Metadata, citation and similar papers at core.ac.uk

Edinburgh Research Explorer

Performance of the decoupled ACRI-1 architecture: The perfect
club

Citation for published version:

Topham, N & McDougall, K 1995, Performance of the decoupled ACRI-1 architecture: The perfect club. in B
Hertzberger & G Serazzi (eds), High-Performance Computing and Networking: International Conference
and Exhibition Milan, Italy, May 3-5, 1995 Proceedings. Lecture Notes in Computer Science, vol. 919,
Springer Berlin Heidelberg, pp. 472-480. DOI: 10.1007/BFb0046669

Digital Object Identifier (DOI):
10.1007/BFb0046669

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
High-Performance Computing and Networking

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/43711779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/BFb0046669
https://www.research.ed.ac.uk/portal/en/publications/performance-of-the-decoupled-acri1-architecture-the-perfect-club(469c8a97-014a-4f4f-9846-257e4958e528).html

Performance of the Decoupled ACRI-1
Architecture: the Perfect Club

Nigel Tophaml’]L and Kenneth McDougall®?

! Department of Computer Science,
University of Edinburgh,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ,
Scotland, UK.
2 The Advanced Computer Research Institute,
1, Boulevard Marius Vivier-Merle, 69443 Lyon,
France.
® Department of Mathematical and Computational Sciences,
University of St. Andrews,
The North Haugh, St. Andrews, Fife KY16 9SS,
Scotland, UK.

Abstract. This paper examines the performance potential of decoupled
computer architectures on real-world codes, and includes the first per-
formance bounds calculations to be published for the highly-decoupled
ACRI-1 computer architecture. It also constitutes the first published
work to report on the effectiveness of a decoupling Fortran90 compiler.
Decoupling is an architectural optimisation which offers very high sus-
tained performance through large-scale latency hiding. This paper in-
vestigates the applicability of access and control decoupling to real-world
codes. We illustrate this with compiler-generated decoupling optimisa-
tions for the Perfect Club benchmark suite on the Advanced Computer
Research Institute’s ACRI-1 system, utilising the frequency of loss of de-
coupling (LOD) events as a measure of the effectiveness of decoupling to
each code. We derive bounds for the performance of these codes and show
that, whilst some exhibit performance roughly equivalent to that on vec-
tor computers, others exhibit considerably higher performance potential
in a decoupled system.

1 Introduction

A computer’s instruction set may be conceptually partitioned into subsets which
may then be assigned to specialised hardware for execution. That these subsets
are defined to maximise concurrence of hardware utilisation has meant that many
different partitionings have been tried. Early high-performance computers such
as the Cray-1 overlapped memory access and arithmetic operations to an extent,
but the trend towards more explicit separation of the instruction sets has led to

! This research was supported by ESPRIT project P6253 and by UK EPSRC research
grant number GR/K19723.

architectures such as PIPE [1], the Astronautics ZS-1 [2], and more recently the
ACRI-1, which is the subject of this paper.

The ZS-1, PIPE and Wulf’s WM architecture [3] are termed access decoupled.
In such architectures, control transfers often require the synchronisation of the
processing units. This occurs, for example, when a branch i1s dependent upon a
comparison computed by the X-processor. A further architectural optimisation,
termed control decoupling, is introduced in the Advanced Computer Research
Institute’s ACRI-1 architecture [4]. In a control decoupled architecture there are
three independent units, responsible respectively for control, memory access and
execution. The additional benefit of control decoupling is that the majority of
control transfer decisions can be pre-computed, thus opening up many oppor-
tunities for preparing the access and execute pipelines for the operations which
follow. Access and control decoupling are fully described elsewhere [4], however,
a brief introduction to each 1s provided in sections 1.1 and 1.2.

Given the high degree of decoupling, the degree to which real-world applic-
ations can exploit decoupling is of prime importance. In common with many
recent architectural innovations, the performance of the architecture is greatly
influenced by the capabilities of the compiler. In that sense our analysis in this
paper should be seen as a combined evaluation of the architecture and the pre-
production version of the compiler for this architecture (scf90). Our analysis
consists of compiler-driven measurements and profile-driven modelling of the
Perfect Club suite of scientific programs [5].

