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Chapter 1

Introduction

Have over 35 years of Health Informatics made Europe healthier ?

(Bryden, 2003)

The scientific discipline of Medical Informatics or Health Informatics aims at es-

tablishing the methodological canon of computer science into the context of health

and medicine related data, information and knowledge. Medical Informatics appli-

cations are strongly user-centered since health professionals are increasingly facing

the problem to deal with large amounts of sensitive data in a time-critical setting.

Thus, the imperative of health information is that the proper knowledge must be

delivered to the right person, at the right time, in the right place.

Obviously, the contribution of Medical Informatics to the health of society cannot

be measured easily. Anyway, Bryden (2003) believes that Health Informatics really

made Europe healthier. But since this statement cannot be proven, he proposes

another perspective for the definition of Medical Informatics. It is “using informatics

with the goal of improving the health of society”.

Practical applications of Health Informatics support a broad range of informa-

tion processing activities in the health sector, targeting different user groups: Health

professionals (physicians, nurses, and others) in hospitals, outpatient departments

and private practices are mainly interested in recording and communicating patient

information, ranging from free-text reports over numeric (lab) data to digital biosig-

nals and bioimages. Health administrators who are active in the same institutions,
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but also in insurance companies and public bodies, are mostly focusing on struc-

turing data for billing and accounting purposes on the one hand, and for health

statistics, epidemiology and prevention on the other. Biomedical researchers, both

in the field of basic and clinical research, are aiming at an adequate representation

and documentation of new biomedical knowledge acquired. Finally, medical facul-

ties, teachers and educators are interested to bring the curricular contents to their

students using media-supported didactic techniques such as computer-aided instruc-

tion and simulation, also including medical information and education resources for

laypersons.

Across these application domains, a major bias is given by the following phe-

nomenon: Creators and consumers of primary data (discharge summaries, pathology

reports, data from medical imaging, laboratory values, etc.) are mainly interested

in unstructured information: radiologists exchange images and the communication

between physicians is mainly based on free text, as well as research papers and di-

dactic textbooks. The production of well organized data repositories at the point

of care costs more than it brings in, and so tends to be carried out without the

carefulness required. In contradistinction, administrators and epidemiologists need

highly dependable aggregated structured data in which details are purposely ne-

glected in order to comply with disease, procedure, drug, or patient classification

systems. This need of structured information emerged in the discipline of medi-

cal documentation, for which controlled vocabularies, medical terminologies or even

sophisticated ontologies serve as the connecting link for the accurate exchange of

medical data between heterogeneous information systems. Such structured informa-

tion is then used for morbidity and mortality statistics, and for the delineation of

homogeneous patient groups in terms of per capita expenditures which plays a major

role for quality management routines. Several subdisciplines of Medical Informatics

are directly involved in this challenge:

• Medical Information Systems provide the physical and logical data infrastruc-

ture for the support of medical documentation.

• Information Retrieval in Medicine adapts content indexing and retrieval tech-

niques to the medical domain, and is tightly related to
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• Medical Language Processing which, finally, studies all facets of the sublan-

guage used in the communication between health care professionals, as well as

the text produced by medical authors.

1.1 Medical Information Systems

Information systems that are deployed in the field of medicine are a collection of

computer programs for the organization of medical, administrative and scientific

information. They are used for the maintenance of, e.g. patient master data, the

archiving of patient-related data and their classification (for example the indexing of

diagnoses according to the International Classification of Diseases ICD-10 (2005)),

the planning of medical service delivery (clinical pathways) and its billing according

to Diagnosis Related Groups (DRGs). Many kinds of heterogeneous information are

covered in subsystems, e.g. radiology information systems (RIS), patient data man-

agement systems (PDMS), picture archiving and communication systems (PACS),

and many more.

Besides such patient-related information systems, which are used by health pro-

fessionals in their every day life, scientific and other information, which are not

directly connected to a patient’s infirmity, are used by researchers, health-care man-

agers, and others. For example, the Cochrane Library (Chalmers, 1993) and its

national spin-offs provide information of up-to-date, high-quality surveys about the

effectiveness of therapeutic interventions for easing the decision process for both

practioners and patients .

Health care consumers, on the other hand, often rely on information which can

be found in the Web. Many health oriented Internet portals exist and are acces-

sible by using search engines. Many people, especially patients affected by certain

chronic diseases, exchange information in discussion forums and organize themselves

in virtual communities.

Regardless of aiming at medical experts or laypersons – a huge variety of health

related resources are available electronically, either as provided within hospital in-

formation systems and other intranets, or publicly accessible via the Web. As for



4 Introduction

other domains, the amount of medical information grows exponentially, and hence,

in order to manage information explosion, great importance is attached to the de-

velopment of effective tools for the retrieval of specific data.

1.2 Information Retrieval in Medicine

Information retrieval (IR) is a broad interdisciplinary field covering information and

computer science, linguistics, semiotics, and librarianship (Baeza-Yates & Ribeiro-

Neto, 1999). It deals with the art and science of searching for information in doc-

uments, or searching for documents themselves. Two fundamental characteristics

distinguish information or document retrieval from the search within more or less

simple databases. Firstly, the information need of searchers is vague and can not be

formally expressed. Secondly, the information retrieval system stores unstructured

data such as natural language texts, and hence, does not ‘know’ anything about the

content. Search engines are designed to find those relevant documents of a collection,

which ‘somehow’ best fit to a particular user query – as selective as possible.

Information and document retrieval plays a crucial role in medical document

archiving systems, simply because of the huge amount of data generated in that

domain, whether in a health care or in scientific research. Clinical document col-

lections are usually very large and dynamic, with estimates ranging, for a single

site, on the order of millions of documents in total, and hundreds to thousands

new documents being added every day. The same dynamics can be observed for

biomedical publications increasingly electronically available on the Web. PubMed,1

the interface to the MEDLINE database which is a service of the U.S. National

Library of Medicine, gives access to over 16 million citations of life science journals

for biomedical articles. MEDLINE is growing at a double-exponential pace. More

than three million publications were published in the last five years alone. Moreover,

the number of publications indexed in MEDLINE in 2005 was 666,029, i.e. more

than 1,800 per day (Hunter & Cohen, 2006). As can be seen in Figure 1.1,2 since

1http://www.ncbi.nlm.nih.gov/entrez/, all links last visited in January 2007

2http://www.ncbi.nlm.nih.gov/About/tools/restable_stat_pubmed.html
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Figure 1.1: Number of PubMed Searches per Month

its release in 1997, the number of requests to the service constantly grew, with now

over 70 million searches per month.

The main challenges for the architecture and implementation of document re-

trieval systems and their underlying search engines are, besides technical issues,

inherently linguistic, and additional complexity emerge from the multilingual dimen-

sion of information retrieval applied to the medical domain (Hersh, 2002). While

clinical documents are typically written in the physicians’ native language, searches

in scientific databases require sophisticated knowledge of (expert-level) English med-

ical terminology which most non-English speaking physicians do not have. Hence,

some sort of bridging between synonymous or, at least, closely related terms from

different languages has to be realized to make use of the information these databases

or the Web hold.

Furthermore, the user population of medical document retrieval systems and

their search strategies are really diverse. Not only physicians, but also nurses, med-

ical insurance companies and patients are increasingly getting access to these re-

sources, with the Web adding an even more scattered crowd of searchers. Hence,
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mappings between different jargons and sublanguages are inevitable to serve the

needs of such a heterogeneous searcher community. The simplicity of the content

representation of the documents, as well as automatically performed intra- and inter-

lingual lexical mappings or transformations of equivalent expressions become crucial

issues for an adequate methodology of medical information retrieval.

1.3 An Interdisciplinary Approach

This work is characterized by the challenges of interdisciplinarity of Medical Infor-

matics on the one hand, and Computational Linguistics, on the other. Medical Lin-

guistics applies formalisms and methods of general linguistics to the domain-specific

medical terminology. In Medical Language Processing (MLP), findings of research

on Computational Linguistics (Allen, 1995; Manning & Schütze, 1999) are adopted

for the automatic processing of (spoken or written) medical language. Meanwhile,

MLP has been established as a separate and accepted field of research (cf. Spyns

(1996) for an overview).

Since the early 70s, remarkable effort has been made in the automatic analysis

of medical texts within the Linguistic String Project (Sager et al., 1987). However,

it is conspicuous that most work has been done in the context of particular areas

of application, often along with commercial interests (Lyman et al., 1991). Accord-

ingly, Medical Informatics researchers are not focused on the creation of linguistic

theories, rather than this, methods for comprehensive evaluations of MLP systems

are proposed, regarding their performance and usability in real world scenarios (cf.

Friedman & Hripcsak (1998), Zweigenbaum et al. (1997)). However, although due

to other reasons, the demand to evaluate systems for the automatic analysis of lan-

guage processing systems emerged in a trend that increasingly dominates the domain

of Computational Linguistics.

Only recently, remarkable knowledge is transferred between each domains and

both communities accrete to one discipline. This development has benefited from

the appearance of numerous research groups focusing on text processing for the do-

mains of Biology, Genetics, and Proteomics and there is more and more scientific
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work published and conferences held jointly. But still, at least for clinical applica-

tions, there is a lack of linguistic knowledge and methodology. In this spirit, this

interdisciplinary contribution can further mediate between the two disciplines.

1.4 Overview on this Work

This work proposes an approach which is intended to meet the particular challenges

of Medical Language Processing, in particular medical information retrieval. At its

core lies a new type of dictionary, in which the entries are equivalence classes of

subwords, i.e., semantically minimal units. These equivalence classes capture in-

tralingual as well as interlingual synonymy. As equivalence classes abstract away

from subtle particularities within and between languages and reference to them is

realized via a language-independent conceptual system, they form an interlingua.

In this work, the theoretical foundations of this approach are elaborated on. Fur-

thermore, design considerations of applications based on the subword methodology

are drawn up and showcase implementations are evaluated in detail.

Starting with the introduction of Medical Linguistics as a field of active research

in Chapter two, its consideration as a domain separated form general linguistics is

motivated. In particular, morphological phenomena inherent to medical language

are figured in more detail, which leads to an alternative view on medical terms and

the introduction of the notion of subwords. Chapter three describes the formal foun-

dation of subwords and the underlying linguistic declarative as well as procedural

knowledge. An implementation of the subword model for the medical domain, the

MorphoSaurus system, is presented in Chapter four. Emphasis will be given on

the multilingual aspect of the proposed approach, including English, German, and

Portuguese. The automatic acquisition of (medical) subwords for other languages

(Spanish, French, and Swedish), and their integration in already available resources

is described in the fifth Chapter.

The proper handling of acronyms plays a crucial role in medical texts, e.g. in

patient records, as well as in scientific literature. Chapter six presents an approach,

in which acronyms are automatically acquired from (bio-) medical literature. Fur-
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thermore, acronyms and their definitions in different languages are linked to each

other using the MorphoSaurus text processing system.

Automatic word sense disambiguation is still one of the most challenging tasks

in Natural Language Processing. In Chapter seven, cross-lingual considerations lead

to a new methodology for automatic disambiguation applied to subwords.

Beginning with Chapter eight, a series of applications based on MorphoSaurus

are introduced. Firstly, the implementation of the subword approach within a cross-

language information retrieval setting for the medical domain is described and eval-

uated on standard test document collections. In Chapter nine, this methodology

is extended to multilingual information retrieval in the Web, for which user queries

are translated into target languages based on the segmentation into subwords and

their interlingual mappings.

The cross-lingual, automatic assignment of document descriptors to documents

is the topic of Chapter ten. A large-scale evaluation of a heuristic, as well as a sta-

tistical algorithm is carried out using a prominent medical thesaurus as a controlled

vocabulary.

In Chapter eleven, it will be shown how MorphoSaurus can be used to map

monolingual, lexical resources across different languages. As a result, a large multi-

lingual medical lexicon with high coverage and complete lexical information is built

and evaluated against a comparable, already available and commonly used lexical

repository for the medical domain.

Chapter twelve sketches a few applications based on MorphoSaurus. The

generality and applicability of the subword approach to other domains is outlined,

and proof-of-concepts in real-world scenarios are presented.

Finally, Chapter thirteen recapitulates the most important aspects of

MorphoSaurus and the potential benefit of its employment in medical informa-

tion systems is carefully assessed, both for medical experts in their everyday life, but

also with regard to health care consumers and their existential information needs.



Chapter 2

A Morphological Perspective on

Medical Language Processing

Practical tasks of Medical Linguistics are the development and implementation of

algorithms, which render services customized for the medical sublanguage. Typical

usages are, e.g. spelling correction software and other programs to aid physicians

with the generation of documents. Computer-aided classification of diagnoses and

automatic text categorization assign terms from a controlled vocabulary to medical

documents (Aronson et al., 2000; Sebastiani, 2002). Information Retrieval (IR) sys-

tems usually give access to huge document collections, either stored in clinical infor-

mation systems or publicly available (Hersh & Donohoe, 1998; Eichmann et al., 1998;

Volk et al., 2002). Information Extraction (IE) concerns the automatic processing

of unstructured, textual data aiming at acquiring factual, structured knowledge

from these documents (cf. Hahn et al. (2002b) for the analysis of pathology find-

ings, and Friedman et al. (1994) for radiology reports). IE systems proved to be

useful, e.g. for the automatic identification of clinical findings suspicious for tu-

berculosis (Jain et al., 1996) or breast cancer (Jain & Friedman, 1997). Finally,

Text Mining systems, prevailing in the biomedical domain, are implemented for the

generation of new knowledge, which implicitly exists across different documents in

(usually) huge document collections (Feldman et al., 1999; Liu & Friedman, 2003;

Shatkay & Feldman, 2003; Nenadić et al., 2003; Daraselia et al., 2004).
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It has been observed that medical language shows less syntactic variation and

complexity than general language as found, e.g. in newspapers, narratives, etc.

(Campbell & Johnson, 2001; Friedman & Hripcsak, 1999). However, it is still con-

troversial whether off-the-shelf NLP tools can be effectively ported or adopted to the

needs of MLP. At least for the syntactic analysis of medical texts, evidence has been

found that statistical NLP methods can be used in a straightforward manner (Hahn

& Wermter, 2004; Wermter & Hahn, 2004). However, the most obvious contrast of

domain-specific sublanguages to general language is the use of a profoundly different

vocabulary together with a highly complex morphology.

2.1 Medical Linguistics

Typically, the word pool of a language is estimated to range between 200,000 and

500,000 words, depending whether domain-specific terminology is included, or not.

The Oxford English Dictionary (Simpson & Weiner, 1989) is generally regarded as

being the most comprehensive dictionary of the English language and includes more

than 500,000 main entries, both for present and past English. General language

dictionaries contain between 100,000 and 150,000 entries. In comparison, medical

dictionaries additionally include at least 50,000 words (Taber, 2005; Roche, 2003).

Natural language is furthermore characterized by morphological processes, which

tend to alter the literal appearance of the lexical items but let the meaning core of

these entities largely unchanged. Such morphological variants can generally be de-

scribed as concatenations of basic lexical forms (stems) with additional substrings

(affixes). The diversity of morphological processes varies between languages, with

English known as a morphologically ‘poor’ language, while most others are much

more diverse. Evidence for this statement comes from a large variety of highly inflec-

tional and/or agglutinating languages such as Finnish (Jäppinen & Niemistö, 1988),

Hebrew (Choueka, 1990), Slovene (Popovic̆ & Willett, 1992), Turkish (Ekmekçioglu

et al., 1995), Swedish (Hedlund et al., 2001), German (Schulz et al., 2002) or Hun-

garian (Tordai & de Rijke, 2005), not to mention major Asian languages such as

Japanese, Korean and major dialects of Chinese.
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The medical sublanguage reveals even more complexity. Ancient Greek doctors

usually used metaphors to describe body parts and diseases. For example, the part

between the stomach and the small intestine has a length of twelve fingers, and

therefore was called “dodekadaktylos”, later adopted to Latin as “duodenum digito-

rum”. Some Greek terms were not simply translated, instead of this, many of them

were replaced, for example the Greek word “spondylos” (the bone element of the

spine) was replaced by “vertebra” (literally, “the rotating”). Latin generally became

the prevailing language for science, but terms for diseases, in contradistinction to

anatomy, were still composed of Greek roots. That is the reason why anatomists use

the word “vertrebra”, whilst clinicians use “spondylitis” when they refer to an in-

flammatory disorder of a vertebra. Accordingly, the Latin word for kidney is “ren”,

the inflammation of the kidney is called “nephritis” (derived from the Greek stem

“nephr”).

These days, medical terminology is characterized by a typical mix of Latin and

Greek roots with the corresponding host language, often referred to as neo-classical

compounding (McCray et al., 1988), e.g. in words such as “neuroencephalomyelopa-

thy”, “glucocorticoid”, “pseudohypoparathyroidism”. Morphologically rich languages

(e.g., German) tend to conflate these terms, moreover, with host language terms,

resulting in longer single-word compounds such as “Gastrointestinaltrakt”, “Kor-

tikoidmedikation”, etc. This also results in a high amount of synonymous terms,

which express the differences of experts and laypersons terminology.

2.2 Morphological Processes

In linguistics, morphology is the field of research that studies the formal properties

and internal structure of words. Words are composed of morphemes, which are

commonly defined as the minimal units of meaning. Three kinds of morphological

processes are generally distinguished, viz. inflection, derivation and composition

inherent to so-called agglutinative (sub-) languages.
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• Inflection adds number, gender or case information to nouns (e.g.,

“patient⊕s”)1, or number, person, and tense information to verbs (e.g.,

‘’injur⊕es”, “injur⊕ed”, “injur⊕ing”). These modifications are typically mo-

tivated by syntactic considerations, thus, the lexical sense of the word stem is

combined with the grammatical function of the affixes.

• Derivation covers different phenomena. A derivational affix may simply affect

the part of speech without any semantic implication (e.g. “patient with a

severe⊕ injur⊕y” is a “severe⊕ly injur⊕ed patient”). Often, minor changes

of the semantic interpretation of the derived form relative to the basic one

occur (e.g., “search⊕er” denotes ‘someone who “search⊕es”).

• Composition, finally, combines several basic lexico-semantic units to form a

composite one. In contrast to English where nominal compounds surface as

complex noun phrases (Levi, 1978), e.g., “femoral neck fracture”, agglutina-

tive languages such as German (Toman, 1987) build up complex single-word

compounds (e.g., in the translation “Ober⊕schenkel⊕hals⊕bruch”).

Morphological analysis is concerned with the reverse processing, i.e., deflection

(or lemmatization), dederivation and decomposition. The goal is to map all occur-

ring morphological variants to some canonical base form(s), e.g., “injur” in one of

the examples from above.

2.3 Morphology in Medical Terminology

In order to collect empirical evidence for the question whether morphological analysis

of complex word forms is really an urgent need, Schulz & Hahn (2000) conducted

the following experiment: In a random selection of 100 pathology reports (average

token count 147.9 per report) they found 895 occurrences of different domain-specific

compounds. They then matched these 895 forms against all words contained in a

machine-readable version of a comprehensive German-language medical dictionary,

1‘⊕’ denotes the string concatenation operator.



2.3 Morphology in Medical Terminology 13

Language Compound Segmentation

English Pseudohypoparathyroidism Pseudo⊕hypo⊕para⊕thyroid⊕ism

Proctosigmoidoscopy Proct⊕o⊕sigm⊕oid⊕o⊕scop⊕y

Arterionephrosclerosis Arteri⊕o⊕nephr⊕o⊕scler⊕osis

German Kryostatschnittverfahren Kryo⊕stat⊕schnitt⊕verfahr⊕en

Fibroblastenproliferation Fibro⊕blast⊕en⊕prolifer⊕ation

Koronarangioplastie Koron⊕ar⊕angio⊕plast⊕ie

Portuguese Electrocardiográfia Electr⊕o⊕cardio⊕gráfi⊕a

Imunodeficiência Imun⊕o⊕defici⊕ência

Esofagocardiomiotomia Esofag⊕o⊕cardio⊕mio⊕tomia

Spanish Hipersomatotrófico Hiper⊕somat⊕o⊕tróf⊕ico

Postpericardiotomı́a Post⊕peri⊕cardio⊕tom⊕ı́a

Hepatoesplenomegálica Hepat⊕o⊕esplen⊕o⊕megal⊕ica

French Cholécystographie Cholé⊕cyst⊕o⊕graph⊕ie

Polychimiothérapie Poly⊕chimi⊕o⊕thérap⊕ie

Épidermodysplasie Épi⊕derm⊕o⊕dysplas⊕ie

Swedish Blindtarmssjukdomar Blind⊕tarm⊕s⊕sjukdom⊕ar

Överg̊angsepitelcancer Över⊕g̊ang⊕s⊕epitel⊕cancer

Hjärnnervstumörer Hjärn⊕nerv⊕s⊕tumör⊕er

Table 2.1: Medical Nominal Compounds in Different Languages

the “Pschyrembel”.2 The retrieval process was based on exact string match. As

a result, 400 out of these 895 compounds were not found in the dictionary. This

reflects the enormous productivity of medical language leading to a large number of

ad hoc compounds. A number of examples in different languages are given in Table

2.1.

Analyzing the rubrics of the English-language coding system ICD-9-CM (cf.

ICD-10 (2005) for its successor), Schulz & Hahn (2000) found a considerable num-

2Pschyrembel Klinisches Wörterbuch, Walter de Gruyter. Its whole text corpus contains more

than 100,000 different entries.
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ber of nominal compounds (cf. the English terms in Table 2.1), thus indicating that

this phenomenon is by no means restricted to the German language only. Gener-

alizing from this study, the hypothesis is confirmed that accounting for complex

morphological phenomena is highly rewarded in medical language processing.

For the medical terminology, morphological complexity further increases, in

structural terms and independent of particular languages (Ingenerf, 1997; Rector,

1999). For example, by means of composition, the basic word forms “leukocyte” and

“[H]em⊕o” join into “Leuk⊕em⊕ia”, with a tricky omission of the starting charac-

ter of “Hemo”, and the use of “ia” as suffix. Other unsystematic modifications can

often be observed in clinical findings, where ad-hoc compounds appear frequently.

They are invented on the spot and may never be used again. In many cases, the

meaning of compounds can not be derived by their constituents (as, e.g. in “anti-

bodies”). Noun compounds or multi-word terms co-exist with Latin noun phrases

and the use of Latin and Greek roots results in a high amount of synonymous terms,

which also reveal the differences of experts’ and laypersons’ terminology. In addi-

tion, different orthographic variants of the same word can be observed for Latin and

Greek loanwords (e.g. “collum uteri” vs. German “Uteruskollum” or “leucocyte”

and “leukocyte” in English.

Acronyms also play a crucial role in medical documents, both in clinical reports,

as well as in scientific publications. Actually, the extensive use of acronyms and

abbreviations in the biomedical community has been highly criticized (Rowe, 2003).

It is estimated that the number of unique acronyms in scientific publications related

to biomedicine is increasing at a rate of approximately 11,000 per year, whilst the

number of definitions associated with them is growing at approximately four times

that rate (Wren & Garner, 2002). Since 36% of all acronyms in MEDLINE are

associated with more than one definition and, conversely, up to 10% of definitions are

associated with more than one acronym, disambiguation techniques are inevitable

necessary in order to account for them properly.
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2.4 Morphology in Information Retrieval

In a common free-text information retrieval environment, the search for a particular

document is based on an (exact) pattern matching operation between the query

term(s) and the document terms. Therefore, a query term such as “leukocytes” re-

trieves all those documents in which this query term occurs literally. On the other

hand, documents containing the singular form “leucocyte”, the adjective “leuko-

cytic”, or the compound term “leukemia” cannot be found. In order to account

for morphological variations of terms, three basic possibilities arise in a free-text

retrieval system:

1. Enumerate all morphological variants of a query term and combine them,

either manually or automatically. Afterwards, combine the resulting variants

in a disjunction, such as in “Leukocyte” OR “Leukocytes” OR “Leukocytic”

OR “Leukemia” OR . . . . Then let the system perform exact matches with

corresponding document terms.

2. For a given query term, a truncation operator (such as ‘*’, or ‘%’ in relational

database systems) is applied to the longest common substring of all possible

morphological variants, e.g., “leuk*”. The system will then perform a partial

string match of this truncated query term and all document terms whose

leftmost substring is identical with “leuk”, while the remainder can be any

arbitrary string. Such a mechanism mimics linguistically based morphological

computations by simple string processing approximation.

3. Determine morphologically motivated base forms of query terms and docu-

ment terms, e.g., “leukocyt”, and let the system automatically cope with mor-

phological variants using a considerable amount of linguistic knowledge. The

matching between query and document terms is then performed by the system

based on these system-determined variant sets.

The first approach often yields incomplete coverage, especially in subdomains as

the medical one, due to missing variants, even for linguistically well-trained human
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searchers of the particular domain. Therefore, this alternative leads to an incom-

plete search for relevant documents (low recall). Even worse, for morphologically

rich (sub-) languages which include single word compounding in their word gener-

ation process, this approach is not feasible at all. Contrarily, the second solution

tends to overgenerate, and therefore finds irrelevant documents for a given query

(low precision), producing many unintended matches, since the matching process is

entirely underconstrained (e.g. querying “aid*” which would also match “AIDS”.

Considering the third suggestion, different methodologies for the automatic anal-

ysis of morphological variants have to be distinguished in order to assess potential

benefits or drawbacks for document retrieval systems.

