,047 201 6,648,301 13,822,092MDG 6,868,049 19,535,152 176 19,535,153 45,938,530TRACK 593,825 658,826 26,679 652,929 1,932,259BDNA 67,158 134 814 166 68,272OCEAN 320,808 154,920 1,366 152,940 630,034DYFESM 145,362 375,897 60,760 382,131 964,150MG3D 1,974,962 3,640,446 778,518 2,083,671 8,477,597ARC2D 7,158 2,918 26,303 2,819 39,198FLO52Q 24,541 21,053 21,634 12,620 79,848TRFD 256,632 14 42 15 256,703SPEC77 4,814,795 435,328 810 447,578 5,698,511Table 1. Loss of Decoupling (LOD) frequencies for the four categories of LOD in thePerfect Club.4.1 Optimizing LOD frequencyOf particular interest is the dominance of call and return LODs in some of theprograms. Such LODs can be optimized away relatively easily by subroutineinlining. Table 2 shows how the overall LOD counts change in six programswhich were deemed candidates for inlining. The inlining was performed by KAP,and the resulting code was re-compiled and re-pro�led to measure the alterationin LOD frequencies. Most programs experienced a signi�cant reduction in overallLOD count, even though some experienced increased A-LOD counts.



Program A-LODs C-LODs XC-LODs R-LODs Total LODs % LOD ReductionMDG 6,868,931 3,703 171 3,704 6,876,509 85ADM 541,681 326,366 80,730 325,647 1,274,424 78QCD 2,477,507 2,582,316 195 3,040,984 8,101,002 41FLO52Q 47,980 0 9 1 47,990 40SPICE 5,752,231 47,236 149,451 493,395 6,442,313 19SPEC77 4,831,837 350,224 28,792 362,719 5,573,572 2Table 2. Reductions in LOD frequencies due to subroutine inlining by KAP.4.2 Perfect Club PerformanceThe execution time Tp for program p on the ACRI-1 system is modelled relativelyaccurately by equation 1, Tp = �(Cdu + nd) (1)where Cdu is the number of execution cycles of the DU1, n is the number ofLODs executed, d is the nominal penalty induced by each LOD, and � is theclock period of the machine. Without actually executing a program is it hard topredict values for Cdu, but it is possible to de�ne a lower bound Cdu as fp=2,where fp is the number of oating point operations executed by program p. Thismust be an absolute minimumexecution time for any processor with two oatingpoint pipelines. This permits us to de�ne execution time as follows:Tp � ��fp2 + nd� (2)In fact, in the ACRI-1 architecture only pipeline startup and shutdown delayson the DU will introduce any discrepancy between Cdu and Cdu. As the DUcontains hardware support for modulo-scheduled software pipelining, we expectstartup and shutdown costs to be relatively low, though it is still too early topresent de�nite �gures. Figure 2 compares the lower bound on ACRI-1 cycles tocompletion, for each program in the Perfect Club, with the measured cycles tocompletion on the Cray Y-MP C90 (from [10]).Figure 3 illustrates how the lower bound on cycles to completion translatesinto an upper bound on MFLOPS execution rates for each of the Perfect Clubprograms, given a target clock period of 6ns.5 ConclusionsIn this paper we have presented the most recently available performance datathe ACRI-1 supercomputer which is currently under development. Our mainaim in so doing has been to highlight the execution e�ciency that derives from1 We assume that the DU code de�nes the critical path through the program. In mostscienti�c applications this is a safe assumption.
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