6,569 research outputs found

    Foundation, Implementation and Evaluation of the MorphoSaurus System: Subword Indexing, Lexical Learning and Word Sense Disambiguation for Medical Cross-Language Information Retrieval

    Get PDF
    Im medizinischen Alltag, zu welchem viel Dokumentations- und Recherchearbeit gehört, ist mittlerweile der überwiegende Teil textuell kodierter Information elektronisch verfügbar. Hiermit kommt der Entwicklung leistungsfähiger Methoden zur effizienten Recherche eine vorrangige Bedeutung zu. Bewertet man die Nützlichkeit gängiger Textretrievalsysteme aus dem Blickwinkel der medizinischen Fachsprache, dann mangelt es ihnen an morphologischer Funktionalität (Flexion, Derivation und Komposition), lexikalisch-semantischer Funktionalität und der Fähigkeit zu einer sprachübergreifenden Analyse großer Dokumentenbestände. In der vorliegenden Promotionsschrift werden die theoretischen Grundlagen des MorphoSaurus-Systems (ein Akronym für Morphem-Thesaurus) behandelt. Dessen methodischer Kern stellt ein um Morpheme der medizinischen Fach- und Laiensprache gruppierter Thesaurus dar, dessen Einträge mittels semantischer Relationen sprachübergreifend verknüpft sind. Darauf aufbauend wird ein Verfahren vorgestellt, welches (komplexe) Wörter in Morpheme segmentiert, die durch sprachunabhängige, konzeptklassenartige Symbole ersetzt werden. Die resultierende Repräsentation ist die Basis für das sprachübergreifende, morphemorientierte Textretrieval. Neben der Kerntechnologie wird eine Methode zur automatischen Akquise von Lexikoneinträgen vorgestellt, wodurch bestehende Morphemlexika um weitere Sprachen ergänzt werden. Die Berücksichtigung sprachübergreifender Phänomene führt im Anschluss zu einem neuartigen Verfahren zur Auflösung von semantischen Ambiguitäten. Die Leistungsfähigkeit des morphemorientierten Textretrievals wird im Rahmen umfangreicher, standardisierter Evaluationen empirisch getestet und gängigen Herangehensweisen gegenübergestellt

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    D-TERMINE : data-driven term extraction methodologies investigated

    Get PDF
    Automatic term extraction is a task in the field of natural language processing that aims to automatically identify terminology in collections of specialised, domain-specific texts. Terminology is defined as domain-specific vocabulary and consists of both single-word terms (e.g., corpus in the field of linguistics, referring to a large collection of texts) and multi-word terms (e.g., automatic term extraction). Terminology is a crucial part of specialised communication since terms can concisely express very specific and essential information. Therefore, quickly and automatically identifying terms is useful in a wide range of contexts. Automatic term extraction can be used by language professionals to find which terms are used in a domain and how, based on a relevant corpus. It is also useful for other tasks in natural language processing, including machine translation. One of the main difficulties with term extraction, both manual and automatic, is the vague boundary between general language and terminology. When different people identify terms in the same text, it will invariably produce different results. Consequently, creating manually annotated datasets for term extraction is a costly, time- and effort- consuming task. This can hinder research on automatic term extraction, which requires gold standard data for evaluation, preferably even in multiple languages and domains, since terms are language- and domain-dependent. Moreover, supervised machine learning methodologies rely on annotated training data to automatically deduce the characteristics of terms, so this knowledge can be used to detect terms in other corpora as well. Consequently, the first part of this PhD project was dedicated to the construction and validation of a new dataset for automatic term extraction, called ACTER – Annotated Corpora for Term Extraction Research. Terms and Named Entities were manually identified with four different labels in twelve specialised corpora. The dataset contains corpora in three languages and four domains, leading to a total of more than 100k annotations, made over almost 600k tokens. It was made publicly available during a shared task we organised, in which five international teams competed to automatically extract terms from the same test data. This illustrated how ACTER can contribute towards advancing the state-of-the-art. It also revealed that there is still a lot of room for improvement, with moderate scores even for the best teams. Therefore, the second part of this dissertation was devoted to researching how supervised machine learning techniques might contribute. The traditional, hybrid approach to automatic term extraction relies on a combination of linguistic and statistical clues to detect terms. An initial list of unique candidate terms is extracted based on linguistic information (e.g., part-of-speech patterns) and this list is filtered based on statistical metrics that use frequencies to measure whether a candidate term might be relevant. The result is a ranked list of candidate terms. HAMLET – Hybrid, Adaptable Machine Learning Approach to Extract Terminology – was developed based on this traditional approach and applies machine learning to efficiently combine more information than could be used with a rule-based approach. This makes HAMLET less susceptible to typical issues like low recall on rare terms. While domain and language have a large impact on results, robust performance was reached even without domain- specific training data, and HAMLET compared favourably to a state-of-the-art rule-based system. Building on these findings, the third and final part of the project was dedicated to investigating methodologies that are even further removed from the traditional approach. Instead of starting from an initial list of unique candidate terms, potential terms were labelled immediately in the running text, in their original context. Two sequential labelling approaches were developed, evaluated and compared: a feature- based conditional random fields classifier, and a recurrent neural network with word embeddings. The latter outperformed the feature-based approach and was compared to HAMLET as well, obtaining comparable and even better results. In conclusion, this research resulted in an extensive, reusable dataset and three distinct new methodologies for automatic term extraction. The elaborate evaluations went beyond reporting scores and revealed the strengths and weaknesses of the different approaches. This identified challenges for future research, since some terms, especially ambiguous ones, remain problematic for all systems. However, overall, results were promising and the approaches were complementary, revealing great potential for new methodologies that combine multiple strategies

