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Presented at the Seventh ACM International Conference on Supercomputing,
Tokyo Japan, July 19-23 1993.

Abstract

This paper examines the effectiveness of decoupling as an optimi-
zation technique for high-performance computer architectures.
Decoupled access execute architectures are described, and the con-
cept ofcontrol decoupling is introduced and justified. A descrip-
tion of a highly-decoupled architecture is given, and a metric for
the effectiveness of decoupling on particular programs, the Loss of
Decoupling frequency is introduced. Finally, a number of real
benchmark programs are examined and the applicability of decou-
pling them is analyzed.

1 Introduction

A number of papers have discussed the architectural optimization
decoupling over the last decade (see [2], [6], [7] and [8]). This
paper introduces control decoupling, a further technique for
increasing performance, and attempts to identify the class of pro-
grams over which decoupling is an effective technique to achieve
high performance.

The instruction set of modern computers (see, for example, refer-
ence [5]) is partitioned into three classes of instruction: control,
memory accessing and data operations. The decoupled architec-
tures that have been described to date, for example ZS-1[2],
PIPE[6] and WM[8], decouple between the latter two classes,
using “Decoupled Access/Execute,” in which the addresses for
memory references are generated in advance of the execution of
data-related instructions. This means that memory read operations
can be initiated many cycles before the read data is required for
execution, and the latency of main memory read operations (or
cache operation) can be hidden. Decoupled Access/Execute is
described in detail below, in section 2.

Less conventional is the use ofcontrol decoupling. This architec-
ture feature is introduced in order to maximize the use of main
memory bandwidth in an implementation, by exploring the con-
trol-flow graph of a program ahead of the time at which computa-
tion is required: this enables requests for packets of computation to
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be queued ahead of the time at which they are required, so that
when one computation has finished, another is ready to take its
place on the relevant unit. Control decoupling is described in detail
below, in section 3.

In order to determine how valuable these optimizations are, in
section 5 we introduce a conceptual framework for program events
that cause decoupling to break down: these Loss of Decoupling
events are of central importance to understanding the performance
of decoupled architectures. In section 6 we discuss briefly the per-
formance impact of Loss of Decoupling events. In section 7, we
conduct an examination of a range of popular benchmark programs
in order to understand the prevalence of these events.

2 Access Decoupling

In the architecture described here, Access Decoupling is imple-
mented by partitioning user instructions into two classes, memory
accessing and user arithmetic.

The memory accessing instructions are run on a special-purpose
processor, the Address Processor (AP), whose function is opti-
mized for the purposes of producing regular patterns of addresses,
such as found in numeric programs. The most widely used instruc-
tion in the AP is an addition operation, which adds register plus
register or register plus immediate, writing the result to another
register and initiating either a memory read or a memory write
operation. Apart from simple additions, the AP has no other data-
handling capability: it has no general multiplication, division or
logical operations.

The user arithmetic instructions are also run on a special-purpose
processor, the Data Processor (DP). This has a full set of integer
and floating-point arithmetic and logical operations, but no mem-
ory addressing instructions at all.

The AP and DP are connected by two types of queues: the Load
Data Queue (LDQ) and the Store Address Queue (SAQ). Entries in
these queues are made when the AP generates memory addresses,
but the two types of queues are used substantially differently. In the
architecture described in this paper there are two independent
LDQs connected to the two memory read ports, and one SAQ to
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drive the single memory write port. The relationships of these pro-
cessors and their queues can be seen in Figure 1 below.

When the AP generates a memory request for a Load operation, the
next free element in the relevant Load Data Queue is allocated and
marked “pending”. A request for a memory read at that address is
sent to the memory interface. When the read data is returned from
memory, it is placed into the queue element reserved at the time of
the request, and the element is marked as “valid”.

The Load Data Queues are available as source operands to instruc-
tions running in the DP, and an instruction that reads a queue sus-
pends until the top entry in the queue is marked “valid”, and then
pops this element. (In fact, the queues are mapped to two general-
purpose registers.) In this manner, every read memory access is
carried out by two instructions, one on the address processor to ini-
tiate the request, and one on the data processor to access the data.

Store operations are handled differently. When an address for a
store operation is generated by the AP, the address itself is written
to the next free element of the Store Address Queue, and marked
“valid”. Store operations are initiated in the DP, where every arith-
metic instruction contains a “store” bit. When this bit is set, the
result of the instruction is sent as data to main memory, in addition
to being written to a general-purpose register. When an instruction
with its “store” bit set completes, the oldest entry in the Store
Address queue is popped, and used as the address for a memory
write operation with the data generated by the instruction.

In this way, the AP may proceed through a program, keeping ahead
of the place where the DP is executing. This has the beneficial
effect of initiating memory read operations early, reducing the
impact of memory latency on execution time. In a fully decoupled

Figure 1. Processor Block Diagram
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program, once the decoupling between processors has been estab-
lished, the execution time is insensitive to latency, provided that
the main memory offers sufficient bandwidth to support the request
rate generated by the AP.

The purpose of generating store addresses earlier than performance
arguments would require is to ensure correct functionality: the
instruction-set specification of the architecture defines that mem-
ory operations have their semantics defined by the order in which
read and write operations are initiated by the AP. If the address of a
write operation, for example, is used as the address of a subsequent
read operation before the data for the write has been generated in
the DP, a comparator detects that the read cannot proceed, and the
AP is stalled until the condition can be resolved.

3 Control Decoupling

Control Decoupling is a further optimization that permits a Control
Processor (CP) to execute yet further in advance of the AP. The
first step is to give the Address and Data processors the capability
of running program inner loops, that is of running a body of
instructions a number of times, determined either by a loop-count,
or terminated in a data-dependent manner. Apart from simple
loops, the Address and Data Processors have no other control capa-
bility: they have no conditional jumps or subroutine call instruc-
tions.

All major control functionality, that is non-inner loop control, sub-
routine call and return, and dispatching inner loops to the Address
and Data Processors, is concentrated in the CP. Since user compu-
tation is carried out in the DP, the CP does not need floating-point
capabilities, but it does provide a full set of logical operations, inte-
ger addition and subtraction, integer multiplication (for array index
calculations inner loops have their index arithmetic strength-
reduced), integer division (for loop normalization), and a full set of
comparison and conditional and unconditional branch operations
that would be familiar to the programmer of any conventional
RISC instruction set. Memory accessing (both load and store oper-
ations) are provided conventionally in the CP instruction set.

In order to reduce the interaction between Control and Data Pro-
cessors, the DP supports an elaborate conditional-execution
scheme, with a full set of comparison operations on integers and
floating point operands, conditional execution of any of its instruc-
tion set, and a comprehensive set of condition combination instruc-
tions, which permit the compilation of nestedif..then..else
statements into guarded execution.

The CP invokes operations of the Address and DP using a special
instruction, which dispatches a unit of work called an Instruction
Fetch Block (IFB) to one of them. An IFB contains a pointer to the
first instruction, a length field, specifying the number of instruc-
tions to issue, and a loop count, identifying how many times to
issue these instructions. Instruction Fetch Blocks are enqueued by
the CP for both the Address and Data Processors: when a processor
has finished issuing instructions from one IFB, it can proceed to
issuing instructions from the next block, if there is one in the
queue, without delay. A set of parameter queues is provided to
allow the CP to pass data items to the Address and Data Proces-
sors.

In this manner, the normal operation of the system is that the CP is
executing instructions from the later part of a program. At the same
time, the AP is executing instructions from an earlier part of the
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program, and the DP is executing from a still earlier part. In this
way, all three processors are fully decoupled.

The benefit of Control Decoupling is that while one inner loop is
running on the AP, preparatory work for subsequent loops, such as
loop count calculation and array subscript arithmetic, may be car-
ried out in parallel, ensuring that no time is lost in the AP between
inner loop bodies.

A description of events during program execution that cause this
decoupling to break down is found below, in section 5.

3.1  CP Memory Ordering

All addresses produced by the CP are compared against all pending
DP write operations, whose addresses are held in the Store Address
Queue, and the CP is stalled if any conflict arises. Nevertheless, a
logical inconsistency may arise if the CP tries to read data that will
be written by the DP by an earlier part of the program, if the
address has not yet been generated because the AP has not yet
reached this part of the program.

In this system, it is the function of the compiler to eliminate such
inconsistencies by preventing the CP from decoupling from the AP
when an access of this type is possible.

4. Decoupled Execution: an Example

The diagram  in Figure 1 shows an overall picture of the control-
and address- decoupled machine. The way in which the two forms
of decoupling occur can be explained by reference to an example.
Consider the code fragment below :

DO 20 I = 1, M
DO 10 J = 1, N

A(I, J) = B(J) * S + C(I,J)
10 CONTINUE
20 CONTINUE

The inner loop, in J, is executed autonomously in the Address and
Data Processors: in each iteration, the AP initiates a memory read
for B(J) and C(I,J) and a queues the write address for
A(I,J), and the DP multiplies one Load Data Queue element by
the register holdingS, adds another Load Data Queue element and
stores the result. The AP relies on the availability of stride values
for theA(I,J) andC(I,J) accesses to avoid the need to do full
multiplications within the loop.

The CP implements the loop in I, and prepares the Instruction
Fetch Blocks and stride values for the AP and the DP. These are
passed to these Processors via the queues, enabling the CP to iter-
ate around the loop in I without re-synchronizing with the Address
or DP on each iteration.

5 When does Decoupling Break Down?

Figure 2 gives a framework for discussing the influence of program
events on both control and access decoupling. The broad arrows
show how the decoupling optimization is successful when the CP
is transferring information to the AP, and when the AP is transfer-
ring information to the DP. The numbered arrows, in the reverse
direction, represent inter-processor dependencies that can interfere
with decoupling by requiring that the CP or AP wait for a later unit

to “catch up”. We call each of these events a “Loss of Decoupling”;
each numbered arc in Figure 2 corresponds to exactly one type of
LOD event.

5.1  Computed Index Operations

Arc 1 in Figure 2 represents the case of the AP needing to wait for
the DP before initiating further operand fetches: this case arises
when a value computed in the DP must be conveyed back to the
AP to take part in address formation. A program fragment causing
such an event is illustrated below:

DO 10 I = 1, N
X[I] = ...
IX = ...X[I]
Y[IX] = ...

10 CONTINUE

This case is rare across the full range of numeric codes: it arises in
“Particle-In-Cell” codes, where a real particle position is calculated
and then quantized into a polygonal grid, and in Monte Carlo
codes, in which a discrete item is selected using a real-valued ran-
dom number generator.

5.2  Conditional Control Flow Operations

Arc 2 in Figure 2 shows the CP needing to wait for a condition to
be evaluated in the DP before it can issue further instructions: at
first glance, this event might seem to occur every time a condi-
tional statement is executed. However, since the DP can implement
conditionals internally, through the medium of conditional execu-
tion, this event only occurs when a condition causes a major
change of sequence in the Control Flow behaviour of the program,
for example, when a program conditionally calls a subroutine, or
conditionally executes an entire loop body. A program fragment
illustrating this type of event is shown below:

DO 10 I=1, 42
X[I] = ...

10 CONTINUE
IF (X[42] .NE. 0) CALL RENORM

Other types of program fragments which cause this type of LOD
event are loops containing conditional exits, and conditional sub-
routine returns. Again, this type of event is rare in most numeric
codes, and most occurrences prove to be highly predictable using a
branch prediction scheme, giving the compilation system a good
method for minimizing the performance impact of these events.

5.3  Control/Data Aliases

Arc 3 in Figure 2 shows the CP needing to wait for the AP to
“catch up”. This event needs to be generated when the compiler
detects a possible read-after-write hazard between a CP read and a

Figure 2. Events that May Destroy Decoupling
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write by either the AP or DP. A fragment of code illustrating this
event is shown below.

DO 10 I = 1, N
IV[I] = ... 10

CONTINUE
DO 20 I = 1, IV(100)

...
20 CONTINUE

The loop bound for the second loop is required before it can be dis-
patched: however, since the bound may be computed by the previ-
ous loop, the CP must be prevented from readingIV(100) before
its new value has been computed. In the ACRI system, it is safe for
the CP read to proceed as soon as it is known that all write
addresses for the first loop have been generated, since a run-time
“alias with outstanding write” check is carried out on all entries in
the Store Address Queue takes place, and a read that does conflict
is stalled until the data is generated by the DP.

