
c© 2011 Neal Clayton Crago

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4832584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EFFICIENT MEMORY-LEVEL PARALLELISM EXTRACTION WITH
DECOUPLED STRANDS

BY

NEAL CLAYTON CRAGO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Associate Professor Sanjay J. Patel

ABSTRACT

We present Outrider, an architecture for throughput-oriented processors

that exploits intra-thread memory-level parallelism (MLP) to improve perfor-

mance efficiency on highly threaded workloads. Outrider enables a single

thread of execution to be presented to the architecture as multiple decoupled

instruction streams, consisting of either memory accessing or memory con-

suming instructions. The key insight is that by decoupling the instruction

streams, the processor pipeline can expose MLP in a way similar to out-of-

order designs while relying on a low-complexity in-order micro-architecture.

Instead of adding more threads as is done in modern GPUs, Outrider can

expose the same MLP with fewer threads and reduced contention for re-

sources shared among threads.

We demonstrate that Outrider can outperform single-threaded cores by

23-131% and a 4-way simultaneous multi-threaded core by up to 87% in

data parallel applications in a 1024-core system. Outrider achieves these

performance gains without incurring the overhead of additional hardware

thread contexts, which results in improved efficiency compared to a multi-

threaded core.

ii

To my mother and father, who taught me that hard work is the foundation

for success.

To my wife Christine, who has given me the support I needed throughout my

graduate studies.

iii

ACKNOWLEDGMENTS

I would like to thank my adviser Sanjay Patel for his encouragement and

persistence throughout my graduate career. His grand challenge and ex-

pectation for greatness in the field of computer architecture have enabled

higher-quality research.

I would like to thank the Rigel group for their efforts in developing the

compiler and simulation infrastructure which I used as a basis for the archi-

tectural exploration presented here. I would like to specifically thank John

Kelm, who helped me organize many of the early ideas presented in this

work. Many thanks to Professor Steve Lumetta, Daniel Johnson, Matthew

Johnson, Wooil Kim, and William Tuohy for their useful feedback on drafts

and during presentations of this work.

I would like to thank my parents Steven and Louise for always making me

exceed my own expectations, and teaching me that with hard work and faith

in the Lord all things can be done.

I would also like to thank my wife Christine, to whom I owe a lot of credit

for this work. Her constant and unconditional encouragement, friendship,

and love throughout this time in graduate school have propelled me fur-

ther and spurred my creativity and passion for research. Only through her

personal experience while pursuing her own graduate degrees did she truly

understand all the long nights and time away from each other, and for that

I am grateful.

iv

Finally, I would like thank my Lord, my Savior, and God Jesus Christ for

his grace, love, and discipline during my whole life.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 MOTIVATION . 3
2.1 Memory System Impact on Performance 3
2.2 Out-of-Order Processors . 4
2.3 TLP Processors . 6
2.4 Direct MLP with Outrider 7

CHAPTER 3 DECOUPLED ARCHITECTURES 9
3.1 Strands . 9
3.2 Control Flow Requirement . 11
3.3 Data Communication Requirement 13
3.4 Decoupled Access/Execute Implementation 14

CHAPTER 4 TRADITIONAL LIMITATIONS 17
4.1 Addressing Memory Indirection 18
4.2 Addressing Resource Utilization 20

CHAPTER 5 OUTRIDER ARCHITECTURE 21
5.1 Communication Queues . 21
5.2 Register Files . 24
5.3 Memory Access Unit . 25
5.4 Memory Consistency and Binding 26
5.5 Deadlock and Exceptions . 27

CHAPTER 6 STRAND EXTRACTION 29
6.1 Phase 1: Partition Loads and Stores 31
6.2 Phase 2: Partition Address Generation Instructions 32
6.3 Phase 3: Partitioning Control Flow 33
6.4 Phase 4: Partition Unmarked Instructions 34

vi

6.5 Phase 5: Final Partitioning 34
6.6 Mapping Strands to Hardware 35
6.7 Code Example . 36

CHAPTER 7 EVALUATION METHODOLOGY 38

CHAPTER 8 PERFORMANCE EVALUATION 40
8.1 Overall Performance . 40
8.2 Communication Queue Sizing 42
8.3 Memory Access Unit Sizing 43
8.4 Cache Latency Sensitivity . 44
8.5 Cache Size Sensitivity . 45

CHAPTER 9 OVERHEAD EVALUATION 47

CHAPTER 10 RELATED WORK 50
10.1 Compiler-Enabled Techniques 50
10.2 Preexecution Techniques . 53
10.3 Helper Thread Techniques . 55
10.4 Decoupled Techniques . 56
10.5 Orthogonal Techniques . 58

CHAPTER 11 CONCLUSION . 59

REFERENCES . 60

vii

LIST OF TABLES

7.1 Simulation parameters for our 1024-core architecture. 39

9.1 Total instruction overhead for Outrider compared to the
baseline in-order design. Outrider copy instructions and
replicated branch instructions are also shown. 48

9.2 Area overhead of Outrider, SMT2 and SMT4 in regards
to additional storage required. 48

10.1 Differences between related work and Outrider. Out-
rider trades off hardware complexity for software com-
plexity, reducing duplicated instruction execution and large
hardware structures. 51

viii

LIST OF FIGURES

2.1 Impact of Memory Stalls on Performance 4
2.2 Memory Latency Tolerance with ILP and TLP Processors . . 5

3.1 High Level Decoupled Architecture 10
3.2 Control Flow in Decoupled Architectures 11
3.3 Decoupled Access-Execute Architecture 15

4.1 Loss of Decoupling Events . 18
4.2 Reducing Loss of Decoupling with Multiple Strands 19

5.1 Rigel . 22
5.2 Communication Queue Architecture 22
5.3 Register File Architecture . 24
5.4 Memory Access Unit Architecture 25

6.1 Partitioning . 30
6.2 Partitioning Code Example 36

7.1 Evaluation architecture . 39

8.1 Overall Performance Improvement 41
8.2 Cache Contention . 41
8.3 Communication Queue Sizing 42
8.4 Memory Access Unit Sizing 43
8.5 Cache Latency Sensitivity . 45
8.6 Cache Size Sensitivity . 46

ix

LIST OF ABBREVIATIONS

AP Access processor

CMP Chip multiprocessor

DAE Decoupled access/execute

EP Execute processor

GPU Graphics processing unit

ILP Instruction-level parallelism

INO In-order

L1 Level one

L2 Level two

MLP Memory-level parallelism

OOO Out-of-order

S# Strand number

TLP Thread-level parallelism

x

CHAPTER 1

INTRODUCTION

Execution stalls due to memory latency are the limiting factor for perfor-

mance in highly parallel workloads. Current methods for mitigating the

effect of memory-related execution stalls based on dynamically extracting

instruction-level parallelism (ILP) or statically expressing thread-level par-

allelism (TLP) result in unnecessary complexity and inefficiency for both

hardware and software. The inefficiencies come from the indirect exposure

of memory-level parallelism (MLP). An architecture that can expose MLP

directly at the core level, while still leveraging complexity-efficient ILP and

TLP techniques, is necessary for enabling future parallel throughput-oriented

chips integrating 100s to 1000s of cores. In this thesis we propose Outrider,

a core micro-architecture to exploit intra-thread MLP present in data-parallel

workloads with the goal of reducing complexity while increasing performance

relative to existing designs that rely on ILP or TLP.

The continued increase in transistor budgets has allowed more cores to

be integrated on-die with each new process generation, thus matching the

execution demands of highly parallel workloads. However, there has not

been a commensurate increase in memory bandwidth nor decrease in memory

latency; this is a design constraint referred to as the memory wall. As such,

current and future throughput-oriented systems are fundamentally limited by

the memory subsystem. While architectural techniques to exploit TLP and

ILP can be used to increase the utilization of execution resources on-die, it

1

is the MLP that they indirectly expose that provides aggregate speedups for

designs constrained by the memory wall. Integrating larger on-die caches can

mitigate the impact of the memory wall, but larger caches are not a panacea

due to diminishing returns for many workloads having little temporal and

spatial locality in their access streams while requiring large cache footprints

to see performance improvements.

Outrider is a core micro-architecture for throughput-oriented chips sup-

porting 1000s of threads that directly leverages the MLP present in parallel

workloads. The key insight is that data parallel workloads possess a signif-

icant number of memory operations that can be issued concurrently intra-

thread if the architecture allows the memory access stream to be sufficiently

decoupled from the rest of the computation stream. Outrider leverages

hardware and software mechanisms to decouple a single thread of execution

into two or more semi-independent streams, or strands: those responsible

for performing memory accesses and the other consuming memory values.

Strands perform only a portion of the work of a sequential thread and by

definition communicate data and synchronize with one another. The design

achieves high performance with low complexity by increasing the level of

MLP extracted from a single thread of execution without the use of complex

out-of-order mechanisms or multiple threads of execution needed for multi-

threading. Our results show that we can achieve 23-131% more performance

than a baseline single-threaded core of comparable complexity while also pro-

viding up to 87% better performance compared to a 4-way multi-threaded

core which requires more area and results in greater cache pressure.

2

CHAPTER 2

MOTIVATION

In this chapter we explore the impact of the memory subsystem on perfor-

mance, and explore ILP, TLP, and decoupled architectures and how they

help to alleviate performance loss due to exposed memory latency. We moti-

vate the use of decoupled architectures such as Outrider as an alternative

to ILP and TLP processor designs.

2.1 Memory System Impact on Performance

Figure 2.1 presents the impact of the memory wall on performance for several

visual computing benchmarks on a 1024-core system by comparing a base-

line single-threaded two-wide in-order processor against two scenarios: the

baseline augmented with an L1 data cache that never misses and has a zero-

cycle access latency (Perfect L1D), and the baseline idealized with perfect

branch prediction, zero-cycle functional units, and no misses and zero access

latency in both the L1 instruction or data cache (Idealized INO). Additional

information on the baseline used can be found in Table 7.1 (on page 39).

We find that most of the performance that is lost in our 1024-core system

is attributable to the memory system, rather than fetch, branch prediction,

or functional unit latencies. Removing all stalls due to memory latency more

than doubles performance (2.7x), whereas idealizing the entire core increases

performance by 3.6x. This demonstrates the impact of the memory system

3

CG FFT HEAT KMEANS MRI SOBEL HMEAN
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

PERFECT L1D

IDEALIZED INO

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 2.1: Performance limit study comparing the baseline in-order
1024-core design against perfect L1D cache and idealized case with no
artificial stalls. Addressing memory stalls can bring an accelerator system
significantly close to the idealized case.

on performance, and indicates the importance of efficient mechanisms for

extracting MLP.

