131 research outputs found

    The Koszul property for spaces of quadrics of codimension three

    Full text link
    In this paper we prove that, if k\mathbb{k} is an algebraically closed field of characteristic different from 2, almost all quadratic standard graded k\mathbb{k}-algebras RR such that dimkR2=3\dim_{\mathbb{k}}R_2 = 3 are Koszul. More precisely, up to graded k\mathbb{k}-algebra homomorphisms and trivial fiber extensions, we find out that only two (or three, when the characteristic of k\mathbb{k} is 3) algebras of this kind are non-Koszul. Moreover, we show that there exist nontrivial quadratic standard graded k\mathbb{k}-algebras with dimkR1=4\dim_{\mathbb{k}}R_1 = 4, dimkR2=3\dim_{\mathbb{k}}R_2 = 3 that are Koszul but do not admit a Gr\"obner basis of quadrics even after a change of coordinates, thus settling in the negative a question asked by Conca.Comment: 26 pages. Comments are very welcome

    Determinantal sets, singularities and application to optimal control in medical imagery

    Get PDF
    Control theory has recently been involved in the field of nuclear magnetic resonance imagery. The goal is to control the magnetic field optimally in order to improve the contrast between two biological matters on the pictures. Geometric optimal control leads us here to analyze mero-morphic vector fields depending upon physical parameters , and having their singularities defined by a deter-minantal variety. The involved matrix has polynomial entries with respect to both the state variables and the parameters. Taking into account the physical constraints of the problem, one needs to classify, with respect to the parameters, the number of real singularities lying in some prescribed semi-algebraic set. We develop a dedicated algorithm for real root classification of the singularities of the rank defects of a polynomial matrix, cut with a given semi-algebraic set. The algorithm works under some genericity assumptions which are easy to check. These assumptions are not so restrictive and are satisfied in the aforementioned application. As more general strategies for real root classification do, our algorithm needs to compute the critical loci of some maps, intersections with the boundary of the semi-algebraic domain, etc. In order to compute these objects, the determinantal structure is exploited through a stratifi-cation by the rank of the polynomial matrix. This speeds up the computations by a factor 100. Furthermore, our implementation is able to solve the application in medical imagery, which was out of reach of more general algorithms for real root classification. For instance, computational results show that the contrast problem where one of the matters is water is partitioned into three distinct classes

    Combinatorial resultants in the algebraic rigidity matroid

    Get PDF
    Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an algorithm for computing circuit polynomials in the algebraic rigidity matroid CMn associated to the Cayley-Menger ideal for n points in 2D. We introduce combinatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in the algebraic rigidity matroid. We show that every rigidity circuit has a construction tree from K4 graphs based on this operation. Our algorithm performs an algebraic elimination guided by the construction tree, and uses classical resultants, factorization and ideal membership. To demonstrate its effectiveness, we implemented our algorithm in Mathematica: it took less than 15 seconds on an example where a Gröbner Basis calculation took 5 days and 6 hrs

    Positive Geometries for Scattering Amplitudes in Momentum Space

    Full text link
    Positive geometries provide a purely geometric point of departure for studying scattering amplitudes in quantum field theory. A positive geometry is a specific semi-algebraic set equipped with a unique rational top form - the canonical form. There are known examples where the canonical form of some positive geometry, defined in some kinematic space, encodes a scattering amplitude in some theory. Remarkably, the boundaries of the positive geometry are in bijection with the physical singularities of the scattering amplitude. The Amplituhedron, discovered by Arkani-Hamed and Trnka, is a prototypical positive geometry. It lives in momentum twistor space and describes tree-level (and the integrands of planar loop-level) scattering amplitudes in maximally supersymmetric Yang-Mills theory. In this dissertation, we study three positive geometries defined in on-shell momentum space: the Arkani-Hamed-Bai-He-Yan (ABHY) associahedron, the Momentum Amplituhedron, and the orthogonal Momentum Amplituhedron. Each describes tree-level scattering amplitudes for different theories in different spacetime dimensions. The three positive geometries share a series of interrelations in terms of their boundary posets and canonical forms. We review these relationships in detail, highlighting the author's contributions. We study their boundary posets, classifying all boundaries and hence all physical singularities at the tree level. We develop new combinatorial results to derive rank-generating functions which enumerate boundaries according to their dimension. These generating functions allow us to prove that the Euler characteristics of the three positive geometries are one. In addition, we discuss methods for manipulating canonical forms using ideas from computational algebraic geometry.Comment: PhD Dissertatio

    Gorenstein colength of local Artin k-algebras

    Get PDF
    [spa] En esta tesis abordamos el problema de la aproximación de anillos locales por anillos de Gorenstein en el caso cero-dimensional. Nos centramos en el estudio y el cálculo efectivo de la colongitud de Gorenstein, una noción propuesta por Ananthnarayan para medir qué tan cerca está una k-álgebra artiniana de satisfacer la propiedad de Gorenstein. Extendemos la caracterización de los anillos de Teter a k-álgebras de baja colongitud de Gorenstein en términos de sus sistemas inversos de Macaulay y ciertos ideales auto-duales generalizando resultados de Huneke-Vraciu, Ananthnarayan y Elias-Silva. Estudiamos ciertas propiedades de las coberturas Gorenstein minimales de un anillo, como su función de Hilbert y su dimensión de embedding. La herramienta de los sistemas inversos resulta clave para la definición y cálculo efectivo de la variedad de coberturas Gorenstein minimales vía el método de integración introducido por Mourrain. En codimensión 2, extendemos la parametrización de Conca-Valla para ideales del anillo de polinomios al anillo de series, obteniendo un método para el cálculo de coberturas Gorenstein basado en el estudio de matrices canónicas de Hilbert-Burch. Todos los algoritmos propuestos se han implementado en una librería del software de álgebra communtativa Singular

    Combinatorial Resultants in the Algebraic Rigidity Matroid

    Get PDF
    Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an algorithm for computing circuit polynomials in the algebraic rigidity matroid CMn associated to the Cayley-Menger ideal for n points in 2D. We introduce combinatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in the algebraic rigidity matroid. We show that every rigidity circuit has a construction tree from K4 graphs based on this operation. Our algorithm performs an algebraic elimination guided by the construction tree, and uses classical resultants, factorization and ideal membership. To demonstrate its effectiveness, we implemented our algorithm in Mathematica: it took less than 15 seconds on an example where a Gröbner Basis calculation took 5 days and 6 hrs
    corecore