5.4  Sparse and Pointer Operations

Arc 4 in Figure 2 shows an AP-AP dependency, which is signifi-
cant when the AP needs to wait for an AP memory read to finish
before it may initiate a further memory access. A program frag-
ment illustrating this event is shown below:

DO 10 I = 1, N
...A[IX[I]]

10 CONTINUE

In this fragment, the AP needs to fetch the value of theIX element
before it can fetch (or generate a write address for) the A array ele-
ment. This is typical code for sparse vector or sparse matrix opera-
tion, and while it is clearly necessary to optimize this for these
applications, the occurrence of this events in non-sparse numeric
codes is again rare.

Other types of inter-unit dependencies are much less significant
than the four identified above: a DP-DP arc, for example, would
indicate that a subsequent operation depended on a previous opera-
tion, both in the DP: this is a case that occurs in all pipelined
machines, and is resolved by a combination of pipeline forwarding,
code generation and stalling. A CP-CP arc represents a control-
control dependency, of the type that occurs in conventional RISC
microprocessors. Again, performance is maximized in these cir-
cumstances using conventional architectural techniques: caching
minimizes the impact of memory latencies and compiler code
scheduling maximizes the overlap of operations.

6 The Cost of an LOD

When the AP is ahead of the DP by an amount of time which is
greater than the memory latency, each LDQ pop performed by the
DP adds nothing to the program execution time. In effect the
latency associated with reading that piece of data is zero. It is
therefore useful to talk about theperceived latency, as the mean
number of cycles the DP must stall each time it tries to pop an item
off an LDQ. In the absence of LODs, the perceived latency (after
an initial start-up period) is always zero. This is, of course, an ideal
situation and in practice the dependencies outlined in section 5 lead
to the occasional re-coupling of the AP and DP (as well the CP and
the AP and/or DP). To assess the impact of LOD events on the per-
formance of the system we can use a simplistic LOD-penalty
model.

Let  be the idealized execution time of a program when mem-

ory latency is zero, let  be the mean penalty incurred in the

DP whenever an LOD occurs, and let  be the number of

LODs that occur in the program. Naturally, the total execution time

. We can think of the mean LOD pen-

alty as somewhat equivalent to the start-up time of a vector opera-
tion, although there are good reasons to believe that LODs are
strictly less frequent than vector start-ups. Following on from our
definition of  we can say that an efficient decoupled system will
have a low LOD penalty and requires a compiler which optimizes
for minimal LOD frequency.

7 The Frequency of LODs

To examine the frequencies of the various types of Loss of Decou-
pling events, we turned to the Perfect Club benchmark suite which
contains 12 programs chosen from a range of different supercom-
puter applications areas, running on problem sets which are small
enough to enable investigation on workstation-sized computing
environments.

The methodology we adopted was to profile these benchmarks
using conventional Unix tools (prof, Sun’stcov, and Mips’s
pixie programs). In common with many other applications, they
show significant instruction locality, in that a small number of rou-
tines in each program contributes a large fraction of the execution
time. We identified the areas of the programs that dominate the
computation, and examined those routines for the syntactic causes
of Loss of Decoupling events. Where these events were identified,
we describe the impact of the Loss of Decoupling, and suggest
ways that the compiler or applications programmer might reduce
this impact.

The analyses for six benchmarks are presented here: they are
SPICE, a circuit simulation package, OCEAN, an oceanographic
modelling program, BDNA, a molecular dynamics program which
computes interactions between DNA molecules and an ionic solu-
tion, DYFESM, a finite-element package, MDG, a program which
simulates the dynamics of water molecules, and QCD, which per-
forms Monte Carlo simulations of quantum chromodynamics. We
do not attempt a systematic study of Loss of Decoupling frequency
in this paper: this is currently on-going work and will be reported
in a subsequent publication.

7.1  Analysis of SPICE

The statements most frequently executed in the SPICE benchmark
occur within subroutineDCDCMP. This routine, whose purpose is
to perform an LU factorization of the matrix giving the coefficients
of the circuit, is called by the circuit solver. The functioning of the
routine, part of which is illustrated in Figure 3, is significantly
obscured by the data representation used and by the fact that
SPICE uses an internal memory management package. The code
fragment shown in the figure searches for an element located at
(i,j) in the coefficient matrix, and adjusts its value when it is
found. It is clear that a large number of addressing computations
are necessary to support each data operation: these are inevitable
with the data representation chosen, which allocates elements of
the matrix in a vector with no direct mapping of the matrix row and
column number to the position in the vector. This sparse allocation

tmin

Plod

Nlod

t tmin Plod Nlod⋅+=

t
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is, in turn,  inevitable given the constraints of the problem: the
matrix represents information between different ‘‘nodes’’ in the
circuit, and is necessarily largely full of zeros since most nodes are
not connected to most other nodes. In this fragment, however,
nearly 3.3 million index array references take place in order to per-
form 1.4 million data references.

This routine is essentially non-decouplable in any reasonable com-
puter structure, since every index array reference causes a control
transfer before the routine commits to making a data reference. It is
very hard to see any compiler-implemented transformation that
would improve this, and the only alternative for users wishing to
get significant speedups would be to re-code the algorithm using a
more sympathetic data structure, perhaps taking advantage of the
much larger amounts of physical memory that are available on
machines more recent than when SPICE was originally written.

The situation with the next most frequent group of statements, is
much more healthy. There are no address recurrences, and no con-
trol recurrences in this routine: the control flow is independent of
all addressing and all data arithmetic. This routine therefore decou-
ples fully, in spite of the fact that the loop counts are small. This
routine would not benefit greatly from vectorization on a different
architecture, but can exploit decoupling. It is responsible for some
2.4 million floating point operations in this benchmark.

The third group of most frequently executed instructions is within
functionMEMPTR, whose purpose is to validate a ‘pointer’ (actu-
ally an array subscript) within the SPICE internal memory man-
agement package. The core of this routine is shown in Figure 4.

This is a good example of a loop with a premature exit, and since
the mean loop count is 66, it benefits well from decoupling. This is
despite the fact that it contains no floating-point operations and
performs a function that is traditionally regarded as non-numeric.

Figure 3. Locating sparse array elements (SPICE)

C     LOCATE ELEMENT (I,J)
C

 343536 -> 135 IF (J.LT.I) GO TO 145
 207553 -> LOCIJ=LOCC
1014234 -> 140 LOCIJ=NODPLC(IRPT+LOCIJ)

IF (NODPLC(IROWNO+LOCIJ).EQ.I)
GO TO 155

 806681 -> GO TO 140
 135983 -> 145 LOCIJ=LOCR
 622430 -> 150 LOCIJ=NODPLC(JCPT+LOCIJ)

IF (NODPLC(JCOLNO+LOCIJ).EQ.J)
GO TO 155

 486447 -> GO TO 150
 343536 -> 155 VALUE(LVN+LOCIJ)=VALUE(LVN+LOCIJ)-

VALUE(LVN+LOCC)*VALUE(LVN+LOCR)
160 LOCC=NODPLC(JCPT+LOCC)

GO TO 130
 113670 -> 170 LOCR=NODPLC(IRPT+LOCR)

IF (IPIV.LE.0) GO TO 125
    270 -> NODPLC(NUMOFF+I)=NODPLC(NUMOFF+I)-1

GO TO 125

   9055 -> MEMPTR=.FALSE.
LTAB=LOCTAB
LOCPNT=LOCF(IPNTR(1))
DO 20 I=1,NUMBLK

 605843 -> IF (LOCPNT.NE.ISTACK(LTAB+4)) GO TO 10
   8891 -> IF (IPNTR(1)*ISTACK(LTAB+5).NE.

1 ISTACK(LTAB+1)) GO TO 10
   8891 -> MEMPTR=.TRUE.

GO TO 30
 596952 -> 10 LTAB=LTAB+NTAB

20 CONTINUE
   9055 -> 30 RETURN

Figure 4. Extract from MEMPTR (SPICE)

Two groups of frequent statements are concerned with copying
array elements (inCOPY4) and zeroing data (inZERO8). These are
trivially decouplable.

The final group of statements worth considering lie within the
INTGR8 routine, which performs numeric integration. This routine
contains no loops, but again, it is perfectly decouplable, since there
are no control or addressing recurrences.

In summary, decoupling appears to be a valuable performance opti-
mization over most of the SPICE benchmark, but it is prevented
from full effectiveness by the chosen data representation in one
kernel routine.

7.2  Analysis of OCEAN

The OCEAN benchmark is interesting in that the two assignments
that are most frequently executed (166 million times) are straight-
forward array copying operations. It is possible that this arises
because the benchmark has been ‘scaled down’ to a reasonable
size: the full size production code may have a different ratio of
computation to copying.

The most intensive computation occurs inside a complex FFT rou-
tine, a fragment of which is shown in Figure 5. Each inner-most
loop has a high loop count, and no address recurrences to prevent
full exploitation of decoupling. The computation of the array index
JS can be strength-reduced to a single addition within the loop
body, and even the major control transfers (the two arithmetic IF
statements onJL) may be evaluated while previous loops are con-
tinuing to execute, achieving full control decoupling in addition to
the access/execute decoupling.

Code inside subroutineACAC accounts for the second largest
amount of computation: again, the loops are simply nested, per-

  26330 ->       JLI=I2K/2+1
                 DO 109 JL=1,I2K
 385391 ->        IF(JL-1) 102,102,104
  26330 ->   102  EXJ=(1.,0.)
                  DO 103 JJ=JL,NPTS,I2KP
 385391 ->         DO 103 MM=1,MTRN
32826979 ->         JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1
                    H=DATA(JS)-DATA(JS+I2KS)
                    DATA(JS)=DATA(JS)+DATA(JS+I2KS)
                    DATA(JS+I2KS)=H
             103  CONTINUE
  26330 ->        GO TO 109
 359061 ->   104  IF(JL-JLI) 105,107,105
           C
           C INCREMENT JL-DEPENDENT EXPONENTIAL FACTOR
           C
 336780 ->   105  EXJ=EXJ*EXK
                  DO 106 JJ=JL,NPTS,I2KP
 722562 ->         DO 106 MM=1,MTRN
58901658 ->         JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1
                    H=DATA(JS)-DATA(JS+I2KS)
                    DATA(JS)=DATA(JS)+DATA(JS+I2KS)
                    DATA(JS+I2KS)=H*EXJ
             106  CONTINUE
 336780 ->        GO TO 109
  22281 ->   107  EXJ=CMPLX(0.,SGN1)
                  DO 108 JJ=JL,NPTS,I2KP
 190671 ->         DO 108 MM=1,MTRN
16218819 ->         JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1
                    H=DATA(JS)-DATA(JS+I2KS)
                    DATA(JS)=DATA(JS)+DATA(JS+I2KS)
                    DATA(JS+I2KS)=CMPLX(-SGN1*HH(2),

SGN1*HH(1))
             108  CONTINUE
 385391 ->   109 CONTINUE

Figure 5. Extract from complex FFT routine (OCEAN)
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forming straightforward computation on array elements indexed by
simple strided subscripts, with no recurrences, ensuring that no
loss of decoupling occur.

7.3  Analysis of BDNA

BDNA calculates dynamic interactions between organic and non-
organic molecules in a complex polarized environment.  The vast
majority of computation time is spent in subroutineACTFOR
which calculates the interaction between each possible pair of
atoms in the environment. The most frequent statements are shown
in Figure 6. These calculate the distances between every pair: the
arrayIND is set up to point to every atom that is within 8 Ang-
stroms of the atomI, and a huge body of code (332 lines contain-
ing 265 addition and subtractions, 137 multiplications, 23
divisions, 14 square roots and 13 exponentials) is run over that set
of atoms.  Although this second loop executes with a mean loop
count of less than 27, the fact that the loop body is so large means
that accesses toIND can be successfully pre-queued by the CP, and
hence a potential loss of decoupling point is avoided.

A second group of statements, executed 4.76 million times, relates
all interactions between water and DNA molecules: all pairs are
considered, without screening by distance.  This loop (not shown)
is again large (70 statements), containing 67 additions and subtrac-
tions, 61 multiplications, 3 divisions and 3 square roots.  This loop
is fully decouplable.

A further groups of statements, executed 150 thousand times, cal-
culate interaction between water molecules and dissolved ions:
other statements in the program are executed much more rarely.

Analysis of this program demonstrates that decoupling can be an
effective technique in programs that contain extremely large loop
bodies, even if these loops are accessing sparsely stored array ele-
ments.