2.5 Medical Morphological Analysis

For information retrieval, the most common approach to morphological analysis

is based on stemming, i.e., conflating different morphological variants to a single

formal stem. Typically such algorithms (e.g., the Lovins stemmer (Lovins, 1968) or

the Porter stemmer (Porter, 1980)) refrain from using dictionary information and are

solely based on simple string processing routines. Their principal way of operation

consists of removing inflectional endings (e.g., plural or genitival or tense suffixes)

or derivational suffixes, including some recoding transformations. Some of them,

e.g., the Lovins stemmer, follow a one-pass strategy based on right-to-left longest

matching plus recoding. Others, e.g. the Porter stemmer, employ an iterative multi-

pass approach. In fact, there has been some controversy about their contribution

to improve the effectiveness of document retrieval systems (Harman, 1991; Krovetz,

1993; Hull, 1996; Kantrowitz et al., 2000; Tomlinson, 2001; Braschler & Ripplinger,

2004; Tordai & de Rijke, 2005).

The key issue for quality improvement seems to be rooted mainly in the presence

of some kind of dictionary, i.e., a list of content words in some agreed-upon basic

lexical format plus, possibly, additional linguistic information concerning parts of

speech, gender, number, tense, mood, semantic relations, etc. Empirical evidence

has been brought forward that inflectional and/or derivational stemmers augmented
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by (machine-readable) dictionaries perform substantially better than those without

access to lexical repositories (Krovetz, 1993).

In addition, the above-mentioned stemming algorithms and their many variants

benefit from the limited suffix set and rather simple formation rules underlying

English inflection. When turning to other languages, e.g., French, Italian, Spanish,

or German, no comparable algorithmic standard yet exists. Many of these languages

exhibit a much richer inventory of inflectional suffixes, and also their structural

combination is more complex. Evidence for this statement comes form a large variety

of highly inflectional and/or agglutinating languages.

Morphological complexity further increases, in structural terms and independent

of particular languages, when one looks at derivation and composition (for a survey

of German, cf. Toman (1987), for English composition, cf. Levi (1978)). There

have already been observations on the crucial status of compounds for information

retrieval and the problems they cause (Jäppinen & Niemistö, 1988). This becomes

particularly pertinent for the medical domain where a large number of established

terms with a considerable morphological complexity exist.

It is worth mentioning that pessimism has been expressed with respect to a

full semantic interpretation of medical compounds (McCray et al., 1988). However,

several approximations have already been proposed. The earliest approach to deal

with medical terminology by way of morphological analysis is due to the work of

Pratt & Pacak (1969). Their approach transforms semantically equivalent adjectival

and nominal forms by employing simple suffix trees and transformation rules for

recoding morphologically reduced forms. Such transformations succeed if a recoded

form is matched with an entry in the Systemized Nomenclature of Pathology (SNOP,

which later evolved into SNOMED, the Systematized Nomenclature of Medicine

(Côté et al., 1993; CT, 2004)). Using a defined vocabulary for term normalization

in the medical domain is also reported more recently, e.g. in the work of Zeng &

Cimino (1996) and Kornai (2004).

Follow-up studies by Pacak and Norton (Pacak et al., 1980; Norton & Pacak,

1983) not only determined a preferred normalized form for several morphological

variants but rather computed paraphrase and other semantic relations (such as loca-
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tive, causative, etc.). These are implicitly denoted by complex medical compound

nouns and can be made explicit by breaking compounds up into their constituent

parts. The distributional patterns Pacak and Norton suggest are based on four top-

level conceptual categories which are directly derived from SNOP/SNOMED codes

(viz. topography, (medical) morphology, etiology, and function). A major limitation

of this work, however, is the restriction of the decompositional analysis to inflamma-

tory processes (indicated by the suffix “-itis”) or to surgical procedures (indicated,

e.g., by the suffixes “-ectomy” or “-plasty”) only. In a similar vein, Dujols et al.

(1991) treat “-osis” endings only, though in a slightly more sophisticated manner.

These restrictions are somewhat weakened in the work of Wolff (1984) both in terms

of a larger number of Greco-Latin suffixes being covered, as well as more general

compositional patterns of Neo-Latin compounding. However, the conceptual cate-

gories she employs refer to the subclass coding principles specifically employed in the

LSP context, the Linguistic String Project (for an overview, cf. Sager et al. (1994)),

rather than to the conventional SNOP/SNOMED-style nomenclature.

A lot of this work is characterized by a mix of isolated data structures (e.g., suf-

fix trees) and various procedural heuristics (longest match from the right, floating

“o” insertion as in “cyst⊕o⊕lith⊕ectomy” vs. “cyst⊕ectomy”, etc.). In an attempt

to formulate the principles of medical word segmentation in a formally rigid, al-

most language-independent framework, Wingert (1977) chose an automaton-based

specification for morphological analysis in terms of augmented transition networks.

To this end he proposed a set of 255 cascading rules to capture the combinatorial

regularities of different morpheme classes and, similar to Pratt & Pacak, refers to

the entries of the SNOP nomenclature in order to exploit semantic information from

the medical domain (Wingert, 1985).

As an alternative, remarkable progress has already been made by Yarowsky &

Wicentowski (2000) and Goldsmith (2001) in the fields of supervised and unsu-

pervised acquisition of morphological units (i.e., stems and affixes), including the

alignment of potential stem changes due to inflection. Unfortunately, none of the

reported systems are capable of performing noun decomposition, which is essential

for the analysis of medical terminology.
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Much more sophisticated linguistic and conceptual knowledge is employed in

more recent work on medical morphology. Lovis et al. (1997), Baud et al. (1998)

and Baud et al. (1999) use finite-state technology for the decomposition of com-

plex terms into semantically non-decomposable segmentation units they refer to as

morphosemantemes. A lot of the power of their approach derives from the fact

that the conceptual correlates of these morphosemantemes no longer refer to flat

SNOP/SNOMED-style categories but rather are formulated in Grail, a highly

expressive deductive terminological knowledge representation language within the

Galen framework (Rector et al., 1997). In order to isolate a morphosemanteme,

composite concepts are dissected to their medically plausible conceptual core, using

the knowledge encoded in GRAIL.

Baud et al.’s approach fully depends on the terminological coverage of the med-

ical domain by GRAIL which, as any of deep knowledge approaches, hardly scales

up to reasonably sized, practically-to-use knowledge bases.

It is interesting to observe that none of the above-mentioned proposals make use

of the state-of-the-art methodologies for morphological analysis in natural language

processing, viz. chart-based approaches in the (early) eighties (Kay, 1980), or the

model of two-level morphology as originally formulated by Koskenniemi (1984) and

lucidly described in Sproat (1992). The reason might be that these pure NLP

methodologies still pose too strong requirements on their linguistic resources (e.g.,

two-level morphology requires elaborated and complete stem and suffix lexicons)

and are also too rigid with respect to well-formedness of their input. So far, major

efforts have been directed at deflection only, with minor attention being paid to

derivational (Russell et al., 1986; Trost, 1993) or compositional morphology (Black

et al., 1991; Karttunen et al., 1992). Even worse, some languages such as German

pose particularly problems to a two-level approach because of contextual alteration

dependencies within words such as umlauts or participles (cf. Trost (1990) and

Schiller & Steffens (1991) for an overview), not to mention the problem of mixed-

language input, as evidenced by Neo-Latin compounding in medical terminology.
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2.6 MorphoSaurus

Since the year 2000 a unique and powerful medical language tool has been de-

veloped in the Department of Medical Informatics at the University Hospital in

Freiburg, Germany, in cooperation with the Language and Information Engineering

Lab at Jena University, Germany, and the Paraná Catholic University in Curitiba,

Brasil. The basic component of the system, a medical thesaurus that roughly con-

sists of morphemes, led to the name MorphoSaurus (an acronym for Morpheme

theSaurus). It provides a methodology for morphological analysis that accounts

for (a) all three basic morphological processes, i.e., inflection, derivation, and com-

position, and (b) the combination of Greek, Latin, and a particular host language

(in the current implementation English, German, French, Spanish, Portuguese, and

Swedish). Unlike approaches which are purely driven by considerations of general

natural language processing, the methodology proposed here focuses on medical

Cross-Language Information Retrieval (Markó et al., 2004b; Hahn et al., 2004a;

2005b; Markó et al., 2005c; Daumke et al., 2005b), additionally considering

other multilingual applications such as terminology mapping (Markó et al., 2003;

Markó et al., 2004a; Hahn et al., 2004b; Markó et al., 2006c) or lexicon mapping

(Markó et al., 2006a; 2006b). This focus has concrete implications for (c) the choice

of the fundamental unit of morphological analysis, as well as (d) the way how these

units are semantically related within, but also across languages. Though the name

MorphoSaurus is derived from a kind of morpheme-based thesaurus, the notion

of a lexical unit is slightly broader than the linguistic definition of a morpheme, but

clearly narrower than full forms of words. This led to the introduction of so-called

subwords (Schulz & Hahn, 2000; Hahn et al., 2001; Markó et al., 2005a; 2005d;

Hahn et al., 2005b; Schulz et al., 2006).
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Subword Model

The conventional view on human language is word-centered, at least for written

language where words are clearly delimited by spaces. It builds on the hypothesis

that words are the basic building blocks of phrases and sentences. In syntactic theo-

ries, words constitute the terminal symbols. Therefore, it appears straightforward to

break down natural language to the word level. However, looking at the sense of nat-

ural language expressions, evidence can be found that semantic atomicity frequently

does not coincide with the word level, which bears methodical challenges even for

pretendedly ‘simple’ tasks such as tokenization of natural language input (Grefen-

stette & Tapanainen, 1994). As an example, considering the English noun phrase

“high blood pressure”, the word limits reflect quite well the semantic composition,

whereas this is not the case in its literal translations “verhoogde bloeddruk” (Dutch),

“högt blodtryck” (Swedish) or “Bluthochdruck” (German). Especially in sublan-

guages such as the medical one, atomic senses are encountered at different levels of

lexical granularity. An atomic sense may correspond to word stems (e.g., “hepat”

referring to “liver”), prefixes (e.g., “anti-”, “hyper-”), suffixes (e.g., “-logy”, “-itis”),

larger word fragments (“hypophys”), words (“spleen”, “liver”) or even multi-word

terms (“yellow fever”). The possible combinations of these word-forming elements

are immense and ad-hoc term formation is common. As a consequence, a high cov-

erage of a domain-specific lexicon can only be expected if lexical units are restricted

to units of atomic senses, which then can be used as building blocks for composed
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terms at any level of granularity.

Identifying atomic sense units from texts in order to achieve a basis for the (lean)

semantic interpretation of natural language texts is an important requirement for

many applications in the fields of document retrieval, information extraction, and

text mining.

3.1 Semantic Atomicity

In linguistic theories, a sequence of characters are regarded as semantically atomic

if the sense conveyed (in a given language and a given domain context) is not uni-

vocally derivable from the senses of its constituents.1 The constituents of words are

morphemes, and they are tied together by word-forming operations such as inflex-

ion, derivation and composition. For instance, “neurosis” is the result of linking

“neur” (nerve) with “osis” (disease). However, “neurosis” is not really a disease of

nerves (at least in modern scientific medicine). As a consequence, the derivation

“neurosis” would be considered an atomic lexical unit.

Lexical units may have multiple senses (homonymy, in a broad sense) and one

sense can be expressed by different surface forms (synonymy). Although domain

specific terminologies are constructed in order to control the use of a specialized lan-

guage and to avoid ambiguous expressions, non-standardized terminology is widely

used in any domain. For instance, “molar” has a completely different sense in

obstetrics (“molar pregnancy”) as in lab medicine (“molar mass”), or in dentistry

(“fractured molar”). The meaning of the stem “head” in “headache” is different from

the ones in “head of femur” or “head of department”. “Operation” means “surgical

procedure” in the medical domain, as opposed to different senses in mathematics

or business. In such cases, the local context of the word in focus generally helps

selecting the right sense. Furthermore, the restriction to a well-defined domain (e.g.

1Many semantic theories are still controversially discussed by different scientific disciplines such

as philosophy, cognitive science, linguistics, and information science. In this work, the sense of a

linguistic expression is defined by the mental construction that is associated with this utterance,

rather than to concrete objects in the world (Eco et al., 1988).
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clinical medicine) allows us to ignore word senses which are definitely outside that

domain (e.g. “head” as the role of a word in grammar theory).

Besides ambiguity, lexical units may have overlapping senses. Quasi-synonymy

relations may hold between terms of different languages (Latin “caput” vs. English

“head”) or different levels of erudition (“belly” vs. “abdomen”). Complete identity

in sense (strict synonymy) which holds throughout all possible uses of a word is rare.

In order to establish classes of synonymous expressions, clear commitments to

the context in which the expressions can be regarded as synonyms have to be made,

viz. defining the domain context. Secondly, an agreement has to be found on a

sense deviation tolerance which is still compatible with the formal properties of

an equivalence relation, viz. reflexivity, transitivity, symmetry: If one considers

“disease” as a synonym of “illness” and “illness” as a synonym of “sickness”, then

“disease” and “sickness” are synonyms, as well. The tolerance depends also on the

relevance of subtle sense distinctions in the chosen domain context. In the domain

of clinical medicine, e.g., “neoplasm”, “cancer” and “carcinoma” would hardly be

considered synonyms but a different decision may, however, be taken in another

domain. A counterexample would be to equalize “excis-”, “remov-” and “-ectom-”

in a domain of general medicine, neglecting subtle distinctions of surgical techniques.

Translation is a special case of synonymy in which words of different languages

are sense-linked to each other. In this case, equivalence can be defined as well,

e.g. consisting of English “disease” and “illness”, German “Krankheit”, Spanish

“enfermedad”, French “maladie”, Swedish “sjukdom, as well as Portuguese “doença”.

Not only the grouping of lexical units into synonymy classes, but also their

proper delimitation depends on the domain context. “Leukemia”, e.g., literally

means “white blood”, and “neurosis” literally means “nerve disease”. This may be

plausible in a historic view on medicine, but it provides an inaccurate description

when related to modern medicine. Thus, a composite sense may be ascribed in the

historic context, and an atomic one in the present one.

Within the MorphoSaurus framework, in order to represent atomic senses of

lexical units, a semantic layer is defined, which is made of language-independent

unique identifiers, so called MorphoSaurus identifiers (shortly, MIDs). These
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symbols refer to all lexical items that cover the same meaning, in all languages

considered. Equivalence classes can roughly be compared to concepts in thesauri,

such as synsets in WordNet (Fellbaum, 1998) or, in the medical domain, concept

unique identifier (CUIs) in the Metathesaurus of the Unified Medical Language

System UMLS (2005), an umbrella system which currently combines more than one

hundred heterogeneous medical terminology systems. The most important ones are

available in several languages, e.g. the International Classification of Diseases (ICD)

(ICD-10, 2005), the Medical Subject Headings MeSH (2005), etc.

However, there are two major differences between MIDs and WordNet synsets

or UMLS CUIs: Firstly, MIDs can represent disjunctions of different senses. This is

the case when ambiguous lexical units are addressed. To restate the example from

above, the disjunction of the different senses of “molar” is represented by one MID,

and each of the non-ambiguous senses by another MID. Secondly, all lexical units

which are assigned to one MID must be fully interchangeable. For example, {head,
caput, cabec, cabez, cefal, cephal } would not be a proper reference for one MID,

since “head” (in the example denoting a relative anatomical location) has additional

senses, at least in a domain context which includes the meaning of “head” as a

person.

A different view on MIDs is to regard them as non-ambiguous words of an inter-

lingua, since each synonym class is uniquely identified by one MID. This perspective

emphasizes the preference of representing lexical meaning abstracting away from the

variety of human language, an exercise that must not be mistaken for the construc-

tion of concepts or classes in a domain ontology (cf. Hirst (2004) for the relationship

between lexicons and thesauri to ontologies).

3.2 Morpho-semantic Indexing

A subword is the minimal semantic constituent of a domain-specific term. Its defin-

ing property is that its sense is not composite. This rules out, for instance, to

consider “hepatitis” a valid subword because its sense can be derived from its con-

stituents, in contradistinction to, e.g., “hypophysis” (composing the senses of its
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components “hypo” and “physis” does not lead to the proper sense of “hypophysis”,

i.e. “hypo⊕phys⊕is” would be semantically underdeterminate). Subwords can ap-

pear as word stems, (proper) prefixes and suffixes, infixes, or invariants.

• Subword stems (ST), like “gastr”, “hepat”, “enferm”, “diaphys”, “head” are

the primary content carriers in a word. They can be prefixed, linked by infixes,

and suffixed, some of them may also occur without affixes.

• Prefixes (PF), like “de-”, “re-”, “in-”, “anti-” , “hyper-” precede a stem or

another prefix.2

• Proper Prefixes (PP) such as “peri-”, “hemi-”, “down-” are prefixes that them-

selves cannot be prefixed.

• Infixes (IF), like “-o-”, in “gastr-o-intestinal”, or “-r-”, in “hernio-r-rafia” are

used as a (phonologically motivated) glue between stems.

• Suffixes (SF) such as “-a”, “-io”, “-ion”, “-tomy”, “-itis” follow a stem or

another suffix.

• Proper Suffixes (PS) (e.g. verb endings such as “-ing”, “-ieron”, “-ão”,

“-iésemos”) are suffixes that cannot be suffixed.

The classification of subwords like “-logia” or “-itis” as suffixes may be controversial.

As a rule of thumb, the criterion for stems is that they do not require any other

stem in order to build well-formed words.

All these lexeme types are used for segmentation of inflected, derived and com-

posed words, taking into account their compositional constraints. In contrast,

• Invariants (IV), like “ion”, “gene”, many proper names as “aspirin” and

acronyms such as “WHO” or “AIDS”

coincide with words and are not allowed as word parts. In most cases, these are

short words which would cause artificial ambiguities if they were made available as

possible constituents in the deconstruction of complex words.

2E.g. in “hemi⊕an⊕opsia” the prefix an is prefixed by “hemi”.
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PP PS

ST

IF

IV

PF SF

Figure 3.1: Subword Model

Figure 3.1 depicts the subword model in terms of a finite-state automaton. Con-

sequently, a word optionally starts with a (proper) prefix, followed by at least one

stem (which can be combined with others, separated by optional infixes or additional

pre- and suffixes) and ends with (proper) suffixes, which are optional as well.

3.2.1 Subword Lexicon

Let S := {gastr, hepat, enferm, de, anti, itis, . . .} be the set of lexical items at

the subword level and T := {PP, PF, ST, IV, SF, PS} denote the subword types,

as described above. Furthermore, let M contain the set of equivalence class

symbols (MIDs). By convention, elements of this set are annotated with #,

followed by the literal entry of an unambiguous English subword or the origi-

nal, ambiguous subword: M := {#gastr, #liver, #inflamm, . . .}. With L :=

{EN, GE, FR, SP, PT, SW} referring the set of languages under consideration3

(English, German, French, Spanish, Portuguese and Swedish, respectively) and

D := {ClinicalMedicine, Biology, Chemistry, . . .} the domain context, a lexical

entry is defined by being a member of the lexicon LEX , i.e. the set:

3The language attribute refers to the real-world occurrence of lexemes, including common for-

eign words. This means, e.g., that English lexemes which commonly occur as foreign lexemes in a

certain domain (e.g. “feedback”) or frequent acronyms which are derived from English long forms

(“WHO”) are considered lexemes of the respective host language.
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LEX ⊂ S × T ×M×L×D

If no meaning is assigned to a subword, it is a stop entry, having only a gram-

matical function, such as auxiliary verbs or inflection endings. In this case, the MID

attribute is be empty (ε).

The following are some typical examples of subword lexicon entries, their lexical

attributes and implicit lexical relations (with l1,...,n ∈ LEX , and d1,2 ∈ D):

• Synonymy: The suffixes “-itic” and “-itis” have the same meaning as “inflam-

mation”.

l1 = (inflamm, ST, #inflamm, EN, d1)

l2 = (itic, SF, #inflamm, EN, d1)

l3 = (itis, SF, #inflamm, EN, d1)

• Translation: The German stem “entzünd” (transliterated to “entzuend”) and

the French suffix “-ite” denote the same sense as the English stem “inflamm”.

l1 = (inflamm, ST, #inflamm, EN, d1)

l4 = (entzuend, ST, #inflamm, GE, d1)

l5 = (ite, SF, #inflamm, FR, d1)

• Stop entries: The word “era” is an English noun, but an auxiliary verb in

Spanish and Portuguese.

l6 = (era, ST, #era, EN, d1)

l7 = (era, IV, ε, SP, d1)

l8 = (era, IV, ε, PT, d1)

• Quasi-synonyms: The word “sildenafil” and the name “viagra” can be consid-

ered synonyms in clinical medicine (d1), but not in pharmaceutical industry

(d2).

l9 = (sildenafil, ST, #sildenafil, EN, d1)

l10 = (viagra, IV, #sildenafil, EN, d1)

l11 = (sildenafil, ST, #sildenafil, EN, d2)

l12 = (viagra, IV, #viagra, EN, d2)

Table 3.1 shows a minimal lexicon for English (top-left) and German (top-right).
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English Subword Lexicon German Subword Lexicon

LEXEN := { LEXGE := {
(a, IV, ε,EN, d), (zunge, ST,#tongue,GE, d),

(hyoid, ST,#hyoid,EN, d), (n, SF, ε,GE, d),

(fracture, ST,#fracture,EN, d), (bein, ST,#bone,GE, d),

(is, IV, ε,EN, d), (bruech, ST,#bruch,GE, d),

(rare, ST,#rare,EN, d), (e, SF, ε,GE, d),

(phenomenon, ST,#phenomenon,EN, d), (sind, IV, ε,GE, d),

(that, IV, ε,EN, d), (selten, ST,#rare,GE, d),

(may, IV,#possible,EN, d), (ereignis, ST,#phenomenon,GE, d),

(result, ST,#result, EN, d), (se, SF, ε,GE, d),

(in, IV, ε,EN, d), (mit, IV, ε,GE, d),

(signific, IV,#signific,EN, d), (teils, IV,#possible,GE, d),

(ant, SF, ε,EN, d), (erheblich, ST,#significant,GE, d),

(complicat, ST,#complic,EN, d), (en, SF, ε,GE, d),

(ions, PS, ε,EN, d) } (komplikat, ST,#complic,GE, d),

(ionen, SF, ε,GE, d) }

Subword Thesaurus

T HESd := (expandsTo, hasSense), with

expandsTo := {(#hyoid,#tongue), (#hyoid,#bone)}
hasSense := {(#bruch,#fracture), (#bruch,#hernia)}

Table 3.1: Example Lexicon for English, German and the Thesaurus

3.2.2 Subword Thesaurus

The subword thesaurus organizes equivalence classes of subwords, within and be-

tween different languages. Whenever lexical entries share the same MID and domain,

they belong to the same equivalence class, or, the other way round, an equivalence

class is defined by a subset of lexical entries: C ⊂ LEX . By convention, elements

of this set are annotated with c, followed by the corresponding equivalence class

symbol (MID) in subscript. For example, the set c#inflamm contains all lexical items

in different languages which have the meaning inflammation:
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c#inflamm := { (inflamm, ST, #inflamm, EN, d1),

(itic, SF, #inflamm, EN, d1),

(itis, SF, #inflamm, EN, d1),

(entzuend, ST, #inflamm, GE, d1),

(itis, SF, #inflamm, FR, d1), . . .}

Different MIDs can be linked by two lexical relations, viz. the horizontal (syntag-

matic) relation expandsTo ⊂ M ×M , and the vertical (paradigmatic) relation

hasSense ⊂M×M:

• The set S1 := {(m0, m1), (m0, m2), . . . , (m0, mn)} ∈ expandsTo (with m0,...,n ∈
M and |S1| ≥ 2) relates a MID m0 to a list of at least two MIDs. This

relation is used in order to make a hidden semantic compositionality explicit.

As an example, the MID assigned to the lexical item short is expanded to the

MID representing the lexemes {“length”, “longitud”, “compriment”} and the

MID representing the meaning of small value. The relation expandsTo is also

used to deal with composed meanings in compounds which exhibit omission

of characters, e.g. urinalysis (see the discussion in the next chapter).

• The set S2 := {(m0, m1), (m0, m2), . . . , (m0, mn)} ∈ hasSense (with m0,...,n ∈
M and |S2| ≥ 2) relates an ambiguous MID m0 to a set of MIDs with at

least two elements. It is used to link an ambiguous MID to each of its (non-

ambiguous) senses. As an example, the MID assigned to the ambiguous word

head is related via hasSense to the non-ambiguous MIDs for upper part of the

body and person in charge of something.

Both relations together constitute the thesaurus T HES of a domain d:

T HESd := (expandsTo, hasSense)

The sample thesaurus T HESd in Table 3.1 (bottom) consists of two elements for

each of the relations. The word “hyoid” (also “hyoid bone” or “tongue bone”) can be

translated to German “Zungenbein” (literally “tongue bone”4). It is derived from its

4Actually, the German stem “bein” has two senses: “bone” and “leg”. For simplicity, this

ambiguity is not accounted for in the example.
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anatomical location and, therefore, semantically composite. Consequently, #hyoid

is expanded by the equivalence class symbols for both “tongue” and “bone”. For

German, the word “Bruch”, which is assigned its own MID #bruch, is ambiguous

and can be translated to either “fracture”, or “hernia” in English. These ambiguous

readings are therefore coded in the relation hasSense.

Other than in many thesauri such as the UMLS (2005) or WordNet (Fellbaum,

1998), semantic relations between equivalence classes such as hypernymy, hyponymy,

mereonymy etc. are not defined. Encoding these richer relations is left to domain

thesauri or ontologies such as MeSH (2005) or CT (2004) to which lexical items

can be mapped (Markó et al., 2003; Markó et al., 2004a; Hahn et al., 2004b; Markó

et al., 2006c)

3.2.3 Subword Indexing

Subword lexicon and thesaurus are the declarative resources for the morpho-semantic

normalization of (medical) texts. The third component, the subword indexer, con-

stitutes the corresponding procedural component of the MorphoSaurus system.