2.2 Out-of-Order Processors

Out-of-order processors enable applications to execute instructions out of

order with respect to one another by using an instruction window. This en-

ables more instructions to be available to execute at a single time, reducing

the impact of memory stalls and improving performance. The additional

structures that are needed to enable contemporary OOO execution include

instruction schedulers, reorder buffers, physical register files, register renam-

ing hardware, and load/store queues. Contemporary out-of-order processors

such as Intel’s i7 [1] and IBM’s POWER7 [2] also utilize control and data

4

.BB1:
 slli $6, $4, 2
 add $8, $7, $23
 add $8, $8, $6
 add $9, $7, $24
 ldw $8, $8, 0
 slli $8, $8, 2
 add $6, $9, $6
 add $8, $19, $8
 ldw $1, $6, 0
 add $6, $18, $2
 ldw $5, $8, 0

.BB2:
 clt $6, $3, $4
 bgt $6, .BB5_1
.BB1 (2):
 slli $6, $4, 2
 add $8, $7, $23
 add $8, $8, $6
 add $9, $7, $24
 ldw $8, $8, 0
 slli $8, $8, 2

.BB1:
 slli $6, $4, 2
 add $8, $7, $23
 add $8, $8, $6
 add $9, $7, $24
 ldw $8, $8, 0
 slli $8, $8, 2

.BB1:
 slli $6, $4, 2
 add $8, $7, $23
 add $8, $8, $6
 add $9, $7, $24
 ldw $8, $8, 0
 slli $8, $8, 2

.BB5_1:
 slli $6, $4, 2
 add $8, $7, $23
 add $8, $8, $6
 ldw $1, $8, 0
 addi $4, $4, 1
.BB5_2:
 clt $27, $3, $4
 bgt $27, .BB5_1
.BB5_1:
 slli $6, $4, 2
 add $8, $7, $23
 add $8, $8, $6
 ldw $1, $8, 0
 addi $4, $4, 1
.BB5_2:

Thread 0 Thread N

Increasing Threads Increases MLP

Increasing Window Size
 Increases MLP

 ldw $8, $8, 0 ldw $8, $8, 0

 ldw $8, $8, 0

 ldw $1, $6, 0

ldw $8, $8, 0

ILP Processor TLP Processor
Instruction Window

.BB5_1:
 slli $6, $4, 2
 add $9, $7, $24
 slli $8, $0, 2
 add $6, $9, $6
 add $8, $19, $8
 ldw $1, $6, 0
 ldw $1, $8, 0

.BB5_1:
 fmul $5, $0, $0
 addi $6, $0, 0
 fadd $5, $0, $5
 stw $5, $6, 0
.BB5_2:
 bgt $27, .BB5_1
.BB5_1:
 fmul $5, $0, $0
 addi $6, $0, 0
 fadd $5, $0, $5
 stw $5, $6, 0

Strand 0 Strand 1

Decoupled Processor

Strand 2

 ldw $1, $8, 0

 ldw $1, $8, 0

Explicit MLP Extraction and Decoupling
of Memory-dependent InstructionsDirection MLP exposed

Exposed MLP

Figure 2.2: Comparison between ILP and TLP’s ability to extract MLP.
ILP designs expand their instruction windows to extract more MLP, while
TLP designs increase the number of threads to expose more MLP. In the
code excerpt, additional load operation can be executed for memory-level
parallelism (MLP).

speculation to further increase the amount of instructions available for exe-

cution. Additionally, superscalar execution is used to increase performance

by further exploiting ILP and issuing multiple instructions per cycle.

Figure 2.2 shows how increasing the instruction window in OOO processors

enables memory latency tolerance. OOO processors can generate MLP by

finding independent memory operations in the instruction window that are

available to issue to the cache hierarchy. Memory latency tolerance also

occurs by issuing other independent instructions. To accomplish a large

instruction window, OOO processors utilize associative structures to store

and schedule independent instructions for execution. Instructions that are

dependent and wait on memory are kept in the associative structures until

the memory access completes. During the memory access, other instructions

not dependent on that memory access can be issued. The ability of the OOO

processor to tolerate memory latency and execute independent instruction is

5

largely dependent on the amount of instructions that can be stored in the

issue queue.

These associative structures do not scale well, as increasing the memory

latency tolerance requires increasing the amount of instructions that must

be buffered. Increasing the number of entries in these associative structures

to buffer the instructions not only increases the area, but also significantly

increases the energy consumed per access. As a result, a significant tradeoff

of energy efficiency for performance must be made. Other structures such

as register renaming logic, large physical register files, and load-store queues

(LSQ) introduce additional complexity in the form of additional pipeline

stages, and circuitry.

2.3 TLP Processors

Processors that exploit thread-level parallelism maintain multiple contexts

per core. GPUs such as NVIDIA’s Tesla [3] and CPUs such as Sun’s Rainbow

Falls [4] utilize high degrees of hardware multi-threading to increase pipeline

utilization, especially during long-latency memory accesses. These types of

TLP designs require explicit parallelism to be expressed by the software

developer. Helper threads [5] and slice processors [6] implement a slightly

different approach to TLP by instantiating a partial thread of execution to

improve the performance of the main thread. These schemes aim to exe-

cute memory access instruction streams to generate prefetches, but require

significant duplicate execution of the memory accessing instruction stream,

are sensitive to timeliness and can increase cache contention. Additionally,

slice processors also require significant hardware buffers and predictors, while

helper threads require programmer or compiler generation.

6

Figure 2.2 shows how increasing the number of threads in TLP proces-

sors enables memory latency tolerance. TLP processors can tolerate latency

by executing instructions from non-stalled threads while other threads are

stalled. In a typical mutlithreading scheme, when a cache miss occurs the

current thread is deactivated for scheduling and an active thread replaces it

in the scheduler. The number of threads supported on the processor in addi-

tion to the application memory access characteristics determine the amount

of memory latency that can be tolerated.

In order to guarantee that the processor will not stall, a large number of

threads may be required with each requiring significant resources to store its

state. The state required for multithreading includes the hardware scratch

space such as the register file, and cache and memory space which holds the

working dataset of the thread. As such, the scalability of multithreading is

limited when area is a concern. An additional register file is required for each

thread, which takes up a significant part of the processor’s area. Even if the

area for the scratch space per thread is justified, the overhead of increasing

cache resources may be necessary in order to accomplish performance gains.

If cache resources are not provisioned correctly, contention for cache resources

between the thread can significantly degrade performance for many highly

parallel applications.

2.4 Direct MLP with Outrider

Neither building ILP processors with large associative structures and aggres-

sive speculation nor building TLP processors requiring a larger number of

threads is an attractive solution for improving memory latency tolerance in

future processors. Both ILP and TLP techniques are useful, and the latter is

7

necessary for utilizing on-die resources in future chips, but neither addresses

memory latency tolerance extraction directly and efficiently.

Outrider adopts the strategy of directly tolerating memory latency by

decoupling the instruction stream. Outrider enables the memory accessing

instruction stream to be executed well in advance of consuming instructions

similar to hardware scout and helper threads, but without duplicate execu-

tion of memory accessing instructions. Additionally, Outrider avoids is-

suing memory operations speculatively and is not sensitive to timeliness like

prefetching techniques. Outrider enables a limited form of dynamic is-

sue similar to out-of-order processors, but without area-inefficient structures

such as issue queues. Finally, Outrider has the ability of multi-threading

through multiple instruction streams, but without increasing the aggregate

working set required on chip and thus cache contention.

8

CHAPTER 3

DECOUPLED ARCHITECTURES

In this chapter we present the necessary elements for a software decoupled

design and introduce a traditional implementation. Figure 3.1 presents the

high-level design of a decoupled system. The serial instruction stream is

partitioned at compile time into separate software entities which we call

strands. Communication occurs between strands and facilities for control

flow and data communication must be provided. Decoupled architectures

trade off more complex software for less complex hardware implementation.

However the complexity increase in software is on the order of other compiler

transformations and utilizes much of the knowledge the compiler has already.

3.1 Strands

Decoupled architectures separate the memory-access and memory-consuming

instructions into separate instruction streams, called strands, that are exe-

cuted on logically separate processors. These strands execute parts of the

original and follow the same control flow path through the program, but

perform a specific function within each basic block. Strands must execute

together in order to perform the same function as the original sequential

thread, and by definition communicate data values and control flow deci-

sions with one another. Strands are responsible for either accessing memory

or consuming memory values, with partitioning occurring along memory de-

9

Strand 1 Strand N

Control Flow
Communication

Data
Communication

Strand 0

Figure 3.1: High level architecture of decoupled designs. The serial
instruction stream is partitioned into strands, which communicate control
flow decisions and data with one another.

pendence lines. In the base case, there are two strands, one accessing mem-

ory and one consuming memory values. Address generation instructions and

memory operations are found in memory accessing strands, while floating

point and integer arithmetic are found in memory consuming strands.

The main advantage of decoupling a sequential thread into strands is the

ability to tolerate memory latency. Traditional in-order processors stall when

a primary data cache miss occurs and a dependent operation is waiting to

be issued. Decoupling into separate strands enables the memory accessing

stream to continue to issue instruction and execute in a nonblocking manner

under ideal circumstances. Essentially, decoupled architectures execute in-

structions out-of-order, but this parallelism is extracted by the compiler from

the original program, rather than dynamically in hardware. Additionally, the

out-of-order execution is non-data speculative.

Strands execute in parallel with one another and persist throughout the

execution of the thread. Strands have their own context of program counter,

10

A

B

C

D

A

B

C

D

A

B

C

D

Thread 0 Strand 0 Strand 1

Control Flow Instructions Communication

Figure 3.2: High level architecture of decoupled designs. The serial
instruction stream is partitioned into strands, and communicate control
flow decisions and data with one another.

scratch register space, and mechanisms to communicate with other strands.

However, because an individual strand executes only a portion of an original

sequential thread, the context requirements such as register working set are

significantly smaller. Considering all the strands together, the aggregate

register working set requirements is on the order of the original sequential

thread.

3.2 Control Flow Requirement

A default requirement of decoupled architectures is that each strand must ex-

ecute down the same control path together. Figure 3.2 depicts the execution

of several basic blocks of the thread as compared with that of a decoupled de-

11

sign. Though the strands must execute down the same control path in order

to ensure correct execution, the execution does not need to be synchronized.

That is, as long as each strand directs its execution in the correct direction,

there is no need to wait on another strand. When a strand reaches a control

flow instruction there is no barrier or other synchronization required before

a strand can continue.

While there is no formal synchronization required by a strand when the

control flow path is decided, in practice additional information may be re-

quired from another strand. In the example of compute-generated control

flow, a strand must perform some number of operations before a control flow

decision is made. This control flow decision cannot be generated by any other

strand, and as a result, the strand generating the decision must communicate

the result with all other strands.