Figure 6. Extract from ACTFOR (BDNA)

DO 100 I=1,NSP
:
:

DO 235 J=1,I-1
5621250 -> IND(J)=0

JNS=(J-1)*ISIT
XD=X0(I)-X0(J)
YD=Y0(I)-Y0(J)
ZD=Z0(I)-Z0(J)
XDT(J)=XD-2.D0*

1 ALENGT*DBLE(INT(XD*ALENGM))
YDT(J)=YD-2.D0*

1 ALENGT*DBLE(INT(YD*ALENGM))
ZDT(J)=ZD-2.D0*DBLE(INT(ZD))

C O-O
DXS=XDT(J)+SX(INS+1)
DYS=YDT(J)+SY(INS+1)
DZS=ZDT(J)+SZ(INS+1)
RX=DXS-SX(JNS+1)
RY=DYS-SY(JNS+1)
RZ=DZS-SZ(JNS+1)
RSQ=RX*RX+RY*RY+RZ*RZ
IF(RSQ.GE.RCUTS) GO TO  235

 196892 -> IND(J)=1
5621250 -> 235 CONTINUE
   7495 -> L=0

DO 236 J=1,I-1
5621250 -> IF(IND(J).EQ.0) GO TO 236
 196892 -> L=L+1

IND(L)=J
5621250 -> 236 CONTINUE

7.4   Analysis of DYFESM

The DYFESM program performs two-dimensional finite element
structural analysis using the Explicit Leap Frog method. A large
proportion of the execution time is spent in a small number of sub-
routines. When profiled on a SUN Sparc system, using prof, the
time spent in the top four routines accounts for over 85% of the
execution time, and on an Alliant FX/80 these same routines
account for over 93% of the execution time [3].

7.4.1  Subroutine MATMUL

Thematmul subroutine, shown in Figure 7, accounts for around
60% of the execution time of DYFESM when executed on a scalar
processor such as that found in a SPARCStation. This is an inher-
ently vectorizable routine, and for example accounts for less than
37% of the execution time on an Alliant FX/80.

The routine contains a triple-nested set ofDO loops, which perform
a matrix multiplication as a linear combination of columns. The
only statement which could possibly interfere with the decoupling
of the inner loop is the statement:

IF(TEMP.EQ.0.) GOTO 300

The intent of this statement is to prevent unnecessary computations
from taking place when the multiplier (TEMP) is zero. In fact,
TEMP is rarely zero. However, even with this statement in, no loss
of decoupling need occur. If all of the non-leaf loops, and all scalar
statements outside of non-leaf loops, are executed on the CP, then
we can be sure of avoiding any dependency that might cause a loss
of decoupling. Here we are assuming that the compiler can detect
that there is no overlap between theB andC arrays.

This is one example of the case where, in a multiply-nested loop
structure, there is no loss of decoupling on a branch provided that
there is no loop-carried dependence from a leaf-loop computation
to an outer (non-leaf) scalar computation.

7.4.2 Subroutine CHOSOL

The CHOSOL routine, shown in Figure 8, solves  by
Cholesky decomposition. The forward solve phase contains a dou-
bly-nested loop structure. The body of the inner loop consists of a
single statement containing a scalar recurrence. This recurrence
can be pipelined by promotingSUM to a vector via a conventional

DIMENSION A(L,M), B(M,N), C(L,N)
   48048 ->       DO 400 K = 1, N
   48048 ->         DO 100 I = 1, L
 2110108 ->           C(I,K) = 0.
             100    CONTINUE
   48048 ->         DO 300 J = 1, M
 2162160 ->           TEMP = B(J,K)
                      IF (TEMP .EQ. 0.) GOTO 300
 2160216 ->           DO 200 I = 1, L
94871592 ->             C(I,K) = C(I,K) + A(I,J)*TEMP
             200      CONTINUE
 2162160 ->  300    CONTINUE
   48048 ->  400  CONTINUE
   48048 ->       RETURN
                  END

Figure 7. The MATMUL routine (DYFESM)

Ax b=
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scalar expansion transformation. The computation ofB(I) then
becomes

B(I) = B(I) - SUM(1) - SUM(2) - ... - SUM(S1)

The entire forward solve phase decouples perfectly. However, the
value ofB(I) defined in iterationI of the outer loop is then used
in iterationsI+1 throughN. The normal process of pre-loading
values forA(,) andB() lead to Read-After-Write hazards in the
Load Address and Store Address queues of the AP - particularly
during the early iterations whenI is small compared with the
decoupling distance, and the dynamic flow distance short. In the
architecture model assumed in this paper, such memory-RAW haz-
ards are detected by the associative match circuitry in the SAQ and
tagged. When the corresponding store data is produced it is auto-
matically forwarded to the appropriate LDQ at the correct position
in the queue. This bypass mechanism prevents the compiler having
to insert an algorithmic LOD after the completion of each inner
loop, which is what would effectively happen in a vector machine.

7.4.3 Subroutine MNLBYX

The third most prevalent section of the program is subroutine
mnlbyx This comprises a pair of quadruply-nested loops, with
each loop again containing a scalar recurrence. The first inner loop
decouples very straightforwardly, but the second (DO 20...) con-
tains a subscripted index in the form of M(I,M1(K)+J,N). The indi-
rection enables the matrix M(I,J,K) which is symmetric upon
interchange of I and J, to be stored in a compressed form.

The effect this has on decoupling depends on how the compiler
decides to treat the references to M1(K) and M(I,M1(K)+J,N). If
the AP reads M1(K), waits until the value arrives from memory,
and then computes the address for M(I,M1(K)+J,N) before reading
the correct location, then decoupling will be lost. However, there
are three ways around this problem:

1. Let the CP prefetch the values of
M1(K),

2. Let the AP issue non-blocking loads to theM1
vector within the AP’s inner loop.

                 SUBROUTINE CHOSOL(A, N, B)
           C

DIMENSION A(N,N), B(N)
           C
           C     --- FORWARD SOLVE ---
           C
  34034 ->       DO 53 I=2,N
 844844 ->          SUM = 0.
                    DO 51 L=1,I-1
12496484 ->             SUM = SUM + A(L,I)*B(L)
             51     CONTINUE
 844844 ->          B(I) = B(I) - SUM
             53  CONTINUE
           C
           C     --- DIVIDE BY DIAGONAL ---
           C
  34034 ->       DO 55 I=1,N
 878878 ->          B(I) = B(I)*A(I,I)
             55  CONTINUE
           C
           C     --- BACK SOLVE ---
           C
  34034 ->       DO 80 I = N-1, 1, -1
 844844 ->          SUM = 0.
                    DO 60 L=I+1,N
12496484 ->             SUM = SUM + A(I,L)*B(L)
             60     CONTINUE
 844844 ->          B(I) = B(I) - SUM
             80  CONTINUE
  34034 ->       RETURN
                 END

Figure 8. The CHOSOL routine (DYFESM)

3. Implement an address cache the AP so that the
average latency for accessing subscripted indices
is reduced to a tolerable level.

Any one of these solutions can be used to maintain Access/Execute
decoupling throughout this subroutine. Again, as we saw with the
previous example, there is a potential memory-RAW hazard on the
store toM(I,J,K) and subsequent reads fromM during later iter-
ations.

7.4.4 Subroutine MATMUT

The fourth most prevalent section of code in DYFESM is subrou-
tine MATMUT. This performs a matrix transpose multiplication,
which from the point of view of decoupling behaves exactly as a
conventional matrix multiplication. Needless to say, this subroutine
decouples effortlessly.

7.5  Analysis of MDG

The program called MDG in the Perfect Club is a molecular
dynamics modelling application which simulates the behaviour of
water molecules. On a Cray Y-MP this program is 87.7% vectoriz-
able [3]. It spends most of its time in two routines:INTERF and
CSHIFT, but also makes a significant use of theSQRT andEXP
functions.

7.5.1 Subroutine INTERF

The INTERF subroutine calculates inter-molecular interaction
forces in three dimensions. For the most part it decouples very
well, but there are two places where loss of decoupling appears to
be unavoidable.

In the calculation of inter-molecular forces, a test is made to find
out if the distance over which an interation occurs is greater than
some threshold. If the test is true for all possible interactions on a
molecule, then the code which computes forces is skipped. We can
see this occurring in the statement:

IF(KC.EQ.9) GO TO 1100

                 SUBROUTINE MNLBYX(M, X, MX)
COMMON /INDEX/ M1(ZNNPED)

                 REAL M(NNPES,NNPED*(NNPED+1)/2,3),
* MX(NNPES,NNPED,3),

                *     X(NDDF,NNPED)
           C
   8008 ->       DO 50 N = 1, 3
  24024 ->        DO 40 I = 1, NNPES
  96096 ->         DO 30 J = 1, NNPED
           C
 864864 ->          SUM = 0.
                    M1J = M1(J)
                    DO 10 K = 1, J
4324320 ->           JK = M1J+K
                     SUM = SUM + M(I,JK,N) * X(3,K)
             10     CONTINUE
           C
 864864 ->          DO 20 K = J+1, NNPED
3459456 ->           JK = M1(K) + J
                     SUM = SUM + M(I,JK,N) * X(3,K)
             20     CONTINUE
           C
 864864 ->          MX(I,J,N) = SUM
             30    CONTINUE
  96096 ->   40   CONTINUE
  24024 ->   50  CONTINUE
   8008 ->       RETURN
                 END

Figure 9. The MNLBYX routine (DYFESM)
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This is executed 5,923,953 times. The value of KC is computed in
the Execution Unit, within the immediately preceding loop. There
is no loss of decoupling within the loop which computes KC, since
we can use “if-conversion” to turn the statement:

IF (RS(K).GT.CUT2) KC=KC+1

into a guard computation followed by a guarded increment. How-
ever, converting the conditional jump to label 1100 into guarded
execution would be difficult and possibly counter-productive since
the guarded region is large, and not executed in approximately
37% of the cases. This is a situation where run-time information
can be extremely useful to a compiler -- the decision about whether
to do if-conversion is a pragmatic one, and depends on dynamic
program behaviour. A similar structure occurs later on in the pro-
gram, and a further 586,530 loss of decoupling events accrue.

7.5.2 Subroutine CSHIFT

TheCSHIFT subroutine checks two interacting water molecules to
see if they need to be shifted to within half the length of the molec-
ular bounding box. It is a very straightforward piece of code, with
no loss of decoupling events. The only loop contains a singleIF
statement. This would be if-converted into a guard evaluation fol-
lowed by sequence of guarded instructions. No branch instructions
need to be executed within this subroutine.

5923953 ->         JW1=JW1+NATOMS

                   DO 1110 K=1,9
53315577 ->         RS(K)=XL(K)*XL(K)+YL(K)*YL(K)+

* ZL(K)*ZL(K)
             1110   IF(RS(K).GT.CUT2) KC=KC+1
 5923953 ->         IF(KC.EQ.9) GO TO 1100
 3723689 ->         DO 1120 K=1,14
52131646 ->          FF(K)=0.0D0
             1120   CONTINUE
 3723689 ->         IF(RS(1).GE.CUT2) GO TO 10
 3085663 -> FF(1)=QQ4/(RS(1)*SQRT(RS(1)))

* +REF4
                      VIR=VIR+FF(1)*RS(1)
 3723689 ->    10   DO 1130 K=2,5
14894756 ->          IF(RS(K).GE.CUT2) GO TO 11
12352784 ->           FF(K)=-QQ2/(RS(K)*SQRT(RS(K)))

* -REF2
                      VIR=VIR+FF(K)*RS(K)
14894756 ->    11    IF(RS(K+4).GT.CUT2) GO TO 1130
12357670 ->           RL(K+4)=SQRT(RS(K+4))
                      FF(K+4)=QQ/(RS(K+4)*RL(K+4))

* +REF1
                      VIR=VIR+FF(K+4)*RS(K+4)
14894756 ->  1130   CONTINUE
 3723689 ->         IF(KC.NE.0) GO TO 20
 2450444 ->          RS(10)=XL(10)*XL(10)+YL(10)*

* YL(10)+ZL(10)*ZL(10)
                     RL(10)=SQRT(RS(10))
                     FF(10)=AB1*EXP(-B1*RL(10))

* /RL(10)
                     VIR=VIR+FF(10)*RS(10)
                     DO 1140 K=11,14
 9801776 ->           FTEMP=AB2*EXP(-B2*RL(K-5))

* /RL(K-5)
                      FF(K-5)=FF(K-5)+FTEMP
                      VIR=VIR+FTEMP*RS(K-5)
                      RS(K)=XL(K)*XL(K)+YL(K)*YL(K)

* +ZL(K)*ZL(K)
                      RL(K)=SQRT(RS(K))
                      FF(K)=(AB3*EXP(-B3*RL(K))-AB4

* *EXP(-B4*RL(K)))/RL(K)
                      VIR=VIR+FF(K)*RS(K)
             1140    CONTINUE
 5923953 ->  1100   CONTINUE

Figure 10. Extract from INTERF routine (MDG)

7.5.3 Loss of Decoupling Frequency in MDG

This program is perhaps unusual for a scientific application, in that
the most frequently executed subroutine contains a loss of decou-
pling. However, even when that happens, the relative frequency of
loss of decoupling is still low. According to the definition of
MFLOPS for this program, there are over 3.4 billion floating point
operations alone. Any processor capable of issuing one floating
point add and one floating point multiply per cycle will therefore
have an execution time greater than 1.7 billion cycles, and in prac-
tice a number of effects will conspire to extend the minimum exe-
cution time somewhat beyond that. We can immediately state that
the smallest average interval between loss of decoupling events in
this program can not be less than 1.7E9/6.5E6 = 262 cycles.