    Automatic medical term generation for a low-resource language: translation of SNOMED CT into Basque

    Get PDF
    211 p. (eusk.) 148 p. (eng.)Tesi-lan honetan, terminoak automatikoki euskaratzeko sistemak garatu eta ebaluatu ditugu. Horretarako,SNOMED CT, terminologia kliniko zabala barnebiltzen duen ontologia hartu dugu abiapuntutzat, etaEuSnomed deritzon sistema garatu dugu horren euskaratzea kudeatzeko. EuSnomedek lau urratsekoalgoritmoa inplementatzen du terminoen euskarazko ordainak lortzeko: Lehenengo urratsak baliabidelexikalak erabiltzen ditu SNOMED CTren terminoei euskarazko ordainak zuzenean esleitzeko. Besteakbeste, Euskalterm banku terminologikoa, Zientzia eta Teknologiaren Hiztegi Entziklopedikoa, eta GizaAnatomiako Atlasa erabili ditugu. Bigarren urratserako, ingelesezko termino neoklasikoak euskaratzekoNeoTerm sistema garatu dugu. Sistema horrek, afixu neoklasikoen baliokidetzak eta transliterazio erregelakerabiltzen ditu euskarazko ordainak sortzeko. Hirugarrenerako, ingelesezko termino konplexuak euskaratzendituen KabiTerm sistema garatu dugu. KabiTermek termino konplexuetan agertzen diren habiaratutakoterminoen egiturak erabiltzen ditu euskarazko egiturak sortzeko, eta horrela termino konplexuakosatzeko. Azken urratsean, erregeletan oinarritzen den Matxin itzultzaile automatikoa osasun-zientziendomeinura egokitu dugu, MatxinMed sortuz. Horretarako Matxin domeinura egokitzeko prestatu dugu,eta besteak beste, hiztegia zabaldu diogu osasun-zientzietako testuak itzuli ahal izateko. Garatutako lauurratsak ebaluatuak izan dira metodo ezberdinak erabiliz. Alde batetik, aditu talde txiki batekin egin dugulehenengo bi urratsen ebaluazioa, eta bestetik, osasun-zientzietako euskal komunitateari esker egin dugunMedbaluatoia kanpainaren baitan azkeneko bi urratsetako sistemen ebaluazioa egin da

    Apport d'un corpus comparable déséquilibré à l'extraction de lexiques bilingues

    Get PDF
    National audienceThe main work in bilingual lexicon extraction from comparable corpora is based on the implicit hypothesis that corpora are balanced. However, the different related approaches are relatively insensitive to sizes of each part of the comparable corpus. Within this context, we study the influence of unbalanced comparable corpora on the quality of bilingual terminology extraction through different experiments. Our results show the conditions under which the use of an unbalanced comparable corpus can induce a significant gain in the quality of extracted lexicons

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Machine vs. Human: Exploring Syntax and Lexicon in German Translations, with a Spotlight on Anglicisms

    Full text link
    Machine Translation (MT) has become an integral part of daily life for millions of people, with its output being so fluent that users often cannot distinguish it from human translation. However, these fluid texts often harbor algorithmic traces, from limited lexical choices to societal misrepresentations. This raises concerns about the possible effects of MT on natural language and human communication and calls for regular evaluations of machine-generated translations for different languages. Our paper explores the output of three widely used engines (Google, DeepL, Microsoft Azure) and one smaller commercial system. We translate the English and French source texts of seven diverse parallel corpora into German and compare MT-produced texts to human references in terms of lexical, syntactic, and morphological features. Additionally, we investigate how MT leverages lexical borrowings and analyse the distribution of anglicisms across the German translations
    • …
    corecore