Similarly, though some conditional control flow could potentially have its

decisions calculated locally, this results in additional instruction overhead.

An example of this is a counted loop. Though the counting instructions and

control flow decision could be made locally, this duplicates effort. This in-

struction overhead can be avoided by calculating the control flow decision on

a single strand and then communicating that decision with all other strands.

We recall that in order to promote decoupling, the ideal case is to have the

thread executing furthest ahead generate control flow decisions.

Outrider and other decoupled architectures require the ability to com-

municate control flow decisions between strands. As a result, both software

and hardware overheads must be incurred. The additional instruction over-

head of branch instructions for each strand can substantially increase the

number of instructions executed by decoupled systems. For applications

that have small basic block sizes, this overhead can represent a large portion

12

of the computation. Hardware for communicating the control flow decisions

also must be provided. In order to ensure correct control flow, hardware

must have the ability to order communicated decisions and consume them

in order. The strands must consume the oldest decisions that are waiting to

be consumed.

3.3 Data Communication Requirement

By definition, strands communicate data with one another. More gener-

ally, memory-accessing strands communicate data with memory-consuming

strands. This reflects the compiler partitioning scheme, which creates strands

based along those lines. In DAE, this is represented by fixed-function FIFO

queues, which only allow the result of load operations to be communicated to

the memory-consuming strand. However, enabling more general communi-

cation is appropriate for general decoupled designs such as Outrider, as it

eases restrictions during the partitioning and code generation process. Pro-

moting reuse of address generation instructions is an example of when general

data communication is desired. Without general data communication, the

program must execute part of the address generation stream twice, as under

DAE restriction. As a result, the number of states and instructions that are

required can be substantially reduced.

Outrider and other decoupled architectures require the ability to com-

municate data between strands. As a result, varying degrees of hardware

and software overhead may be incurred. The requirement for hardware is

that a given strand may produce a value which is then consumed by another

specific strand. The hardware must be able to identify each data transaction

and distinguish it from others in order to ensure that the correct data is con-

13

sumed by the correct instruction. Each strand must be able to tell whether

there is data ready to be consumed, which strand it is from, and what in-

structions in its instruction stream required that data. In many ways, this

requirement is similar to the requirement that out-of-order processors have.

Each data value produced must be identifiable so that each instruction can

correctly consume it if need be. Out-of-order processors also keep track of

how old values are, so that the correct value may be paired with the correct

instruction.

With these requirements in mind, there are a number of possible hardware

options. As decoupled architectures are meant to offer improved efficiency,

a design with the smallest area and energy overhead is important. Poten-

tial options for facilitating data communication include FIFO data queues,

rotating register files, register windows, and large physical register files with

register renaming hardware. Each of these possibilities require both hard-

ware and software modification to support the requirements of the decoupled

design. For example, the register renaming approach requires a mechanism

to synchronize the process across strands. While some approaches such as

register renaming can require an extra pipeline stage due to added hardware

complexity, approaches such as FIFO data queues can add software complex-

ity due to copy instructions. These copy instructions map the data found in

the FIFO queue into the local strands working set.

3.4 Decoupled Access/Execute Implementation

Figure 3.3 depicts a classic implementation of the decoupled architecture,

decoupled access/execute (DAE) [7]. The access processor (AP) and exe-

cute processor (EP) are physically separate entities that are only connected

14

AEQ

ICache ICache

DCache

Control Queues

Access
Processor

Execute
Processor

Write Read

Data

Data
EAQWAQ

AEBQ

EABQ

ARF ERF

Data Queues

Figure 3.3: Example of a traditional decoupled-style architecture,
decoupled access/execute (DAE). The access processor runs the memory
program while the execute processor runs the compute program. Control
flow decisions and data for computation and storage to memory are
exchanged using FIFO queues. For the specific example of DAE, if the
access processor does not depend on the execute processor, substantial
performance improvement can be achieved.

through FIFO data queues for communicating data values loaded from mem-

ory, data values to be stored into memory, and control flow decisions. DAE

achieves memory latency tolerance by executing the memory instruction

stream on the AP and the computation program on the EP. The nonblock-

ing property of the AP requires that the AP calculate control flow decisions,

which it then forwards well in advance to the EP’s control queue, which is

later used by the EP’s instruction fetch hardware.

The structural requirements for decoupled designs include hardware to

communicate between processors and additional hardware resources to sup-

port the additional processors. This includes register files and fetch hardware.

This can result in significantly less complexity than ILP and TLP design

requirements for enabling both out-of-order instruction issue and memory

latency tolerance. On the other hand, the compiler must be designed to ex-

15

tract the separate instruction strands. This limits backwards-compatibility

of code, and requires that code be re-compiled.

16

CHAPTER 4

TRADITIONAL LIMITATIONS

Although decoupled architectures enable memory latency tolerance, potential

performance improvement is limited when the memory-accessing instruction

stream cannot achieve nonblocking property with respect to the rest of the

program. These situations are known as as loss-of-decoupling (LOD) events.

Figure 4.1 presents the loss of decoupling events on traditional DAE pro-

cessors, which represent a dependence between the processors that must be

resolved before the AP is allowed to continue execution. Event A depicts

the optimal case where there is no LOD event and the memory-accessing

stream is not blocked. In event B, AP to AP LOD events are caused by

cache misses during indirect memory accesses, such as sparse matrices and

multi-dimensional arrays, where the latency to access memory is exposed and

the AP must stall. When the AP depends on data provided by the EP, LOD

can also occur. This can be due to the AP needing an address generated by

the EP (event C) and or the AP waiting on a control flow decision to be

determined by the EP (event D). The AP must wait on the EP to proceed,

which removes the ability of the AP to move ahead and uncover MLP. The

LOD events significantly reduce the usefulness of DAE on common programs

that exhibit memory indirection and compute-dependent behavior.

Additionally, the under-utilization of resources in traditional decoupled

designs that have separate processors is also an issue. Traditional designs

require separate fetch, decode, and execute resources, but these resources do

17

In Order

DAE

Memory Instruction Stream

Compute Instruction Stream

Control Flow Instruction Stream

Memory Dependence (Cache Miss)

Compute

Memory

Computation Dependence

OUTRIDER
A E

B
A E

F
C

G G
g B

D g
F g

C D g

Strand 0

Strand 1

Strand 2

Ti
m

e

Stall due to Loss of Decoupling

In Order DAE

Ti
m

e

AP EP S0 S1 S2

Outrider

1
2 3

AP EP AP EP AP EP AP EP

DCBA

Figure 4.1: Loss of decoupling (LOD) events for access and execute
Processors (AP, EP) in DAE architectures. Perfect decoupling (A),
memory indirection LOD (B), compute-generated addresses (C), and
compute-generated control flow (D).

not experience continuous utilization. These resources could potentially be

shared, reducing area overheads. For example, memory-consuming strands

may execute integer or floating point arithmetic, causing replication of hard-

ware such as multipliers and shift units between decoupled processors. Tra-

ditional fetch resources such as instruction caches also represent duplicated

hardware that can be shared.

4.1 Addressing Memory Indirection

Figure 4.2 shows our approach to addressing memory indirection LOD. Mem-

ory indirection can be alleviated by adding additional memory-accessing

strands. The original memory accessing stream can be split into strands, with

the goal of having at least one instruction stream internally non-blocking. By

adding strands, the amount of decoupling is increased and more parallelism

is exposed. In order to handle compute-generated instructions, we blur the

line between AP and EP by enabling the same functional units in each pro-

cessor. We then can employ additional memory-accessing strands by moving

18

In Order

DAE

Memory Instruction Stream

Compute Instruction Stream

Control Flow Instruction Stream

Memory Dependence (Cache Miss)

Compute

Memory

Computation Dependence

OUTRIDER
A E

B
A E

F
C

G G
g B

D g
F g

C D g

Strand 0

Strand 1

Strand 2

Stall due to Loss of Decoupling

In Order DAE

Ti
m

e

AP EP S0 S1 S2

Outrider

Additional Exposed Instructions

Figure 4.2: Memory indirection can cause LOD in DAE architectures.
Outrider can eliminate or substantially reduce LOD in these cases by
extracting more parallelism.

the critical loop from the EP and AP into a separate instruction stream that

accesses memory.

Increasing the number of strands increases the amount of hardware re-

sources required for the decoupled processor. We find that many programs

we evaluate only have one or two levels of memory indirection. This leads

us to choose four total strands in our design. In addition to additional reg-

ister file and fetch resources, the number of data queues for communication

increases with the number of strands in the system. Each instruction stream

may wish to communicate with any of the other strands. The number of

data queues required on such a system is an N2−N relationship, where N is

the number of strands. While scalability of increasing the number of strands

is weak, we find in practice that many programs do not communicate with

one or more of the other strands. Communication information is available

when strands are extracted, so we can utilize a dynamically partitioned buffer

and allocate a portion of the space for individual strands’ data queues. The

19

strand’s FIFO queue is in essence virtualized onto a part of the larger space.

This enables area efficiency in the case that space will not be allocated to fa-

cilitate communication between two strands when such communication does

not exist.

4.2 Addressing Resource Utilization

Scaling DAE to more than two strands results in many physical processor

entities that have hardware resources such as instruction fetch that could be

potentially shared. Resource utilization can be improved by the use of multi-

threading on a single processor. We propose having a general processor with

all the functional units and functionality to execute memory accessing and

memory consuming code, but with four contexts which each execute a single

strand. Because some software may exhibit memory indirection and enable

multiple strands and some may not, we also propose dynamically partitioned

data queues. When strands are extracted, a portion of the data queues is

allocated to each strand. These techniques are critical for enabling area

efficiency in Outrider and ensure that hardware will not be left unutilized.

20

CHAPTER 5

OUTRIDER ARCHITECTURE

Figure 5.1 shows a block diagram of the Outrider architecture which sup-

ports the decomposition of a thread into a maximum of four strands working

concurrently. The dynamically partitioned shared communication queue,

common and partitioned thread register files, and the out-of-order memory

access unit are the main additions to the baseline in-order core. All supported

structures necessary for achieving high performance with Outrider consist

of a low number of entries. In this section we also discuss memory consis-

tency and binding. We propose a simple technique for detecting deadlock

induced by software faults and a way to define precision of exceptions on a

strand-based architecture.

5.1 Communication Queues

Figure 5.2 presents our implementation for the data queues. In Outrider,

strands use hardware data queues for general communication or broadcast

of any value, unlike the special purpose queues found in DAE. The queues

provide in-order communication that can extend across multiple iterations

of a loop. Strands waiting for data from the queue are blocked, while other

strands continue execution. The queues can achieve good performance with

a small number of entries because when data is available on the queue it is

likely it will be quickly consumed by a waiting strand. Additionally, since

21

IQueues Execute

Decode

DCache

Common Partitioned

Register Files

Memory Access Unit

Miss Buffer

Load Buffer

Store Buffer

Communication Queues

Head
Table

Tail
Table

Offset
Table

Global

Decode

ICache
Partitioned

Offset
Table

Figure 5.1: Outrider expands a traditional in-order pipeline with
instruction queues, communication queues, a memory access unit, and
dynamically partitioned register files.