When LODs are close together in time, the associated penalty is
likely to be close to the mean memory access time (plus epsilon),
but if LODs are widely spaced out in time, then the associated pen-
alty will be closer to the maximum memory access time. Thus, a
program with clustered LODs will fare better than a program with
evenly-spaced LODs. In MDG the LODs are well spaced out, and
will probably experience a comparatively high penalty.

7.6   Analysis of QCD

The QCD program performs a Monte Carlo simulation for quan-
tum chromodynamics using the Pseudo Heat-bath algorithm. On a
CRAY Y-MP this program has been measured at a little over 4%
vectorizable [1], but a hand-tuned Y-MP/832 version has been
benchmarked at 270.9 MFLOPS compared with the baseline com-
piler version (same machine) which runs at just 13.0 MFLOPS [4].
There are nominally 2.59 billion floating point operations in the
benchmarked run for this program.

7.6.1 Subroutine MULT

TheMULT subroutine contains 18 complex scalar expressions, and
this is one of the main reasons that this program vectorizes poorly.
However, there are no algorithm structures which could lead to loss
of decoupling events, and so we must conclude that this routine
will decouple completely. Any problems with LODs during execu-
tion of this routine must occur in the calling context just prior to
the call toMULT.

The DAG for this subroutine contains no common sub-expres-
sions, but many multiple uses of input values. For example, each

 19531449 ->      XL(1)=XMA-XMB
                  XL(2)=XMA-XB(1)
                  XL(3)=XMA-XB(3)
                  XL(4)=XA(1)-XMB
                  XL(5)=XA(3)-XMB
                  XL(6)=XA(1)-XB(1)
                  XL(7)=XA(1)-XB(3)
                  XL(8)=XA(3)-XB(1)
                  XL(9)=XA(3)-XB(3)
                  XL(10)=XA(2)-XB(2)
                  XL(11)=XA(2)-XB(1)
                  XL(12)=XA(2)-XB(3)
                  XL(13)=XA(1)-XB(2)
                  XL(14)=XA(3)-XB(2)
                  DO 100 I=1,14
273440286 ->        IF(ABS(XL(I)).GT.BOXH) XL(I)=XL(I)

 * -SIGN(BOXL,XL(I))
273440286 ->  100 CONTINUE
 19531449 ->      RETURN
                  END

Figure 11. The CSHIFT routine (MDG)
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element ofA() andB() is used six times. Also, there are many
independent operations. Whilst all additive operations depend on
some multiplication operation, there are many independent add and
subtract operations within the 18 independent expressions. The
number of additive and multiplicative operations is balanced at a
ratio of approximately 1:1 (108 multiply and 90 add or subtract
operations). A super-scalar code schedule for an Execution unit
with one adder and one multiplier would have a makespan of
slightly more than 108 cycles (actually, it would be 108 cycles plus
the adder pipeline length). Therefore, a decoupled architecture exe-
cuting this routine could achieve an execution rate of approxi-
mately 1.75 flops/clock, assuming that the program is adequately
decoupled on entry to the subroutine.

7.6.2  Subroutine SYSLOP

The second most prevalent subroutine isSYSLOP. This is quite a
lengthy routine which systematically calculates Wilson loops for
SU(3) theory in 3+1 dimensions.

It has a structure from which it is possible, but quite difficult, to
remove all loss of decoupling points. The outer loop is a WHILE
loop, implemented with tests andGOTO statements. However, the
body of the WHILE loop contains a number of nestedIF state-
ments with relatively unbalancedTHEN andELSE clauses.

At the outer-most nest level of IF statements we find what is essen-
tially large CASE statement. The determinant of the CASE is an
integer variableIC which is assigned at the head of the WHILE
loop by reading it from an array. That is something which can be
done in advance by the Control Unit, since the address is not deter-
mined by any Execution Unit results. On close inspection it
becomes apparent that all the code in the WHILE loop, except the
calls tomult, cpymat andudag ought to be executed on the CP
- including the assignments toSETFLG at the leaf-level within the
IF tree. Dependence analysis indicates that there are no dependen-
cies from the calls ofmult, cpymat andudag, to any of the sub-
sequent CP computations. If code is partitioned in this way, then all
potential loss of decoupling points are removed. This does, how-
ever, place a significant load on the CP, which then requires a float-
ing-point arithmetic capability.

If the CP computations within the WHILE loop take longer to exe-
cute than the calls tomult, cpymat andudag, then the CP will
be the bottleneck. Otherwise the computation will proceed at the
rate determined bymult, cpymat andudag, and we have seen
that in the case ofmult the rate is close to peak. Here is a situation
in which control decoupling provides a very significant advantage

compared with the two-way (simple Access-Execute) decoupling
found in machines such as the ZS-1 [2].

7.6.3 Subroutine PRNSE2

One subroutine which appears to cause problems for a decoupled
architecture isPRNSE2. This contains a very deeply nested loop
structure (6 loops deep), with anIF statement at the inner-most
level. This can spell trouble for a decoupled machine, but in this
case the body of theTHEN part is substantial enough so that the

2215936 ->     1 NN = NN+1
                 IC = PTR(NN)
                 IF(IC.EQ.14) GOTO 2
           C
1753088 ->       IF(IC.LE.4) THEN
 303104 ->         IND = IC
                   PU  = SITES+ROT(IND)
                   IF(SETFLG.EQ.0) THEN
 180224 ->           CALL CPYMAT(FTEMP(1,INDEX+1),

U1(PU+1),18)
                     SETFLG = 1
                   ELSE
 122880 ->           CALL CPYMAT(FILMAT,U1(PU+1),18)
                     TINDEX = 1-INDEX
                     CALL MULT(FTEMP(1,INDEX+1),FILMAT,

FTEMP(1,TINDEX+1))
                     INDEX  = TINDEX
                   ENDIF
 303104 ->         COORD(IND) = MOD(COORD(IND)+1,

LATT1(IND)+1 )
                   IF(COORD(IND).EQ.0) THEN
  37888 ->           SITES = SITES-MOV(IND)*LATT1(IND)
                   ELSE
 265216 ->           SITES = SITES+MOV(IND)
                   ENDIF
           C
 303104 ->       ELSEIF(IC.LE.8) THEN
 495616 ->         IND = IC - 4
                   IF(COORD(IND).EQ.0) THEN
  61952 ->           COORD(IND) = LATT1(IND)
                     SITES = SITES+MOV(IND)*LATT1(IND)
                   ELSE
 433664 ->           COORD(IND) = COORD(IND)-1
                     SITES = SITES-MOV(IND)
                   ENDIF
 495616 ->         PU = SITES+ROT(IND)
                   IF(SETFLG.EQ.0) THEN
 176128 ->           CALL CPYMAT(FILMAT,U1(PU+1),18)
                     CALL UDAG(FILMAT,FTEMP(1,INDEX+1))
                     SETFLG = 1
                   ELSE
 319488 ->           CALL CPYMAT(EXTRA,U1(PU+1),18)
                     CALL UDAG(EXTRA,FILMAT)
                     TINDEX = 1-INDEX
                     CALL MULT(FTEMP(1,INDEX+1),FILMAT,

FTEMP(1,TINDEX+1))
                     INDEX  = TINDEX
                   ENDIF

:
:
:

           C
 442368 ->       ENDIF
1753088 ->       GOTO 1
           C
 462848 ->     2 CONTINUE

Figure 12. Extract from the SYSLOP routine (QCD)
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loop trip time for the CU computation for the inner-loop ought to

be shorter than the AP and DP parts. This means that the CP uses
its control decoupling at the inner-most loop level to pre-compute
the IF conditions and dispatch the inner-most blocks. Observing
the execution profile information, we see that theIF evaluates
TRUE in only 88 out of 398 cases (approximately 22% of the
time). So, on average, the CP must go around the inner loop 4.5
times for each dispatch of the inner loop to the AP and DP. It will
help greatly if theEPSILO array can be cached “close” to the AP
and DP, and accessed also by the CP.

An alternative way to remove LODs is to re-structure the loop (a
typical hand optimization). This could be done by splitting the loop
structures into two: the first would compute a vector of boolean
conditions, and the second would read those conditions and decide
whether to compute the inner-loop body. Note, that guarded execu-
tion does not help in this case, since the code body is large and
rarely executed, but branch prediction coupled with speculative
dispatch operations is potentially useful optimization.

7.6.4 Loss of decoupling in QCD

Under the assumptions that the CP has floating point capability and
that the potential LODs inPRNSE2 are overcome, there will be
very few LODs in QCD. It is worth noting that even the optimized
(single processor) version of QCD only attains a performance of 44
MFLOPS on the CRAY Y-MP. This is mostly due to scalar register
pressure, and the consequent register spill operations (accounting
for approximately 27% of all operations).

8 Conclusions

We have presented control decoupling, a technique for extending
the benefits of decoupling to a higher level of abstraction than in
previously described decoupled architectures. The principal attrac-
tion of control decoupling is that the control flow graph of a pro-
gram an be searched by the CP in advance of the AP and DP so that
events which would otherwise cause an LOD in a purely Access/
Execute decoupled architecture do not necessarily disrupt the flow

            DO 2 I=0,2
  73728 ->   DO 2 P=0,2
 221184 ->    DO 2 J=0,2
 663552 ->     DO 2 Q=0,2
1990656 ->      DO 2 K=0,2
5971968 ->       IF(EPSILO(I+1,J+1,K+1).NE.0) THEN
1327104 ->        DO 3 R=0,2
3981312 ->         IF(EPSILO(P+1,Q+1,R+1).NE.0) THEN
 884736 ->         FAC = EPSILO(I+1,J+1,K+1)

. *EPSILO(P+1,Q+1,R+1)
                   TOT(1) = TOT(1)+ FAC*U1(1,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(1) = TOT(1)- FAC*U1(2,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(1) = TOT(1)- FAC*U1(1,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(2,3*K+R+1)
                   TOT(1) = TOT(1)- FAC*U1(2,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(2,3*K+R+1)
                   TOT(2) = TOT(2)+ FAC*U1(1,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(2,3*K+R+1)
                   TOT(2) = TOT(2)+ FAC*U1(1,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(2) = TOT(2)+ FAC*U1(2,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(2) = TOT(2)- FAC*U1(2,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(2,3*K+R+1)
                   ENDIF
3981312 ->     3  CONTINUE
1327104 ->       ENDIF
5971968 ->     2 CONTINUE

Figure 13. Extract from PRNSE2 (QCD)

through the AP-memory-DP pipeline. In many cases speculative
traversal of the control flow graph of a program by the CP will fur-
ther improve performance: many control decisions are highly pre-
dictable, and so the speculative dispatch of work to the AP and DP
is likely to be rewarded.

We describe how particular features of source programs cause loss
of decoupling in a three-way decoupled system, and how they neg-
atively impact processor performance, and we examine a range of
benchmark programs for the dynamic incidence of these events.

We conclude from this evidence that decoupling is a very powerful
technique for minimizing the impact of memory latency, and that it
is applicable to a wider range of programs than other architectural
optimizations. In particular, we have shown that syntactic LOD
events do not always occur at points in a program where one
expects to find a vector start-up penalty in a vector machine. As a
loss of decoupling event has a penalty somewhat similar in magni-
tude to a vector start-up, we suggest that control-decoupled archi-
tectures offer potentially much higher efficiencies than existing
vector machines.
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Abstract

This paper examines the effectiveness of decoupling as an optimi-
zation technique for high-performance computer architectures.
Decoupled access execute architectures are described, and the con-
cept ofcontrol decoupling is introduced and justified. A descrip-
tion of a highly-decoupled architecture is given, and a metric for
the effectiveness of decoupling on particular programs, the Loss of
Decoupling frequency is introduced. Finally, a number of real
benchmark programs are examined and the applicability of decou-
pling them is analyzed.