Input texts from languages under consideration are transcribed into a language-

independent interlingua consisting of MIDs. It is based upon a three-step procedure

(cf. Figure 3.2 for an English-German example based on the lexicons and thesaurus

depicted in Table 3.1).

3.2.3.1 Orthographic Normalization

A preprocessor reduces all capitalized characters from input documents to lower-

case characters and, additionally, performs language-specific character substitutions,

(e.g., for German ‘ß’ → ‘ss’, ‘ä’ → ‘ae’, ‘ö’ → ‘oe’, ‘ü’ → ‘ue’ and for Portuguese

‘ç’ → ‘c’, ‘ú’ → ‘u’, ‘õ’ → ‘o’, cf. Figure 3.2, top-right). This eases the matching

of (parts of) text tokens and entries in the lexicons. Additional translation rules

are motivated by idiosyncrasies of the medical sublanguage, e.g. for German: ‘ca’

→ ‘ka’, ‘co’ → ‘ko’, ‘cu’ → ‘ku’, ‘ce’ → ‘ze’, ‘ci’ → ‘zi’, and others. This solves a

notorious problem in German medical terminology (Brigl et al., 1994) where original

Latin terms contain ‘c’ instead of ‘k’ and ‘z’, whereas German derivations of the same
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Figure 3.2: Subword Indexing Pipeline

terms prohibit the use of ‘c’, a rule frequently violated even by professional medical

writers (e.g., the use of different surface forms such as “Karzinom”, “Carzinom”,

“Carcinom” in German).

3.2.3.2 Morphological segmentation

The system segments the orthographically normalized input stream into a sequence

of semantically plausible sublexical items, corresponding to subwords as found in

the lexicon (cf. Figure 3.2, bottom right). The segmentation proceeds as follows:

Each document token t of length n defined as a sequence of characters c1, c2, . . . , cn

is processed, in parallel, by a forward and backward matching process. The forward

matching process starts at the positions 1 and k = n and decrements k iteratively by

one unless the sequence c1, c2, . . . , ck is found in the subword lexicon. Alternatively,

the backward matching process starts at the positions k = 1 and n and increments

k iteratively by one unless the sequence ck, ck+1, . . . , cn is found in the lexicon. Sub-

strings recognized this way are entered into a chart. Unless the remaining sequences

are not empty, ck+1, ck+2, . . . , cn, as well as c1, c2, . . . , ck−1 are tested recursively in

the same manner, by forward and backward matching, respectively.

The segmentation results stored in the chart are checked for morphological plau-

sibility using a finite-state automaton in order to reject invalid segmentations (e.g.,
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segmentations without stems or beginning with a suffix, cf. Figure 3.1). If there

are ambiguous valid readings or incomplete segmentations (due to missing entries in

the lexicon), heuristic rules are applied, which prefer those segmentations with the

longest match from the left and the lowest number of unspecified segments. When-

ever the segmentation algorithm fails to detect a valid reading, all extracted stems

of four characters or longer, if available, are preserved and the remaining fragments

are discarded. Otherwise, if no stem longer than four characters can be determined

during the segmentation, the original word is restituted. This method proved useful

for the preservation of proper names.

3.2.3.3 Semantic Normalization

Each semantically relevant sublexical unit produced by the morphological segmen-

tation is replaced by its corresponding MID which represents all subwords assigned

to one particular class. If the MID has an entry in the thesaurus (i.e. there exist two

or more MIDs related to it via expandsTo or hasSense), that symbol is replaced ac-

cordingly. In the case of the expandsTo relation, that particular MID is substituted

by the sequence of related MIDs, e.g. #hyoid is exchanged by #tongue and #bone

in the example in Figure 3.2 (bottom-left), based on the thesaurus in Table 3.1. For

the hasSense relationship, the ambiguity is marked with curly brackets and differ-

ent readings are separated by commas (the German stem “bruch” is assigned the

MID #bruch, which is then replaced by {#fracture, #hernia} in Figure 3.2). The

result is a morpho-semantically normalized document in a language-independent,

interlingual representation, where bold MIDs co-occur in both fragments. A com-

parison of the original natural language documents at the beginning of the pipeline

and their interlingual representation at the very end already reveals the high degree

of content similarity hidden by the natural language surface form.
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Implementation of the Subword

Model

Within the MorphoSaurus system, the subword model was implemented covering

the domain of clinical medicine for English, German, French, Spanish, Portuguese,

and Swedish. The strategy for the creation, curation, and validation of the lexicon

and thesaurus is described more detailed in the following.

4.1 Lexicon Creation

A comprehensive list of standard and domain-specific affixes is the starting point of

subword lexicon building. Sources for affixes and infixes are the morphological gram-

mar specification for the respective languages.1 As a consequence, the main criterion

for the delimitation of a word stem is its compatibility with existing prefixes and

suffixes: “in⊕compatib⊕ility”, “aprend⊕izaje”, “ventricul⊕i”. Wherever derivation

causes a clear change of the word sense which goes beyond the combined sense of

the compounds, the derivate gains the status of a new lexeme with a different MID,

e.g. “decubit“ in addition to “cubit”, “neurot” in addition to “neur”. Many words

of Latin and Greek origin come with stem variants (e.g., “corpus” vs. “corpor⊕is”,

1Common agglutination of suffixes may be pre-coded (e.g., “-igkeiten”, “-izations”, “-ectomies”,

“-ivelmente”, “-ingness”, “-ationally”).
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“abdomen” vs. “abdomin⊕al”, “diagnos⊕is” vs. “diagnost⊕ico”). Here, a reduc-

tion to the common substring (“corp” or “abdom”) would cause the proliferation of

pseudo-suffixes (here “-oris”, “-inal”) on the one hand and the generation of short

word stems on the other hand. In these cases stem variants are added to the lexicon

as synonyms.

4.1.1 Delimiting Subwords

A high-performance extraction of subwords from large amounts of text is achieved

by the use of finite-state techniques for lexicon-based decomposition, dederivation

and deflection such as described above. Lexicon builders’ decisions of subword de-

limitation are therefore driven not only by formal linguistic criteria, but also by the

proper function of segmentation using finite-state machines. This is especially rele-

vant to long and composed words where different valid segmentations are possible.

For example, using a subword lexicon for English in domain d, “nephrotomy” may

be segmented into the sequence of lexical units

(nephr, ST, #kidney, EN, d)⊕
(o, IN, ε, EN, d)⊕
(tomy, PS, #incision, EN, d)

but also into

(nephr, ST, #kidney, EN, d)⊕
(oto, ST, #ear, EN, d)⊕
(my, ST, #muscle, EN, d)

If the word segmentation routine, here, prefers a long match from the left, the

second (erroneous) segmentation is preferred. Only costly knowledge and language

processing routines (which are not available, in general) would be expected to detect

this kind of errors. A pragmatic solution is to include additional synonymous lexeme

variants. In the example, this means that

l13 = (nephro, ST, #kidney, EN, d)
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is added to the English lexicon, and correspondingly,

l14 = (nefro, ST, #kidney, SP, d)

l15 = (nefro, ST, #kidney, PT, d)

to the Spanish and Portuguese one.

4.1.2 Empirical Validation of Subword Specificity

Especially short or ambiguous word stems, such as “gen”, “my”, “mi”, “ship” are

prone to side effects as described above. The shorter they are, the more frequently

they occur as accidental substrings, producing erroneous segmentation results. In

order to empirically assess this risk, lexical entries are matched against word lists

derived from domain-specific text corpora. Two cases can then be distinguished:

The number of accidental matches is high: First, all correct matches have

to be checked. Here, in many cases, the short stem will occur at the beginning of a

word. If this does not lead to false matches, this stem can be (unorthodoxly) added

as a proper prefix (PP) in order to make use of the position constraint on this class

of lexemes. If there are still many occurrences in the inside of words left, then, the

pertaining compounds or prefix-stem combinations have to be added to the lexicon

and linked to their components by expansion. An example is the stem “ship”: It has

to be avoided that the sense of “ship” (vessel, to send) is extracted from any word

with the suffix “-ship”, e.g. “relationship”. Therefore, instead of defining a stem,

“ship” is added as an invariant, as well as a (purely formal) prefix (“ship⊕men”):

l16 = (ship, SF, ε, EN, d)

l17 = (ship, IV, #ship, EN, d)

l18 = (ship, PF, #ship, EN, d)

Moreover, inflectional forms and derivatives of short verbs have to be included

in the lexicon as invariants, e.g. for the MID #eat:

l19 = (eat, IV, #eat, EN, d)

l20 = (eats, IV, #eat, EN, d)
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l21 = (eating, IV, #eat, EN, d)

l22 = (ate, IV, #eat, EN, d)

l23 = (eaten, IV, #eat, EN, d)

l24 = (eater, IV, #eat, EN, d)

There are relatively few accidental matches: Here, the strategy is the

opposite one. The stem is added to the lexicon, and the erroneously matching words

are segmented. Wherever the erroneous stem happens to be extracted, adjustments

have to be made to the components of these words. An example for this is “oto”

in the word “nephrotomy” (see discussion above). Instead of eliminating “oto” as a

stem, the stem variant “nephro” is added to the lexicon and, thus, false segmentation

results are avoided.

4.1.3 Criteria for Lexical Subword Inclusion

The selection of lexical units should reflect the language use in the domain of in-

terest. Again, word statistics extracted from extensive, language-specific corpora

are used in order to measure the relevance of terms. Ideally, each lexicon entry

should correspond to an atomic (indivisible) entity of semantic reference. However,

there are borderline cases, especially where a composed lexeme may have an atomic

synonym. As consequences, either the composed lexeme is entered as a whole (as a

multi-word term) and equalized with its atomic synonym, or the atomic lexeme is re-

lated to the components of its synonym by the relation expandsTo. For example, the

English adjective “ascorb⊕ic” implies “vitamin c” (other languages accordingly):

1. l25 = (ascorb, ST, #ascorb, EN, d)

l26 = (vitamin c, IV, #ascorb, EN, d)

2. {(#ascorb, #vitamin), (#ascorb, #c)} ∈ expandsTo

The latter case is preferred if the components of the composed lexeme are seman-

tically relevant. But in this example, the first one is favored since the MID #c is

semantically weak.

In contrast to the general rule, semantically underdetermined complex lexemes

or noun groups need not to be included in the dictionary as long as there exists
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a strict mapping through all languages of interest. As an example, the sense of

the term “yellow fever” is not derivable from its components, but its components

literally translate to all languages (e.g. Spanish “fiebre amarilla”, Portuguese “febre

amarela”, or German“Gelbfieber”).

Proper names are entered into the lexicon under the following circumstances:

1. They are needed for synonym linkage, e.g. between different product names,

e.g.

l27 = (diclofenac, IV, #diclofenac, EN, d)

l28 = (voltaren, IV, #diclofenac, EN, d)

l29 = (cataflam, IV, #diclofenac, EN, d)

2. They are used as eponyms, i.e. they belong to the domain terminology, e.g.

l30 = (crohn, IV, #crohn, EN, d)

l31 = (parkinson, IV, #parkinson, EN, d)

3. Translations exist, especially with regard to geographic terms, e.g.

l32 = (switzerland, IV, #switzerland, EN, d)

l33 = (suisse, IV, #switzerland, FR, d)

4.2 Thesaurus Creation

As introduced above, equivalence class identifiers can be linked using the semantic

relations hasSense and expandsTo. Groups of lexemes which have (the same) mul-

tiple senses are assigned a MID of their own. The hasSense relation then connects

such ambiguous MIDs to each of their senses. For example, the Spanish word “lobo”

is ambiguous, since it may refer to an animal (#wolf), or to an anatomical object

(#lobe). Therefore, for the lexical entries

l34 = (lobo, IV, #lobo, SP, d)

l35 = (wolf, ST, #wolf, EN, d)

l36 = (wolves, ST, #wolf, EN, d)

l37 = (lob, ST, #lobe, EN, d)
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the following thesaurus relation is added:

{(#lobo, #wolf), (#lobo, #lobe)} ∈ hasSense

The expandsTo relation links one or more non-atomic lexemes (which are also

grouped by a separate MID) to their atomic senses. There are mainly four reasons

for this:

1. Utterly short morphemes are not permitted as word constituents in order to

prevent improper segmentation of compounds. Words which contain these

morphemes must therefore have their semantic decomposition pre-coded. For

example, for the entries

l38 = (myalg, ST, #myalg, EN, d)

l39 = (mialg, ST, #myalg, SP, d)

l40 = (muscle, ST, #muscle, EN, d)

l41 = (muscul, ST, #muscle, SP, d)

l42 = (pain, ST, #pain, EN, d)

l43 = (algia, SF, #pain, SP, d)

the relation expandsTo is extended by:

{(#myalg, #muscle), (#myalg, #pain)} ∈ expandsTo

thus, avoiding the occurrence of “my” or “mi” in the lexicon.

2. A non-decomposable lexeme in one language has a composed sense in the

reference language (English). For example:

l44 = (esparadrap, ST, #esparadrap, SP, d) and

{(#esparadrap, #adhesiv), (#esparadrap, #tape)} ∈ expandsTo

3. Compounds exhibit ellipsis (omission of characters). For example:

l45 = (urinalise, ST, #urinalise, PT, d) and

{(#urinalise, #urin), (#urinalise, #analys)} ∈ expandsTo

4.3 Aspects of lexicon construction

The delimitation of classes of semantic equivalence is mainly an intellectual task

which cannot be fully automatized. As a starting point, each lexicon entry has its
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Figure 4.1: Fusing Subdomains

own MID. If the lexicon designer concludes that two lexicon entries have an identical

sense, then the two MIDs are fused.

The incremental fusion of lexemes, however, repeatedly leads to a class of de-

cisions which can be considered as the main dilemma of the lexicon engineering

process. Fig. 4.1 illuminates this situation. Let K, L, and M be atomic lexical

items. Two lexicographers may group these items in different ways, according to

slightly different subdomain contexts, here represented by d1 and d2, respectively.

In d1 the lexical items K and L are considered synonyms. In d2, however, M in-

stead of L is considered a synonym of K. The fusion of these two subcontexts

gives two solutions, viz. closure and sum, as depicted in Fig. 4.1 (right). Whereas

the closure operation merges the synonym classes, the sum operation preserves the

context-related distinction and introduces two senses for the ambiguous equivalence

class. The reasons for the decision whether one follows the one or the other strategy

are quite complex. On the one hand, a tight network of ambiguous senses results

from pursuing the latter strategy. On the other hand, the transitive closure tends

to yield numerous synonym classes in which pairs of lexemes may hardly be syn-

onymous anymore. As an example, a user may assert synonymy between “head”

and “caput” in an anatomy subdomain. Another one equalizes “head” with “chief”,

when modeling terms in a subdomain of administration. Applying the closure op-

eration, “chief” would become synonym to “caput”, and all literal and figurative
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senses of “head” would be represented by one MID. Applying the sum operation,

“head” would be assigned an ambiguous MID which then would be related to its

non-ambiguous senses.

4.3.1 A Web-based Lexicon Editing Tool

A powerful editor for subword lexicons was developed to facilitate the work of the

lexicographers. The tool is Web-based, so that different users at different places

(speaking different native languages) can work on the same lexical repository. Its

interface is tiled vertically and consists of two identical windows which allow to

easily browse through the lexicon, join two different equivalence classes or link them

using the expandsTo or hasSense relation. It allows numerous different sorting and

constraint criteria when browsing through the lexicon. In addition, it offers different

word statistics features. For example, a lexicon curator may have a look at the word

frequencies of large domain-specific word lists containing a particular substring. This

proved to be useful in determining whether a short word stem should be integrated

into the subword lexicon, or not. Figure 4.2 shows a screenshot of the lexicon editor.

4.3.2 Lexicon Statistics

Early investigations of the subword approach already revealed one of its benefit

(Schulz & Hahn, 2000). For covering a particular domain (diagnosis reports), instead

of spelling out derivational and compositional forms of medical terms which would

increase the size of underlying lexicons dramatically by the sheer number of different

term variants, Schulz & Hahn (2000) found a convenient growth behavior as far

as the number of subword entries required are concerned. While incrementally

accumulating a subword lexicon by stepwisely analyzing a corpus consisting of 30,000

diagnosis phrases, the lexicon growth they observed can be approximated by a well-

known logarithmic function. For covering the whole corpus, a comparatively small

list of 4,098 word stems were obtained.

Since this study, the lexical resources were manually constructed over the last five

years with a changing amount of manpower. The English, German and Portuguese
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Figure 4.2: MorphoEdit Web

subword lexicons were created in a fully manual fashion, while for Spanish, French

and Swedish, machine learning techniques were applied prior to manual work in

order to stepwisely augment the lexicons.

Table 4.1 contains the most important data of the lexicons. Overall, the lexical

resources contain 90,550 entries (Column 2),2 from which 87,439 (Column 4) are

linked to a total of 21,432 equivalence classes (Column 5). Thus, the lexicons contain

3,111 stop entries.

With more than 22,500 entries each, the English and German lexicons provide the

highest coverage, followed by the Portuguese lexicon with about 15,000 entries. In

2Just for comparison, the size of WordNet (Fellbaum, 1998) assembling the lex-

emes of general English in the 2.0 version is on the order of 152,000 entries (http://

www.cogsci.princeton.edu/∼wn/). Linguistically speaking, the entries are basic forms of verbs,

nouns, adjectives and adverbs.
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Language Subwords Learned Linked EqClasses Ratio

English 22,561 - 22,067 16,148 1.37

German 23,976 - 23,225 15,978 1.45

Portuguese 14,984 - 14,170 9,886 1.43

Spanish 10,936 8,793 10,387 7,408 1.40

French 7,812 5,777 7,556 5,351 1.41

Swedish 10,281 7,470 10,034 6,003 1.67

All 90,550 22,040 87,439 21,432 4.08

Table 4.1: Number of Subwords and their Linkage to the Thesaurus

contradistinction to this fully manual work, a total of 22,040 subwords were acquired

automatically for Spanish, French and Swedish (Column 3, cf. next Chapter). There

are between 1.4 to 1.7 subwords linked to one particular equivalence class within

one language (synonymy), and 4.1 across the six different languages (synonymy and

translation). In terms of relations between equivalence classes, there are currently

953 distinct expandsTo and 2,612 hasSense relations defined in the thesaurus.

As a particular benefit, the subword approach reduces the number of types

needed to sufficiently cover a certain domain. Instead of collecting all derivational

and compositional forms of medical terms which would cause the size of underlying

lexicons to grow dramatically, the amount of subwords remains manageable.

In order to express this implicit assumption in figures, a subset of MEDLINE

abstracts was built, some of which with full text reference to the corresponding

German article. For English, the corpus was comprised of more than 155 million

tokens, while the German collection contained 23 million words. Subsequently, the

number of types required to cover certain percentages of these corpora was deter-

mined by counting the additive frequencies of the corresponding tokens within these

documents (beginning with the most frequent ones) and by dividing these values by

the total number of tokens in the medical corpora. Figures 4.3 and 4.4 show the

typical asymptotic behavior of such curves (see line “Unique Words”).

After transforming the medical corpora into the interlingua, the same procedure

was performed on these corpora. Again, the coverage of the collections in terms of
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Figure 4.4: Coverage for German

Words Coverage Full Forms Subwords

English

124,469,156 80% 5,000 1,000

139,973,802 90% 11,500 2,100

147,750,124 95% 22,500 4,300

148,986,220 97% 27,200 5,000

153,971,182 99% 97,300 19,900

155,526,447 100% 528,587 276,846

German

18,404,098 79% 5,000 800

20,943,138 90% 20,000 1,700

22,106,646 95% 53,400 3,200

22,586,337 97% 100,400 5,000

23,037,452 99% 248,600 12,400

23,270,154 100% 476,911 82,124

Table 4.2: Number of Entries to Cover English and German Medical Terminology
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considering the most frequent words was taken into account (“Unique MIDs”). For

both scenarios, Table 4.2 shows the corresponding number of tokens that are needed

to cover certain percentages of the corpora.

As the figures show, the usage of subwords remarkably reduces the number of

types (lexical entries) that are needed to cover these corpora. This, however, may

sometimes be accompanied by a subtle loss of semantic distance that arises from

joining quasi synonymous subwords (such as “belly” and “abdomen”) in a common

equivalence class. For English, 22,500 full forms cover 95% of the collection, while

there are only 4,300 subwords needed. To cover 99% of the corpora, nearly 100,000

full forms are required, compared to 20,000 lexical entries at the subword level. This

effect is even more striking for German with a high amount of (ad hoc) nominal

compounds. Only 12,400 subword entries are sufficient to cover 99% of the test

collection. On the other hand, nearly 250,000 full forms are required for the same

scenario.

The project originally started from a bilingual German-English lexicon, while

the Portuguese part was added in a later project phase. Of course, the manual

creation and maintenance of lexicons and the thesaurus in which equivalence classes

are organized is costly and error-prone. In an effort to further expand the language

coverage of the MorphoSaurus system by Spanish, French and Swedish, already

available resources for Portuguese, English, and German are reused in order to

speed up and to ease the lexicon acquisition process (Schulz et al., 2004; Markó

et al., 2005a; 2005d; 2005f; 2006d).



Chapter 5

Lexical Acquisition

The bottleneck for dictionary-based natural language processing systems is the lack

of comprehensive dictionaries, especially for many different languages in particu-

lar domains. In the following, a methodology is introduced by which multilingual

subword dictionaries for Spanish, French and Swedish emerge automatically from

simple seed lexicons. The creation of the initial lexicons for the languages in focus

relies on cognate mapping, i.e., string-pattern-based transformations of orthograph-

ically very similar lexical forms from the source language into the target language.

This seed is then thrown onto parallel corpora in order to filter out valid lexical

and semantic hypotheses. For this step, the focus lies on co-occurrence patterns

of hypothesized translation equivalents in the parallel corpora. Subsequently, valid

cognates contribute to further dictionary upgrades by iteratively incorporating non-

cognates into the lexical assimilation process.

5.1 Cognate Mapping

It is well known that typologically related languages reveal similarities both at

the lexical and grammatical level. With these considerations in mind, it is an

obvious idea to reuse already available resources from given languages to build

up corresponding resources for other typologically related ones. The language

pairs considered here are Portuguese/Spanish, English/French, German/French, En-

glish/Swedish as well as German/Swedish.
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44 Rules: Portuguese Spanish 18 Rules: English French

ss → s fracass fracas o → ou movement mouvement

lh → j mulher mujer ve → f nerve nerf

+ça → za cabeça cabeza +or → eur receptor recepteur

19 Rules: German Swedish 26 Rules: German French

ei → e bein ben v → f intensiv intensif

+aa+ → a saal sal s → z gas gaz

+u+ → ö brust bröst or → eur tumor tumeur

7 Rules: English Swedish

c → k cramp kramp

ph → f phosphor fosfor

ce → s iceland island

Table 5.1: Some String Substitution Rules and Examples

From the Portuguese (alternatively, English and German) dictionary, identical

and similarly spelled Spanish (French and Swedish) subword candidates are gener-

ated. As an example, the Portuguese word stem “estomag” (“stomach”) is identical

with its Spanish cognate, while “mulher” (Portuguese, in English “woman”) is sim-

ilar to “mujer” (Spanish). Similar subword candidates are generated by applying a

set of string substitution rules, some of which are listed in Table 5.1. In total, 44

rules for Portuguese-Spanish were formulated, 18 rules for English-French, 19 rules

for German-Swedish, 26 rules for German-French, and 7 rules for English-Swedish.

These rules were all formulated by medical linguists based on introspection, also

using various dictionaries for heuristic guidance. Some of these substitution pat-

terns cannot be applied to starting or ending sequences of characters in the source

subword. This constraint is captured by a wildcard (‘+’ in Table 5.1), which stands

for at least one arbitrary character.

Based on these string substitution rules and the already available (Portuguese,

English, German) lexicons, for each entry (excluding affixes) of these sources, all

possible Spanish, French and Swedish variant strings were generated. This led,
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Language Pair String Variants

#Variants 4-chars 16-chars overall

Portuguese-Spanish 123,385 2.7 89.8 8.8

English-French 47,020 1.6 5.3 2.2

German-French 74,994 2.0 35.4 3.3

English-Swedish 70,178 1.8 9.9 3.2

German-Swedish 152,819 2.6 37 6.7

Table 5.2: Variant Generation Statistics

on the average, to 8.8 Spanish variants per Portuguese subword (ranging from 2.7

for high-frequent four-character words to 89.8 for low-frequent 16-character words).

Since the rule set is much smaller for the other language pairs, their average is far

less than for Portuguese-Spanish, as shown in Table 5.2: For each language pair (first

column), the total number of variants is depicted in the second column. Columns

three to five show variant averages per length.

5.1.1 Cognate Candidate Elimination

All generated Spanish, French, and Swedish variants were subsequently compared

with word frequency lists for these target languages which were compiled from large,

heterogeneous medicine-related Web sources.

5.1.1.1 Resources

Corpus sources (a total of 2 GB) for all languages considered and their statistics are

depicted in Table 5.3. They were derived from MEDLINE (English) or MEDLINE-

related databases (other languages), i.e. abstracts of scientific publications in a par-

ticular language that are linked from MEDLINE to their original, language-specific

source.1 The contents of different medicine-related Web portals addressing physi-

1E.g., http://www.springerlink.com/
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Language Corpus Type Tokens Types

English MEDLINE 209,302,337

Others 40,938,064
∑

250,240,401 528,585

German MEDLINE 1,327,435

Others 29,518,426
∑

30,845,861 467,909

Portuguese MEDLINE 200,446

Others 13,704,344
∑

13,904,790 138,248

Spanish MEDLINE 357,532

Others 11,103,066
∑

11,460,598 126,314

French MEDLINE 1,810,567

Others 2,355,541
∑

4,166,108 85,710

Swedish MEDLINE —

Others 2,480,573 47,343
∑

319,968,430 1,216,325

Table 5.3: Corpus Resources

cians and health care consumers served as additional resources.2 Due to unbalanced

availability (especially with regard to MEDLINE abstracts) the corpora obtained

varied significantly. For English, a total of one million MEDLINE abstracts were

included in the corpora, for German 8,000, for French 9,900, for Portuguese 1,370,

and for Spanish 1,441. Unfortunately, to the best of knowledge, there are no MED-

LINE abstracts which link to a Swedish source. The resources depicted here have

been used in other experiments of this work, as well (cf. Chapters 6, 7, 9 and 10).