Communication Queues

Head
Table

Tail
Table

Offset
Table

GlobalPartitioned

Head

Tail

DataDataSize
Table

Queue Data

Data

Figure 5.2: Outrider uses a partitioned buffer and per-strand pointer
tables to facilitate communication between each strand.

22

the strands are mostly independent, the frequency with which communication

occurs is relatively low. The communication queue is mapped to architec-

tural registers 1, 2, and 3 in the register file enabling each of the strands to

communicate with one another. When reads and writes are performed using

these registers, the hardware tables are indexed and physical locations found

in the queue.

Figure 5.2 shows the communication queues and the hardware tables each

strand uses to access their partition, which is configured by the compiler.

For the initial study of Outrider we count the number of communication

occurrences between each strand and size proportionally to the total number

of communication occurrences. For strands that consume but rarely produce

data, larger receive queues and smaller send queues are allocated. When

the strand is initiated, the hardware tables are written using special purpose

registers.

One powerful aspect of Outrider that is different from DAE architectures

is the ability to complete instructions out-of-order into the communication

queues. This is particularly useful with sharing general data between strands,

or allowing loads to complete out of order when otherwise not blocked by a

outstanding store to the same address. When a strand issues an instruction

with another strand’s queue as the destination, it is given a queue offset,

corresponding to the tail of the queue where it will store. Using the queue

offset, the instruction can execute in any order and be written correctly into

the queue with in-order retirement enforced by the semantics of the queue.

A fixed size global data queue used for broadcasting common values among

strands is found in Figure 5.2. The global data queue is primarily used for

communicating control flow decisions between the strands. Each strand keeps

a head pointer to the global data queue that advances upon a reference to

23

Common

Partitioned

Register Files

Offset

Data

Address Data

Figure 5.3: Outrider partitions a register file between strands using a
table of offset pointers.

the queue.

5.2 Register Files

Figure 5.3 shows the register file system used in Outrider. Each strand

is allocated a portion of the register file by the compiler sized relative to

the working register set size of the strand. When the strand spawns, the

starting offset is set by writing a special purpose register. The strand then

uses architected register names 8-31 to access its portion of the register file.

Dynamic allocation enables high utilization of the register file, while allowing

flexibility for varying the number of registers between the strands. This

provides a benefit compared with separate and statically sized register files

for each strand.

Additionally there is a small portion of the register file not privately owned

by a single strand which allows constants to be shared among the strands,

24

Address Head

Tail

Miss Buffer

Load Buffer

L2 Cache

Store Buffer

Address Head

Tail

Data Address Head

Tail

Store Instruction
Write

Load Instruction
Write

Load Instruction
Associative Lookup

Memory Instruction
Write and Associative Lookup

Figure 5.4: Outrider utilizes a memory access unit which handles stores
and misses using an associative lookup structure, and loads using an
indexed structure. These buffers are utilized by the strands using hardware
pointer tables.

such as the stack pointer. These shared registers are only safe to be set at

the start of the function call or during a barrier synchronization between

the strands and remain unchanged throughout Outrider execution phases.

Strands use architected registers 4-7 to directly access the shared portion of

the register file.

5.3 Memory Access Unit

Figure 5.4 shows the memory access unit (MAU) which enables multiple

memory operations to be in flight simultaneously. The MAU supports eight

outstanding misses, eight load requests, and four store requests. The store

25

buffer is an associative buffer that is used to enforce memory ordering. The

low number of store entries that must be looked up associatively is effective

in keeping the design of the MAU compact. The MAU is shared across all

strands to enable correct memory ordering.

Stores are handled specially in Outrider as compared with DAE. Instead

of function-specific queues found in DAE, Outrider uses the associative

store buffer. st addr instructions which provide addresses are issued by

the memory accessing strands and combine with st data instructions which

provide the data to be stored. To enforce store orderings, we require that

each strand have either a st data or st data instruction for each store in

the original program.

To take advantage of the out-of-order completion abilities enabled by Out-

rider’s communication queues, the MAU allows independent loads to com-

plete out-of-order by checking the four-entry store buffer before servicing the

request from the cache. Only storing the miss-stream instructions reduces

the complexity of the MAU. Compared to previous work on DAE, the out-

of-order MAU mechanism in Outrider is an improvement since it does not

enforce in-order completion into FIFO queues, thus increasing the concur-

rency in the memory system.

5.4 Memory Consistency and Binding

Memory operations from strands are issued non-speculatively and are exe-

cuted in-order, thus respecting original program order. Memory dependences

are enforced inter-strand and all stores are issued to the memory system in

original program order, which maintains the perception of program order is-

sue with respect to other threads. For applications that need to enforce strict

26

ordering between strands, Outrider utilizes a pair of synchronizing instruc-

tions with full memory fence semantics. The two instructions mem proceed

and mem wait are used to signal a particular strand in a single direction

through the communication queues. A strand uses mem wait before a mem-

ory access to wait for the memory fence, while another strand executes a

mem proceed instruction to signal that the fence has been reached and that

it is safe to execute. Utilizing the memory fence can build a stronger consis-

tency model, which is necessary to retain the memory semantics of the origi-

nal thread, on top of the relaxed consistency model that Outrider naturally

supports.

Memory load values are bound when the operation can be completed at the

L1 cache, at which point it leaves the MAU. Outrider is a non-speculative

architecture enforcing that every memory operation issued will be committed.

Traditional load store queues found in out-of-order processors hold specula-

tive memory operations, which means that memory values do not bind until

retirement.

5.5 Deadlock and Exceptions

Outrider is a software threading technique, and deadlock in Outrider is

similar to a software deadlock. Given correct program semantics and commu-

nication between strands, deadlock will not occur in Outrider. However,

it can occur in improper code if all strands are waiting on the queue for data

while the queues are empty, or if all strands are waiting to insert data into

the communication queues, but all the queues are full. Detection of deadlock

for software debugging purposes is straightforward, and requires checking to

see if all strands are blocked in the aforementioned case. When deadlock

27

is detected, the pipeline, instruction, and data queues are flushed and an

exception is raised to allow the runtime system to recover.

Software that targets Outrider is composed of multiple strands extracted

from a single thread of execution. The concurrent execution of memory-

accessing strands and the memory-consuming strand requires that one pro-

gram counter (PC) be kept for each strand. To enable precise semantics for

faulting memory instructions, we define the point of the exception in the

memory-accessing strand to occur immediately before the memory access

triggering the fault. The fault is initially stalled and the strand issuing the

faulting instruction is blocked. The memory-consuming strands are allowed

to continue executing until they reach the instruction dependent on the fault-

ing instruction. At this point, the fault is delivered precisely across strands

comprising the original thread: at the PC of the faulting instruction in the

memory-accessing strand and at the PC of the first dependent instruction in

the memory-consuming strand. Recovery from an exception would require

addressing the fault in the memory-accessing strand and restarting it. Do-

ing so will cause the memory-consuming strand to unblock and execution to

proceed as normal.

28

CHAPTER 6

STRAND EXTRACTION

Outrider depends on compiler extraction of strands from the original thread

by examining the control and data flow graphs (CDFG) and partitioning the

program into memory accessing and memory consuming instruction streams.

We assume that leaf node functions make up the majority of execution time

of data parallel applications for the purposes of this paper. This simplifies

handling of parameter and return values, and enables different transforma-

tions on a function-by-function basis which allows additional flexibility. We

also assume that the function we transform will output data directly to the

memory system rather than return a value for simplicity.

Past research has demonstrated code partitioning and optimization such as

[8] and [9], and the approach Outrider adopts is similar. In short, memory

dependence chains are identified and strands are created along memory access

- memory consumption lines. The process to extract strands consists of five

phases of strand assignment: load and stores, address generation, control

flow, unassigned instructions, and final partitioning.

For the purposes of this thesis, manual construction of strands is performed

using the partitioning process presented. The partitioning process has suc-

cessfully generated the benchmarks used in the evaluation section, which in-

cludes programs with memory-indirection and compute-generated addresses.

Using prior research, we have made substantial progress on automated code

generation and find that performance is within 6% of the sobel benchmark.

29

.BB1:
 slli $7, $4, 2
 add $9, $8, $23
 add $9, $9, $7
 add $10, $8, $24
 ldw $9, $9, 0
 slli $9, $9, 2
 add $7, $10, $7
 add $9, $19, $9
 ldw $6, $7, 0
 add $7, $18, $2
 ldw $5, $9, 0
 fmul $5, $6, $5
 ldw $6, $7, 0
 fadd $5, $6, $5
 stw $5, $7, 0
 addi $4, $4, 1
 clt $6, $3, $4
 bgt $6, .BB1

Communication

Broadcast

Copy Instruction

Store Pair

1

2

3

slliadd

ldw

fmul

fadd

stw

addi

clt

bgt

ldw

ldw

ldwadd

add

add

add

add

slli

slliadd

ldw

fmul

fadd

stw

addi

clt

bgt

ldw

ldw

ldwadd

add

add

add

add

slli

slliadd

ldw

fmul

fadd

staddr

addi

clt

bgt

ldw

ldw

ldwadd

add

add

add

add

slli

2

0

0

2,1

1

1 1

1

1

1

1

2

2

2

2

1,0

1

1

2

3

1

2

3

stdata
2,1,0

2

0

0

1

1 1

1

1

1

1

2

2

2

2

1

copy

2

10
bgt bgt

1 02

1

Compute Memory Address
Generation

Control
Flow

Highlighted
Intra-block

Data Dependence
Inter-block

Data Dependence
Strand

Assignment

1
copy

2

(a)

.BB1:
 slli $7, $4, 2
 add $9, $8, $23
 add $9, $9, $7
 add $10, $8, $24
 ldw $9, $9, 0
 slli $9, $9, 2
 add $7, $10, $7
 add $9, $19, $9
 ldw $6, $7, 0
 add $7, $18, $2
 ldw $5, $9, 0
 fmul $5, $6, $5
 ldw $6, $7, 0
 fadd $5, $6, $5
 stw $5, $7, 0
 addi $4, $4, 1
 clt $6, $3, $4
 bgt $6, .BB1

Communication

Broadcast

Copy Instruction

Store Pair

1

2

3

slliadd

ldw

fmul

fadd

stw

addi

clt

bgt

ldw

ldw

ldwadd

add

add

add

add

slli

2 2,1

1

1 1

1

1

1

1

2

2

2

1,0

1

1

2

3

1

2

3

1

Strand
Assignment

(b)

.BB1:
 slli $7, $4, 2
 add $9, $8, $23
 add $9, $9, $7
 add $10, $8, $24
 ldw $9, $9, 0
 slli $9, $9, 2
 add $7, $10, $7
 add $9, $19, $9
 ldw $6, $7, 0
 add $7, $18, $2
 ldw $5, $9, 0
 fmul $5, $6, $5
 ldw $6, $7, 0
 fadd $5, $6, $5
 stw $5, $7, 0
 addi $4, $4, 1
 clt $6, $3, $4
 bgt $6, .BB1

Communication

Broadcast

Copy Instruction

Store Pair

1

2

3

slliadd

ldw

fmul

fadd

staddr

addi

clt

bgt

ldw

ldw

ldwadd

add

add

add

add

slli

1

2

3

1

2

3

stdata

2

0

0

1

1 1

1

1

1

1

2

2

2

2

1

copy

2

10
bgt bgt

1 02

Compute Memory Address
Generation

Control
Flow

1
copy

2

(c)

Figure 6.1: Strand extraction process. A program’s control data flow graph
(CFDG) (a) is used during the partitioning. The CDFG is traversed to
assign memory operations and address generation instructions to strands
(b). Finally, control flow and compute instructions are partitioned (c).
Shared instructions must be split and communicated using copy
instructions, and control flow decisions are broadcast to all strands

Our automated code generation results are preliminary, but serve to pro-

vide evidence that automatic generation is close to manual construction, and

within reach. Complete details about automated code generation for Out-

rider are outside the scope of this thesis.