1 Introduction

A number of papers have discussed the architectural optimization
decoupling over the last decade (see [2], [6], [7] and [8]). This
paper introduces control decoupling, a further technique for
increasing performance, and attempts to identify the class of pro-
grams over which decoupling is an effective technique to achieve
high performance.

The instruction set of modern computers (see, for example, refer-
ence [5]) is partitioned into three classes of instruction: control,
memory accessing and data operations. The decoupled architec-
tures that have been described to date, for example ZS-1[2],
PIPE[6] and WM[8], decouple between the latter two classes,
using “Decoupled Access/Execute,” in which the addresses for
memory references are generated in advance of the execution of
data-related instructions. This means that memory read operations
can be initiated many cycles before the read data is required for
execution, and the latency of main memory read operations (or
cache operation) can be hidden. Decoupled Access/Execute is
described in detail below, in section 2.

Less conventional is the use ofcontrol decoupling. This architec-
ture feature is introduced in order to maximize the use of main
memory bandwidth in an implementation, by exploring the con-
trol-flow graph of a program ahead of the time at which computa-
tion is required: this enables requests for packets of computation to
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be queued ahead of the time at which they are required, so that
when one computation has finished, another is ready to take its
place on the relevant unit. Control decoupling is described in detail
below, in section 3.

In order to determine how valuable these optimizations are, in
section 5 we introduce a conceptual framework for program events
that cause decoupling to break down: these Loss of Decoupling
events are of central importance to understanding the performance
of decoupled architectures. In section 6 we discuss briefly the per-
formance impact of Loss of Decoupling events. In section 7, we
conduct an examination of a range of popular benchmark programs
in order to understand the prevalence of these events.

2 Access Decoupling

In the architecture described here, Access Decoupling is imple-
mented by partitioning user instructions into two classes, memory
accessing and user arithmetic.

The memory accessing instructions are run on a special-purpose
processor, the Address Processor (AP), whose function is opti-
mized for the purposes of producing regular patterns of addresses,
such as found in numeric programs. The most widely used instruc-
tion in the AP is an addition operation, which adds register plus
register or register plus immediate, writing the result to another
register and initiating either a memory read or a memory write
operation. Apart from simple additions, the AP has no other data-
handling capability: it has no general multiplication, division or
logical operations.

The user arithmetic instructions are also run on a special-purpose
processor, the Data Processor (DP). This has a full set of integer
and floating-point arithmetic and logical operations, but no mem-
ory addressing instructions at all.

The AP and DP are connected by two types of queues: the Load
Data Queue (LDQ) and the Store Address Queue (SAQ). Entries in
these queues are made when the AP generates memory addresses,
but the two types of queues are used substantially differently. In the
architecture described in this paper there are two independent
LDQs connected to the two memory read ports, and one SAQ to
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drive the single memory write port. The relationships of these pro-
cessors and their queues can be seen in Figure 1 below.

When the AP generates a memory request for a Load operation, the
next free element in the relevant Load Data Queue is allocated and
marked “pending”. A request for a memory read at that address is
sent to the memory interface. When the read data is returned from
memory, it is placed into the queue element reserved at the time of
the request, and the element is marked as “valid”.

The Load Data Queues are available as source operands to instruc-
tions running in the DP, and an instruction that reads a queue sus-
pends until the top entry in the queue is marked “valid”, and then
pops this element. (In fact, the queues are mapped to two general-
purpose registers.) In this manner, every read memory access is
carried out by two instructions, one on the address processor to ini-
tiate the request, and one on the data processor to access the data.

Store operations are handled differently. When an address for a
store operation is generated by the AP, the address itself is written
to the next free element of the Store Address Queue, and marked
“valid”. Store operations are initiated in the DP, where every arith-
metic instruction contains a “store” bit. When this bit is set, the
result of the instruction is sent as data to main memory, in addition
to being written to a general-purpose register. When an instruction
with its “store” bit set completes, the oldest entry in the Store
Address queue is popped, and used as the address for a memory
write operation with the data generated by the instruction.

In this way, the AP may proceed through a program, keeping ahead
of the place where the DP is executing. This has the beneficial
effect of initiating memory read operations early, reducing the
impact of memory latency on execution time. In a fully decoupled

Figure 1. Processor Block Diagram
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program, once the decoupling between processors has been estab-
lished, the execution time is insensitive to latency, provided that
the main memory offers sufficient bandwidth to support the request
rate generated by the AP.

The purpose of generating store addresses earlier than performance
arguments would require is to ensure correct functionality: the
instruction-set specification of the architecture defines that mem-
ory operations have their semantics defined by the order in which
read and write operations are initiated by the AP. If the address of a
write operation, for example, is used as the address of a subsequent
read operation before the data for the write has been generated in
the DP, a comparator detects that the read cannot proceed, and the
AP is stalled until the condition can be resolved.

3 Control Decoupling

Control Decoupling is a further optimization that permits a Control
Processor (CP) to execute yet further in advance of the AP. The
first step is to give the Address and Data processors the capability
of running program inner loops, that is of running a body of
instructions a number of times, determined either by a loop-count,
or terminated in a data-dependent manner. Apart from simple
loops, the Address and Data Processors have no other control capa-
bility: they have no conditional jumps or subroutine call instruc-
tions.

All major control functionality, that is non-inner loop control, sub-
routine call and return, and dispatching inner loops to the Address
and Data Processors, is concentrated in the CP. Since user compu-
tation is carried out in the DP, the CP does not need floating-point
capabilities, but it does provide a full set of logical operations, inte-
ger addition and subtraction, integer multiplication (for array index
calculations inner loops have their index arithmetic strength-
reduced), integer division (for loop normalization), and a full set of
comparison and conditional and unconditional branch operations
that would be familiar to the programmer of any conventional
RISC instruction set. Memory accessing (both load and store oper-
ations) are provided conventionally in the CP instruction set.

In order to reduce the interaction between Control and Data Pro-
cessors, the DP supports an elaborate conditional-execution
scheme, with a full set of comparison operations on integers and
floating point operands, conditional execution of any of its instruc-
tion set, and a comprehensive set of condition combination instruc-
tions, which permit the compilation of nestedif..then..else
statements into guarded execution.

The CP invokes operations of the Address and DP using a special
instruction, which dispatches a unit of work called an Instruction
Fetch Block (IFB) to one of them. An IFB contains a pointer to the
first instruction, a length field, specifying the number of instruc-
tions to issue, and a loop count, identifying how many times to
issue these instructions. Instruction Fetch Blocks are enqueued by
the CP for both the Address and Data Processors: when a processor
has finished issuing instructions from one IFB, it can proceed to
issuing instructions from the next block, if there is one in the
queue, without delay. A set of parameter queues is provided to
allow the CP to pass data items to the Address and Data Proces-
sors.

In this manner, the normal operation of the system is that the CP is
executing instructions from the later part of a program. At the same
time, the AP is executing instructions from an earlier part of the
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program, and the DP is executing from a still earlier part. In this
way, all three processors are fully decoupled.

The benefit of Control Decoupling is that while one inner loop is
running on the AP, preparatory work for subsequent loops, such as
loop count calculation and array subscript arithmetic, may be car-
ried out in parallel, ensuring that no time is lost in the AP between
inner loop bodies.

A description of events during program execution that cause this
decoupling to break down is found below, in section 5.

3.1  CP Memory Ordering

All addresses produced by the CP are compared against all pending
DP write operations, whose addresses are held in the Store Address
Queue, and the CP is stalled if any conflict arises. Nevertheless, a
logical inconsistency may arise if the CP tries to read data that will
be written by the DP by an earlier part of the program, if the
address has not yet been generated because the AP has not yet
reached this part of the program.

In this system, it is the function of the compiler to eliminate such
inconsistencies by preventing the CP from decoupling from the AP
when an access of this type is possible.

4. Decoupled Execution: an Example

The diagram  in Figure 1 shows an overall picture of the control-
and address- decoupled machine. The way in which the two forms
of decoupling occur can be explained by reference to an example.
Consider the code fragment below :

DO 20 I = 1, M
DO 10 J = 1, N

A(I, J) = B(J) * S + C(I,J)
10 CONTINUE
20 CONTINUE

The inner loop, in J, is executed autonomously in the Address and
Data Processors: in each iteration, the AP initiates a memory read
for B(J) and C(I,J) and a queues the write address for
A(I,J), and the DP multiplies one Load Data Queue element by
the register holdingS, adds another Load Data Queue element and
stores the result. The AP relies on the availability of stride values
for theA(I,J) andC(I,J) accesses to avoid the need to do full
multiplications within the loop.

The CP implements the loop in I, and prepares the Instruction
Fetch Blocks and stride values for the AP and the DP. These are
passed to these Processors via the queues, enabling the CP to iter-
ate around the loop in I without re-synchronizing with the Address
or DP on each iteration.

5 When does Decoupling Break Down?

Figure 2 gives a framework for discussing the influence of program
events on both control and access decoupling. The broad arrows
show how the decoupling optimization is successful when the CP
is transferring information to the AP, and when the AP is transfer-
ring information to the DP. The numbered arrows, in the reverse
direction, represent inter-processor dependencies that can interfere
with decoupling by requiring that the CP or AP wait for a later unit

to “catch up”. We call each of these events a “Loss of Decoupling”;
each numbered arc in Figure 2 corresponds to exactly one type of
LOD event.

5.1  Computed Index Operations

Arc 1 in Figure 2 represents the case of the AP needing to wait for
the DP before initiating further operand fetches: this case arises
when a value computed in the DP must be conveyed back to the
AP to take part in address formation. A program fragment causing
such an event is illustrated below:

DO 10 I = 1, N
X[I] = ...
IX = ...X[I]
Y[IX] = ...

10 CONTINUE

This case is rare across the full range of numeric codes: it arises in
“Particle-In-Cell” codes, where a real particle position is calculated
and then quantized into a polygonal grid, and in Monte Carlo
codes, in which a discrete item is selected using a real-valued ran-
dom number generator.

5.2  Conditional Control Flow Operations

Arc 2 in Figure 2 shows the CP needing to wait for a condition to
be evaluated in the DP before it can issue further instructions: at
first glance, this event might seem to occur every time a condi-
tional statement is executed. However, since the DP can implement
conditionals internally, through the medium of conditional execu-
tion, this event only occurs when a condition causes a major
change of sequence in the Control Flow behaviour of the program,
for example, when a program conditionally calls a subroutine, or
conditionally executes an entire loop body. A program fragment
illustrating this type of event is shown below:

DO 10 I=1, 42
X[I] = ...

10 CONTINUE
IF (X[42] .NE. 0) CALL RENORM

Other types of program fragments which cause this type of LOD
event are loops containing conditional exits, and conditional sub-
routine returns. Again, this type of event is rare in most numeric
codes, and most occurrences prove to be highly predictable using a
branch prediction scheme, giving the compilation system a good
method for minimizing the performance impact of these events.

5.3  Control/Data Aliases

Arc 3 in Figure 2 shows the CP needing to wait for the AP to
“catch up”. This event needs to be generated when the compiler
detects a possible read-after-write hazard between a CP read and a

Figure 2. Events that May Destroy Decoupling
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write by either the AP or DP. A fragment of code illustrating this
event is shown below.

DO 10 I = 1, N
IV[I] = ... 10

CONTINUE
DO 20 I = 1, IV(100)

...
20 CONTINUE

The loop bound for the second loop is required before it can be dis-
patched: however, since the bound may be computed by the previ-
ous loop, the CP must be prevented from readingIV(100) before
its new value has been computed. In the ACRI system, it is safe for
the CP read to proceed as soon as it is known that all write
addresses for the first loop have been generated, since a run-time
“alias with outstanding write” check is carried out on all entries in
the Store Address Queue takes place, and a read that does conflict
is stalled until the data is generated by the DP.

