127 research outputs found

    No Finite Model Property for Logics of Quantified Announcements

    Get PDF
    Quantification over public announcements shifts the perspective from reasoning strictly about the results of a particular announcement to reasoning about the existence of an announcement that achieves some certain epistemic goal. Depending on the type of the quantification, we get differ- ent formalisms, the most known of which are arbitrary public announcement logic (APAL), group announcement logic (GAL), and coalition announcement logic (CAL). It has been an open question whether the logics have the finite model property, and in the paper we answer the question negatively. We also discuss how this result is connected to other open questions in the field.publishedVersio

    Satisfiability of Arbitrary Public Announcement Logic with Common Knowledge is Σ11\Sigma^1_1-hard

    Full text link
    Arbitrary Public Announcement Logic with Common Knowledge (APALC) is an extension of Public Announcement Logic with common knowledge modality and quantifiers over announcements. We show that the satisfiability problem of APALC on S5-models, as well as that of two other related logics with quantification and common knowledge, is Σ11\Sigma^1_1-hard. This implies that neither the validities nor the satisfiable formulas of APALC are recursively enumerable. Which, in turn, implies that APALC is not finitely axiomatisable.Comment: In Proceedings TARK 2023, arXiv:2307.0400

    To Be Announced

    Full text link
    In this survey we review dynamic epistemic logics with modalities for quantification over information change. Of such logics we present complete axiomatizations, focussing on axioms involving the interaction between knowledge and such quantifiers, we report on their relative expressivity, on decidability and on the complexity of model checking and satisfiability, and on applications. We focus on open problems and new directions for research

    The undecidability of arbitrary arrow update logic

    Get PDF
    Arbitrary Arrow Update Logic is a dynamic modal logic with a modality to quantify over arrow updates. Some properties of this logic have already been established, but until now it remained an open question whether the logic's satisfiability problem is decidable. Here, we show by a reduction of the tiling problem that the satisfiability problem of Arbitrary Arrow Update Logic is co-RE hard, and therefore undecidable

    Quantifying over information change with common knowledge

    Get PDF
    Public announcement logic (PAL) extends multi-agent epistemic logic with dynamic operators modelling the effects of public communication. Allowing quantification over public announcements lets us reason about the existence of an announcement that reaches a certain epistemic goal. Two notable examples of logics of quantified announcements are arbitrary public announcement logic (APAL) and group announcement logic (GAL). While the notion of common knowledge plays an important role in PAL, and in particular in characterisations of epistemic states that an agent or a group of agents might make come about by performing public announcements, extensions of APAL and GAL with common knowledge still haven’t been studied in detail. That is what we do in this paper. In particular, we consider both conservative extensions, where the semantics of the quantifiers is not changed, as well as extensions where the scope of quantification also includes common knowledge formulas. We compare the expressivity of these extensions relative to each other and other connected logics, and provide sound and complete axiomatisations. Finally, we show how the completeness results can be used for other logics with quantification over information change.publishedVersio

    Refinement Modal Logic

    Full text link
    In this paper we present {\em refinement modal logic}. A refinement is like a bisimulation, except that from the three relational requirements only `atoms' and `back' need to be satisfied. Our logic contains a new operator 'all' in addition to the standard modalities 'box' for each agent. The operator 'all' acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier 'all' can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal mu-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness

    Arbitrary Arrow Update Logic with Common Knowledge is neither RE nor co-RE

    Get PDF
    Arbitrary Arrow Update Logic with Common Knowledge (AAULC) is a dynamic epistemic logic with (i) an arrow update operator, which represents a particular type of information change and (ii) an arbitrary arrow update operator, which quantifies over arrow updates. By encoding the execution of a Turing machine in AAULC, we show that neither the valid formulas nor the satisfiable formulas of AAULC are recursively enumerable. In particular, it follows that AAULC does not have a recursive axiomatization.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Special Issue on Logical Aspects of Multi-Agent Systems

    Full text link

    Man muss immer umkehren!

    Get PDF
    • …
    corecore