We provide an example of the strand extraction process using the inner

loop of the sparse-matrix vector multiply of the cg benchmark. Figure 6.1(a)

presents the CDFG of the original inner loop in which the addi instruction

acts as a loop counter which provides data for itself and the slli shift in-

struction used for calculating memory addresses. Figure 6.1(b) depicts the

strand assignment of the inner loop after Phases 1 and 2 are completed and

the loads, stores, and address generation have been processed. Figure 6.1(c)

shows the final instructions and their association after Phases 3, 4, and 5 are

completed and the control flow, compute, and shared instructions have been

30

partitioned.

6.1 Phase 1: Partition Loads and Stores

Phase 1 identifies load operations and uses them as a partitioning point for a

strand. Instructions backwards in the CDFG from a load operation represent

address generation, while instructions found forward in the CDFG represent

memory-dependent instructions. Stores represent an endpoint of the CDFG

and are placed in the same strand to ensure proper store ordering. Stores

have both address generation and data value generating instructions found

backward in the CDFG.

We define a hop as a load in the dependency chain that must be traversed

in the CDFG in order for values from a given load to reach a store operation.

We are interested in the maximum number of hops and hence the strand

that the load is assigned to. Using the CDFG, we identify each load and

traverse forward in the CDFG, recording the maximum number of hops and

assigning the load to the corresponding strand. Stores are split into multiple

instructions: the data will be supplied by the lowest strand, while the address

part of the instruction will be executed by all other strands. This is required

to prevent ordering issues caused by aliasing of loads in high level strands

with stores. Replication can add extra instruction overhead and introduce

an LOD event, but can be avoided if the compiler can perform source level

analysis or the programmer can provide information about variables and

parameter pointers. In our manual processing, we have access to the source

code and guarantee that aliasing will not occur. Figure 6.1(b) presents the

CDFG with loads and stores assigned to strands. The boxed load assigned

to strand 2 is a distance of two hops from the store, as its data is consumed

31

by another load.

6.2 Phase 2: Partition Address Generation

Instructions

Phase 2 uses the identified loads and stores and their assigned strands to

identify and partition the address generation instructions. Address genera-

tion instructions are defined as the back slice of instructions from a particular

load or store in the CDFG that contribute to the address. Only the instruc-

tions in the back slice found before reaching a load operation are considered

for inclusion in the same strand as the initial load.

To determine the address generation instructions and partition them to a

strand, we first consider memory operations assigned the highest level strand.

In the case that there are address generation instructions that are shared

between strands, the highest level strand will be the owner of the instruction.

The value will be communicated to the other strands in order to reduce

circular dependences and promote decoupling.

Starting at the highest level, for each memory at the current strand level:

1. Look backwards in the CDFG, marking all unassigned instructions as
belonging to this strand.

2. Terminate when an instruction has already been assigned.

3. Mark terminating instruction as also assigned to this strand

When address generation partitioning has been performed for all memory

operations at current strand level, the strand level to process is decreased,

and the process continues. When all strands have been assigned their address

generation instructions, the process is completed.

32

Figure 6.1(b) presents the address generation instructions assigned to strands.

The highlighted slli shift instruction is used by both a load in strand 2 and

strand 1. Figure 6.1(c) presents the same shift instruction accompanied by

copy instructions to communicate the value from strand 2 to strand 1.

6.3 Phase 3: Partitioning Control Flow

All stands progress through the program together using the same control flow

decision. We enable one strand to communicate decisions to the rest of the

strands. As a result, we partition the control flow decision to be handled by

the highest level strand that can produce the result to enable decoupling.

We identify branch instructions and look backward through the CDFG

marking unassigned instructions as control flow instructions. When an as-

signed memory or address generation instruction is reached, the terminating

instruction is marked to indicate it will forward data to the control flow in-

struction stream. We record each terminating instruction’s allocated strand,

until the backward search has completed for a given branch instruction. At

that time, the control flow instructions discovered are allocated to the highest

level strand providing data to the control flow.

Figure 6.1(c) depicts the instructions marked as control flow. Though the

addi instruction is used for control flow, it was detected as address generation

belonging to strand 2. Since the clt instruction which generates the control

flow decision has no other operands, it is also assigned to strand 2, and will

broadcast to all instructions. Figure 6.1(b) and Figure 6.1(c) highlight the

branch instruction which is replicated across all strands.

33

6.4 Phase 4: Partition Unmarked Instructions

The last stage is to mark the unmarked instructions as compute, which pro-

vide data to store operations and are placed in the lowest strand. We traverse

backwards through the CDFG starting at the store instruction, and mark the

instructions as compute. We terminate our search when an instruction has

already been marked, at which point the terminating instruction is marked

to forward data to the lowest level strand. At the end of the compute phase,

all instructions will have been marked in the function. Figure 6.1(c) depicts

the fmul and fadd floating point instructions being assigned to the lowest

level strand, strand 0.

6.5 Phase 5: Final Partitioning

With all instructions marked, strands are created. Figure 6.1(c) shows the

final partitioning of instructions. Loads and their address generating in-

structions are included in their assigned strand, using the data queues to

communicate their resulting values to the dependent strand utilizing copy

instructions. Stores are split, with the address providing instruction staddr

assigned to strand 1 and the data providing instruction stdata assigned to

strand 0, enabling the compute to pass the data directly to the store unit.

Control flow instructions are assigned to their respective strand, with the

result being broadcast to all the other strands. Branch instructions which

source the globally-communicated decision are copied to all strands. Instruc-

tions that are shared among strands are placed in the highest level strand,

and communicated to other strands using copy instructions.

34

6.6 Mapping Strands to Hardware

During partitioning, more strands can be created than hardware has re-

sources for. For example, a function with many levels of memory indirection

may generate five strands, more than the four strands that Outrider sup-

ports. In the case that too many strands are generated for the hardware to

handle, we reduce the number of strands to the maximum size permitted by

hardware by combining some of the strands.

In general, strands adjacent to one another in terms of the number of hops

are considered for merging together. Specifically, we perform several passes

using different priorities. During each pass, we reduce the number of strands

by one. First we identify loss of decoupling events and merge those strands,

as those strands will have the least amount of performance improvement.

Next, strands that are allocated very few instructions incur extra overhead

for communication and control flow, which can hurt performance efficiency.

Finally, we choose the high level strands as a last resort to reducing the

amount of strands to the maximum allowed by the architecture.

After the code has been partitioned into strands, the compiler is responsi-

ble for generating setup code. The number of strands extracted and resource

allocation information is written to a special purpose register and a com-

mand is issued which spawns the threads, at which point they begin fetching

instructions from the initiating thread’s PC. A jump table is used to direct

the strands to the relevant code section they are to execute. Strands execute

until the function is finished, at which point decoupling is turned off.

35

Strand 0 Strand 1

.BB1:

 slli Rb, Ra, 2

 add Re, Rc, Rd

 add Re, Re, Rb

 add Rg, Rc, Rf

 ldw Re, Re, 0

 slli Re, Re, 2

 add Rb, Rg, Rb

 add Re, Rh, Re

 ldw Rg, Rb, 0

 add Rb, Ri, Rj

 ldw Re, Re, 0

 fmul Re, Rg, Re

 ldw Rg, Rb, 0

 fadd Re, Rg, Re

 stw Re, Rb, 0

 addi Ra, Ra, 1

 clt Rg, Rk, Ra

 bgt Rg, .BB1

.BB1:

 copy Ra, CQ21

 add Rd, Rb, Rc

 slli Re, CQ21, 2

 add Ra, Rd, Ra

 add Re, Rf, Re

 ldw CQ10, Ra, 0

 add Ra, Rg, $2

 ldw CQ10, Re, 0

 ldw CQ10, Ra, 0

 staddr Ra, 0

 bgt GQ, .BB1

.BB1:

 fmul Ra, CQ10, CQ10

 fadd Ra, CQ10, Ra

 stdata Ra

 bgt GQ, .BB1

 slli Rb, Ra, 2

 copy CQ21, Rb

 add Re, Rc, Rd

 add Re, Re, Rb

 ldw CQ21, Re, 0

 addi Ra, Ra, 1

 clt GQ, Rf, Ra

 bgt GQ, .BB1

Communication

Broadcast

Copy Instruction

Original Code
Strand 2 Strand 1 Strand 0

OUTRIDER Decoupled Code

Store Pair
11

2

3

2

3

.BB1:

Figure 6.2: Sparse matrix vector multiply code example from the cg

benchmark illustrating strand extraction. The basic block structure is
maintained across strands, with memory-dependent instructions being
placed into different strands. Control flow decisions can be broadcast from
one strand to all others using the global queue (GQ). Memory dependences
are communicated through the data queues (CQ). Shared data between
strands is accomplished through copy instructions which enable general
communication to occur across the data queues.