5.4  Sparse and Pointer Operations

Arc 4 in Figure 2 shows an AP-AP dependency, which is signifi-
cant when the AP needs to wait for an AP memory read to finish
before it may initiate a further memory access. A program frag-
ment illustrating this event is shown below:

DO 10 I = 1, N
...A[IX[I]]

10 CONTINUE

In this fragment, the AP needs to fetch the value of theIX element
before it can fetch (or generate a write address for) the A array ele-
ment. This is typical code for sparse vector or sparse matrix opera-
tion, and while it is clearly necessary to optimize this for these
applications, the occurrence of this events in non-sparse numeric
codes is again rare.

Other types of inter-unit dependencies are much less significant
than the four identified above: a DP-DP arc, for example, would
indicate that a subsequent operation depended on a previous opera-
tion, both in the DP: this is a case that occurs in all pipelined
machines, and is resolved by a combination of pipeline forwarding,
code generation and stalling. A CP-CP arc represents a control-
control dependency, of the type that occurs in conventional RISC
microprocessors. Again, performance is maximized in these cir-
cumstances using conventional architectural techniques: caching
minimizes the impact of memory latencies and compiler code
scheduling maximizes the overlap of operations.

6 The Cost of an LOD

When the AP is ahead of the DP by an amount of time which is
greater than the memory latency, each LDQ pop performed by the
DP adds nothing to the program execution time. In effect the
latency associated with reading that piece of data is zero. It is
therefore useful to talk about theperceived latency, as the mean
number of cycles the DP must stall each time it tries to pop an item
off an LDQ. In the absence of LODs, the perceived latency (after
an initial start-up period) is always zero. This is, of course, an ideal
situation and in practice the dependencies outlined in section 5 lead
to the occasional re-coupling of the AP and DP (as well the CP and
the AP and/or DP). To assess the impact of LOD events on the per-
formance of the system we can use a simplistic LOD-penalty
model.

Let  be the idealized execution time of a program when mem-

ory latency is zero, let  be the mean penalty incurred in the

DP whenever an LOD occurs, and let  be the number of

LODs that occur in the program. Naturally, the total execution time

. We can think of the mean LOD pen-

alty as somewhat equivalent to the start-up time of a vector opera-
tion, although there are good reasons to believe that LODs are
strictly less frequent than vector start-ups. Following on from our
definition of  we can say that an efficient decoupled system will
have a low LOD penalty and requires a compiler which optimizes
for minimal LOD frequency.

7 The Frequency of LODs

To examine the frequencies of the various types of Loss of Decou-
pling events, we turned to the Perfect Club benchmark suite which
contains 12 programs chosen from a range of different supercom-
puter applications areas, running on problem sets which are small
enough to enable investigation on workstation-sized computing
environments.

The methodology we adopted was to profile these benchmarks
using conventional Unix tools (prof, Sun’stcov, and Mips’s
pixie programs). In common with many other applications, they
show significant instruction locality, in that a small number of rou-
tines in each program contributes a large fraction of the execution
time. We identified the areas of the programs that dominate the
computation, and examined those routines for the syntactic causes
of Loss of Decoupling events. Where these events were identified,
we describe the impact of the Loss of Decoupling, and suggest
ways that the compiler or applications programmer might reduce
this impact.

The analyses for six benchmarks are presented here: they are
SPICE, a circuit simulation package, OCEAN, an oceanographic
modelling program, BDNA, a molecular dynamics program which
computes interactions between DNA molecules and an ionic solu-
tion, DYFESM, a finite-element package, MDG, a program which
simulates the dynamics of water molecules, and QCD, which per-
forms Monte Carlo simulations of quantum chromodynamics. We
do not attempt a systematic study of Loss of Decoupling frequency
in this paper: this is currently on-going work and will be reported
in a subsequent publication.

7.1  Analysis of SPICE

The statements most frequently executed in the SPICE benchmark
occur within subroutineDCDCMP. This routine, whose purpose is
to perform an LU factorization of the matrix giving the coefficients
of the circuit, is called by the circuit solver. The functioning of the
routine, part of which is illustrated in Figure 3, is significantly
obscured by the data representation used and by the fact that
SPICE uses an internal memory management package. The code
fragment shown in the figure searches for an element located at
(i,j) in the coefficient matrix, and adjusts its value when it is
found. It is clear that a large number of addressing computations
are necessary to support each data operation: these are inevitable
with the data representation chosen, which allocates elements of
the matrix in a vector with no direct mapping of the matrix row and
column number to the position in the vector. This sparse allocation

tmin

Plod

Nlod

t tmin Plod Nlod⋅+=

t
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is, in turn,  inevitable given the constraints of the problem: the
matrix represents information between different ‘‘nodes’’ in the
circuit, and is necessarily largely full of zeros since most nodes are
not connected to most other nodes. In this fragment, however,
nearly 3.3 million index array references take place in order to per-
form 1.4 million data references.

This routine is essentially non-decouplable in any reasonable com-
puter structure, since every index array reference causes a control
transfer before the routine commits to making a data reference. It is
very hard to see any compiler-implemented transformation that
would improve this, and the only alternative for users wishing to
get significant speedups would be to re-code the algorithm using a
more sympathetic data structure, perhaps taking advantage of the
much larger amounts of physical memory that are available on
machines more recent than when SPICE was originally written.

The situation with the next most frequent group of statements, is
much more healthy. There are no address recurrences, and no con-
trol recurrences in this routine: the control flow is independent of
all addressing and all data arithmetic. This routine therefore decou-
ples fully, in spite of the fact that the loop counts are small. This
routine would not benefit greatly from vectorization on a different
architecture, but can exploit decoupling. It is responsible for some
2.4 million floating point operations in this benchmark.

The third group of most frequently executed instructions is within
functionMEMPTR, whose purpose is to validate a ‘pointer’ (actu-
ally an array subscript) within the SPICE internal memory man-
agement package. The core of this routine is shown in Figure 4.

This is a good example of a loop with a premature exit, and since
the mean loop count is 66, it benefits well from decoupling. This is
despite the fact that it contains no floating-point operations and
performs a function that is traditionally regarded as non-numeric.

Figure 3. Locating sparse array elements (SPICE)

C     LOCATE ELEMENT (I,J)
C

 343536 -> 135 IF (J.LT.I) GO TO 145
 207553 -> LOCIJ=LOCC
1014234 -> 140 LOCIJ=NODPLC(IRPT+LOCIJ)

IF (NODPLC(IROWNO+LOCIJ).EQ.I)
GO TO 155

 806681 -> GO TO 140
 135983 -> 145 LOCIJ=LOCR
 622430 -> 150 LOCIJ=NODPLC(JCPT+LOCIJ)

IF (NODPLC(JCOLNO+LOCIJ).EQ.J)
GO TO 155

 486447 -> GO TO 150
 343536 -> 155 VALUE(LVN+LOCIJ)=VALUE(LVN+LOCIJ)-

VALUE(LVN+LOCC)*VALUE(LVN+LOCR)
160 LOCC=NODPLC(JCPT+LOCC)

GO TO 130
 113670 -> 170 LOCR=NODPLC(IRPT+LOCR)

IF (IPIV.LE.0) GO TO 125
    270 -> NODPLC(NUMOFF+I)=NODPLC(NUMOFF+I)-1

GO TO 125

   9055 -> MEMPTR=.FALSE.
LTAB=LOCTAB
LOCPNT=LOCF(IPNTR(1))
DO 20 I=1,NUMBLK

 605843 -> IF (LOCPNT.NE.ISTACK(LTAB+4)) GO TO 10
   8891 -> IF (IPNTR(1)*ISTACK(LTAB+5).NE.

1 ISTACK(LTAB+1)) GO TO 10
   8891 -> MEMPTR=.TRUE.

GO TO 30
 596952 -> 10 LTAB=LTAB+NTAB

20 CONTINUE
   9055 -> 30 RETURN

Figure 4. Extract from MEMPTR (SPICE)

Two groups of frequent statements are concerned with copying
array elements (inCOPY4) and zeroing data (inZERO8). These are
trivially decouplable.

The final group of statements worth considering lie within the
INTGR8 routine, which performs numeric integration. This routine
contains no loops, but again, it is perfectly decouplable, since there
are no control or addressing recurrences.

In summary, decoupling appears to be a valuable performance opti-
mization over most of the SPICE benchmark, but it is prevented
from full effectiveness by the chosen data representation in one
kernel routine.

7.2  Analysis of OCEAN

The OCEAN benchmark is interesting in that the two assignments
that are most frequently executed (166 million times) are straight-
forward array copying operations. It is possible that this arises
because the benchmark has been ‘scaled down’ to a reasonable
size: the full size production code may have a different ratio of
computation to copying.

The most intensive computation occurs inside a complex FFT rou-
tine, a fragment of which is shown in Figure 5. Each inner-most
loop has a high loop count, and no address recurrences to prevent
full exploitation of decoupling. The computation of the array index
JS can be strength-reduced to a single addition within the loop
body, and even the major control transfers (the two arithmetic IF
statements onJL) may be evaluated while previous loops are con-
tinuing to execute, achieving full control decoupling in addition to
the access/execute decoupling.

Code inside subroutineACAC accounts for the second largest
amount of computation: again, the loops are simply nested, per-

  26330 ->       JLI=I2K/2+1
                 DO 109 JL=1,I2K
 385391 ->        IF(JL-1) 102,102,104
  26330 ->   102  EXJ=(1.,0.)
                  DO 103 JJ=JL,NPTS,I2KP
 385391 ->         DO 103 MM=1,MTRN
32826979 ->         JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1
                    H=DATA(JS)-DATA(JS+I2KS)
                    DATA(JS)=DATA(JS)+DATA(JS+I2KS)
                    DATA(JS+I2KS)=H
             103  CONTINUE
  26330 ->        GO TO 109
 359061 ->   104  IF(JL-JLI) 105,107,105
           C
           C INCREMENT JL-DEPENDENT EXPONENTIAL FACTOR
           C
 336780 ->   105  EXJ=EXJ*EXK
                  DO 106 JJ=JL,NPTS,I2KP
 722562 ->         DO 106 MM=1,MTRN
58901658 ->         JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1
                    H=DATA(JS)-DATA(JS+I2KS)
                    DATA(JS)=DATA(JS)+DATA(JS+I2KS)
                    DATA(JS+I2KS)=H*EXJ
             106  CONTINUE
 336780 ->        GO TO 109
  22281 ->   107  EXJ=CMPLX(0.,SGN1)
                  DO 108 JJ=JL,NPTS,I2KP
 190671 ->         DO 108 MM=1,MTRN
16218819 ->         JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1
                    H=DATA(JS)-DATA(JS+I2KS)
                    DATA(JS)=DATA(JS)+DATA(JS+I2KS)
                    DATA(JS+I2KS)=CMPLX(-SGN1*HH(2),

SGN1*HH(1))
             108  CONTINUE
 385391 ->   109 CONTINUE

Figure 5. Extract from complex FFT routine (OCEAN)
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forming straightforward computation on array elements indexed by
simple strided subscripts, with no recurrences, ensuring that no
loss of decoupling occur.

7.3  Analysis of BDNA

BDNA calculates dynamic interactions between organic and non-
organic molecules in a complex polarized environment.  The vast
majority of computation time is spent in subroutineACTFOR
which calculates the interaction between each possible pair of
atoms in the environment. The most frequent statements are shown
in Figure 6. These calculate the distances between every pair: the
arrayIND is set up to point to every atom that is within 8 Ang-
stroms of the atomI, and a huge body of code (332 lines contain-
ing 265 addition and subtractions, 137 multiplications, 23
divisions, 14 square roots and 13 exponentials) is run over that set
of atoms.  Although this second loop executes with a mean loop
count of less than 27, the fact that the loop body is so large means
that accesses toIND can be successfully pre-queued by the CP, and
hence a potential loss of decoupling point is avoided.

A second group of statements, executed 4.76 million times, relates
all interactions between water and DNA molecules: all pairs are
considered, without screening by distance.  This loop (not shown)
is again large (70 statements), containing 67 additions and subtrac-
tions, 61 multiplications, 3 divisions and 3 square roots.  This loop
is fully decouplable.

A further groups of statements, executed 150 thousand times, cal-
culate interaction between water molecules and dissolved ions:
other statements in the program are executed much more rarely.

Analysis of this program demonstrates that decoupling can be an
effective technique in programs that contain extremely large loop
bodies, even if these loops are accessing sparsely stored array ele-
ments.