2E.g., different language versions of Netdoctor, cf. http://www.netdoctor.co.uk/ and the

Merck Manual of Diagnosis and Therapy, cf. http://www.msd.de/msdmanual/home.html
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5.1.1.2 Elimination of Cognate Candidates

Wherever a (purely formal) prefix string match (in the case of stems) or an exact

match (in the case of invariants) occurred in the generated corpora, the matching

string was listed as a potential target cognate of the source language subword it

originated from. Whenever several substitution alternatives for a source subword

had to be considered, that particular alternative was chosen which had the most

similar lexical distribution in the corpora considered. Similarity was measured as

follows: Let S be the source lexical item, CS the source language corpus containing

n tokens and V1, V2, ..., Vp the hypotheses generated from S that match the target

language corpus CT , containing m tokens. With f(x, y) denoting the frequency of

a word x in a corpus y, that particular Vj (1 ≤ j ≤ p) was chosen for which

∣

∣

∣

∣

f(S, CS)

n
− f(Vj, CT )

m

∣

∣

∣

∣

was minimal. All other candidates were discarded.

As a result, a list of putative target language subwords was obtained, each one

linked by the associated MID to their grounding cognate in the source lexicon. These

lists of cognate candidates are referred to CCSPA for Spanish, CCFRE for French,

and CCSWE for Swedish.

Starting from 14,114 Portuguese, 23,259 German and 22,014 English subwords

(only considering stems and invariants), a total of 123,385 Spanish subword vari-

ants were created using the string substitution rules. For Swedish (French), 152,819

(74,994) variants were derived from German and 70,178 (47,020) from English (cf.

Table 5.2). Matching these variants against the Spanish corpus and allowing for

a maximum of one candidate per source subword, 11,161 tentative Spanish cog-

nates were identified. Combining English and German evidence, 11,930 French and

7,024 tentative Swedish cognates were found (cf. Table 5.4). Spanish candidates

were linked to a total of 8,219 MIDs from their Portuguese correlates (hence, 2,942

synonym relationships have also been hypothesized), whilst French (Swedish) can-

didates were associated with 8,218 (4,634) MIDs from their German and English

correlates.
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Language Pair Source Lexicon Selected Cognates Linked MIDs

Portuguese-Spanish 14,114 11,161 8,219

English-French 22,014 9,672 7,373

German-French 23,259 8,551 6,737

Combined Evidence 11,930 8,218

English-Swedish 22,014 4,512 3,440

German-Swedish 23,259 4,982 3,740

Combined Evidence 7,024 4,634

Table 5.4: Selected Cognates (Including Combined Evidence for French and

Swedish)

5.2 Cognate Validation Using Parallel Corpora

Large multilingual resources which are available in the biomedical domain were

used in order to identify false cognates (so-called false friends, i.e., similar words

in different languages with different meanings. For example, the Spanish subword

candidate *“crianz” for the Portuguese “crianc” [“child”] (the normalized stem of

“criança”) was found in the list of generated cognate-pairs. The correct translation

of Portuguese “crianc” to Spanish, however, would have been “nin” (the stem of

“niño”), whilst the Spanish “crianz” refers to “criac” [“breed”] (stem of “criação”

in Portuguese).

The corpus used here was derived from the Unified Medical Language System

UMLS (2005)3, a collection of different medical terminology systems, such as the

International Classification of Diseases (ICD-10, 2005) or the Medical Subject Head-

ings (MeSH, 2005) (cf. the end of Section 3.1).

Entries of these different resources are linked to each other via the UMLS

Metathesaurus, which makes it possible to extract translations of terms for var-

ious languages. Unfortunately, word-to-word translation occurs only in very few

3See Section 12.2 for a selection of non-medical resources (covering policy, law, economics,

culture, education, etc.), which can be used just in the same manner.
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cases. More often one encounters rather complex noun phrases with a similarly

complex semantic structure. Examples for typical English-Spanish alignments are

“Cell Growth” aligned with “Crecimiento Celular”, or “Heart transplant, with or

without recipient cardiectomy” aligned with “Trasplante cardiaco, con o sin cardiec-

tomia en el receptor”, which reveal a phrasal level of semantic correspondence.

English was used as the pivot language for the validation of generated cognates,

since it has the broadest coverage in the UMLS. The linkage to other languages

is considerably poorer, both in qualitative as well as quantitative terms. The size

of the corpora derived from the linkages of the English UMLS to other languages

amounts to 60,526 term translations for English-Spanish,4 17,130 for English-French,

and 10,953 alignments for English-Swedish. Furthermore, additional 28,473 English-

Swedish alignments were made available by Nyström et al. (2006), thus summing

up to 39,426.

In order to determine the false cognates in the lists of the generated cognate

pairs, CCSPA, CCFRE and CCSWE, these lists served as preliminary lexicons for

the morpho-semantic normalizer, including 836 manually added affixes for Spanish,

279 for French, and 601 for Swedish. Based on these subword resources, the parallel

corpora of the aligned UMLS expressions were then morpho-semantically processed

as described in the previous chapter.

Whenever the same MID occurred on both sides after this simultaneous bilingual

processing of the UMLS alignments, the appropriate Spanish (French or Swedish,

alternatively) subword entry that led to this particular MID was taken to be a valid

entry. This is a reasonable approach, since it is highly unlikely that a false friend

occurs within the same translation context.

Those hypotheses which never matched in this validation procedure were rejected

from the candidate lexicons. As a result (cf. Table 5.5), 49% of the Spanish, 33% of

the French, as well as 34% of the Swedish hypotheses were acknowledged. Together

with the manually provided list of affixes, the list of accepted cognates served as the

seed lexicons (in the following, L(0)) for acquiring additional lexical entries, which

were not cognates to elements of any of the source lexicons.

4Only focusing on the so-called preferred entries.
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Language Pair Hypotheses Valid L(0) incl. Affixes

Portuguese-Spanish 11,161 5,481 (49.1%) 6,317

English/German-French 11,930 3,903 (32.7%) 4,182

English/German-Swedish 7,024 2,384 (33.9%) 2,985

Table 5.5: Cognates Matching the UMLS Alignments

5.3 Bootstrapping Subwords

The parallel corpora derived from the UMLS and the lexicons with validated

cognates both served as starting points for a continuation of the lexical acquisition

process, as described in Algorithm 1. In order to illustrate this process, assume

the Swedish subword “blod” was identified as being a cognate to the English sub-

word “blood” (and, therefore, is included in L(0)). Then, the yet unknown Swedish

word “blodtryck”, which has the English translation “blood pressure” in the UMLS

Metathesaurus gets segmented into

(blod, ST, #blood, SW, d)⊕
(t, UK, ε, SW, d)⊕
(r, SF, ε, SW, d)⊕
(yck, UK, ε, SW, d)

with ST being a marker for a stem, SF for a suffix and UK for an unknown se-

quence for Swedish (SW) in domain d, thus satisfying the condition in line 12 of the

algorithm. At the same time, the morpho-semantic normalization of “blood pres-

sure” leads to the sequence of MIDs [#blood #tense], whilst the normalization of

“blodtryck” leads to [#blood], since “tryck” is not yet part of the Swedish lexicon.

Comparing these two representations, the condition in line 13 of the algorithm is

satisfied, since there is exactly one more MID resulting from the English decom-

position which cannot be found in the Swedish normalization result. The invalid

segment is then reconstructed (‘t⊕r⊕yck’ ) by eliminating those substrings that led

to a matching MID (“blod”) in the aligned unit (“blodtryck”) (line 15). The supernu-

merary MID resulting from the English normalization is assigned to that remaining
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1: MSI: morpho-semantic indexing procedure described in Section 3.2 (maps sequences

of words to sequences of MIDs and remainders)

2: current← 0

3: quiescence← false

4: while not quiescence do

5: the lexicon for MSI is set to L(current)

6: the list of new entries is empty

7: for all AUi, i ∈ [1,n] (UMLS alignment units) do

8: AUS ← source language part of AUi

9: AUT ← target language part of AUi

10: MIDS ← MSI(AUS)

11: MIDT ← MSI(AUT )

12: if for exactly one word there is an invalid segmentation (checked by the FSA) in

MIDT then

13: if there is exactly one more MID in MIDS than in MIDT then

14: mid ← supernumerary MID from MIDS

15: entry ← restore the invalid segment and remove substrings that led to a

matching MID in MIDS and MIDT ;

16: strip off potential suffixes from entry, if the remaining substring is longer

than 4 (thus, avoiding too short entries);

17: add entry together with the associated mid to new entries

18: end if

19: end if

20: end for

21: if new entries is empty then

22: quiescence← true

23: else

24: current← current + 1

25: copy L(current− 1) to L(current)

26: add all entries from new entries to the lexicon L(current)

27: end if

28: end while

Algorithm 1: Bootstrapping Algorithm for Lexical Acquisition
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Lexicon Spanish French Swedish

L(0) 6,317 4,182 2,985

L(1) 8,610 (2,293) 5,679 (1,497) 6,893 (3,908)

L(2) 8,771 (161) 5,768 (89) 7,347 (454)

L(3) 8,788 (17) 5,777 (9) 7,388 (41)

L(4) 8,793 (5) 5,777 (0) 7,467 (79)

L(5) 8,793 (0) 7,470 (3)

L(6) 7,470 (0)

LALL 10,936 (2,143) 7,812 (2,035) 10,281 (2,811)

Table 5.6: Lexicon Growth Steps (∆ in brackets)

substring (line 17 in the algorithm). After processing all UMLS alignments, this new

entry is then incorporated in the Swedish lexicon as a stem, resulting in the lexicon

L(1) (line 26). In the next run, in which all UMLS alignments are processed once

again, this newly derived lexicon entry may serve for extracting, e.g., the Swedish

word “luft” with its identifier #aero from the UMLS entry “air pressure” (English,

indexed to [#aero #tense]) linked to “lufttryck” (Swedish). When no new entries

can be generated using this method (quiescence), the algorithm stops.

Table 5.6 depicts the growth steps of the target lexicons for the entire bootstrap-

ping process (new entries in comparison to each previous step are in brackets). In

the first run, for Spanish, 2,293 new lexemes were added to the lexicon which comes

to a size of 8,610 including those lexemes already generated by the cognate identi-

fication routines (cf. Table 5.5). For French, 1,497 new lexemes were generated in

the first step and for Swedish 3,908. After four runs, learning came to an end with

8,793 lexemes generated for Spanish, while after three runs, 5,777 lexicon entries for

French were acquired. Finally, for Swedish, 7,470 lexemes were learned after five

iteration steps.

These automatically acquired lexicons served as the basis for the additional man-

ual enhancements of the lexicons involved. In the meantime, 2,143 Spanish, 2,035

French and 2,811 Swedish subwords have been added by hand, resulting in a total
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of 10,936 entries for Spanish, 7,812 for French and 10,281 for Swedish, referred by

LALL in Table 5.6.

5.4 Checking the Quality of Derived Lexicons

For lexicon generation, Portuguese-Spanish, English/German-French, and

English/German-Swedish corpora compiled out of the UMLS Metathesaurus were

used. To estimate the quality of the interlingual connections between the newly de-

rived lexicons, the results after running the morpho-semantic indexing system (the

function MSI from Algorithm 1, as described in Section 3.2) on these collections

were compared, at each stage of the lexical acquisition process. Of course, these re-

sults probably include overfitting phenomena. Therefore, additional Spanish-French

(13,158), Spanish-Swedish (8,993) and French-Swedish (6,713) aligned entities were

extracted from the UMLS. The alignments range, again, from word-to-word trans-

lations (e.g., Spanish “pierna” to Swedish “ben” (English “leg”)) to complex noun

phrases, which sometimes correspond to a single word in the other language, e.g.,

the Spanish phrase “enfermedad v́ırica transmitida por artrópodos, no especificada”

maps to the Swedish “arbovirusinfektioner” (English “arbovirus infections”) in the

UMLS. This example also reveals the problem of inexact translations (especially

for data coming from the International Classification of Diseases (ICD-10, 2005)

and the International Classification of Primary Care (ICPC, 1990)). The Spanish

fragment “no especificada” (“not specified”), e.g., does not have a counterpart in

the Swedish equivalent.

Rather than only examining the coverage of the acquired lexicons, the quality of

the generated lexicons (admitting that their status is far from being complete5) was

estimated, i.e. the validity of the interlingual synonymy relations stipulated.

For this goal, the English-Spanish, English-French, and English-Swedish corpora,

on which the lexical acquisition was based employing the MSI routines for all lex-

5With lexicon sizes from 7,812 for French, 10,281 for Swedish to 10,936 entries for Spanish the

lexicons are certainly far from being complete (compared to 22,561 entries for English, 23,976 for

German and 14,984 for Portuguese, see Section 4.3.2).
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icon levels, L(0)- L(5), were indexed. Furthermore, the Spanish-Swedish, Spanish-

French, and French-Swedish corpora (previously unseen by the learning algorithm)

were processed accordingly. For each alignment unit of the corpora, the resulting

MIDs were then compared using a measure of indexing consistency proposed by

Hooper (1965):

CAUi
=

100A

A + N + M

The indexing consistency of one alignment unit (AUi) of the parallel corpus,

CAUi
, is dependent on A, the number of MIDs that co-occur on both sides of that

unit in the parallel corpus and the number of MIDs that occur only on one of its

sides, N or M . To express the overall consistency, the mean over all alignment units

(CAUi
) of the corpus is calculated.

Table 5.7 depicts the over-all consistency values (columns two and five) start-

ing from lexicon L(0) (only validated cognates) up to lexicon L(4) for all target

languages (improvements after that step are only marginal, cf. Table 5.6). When

processing the English-Spanish corpus, consistency is already about 38%, only con-

sidering cognates using the C measure. This surprisingly high value is due to the

high amount of overlapping medical terms in different Western European languages.

Adding those entries acquired from bootstrapping the same corpus, consistency

climbs to a maximum of 46%. As a reference item, the processing of an English-

German corpus, which is also derived from UMLS, yields 58% consistency (keeping

in mind that English and German lexicons were generated manually and provide a

real good coverage (cf. evaluation results in Section 8.2). For English-French, con-

sistency ranges from 40% (only cognates) and 52% (after four bootstrapping cycles)

to 57% when including additional manual entries, whilst for English-Swedish, 58%

consistency is reached after the automatic acquisition and 63% after the manual

insertion of 2,811 additional subwords.

The processing of Spanish-French, Spanish-Swedish, and French-Swedish is par-

ticularly interesting, since the underlying corpora were not involved at all in the lex-

ical acquisition process. With consistency starting from 30% for cognates (Spanish-

French), 42% is reached after four cycles of generating the non-English lexicons by

processing parallel corpora aligned to English only.
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Lexicon C Cov.(%) Ident.(%) C Cov.(%) Ident.(%)

English-Spanish (n = 60,526) Spanish-French (n = 13,158)

L(0) 37.7 85.5 7.9 30.4 61.9 15.1

L(1) 45.7 90.8 11.9 40.8 74.6 22.8

L(2) 46.1 91.0 12.2 41.9 75.2 23.6

L(3) 46.1 91.0 12.2 42.0 75.3 23.8

L(4) 46.1 91.0 12.2 42.0 75.3 23.8

LALL 53.0 92.2 13.5 47.2 78.6 26.8

English-French (n = 17,130) Spanish-Swedish (n = 8,993)

L(0) 39.9 73.6 16.6 23.8 51.6 9.8

L(1) 50.9 84.0 24.8 42.4 73.2 23.2

L(2) 52.0 84.3 25.2 43.5 74.5 23.5

L(3) 52.1 84.4 25.4 43.9 74.6 24.0

L(4) 52.1 84.4 25.4 44.1 74.6 24.2

LALL 57.4 86.8 27.2 49.8 78.7 26.0

English-Swedish (n = 10,953) French-Swedish (n = 6,713)

L(0) 30.8 56.7 16.3 25.8 51.3 11.5

L(1) 55.5 80.4 38.2 42.9 71.8 23.9

L(2) 57.6 81.5 40.4 44.6 72.9 24.6

L(3) 57.7 81.5 40.4 44.6 73.0 24.6

L(4) 57.8 81.6 40.8 44.9 73.2 24.8

LALL 63.1 86.3 45.3 50.0 78.5 26.7

Table 5.7: Indexing Consistency (C), Coverage (Cov.) of Lexicons and Number of

Identical Indexes (Ident.) at each Stage of Lexicon Generation.
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For Spanish-Swedish (French-Swedish, respectively), after four bootstrapping

cycles, consistency reaches 44% (45%), with an additional boost of five percent-

age points after enhancing the Spanish, Swedish and French lexicons by manual

generated entries.

Lexical coverage was measured by counting those cases in which at least one MID

occurs on both sides of the alignment units considered. This is particularly interest-

ing from the cross-language information retrieval perspective. For Spanish cognates

only (L(0) in Table 5.7), (incomplete) alignments to English can be observed for

86% of the corpus. This value increases to 91% after four runs of bootstrapping the

Spanish lexicon, and for English-French, coverage reaches 84% (for English-Swedish

82%). After manually enhancing the lexicons with additional entries (LALL), cov-

erage increases to 86% for English-Swedish, up to 92% for English-Spanish. For

Spanish-French, Spanish-Swedish, and French-Swedish, surprisingly enough, cover-

age yields 73% to 75% after the automatic acquisition, and 79% after manual lexical

enhancements. Again, as a reference value, the processing of the English-German

corpus yields 91% coverage.

The number of cases in which both sides are indexed identically, are depicted

in Table 5.7, Columns four and seven. The reference data for these values is 30%

for English-German. Remarkably, the number of identical indexes is very high for

English-Swedish (45%), when compared to the other language pairs. This can be

explained by the fact that the relatively imprecise data coming from ICD and ICPC

is missing for Swedish in the UMLS Metathesaurus.

5.5 Discussion

The rise of the empirical paradigm in the field of machine translation is, to a large

degree, due to the wide-spread availability of parallel corpora (Brown et al., 1990).

They also constitute an important resource for the automated acquisition of trans-

lational lexicons (Turcato, 1998). Most approaches to multilingual lexical acquisi-

tion employ statistical methods, such as context vector comparison (Rapp, 1999;

Widdows et al., 2002; Déjean et al., 2002) or mutual information (Fung, 1998) and
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require a seed lexicon of trusted translations. Koehn & Knight (2002) derived such a

seed lexicon from German-English cognates which were selected by using string sim-

ilarity criteria (a method also favored by Ribeiro et al. (2001)). Barker & Sutcliffe

(2000) propose an alternative generative approach where Polish cognate candidates

are created from an English word list using string mapping rules, an approach to

cognate mapping also discussed by MacWhinney (1995) for 2nd language acquisition

of human learners.

The second issue concerns the processing of suitable corpora. Whilst Widdows

et al. (2002) deal with parallel German-English corpora to enrich an existing mul-

tilingual lexicon (also taken from the UMLS Metathesaurus), Fung (1998), Rapp

(1999) and Déjean et al. (2002) propose methods that require only weaker com-

parable corpora (cf. (Fung, 1998) for a linguistic distinction between both types

of corpora). Furthermore, Déjean et al. (2002) incorporate hierarchical informa-

tion from an external thesaurus (MeSH, 2005) for combining different evidence

for lexical acquisition. Cheng et al. (2004) as well as Zhang & Vines (2004) pro-

pose co-occurrence-based methods to automatically extract word translations from

mixed-language texts which are dynamically made available trough common Web

search engines.

Here, in contradistinction to these precursors, a fully heuristic method for ac-

quiring translations of subwords is proposed instead of using statistics. This is made

possible by the availability of relatively large and well aligned parallel corpora, as

provided within the UMLS Metathesaurus.





Chapter 6

Cross-Lingual Resolution of

Acronyms

The understanding of abbreviations in biomedical texts is very important for nat-

ural language processing applications, such as information extraction (Friedman &

Hripcsak, 1999) or information retrieval systems (Hersh, 2002). This is witnessed,

in particular, for protein and gene expressions from biomedical texts (Fukuda et al.,

1998), as well as the relations between them (Blaschke et al., 1999). Those expres-

sions frequently consist of acronyms, but their definitions in the text might differ

from the ones found, e.g., in an external database, such as ARGH, AcroMed, or

SaRAD (Wren & Garner, 2002), cf. Wren et al. (2005) for an overview.

Multiple expansions for a unique acronym, or multiple acronyms for a unique

term, will lead to difficulties when trying to match natural language expressions

to a standardized vocabulary such as the UMLS or MeSH (Zeng & Cimino, 1996;

Aronson et al., 2000; Aronson, 2001; Zweigenbaum et al., 2001; Markó et al., 2003;

Markó et al., 2004a; 2006c). In an information retrieval scenario, unresolved

acronyms will possibly lead to a loss of precision: Does “AD” refer to “Alzheimer’s

Disease” or to “allergic dermatitis”? The problem of ambiguity becomes even

harder, when multilingual documents are made available to a search interface, which

is the case for most Web search engines. In this case, the acronym “AD” may

have the German expansion “atopische Dermatitis”, Spanish “auŕıcula derecha”,
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Portuguese “água destilada”, and many more. On the other Hand, the German

acronym equivalent to “Alzheimer’s Disease” is “AK” (“Alzheimer Krankheit”) or

“MA” (“Morbus Alzheimer”) and for Spanish “EA” (“enfermedad de Alzheimer”).

There has been extensive research on the automatic extraction of short-

form/long-form pairs (abbreviations and acronyms mapped to their expan-

sions/definitions) within one language (Adar, 2004; Chang et al., 2002; Pustejovsky

et al., 2001; Schwartz & Hearst, 2003; Wren & Garner, 2002). Different ways how ab-

breviations and acronyms are actually used in written (medical) language have been

studied (Liu et al., 2002). However, little attention has been paid on how acronyms

and their associated long-forms behave across languages (Hahn et al., 2005a;

Markó et al., 2005b; 2006e).

6.1 Algorithm for Acronym Extraction

Schwartz & Hearst (2003) offer a simple and fast algorithm for the extraction of

abbreviations and their definitions. The algorithm achieves 96% precision and 82%

recall on a standardized test collection, thus, performs at least as good as other

existing approaches (Adar, 2004; Chang et al., 2002; Pustejovsky et al., 2001; Wren

& Garner, 2002). The source code (in Java) is made available on the Web.1

Generally, the process of identifying abbreviations and their full forms can be

seen as a two-step procedure: the extraction of possible short-form/long-form (SF-

LF) pairs and the validation of SF-LF terms among the list of possible candidates

in a sentence.

6.1.1 Extraction of possible SF-LF terms

SF-LF pairs are identified by the adjacency to parentheses. The two basic patterns

LF (SF) and SF (LF) are thereby distinguished. A short form has the following

characteristics: it contains between 2 and 10 characters, it has a maximum of two

words, at least one character is a letter and its first character is alphanumeric. The

1http://biotext.berkeley.edu/software.html



6.2 Extracting Biomedical Acronyms 63

long form must immediately appear before or after the corresponding short form

and the maximum number of words is constrained by

min(|A|+ 5, |A| ∗ 2)

with |A| being the number of characters in the corresponding SF (a heuristics origi-

nally proposed by Park & Byrd (2001) that is also used in recent work by Kokkinakis

& Dannélls (2006)). In practice, the first pattern LF (SF) proved to occur more

frequently. Only if a criterion for an LF (SF) pattern is not fulfilled (e.g., more than

two words inside the parentheses), the second pattern SF (LF) is tried.

6.1.2 Identifying the correct SF-LF term

A set of simple rules is used to identify the correct SF-LF pair out of a set of

possible candidates. Most importantly, each character in the short form must match

a character in the long form. Characters of the short form must appear in the same

linear order as in the long form. Furthermore, the first character of the SF has to

be the same in the LF. Finally, all LFs are removed which are shorter than the

corresponding SF, or which include the corresponding SF within one of their single

words.

6.2 Extracting Biomedical Acronyms

In order to acquire acronyms together with their definitions from biomedical texts

heterogeneous Web sources were taken, including MEDLINE abstracts (cf. Table

5.3 in Section 5.1.1.1). With over 250 million words the derived English corpus was

much larger than those for the other languages involved (37 millions for German, 14

millions for Portuguese, and 11 millions for Spanish).

Using the algorithm described above, over 1.2m abbreviations were collected for

English, together with their long forms (cf. Table 6.1). 31,750 pairs were retrieved

for German, 8,029 for Portuguese, 7,675 for Spanish, 3,886 for French, and 266 for

Swedish. In contradistinction to the other languages, the English corpus included a

large number of expert-level MEDLINE abstracts. As a consequence, every 200th
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Language Corpus Tokens Acronyms

English 250,240,401 1,253,318 (0.5%)

MSI-Covered 1,108,921 (88.5%)

German 37,715,960 31,750 (0.08%)

MSI-Covered 29,477 (92.8%)

Portuguese 13,904,790 8,029 (0.06%)

MSI-Covered 7,070 (88.1%)

Spanish 11,460,598 7,675 (0.07%)

MSI-Covered 4,051 (52,8%)

French 4,166,108 3,886 (0.09%)

MSI-Covered 2,603 (67,0%)

Swedish 2,480,573 266 (0.01%)

MSI-Covered 177 (66,5%)

Table 6.1: Corpus and Acronym Extraction Statistics

token in the collection was classified as an acronym. For the other languages (for

which the corpora included a higher amount of consumer information), this ratio is

much smaller (0.01 to 0.09 percent of the corpora), in particular for Swedish, for

which the corpus did not contain any MEDLINE-related abstracts.