6.7 Code Example

Figure 6.2 presents the sparse-matrix vector multiply inner loop of the cg

benchmark and its partitioning into strands. The original code is presented

alongside the partitioned code, with corresponding instruction even between

the two. During Phase 1, all the loads and stores are identified and heights

recorded. Instruction (1) is determined to have a maximum height of 2, and

thus will be allocated to Strand 2. Phase 2 detects the address generation,

and Instruction (3) is shared between Instructions (1) and (2). As a result,

Strand 2 is responsible for communicating the queue to Strand 0 using the

data queues. Copy instructions are used to communicate the value between

the two strands. Phase 3 identifies the control flow instruction, of which no

instructions rely on a memory instruction. As such, they are assigned to the

highest level strand, Strand 2, which broadcasts the control flow decision to

the other strands. The memory store straddles Strands 1 and 0 by using a

36

pair of instructions that provide the address and data to the store unit.

37

CHAPTER 7

EVALUATION METHODOLOGY

We evaluate Outrider by comparing against traditional fine-grained si-

multaneous multi-threading [10] (SMT). We use the 1024-core throughput

architecture shown in Figure 7.1. The cache hierarchy comprises three lev-

els. Each core is a two-wide issue in-order with private L1 instruction and

data caches and a RISC-like instruction set. Eight cores, an interconnect,

and network interface form a cluster and share a unified L2 cache. The clus-

ters connect to a multi-banked shared last-level L3 cache through a two-level

interconnect network. Every four banks of L3 have an independent GDDR

memory channel. Table 7.1 lists the chip and core design parameters.

The simulator infrastructure is execution-driven and models cores, caches,

interconnects, memory controllers, and DRAM. Each benchmark is executed

for at least one billion instructions. For evaluation, we use a set of six op-

timized parallel kernels from scientific and visual computing applications.

The benchmarks exhibit a high degree of parallelism and are written using

a task-based, barrier-synchronized work queue model similar to Carbon [11],

but implemented fully in software. The benchmarks include conjugate gra-

dient linear solver (cg), 2D fast Fourier transform (fft), 2D stencil (heat),

k-means clustering (kmeans), medical image reconstruction (mri), and edge

detection (sobel). Benchmarks are decomposed into strands manually as

shown in Chapter 6.

38

Table 7.1: Simulation parameters for our 1024-core architecture.

Core Base 8 stage, 2-wide in-order, 32 entry RF
BTFN branch prediction, 8 entry BTB

Outrider max 4 strands per thread, 32 entry shared RF
32 entry shared communication queues

Multi threading 8 entry instr. queue, 32 entry RF per thread
L1 ICache 2kB 2-way, 1 cycle, 2 Misses, Next-line Pref.
L1 DCache 1kB 4-way, 1 cycle, 8 Misses, 8 Loads, 4 Stores
L2 Cache 64kB Shared. 4 cycle, 8-way
Interconnect Two-level tree and crossbar, 16+ cycle latency
L3 Cache 4MB Shared, 32-Bank, 4 cycle, 8-way, Next-line Pref.
DRAM 8 Channels & GDDR5

0

1

2

3

4

1

2

7

8

1

2

11

12

1

2

15

Two-level Tree
Interconnect

L3$0 L3$1 L3$2 L3$3 L3$4 L3$5 L3$6 L3$7

DRAM
Bank 0

DRAM
Bank 2

DRAM
Bank 1 DRAM

Bank 4
DRAM
Bank 6

DRAM
Bank 3

DRAM
Bank 5

DRAM
Bank 7

Crossbar Interconnect

Tile7Tile6
…

C0

8-Core Cluster

L2 Cache

C1 C2 C3

C4 C5 C6 C7

Figure 7.1: Evaluation architecture

39

CHAPTER 8

PERFORMANCE EVALUATION

8.1 Overall Performance

Figure 8.1 compares the performance of Outrider to the baseline single-

threaded core architecture, two-way and four-way SMT. Figure 8.2 shows

the harmonic mean of the increase in misses observed at the L1, L2, and L3

caches. Two-way SMT improves performance by 25% over the baseline, while

four-way SMT has mixed results due to a significant amount of contention

at the L3 cache which counteracts potential performance gains. Four-way

SMT performs best when contention is kept to a minimum, as in mri. The

direct extraction of MLP enables Outrider to outperform two-way and

four-way SMT significantly despite being a single thread. SMT can expose a

small fixed amount of MLP, while increasing contention for shared resources.

Outrider does not significantly increase contention for shared resources

over the baseline and SMT cores despite executing the same memory stream

on the same amount of cache resources.

The performance gains in Outrider come from both the SMT interleaving

of strands and the MLP generated by strands. The SMT interleaving effect is

especially clear in kmeans, where performance is substantially improved over

the perfect cache case. Memory-intensive benchmarks such as cg and fft do

not see as much benefit from Outrider. This is due to extreme and irreg-

ular memory accesses that result in reduced utilization of cache resources, a

40

CG FFT HEAT KMEANS MRI SOBEL HMEAN
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

MT2

MT4

ORA

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 8.1: Overall performance of two-wide in-order baseline, two-way and
four-way SMT, and Outrider architecture relative to baseline.

SMT2 SMT4 OUTRIDER
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

L1

L2

L3

N
or

m
al

iz
ed

 In
cr

ea
se

 In
 M

is
se

s

Figure 8.2: Increase in cache misses in two-way and four-way SMT, and
Outrider architecture relative to two-wide in-order. Harmonic mean
across all benchmarks is presented.

41

4 8 16 32 64 128
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Number of Data Queue Entries

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 8.3: Outrider sensitivity study for data queue sizing. Performance
is harmonic mean of all benchmarks.

performance limiter also found in the baseline. On memory-intensive bench-

marks such as heat and sobel, which exhibit locality favorable to our cache

hierarchy, Outrider outperforms SMT by up to 87%.

8.2 Communication Queue Sizing

Figure 8.3 shows the mean sensitivity of Outrider to the size of the com-

munication queues. The harmonic mean for all benchmarks is presented.

Outrider requires a modest 32 entries to achieve nearly all of the per-

formance benefit on the data parallel benchmarks. The number of entries

in the communication queues represents the number of in-flight data that

have yet to be consumed by the memory-consuming strands and therefore

the ability to tolerate latency. We observe that when data is written into

42

4M/4L/2S 8M/8L/4S 16M/16L/8S 32M/32L/16S 64M/64L/32S
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Number of MAU Entries

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 8.4: Outrider sensitivity study for memory access unit sizing.
Performance is harmonic mean of all benchmarks.

the data queues, it is usually quickly consumed by a waiting strand. For

some applications, a communication queue of size eight entries is sufficient

to reach the peak performance possible. This is not true for applications

such as mri, where long chains of floating point operations dominate. This

application shows more bursty behavior, in which it consumes more data in

some parts of the computation chain than others. In this case, increasing the

communication queue to 64 entries can benefit performance.

8.3 Memory Access Unit Sizing

Figure 8.4 shows the mean sensitivity of Outrider to the size of the MAU.

The harmonic mean for all benchmarks is presented. Our results for Out-

rider demonstrate that our proposal can achieve good performance with 8

miss, 8 load, and 4 store entries in the MAU. Outrider sees relatively low

43

performance gains from increasing the MAU to a larger size. This is due

to high L1 and L2 data locality that is exploited in our benchmarks. As a

result we see a majority of performance increases from primary data cache

and L2 cache latency tolerance. A low number of entries allows for area-

and power-efficient implementation. Unlike the LSQ found in out-of-order

cores, the MAU must only track misses and load-store dependences. Ad-

ditionally, only the store and miss buffer are associative look-up structures.

Outrider enables this efficiency versus OOO cores because strands are non-

data-speculative and allow out-of-order load completion into the data queues

through indexing.

8.4 Cache Latency Sensitivity

Figure 8.5 shows the mean sensitivity to L2 cache latency across all bench-

marks. We find that Outrider is not as sensitive to memory latency as the

baseline and SMT cores; a two-way SMT processor with a 16-cycle L2 Cache

latency performs as well as Outrider with 64-cycle L2 Cache latency. SMT

cores can only extract a small amount of MLP per thread, while Outrider’s

explicit decomposition into non-blocking memory strands enables more MLP

to be uncovered. In some cases four-way SMT outperforms two-way SMT as

L2 cache latencies increase, as the extra MLP provides benefit greater than

the degradation due to L3 cache contention. In some benchmarks, such as

mri and sobel, insensitivity exists up to 64 cycles without significant per-

formance degradation. Outrider begins to exhibit sensitivity to L2 latency

at 32 cycles due to reaching MAU and communication queue capacity limits.

Additional MLP exists in the memory strands, and increasing the MAU and

communication queue size allows additional insensitivity to latency.

44

4 8 16 32 64 128
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

BASE

MT2

MT4

ORA

L2 Cache Latency

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 8.5: L2 cache latency sensitivity study, comparing performance of
in-order baseline, two-way and four-way SMT, and Outrider architecture
relative to in-order baseline with L2 latency of four cycles.

8.5 Cache Size Sensitivity

Figure 8.6 shows the mean sensitivity of Outrider and SMT to cache sizing

for all benchmarks. As the size of the L1 data cache is increased, all pro-

cessors see improvement. The increase in cache size decreases the amount

of cache contention which improves SMT, but the additional storage space

also benefits Outrider and the baseline. Outrider experiences a larger

benefit due to increased cache sizing, as the MAU and L1 data cache can be

utilized more efficiently.

45

32B 128B 512B 2048B 8192B
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

BASE

MT2

MT4

ORA

L1 Data Cache Size

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 8.6: L1 data cache size sensitivity study, comparing performance of
in-order baseline, two-way and four-way SMT, and Outrider architecture
relative to in-order baseline with L1 data cache size 32B.

46

CHAPTER 9

OVERHEAD EVALUATION

Table 9.1 presents the amount of added instruction overhead among the

benchmarks. Instructions that copy shared data between strands, and control

flow instructions needed to direct dependent strands make up the overhead;

The number of memory operations and computation instructions remains

the same. The harmonic mean of the instruction overhead is 14%, which

compared with the 62% mean performance improvement is a performance-

overhead advantage. Further reduction in the branch overhead can be achieved

by traditional techniques such as loop unrolling. While the overhead can

reach 38%, these instructions consume less energy as compared with memory

and floating point operations, which dominate the application’s instruction

stream.

We use Cacti 6.5 [12] to estimate the power and area cost for implementing

Outrider in a 45nm process. The added structures are the communication

queues, offset tables, instruction queues, and the MAU. We also model the

cost of adding threads for the SMT processor. The resulting area is found in

Table 9.2. For register files and communication queues we assume SRAM,

while for instruction queues, MAU, and hardware tables we assume latches

with size 8 µm2 per bit including overhead. From Table 9.2, we see that the

majority of area is taken up by the communication and instruction queues.

Past work such as Rigel [13] is able to fit 1024 single-threaded cores in 320

mm2 in a 45nm technology. The total extra area for Outrider compared to

47

Table 9.1: Total instruction overhead for Outrider compared to the
baseline in-order design. Outrider copy instructions and replicated
branch instructions are also shown.