As fully functional hardware for the ACRI-1 system was not available at
the time of writing, our performance results are derived from frequency-domain
profiling of the test programs on another system, combined with event-domain
profiling from the pre-production compiler. This provides us with the capability
to determine the position of events of interest within the source code, and to
match this with run-time frequency information. Frequency information is ar-
chitecture independent, and was obtained from program measurements on a Sun
SPARC system. The event frequency measurements are presented in section 4.
The dynamic event counts produced by this method then drive a simple linear
model of execution time to produce bounds on execution times which are tight.
These execution time bounds are presented in section 4.2.

1.1 Access Decoupling

In a decoupled access/execute (DAE) architecture, the processes of accessing
memory and performing computations on values fetched from memory can be
thought of as micro-threads implemented on separate asynchronous units. In
ACRI-1 terminology, the Address Unit (AU) computes addresses and issues memory
requests. The Data Unit (DU) receives data from memory, computes new values,
and sends new data back to memory. The AU and DU execute a program con-
taining the instructions that are specific to each unit. The only constraint on the
AU and DU programs is that the order in which operand addresses are issued
by the AU must match precisely the order in which operands are used by the
DU.

The AU tags each memory fetch request with the location in a load queue
within the DU where the incoming data will be buffered. This tag permits the
physical memory system to process requests in any order; the DU load queue
re-orders them as they arrive, ensuring that the AU-DU ordering constraint
i1s always satisfied. In the ACRI-1 architecture there are two independent load
paths to memory, and two independent load queues in the DU.

The AU is optimised to implement the most common operations on induction
variables. Thus, it has a simple integer instruction set and instruction modes
which permit operations of the form mem = r; = r;4+C'. In a single instruction an
induction variable r; can be incremented by some constant value (or the contents
of a register) and the result can be stored back to the induction variable as well
as being sent to memory as a load or store address. In the ACRI-1 architecture
two load addresses and one store address can be computed and sent to memory
in each cycle.

The memory of the ACRI-1 system 1s highly interleaved to provide the re-
quired bandwidth of two loads and one store per cycle (per processor). In addi-
tion, the bank selection logic implements a pseudo-random hashing function [6, 7]
to ensure an even spread of addresses to banks; even in the presence of strides
that would cause serious performance problems in traditional vector machines.

1.2 Control Decoupling

In the ACRI-1 architecture, control transfers are partitioned into two groups;
those which implement leaf-level loop control (leaf-level loops are those without
internal cycles), and those which implement all other control transfers. The AU
and DU have the capability to implement simple looping constructs, and this
permits the compiler to target leaf-level loop control directly on to the AU and
DU. All remaining control transfers are executed by a third unit, the Control
Unit (CU). Effectively the CU controls the sequencing of the program through
its flow graph, dispatching leaf-level loops intact to the AU and the DU.

Control decoupled architectures share some similarities with vector processors,
in which a scalar unit dispatches vector instructions to a vector load pipeline and
vector arithmetic pipelines, however, the differences are significant. Firstly, the
body of the leaf loop on the AU and the DU is derived directly from the source
code without any need to vectorize. Secondly, the compiler’s partitioning of code
between units is driven by data dependencies and not by what instructions can
or cannot be vectorized. Thirdly, there is a high degree of asynchrony between
the three units, and this permits the CU, for example, to enqueue loop dispatch
blocks for the AU and DU well in advance of their being executed. The CU is,
in many ways, a natural (prefix) extension of the virtual pipeline connecting the
AU to the DU through memory.

2 Overview of the ACRI-1 implementation

The ACRI-1 architecture is a high performance implementation of a control
and access decoupled architecture. Each DU has two independent floating point

units designed for a target clock period of 6ns. Each processor therefore has
a floating point throughput design peak of 333 MFLOPS (64-bit precision). A
node may contain up to 6 processors, for a peak floating point throughput of
2 GFLOPS. This paper addresses the performance of a single processor in this
multiprocessor architecture; further information on the scalability implications
of decoupling can be found in [8].