After the acquisition of SF-LF pairs, the long forms were normalized to lower-case

characters, whilst case sensitivity was kept for short forms, in contrast to previous

work (Hahn et al., 2005a; Markó et al., 2005b). The reason for this is that in

biology, protein and gene names are differentiated by defined upper- and lower-case

characters, and subtle discriminations of referenced species are based on the different

use of case. Furthermore, the character normalization of short forms such as “MG”

and “mg” would cause unnecessary ambiguity when resolving to, e.g., “myasthenia

gravis” or “milligram”.

The long forms were then processed with the morpho-semantic indexing (MSI)

procedure as described in Section 3.2. Upon prior manual inspection of document

samples, it has been observed that English long forms also frequently occur in
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Figure 6.1: Distribution of SF-LF Occurrences in each Corpus

German, Portuguese, and Spanish texts. Therefore, a decision had to be made

which lexicon to use for MSI. Therefore, the long forms were segmented using every

language-specific subword lexicon involved. Afterwards, those language hypotheses

were kept for which the underlying lexicon yielded complete lexical coverage with

regard to the specific long form. If there were more than one remaining language

hypothesis, the document language (if not English) was preferred over English.

This procedure led to over one million SF-LF form pairs covered by the MSI

procedure for English (89%), 29,477 (93%) for German, 7,070 (88%) for Portuguese,

4,051 (53%) for Spanish , 2,603 (67%) for French and 177 (67%) for Swedish (cf.

Table 6.1). In the following, this (sub-) set of extracted abbreviations is focused on

only.

Figure 6.1 gives an impression of how frequent distinct SF-LF pairs occurred in

the corpora considered, for each language condition. 46% to 81% of all acronyms

extracted occurred only once, 7% to 31% appeared twice, whilst five or more occur-

rences were found for 3% to 13% of all SF-LF pairs.

As depicted in Table 6.2 (Column 2), 235,076 unique SF-LF pairs were gener-

ated for English, 4,732 for German, 3,983 for Portuguese, 1,993 for Spanish, 1,793

for French, and 110 for Swedish. Column 3 of the table shows the average number of
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Language Surface MSI

Unique Ratio Unique Ratio

English 235,076 4.72 214,590 5.17

German 4,732 6.23 3,970 7.43

Portuguese 3,983 1.78 3,674 1.92

Spanish 1,993 2.03 1,880 2.16

French 1,793 1.45 1,727 1.51

Swedish 110 1.61 98 1.81

Table 6.2: Effects of Morpho-semantic Normalization in Terms of Unique SF-LF Pairs

and Tokens per Type

corpus occurrence for each unique SF-LP pair. After the morpho-semantic normal-

ization of long forms, the number of unique SF-LF pairs decreased as expected, e.g.

to 214,590 for English. Accordingly, the number of tokens per type increased, as

depicted in the fifth column of Table 6.2. As an example, morpho-syntactic variants

in long forms such as in “CTC”-“computed tomographic colonography” and “CTC”-

“computed tomography colonography” were unified. Hence, additional evidence for

the validity of such an extracted SF-LF pair increases.

6.3 Results

Extracted acronym-definition pairs were examined under two conditions. Firstly,

they were analyzed regarding their behavior within one particular language. Af-

terwards, relying on the language-independent representation of long forms using

MorphoSaurus, cross-lingual constellations of SF/LF pairs were analyzed in a

more detailed way.

6.3.1 Intra-Lingual Phenomena

Two basic phenomena have to be considered when inspecting the results for one given

language. At first, one short form can have multiple long forms, and, secondly, one
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Language SF Average

Surface MSI

English 90,518 2.60 2.37

German 3,206 1.48 1.24

Portuguese 2,540 1.57 1.45

Spanish 1,394 1.43 1.35

French 1,362 1.32 1.27

Swedish 87 1.26 1.13

Table 6.3: Number of Long Forms for Each Short Form (SF)

Language Surface MSI

LF Average LF Average

English 199,633 1.18 170,185 1.26

German 4,598 1.03 3,772 1.05

Portuguese 3,845 1.04 3,414 1.08

Spanish 1,941 1.03 1,793 1.05

French 1,755 1.02 1,665 1.04

Swedish 109 1.01 97 1.01

Table 6.4: Number of Short Forms for each Long Form (LF)

long from can have multiple short forms. An example for a SF ambiguity is given

with “ABM” mapped to “acute bacterial meningitis” or to “adult bone marrow”.

Table 6.3 shows the numbers of different long forms for each short form, both for

the baseline condition (surface forms) and the MSI condition. For English, 90,518

unique short forms were extracted. The average number of long forms associated to

unique SFs decreases from 2.60 to 2.37 for MSI, as expected. The same relationship

can also be observed for the other languages considered.

The second phenomenon is also observable in all languages involved in the ex-

periments. For example, the noun phrase “acid phosphatase” has nine different ab-
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breviations in the English corpus processed: “AcP”, “acPAse” “ACP-ase”, “Acph”,

“ACPT”, “AP”, “APase”, “AphA”, and “APs”. Table 6.4 depicts the numbers de-

scribing this phenomenon. For English, a total of 199,633 different long forms were

extracted, embedded in 235,076 different SF-LF pairs (cf. Table 6.2). Thus, each

LF is associated to 1.18 SFs, on the average. For the MSI condition, there are less

different long forms, hence, the ratio slightly increases, for all languages.

6.3.2 Inter-Lingual Phenomena

6.3.2.1 Identical SF-LF Pairs

The first observation is that quite often SF-LF pairs are identical across languages on

the surface level. Especially common or technical English terms also appear in other

languages, such as “WHO” and its expansion “World Health Organization”, “PCR”

and its definition “polymerase chain reaction”, or “IL” associated to “interleukin”. In

numbers (cf. Table 6.5, Column 2), up to 163 identical SF-LF pairs for Portuguese-

Spanish, 189 for English-French, and 478 for English-German have been found, while

language pairs not related to English also may contain some English SF-LF pairs.

Consequently, foreign-language SF-LF pairs should also be included in a language-

specific lexicon for properly applying lexicon-based NLP-tools.

6.3.2.2 Identical SF, Different LF

One way of identifying possible translations of long forms is to collect those long

forms, which are connected to a unique short form at the surface level. For example,

if an English document contains “WHO”-“World Health Organization” and a Ger-

man document contains “WHO”-“Weltgesundheitsorganisation”, the long forms can

be regarded as possible translations of each other. For English-Portuguese, 129,957

of these pairs can be extracted and for English-German, there are 78,761 of these

hypothesized translations (Table 6.5, Column 3). Of course, these sets also contain

syntactic variants and a large number of false positives, since short forms are used

differently across languages. Therefore, the focus is switched to the interlingual layer

of long form representations.
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Surface MSI

Language Pair I(SF) I(SF) I(SF) D(SF)

I(LF) D(LF) T(LF) T(LF)

English-German 478 78,761 1,016 2,540

English-Portuguese 154 129,957 371 3,665

English-Spanish 165 82,565 309 2,044

English-French 189 54,833 312 1,490

English-Swedish 28 2,978 57 153

German-Portuguese 33 2,219 67 268

German-Spanish 28 1,452 62 152

German-French 27 1,081 69 95

German-Swedish 11 202 26 15

Portuguese-Spanish 163 3,203 255 174

Portuguese-French 15 2,041 93 89

Portuguese-Swedish 0 75 1 18

Spanish-French 7 1,131 55 41

Spanish-Swedish 1 41 4 13

French-Swedish 2 50 7 7

Total 1,301 360,589 2,704 10,764

Table 6.5: Statistics on Cross-Lingual Acronym Extraction: Results for Identical (I),

Different (D) and Translations (T) of Short Forms (SF) and Long Forms (LF)
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6.3.2.3 Identical SF, Translation of LF

In this condition, those cases were examined, in which short forms were identical and

long forms were different at the surface level, but identical at the interlingual layer,

comparing SF-LF pairs extracted from the different source corpora. As a result,

lists of bilingually aligned terms were acquired, such as English “acute lymphatic

leukemia” linked to the German “akute lymphatische Leukämie” via the shared short

term “ALL”. As an example, 1,016 translations were generated for English-German

using this heuristics (cf. Table 6.5, Column 4).

6.3.2.4 Different SF, Translation of LF

In this scenario, those cases were analyzed, for which the long forms were identical

or translations of each other (identical at the interlingua layer), but with differ-

ent short forms. This captures interesting constellations such as English “AIDS”

(“acquired immune deficiency syndrome”) aligned to Portuguese or Spanish “SIDA”

(“śındrome de inmunodeficiencia adquirida”). In total, up to 3,665 of these trans-

lations were collected for English-Portuguese (Table 6.5, Column 5).

6.4 Lexicon Integration

In order to enrich the existing lexicons with acronyms automatically, the quality

of the derived associations of short forms to long forms had to be ensured. With

96% precision, as measured by Schwartz & Hearst (2003) on a standardized test

set, over 9,000 false positives can be expected in the set of unique SF-LF pairs, only

considering English (cf. Table 6.2). Furthermore, since MorphoSaurus focuses on

Cross-Language Information Retrieval (Markó et al., 2005c; 2005f) and multilingual

text classification (Markó et al., 2003; Hahn et al., 2004a), cross-lingual mappings

of lexical entries are of particular interest. Both challenges are met by a simple

heuristics, based upon the idea that two languages are more informative than one

(Dagan et al., 1991). Hence, those extracted SF-LF pairs were incorporated in

the available subword lexicons, for which the long form is a translation of, at least

one, another long form in a different language (mapped on the interlingua layer).
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Language Initial Size New Acronyms

English 22,561 62,236

German 23,976 2,932

Portuguese 14,984 2,195

Spanish 10,936 1,275

French 7,812 834

Swedish 10,281 80

Sum 90,550 69,552

Total 160,102

Table 6.6: Subword Lexicon Size

Thus, those pairs were collected for which the number of occurrences are depicted

in Column 4 and 5 in Table 6.5.

As a result, an intersection of 3,024 English SF-LF forms were obtained, 1,281 for

German, 1,342 for Portuguese, 774 for Spanish, 575 for French, and 67 for Swedish

(a total of 7,063). For the monolingual mapping of short forms to long forms, those

language-specific SF-LF pairs were collected, which occur at least twice on the layer

of the interlingua (cf. Table 6.2, right).

In the end, the lexicon size for the specific languages increased from initially

90,550 entries to 160,102 lexical items (cf. Table 6.6).

Formally, the lexicon integration was realized by adding the acronym to the

subword lexicon as an invariant and by creating (a) unique MID(s) for each of the

associated long forms in the thesaurus, to which the new lexeme was linked. For

example, different readings for the new subword entry “AD” were firstly encoded by

using the distinct MIDs #AD1 and #AD2:

l46 = (AD, IV, #AD1, EN, d1)

l47 = (AD, IV, #AD2, EN, d1)

Afterwards, the relations

{(#AD1, #atop), (#AD1, #dermat), (#AD1, #inflamm)} ∈ expandsTo
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and

{(#AD2, #alzheimer), (#AD2, #diseas)} ∈ expandsTo

were added to the thesaurus, covering the different interpretations “atopic der-

matitis” and “Alzheimer’s Disease”, respectively. Then, for correctly identifying

acronyms during the morpho-semantic processing of input texts, the lexicon look-

up is performed in a preprocessing step, before transforming word characters to

lower-case (cf. Section 3.2.3.1).

6.5 Discussion

Several different techniques for the automatic extraction of acronyms and their

definitions from biomedical text (particularly from MEDLINE abstracts) have

been developed up until now (Pustejovsky et al., 2001; Chang et al., 2002;

Wren & Garner, 2002; Schwartz & Hearst, 2003; Adar, 2004). Comprehensive

databases with millions of entries are provided by different research groups (Puste-

jovsky et al., 2001; Wren & Garner, 2002; Chang et al., 2002; Adar, 2004). They

adopt similar sorts of heuristics such as identifying and processing parentheti-

cal phrases within texts. Some of them use stemming (Pustejovsky et al., 2001;

Adar, 2004), and/or apply term normalization routines to their abbreviations and

full forms (Pustejovsky et al., 2001; Chang et al., 2002; Adar, 2004; Okazaki & Ana-

niadou, 2006). Pustejovsky et al. (2001) incorporate a shallow parsing approach. A

general overview of the four large databases and their algorithms can be found in

the work of Wren et al. (2005).

The approach for the multilingual alignment of acronyms and their definitions

as described in this chapter is tied up to the research from these precursors. By

translating extracted long forms into an interlingual layer, an approach which has

not been exploited so far, acronyms and their definitions are made comparable across

different languages with a high coverage.



Chapter 7

Subword Sense Disambiguation

Automatic word sense disambiguation (WSD) is one of the most challenging tasks

in natural language processing, and, therefore, has been a long-term concern for

computational linguistics (cf. Ide & Véronis (1998) and Kilgarriff & Palmer (2000)).

Since the mapping from lexical forms to senses is usually 1:n, multiple semantic

readings for a word have to be considered and, at best, reduced to a single one on a

routine basis. Typically, the source for such multiple meaning assignments are lexical

databases, dictionaries or thesauri, the most prominent example being WordNet

(Fellbaum, 1998). WSD approaches can then broadly be distinguished into symbolic

ones (Voorhees, 1993) and corpus-based ones (Gale et al., 1993). Although the latter

became popular due to the increasing availability of large machine-readable corpora,

Dagan & Itai (1994) point out that corpus-based WSD requires manually sense-

tagged training data (supervised WSD). Brown et al.’s (1991) usage of bilingual

corpora is certainly a good idea to avoid manual tagging of training material but

such corpora are only available for a limited number of domains. Dagan & Itai (1994)

then came up with the idea that WSD for machine translation might complement

bilingual dictionaries with monolingual corpora, which are much easier to obtain.

The following methodology tries to combine the best of both worlds. On the one

hand, it adheres to an unsupervised approach to WSD because it requires no human

intervention. On the other hand, it takes advantage from already existing lexical

and textual resources in terms of multilingual thesauri, as well as unaligned, though
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comparable corpora for six different languages, viz. English, German, Portuguese,

Spanish, French, and Swedish (for a linguistically motivated distinction of parallel

and comparable corpora, cf. Fung (1998)).

The proposed approach rests on the idea that although multiple senses can be

attributed to the same single lexical item in one language, these senses usually are

denoted by different lexical items in other languages (Ide, 2000). As an example,

consider the German lexical form “Krebs”, which can either refer to “cancer” or

“crab”. Given comparable (i.e., topically related) corpora, the context they provide

helps in deciding which variant is more likely to be intended. At the level of the same

language, it may also be helpful to consider non-ambiguous synonyms, hypernyms or

hyponyms such as the German word “Karzinom” (“carcinoma”). Context words of

the latter type can then be used for identifying the proper sense of the given polyse-

mous item. But multilingual disambiguation may not always be so straightforward.

Consider, e.g., the English lexical item “patient”, which has (at least) two differ-

ent meanings. As a noun it refers to a human, as an adjective it has a completely

different meaning. Unfortunately, there is no (unambiguous) synonym to the first

reading. Even the translation to French, “patient”, is also ambiguous and covers the

same meaning facets. However, the German translation, (“Patient”), has only one

meaning, viz. a human in need of medical treatment (the German translation of the

adjective “patient” yields “geduldig”).

In the following, it will be shown that this interrelation, i.e. different senses of

a given word tend to have different translations in other languages, can be used for

collecting better evidence for automatic, unsupervised word sense disambiguation

(Markó et al., 2005e).

7.1 Combining Multilingual Evidence for WSD

For the experiments, the medical corpora introduced in Section 5.1.1.1, Table 5.3

are used once again. The collections were split into training (75%) and test sets
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Language Word MID Ambiguous Number of

Tokens Tokens MIDs Readings

English 187,992,247 145,175,273 17,281,993 85,913,094

(77.2%) (11.9%) (avg. 5.0)

German 29,046,282 16,125,018 2,056,470 4,721,794

(72.7%) (12.8%) (avg. 2.3)

Portuguese 9,864,434 7,336,285 732,421 1,683,744

(74.4%) (10.0%) (avg. 2.3)

Spanish 10,758,234 7,384,183 347,571 804,006

(68.6%) (4.7%) (avg. 2.3)

French 3,116,236 2,374,537 152,555 375,522

(76.2%) (6.4%) (avg. 2.5)

Swedish 2,300,565 1,099,063 179,370 411,757

(47.8%) (16.3%) (avg. 2.3)

Mixed 40,788,650 30,568,341 3,549,487 15,896,109

(74.9%) (11.6%) (avg. 4.5)

Table 7.1: Training Corpus Statistics

(25%)1, resulting in 2.3 million training tokens for Swedish, up to 188 million tokens

for English (cf. Table 7.1, second column). So, the sizes of the training corpora vary

significantly across the languages considered due to their unequal availability. For

Portuguese, Spanish, French and Swedish the amount of training data is relatively

small compared to other work on data-driven WSD (e.g., the 25 million words corpus

used by Dagan & Itai (1994) or the 50 million words corpus used by Schütze (1992)).

1Since the context of words have to be preserved, documents of the collections (not phrases or

words) were split. As a consequence, the relation between the number of tokens of training and test

sets is not exactly 75% vs. 25%. In fact, for Swedish and Spanish, the ratio differs considerably

because of highly varying document sizes.
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7.1.1 Training the Classifier

Using the subword lexicons extended with acronym definitions as described

in the last chapter (cf. Table 6.6), the training corpora were processed by

MorphoSaurus, resulting in the interlingual content representation of original

texts. For the experiments described in the following, lexical remainders due to

incomplete segmentations of original words are ignored (cf. Section 3.2.3.2).

Furthermore, in order to test the influence of multilingual sources, a mixed train-

ing set was built by taking the sixth part of each of the (morpho-semantically nor-

malized) (six) different language-specific training corpora.

This led to 145 million equivalence class identifiers (MIDs) for English, corre-

sponding to 77% of the original number of tokens (cf. Table 7.1, third column).

Similar ratios were observed for German and Portuguese, while for the automati-

cally acquired lexicons for Spanish, French, and Swedish the numbers of resulting

MIDs differ significantly. For the mixed training corpus, the ratio averages 75%.

The relative number of ambiguities in the resulting representations range from 5%

for Spanish up to 16% for Swedish (Table 7.1, fourth column). Except for English,

where a substantial amount of the corpus is comprised of MEDLINE abstracts con-

taining (highly ambiguous) acronyms and abbreviations (cf. the previous chapter),

the average number of readings for each ambiguity is relatively constant for each

training condition (ranging from 2.3 to 2.5, cf. Table 7.1, fifth column2).

Finally, evidence for the test phase was collected by counting co-occurrences of

equivalent class MIDs within a window of ±2 unambiguous MIDs (a size already

proposed in early experiments by Kaplan (1955)). Ambiguous MIDs are completely

ignored in the training phase. Resulting counts of co-occurrence patterns are then

stored separately for each of the training conditions (English, German, Portuguese,

Spanish, French, Swedish and mixed).

2For comparison, Dagan & Itai (1994) identified 3.3 ”senses” per word defined as possible

translations to a target language (both for German-English and Hebrew-English).
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Language Word MID Ambiguous Number of

Tokens Tokens MIDs Readings

English 62,248,154 48,349,369 5,755,653 28,615,648

(77.7%) (11.9%) (avg. 5.0)

German 8,669,678 5,498,861 702,713 1,615,248

(63.4%) (12.8%) (avg. 2.3)

Portuguese 4,040,356 2,996,010 296,887 680,675

(74.2%) (9.9%) (avg. 2.3)

Spanish 702,364 477,269 21,666 50,793

(68.0%) (4.5%) (avg. 2.3)

French 1,049,872 799,446 51,335 126,430

(76.2%) (6.4%) (avg. 2.5)

Swedish 180,008 92,406 13,180 29,823

(51.3%) (14.3%) (avg. 2.3)

Table 7.2: Test Corpus Statistics

7.1.2 Testing the Classifier

The test collection comprised 180,000 tokens for Swedish, up to 62 million tokens

for English. The data exhibits similar ratios of MIDs after the morpho-semantic

processing as seen in the training collections (cf. Table 7.2, second and third column).

The number of ambiguous MIDs range from 5% for Spanish up to 14% for Swedish,

with the same average number of meanings as in the training collections.

For testing, a well-known probabilistic model was used, the maximum likelihood

estimator (Manning & Schütze, 1999). For each ambiguous subword at position

k with n readings, resulting in a sequence of equivalence class identifiers, MID1,k,

MID2,k, ..., MIDn,k, examine the window of ±w surrounding items. Then, with

f(x, y) denoting the frequency of co-occurrence of the MIDs x and y in the training

corpus, choose that particular MIDi (1 ≤ i ≤ n) for which the probability

PMIDi
=

w
∑

j=1

f(MIDi,k,MIDi,k−j) + f(MIDi,k,MIDi,k+j)
n
∑

m=1
f(MIDm,k,MIDm,k−j) + f(MIDm,k,MIDm,k+j)
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is maximal. If there is no observable maximum following this procedure, disam-

biguation fails.

Primarily, the coverage of the classifier was measured in this experiment, rather

than its accuracy, since, unfortunately, the only available test collection for biomed-

ical WSD (Weeber et al., 2001) is not suitable for the needs, due to different target

categories (weak semantic types as encoded in the UMLS, rather than MIDs).3

7.1.3 Results

Table 7.3 depicts the test results after the disambiguation of ambiguous subwords

using monolingual (column three and four) and multilingual (column five and six)

training texts. Just as in the training phase, a window of two surrounding items is

examined (rows four to nine). Another typical context span for WSD described in

the literature is a window of six items (cf. Ide & Véronis (1998)). Coverage values

for this condition are shown in rows 11 to 16.

Considering w = ±2 (i.e. two tokens surrounding an ambiguous MID on each

side) in the monolingual training scenario, the ratio of ambiguous MIDs declines to

3.0% for Swedish, down to 0.4% for English. Hence, between 77% and 97% of all

ambiguous MIDs can be resolved for Swedish (small training set) and English (large

training set), respectively. The only source for discriminating word senses in this

test condition are synonyms covered by the MorphoSaurus lexicons.

Given this (monolingual) baseline, it has been tested which improvements (if

any) can be observed using the same test set and scenario, but incorporating mul-

tilingual material in the training. As shown in Table 7.3 (column five and six), for

English, only 0.2% of the produced MIDs remain ambiguous, which means that 99%

of all ambiguities can be resolved. For German, the benefit comes to a 9.2 percent-

age points gain, whilst for Swedish the proportion of resolved ambiguities increases

3For general language use, the Brown Corpus and the Wall Street Journal provide taggings

with WordNet senses (Ng & Lee, 1996), while SENSEVAL in the first competition round started

with Hector senses (Kilgarriff & Palmer, 2000) and only in the second one turned to WordNet

senses, as well.
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Monolingual Training Multilingual Training

Language MIDs Ambiguous Resolved Ambiguous Resolved

w = ±2

English 48,349,369 192,488 5,563,165 82,686 5,672,967

(0.40%) (96.7%) (0.17%) (98.6%)

German 5,498,861 109,728 592,985 45,207 657,506

(2.00%) (84.4%) (0.82%) (93.6%)

Portuguese 2,996,010 12,691 284,196 784 296,103

(0.42%) (95.7%) (0.03%) (99.7%)

Spanish 477,269 3,641 18,025 121 21,545

(0.76%) (83.2%) (0.03%) (99.4%)

French 799,446 10,160 41,175 589 50,746

(1.27%) (80.2%) (0.07%) (98.9%)

Swedish 92,406 3,093 10,087 8 13,172

(3.35%) (76.5%) (0.01%) (99.9%)

w = ±6

English 48,349,369 164,924 5,590,729 43,245 5,712,408

(0.34%) (97.1%) (0.09%) (99.2%)

German 5,498,861 98,264 604,449 43,543 659,170

(1.79%) (86.0%) (0.79%) (93.8%)

Portuguese 2,996,010 7,565 289,322 362 296,525

(0.25%) (97.5%) (0.01%) (99.9%)

Spanish 477,269 3,487 18,179 85 21,581

(0.73%) (83.9%) (0.02%) (99.6%)

French 799,446 9,253 42,082 421 50,914

(1.16%) (82.0%) (0.05%) (99.2%)

Swedish 92,406 2,899 10,281 2 13,178

(3.14%) (78.0%) (0.00%) (100%)

Table 7.3: Coverage Statistics after Disambiguation Based on Monolingual and Multilin-

gual Evidence at Different Window Sizes
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from 76.5% for monolingual training to 99.9% for multilingual training. Keeping in

mind that the size of the mixed training set (41 million tokens) was significantly

smaller than the size of the English training collection (188 million tokens), these

results are really promising. Another advantage of combining multilingual evidence

becomes clear when observing the French and Swedish test scenario. Due to limited

availability, the monolingual training corpus were quite small (3.1 and 2.3 million

tokens). Including further available training data from other languages than French

and Swedish, evidence for disambiguation also transfers from these languages.

Using a span of ±6 surrounding tokens, it is likely that coverage improves since

more evidence is collected, but this benefit comes at the cost of performance (a

factor of 3 compared to w = ±2). In this scenario, even up to 100% of all ambiguous

subwords can be resolved (Swedish), with a gain of up to 22 percentage points for

the multilingual training condition.