%Total %Copy %Branch
cg 14.59% 8.39% 6.19%
fft 37.82% 14.74% 23.08%
heat 14.10% 9.87% 4.22%
kmeans 24.37% 11.30% 13.07%
mri 6.05% 4.03% 2.02%
sobel 14.29% 13.17% 1.12%

hmean 13.57% 8.56% 3.15%

Table 9.2: Area overhead of Outrider, SMT2 and SMT4 in regards to
additional storage required.

Item Addition ORA Area SMT2 Area SMT4 Area
MAU (1) 8/8/4x32 5,124 µm2 5,124 µm2 5,124 µm2

Reg. Files 32x32 bit None 12,071 µm2 36,214 µm2

Comm.Queues 32x32 bit 12,071 µm2 None None
Instr. Queues 8x32 bit 8,192 µm2 4,096 µm2 8,192 µm2

CQ tables (12) 4x5 bit 1,920 µm2 None None
RF tables (4) 5 bit 20 µm2 None None

Total 27,327 µm2 21,291 µm2 49,530 µm2

48

such a system is 27.9 mm2 or about 8.7%. SMT2 systems require 21.8 mm2

(6.8%) and SMT4 systems require 50.7 mm2 (15.8%). As such, we believe

that from a performance per area perspective, Outrider is a significant

improvement over SMT.

49

CHAPTER 10

RELATED WORK

In this section, we discuss other reduced-complexity processor architectures

that leverage either hardware or software approaches to provide some level

of memory latency tolerance. Table 10.1 presents the high level features

and differences between several designs that are most related with Out-

rider. Outrider relies on the compiler to extract parallelism instead of

costly hardware structures and as a result does not require duplicated ex-

ecution of memory access instructions or compute instructions as found in

other designs. Outrider is a proactive and non-speculative mechanism

that provides both memory and functional unit latency tolerance through

extracting up to four semi-independent strands of execution. Additionally,

Outrider leverages hardware and software techniques to minimize hard-

ware and instruction execution overheads. While other designs require entire

thread context hardware state per thread or even processor fetch, decode and

functional units to be replicated, Outrider enables an area efficient design

without this requirement.

10.1 Compiler-Enabled Techniques

VLIW and EPIC processors leverage the compiler to schedule instructions to

avoid both functional and memory latency. The instruction scheduling is best

performed by using a software pipelining approach and loop unrolling. This

50

Table 10.1: Differences between related work and Outrider.
Outrider trades off hardware complexity for software complexity,
reducing duplicated instruction execution and large hardware structures.

Overheads Benefits

Hardware/Software Overheads Speculation Duplicate Execution Overhead Latency Coverage Memory Access Support

Extracted
Concur-

rency

Large
Inst.

Buffers

Increased
Context

Hardware

Hardware
Data

Queues
Compiler
Support

Speculative
Memory
Access/

Prefetch-
ing

Memory
Address/
Access In-
structions

Compute
Instruc-

tions

Branch
Instruc-

tions Proactive
L1 Access
Latency

L2/L3
Access

Latency

Memory
Disam-

biguation

Memory
Indirec-

tion

More
Than Two
Memory
Strands

VLIW/EPIC X X X X X X
DSWP X X X X X X
Helper Thread X X X X X X X
Slice Processors X X X X X X X
Hardware Scout X X X X X X
Flea-Flicker X X X X X X X X
ICFP X X X X X X X
DAE X X X X X X X
MISC X X X X X X X
Outrider X X X X X X X X X

enables instructions from multiple loop iterations to be executed at the same

time in order to overlap functional unit latency. Besides loop control struc-

tures, additional memory latency can be tolerated using speculative code

motion [14]. VLIW and EPIC machines have been implemented as products

and the approach is found in Intel Corporation’s Itanium and Transmeta’s

Crusoe processors [15, 16]. VLIW and EPIC designs have significant hard-

ware overheads such as very complex register file, due to increased entries re-

quired for more in-flight (live) values and more ports for larger issue widths.

Outrider minimizes hardware overheads through hardware data queues

which store only inflight values from long-latency operations as opposed to

every value. Utilizing code motion techniques to move load instructions

significantly before their use can require data to be speculated and load in-

structions to be moved in front of stores. This requires significant hardware

resources to perform memory disambiguation, and requires software fixup

code to be included in the program binary. Outrider is non-speculative,

which removes the need for techniques like code motion. Even with code

motion, VLIW and EPIC designs can still be sensitive to memory latency

and can stall if not enough software pipelining is done. Outrider enables

even L2 and L3 latency tolerance and tolerates memory indirection non-

51

speculatively, unlike VLIW and EPIC designs. Additionally, VLIW designs

lead to increased code footprint size, which impacts instruction cache design.

Outrider does not require unrolling of code to achieve performance im-

provement and can tolerate latency using its low-complexity communication

queues.

DSWP and STLP are general approaches that extract thread-level par-

allelism from loops, while Outrider focuses purely on overlapping mem-

ory latency in code with or without loops. STLP partitions loop iterations

into separate threads speculatively. DSWP uses a loop’s dependency graph

and static estimated instruction latency to allocate instructions into threads.

Both schemes allow memory dependences to exist within a single thread.

While complex EPIC or OOO cores these approaches target can tolerate vari-

able load latency in these dependences, simple cores cannot. Outrider uses

a stricter and fine-grained scheme that partitions precisely along memory ac-

cess/consumption lines to avoid costly exposed latency in high-throughput

systems with simple inorder cores. Outrider is complementary as a mem-

ory latency tolerance technique to parallel partitioning techniques (DSWP

authors in TACO 2008).

Decoupled software pipelining (DSWP) is a compiler technique that cre-

ates parallel tasks to be generated from sequential programs [17] with loops.

A loop is partitioned into pipeline tasks and those tasks are mapped into

physical thread contexts in a CMP system, made up of either out-of-order

or VLIW/EPIC processors. The motivation is to create parallelism from

sequential code and is targeted at high-performance wide-issue processors

that already have some degree of memory latency tolerance. This is a differ-

ent motivation than Outrider, which targets highly parallel systems and

applications on simple in-order processors. DSWP partitions based upon

52

strongly-connected components in the dependency graph, while estimating

the latency per instruction to combine these SCCs into the threads run on

the processor. Following this partitioning scheme can result in memory de-

pendences existing in a single thread. Caches misses at these instructions can

lead to exposed latency on simple in-order processors. Outrider assumes

that variable-latency memory instructions are the most costly, and specif-

ically partitions along memory-access memory-consumption lines to avoid

exposed latency. DSWP is complementary to memory-latency tolerant tech-

niques such as those found in Outrider and can improve performance [18].

10.2 Preexecution Techniques

Hardware scout was proposed to enable memory latency tolerance for in-order

[19, 20] and out-of-order designs [21]. On an L2 cache miss, the processor

checkpoints its state and proceeds to pre-execute instructions during the du-

ration of the miss with the goal of generating prefetches. When the cache

miss returns, execution resumes at the instruction that caused the miss. This

technique works well when only single levels of cache misses are observed.

When memory indirection causes several memory accesses which each miss

in the cache, hardware scout is not effective. Outrider extracts multiple

strands, which allows higher performance in the case of memory indirection.

Hardware scout is speculative and performance depends on correct branch

prediction during the pre-execute period. The prefetches generated by hard-

ware scout are sensitive to correct branch prediction, timeliness, and cache

contention, unlike Outrider in which data is not prefetched or speculated.

Pre-execution of address-generation, control, and compute instructions dupli-

cates work that is done by the main program. As a non-speculative program,

53

Outrider does not duplicate address generation and compute instructions.

Flea-flicker [22] improves on hardware scout by adding a large instruc-

tion buffer to handle dependent memory operations and adds a result store

buffer to enable the reuse of pre-executed instructions to combat data de-

pendences. However, address generation instructions and control flow in-

structions are reexecuted, unlike Outrider. Flea-flicker enables prefetching

multiple levels of memory indirection through making multiple passes over

the instructions in the instruction buffer. Like hardware scout, prefetches can

be sensitive to correct branch prediction, timeliness, and cache contention.

Unlike Flea-flicker, Outrider does not require a large instruction buffer to

handle memory indirection and instead explicitly exposes MLP in multiple

strands to achieve performance. Additionally, a result store buffer is not

needed as data dependences can be targeted using the software partitioning

into strands in Outrider.

In-order continual flow pipelines (iCFP) [23], and Simultaneous Specula-

tive Threading (SST) [24] allow execution to continue normally under a cache

miss by deferring dependent instructions and their operands to a hardware

queue. The deferred instructions are executed once the cache miss returns.

This is an improvement over previous preexecution work as no duplicate

instruction execution is required except under a misspeculated branch de-

pendent on a cache miss. However, memory disambiguation hardware is

required in order to detect violations. Outrider does not rely on adding

large structures, such as large deferred instruction queues, or multiple check-

points to provide memory latency tolerance. Another difference is that iCFP

and SST spend overhead cycles fetching and decoding instructions only to

defer them to the deferred queue. This is a reactive mechanism that can

potentially waste issue slots that could be used for executing independent

54

instructions. By using the compiler to partition dependent instructions into

strands, independent work can potentially be uncovered more quickly. iCFP

and SST also are limited to extracting only two stream of execution, while

Outrider can extract up to four.

10.3 Helper Thread Techniques

Slice processors [6] implement prefetching by dynamically extracting the

memory miss instruction stream and then executing that stream in paral-

lel with the main thread to prefetch data. When a miss occurs, the backslice

of instructions is identified that caused the miss. The extracted stream can

then be used to actively prefetch into the data cache. Like other prefetching

techniques, accuracy and timeliness are not guaranteed and executing the

prefetching instruction stream creates duplication of executed instructions.

Outrider is not speculative and does not prefetch data, nor does it require

duplicate execution of the memory accessing stream. Slice processors require

several large additional data structures, including a slice cache, an instruction

stream slicer, and the candidate selector predictor table. Outrider requires

much more meager hardware overheads, only enough to buffer instructions

and the data communicated between strands.

Helper threads [5] instantiate a partial thread of execution to improve the

performance of the main thread. This thread is either programmer or com-

piler generated, and can either run completely independently or be controlled

by the main thread. The main goal of the helper thread is to generate useful

prefetches and warm up the data cache for the main thread. Similar to other

prefetching techniques, helper threads are sensitive to timeliness and can

cause cache contention and thrashing with the main thread if not properly

55

controlled. Outrider is not a prefetching technique and is not sensitive as

helper threads are. Also, helper threads duplicate execution of the address

generation stream while Outrider does not.

10.4 Decoupled Techniques

Decoupled access/execute (DAE) provides memory latency tolerance by par-

titioning a program into two strands, one for executing memory instruc-

tions and one for executing compute instructions [7]. The programs are

run on separate processors and to handle dependences between compute

and memory, hardware queues are used for message passing communication.