The ACRI-1 memory system comprises up to eight boards, each containing
up to eight segments. Each segment may contain up to 16 independently ad-
dressable banks of DRAM. The memory boards are connected to the processors
and I/O subsystems via a two-stage parallel network. Both the network and
the memory boards contain request and response queues, and thus the round-
trip latency for any particular request will depend to a certain degree on the
memory loading. Register-transfer simulations of the network and memory sub-
systems have shown that latencies will be in the range 100 to 200 processor
cycles, and will vary dynamically during program execution. In the execution
time models presented in section 4.2, we use a nominal value of 150 cycles for
the mean cost of uncoupling the DU from the CU and the AU. This uncoupling
time is dominated by the round-trip delay of the memory system.

The ACRI-1 processor contains a cache which is used primarily for commu-
nication between the units, and as a level-2 instruction cache. The vast majority
of memory operands are obtained directly from memory. Further information on
the behaviour of caches in decoupled systems can be found in [9].

3 Losses of Decoupling (LODs)

In an access and control decoupled architecture, the CU “runs ahead” of the
AU and DU, and the AU “runs ahead” of the DU. It is conceivable for the CU
and the DU to be separated space and time by many thousands of program
statements. When the system is fully decoupled, the AU will typically be ahead
of the DU by a time equal to the largest memory latency experienced by any
load operation since the last recoupling of the AU and DU. The CU, AU and
DU therefore constitute an elastic pipeline, with the dispatch queue linking the
CU to the AU and DU, and the memory system linking the AU to the DU.

In figure 1 the solid arrows show the typical direction of flow of information
during decoupled execution. The broken arrows represent inter-unit dependen-
cies which cause decoupling to temporarily break down, requiring the CU or AU
to wait for operations to complete on a unit which i1s normally downstream in
the system pipeline. These dependencies can be carried either through registers
or memory locations. For example, a value in a DU register which the compiler
knows to be needed by the CU will cause a register-based flow dependence from
the DU to the CU. This will be satisfied by sending the value from the DU
to the CU via a transfer queue. The CU must wait for this value, defining a
synchronization point between DU and CU. This effectively flushes the memory
pipeline and decoupling is lost. We term such a synchronization point a loss of
decoupling (LOD).

.~ CU-AU sync AU-DU sync N
LT -

- - = < N

Fig. 1. Pipeline flow in a control and access decoupled architecture

When the DU defines a location in memory and there is a reaching use of
that location on the CU, then a read-write hazard exists between the CU and
the DU through that location. The compiler detects all such hazards and inserts
explicit synchronization operators at appropriate points in the code to force the
CU to wait for the hazard to be resolved. This results in the DU and the CU
becoming synchronized, so this is also a form of LOD. Both of the above types
of LOD are termed algorithmic LODs, as their presence 1s a direct result of the
structure of the program. In the tables which follow, such LODs are labelled
A-LODs.

The calling standard of the ACRI-1 defines a common shared stack for the
CU, the AU and the DU. This has implications for data synchronization across
function call and return boundaries. When a function is called, and the CU and
DU are decoupled, the CU will reach the stack frame manipulation code before
the DU finishes using the current stack frame. To prevent stack frame corruption,
the CU must wait for the DU to reach the call point before the stack frame is
modified. Again, this constitutes an LOD. In the tables which follow, we term
this a “call LOD” (or C-LOD). A similar situation may occur if the units are
uncoupled at a function return point. Again, the CU would like to relinquish
a stack frame, but the DU may not yet have finished using some of the local
variables declared in that frame. The CU must therefore wait for the DU to
reach the return point, and then perform the return sequence. This is a “return
LOD” (or R-LOD).

Calls to external routines, such as I/O and timer calls, must also be synchron-
ized. However, by appropriate engineering it is possible to avoid LODs across
the call boundaries with intrinsic functions (information on the use and modific-
ation of parameters is more clearly specified, and intrinsics do not modify global
variables). In this analysis, LODs due to calls to external routines are termed
“eXternal LODs” (or X-LODs). In this analysis intrinsic functions do not lead
to LODs.