In previous work (Markó et al., 2005e), the accuracy of the proposed approach

was examined in detail for English, German and Portuguese. The correct readings

of the subwords in question were determined manually, for a random sample of

100 ambiguous cases for each language and test scenario. Since this is a highly

difficult and time-consuming task, the random samples usually drawn for these kind

of studies are very small. Dagan & Itai (1994) considered 103 ambiguous Hebrew

and 54 German words in their study, whereas Schütze (1992) examined only 10

words and Yarowsky (1992) 12 words. Voorhees (1993) circumvents this dilemma

by performing an evaluation in vivo, i.e., disambiguation results are considered in

terms of the overall performance of a particular application, such as information

retrieval or machine translation. Such kind of evaluation for subword disambiguation

is presented in the next chapter in a Cross-Language Information Retrieval setting.

Using much smaller training collections but the same test scenario in the previous

work, the average accuracy amounts to 60% for the monolingual training condition,

and 72% for the multilingual condition. These results are in line with current re-

search on WSD (Kilgarriff & Palmer, 2000; Ciaramita et al., 2003).
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7.2 Discussion

For automatic word sense disambiguation (WSD), two major sources of information

can be identified. Firstly, external knowledge sources, e.g., symbolic syntactic, lexical

or encyclopedic knowledge organized in machine-readable dictionaries, thesauri or

even more sophisticated ontologies are used. Disambiguation can then be achieved

by, e.g., computing the ”semantic distances” of the target word and context words,

i.e., finding chains of connections between words (Ciaramita et al., 2003), or by

identifying overlapping edges in IS-A hierarchies, as proposed by Voorhees (1993),

both using ”world knowledge” encoded in WordNet (Fellbaum, 1998). Romacker

et al. (1999) and Romacker & Hahn (2001) describe an integrated approach for

resolving different types of ambiguity occurring in natural language processing by

relying on explicit lexical, syntactic and semantic knowledge which is made available

through an even more expressive (though domain-limited) description logics based

system underlying the (med-)SynDiKATe text understanding system (Hahn et al.,

2000; 2002a; 2002b).

Secondly, with the availability of large corpora data-driven or corpus-based WSD

methods gained increasing attention (Gale et al., 1993). Encouraging results were

achieved with up to 92% precision using unsupervised machine learning methods

on a non-standardized testset (Yarowsky, 1992). Brown et al. (1991) introduced a

statistical WSD method for machine translation using aligned bilingual corpora as

training data. This approach, however, suffers from the limited availability of such

corpora, especially for the medical domain on which is the focus here.

To the best of knowledge, Dagan & Itai (1994) were the first to propose a method

using co-occurrence statistics (as well as syntactic knowledge) in unaligned mono-

lingual corpora of two languages. Different senses of a word were defined as all

its possible translations into a target language (English), using Hebrew-English

and German-English bilingual lexicons. They also made use of the observation

that different senses of a word from the source language are usually mapped to

different words in other target languages. They report coverage (applicability)

of 68% at 91% precision for Hebrew-English and 50% coverage at 78% precision

for German-English. Their results were based on sophisticated significance tests
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for making disambiguation decisions and then compared to simple a priori fre-

quencies. The latter usually serve as a benchmark for comparison with other

decision models, such as Bayesian classifiers (Gale et al., 1993; Yarowsky, 1992;

Chodorow et al., 2000), mutual information measures (Brown et al., 1991), context

vectors (Schütze, 1992), or neural networks (Towell & Voorhees, 1998) (cf. also Lea-

cock et al. (1996) and Lee & Ng (2002) for an overview and Ng & Lee (1996) for

an integrated approach). However, taking only a priori frequencies into account,

precision drops to 63% (Hebrew-English) and 56% (German-English).

The approach described in this chapter differs from these precursors in several

ways. First of all, instead of using bilingual dictionaries, multilingual subword lexi-

cons connected to a thesaurus are used and, hence, operate at an interlingua level of

semantic representation. Based on a concept-like representation of word meanings,

in contrast to language-specific surface forms, associations between those identifiers

can be collected across languages, thus getting rid of the need for aligned bilingual

corpora. Secondly, the work of Dagan & Itai (1994) focuses on machine transla-

tion, thus, also takes syntactic knowledge into account, whilst the MorphoSaurus

approach abstracts away from language-specific particularities (and idiosyncrasies).

Comparing coverage values from our approach to those proposed by Dagan & Itai

(1994) (68%, respectively 50%, see above) the advantages of using an intermedi-

ate, interlingual representation become immediately evident. With trainings on

monolingual corpora using ±6 surrounding items of the ambiguous subword in fo-

cus, coverage using the subword approach already reaches 87% for all languages,

in average (cf. Table 7.3). Compiling these corpora to a multilingual training set,

applicability increases to an average of 99%.

Limitations of the approach by Dagan & Itai (using bilingual dictionaries) and

Brown et al. (1991) (using bilingual corpora) are discussed by Ide & Véronis (1998).

The arguments they raise are also relevant to the investigation proposed here: Many

ambiguities are preserved in other languages. Whilst the English word “patient” has

different translations for German, but not for French (see the introduction of this

chapter), it is hard to find similar relations for the word “mouse”, which has (at

least) the same two meanings of animal and device for German “Maus”, Portuguese
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“rato”, Spanish “ratón”, French “souris”, Swedish and Danish “mus”, Dutch “muis”

and Polish “mysz”. Nevertheless, by way of identifying a language in which there

exists such an unambiguous synonym to the many possible polysemous translations

this would entirely suffice for collecting cross-language evidence for disambiguating

the ambiguous word in any of these source languages.





Chapter 8

Cross-Language Information

Retrieval

Medical document retrieval presents a unique combination of challenges for the

design and implementation of retrieval engines (cf. Section 2.1 and Section 2.4). The

sheer amount of data available in clinical information systems on the one hand or, on

the other hand, in the Web (expert and consumer information portals, bibliographic

databases, etc.) rules out the reuse of many of the sophisticated retrieval approaches

which perform so well under small-scale experimental conditions such as Latent

Semantic Indexing (Deerwester et al., 1990) or even more sophisticated probabilistic

models (Fuhr, 1992). The reason for this is that no search engine is capable of

maintaining high-dimensional document-term vectors (n ≫ 100, 000) for such an

enormous volume of documents and high rate of update frequencies.

Other challenges are given by the multilinguality of medical information avail-

able, and the heterogeneous user community. So are clinical findings usually reported

in a particular native language spoken in the clinicians country whilst there is a

strong bias to English regarding scientific literature (cf. the MEDLINE database).

Cross-Language Information Retrieval (CLIR) is a subfield of information re-

trieval dealing with retrieving information written in a particular language which

is different from the language of the user’s query. For example, a user may pose

a query in French, but retrieves relevant documents written in English (Grefen-
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stette, 1998). Approaches to CLIR can broadly be divided into dictionary-based

and corpus-based approaches (Oard & Diekema, 1998). While dictionary-based

approaches are both time and cost intensive in performing the language transfer

(Levow et al., 2005), they face a number of challenges, including dictionary cover-

age, morphological variant identification, phrase and proper name recognition, as

well as word sense disambiguation (Pirkola et al., 2001).

In this chapter, MorphoSaurus with its underlying subword lexicons is used in

CLIR settings for the medical domain. In particular, the performance of the man-

ually built English, German and Portuguese lexicons (cf. Section 3.2) is contrasted

to the automatically acquired French, Spanish, and Swedish dictionaries (Section

5.3). The interlingua-based retrieval approach is furthermore compared to an al-

ternative method which relies on the direct translation of non-English (German,

Spanish, French, Portuguese and Swedish) user queries to English ones for subse-

quent processing on large English medical document collections. In addition, the

contribution of the acronym resolution module (Chapter 6) and the subword disam-

biguation module (Chapter 7) to the performance of MorphoSaurus-based CLIR

settings is analyzed in detail.

8.1 Experimental Setting

The experiments were run on the Ohsumed corpus (Hersh et al., 1994a), which

constitutes one of the standard IR testbeds for the medical domain, and the 2006

corpus of ImageCLEFMed (cf. Clough et al. (2005)).

8.1.1 The Ohsumed corpus

As a subset of the MEDLINE database, Ohsumed contains bibliographic informa-

tion (author, title, abstract, index terms, etc.) of biomedical articles. Considering

the title and abstract field (if available) for each bibliographic unit, the set contains

348,566 documents and 26,705,691 tokens, resulting in an average document length

of 76.6 tokens.

The Ohsumed corpus was created specifically for IR studies, and its added value



8.1 Experimental Setting 87

lies in the fact that 106 authentic user queries are available for which the relevant

documents in the corpus had been manually assigned (actually 105, because for

one query no relevant documents could be found). Ohsumed, thus, constitutes an

unique gold standard for information retrieval experiments in the medical domain.

The average number of query terms is 5.2. The following is a query from the set: “Are

there adverse effects on lipids when progesterone is given with estrogen replacement

therapy?”.

8.1.2 The ImageCLEFMed 2006 corpus

ImageCLEF is the cross-language image retrieval track which was run as part

of the Cross Language Evaluation Forum (CLEF) campaign. ImageCLEFMed

evaluates the retrieval of medical images described by text captions based on queries

in different languages. The main goal is to improve the retrieval of medical images

from heterogeneous and multilingual document collections containing images as well

as textual data.

In ImageCLEFMed 2006, the multilingual image retrieval task is based on a

dataset containing images from different types. Casimage1 and PEIR (Pathology

Education Instructional Resource)2 contain radiology and pathology images. The

MIR collection (Mallinckrodt Institute of Radiology)3 contains clinical case descrip-

tions related to nuclear medicine and PathoPic4, finally, is a collection comprised

of pathology image descriptions. Considering English annotations only, there are

40,709 image descriptions with a highly variable quality within and between the

collections. The number of tokens is 1,130,419, thus, the average document length

(27.7) is relatively small compared to Ohsumed. There are 30 queries (topics) for

which relevance judgments are available. For English queries, the average number

of query terms is 5.8. A typical example is: “images of a frontal head MRI”.

1http://www.casimage.com/

2http://peir.path.uab.edu

3http://gamma.wustl.edu/home.html

4http://alf3.urz.unibas.ch/pathopic/e/intro.htm
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8.1.3 Approaches to CLIR

The Ohsumed corpus and the ImageClefMed subset considered here contain

only English-language documents. This raises the question of how such collections

(or, e.g. MEDLINE) can be accessed from other languages as well. It is a realistic

scenario, because, unlike in sciences with English as a lingua franca, among medical

doctors native languages are dominant in their education and everyday practice and

English medical sublanguage capabilities are often quite limited. Otherwise they

might resort to translating their native-language search problem to English with

the help of current Web technology, e.g., an automatic translation service available

in a standard Web search engine. The translation process could additionally be

supported by the multilingual UMLS Metathesaurus (UMLS, 2005) which currently

supports (with considerable differences in coverage, cf. Section 5.2) German, French,

Spanish, Portuguese, Swedish, and many others. Relying on the quality of the

translation, this procedure then reduces the cross-language retrieval problem to a

monolingual one.

As an alternative, MorphoSaurus is used to underpin medical cross-language

retrieval. Both approaches will then be evaluated on the same query and document

set. As the baseline for the experiments, a standard retrieval system is provided,

operating with the Porter stemmer (Porter, 1980) and stop word elimination5 so that

the system runs on (original) English documents with (original) English queries.

In the following experiments, the original English queries were translated into

Portuguese, German, Spanish, French and Swedish by medical experts (native speak-

ers of those languages, with a very good mastery of both general and medical En-

glish). In Figure 8.1, the result of processing the first query of the Ohsumed

collection and an extract of one retrieved document illustrate the two alternative

approaches discussed in the following (bold terms co-occur in queries and the doc-

ument fragment).

5The stemmer is available on http://www.snowball.tartarus.org.
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Filtered and stemmed English documents (from 89270656):
Progestogen chosen addit estrogen replac import progestinadvers
influenc effect oral estrogen lipid metabol

Filtered and stemmed English queries:
Q1:advers effect lipid progesteron givenestrogen replac therapi

Automatically translated, filtered and stemmed German queries:
Q1:unwant side effect lipidstoffwechsel gift progesteron
östrogenersatztherapi

Filtered and MSI processed documents (from 89270656):
#progest #choose #overlay #estrogen #substitut #important #progest
#advers #influenc #oro #estrogen #lipid #metabol

Filtered and morpho-semantically indexed English query:
Q1: #advers #influenc #lipid #progest given #estrogen #substitut
#therapeut

Filtered and morpho-semantically indexed German query:
Q1:#give #non #desir#influenc #collater #lipid #metabol #dispensat
#progest #estrogen #substitut #therapeut

Search Engine

DocE

Index (stems)

QueryE

QTR Approach: 
Machine Translation and Bilingual Dictionaries

DocE

QueryE/G/P/S/F/Sw

DocMSI

QueryMSI

MSI Approach: 
Language Independent Morpho-Semantic Indexing

Filtering Stop Words

Porter Stemmer

QueryG/P/S/F/SW

Machine Translation: 
Google Translator

Bilingual 
UMLS Dictionary

(E)nglish, (G)erman, (P)ortuguese, (S)panish, (F)rench, (Sw)edish

Search Engine

Index (MIDs)

Filtering Stop Words

Subword-
Thesaurus

Subword-
Lexicon

MorphoSaurus:

Morpho-Semantic 
Indexing (MSI)

Orthographic
Rules 

Figure 8.1: Steps for Automatic Translation (Left) and MSI-Indexing (Right)

8.1.3.1 QTR Approach: Machine Translation Based on Bilingual Dic-

tionaries

Machine translation based approaches to CLIR (cf. Oard & Diekema (1998) for

an overview) either translate native-language queries into the target language of

the document collection to be searched, or otherwise, translate the entire set of

documents into each (supported) query language (McCarley, 1999; Rosemblat et al.,

2003). Since the latter is naturally a resource intensive task, query translation can

be regarded as a standard, and often preferred, experimental procedure in the cross-

language retrieval community (Eichmann et al., 1998).

For evaluation, the manually translated queries were re-translated into English
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Ohsumed ImageCLEFMed

Language Words Google +UMLS Words Google +UMLS

German 573 496 (86.6%) 522 (91.1%) 136 115 (84.6%) 117 (86.0%)

Portuguese 589 475 (80.6%) 510 (86.6%) 182 158 (86.8%) 161 (88.5%)

Spanish 831 740 (89.1%) 771 (92.8%) 116 94 (81.0%) 99 (85.3%)

French 909 846 (93.1%) 867 (95.4%) 115 106 (92.2%) 107 (93.0%)

Swedish 449 0 (0.0%) 73 (16.3%) 129 0 (0.0%) 9 (7.0%)

Table 8.1: Coverage Statistics for the Automatic Translation of All Query Words

Using Google and UMLS

using the Google Translator.6 Admittedly, this tool may not be particularly

suited to translate medical terminology: considering the Ohsumed collection, 13%

of the German, 19% of the Portuguese, 11% of the Spanish and 7% of the French

query terms were not translated, while Swedish is not supported at all (cf. Table 8.1,

left). Hence, bilingual lexeme dictionaries derived from the UMLS Metathesaurus

were used additionally.7 If no English correspondence could be found, the terms

were left untranslated.

Just as in the baseline condition, the stop words were removed from both the doc-

uments and the automatically translated queries and potential suffixes were stripped

off. The left side of Figure 8.1 visualizes this approach which is referred to as QTR

(query translation).

8.1.3.2 MSI-Approach: Language Independent Morpho-Semantic In-

dexing

As an alternative to QTR, the approach which is based on the morpho-semantic

normalization procedures was probed, as introduced in Section 3.2. Unlike QTR,

the indexing of documents and queries using MSI yields a language-independent,

6http://www.google.de/language tools

7In contradistinction to the UMLS-derived parallel corpora described in Section 5.2, only word-

to-word translations are considered here.
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semantically normalized index format. The right side of Figure 8.1 illustrates the

basic computation steps for MSI.

8.1.4 Search Engine

For an unbiased evaluation, several experiments were run with Lucene (Gospod-

netic & Hatcher, 2004),8 a freely available open-source search engine which combines

Boolean searching with a sophisticated ranking model based on TF-IDF (Salton &

Buckley, 1988). Beside its ranking formula, which achieves results that even can

outperform advanced vector retrieval systems (Tellex et al., 2003), this search en-

gine has another advantage: it supports a rich query language like multi-field search,

including more than ten different query operators.

In previous experiments, coordination matching was used combined with prox-

imity search, which allows to find words within a specified window size. For ex-

ample, given the query “NEAR(talar fracture,3)”, documents are found which con-

tain the words “talar” and “fracture” within three words distance to each other.

It additionally allows word swaps (e.g., “fracture of the talar bone”, “talar bone

fracture”). Evidence has been found that this feature increases the retrieval per-

formance in any scenario, including the baseline condition (Hahn et al., 2004a;

Markó et al., 2005c). Especially the effect of considering a window of three items sig-

nificantly increases the score of clustered matches. This becomes particularly impor-

tant in the segmentation of complex word forms. Otherwise, a document containing

“append⊕ectomy” and “thyroid⊕itis”, and another one containing “append⊕ic⊕itis”

and “thyroid⊕ectomy” become indistinguishable after segmentation. Lucene sup-

ports proximity search, too. However, the effect on the retrieval performance is

counterbalanced by the TF-IDF ranking model so that no improvements can be

observed any longer. Therefore, the experiments in the following were performed

without using the adjacency constraint.

The preprocessing of documents and queries with the morpho-semantic normal-

ization procedures can generally be adapted to any alternative search engine archi-

8http://jakarta.apache.org/lucene/docs/index.html
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tecture, including simple search on relational databases or based on sophisticated

vector space models, a prominent example being the Smart system (Salton, 1971).

8.1.5 Experimental Conditions

Three different basic test conditions can now be distinguished for the retrieval ex-

periments:

• BASELINE: The baseline of the experiments is given by the Ohsumed and

ImageCLEFMed corpora both in terms of their Porter-stemmed English

queries, as well as their Porter-stemmed (English) document collection.

• QTR: In this condition, German, Portuguese, Spanish, French and Swedish

queries are automatically translated into English ones (using the Google

Translator and the UMLS Metathesaurus), which are Porter-stemmed after

the translation. These queries are evaluated on the Porter-stemmed Ohsumed

and ImageCLEFMed document collections.

• MSI: This condition stands for the automatic transformation of the Ger-

man, Portuguese, Spanish, French, and Swedish queries into the language-

independent MSI interlingua (plus lexical remainders). The entire Ohsumed

and ImageCLEFMed document collections are also submitted to the MSI

procedure. Finally, the MSI-coded queries are evaluated on the MSI-coded

corpora, both at an interlingual representation level. In this scenario, four

different categories can be further discriminated:

– MSI-core: The experiments were run incorporating neither the acronym

module (Section 6), nor the disambiguation module (Section 7).

– MSI-D: The experiments were run incorporating the disambiguation

module, but without the acronym module.

– MSI-full: The experiments were run incorporating both the disambigua-

tion and acronym module.
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8.1.6 Measurements

Several measurements were taken in comparing the performance of QTR and the

different MSI scenarios. The first one is the average of the precision values at

all eleven standard recall points (0.0, 0.1, 0.2, ..., 1.0). Furthermore, the average

at the top two recall points (0.0 and 0.1) were calculated. While this data was

computed with consideration of the first 200 documents under each condition, the

exact precision scores for the top five and top 20 ranked documents were also taken

into account.

8.2 Ohsumed Results

Considering the different test conditions and languages , Table 8.2 contains the exact

numbers (best results for each language marked bold), and Figures 8.2 and 8.3 the

corresponding visualizations of the results.

As depicted in Table 8.2 (first Row), the English-English baseline performs with

an 11pt average of 0.19 (Column 3). For English, the experiment was also run using

the original representations of queries and documents (without stemming and stop

word elimination). As can be seen from the data, stemming is beneficial, with an

average gain of 10 percentage points (second row). Running the experiment by MSI-

indexing the original Ohsumed corpus, the baseline condition can be exceeded up

to 116% for English. Additionally using the disambiguation module, 100% of the

baseline up to 121% is reached for English, German, and Portuguese. For the other

languages considered, this scenario (MSI-D) also yields best results, ranging from

79% (French and Swedish) to 84% (Spanish) of the baseline. The incorporation of

the acronym resolution module does not give any additional benefits. Rather than

this, that scenario almost performs as good as running MorphoSaurus without

disambiguation (MSI-core). On the other hand, the QTR approach scores far lower

than any MSI condition, reaching 37% of the baseline for Swedish and a maximum

of 63% for Spanish. This results in 21 percentage points difference for Spanish up

to 53 percentage points for German (QTR compared to MSI-D).

The uneven investment of effort in constructing the different lexicons (mainly
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Language Condition 11pt top 2 pt top 5 top 20

English BASE .19 .42 .39 .27

English Original .17 (89.5) .36 (85.7) .36 (92.3) .25 (92.6)

MSI-core .22 (115.8) .47 (111.9) .42 (107.7) .29 (107.4)

MSI-D .23 (121.1) .48 (114.3) .42 (107.7) .31 (114.8)

MSI-full .22 (115.8) .46 (109.5) .41 (105.1) .29 (107.4)

German QTR .11 (57.9) .25 (59.5) .22 (56.4) .17 (63.0)

MSI-core .20 (105.3) .41 (97.6) .36 (92.3) .27 (100.0)

MSI-D .21 (110.5) .41 (97.6) .37 (94.9) .28 (103.7)

MSI-full .20 (105.3) .40 (95.2) .35 (89.7) .27 (100.0)

Portuguese QTR .11 (57.9) .24 (57.1) .21 (53.8) .15 (55.6)

MSI-core .17 (89.5) .37 (88.1) .36 (92.3) .23 (85.2)

MSI-D .19 (100.0) .39 (92.9) .37 (94.9) .25 (92.6)

MSI-full .18 (94.7) .38 (90.5) .36 (92.3) .25 (92.6)

Spanish QTR .12 (63.2) .25 (59.5) .23 (59.0) .16 (59.3)

MSI-core .16 (84.2) .36 (85.7) .32 (82.1) .22 (81.5)

MSI-D .16 (84.2) .36 (85.7) .32 (82.1) .22 (81.5)

MSI-full .16 (84.2) .35 (83.3) .32 (82.1) .22 (81.5)

French QTR .10 (52.6) .23 (54.8) .20 (51.3) .16 (59.3)

MSI-core .12 (63.2) .23 (54.8) .23 (59.0) .15 (55.6)

MSI-D .15 (78.9) .31 (73.8) .30 (76.9) .20 (74.1)

MSI-full .14 (73.7) .30 (71.4) .28 (71.8) .20 (74.1)

Swedish QTR .07 (36.8) .16 (38.1) .11 (28.2) .10 (37.0)

MSI-core .15 (78.9) .31 (73.8) .29 (74.4) .22 (81.5)

MSI-D .15 (78.9) .30 (71.4) .29 (74.4) .20 (74.1)

MSI-full .14 (73.7) .29 (69.0) .28 (71.8) .20 (74.1)

Average QTR .12 (63.2) .26 (61.9) .23 (59.0) .17 (63.0)

MSI-core .17 (89.5) .36 (85.7) .33 (84.6) .23 (85.2)

MSI-D .18 (94.7) .37 (88.1) .35 (89.7) .24 (88.9)

MSI-full .17 (89.5) .36 (85.7) .33 (84.6) .24 (88.9)

Table 8.2: Precision for the Ohsumed Collection (% of Baseline in Brackets, Best

Results Marked Bold)
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Figure 8.2: Average Precision/Recall Graphs for the Ohsumed Collection
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Figure 8.3: Exact Precision Graphs for the Ohsumed Collection
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automatically acquired Spanish, French and Swedish entries) is well reflected in the

results. In any case, it seems worth noting that at no recall point QTR values were

higher than MSI values. Hence, the latter throughout outperforms the former on all

languages.

Interesting from a realistic retrieval perspective is the average gain on the top

two recall points. In Table 8.2 (column four). Just as for the 11pt average, MSI-

core and MSI-D perform best with values ranging between 74% (Swedish) up to 98%

(German) of the baseline. In a monolingual (English) retrieval setting, the baseline

can even be exceeded by 14%.

However, there may be considerable variation regarding the actual numbers be-

hind these levels of recall. Medical decision-makers under time pressure are often

interested in a few top-ranked documents. Thus, the exact precision scores for these

documents are the most indicative of the performance of all approaches discussed

here. Considering only the top 5 (Column 5) and top 20 (Column 6) ranked doc-

uments, precision does not fall below 74% of the baseline for MSI-D. In contrast,

QTR does not exceed 59%, which means that MSI-D clearly outperforms QTR

in any language condition. Again, focusing on the (English) monolingual retrieval

setting, MSI-D gains 15% compared to the baseline.

By averaging over all languages and adding the English baseline condition to

the values of the QTR approach for the other languages, query translation has a

mean average precision (11pt) of 0.12, thus reaching 63% of the baseline. MSI-core

and MSI-full achieve 90% while MSI-D performs best with 95%. Obviously, the

incorporation of the acronym resolution module does not lead to a further benefit

compared to MSI-D. The reason for this lies in one peculiarity of the text genre

considered: In general, long forms of acronyms which are relevant to a particular

MEDLINE document are given in the corresponding abstract. Therefore, mappings

between document and query terms are available both for acronyms and respective

acronym definitions. Regarding other document types, e.g. clinical findings or

discharge summaries, it is likely that no corresponding definitions are given (see

next section). Another reason is that additional noise is entered to the data, since

highly ambiguous acronyms have to be disambiguated correctly. Regarding the 11pt
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average, the benefit of the possibility to the search for acronyms across languages is

negated by the uncertainty resulting from resolving acronyms. However, considering

only the top 20 ranked documents, the acronym module does not hamper cross-

lingual retrieval, though it does not yield any additional boost.

8.3 ImageCLEFMed Results

Table 8.3 depicts the results for the ImageCLEFMed corpus. Since there are

only 30 queries in this collection, the graphs in Figures 8.4 and 8.5 which show the

corresponding visualizations of the data, are less smooth.