Figure 6. Extract from ACTFOR (BDNA)

DO 100 I=1,NSP
:
:

DO 235 J=1,I-1
5621250 -> IND(J)=0

JNS=(J-1)*ISIT
XD=X0(I)-X0(J)
YD=Y0(I)-Y0(J)
ZD=Z0(I)-Z0(J)
XDT(J)=XD-2.D0*

1 ALENGT*DBLE(INT(XD*ALENGM))
YDT(J)=YD-2.D0*

1 ALENGT*DBLE(INT(YD*ALENGM))
ZDT(J)=ZD-2.D0*DBLE(INT(ZD))

C O-O
DXS=XDT(J)+SX(INS+1)
DYS=YDT(J)+SY(INS+1)
DZS=ZDT(J)+SZ(INS+1)
RX=DXS-SX(JNS+1)
RY=DYS-SY(JNS+1)
RZ=DZS-SZ(JNS+1)
RSQ=RX*RX+RY*RY+RZ*RZ
IF(RSQ.GE.RCUTS) GO TO  235

 196892 -> IND(J)=1
5621250 -> 235 CONTINUE
   7495 -> L=0

DO 236 J=1,I-1
5621250 -> IF(IND(J).EQ.0) GO TO 236
 196892 -> L=L+1

IND(L)=J
5621250 -> 236 CONTINUE

7.4   Analysis of DYFESM

The DYFESM program performs two-dimensional finite element
structural analysis using the Explicit Leap Frog method. A large
proportion of the execution time is spent in a small number of sub-
routines. When profiled on a SUN Sparc system, using prof, the
time spent in the top four routines accounts for over 85% of the
execution time, and on an Alliant FX/80 these same routines
account for over 93% of the execution time [3].

7.4.1  Subroutine MATMUL

Thematmul subroutine, shown in Figure 7, accounts for around
60% of the execution time of DYFESM when executed on a scalar
processor such as that found in a SPARCStation. This is an inher-
ently vectorizable routine, and for example accounts for less than
37% of the execution time on an Alliant FX/80.

The routine contains a triple-nested set ofDO loops, which perform
a matrix multiplication as a linear combination of columns. The
only statement which could possibly interfere with the decoupling
of the inner loop is the statement:

IF(TEMP.EQ.0.) GOTO 300

The intent of this statement is to prevent unnecessary computations
from taking place when the multiplier (TEMP) is zero. In fact,
TEMP is rarely zero. However, even with this statement in, no loss
of decoupling need occur. If all of the non-leaf loops, and all scalar
statements outside of non-leaf loops, are executed on the CP, then
we can be sure of avoiding any dependency that might cause a loss
of decoupling. Here we are assuming that the compiler can detect
that there is no overlap between theB andC arrays.

This is one example of the case where, in a multiply-nested loop
structure, there is no loss of decoupling on a branch provided that
there is no loop-carried dependence from a leaf-loop computation
to an outer (non-leaf) scalar computation.

7.4.2 Subroutine CHOSOL

The CHOSOL routine, shown in Figure 8, solves  by
Cholesky decomposition. The forward solve phase contains a dou-
bly-nested loop structure. The body of the inner loop consists of a
single statement containing a scalar recurrence. This recurrence
can be pipelined by promotingSUM to a vector via a conventional

DIMENSION A(L,M), B(M,N), C(L,N)
   48048 ->       DO 400 K = 1, N
   48048 ->         DO 100 I = 1, L
 2110108 ->           C(I,K) = 0.
             100    CONTINUE
   48048 ->         DO 300 J = 1, M
 2162160 ->           TEMP = B(J,K)
                      IF (TEMP .EQ. 0.) GOTO 300
 2160216 ->           DO 200 I = 1, L
94871592 ->             C(I,K) = C(I,K) + A(I,J)*TEMP
             200      CONTINUE
 2162160 ->  300    CONTINUE
   48048 ->  400  CONTINUE
   48048 ->       RETURN
                  END

Figure 7. The MATMUL routine (DYFESM)

Ax b=
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scalar expansion transformation. The computation ofB(I) then
becomes

B(I) = B(I) - SUM(1) - SUM(2) - ... - SUM(S1)

The entire forward solve phase decouples perfectly. However, the
value ofB(I) defined in iterationI of the outer loop is then used
in iterationsI+1 throughN. The normal process of pre-loading
values forA(,) andB() lead to Read-After-Write hazards in the
Load Address and Store Address queues of the AP - particularly
during the early iterations whenI is small compared with the
decoupling distance, and the dynamic flow distance short. In the
architecture model assumed in this paper, such memory-RAW haz-
ards are detected by the associative match circuitry in the SAQ and
tagged. When the corresponding store data is produced it is auto-
matically forwarded to the appropriate LDQ at the correct position
in the queue. This bypass mechanism prevents the compiler having
to insert an algorithmic LOD after the completion of each inner
loop, which is what would effectively happen in a vector machine.

7.4.3 Subroutine MNLBYX

The third most prevalent section of the program is subroutine
mnlbyx This comprises a pair of quadruply-nested loops, with
each loop again containing a scalar recurrence. The first inner loop
decouples very straightforwardly, but the second (DO 20...) con-
tains a subscripted index in the form of M(I,M1(K)+J,N). The indi-
rection enables the matrix M(I,J,K) which is symmetric upon
interchange of I and J, to be stored in a compressed form.

The effect this has on decoupling depends on how the compiler
decides to treat the references to M1(K) and M(I,M1(K)+J,N). If
the AP reads M1(K), waits until the value arrives from memory,
and then computes the address for M(I,M1(K)+J,N) before reading
the correct location, then decoupling will be lost. However, there
are three ways around this problem:

1. Let the CP prefetch the values of
M1(K),

2. Let the AP issue non-blocking loads to theM1
vector within the AP’s inner loop.

                 SUBROUTINE CHOSOL(A, N, B)
           C

DIMENSION A(N,N), B(N)
           C
           C     --- FORWARD SOLVE ---
           C
  34034 ->       DO 53 I=2,N
 844844 ->          SUM = 0.
                    DO 51 L=1,I-1
12496484 ->             SUM = SUM + A(L,I)*B(L)
             51     CONTINUE
 844844 ->          B(I) = B(I) - SUM
             53  CONTINUE
           C
           C     --- DIVIDE BY DIAGONAL ---
           C
  34034 ->       DO 55 I=1,N
 878878 ->          B(I) = B(I)*A(I,I)
             55  CONTINUE
           C
           C     --- BACK SOLVE ---
           C
  34034 ->       DO 80 I = N-1, 1, -1
 844844 ->          SUM = 0.
                    DO 60 L=I+1,N
12496484 ->             SUM = SUM + A(I,L)*B(L)
             60     CONTINUE
 844844 ->          B(I) = B(I) - SUM
             80  CONTINUE
  34034 ->       RETURN
                 END

Figure 8. The CHOSOL routine (DYFESM)

3. Implement an address cache the AP so that the
average latency for accessing subscripted indices
is reduced to a tolerable level.

Any one of these solutions can be used to maintain Access/Execute
decoupling throughout this subroutine. Again, as we saw with the
previous example, there is a potential memory-RAW hazard on the
store toM(I,J,K) and subsequent reads fromM during later iter-
ations.

7.4.4 Subroutine MATMUT

The fourth most prevalent section of code in DYFESM is subrou-
tine MATMUT. This performs a matrix transpose multiplication,
which from the point of view of decoupling behaves exactly as a
conventional matrix multiplication. Needless to say, this subroutine
decouples effortlessly.

7.5  Analysis of MDG

The program called MDG in the Perfect Club is a molecular
dynamics modelling application which simulates the behaviour of
water molecules. On a Cray Y-MP this program is 87.7% vectoriz-
able [3]. It spends most of its time in two routines:INTERF and
CSHIFT, but also makes a significant use of theSQRT andEXP
functions.

7.5.1 Subroutine INTERF

The INTERF subroutine calculates inter-molecular interaction
forces in three dimensions. For the most part it decouples very
well, but there are two places where loss of decoupling appears to
be unavoidable.

In the calculation of inter-molecular forces, a test is made to find
out if the distance over which an interation occurs is greater than
some threshold. If the test is true for all possible interactions on a
molecule, then the code which computes forces is skipped. We can
see this occurring in the statement:

IF(KC.EQ.9) GO TO 1100

                 SUBROUTINE MNLBYX(M, X, MX)
COMMON /INDEX/ M1(ZNNPED)

                 REAL M(NNPES,NNPED*(NNPED+1)/2,3),
* MX(NNPES,NNPED,3),

                *     X(NDDF,NNPED)
           C
   8008 ->       DO 50 N = 1, 3
  24024 ->        DO 40 I = 1, NNPES
  96096 ->         DO 30 J = 1, NNPED
           C
 864864 ->          SUM = 0.
                    M1J = M1(J)
                    DO 10 K = 1, J
4324320 ->           JK = M1J+K
                     SUM = SUM + M(I,JK,N) * X(3,K)
             10     CONTINUE
           C
 864864 ->          DO 20 K = J+1, NNPED
3459456 ->           JK = M1(K) + J
                     SUM = SUM + M(I,JK,N) * X(3,K)
             20     CONTINUE
           C
 864864 ->          MX(I,J,N) = SUM
             30    CONTINUE
  96096 ->   40   CONTINUE
  24024 ->   50  CONTINUE
   8008 ->       RETURN
                 END

Figure 9. The MNLBYX routine (DYFESM)
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This is executed 5,923,953 times. The value of KC is computed in
the Execution Unit, within the immediately preceding loop. There
is no loss of decoupling within the loop which computes KC, since
we can use “if-conversion” to turn the statement:

IF (RS(K).GT.CUT2) KC=KC+1

into a guard computation followed by a guarded increment. How-
ever, converting the conditional jump to label 1100 into guarded
execution would be difficult and possibly counter-productive since
the guarded region is large, and not executed in approximately
37% of the cases. This is a situation where run-time information
can be extremely useful to a compiler -- the decision about whether
to do if-conversion is a pragmatic one, and depends on dynamic
program behaviour. A similar structure occurs later on in the pro-
gram, and a further 586,530 loss of decoupling events accrue.

7.5.2 Subroutine CSHIFT

TheCSHIFT subroutine checks two interacting water molecules to
see if they need to be shifted to within half the length of the molec-
ular bounding box. It is a very straightforward piece of code, with
no loss of decoupling events. The only loop contains a singleIF
statement. This would be if-converted into a guard evaluation fol-
lowed by sequence of guarded instructions. No branch instructions
need to be executed within this subroutine.

5923953 ->         JW1=JW1+NATOMS

                   DO 1110 K=1,9
53315577 ->         RS(K)=XL(K)*XL(K)+YL(K)*YL(K)+

* ZL(K)*ZL(K)
             1110   IF(RS(K).GT.CUT2) KC=KC+1
 5923953 ->         IF(KC.EQ.9) GO TO 1100
 3723689 ->         DO 1120 K=1,14
52131646 ->          FF(K)=0.0D0
             1120   CONTINUE
 3723689 ->         IF(RS(1).GE.CUT2) GO TO 10
 3085663 -> FF(1)=QQ4/(RS(1)*SQRT(RS(1)))

* +REF4
                      VIR=VIR+FF(1)*RS(1)
 3723689 ->    10   DO 1130 K=2,5
14894756 ->          IF(RS(K).GE.CUT2) GO TO 11
12352784 ->           FF(K)=-QQ2/(RS(K)*SQRT(RS(K)))

* -REF2
                      VIR=VIR+FF(K)*RS(K)
14894756 ->    11    IF(RS(K+4).GT.CUT2) GO TO 1130
12357670 ->           RL(K+4)=SQRT(RS(K+4))
                      FF(K+4)=QQ/(RS(K+4)*RL(K+4))

* +REF1
                      VIR=VIR+FF(K+4)*RS(K+4)
14894756 ->  1130   CONTINUE
 3723689 ->         IF(KC.NE.0) GO TO 20
 2450444 ->          RS(10)=XL(10)*XL(10)+YL(10)*

* YL(10)+ZL(10)*ZL(10)
                     RL(10)=SQRT(RS(10))
                     FF(10)=AB1*EXP(-B1*RL(10))

* /RL(10)
                     VIR=VIR+FF(10)*RS(10)
                     DO 1140 K=11,14
 9801776 ->           FTEMP=AB2*EXP(-B2*RL(K-5))

* /RL(K-5)
                      FF(K-5)=FF(K-5)+FTEMP
                      VIR=VIR+FTEMP*RS(K-5)
                      RS(K)=XL(K)*XL(K)+YL(K)*YL(K)

* +ZL(K)*ZL(K)
                      RL(K)=SQRT(RS(K))
                      FF(K)=(AB3*EXP(-B3*RL(K))-AB4

* *EXP(-B4*RL(K)))/RL(K)
                      VIR=VIR+FF(K)*RS(K)
             1140    CONTINUE
 5923953 ->  1100   CONTINUE

Figure 10. Extract from INTERF routine (MDG)

7.5.3 Loss of Decoupling Frequency in MDG

This program is perhaps unusual for a scientific application, in that
the most frequently executed subroutine contains a loss of decou-
pling. However, even when that happens, the relative frequency of
loss of decoupling is still low. According to the definition of
MFLOPS for this program, there are over 3.4 billion floating point
operations alone. Any processor capable of issuing one floating
point add and one floating point multiply per cycle will therefore
have an execution time greater than 1.7 billion cycles, and in prac-
tice a number of effects will conspire to extend the minimum exe-
cution time somewhat beyond that. We can immediately state that
the smallest average interval between loss of decoupling events in
this program can not be less than 1.7E9/6.5E6 = 262 cycles.