To summarize, when a program is executing in a decoupled mode the per-
ceived memory latency is zero; effectively the entire physical memory has an
access time equivalent to the processor’s register file, and latency i1s completely
hidden. However, when an LOD occurs, the penalty is significant. Our model

assumes a nominal penalty of 150 cycles, and this means that the frequency of
LODs is of paramount importance when determining the expected application
performance. We now present measurements of the LOD frequencies in the Per-
fect Club, and in section 4.2 we use these frequencies to predict bounds on the
execution time of the Perfect Club programs on the ACRI-1 architecture.

4 Perfect Club LODs

The Perfect Club consists of 13 Fortran programs, ranging in size from 509 to
18,545 lines of source code. Each program was compiled using scf90 and the
resulting dump of the intermediate representation was analyzed to determine
the type and source code position of each LOD. This information was combined
with run-time statistics obtained by profiling each program with tcov on a Sun
SPARC architecture to obtain an accurate prediction of execution frequency for
each individual LOD in the compiled program. Table 1 below details the number
of each type of LOD that will be executed for each program in the Perfect Club.

| Program |A—LODS | C-LODs |XC—LODS| R-LODs |T0tal LODS|

ADM 117,353] 2,773,739] 80,003] 2,914,874] 5,885,969
SPICE |6,452,950| 187,681| 277,420| 1,042,677 7,960,728
QCD 833,543| 6,340,047 201| 6,648,301| 13,822,092
MDG |6,868,049(19,535,152 176(19,535,153| 45,938,530
TRACK | 593,825 658,826 26,679| 652,929 1,932,259
BDNA 67,158 134 814 166 68,272
OCEAN | 320,808 154,920 1,366 152,940 630,034
DYFESM| 145362 375,897| 60,760| 382,131 964,150
MG3D [1,974,962| 3,640,446| 778,518| 2,083,671 8,477,597
ARC2D 7,158 2,918 26,303 2,819 39,198
FLO52Q | 24,541 21,053| 21,634| 12,620 79,848
TRFD 256,632 14 42 15 256,703
SPECTT |4,814,795| 435,328 810 447,578 5,698,511

Table 1. Loss of Decoupling (LOD) frequencies for the four categories of LOD in the
Perfect Club.

4.1 Optimizing LOD frequency

Of particular interest 1s the dominance of call and return LODs in some of the
programs. Such LODs can be optimized away relatively easily by subroutine
inlining. Table 2 shows how the overall LOD counts change in six programs
which were deemed candidates for inlining. The inlining was performed by KAP,
and the resulting code was re-compiled and re-profiled to measure the alteration
in LOD frequencies. Most programs experienced a significant reduction in overall
LOD count, even though some experienced increased A-LOD counts.

|Pr0gram| A-LODs | C-LODs |XC—LODS| R-LODs |T0tal LODS|% LOD Reducti0n|

MDG 6,868,931 3,703 171] 3,704] 6,876,509 85
ADM 541,681| 326,366 80,730| 325,647| 1,274,424 78
QCD (2,477,507|2,582,316 195(3,040,984| 8,101,002 41
FLO52Q| 47,980 0 9 1 47,990 40
SPICE |(5,752,231| 47,236| 149,451| 493,395 6,442,313 19
SPECTT 4,831,837| 350,224| 28,792| 362,719 5,573,572 2

Table 2. Reductions in LOD frequencies due to subroutine inlining by KAP.