Unlike the Ohsumed collection, in which documents consist of coherent texts

(MEDLINE abstracts), ImageCLEFMed contains short captions of medical im-

ages, often only consisting of noun phrases with many acronyms. This might be the

reason why the overall-performance is not comparable to Ohsumed for all scenarios,

including the baseline condition. This is, in particular, witnessed by the small gain

of only 6% using stemming on the English monolingual condition.

Though the baseline can not be exceeded in any scenario, the advantage of MSI

compared to QTR is throughout observable. While, on the average, QTR yields

71% of the baseline regarding 11pt average, incorporating the acronym resolution

module in the MSI condition performs best with 82%. MSI-D still reaches 77%,

while MSI-core and QTR perform equally well, since the Google translator per-

forms surprisingly good on non-English queries, leaving the relatively high amount

of acronyms unchanged (just as MSI-core and MSI-D). Only MSI-full is capable

of realizing the language transfer of acronyms, e.g. English “CT - computed to-

mography” to Portuguese “TC - tomografia computadorizada” or English ”MRI -

magnetic resonance imaging” to French “IRM - imagerie résonance magnétique”.

Therefore, more relevant documents can be found in the collections. On the other

hand, considering only a few top ranked documents, no difference between MSI-full

and MSI-D is observable (top 5). For the first 20 retrieved documents, MSI-D even

performs better, but keeping in mind that ImageCLEFMed provides a relatively

small sample of only 30 queries. This is also the reason why the best cross-lingual
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Language Condition 11pt top 2 pt top 5 top 20

English BASE .17 .36 .48 .36

English Original .16 (94.1) .33 (91.7) .39 (81.3) .30 (83.3)

MSI-core .15 (88.2) .28 (77.8) .44 (91.7) .35 (97.2)

MSI-D .16 (94.1) .31 (86.1) .44 (91.7) .35 (97.2)

MSI-full .15 (88.2) .29 (80.6) .40 (83.3) .30 (83.3)

German QTR .10 (58.8) .21 (58.3) .28 (58.3) .22 (61.1)

MSI-core .13 (76.5) .27 (75.0) .43 (89.6) .33 (91.7)

MSI-D .13 (76.5) .28 (77.8) .45 (93.8) .34 (94.4)

MSI-full .14 (82.4) .29 (80.6) .44 (91.7) .33 (91.7)

Portuguese QTR .13 (76.5) .24 (66.7) .31 (64.6) .22 (61.1)

MSI-core .10 (58.8) .25 (69.4) .37 (77.1) .31 (86.1)

MSI-D .12 (70.6) .27 (75.0) .44 (91.7) .30 (83.3)

MSI-full .13 (76.5) .26 (72.2) .44 (91.7) .30 (83.3)

Spanish QTR .13 (76.5) .27 (75.0) .32 (66.7) .22 (61.1)

MSI-core .13 (76.5) .28 (77.8) .38 (79.2) .32 (88.9)

MSI-D .13 (76.5) .28 (77.8) .39 (81.3) .32 (88.9)

MSI-full .14 (82.4) .29 (80.6) .42 (87.5) .33 (91.7)

French QTR .10 (58.8) .18 (50.0) .25 (52.1) .18 (50.0)

MSI-core .11 (64.7) .23 (63.9) .34 (70.8) .30 (83.3)

MSI-D .12 (70.6) .25 (69.4) .37 (77.1) .32 (88.9)

MSI-full .12 (70.6) .23 (63.9) .35 (72.9) .30 (83.3)

Swedish QTR .06 (35.3) .09 (25.0) .16 (33.3) .08 (22.2)

MSI-core .12 (70.6) .27 (75.0) .36 (75.0) .32 (88.9)

MSI-D .13 (76.5) .27 (75.0) .39 (81.3) .34 (94.4)

MSI-full .14 (82.4) .29 (80.6) .39 (81.3) .30 (83.3)

Average QTR .12 (70.6) .23 (63.9) .3 (62.5) .21 (58.3)

MSI-core .12 (70.6) .26 (72.2) .39 (81.3) .32 (88.9)

MSI-D .13 (76.5) .28 (77.8) .41 (85.4) .33 (91.7)

MSI-full .14 (82.4) .28 (77.8) .41 (85.4) .31 (86.1)

Table 8.3: Precision for the ImageCLEFMed Collection (% of Baseline in Brackets,

Best Results Marked Bold)



100 Cross-Language Information Retrieval

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.90.80.70.60.50.40.30.20.1

P
re

ci
si

on

Recall

BASELINE
ENGLISH-MSI-FULL

ENGLISH-MSI-D
ENGLISH-MSI

ENGLISH-ORIG

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.90.80.70.60.50.40.30.20.1

P
re

ci
si

on

Recall

BASELINE
GERMAN-MSI-FULL

GERMAN-MSI-D
GERMAN-MSI

GERMAN-QTR

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.90.80.70.60.50.40.30.20.1

P
re

ci
si

on

Recall

BASELINE
PORTUGUESE-MSI-FULL

PORTUGUESE-MSI-D
PORTUGUESE-MSI

PORTUGUESE-QTR

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.90.80.70.60.50.40.30.20.1

P
re

ci
si

on

Recall

BASELINE
SPANISH-MSI-FULL

SPANISH-MSI-D
SPANISH-MSI

SPANISH-QTR

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.90.80.70.60.50.40.30.20.1

P
re

ci
si

on

Recall

BASELINE
FRENCH-MSI-FULL

FRENCH-MSI-D
FRENCH-MSI

FRENCH-QTR

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.00.90.80.70.60.50.40.30.20.1

P
re

ci
si

on

Recall

BASELINE
SWEDISH-MSI-FULL

SWEDISH-MSI-D
SWEDISH-MSI

SWEDISH-QTR

Figure 8.4: Average Precision/Recall Graphs for the ImageCLEFMed Collection
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Figure 8.5: Exact Precision Graphs for the ImageCLEFMed Collection
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results (besides German) are achieved for Spanish and Swedish (82% of the base-

line considering 11pt average), though Spanish and Swedish are less covered by the

lexicons underlying MorphoSaurus than Portuguese (77%).

Summarizing, if solely using ImageCLEFMed for the evaluation of (Cross-

Language) Information Retrieval systems, this is of limited value only. However,

since the collection focuses on an important medical subdiscipline (medical imaging

and picture archiving systems) and results are in-line with those using the Ohsumed

collection, additional evidence for the excellent performance of MorphoSaurus in

a Cross-Language Information Retrieval setting is available.

8.4 Discussion

After more than a decade of intensive research, Cross-Language Information Re-

trieval (CLIR) has produced considerable achievements (Gey et al., 2002). From a

methodological point of view, the field of CLIR is divided into dictionary-based vs.

corpus-based approaches (Oard & Diekema, 1998). Since corpus-based approaches

depend on the availability of large parallel corpora, which is mostly not the case

for technical sublanguages, most efforts in CLIR are centered around either query

translation, expansion and structuring, or document translation (Rosemblat et al.,

2003). McCarley (1999) reports on a translation model, which incorporates both

query and document translation and outperforms either translation direction. A

more recent strategy for machine translation based CLIR is the use of commercial

software (Savoy, 2003b), which usually provides only poor support of technical sub-

languages. For medical terminology and other sublanguages, non-specialized mul-

tilingual lexicons (based on WordNet) also offer limited support only (Gonzalo

et al., 1999).

The success of dictionary-based CLIR largely depends on the coverage of the

lexicon, tools for conflating morphological variants, phrase and proper name recog-

nition as well as word sense disambiguation (Pirkola et al., 2001). Within the

MorphoSaurus system, the lexical coverage is optimized by limiting the lexicon

to semantically relevant subwords of the medical domain. This also helps in dealing
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with morphological variation, including single-word decomposition. Since the latter

is a very common phenomenon in medical terminology, this partially explains the

poor results for German in the Saphire medical text retrieval system which used

the UMLS Metathesaurus for semantic indexing (Hersh & Donohoe, 1998).

The UMLS, together with WordNet, is also the lexical basis of the approach

pursued by the MuchMore project (Volk et al., 2002). Here, concept mapping

occurs after various steps of linguistic pre-processing, including lemmatization (also

cf. Rosemblat et al. (2003) and Rosemblat & Graham (2006)). Although good

results are communicated, these are not comparable to those presented here because

the authors use home-grown document and query collections and diverge in the

construction of their baseline.

Chen (2002) proved decompounding for German and Dutch to be effective in

monolingual and bilingual retrieval. He uses bilingual lexicons and a probabilistic

decomposition strategy for which the mean precision increase ranges from 8,4% to

11,46% for German or French to English, respectively.

Stemming is beneficial in a monolingual scenario, as reported by Braschler &

Ripplinger (2004), even when a simple approach is used (also cf. the first two rows

in Tables 8.2 and 8.3). Carefully designed decomposition remarkably boosts per-

formance. Applying stemming to queries and documents yields a performance gain

in mean average precision of up to 23%. Decomposition contributes even more to

performance improvement than stemming with values up to 34% for short queries.

The same stemming algorithm was in use in a multilingual scenario (Braschler &

Schäuble, 2000; Braschler et al., 2003) in which the authors demonstrated the ad-

vantages of decompounding in CLIR. Other monolingual settings reporting a perfor-

mance gain when applying linguistic analysis are described in the work of Tomlinson

(2001) and Moulinier et al. (2001).

Eichmann et al. (1998) report on cross-language experiments for French and

Spanish using the same test collection as used here (Ohsumed), and the UMLS

Metathesaurus for query translation, achieving 71% of their baseline for Spanish

and 61 % for French (contrasted to 84% and 79% for MSI-D, respectively). With

the Smart-style vector space engine they employ (Salton, 1971), their overall 11pt
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performance (0.24) is far above the one determined here (0.18). On the other hand,

when focusing on exact precision scores that have more explanatory power when

thinking of a real world user scenario, the MorphoSaurus approach turns out to

be more advantageous. Eichmann et al. report precision values of 0.23 for Spanish

(0.17 for French) for the top 5 ranked documents and 0.21 (0.14, respectively) for

the top 10. Compared to these scores, the MSI approach (involving disambiguation)

reaches 0.32 for Spanish (0.30 for French) for the top 5 ranked documents (cf. Table

8.2). Even when discarding disambiguation the MSI approach still outperforms

the compared system. Since query translation via the UMLS Metathesaurus was

adopted in the work of Eichmann et al., it is not surprising that the QTR scenario

thoroughly yields comparable results.



Chapter 9

Cross-Language Information

Retrieval on the Web

Despite the wide range of CLIR applications that have been developed in the recent

years, only few have been adopted by large Web search engines, online newspapers

or information services. The reason for this is, amongst others, that different genres

exist in which CLIR may be applied and in which the CLIR techniques are not yet

sophisticated enough (Oard, 2002; Gey & Peters, 2005). This holds specifically for

scientific and technical literature.

In the previous chapter, it has been shown that subword decomposition of both

documents and queries can significantly improve the performance of both intralin-

gual and cross-lingual document retrieval in the medical domain. Having only lim-

ited resources, this approach is only suitable for “closed” document collections which

can be stored locally. Now, in order to expand search facilities to the Web, morpho-

semantic indexing can be used to manipulate the original queries (and not the docu-

ments). The resulting interlingual representation is then the basis for the translation

of queries into (a) desired target language(s) in a second step. Afterwards, any In-

ternet search engine can be used to retrieve relevant documents from the Web.
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Training: Step 1

Word lists

side effect
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aspirin
...
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1heparin

side effect

low blood
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side effects bleeding

side effects
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Target word list

1

1

1

1
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Heparin side effects are bleeding and 
low blood platelet count… Another 
side effect is hair loss….

heparin side effects bleeding 
low blood platelet count … another 
side effect hair loss

Biomedical documents

•Medline Abstracts
•Medical WWW Resources

A

B

C

side effect hair 1

Figure 9.1: Training Target Words for the Translation Process

9.1 Query Translation for Web-CLIR

The query translation process can generally be regarded as a two step procedure.

In a preparation phase, large language-specific corpora are divided into sequences

of words (n-grams). These sequences are then processed by MorphoSaurus. As

a result, a collection of MID sequences associated to sequences of word-n-grams are

stored in look-up tables for different target languages. Afterwards, when a query

is entered by a user, it is also processed into a set of corresponding MIDs. Based

on this representation, different syntactic readings are generated that are divided

into blocks of possibly coherent MIDs. These blocks serve as the link to the word-

n-grams of the desired target language and are, therefore, compared to the MIDs

in the correspondent look-up table. Possible translations are returned as a ranked

output list ordered by a frequency score.

9.1.1 Creating Subword Lists

In the preparation phase, large (medical) domain specific corpora in different lan-

guages from the Web are used (cf. Figure 9.1, step A), including abstracts from

medical journals indexed in MEDLINE (cf. Table 5.3 in Section 5.1.1.1). Stop words

are filtered from these resources and characters transferred to lower-case (Figure 9.1,

step B). Subsequently, these corpora are tokenized into word-n-grams (henceforth,

target words, cf. Figure 9.1, step C). By limiting n to values between 1 and 3, lists

of surface words, word bigrams and trigrams are obtained. These temporary lists

are uniquely sorted, counting the number of occurrences. Table 9.1 lists the number
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Language Surface Words Bigrams Trigrams

English 528,585 30,257,162 97,673,610

German 467,909 4,101,444 5,530,952

Portuguese 138,248 3,899,548 7,058,870

Spanish 126,314 2,382,785 3,746,541

French 85,710 1,129,152 1,796,513

Swedish 47,343 423,625 782,648

Table 9.1: Number of Generated Target Words in Different Languages

Training: Step 2
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side effect hair 1

Figure 9.2: Morpho-semantic Normalization of Target Words

of generated word-n-grams for English, German, Portuguese, Spanish, French and

Swedish.

The target words are now processed with the morpho-semantic normalization

routine which associates each word-n-gram with a sequence of MIDs (Figure 9.2).

Then, the resulting language specific target lists contain triples of the form (target

words, frequency, MIDs). Due to the frequent occurrence of subword permutations

between languages (e.g. German “Bluthochdruck” (literally “blood high pressure”)

vs. English “high blood pressure” or Swedish “högt blodtryck”), bigrams and trigrams

on the interlingual MID layer are ordered alphabetically. Table 9.2 shows a small

subset of the English target list.
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Target Words Frequency MIDs

... ... ...

side 111,675 #side

side effects 76,366 #effect #side

pancreatitis 9194 #itis #pancreas

heparin 574 #heparin

inflammation pancreas 269 #itis #pancreas

effects asthma 17 #asthma #effect

effects asthma gastric 1 #asthma #effect #gastr

... ... ...

Table 9.2: Extract of the English Target List

YX YIL

Query translation using an Interlingua

„Nebenwirkung von 
Heparin“

#effect
#heparin
#side

side effect heparin OR 
side effects heparin

A B
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Figure 9.3: Producing Translations: A User Query in Language X is Transformed

into the Interlingua IL from which it is Mapped to a Word List in a Specific Target

Language Y.
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Qorig Nebenwirkungen von Heparin

QMID #side #effect #heparin

Partitions #side #effect #heparin

#side | #effect #heparin

#side #effect | #heparin

#side | #effect | #heparin

Table 9.3: Possible Syntactic Readings for Query Qorig

9.1.2 Producing Translations

When a user query Qorig is sent to the query translation tool (with specified query

language and desired target document language), Qorig is transformed to its MID

representation QMID (sketched in Figure 9.3, step A and B). For QMID, a list of

possible syntactic readings is generated by adding or omitting the delimiter sign

”|” between each pair of consecutive MIDs. A possible reading in this list is, by

definition, called a partition, and a partition element (a set of MIDs between two

vertical delimiters) forms a subquery. Subqueries represent possible coherent units

in a query and serve as a base for the subsequent translation step between the

interlingua and the target language.

As an example, taking the German Qorig “Nebenwirkungen von Heparin” (En-

glish: “side effects of heparin”), Qorig is transformed to the MID representation

QMID =[#side #effect #heparin]. Subsequently, a list of possible syntactic read-

ings is produced, as depicted in Table 9.3.

After the MIDs of each subquery are ordered alphabetically the subqueries are

then matched against the MIDs in the target list (Figure 9.3, step C). The first

nHIT hits are returned which represent possible translations for a corresponding

subquery. In a following step, all subqueries in the partitions are replaced by their

corresponding translations (i.e. target words) in the target language, thus obtaining

a list of possible translations for Qorig (Figure 9.3, step D).

The number of possible translations can be high: Having a query with nMID

MIDs, 2nMID−1 partitions are obtained. The number of partitions in relation to
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Subquery Target Word Frequency

#side #effect #heparin side effects heparin 14A

side effect heparin 13B

#side #effect side effects 76,366C

side effect 3,856

#effect #heparin effect heparin 112

effects heparin 94

#side side 111,675

lateral 24,632

#effect effects 353,466

effect 244,994

#heparin heparin 12,365C

heparins 570

Table 9.4: Subqueries and their Two most Frequent Matches in the Target List

their number of subqueries (nSQ) follows a binomial distribution. Thus, a query with

nMID MIDs and nSQ subqueries has
(

nMID−1
nSQ−1

)

partitions. The maximum number

of translations, nTR, is computed as follows:

nTR =
∑nSQ

i=1

(

nMID−1
nSQ−1

)

∗ n
nSQ

HIT , with

nSQ: the number of subqueries in a partition

nMID: the number of MIDs in a partition

nHIT : the number of hits in the target list

As an example, “Nebenwirkungen von Heparin” translates to [#side #effect

#heparin] on the interlingual layer(nMID = 3). Allowing four hits to be returned for

each subquery (nHIT = 4), a maximum number of nTR = 1∗41 +2∗42 +1∗43 = 100

possible translations is obtained (also cf. Table 9.5).
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9.1.3 Ranking of Translations

Given this amount of possible translations there is a need for a reasonable ranking

algorithm. For this purpose, the length of subqueries and the frequencies of occur-

rence of the target words (counted in the training phase, cf. Section 9.1.1) serve as

a measure for the lexical importance to compute a ranking score of the translation

candidates.

Considering the partitions listed in Table 9.3, results from matching their sub-

queries against the English target list are depicted in Table 9.4 (here, two hits are

returned for each subquery, nHIT = 2) .

Taking this frequency data as a base, the ranking algorithm can now be described

as follows:

1. Use all translations as candidates that correspond to the partition containing

exactly one subquery (nSQ = 1).

2. Having nSQ subqueries in a partition, denoted by SQ1..nSQ
, and |SQj | denoting

the number of MIDs in a particular subquery (1 ≤ j ≤ nSQ) and freqtwj

denoting the frequency of occurrence of target words in the target list which

are associated to SQj, rank all i translation candidates according to their score

that is computed as follows:

scorei = nSQ

√

∏nSQ

j=1 freq
|SQj|
twj

3. If no candidates can be found in Step 1 or more translations are required,

increase the number of subqueries in a partition by one (nSQ += 1). Again,

find all candidates that correspond to the partitions subqueries and repeat

Step 2.

Table 9.5 shows possible translations for each partition of the example. Accord-

ing to Step 1 of the ranking algorithm, the partition [#side #effect #heparin] is

considered firstly. The score of the corresponding translations is computed by 143

(cf. Table 9.4, A) or 133 (cf. Table 9.4, B), respectively. Afterwards, all translations

for partitions covering two subqueries (nSQ = 2) are considered. The frequency score
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Subquery Target Word Score

#side #effect #heparin side effect heparin 2,744A

side effects heparin 2,197B

#side #effect | #heparin side effects heparin 8,491,748C

side effects heparins 1,823,213

side effect heparin 428,779

side effect heparins 92,060

#side | #effect #heparin side effect heparin 37,427

side effects heparin 31,412

lateral effect heparin 17,577

lateral effects heparin 14,752

#side | #effect | #heparin side effects heparin 78,734

side effects heparins 28,230

side effect heparin 69,678

side effect heparins 24,984

lateral effects heparin 47,571

lateral effects heparins 17,057

lateral effect heparin 42,100

lateral effect heparins 15,095

Table 9.5: Subqueries, Query Translations and their Scores

for the translation “side effects heparin”, resulting from the partition [#side #effect

| #heparin] (marked with C in Table 9.4), is exemplarily computed as follows:

scoreC =
2
√

763662 ∗ 12365 = 8, 491, 748

After removing duplicates, a ranked list of possible translations is generated, as

depicted in Table 9.6. Erroneous translations (5-8) are ranked at the bottom of

the list. Taking the first n entries in the translation set allows to automatically

construct a disjunctive query, as depicted in Figure 9.3 (step E), which can then be

sent to any Web search engine for retrieving documents in a specific target language

(Figure 9.3, step F).
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Rank Translation

1. side effects heparin

2. side effects heparins

3. side effect heparin

4. side effect heparins

5. lateral effects heparin

6. lateral effect heparin

7. lateral effects heparins

8. lateral effect heparins

Table 9.6: Ranked List of Possible Translations of the German Phrase “Neben-

wirkungen von Heparin”

9.2 Interface to a Web Search Engine

To demonstrate the potential of translating queries using MorphoSaurus as a

basis (Daumke et al., 2005a; 2005b), an interface to the most popular Web search

engine has been created.1 Screenshots of this application are shown in Figure 9.4

(Web search) and Figure 9.5 (search restricted to PubMed, the interface to the

MEDLINE database maintained by the U.S. National Library of Medicine). In the

prototype version, the user can choose (amongst other parameters) the maximum

number of hits per subquery (nHIT ), as well as the number of translations to be sent

to the search engine (nTR). Intrinsically, all possible translations could be sent to

this search engine combined with an OR operator. Since the interface of the search

engine limits the number of tokens (i.e. words or operators) to a maximum of ten,

each translation is sent to the search engine separately. The subsequent merging

algorithm of the different search engine results ranks those items at the top that

are found in more than one search run. All others are added at the bottom of the

result list in a simple fashion, adding the best hit of each result list iteratively until

all hits are processed.

1http://www.google.com
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Figure 9.4: Subword-based CLIR on the Web

Figure 9.5: Subword-based CLIR on NLM’s PubMed
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9.3 Evaluation

Since it is not feasible to evaluate Information Retrieval on the Web in terms of

precision and recall, the same test sets as used for evaluating MorphoSaurus by

matching document terms and query terms at the interlingual layer, Ohsumed and

ImageCLEFMed (cf. Section 8.1), are also used in the following. Retrieval results

for query translation based on cross-lingual, morpho-semantic indexing of subwords

(MSI-QTR), is compared to the monolingual baseline (BASE), where English queries

are matched against English documents, and direct query translation (QTR), as

described in Section 8.1.3.1. Furthermore, the contribution of query expansion, i.e.

using five or ten possible translations of an original query is analyzed in detail.

Again, Lucene was used as the underlying retrieval system.

Most Web search engines such as Google or Yahoo! do not incorporate stem-

ming, or only to some extent. The reason for this is that search engine providers

focus on precision rather than recall. Their Web crawlers index more than 8 billion

pages. So it is likely that enough relevant pages can be found for a single query, and

stemming would decrease precision noticeably. Therefore, the baseline condition for

the experiments is based on unstemmed original documents and queries (cf. Row 2

in Tables 8.2 and 8.3 in the previous chapter for the results from stemmed texts).

9.4 Ohsumed Results

As shown in Table 9.7 (Column 3), regarding the 11pt average values, precision val-

ues for the QTR approach range between 0.07 (French) and 0.10 (Portuguese). This

means that QTR values constitute between 41% and 59% of the baseline condition.

In contrast, when applying the MSI-QTR method allowing only one translation

(MSI-QTR-1), precision results vary from 0.09 (Spanish) to 0.16 (German). Con-

sequently, the relative performance is between 53% (Spanish) and 94% (German),

which makes a difference of up to 41 percentage points. For English, applying MSI-

QTR-1 means that the query is replaced by a similar one that is more likely to be

found in the training data. Regarding the mean average precision, no difference to

the original query can be observed in this scenario.
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Language Condition 11pt top 2 pt top 5 top 20

English BASE .17 .36 .36 .25

English MSI-QTR-1 .17 (100.0) .34 (94.4) .34 (94.4) .23 (92.0)

MSI-QTR-5 .19 (111.8) .39 (108.3) .38 (105.6) .26 (104.0)

MSI-QTR-10 .19 (111.8) .39 (108.3) .37 (102.8) .26 (104.0)

German QTR .09 (52.9) .20 (55.6) .18 (50.0) .14 (56.0)

MSI-QTR-1 .16 (94.1) .33 (91.7) .33 (91.7) .22 (88.0)

MSI-QTR-5 .17 (100.0) .36 (100.0) .34 (94.4) .24 (96.0)

MSI-QTR-10 .18 (105.9) .36 (100.0) .34 (94.4) .24 (96.0)

Portuguese QTR .10 (58.8) .19 (52.8) .18 (50.0) .12 (48.0)

MSI-QTR-1 .13 (76.5) .29 (80.6) .28 (77.8) .19 (76.0)

MSI-QTR-5 .15 (88.2) .33 (91.7) .31 (86.1) .22 (88.0)

MSI-QTR-10 .15 (88.2) .33 (91.7) .30 (83.3) .21 (84.0)

Spanish QTR .09 (52.9) .19 (52.8) .19 (52.8) .13 (52.0)

MSI-QTR-1 .09 (52.9) .18 (50.0) .17 (47.2) .13 (52.0)

MSI-QTR-5 .09 (52.9) .18 (50.0) .17 (47.2) .13 (52.0)

MSI-QTR-10 .09 (52.9) .19 (52.8) .18 (50.0) .12 (48.0)

French QTR .07 (41.2) .16 (44.4) .13 (36.1) .11 (44.0)

MSI-QTR-1 .10 (58.8) .21 (58.3) .20 (55.6) .16 (64.0)

MSI-QTR-5 .10 (58.8) .23 (63.9) .22 (61.1) .16 (64.0)

MSI-QTR-10 .11 (64.7) .22 (61.1) .20 (55.6) .16 (64.0)

Swedish QTR .09 (52.9) .17 (47.2) .14 (38.9) .12 (48.0)

MSI-QTR-1 .10 (58.8) .22 (61.1) .21 (58.3) .14 (56.0)

MSI-QTR-5 .11 (64.7) .24 (66.7) .22 (61.1) .15 (60.0)

MSI-QTR-10 .10 (58.8) .24 (66.7) .19 (52.8) .15 (60.0)

Average QTR .10 (58.8) .21 (58.3) .20 (55.6) .15 (60.0)

MSI-QTR-1 .13 (76.5) .26 (72.2) .26 (72.2) .18 (72.0)

MSI-QTR-5 .14 (82.4) .29 (80.6) .27 (75.0) .19 (76.0)

MSI-QTR-10 .14 (82.4) .29 (80.6) .26 (72.2) .19 (76.0)

Table 9.7: Precision/Recall for the Ohsumed Collection Using Query Translation

Based on Morpho-Semantic Normalization (% of Baseline in Brackets, Best Results

Marked Bold). MSI-QTR-n Corresponds to MSI-QTR with n Disjunctive Queries.
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Figure 9.6: Precision/Recall Graphs for the Ohsumed Collection Using Query

Translation Based on Morpho-Semantic Normalization
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Figure 9.7: Exact Precision Graphs for the Ohsumed Collection Using Query Trans-

lation Based on Morpho-Semantic Normalization



9.5 ImageCLEFMed Results 119

For MSI-QTR-5, where five disjunctive queries are submitted to the search en-

gine (cf. Table 9.6), precision increases for all languages except for Spanish, where

no improvements are observable. The baseline is exceeded by 12% in the English

scenario and for German, 100% of the monolingual baseline is reached. Extend-

ing the query by a total of ten disjunctions, precision can further be increased for

German (106%) and French (65%).