When LODs are close together in time, the associated penalty is
likely to be close to the mean memory access time (plus epsilon),
but if LODs are widely spaced out in time, then the associated pen-
alty will be closer to the maximum memory access time. Thus, a
program with clustered LODs will fare better than a program with
evenly-spaced LODs. In MDG the LODs are well spaced out, and
will probably experience a comparatively high penalty.

7.6   Analysis of QCD

The QCD program performs a Monte Carlo simulation for quan-
tum chromodynamics using the Pseudo Heat-bath algorithm. On a
CRAY Y-MP this program has been measured at a little over 4%
vectorizable [1], but a hand-tuned Y-MP/832 version has been
benchmarked at 270.9 MFLOPS compared with the baseline com-
piler version (same machine) which runs at just 13.0 MFLOPS [4].
There are nominally 2.59 billion floating point operations in the
benchmarked run for this program.

7.6.1 Subroutine MULT

TheMULT subroutine contains 18 complex scalar expressions, and
this is one of the main reasons that this program vectorizes poorly.
However, there are no algorithm structures which could lead to loss
of decoupling events, and so we must conclude that this routine
will decouple completely. Any problems with LODs during execu-
tion of this routine must occur in the calling context just prior to
the call toMULT.

The DAG for this subroutine contains no common sub-expres-
sions, but many multiple uses of input values. For example, each

 19531449 ->      XL(1)=XMA-XMB
                  XL(2)=XMA-XB(1)
                  XL(3)=XMA-XB(3)
                  XL(4)=XA(1)-XMB
                  XL(5)=XA(3)-XMB
                  XL(6)=XA(1)-XB(1)
                  XL(7)=XA(1)-XB(3)
                  XL(8)=XA(3)-XB(1)
                  XL(9)=XA(3)-XB(3)
                  XL(10)=XA(2)-XB(2)
                  XL(11)=XA(2)-XB(1)
                  XL(12)=XA(2)-XB(3)
                  XL(13)=XA(1)-XB(2)
                  XL(14)=XA(3)-XB(2)
                  DO 100 I=1,14
273440286 ->        IF(ABS(XL(I)).GT.BOXH) XL(I)=XL(I)

 * -SIGN(BOXL,XL(I))
273440286 ->  100 CONTINUE
 19531449 ->      RETURN
                  END

Figure 11. The CSHIFT routine (MDG)
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element ofA() andB() is used six times. Also, there are many
independent operations. Whilst all additive operations depend on
some multiplication operation, there are many independent add and
subtract operations within the 18 independent expressions. The
number of additive and multiplicative operations is balanced at a
ratio of approximately 1:1 (108 multiply and 90 add or subtract
operations). A super-scalar code schedule for an Execution unit
with one adder and one multiplier would have a makespan of
slightly more than 108 cycles (actually, it would be 108 cycles plus
the adder pipeline length). Therefore, a decoupled architecture exe-
cuting this routine could achieve an execution rate of approxi-
mately 1.75 flops/clock, assuming that the program is adequately
decoupled on entry to the subroutine.

7.6.2  Subroutine SYSLOP

The second most prevalent subroutine isSYSLOP. This is quite a
lengthy routine which systematically calculates Wilson loops for
SU(3) theory in 3+1 dimensions.

It has a structure from which it is possible, but quite difficult, to
remove all loss of decoupling points. The outer loop is a WHILE
loop, implemented with tests andGOTO statements. However, the
body of the WHILE loop contains a number of nestedIF state-
ments with relatively unbalancedTHEN andELSE clauses.

At the outer-most nest level of IF statements we find what is essen-
tially large CASE statement. The determinant of the CASE is an
integer variableIC which is assigned at the head of the WHILE
loop by reading it from an array. That is something which can be
done in advance by the Control Unit, since the address is not deter-
mined by any Execution Unit results. On close inspection it
becomes apparent that all the code in the WHILE loop, except the
calls tomult, cpymat andudag ought to be executed on the CP
- including the assignments toSETFLG at the leaf-level within the
IF tree. Dependence analysis indicates that there are no dependen-
cies from the calls ofmult, cpymat andudag, to any of the sub-
sequent CP computations. If code is partitioned in this way, then all
potential loss of decoupling points are removed. This does, how-
ever, place a significant load on the CP, which then requires a float-
ing-point arithmetic capability.

If the CP computations within the WHILE loop take longer to exe-
cute than the calls tomult, cpymat andudag, then the CP will
be the bottleneck. Otherwise the computation will proceed at the
rate determined bymult, cpymat andudag, and we have seen
that in the case ofmult the rate is close to peak. Here is a situation
in which control decoupling provides a very significant advantage

compared with the two-way (simple Access-Execute) decoupling
found in machines such as the ZS-1 [2].

7.6.3 Subroutine PRNSE2

One subroutine which appears to cause problems for a decoupled
architecture isPRNSE2. This contains a very deeply nested loop
structure (6 loops deep), with anIF statement at the inner-most
level. This can spell trouble for a decoupled machine, but in this
case the body of theTHEN part is substantial enough so that the

2215936 ->     1 NN = NN+1
                 IC = PTR(NN)
                 IF(IC.EQ.14) GOTO 2
           C
1753088 ->       IF(IC.LE.4) THEN
 303104 ->         IND = IC
                   PU  = SITES+ROT(IND)
                   IF(SETFLG.EQ.0) THEN
 180224 ->           CALL CPYMAT(FTEMP(1,INDEX+1),

U1(PU+1),18)
                     SETFLG = 1
                   ELSE
 122880 ->           CALL CPYMAT(FILMAT,U1(PU+1),18)
                     TINDEX = 1-INDEX
                     CALL MULT(FTEMP(1,INDEX+1),FILMAT,

FTEMP(1,TINDEX+1))
                     INDEX  = TINDEX
                   ENDIF
 303104 ->         COORD(IND) = MOD(COORD(IND)+1,

LATT1(IND)+1 )
                   IF(COORD(IND).EQ.0) THEN
  37888 ->           SITES = SITES-MOV(IND)*LATT1(IND)
                   ELSE
 265216 ->           SITES = SITES+MOV(IND)
                   ENDIF
           C
 303104 ->       ELSEIF(IC.LE.8) THEN
 495616 ->         IND = IC - 4
                   IF(COORD(IND).EQ.0) THEN
  61952 ->           COORD(IND) = LATT1(IND)
                     SITES = SITES+MOV(IND)*LATT1(IND)
                   ELSE
 433664 ->           COORD(IND) = COORD(IND)-1
                     SITES = SITES-MOV(IND)
                   ENDIF
 495616 ->         PU = SITES+ROT(IND)
                   IF(SETFLG.EQ.0) THEN
 176128 ->           CALL CPYMAT(FILMAT,U1(PU+1),18)
                     CALL UDAG(FILMAT,FTEMP(1,INDEX+1))
                     SETFLG = 1
                   ELSE
 319488 ->           CALL CPYMAT(EXTRA,U1(PU+1),18)
                     CALL UDAG(EXTRA,FILMAT)
                     TINDEX = 1-INDEX
                     CALL MULT(FTEMP(1,INDEX+1),FILMAT,

FTEMP(1,TINDEX+1))
                     INDEX  = TINDEX
                   ENDIF

:
:
:

           C
 442368 ->       ENDIF
1753088 ->       GOTO 1
           C
 462848 ->     2 CONTINUE

Figure 12. Extract from the SYSLOP routine (QCD)
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loop trip time for the CU computation for the inner-loop ought to

be shorter than the AP and DP parts. This means that the CP uses
its control decoupling at the inner-most loop level to pre-compute
the IF conditions and dispatch the inner-most blocks. Observing
the execution profile information, we see that theIF evaluates
TRUE in only 88 out of 398 cases (approximately 22% of the
time). So, on average, the CP must go around the inner loop 4.5
times for each dispatch of the inner loop to the AP and DP. It will
help greatly if theEPSILO array can be cached “close” to the AP
and DP, and accessed also by the CP.

An alternative way to remove LODs is to re-structure the loop (a
typical hand optimization). This could be done by splitting the loop
structures into two: the first would compute a vector of boolean
conditions, and the second would read those conditions and decide
whether to compute the inner-loop body. Note, that guarded execu-
tion does not help in this case, since the code body is large and
rarely executed, but branch prediction coupled with speculative
dispatch operations is potentially useful optimization.

7.6.4 Loss of decoupling in QCD

Under the assumptions that the CP has floating point capability and
that the potential LODs inPRNSE2 are overcome, there will be
very few LODs in QCD. It is worth noting that even the optimized
(single processor) version of QCD only attains a performance of 44
MFLOPS on the CRAY Y-MP. This is mostly due to scalar register
pressure, and the consequent register spill operations (accounting
for approximately 27% of all operations).

8 Conclusions

We have presented control decoupling, a technique for extending
the benefits of decoupling to a higher level of abstraction than in
previously described decoupled architectures. The principal attrac-
tion of control decoupling is that the control flow graph of a pro-
gram an be searched by the CP in advance of the AP and DP so that
events which would otherwise cause an LOD in a purely Access/
Execute decoupled architecture do not necessarily disrupt the flow

            DO 2 I=0,2
  73728 ->   DO 2 P=0,2
 221184 ->    DO 2 J=0,2
 663552 ->     DO 2 Q=0,2
1990656 ->      DO 2 K=0,2
5971968 ->       IF(EPSILO(I+1,J+1,K+1).NE.0) THEN
1327104 ->        DO 3 R=0,2
3981312 ->         IF(EPSILO(P+1,Q+1,R+1).NE.0) THEN
 884736 ->         FAC = EPSILO(I+1,J+1,K+1)

. *EPSILO(P+1,Q+1,R+1)
                   TOT(1) = TOT(1)+ FAC*U1(1,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(1) = TOT(1)- FAC*U1(2,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(1) = TOT(1)- FAC*U1(1,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(2,3*K+R+1)
                   TOT(1) = TOT(1)- FAC*U1(2,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(2,3*K+R+1)
                   TOT(2) = TOT(2)+ FAC*U1(1,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(2,3*K+R+1)
                   TOT(2) = TOT(2)+ FAC*U1(1,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(2) = TOT(2)+ FAC*U1(2,3*I+P+1)

. *U2(1,3*J+Q+1)*U3(1,3*K+R+1)
                   TOT(2) = TOT(2)- FAC*U1(2,3*I+P+1)

. *U2(2,3*J+Q+1)*U3(2,3*K+R+1)
                   ENDIF
3981312 ->     3  CONTINUE
1327104 ->       ENDIF
5971968 ->     2 CONTINUE

Figure 13. Extract from PRNSE2 (QCD)

through the AP-memory-DP pipeline. In many cases speculative
traversal of the control flow graph of a program by the CP will fur-
ther improve performance: many control decisions are highly pre-
dictable, and so the speculative dispatch of work to the AP and DP
is likely to be rewarded.

We describe how particular features of source programs cause loss
of decoupling in a three-way decoupled system, and how they neg-
atively impact processor performance, and we examine a range of
benchmark programs for the dynamic incidence of these events.

We conclude from this evidence that decoupling is a very powerful
technique for minimizing the impact of memory latency, and that it
is applicable to a wider range of programs than other architectural
optimizations. In particular, we have shown that syntactic LOD
events do not always occur at points in a program where one
expects to find a vector start-up penalty in a vector machine. As a
loss of decoupling event has a penalty somewhat similar in magni-
tude to a vector start-up, we suggest that control-decoupled archi-
tectures offer potentially much higher efficiencies than existing
vector machines.
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