4.2 Perfect Club Performance

The execution time 7}, for program p on the ACRI-1 system is modelled relatively
accurately by equation 1,

T, = ¢(Cqy + nd) (1)

where Cy, is the number of execution cycles of the DU, n is the number of
LODs executed, d is the nominal penalty induced by each LOD, and ¢ is the
clock period of the machine. Without actually executing a program is it hard to
predict values for Cy,, but it is possible to define a lower bound Cyg, as 1»/2,
where f,, is the number of floating point operations executed by program p. This
must be an absolute minimum execution time for any processor with two floating
point pipelines. This permits us to define execution time as follows:

T,> ¢ (2—” + nd) (2)

In fact, in the ACRI-1 architecture only pipeline startup and shutdown delays
on the DU will introduce any discrepancy between Cg, and Cgy. As the DU
contains hardware support for modulo-scheduled software pipelining, we expect
startup and shutdown costs to be relatively low, though it is still too early to
present definite figures. Figure 2 compares the lower bound on ACRI-1 cycles to
completion, for each program in the Perfect Club, with the measured cycles to
completion on the Cray Y-MP C90 (from [10]).

Figure 3 illustrates how the lower bound on cycles to completion translates
into an upper bound on MFLOPS execution rates for each of the Perfect Club
programs, given a target clock period of 6ns.

5 Conclusions

In this paper we have presented the most recently available performance data
the ACRI-1 supercomputer which is currently under development. Our main
aim in so doing has been to highlight the execution efficiency that derives from

! We assume that the DU code defines the critical path through the program. In most
scientific applications this is a safe assumption.

Fig.2. Graph comparing cycles to completion on Cray Y-MP C90 with ACRI-1
lower-bound cycles to completion

the high level of decoupling in this novel architecture on real-world codes. The
measurements indicate that the actual frequency of LOD events, as generated
by the pre-production compiler, leads to execution time penalties that for most
programs represent a small fraction of the minimum possible execution time.
We see this as a vindication of the principle of decoupling embodied in this
architecture, and as a foretaste of the potential that decoupling provides for
latency hiding in high performance computers.

6 Acknowledgements

The authors would like to thank Serge Adda, Christian Bertin, Dick Hendrick-
son, and Jean-Eric Waroquier for their help with scf90, and Mark Guzz for
his support during this research. The authors are indebted to Peter Bird and
Alasdair Rawsthorne for their original work on the ACRI-1 architecture.

References

1. Goodman, J., Hsieh, J., Liou, K., Plezkun, A., Schecteur, P., Young, H.: PIPE:
A VLSI Decoupled Architecture. Proc. 12*Int. Symp. on Computer Architecture,
(June 1985).

Fig.3. Graph comparing Cray Y-MP C90 MFLOPS with upper bound MFLOPS
values for the ACRI-1

2. Smith, I.E., et al.: The ZS-1 Central Processor. Proc. 2"%Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, (Oct. 1987), Palo
Alto, CA.

3. Wulf, Wm. A,: An Evaluation of the WM Architecture, Proc. Int. Symp. on Com-
puter Architecture, (May 1992), Gold Coast, Australia.

4. Bird, P., Rawsthorne, A., Topham, N.P.: The Effectiveness of Decoupling. Proc. Int.
Conf. on Supercomputing (July 1993), Tokyo, Japan.

5. Cybenko, G., Kipp, L., Pointer, L., Kuck, D.: Supercomputer Performance Evalu-
ation and the Perfect Benchmarks, Proc. Int. Conf. on Supercomputing (1990).

6. Bird, P.L., Topham, N.P., Manoharan, S.: A Comparison of Two Memory Models
for High Performance Computers, Proc. CONPAR/VAPP (September 1992), Lyon,
France.

7. Rau, B.: Pseudo-Randomly Interleaved Memory”, Proc. 18 Int. Symp. on Com-
puter Architecture, (May 1991).

8. Harris, T.J., and Topham, N.P.: The Scalability of Decoupled Multiprocessors. Proc.
Conf. on Scalable High Performance Computing (1994), Knoxville, TN.

9. Harris, T.J., and Topham, N.P.: The Use of Caching in Decoupled Multiprocessors
with Shared Memory, Proc. Scalable Shared Memory Workshop, at Int. Parallel
Processing Symposium (1994), Cancun, Mexico.

10. Oed, W.: Cray Y-MP C90: System Features and Early Benchmark Results. Parallel
Computing 18 (1992) 947-954.