Later related work to DAE included investigating silicon implementations,

code partitioning, strand balancing and memory latency tolerance limitations

[25, 26, 27, 28]. While DAE enables parallelism and can allow the memory

thread to create MLP, it is unable to handle memory indirection or compute

dependent memory accesses which degrade performance. Outrider utilizes

additional strand parallelism to remove this performance degradation. Ad-

ditionally, DAE requires in-order completion of memory accesses into the

FIFOs, and restricts data to only be from loads or to stores. Outrider en-

ables out-of-order completion of messages and general data communication

through the communication queues. Finally, Outrider utliizes SMT to

share fetch and execution resources and enable efficiency not found in DAE.

The Multiple Instruction Stream Computer (MISC) attempts to improve

over DAE by providing four one-wide issue in-order processors [29]. Up to

four strands can be extracted, with two of those strands allowed to access

memory. MISC relies on the compiler to provide guarantees of no memory

aliasing and proper load-store ordering. For programs that use pointer struc-

56

tures, there is no guarantee of correct memory ordering for multiple memory

strands and the partitioning must be restricted to a single memory strand.

Outrider enables all four strands to access memory with correct memory

ordering, which is enabled by a mixed hardware and software approach to

memory aliasing detection. The compiler conservatively places st addr in-

structions in all strands which are fed into the MAU. Later loads look in

the store buffer to maintain proper ordering. MISC has a downfall of poor

hardware utilization due to the strands executing on separate processors.

Each processor has an instruction cache, decode, functional units, and full

hardware queues to connect strands which, depending on the strand’s in-

struction stream, may not be fully utilized. Outrider uses SMT to share

the instruction cache, decode, and functional units, which enables high area

efficiency. Outrider removes the need for separate memory response and

general data queues, unifying them into a partitioned buffer. Using the parti-

tioned buffer split into dynamically sized queues allows higher area efficiency

and utilization of area, unlike MISC which requires a total of 24 separate

queues statically sized to the highest amount of slip and memory latency

tolerance desired.

More contemporary decoupling work involves hardware partitioning and

SMT [30]. In this work, the authors propose hardware partitioning of integer

and floating-point instructions into separate threads in order to extract MLP

using large instruction queues to hold dependent floating-point instructions

while they wait for the miss to return. These instruction queues needed can

be more than an order of magnitude larger that those required for Outrider,

and this technique is limited to floating point applications. Additionally, this

technique suffers from memory indirection and compute-dependent memory

accesses, which Outrider supports. The technique also only supports SMT

57

of different threads on either the EP or AP, unlike Outrider which uses

SMT across strands.

10.5 Orthogonal Techniques

Software pipelining [31] and loop unrolling allow the compiler to schedule

memory and other dependent operations in advance of their use as a way

to exploit ILP. Software pipelining involves unrolling loops to expose MLP

followed by rescheduling memory operations in advance of consuming instruc-

tions. Software pipelining increases the code footprint of the application and

more hardware registers can be required to hold in-flight values. In Out-

rider, the values communicated are consumed almost immediately, reducing

storage overhead.

Hardware and software prefetching often found in cached systems can be

effective in alleviating the memory latency problem by anticipating mem-

ory accesses and warming up caches. Hardware prefetching involves SRAM-

based structures that monitor the memory access stream and identify pat-

terns, while software techniques require duplication of part of the instruction

stream and user or compiler effort to insert prefetches. Unlike prefetching,

Outrider is non-speculative and has 100% utilization of all memory re-

quests, completely eliminating waste found in prefetching.

58

CHAPTER 11

CONCLUSION

In this thesis, we present Outrider, an architecture for directly exposing

MLP in highly parallel workloads. The memory wall is making the efficient

extraction of MLP critical to scaling performance on future CMPs. Out-

rider has the goal of increasing the efficiency of highly parallel CMPs by

decoupling the memory access streams from the rest of the computation. Do-

ing so allows for increased concurrency in the memory system with minimal

additional cost over our in-order baseline micro-architecture and without

additional thread contexts found in multi-threaded architectures. We find

that the key advantage Outrider provides over previous decoupled access-

execution architectures is the ability to continue decoupled execution when

memory indirection and data-dependent control flow are present in applica-

tions. Our results comparing Outrider to a conventional multi-threaded

architecture show that directly expressing MLP via strands rather than indi-

rectly through threads can provide performance advantages of 23–131%. Our

limits studies demonstrate that the hardware overhead of Outrider struc-

tures relative to our in-order baseline can be modest and much lower than

the cost of additional register files and increased cache sizing necessary to

support more threads. The result is a micro-architecture for parallel systems

that can take advantage of both TLP and MLP while relying on a simple

in-order pipeline and a lower number of explicit software threads.

59

REFERENCES

[1] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada,
M. Ratta, and S. Kottapalli, “A 45nm 8-core enterprise Xeon processor,”
in IEEE International Solid-State Circuits Conference, 2009, pp. 56–57.

[2] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson, and
J. Carter, “Architecting for power management: The IBM POWER7
approach,” in IEEE 16th International Symposium on High-performance
Computer Architecture, 2010, pp. 1–11.

[3] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[4] J. Shin, K. Tam, D. Huang, B. Petrick, H. Pham, C. Hwang, H. Li,
A. Smith, T. Johnson, F. Schumacher, D. Greenhill, A. Leon, and
A. Strong, “A 40nm 16-core 128-thread CMT SPARC SoC processor,”
in IEEE International Solid-State Circuits Conference, 2010, pp. 98–99.

[5] C.-K. Luk, “Tolerating memory latency through software-controlled pre-
execution in simultaneous multithreading processors,” in Proceedings of
the 28th Annual International Symposium on Computer Architecture,
2001, pp. 40–51.

[6] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi, “Slice-processors:
An implementation of operation-based prediction,” in Proceedings of the
15th International Conference on Supercomputing, 2001, pp. 321–334.

[7] J. E. Smith, “Decoupled access/execute computer architectures,” in Pro-
ceedings of the 9th Annual Symposium on Computer Architecture, 1982,
pp. 112–119.

[8] K. D. Rich and M. K. Farrens, “Code partitioning in decoupled compil-
ers,” in Proceedings of the 6th European Conference of Parallel Process-
ing, 2000, pp. 1008–1017.

[9] N. Topham, A. Rawsthorne, C. McLean, M. Mewissen, and P. Bird,
“Compiling and optimizing for decoupled architectures,” in Proceedings
of the 1995 ACM/IEEE Conference on Supercomputing, 1995, p. 40.

60

[10] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, 1995, pp. 392–403.

[11] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural sup-
port for fine-grained parallelism on chip multiprocessors,” in Proceedings
of the 34th Annual International Symposium on Computer Architecture,
2007, pp. 162–173.

[12] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimiz-
ing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2007, pp. 3–14.

[13] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: An
architecture and scalable programming interface for a 1000-core accel-
erator,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 140–151.

[14] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W.-m. W. Hwu, “Dynamic memory disambiguation using the memory
conflict buffer,” in Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, 1994, pp. 183–193.

[15] H. Sharangpani and H. Arora, “Itanium processor microarchitecture,”
IEEE Micro, vol. 20, no. 5, pp. 24–43, 2000.

[16] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson, “The Transmeta Code MorphingTM software: Using
speculation, recovery, and adaptive retranslation to address real-life
challenges,” in International Symposium on Code Generation and Opti-
mization, 2003, pp. 15–24.

[17] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread
extraction with decoupled software pipelining,” in Proceedings of the
38th Annual IEEE/ACM International Symposium on Microarchitec-
ture, 2005, pp. 105–118.

[18] R. Rangan, N. Vachharajani, G. Ottoni, and D. I. August, “Perfor-
mance scalability of decoupled software pipelining,” ACM Transactions
on Architecture and Code Optimization, vol. 5, no. 2, pp. 8:1–8:25, 2008.

[19] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay, “High-performance
throughput computing,” IEEE Micro, vol. 25, pp. 32–45, 2005.

61

[20] J. Dundas and T. Mudge, “Improving data cache performance by pre-
executing instructions under a cache miss,” in Proceedings of the 11th
International Conference on Supercomputing, 1997, pp. 68–75.

[21] O. Mutlu, H. Kim, and Y. N. Patt, “Efficient runahead execution:
Power-efficient memory latency tolerance,” IEEE Micro, vol. 26, pp.
10–20, 2006.

[22] R. D. Barnes, S. Ryoo, and W.-m. W. Hwu, ““Flea-flicker” multipass
pipelining: An alternative to the high-power out-of-order offense,” in
Proceedings of the 38th Annual IEEE/ACM International Symposium
on Microarchitecture, 2005, pp. 319–330.

[23] A. Hilton, S. Nagarakatte, and A. Roth, “iCFP: Tolerating all-level
cache misses in in-order processors,” IEEE Micro, vol. 30, no. 1, pp.
12–19, 2010.

[24] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Simultaneous speculative threading: A
novel pipeline architecture implemented in Sun’s rock processor,” in
Proceedings of the 36th Annual International Symposium on Computer
Architecture, 2009, pp. 484–495.

[25] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, and C. M.
Rozewski, “The zs-1 central processor,” in Proceedings of the Second In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 1987, pp. 199–204.

[26] J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter,
and H. C. Young, “PIPE: A VLSI decoupled architecture,” in Proceed-
ings of the 12th Annual International Symposium on Computer Archi-
tecture, 1985, pp. 20–27.

[27] L. K. John, V. Reddy, P. T. Hulina, and L. D. Coraor, “Program balance
and its impact on high performance RISC architectures,” in Proceedings
of the 1st IEEE Symposium on High-Performance Computer Architec-
ture, 1995, pp. 370–379.

[28] L. Kurian, P. T. Hulina, and L. D. Coraor, “Memory latency effects in
decoupled architectures with a single data memory module,” in Proceed-
ings of the 19th Annual International Symposium on Computer Archi-
tecture, 1992, pp. 236–245.

[29] G. Tyson, M. Farrens, and A. R. Pleszkun, “MISC: A multiple instruc-
tion stream computer,” in Proceedings of the 25th Annual International
Symposium on Microarchitecture, 1992, pp. 193–196.

62

[30] J.-M. Parcerisa and A. Gonzalez, “Improving latency tolerance of mul-
tithreading through decoupling,” IEEE Transactions on Computers,
vol. 50, no. 10, pp. 1084–1094, 2001.

[31] M. Lam, “Software pipelining: An effective scheduling technique for
VLIW machines,” in Proceedings of the ACM SIGPLAN 1988 Confer-
ence on Programming Language Design and Implementation, 1988, pp.
318–328.

63