Except for Spanish, where all MSI-QTR conditions yield the same result as QTR

(53%), the query translation based on MorphoSaurus clearly outperforms QTR.

In the German scenario, precision is even doubled (53% vs. 106%).

Figure 9.6 visualizes the data for all eleven standard recall points, while Figure

9.7 shows the exact precision scores for a few top ranked documents. To summarize,

while QTR reaches an average relative precision of 59%, MSI-QTR-1 reaches 77%.

Extending the queries by a total of five or ten disjuncts, precision reaches 82% with

respect to 11pt average. While MSI-QTR-5 and MSI-QTR-10 also yield the same

precision values for the average at the top two recall points and for top 20, allowing

five disjunctive queries performs best considering the exact precision scores for the

top 5 ranked documents. This is, at least partly, inline with current (controversial)

research findings on query expansion (Gey & Chen, 2000).

9.5 ImageCLEFMed Results

Table 9.8 and Figures 9.8 and 9.9 show the corresponding results for the cross-

validation using the ImageCLEFMed document collection.

Here, except for French, query expansion using a total of five or ten disjunc-

tive queries outperforms all other conditions (11pt average). While standard query

translation (QTR) reaches average scores of 0.06 (38%) for Spanish up to 0.13 (81%)

for Portuguese and Spanish, MSI-QTR-10 even yields 100% of the baseline for Por-

tuguese and 113% for German. This is particular surprising since in the latter case

German outperforms English in the MSI-QTR-10 scenario (100%). For French, MSI-

QTR values exceed QTR only considering the top 5 ranked documents. In other

cases, QTR reaches higher or equal scores, compared to French MSI-QTR scenarios.
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Language Condition 11pt top 2 pt top 5 top 20

English BASE .16 .33 .39 .30

English MSI-QTR-1 .14 (87.5) .28 (84.8) .39 (100) .29 (96.7)

MSI-QTR-5 .15 (93.8) .34 (103.0) .43 (110.3) .34 (113.3)

MSI-QTR-10 .16 (100.0) .36 (109.1) .43 (110.3) .32 (106.7)

German QTR .09 (56.3) .22 (66.7) .27 (69.2) .19 (63.3)

MSI-QTR-1 .15 (93.8) .29 (87.9) .39 (100.0) .25 (83.3)

MSI-QTR-5 .17 (106.3) .33 (100.0) .43 (110.3) .28 (93.3)

MSI-QTR-10 .18 (112.5) .36 (109.1) .45 (115.4) .32 (106.7)

Portuguese QTR .13 (81.3) .20 (60.6) .31 (79.5) .21 (70.0)

MSI-QTR-1 .15 (93.8) .29 (87.9) .35 (89.7) .27 (90.0)

MSI-QTR-5 .16 (100.0) .32 (97.0) .39 (100.0) .28 (93.3)

MSI-QTR-10 .16 (100.0) .35 (106.1) .43 (110.3) .29 (96.7)

Spanish QTR .13 (81.3) .24 (72.7) .29 (74.4) .21 (70.0)

MSI-QTR-1 .13 (81.3) .27 (81.8) .30 (76.9) .22 (73.3)

MSI-QTR-5 .14 (87.5) .30 (90.9) .34 (87.2) .24 (80.0)

MSI-QTR-10 .13 (81.3) .30 (90.9) .36 (92.3) .25 (83.3)

French QTR .09 (56.3) .16 (48.5) .23 (59.0) .16 (53.3)

MSI-QTR-1 .07 (43.8) .16 (48.5) .21 (53.8) .15 (50.0)

MSI-QTR-5 .07 (43.8) .15 (45.5) .25 (64.1) .16 (53.3)

MSI-QTR-10 .07 (43.8) .16 (48.5) .20 (51.3) .16 (53.3)

Swedish QTR .06 (37.5) .13 (39.4) .19 (48.7) .13 (43.3)

MSI-QTR-1 .12 (75.0) .23 (69.7) .28 (71.8) .21 (70.0)

MSI-QTR-5 .13 (81.3) .27 (81.8) .39 (100.0) .25 (83.3)

MSI-QTR-10 .13 (81.3) .30 (90.9) .38 (97.4) .25 (83.3)

Average QTR .11 (68.8) .21 (63.6) .28 (71.8) .20 (66.7)

MSI-QTR-1 .13 (81.3) .25 (75.8) .32 (82.1) .23 (76.7)

MSI-QTR-5 .14 (87.5) .29 (87.9) .37 (94.9) .26 (86.7)

MSI-QTR-10 .14 (87.5) .30 (90.9) .38 (97.4) .27 (90.0)

Table 9.8: Precision/Recall for the ImageCLEFMed Collection Using Query

Translation Based on Morpho-Semantic Normalization (% of Baseline in Brack-

ets, Best Results Marked Bold). MSI-QTR-n Corresponds to MSI-QTR with n

Disjunctive Queries.
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Figure 9.8: Precision/Recall graphs for the ImageCLEFMed Collection Using

Query Translation Based on Morpho-Semantic Normalization
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Figure 9.9: Exact Precision graphs for the ImageCLEFMed Collection Using

Query Translation Based on Morpho-Semantic Normalization
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Averaged over all languages, QTR has a mean average precision score of 0.11

(69%), while MSI-QTR-1 yields 0.13 (81%). Using query expansion (five or ten

disjuncts) additionally increases the performance to 88% of the baseline. Considering

only a few top ranked documents, MSI-QTR-10 achieves best results, with a gain

of 3.3 percentage points over MSI-QTR-5 and a boost of 13 percentage points over

QTR-MSI-1 while standard query translation (QTR) performs 23 percentage points

worse.

9.6 Discussion

A comprehensive architecture for query translation is provided by Levow et al.

(2005). They demonstrate the impact of various CLIR techniques using large-scale

test collections in several languages (English → {French, Arabic, Chinese, Ger-

man}). and found significant improvements in retrieval effectiveness for German

and Chinese if subword segmentation is used (a gain of 35% for German and 14%

in Chinese).

The use of n-gram techniques was reported as a successful approach for CLIR

in the work of Savoy (2003a) and McNamee & Mayfield (2004). They demonstrate

how overlapping character n-gram tokenization can provide retrieval accuracy that

rivals the best current language-specific approaches for European languages.

Kamps et al. (2003) contrasted the effectiveness of language dependent ap-

proaches to document retrieval with language-independent approaches for nine Eu-

ropean languages. They showed that morphological normalization improves retrieval

effectiveness especially for languages that have a more complex morphology than

English and that n-gram-based retrieval can be a viable option in the absence of

linguistic resources.

A specific n-gram technique called targeted s-gram is analyzed by Pirkola et al.

(2002) for English, German, and Swedish queries that were matched against their

Finnish variants. They showed that their approach outperformed the conventional

n-gram matching techniques particularly for short words and short longest common

subsequences.
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In contrast to these approaches which are based on the processing of character

n-grams, subword n-grams are used here for performing the language transfer for

CLIR. It has been shown that such a sophisticated approach outperforms a simple

machine translation approach at large.

Compared to the evaluation results of the approach in which both queries and

documents are transformed into the MorphoSaurus interlingua (Chapter 8) the

outcome of query translation using morpho-semantic indexing as proposed here is

slightly inferior. Still, one has to consider the fact that the interlingual transforma-

tion of huge and variable document collections (or the Web, in general) is realistically

speaking not manageable. Thus, the approach including both query translation and

a subsequent connection to a standard internet search engine offers a very good

alternative to the MorphoSaurus core technology when huge external document

collections have to be considered.



Chapter 10

Multilingual MeSH Mapping

Manual indexing or categorization of documents requires skillful human experts to

perform a routine task, viz. to assign index terms or classification codes (usually,

taken from a controlled vocabulary) to documents (journal or newspaper articles,

technical reports, etc.). Constraining the choice of allowed descriptors to those

organized in a thesaurus (e.g., the Medical Subject Headings (MeSH, 2005) or

the Unified Medical Language System (UMLS, 2005)) creates additional benefits in

so far that the document space is structured by semantically related areas. As a

consequence, search capabilities become more powerful, e.g., by query expansion that

incorporates synonyms, semantically more specific terms, etc. Large bibliographic

services such as the retrieval system PubMed (the online interface to MEDLINE

and related databases) mainly rely on the intellectual indexers’ performance as far

as the content description of documents is concerned.

The manual assignment of index terms out of a very large set of descriptors is

not only a laborious and often tedious task but also one that is quite expensive.

This is also evidenced by the NLM which, in the nineties, spent over two million

dollars and employed 44 full-time equivalent indexers each year on that task (Hersh

et al., 1994b).

MEDLINE covers English as well as non-English documents, though the indexing

is in English only. Up until now, more than 14 million bibliographic units have

been indexed and classified using the English version of the MeSH as a controlled
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vocabulary. A few terminology mappers exist from English to some non-English

languages, but their coverage is far from being complete (given the English MeSH).

Because the physicians’ native languages are much more dominant than in other

scientific disciplines, the focus on English as medical content description language

creates a serious bottleneck for tentative users of PubMed in non-English-speaking

countries.

In order to reuse this bulk of intellectual work for languages other than English,

MorphoSaurus can be used to learn from that data-rich experience in the following

way: Assuming that the English indexing of medical documents is a highly esteemed

asset, lexical patterns are determined from the abstracts and related to their asso-

ciated index terms. Once lexical items can be mapped from the languages covered

by MorphoSaurus to their English lexical correlates, English indexing patterns

(together with the non-English ones) can be reused for the non-English language

in focus given the mediating interlingua. Hence, the methodology proposed here

learns from the past (English) indexing experience and transfers it in an unsuper-

vised way to non-English languages, as well (Markó et al., 2003; Markó et al., 2004a;

Hahn et al., 2004b).

10.1 Learning Indexing Patterns

In the following, a statistical, a heuristic and a hybrid approach is described to auto-

matically assign English MeSH entries as document descriptors for English as well

as German, Portuguese, Spanish and French MEDLINE documents given sets of a

priori assigned index terms to English documents.1 MeSH consists of sets of terms

denoting descriptors in a hierarchical structure. In its 2006 version, nearly 24,000

so-called main headings with over 145,000 synonyms (entry terms) occur. Figure

10.1 (bottom) shows the tree structures for the MeSH main headings Femoral Neck

Fractures and Sepsis which, amongst others, have been manually assigned to a

MEDLINE abstract (taken from PubMed, cf. Figure 10.1, top). While the first

mapping from title words to a MeSH term simply requires the consideration of sin-

1Unfortunately, to the best of knowledge, there are no Swedish abstracts linked to MEDLINE.
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Femoral Fractures

Hip Fractures
Femoral Neck Fractures

Bacterial Infections and Mycoses 
Infection

Sepsis
Bacteremia
Fungemia
Shock, Septic 

MeSH Tree Structures

Figure 10.1: Sample Assignment of MeSH Descriptors to MEDLINE Abstracts

gular/plural forms, the second one is not that straightforward: Here, the (human)

indexer decided to map deep infection to the MeSH heading Sepsis, instead of its

parent node Infection. This association is not only motivated by the world knowl-

edge of human curators, but also by the fact that the indexers usually have access

to the whole publication, not only to titles and abstracts. Nevertheless, such kind of

associations can be identified by well-known statistical machine learning methods.

The particularity of the MorphoSaurus approach to assign descriptors to docu-

ments is based on using such methods together with the interlingual representation

for the documents as well as the indexing vocabulary. Using this representation

has the advantage of training the indexing system on texts written in one or more

language(s) and testing them with documents of any (other) language. This method

allows the processing of documents in any language covered by MorphoSaurus

lexicons.
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Language Articles Words

English 35,000 7,291,239

German 3,508 576,463

Portuguese 862 154,866

Spanish 998 250,268

French 8,025 1,591,578

Total 48,493 9,864,414

Table 10.1: Training Corpus Statistics for Statistical MeSH Mapping

10.1.1 Statistical MeSH Mapping

The starting point of the method to statistically assign MeSH terms to documents is

to collect medical abstracts from MEDLINE, to which English MeSH main headings

have already been manually assigned. For English, a subset of 35,000 documents

was taken (Table 10.1). The training material for the other languages, i.e. (non-

English) articles which are linked to MEDLINE and assigned with (English) MeSH

terms, are much smaller due to limited availability (also cf. Section 5.1.1.1).

The algorithm then processes the sample of medical abstracts (word1 . . . wordm

in Figure 10.2, step A) taken from MEDLINE, to which English MeSH main head-

ings have already been assigned manually (MeSHx and MeSHy in Figure 10.2, step

A). Documents are morpho-semantically normalized, thus transforming the original

document into a sequence of MIDs (MID1 . . .MIDn in Figure 10.2, step B). Based

on that representation a Bayesian approach is pursued which ignores the a priori

probabilities of the descriptors. Thus, statistical evidence for class identifier (MID)

trigrams is computed by basically counting their frequency of co-occurrence in the

training corpus with individual (manually supplied) MeSH entries (Figure 10.2,

step C). This is how indexing patterns are ‘learned’.

In the test phase, when aiming at extracting MeSH terms as valid descriptors

for a normalized document (cf. Figure 10.2, step D), these terms are ranked by their
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Figure 10.2: Architecture of the Combined Indexing System

weighting (w) values calculated as follows:

w(MeSHi |MID1, ..., MIDn) =

log

n−2
∏

j=1







P (MIDj ,MIDj+1,MIDj+2|MeSHi)

P (MIDj ,MIDj+1,MIDj+2)
, if defined

1 , otherwise

Given a document which contains n class identifiers (MIDs), the conditional

weighting value for MeSHi, a particular MeSH main heading, is computed by the

product of the computed conditional probabilities P of the MID trigrams in the text

that co-occur with the descriptor MeSHi in the training set, divided by the a priori

probability of the corresponding text trigrams in the training collection, if both

probabilities can be observed, at all (cf. Figure 10.2, step E). Here, the denominator

takes into account the fact that infrequent terms have a greater explanatory power

for a given entity when faced with large quantities of data and, hence, increase
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the weighting value for that entity. If no trigram that is currently being processed

appears in the training data, or if it is not associated with the current descriptor

MeSHi, it remains neutral (multiplication with 1). This expresses the fact that

there is no evidence for a further refinement (simply because a combination of a

trigram and a MeSH descriptor missing in the training set does not mean that it

may never occur, at all).

MID trigrams are treated in an unordered way. They are defined as a set of

MIDs that co-occur within a document window of three text tokens, regardless of

the original sequence of words that produced the set of MIDs. The reason for this

is that in many languages the MID order changes when genitives or prepositions

come into play, as with “femoral neck fracture” vs. “fractured neck of femur” corre-

sponding to [#femur, #neck, #fractur] vs. [#fractur, #neck, #femur]. Finally,

all extracted MeSH descriptors, MeSHs1
, MeSHs2

. . ., are ranked according their

weighting value (Figure 10.2, step F).

10.1.2 Heuristic MeSH Mapping

The heuristic approach only relies on the MeSH Thesaurus and a collection of doc-

uments. Based on a set of heuristic criteria, a fully automatic MeSH indexing of

the documents is computed. Unlike the learning method, no prior indexing of docu-

ments is necessary. In the training phase, all English MeSH main headings, MeSH1,

MeSH2, etc., (cf. Figure 10.2, step G) undergo the morpho-semantic normalization

procedure. Hence, all words covered by the English lexicon are substituted by their

corresponding unique MIDs resulting in the morpho-semantically normalized repre-

sentations MeSHMID 1, MeSHMID 2, etc., which are linked to the original MeSH

descriptors (cf. Figure 10.2, step H).

In the test phase, English, German, Portuguese, Spanish and French documents,

defined by a sequence word1 . . . wordm, are processed by the morphological engine

resulting in a sequence MID1 . . . MIDn at the interlingua layer (Figure 10.2, step

D). Afterwards, heuristic rules (some of them already proposed by NLM’s indexing

initiative (Aronson et al., 2000)) are applied to the normalized test documents. In

essence, this means that each MeSH descriptor whose normalized representation
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contains at least one of the MIDs in the document is retrieved. Next, each normal-

ized MeSH descriptor is assessed against the normalized text by computing diverse

factors (Figure 10.2, step I). The most important metrics are:

• Longest Match Factor: On the level of MIDs, individual MeSH descrip-

tors, which appear as single entries, can also appear together in additional

MeSH entries. For example, the German term “Bauchschmerzen” (“abdomi-

nal pain”) that appears in a text and is normalized to the MIDs #abdom and

#pain is, amongst others, associated to the MeSH entries “Abdominal Pain”

([#abdom, #pain]), “Abdomen” (#abdom) and “Pain” (#pain). If two or

more normalized MeSH descriptors can be merged to one longer MeSH de-

scriptor, the latter is preferred over its constituents.

• Phrase Factor: The number of different MIDs in a phrase that match the

MIDs in a normalized descriptor is called MID count. In addition, the phrase

interval of a normalized descriptor can be considered as the span between

the first and the last MID associated with this descriptor in a phrase. The

phrase factor, then, is defined as the ratio of MID count and phrase interval.

So, the Portuguese phrase “o f́ıgado do paciente foi transplantado” (“the pa-

tient’s liver was transplanted”) will be transformed into [#hepat, #patient,

#transplant]. Given the normalized descriptor for “liver transplantation”

([#hepat, #transplant]), the corresponding MID count is 2, the phrase inter-

val amounts to 3. So, the phrase factor equals 2/3.

• Entry Factor: The entry factor is the MID count divided by the number of

MIDs of the associated descriptor. For example, the German noun phrase

“noduläre Hyperplasie” (“nodular hyperplasia”) is normalized to [#nodul,

#above, #plast] and the MeSH descriptor “Focal Nodular Hyperplasia” to

[#focal, #nodul, #above, #plast]. The corresponding entry factor is 3/4.

• Title Factor: A descriptor found in the title will be ranked higher than

others.
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Finally, all possible descriptors are ordered according to a weighted average of

the above metrics (MeSHh 1, MeSHh 2,. . . in Figure 10.2, step J).

10.1.3 Hybrid Approach

The statistical learning of indexing patterns and the heuristic add-ons were pooled

in order to find out whether a combined effort performs better than any of the two

in isolation. Hence, both approaches were merged in the following way. First, all

descriptors that are ranked in the top 30 by both of the methods are set to the top

of the result list (MeSHc 1, MeSHc 2 . . . in Figure 10.2, step K). After the first k

positions (30≥k) have been populated that way, the remaining positions are incre-

mentally filled by the following rule: Two entries on the top of the output of the

statistical approach are alternately incorporated into the final result, followed by one

entry of the heuristic approach, until both lists (maximum length: 100 terms) are

exhausted. Previous experiments have shown that this empirically motivated pro-

cedure leads to much more favorable results than a formal one, e.g., by multiplying

the outcome values of the different weighting functions.

10.2 Evaluation

Text collections were randomly assembled for the training phase for the statistical

learning of indexing patterns and the test phase (500 abstracts for each language

considered, cf. Table 10.2). The data acquired from the training phase were then

used for the indexing of English, German, Portuguese, Spanish and French docu-

ments. The indexing results were evaluated against the manually supplied MeSH

main headings. This data serves as the de facto gold standard for the experiments

(similar to the study of the indexing initiative of the NLM (Aronson et al., 1999)).

Unfortunately, the human indexing results in MEDLINE are not really consistent.

Funk & Reid (1983) measured 54.5% interrater agreement with regard to manually

assigned MeSH main headings for English abstracts (41.5% for German abstracts).

Obviously, such inconsistencies in the test collection will also affect the validity of

the evaluation results when taking this data as gold standard.
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Language Articles Words

English 500 103,681

German 500 80,684

Portuguese 500 88,674

Spanish 500 122,880

French 500 96,310

Total 2,500 492,229

Table 10.2: Test Corpus Statistics for Statistical MeSH Mapping

In earlier experiments the performance of the three different methods, viz. heuris-

tic mapping, statistical mapping, and the combination of both were compared con-

sidering only a smaller set of German abstracts covering clinical disciplines only,

both for training as well as testing (Markó et al., 2003). In a subsequent study

this evaluation was repeated on different subsets of MEDLINE covering the whole

MeSH using only English documents for training and English/German/Portuguese

documents for testing (Markó et al., 2004a). Now, the effect of combining mono-

lingual training data to multilingual evidence via the interlingua is analyzed more

detailed.

In particular, the following experimental conditions are considered:

• H core: the heuristic approach to MeSH mapping using the core engine of

MorphoSaurus

• S core: the statistical approach using the core engine of MorphoSaurus

and monolingual training data

• S D: the statistical approach using MorphoSaurus with disambiguation

module and monolingual training data

• S full: the statistical approach using MorphoSaurus with disambiguation

and acronym resolution module and monolingual training data
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• S core +: the statistical approach using the core engine of MorphoSaurus

and multilingual training data

• S D +: the statistical approach using MorphoSaurus with disambiguation

module and multilingual training data

• S full +: the statistical approach using MorphoSaurus with disambigua-

tion and acronym resolution module and multilingual training data

• M core +: the mixed-mode, hybrid approach using the core engine of

MorphoSaurus and multilingual training data

• M D +: the mixed-mode, hybrid approach using MorphoSaurus with

disambiguation module and multilingual training data

• M full +: the mixed-mode, hybrid approach using MorphoSaurus with

disambiguation and acronym resolution module and multilingual training data

10.3 Results

Table 10.3 (English, German), Table 10.4 (Portuguese, Spanish) and Table 10.5

(Swedish and average values) depict the precision and recall values for the chosen

test scenarios, for which the top 5, 10 and 50 ranked descriptors are considered.

When examining average values only (Table 10.5, bottom) and focusing on the

top five proposed descriptors, between 9% (S core) and 17% (M D +) of all rele-

vant MeSH terms are retrieved at a precision rate of 20% (S core) to 40% (M D

+). Looking at the top 50 of the system-generated descriptors, precision drops to

between 5% (heuristic approach) and 13% (M D +), while recall increases to be-

tween 22% (heuristics only) and 56% (M D +). For the top 5 proposed descriptors,

the heuristic approach (23% precision at 10% recall) performs slightly better than

the statistical approach using monolingual training data only (20% precision at 9%

recall for S core). However, when considering the MeSH terms in the top 10 or top

50, even the simple statistical approach outperforms the heuristic one. By apply-

ing the disambiguation module, precision (recall) can further be increased by up to
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Language Method Top 5 Top 10 Top 50

Prec Rec Prec Rec Prec Rec

English H core 0.34 0.13 0.23 0.17 0.07 0.28

S core 0.33 0.13 0.27 0.20 0.12 0.44

S D 0.37 0.14 0.29 0.22 0.12 0.45

S full 0.32 0.12 0.25 0.19 0.11 0.40

S core + 0.34 0.13 0.27 0.21 0.12 0.44

S D + 0.38 0.14 0.29 0.22 0.12 0.47

S full + 0.34 0.13 0.26 0.20 0.11 0.42

M core + 0.43 0.16 0.34 0.26 0.14 0.52

M D + 0.45 0.17 0.36 0.27 0.15 0.55

M full + 0.43 0.16 0.34 0.26 0.14 0.52

German H core 0.27 0.11 0.18 0.15 0.06 0.25

S core 0.20 0.09 0.17 0.14 0.09 0.37

S D 0.25 0.10 0.20 0.17 0.10 0.41

S full 0.23 0.10 0.19 0.16 0.09 0.39

S core + 0.32 0.14 0.26 0.22 0.12 0.48

S D + 0.38 0.16 0.31 0.26 0.13 0.55

S full + 0.36 0.15 0.28 0.24 0.12 0.52

M core + 0.38 0.16 0.29 0.25 0.13 0.53

M D + 0.41 0.17 0.33 0.28 0.14 0.59

M full + 0.38 0.16 0.29 0.25 0.13 0.53

Table 10.3: Precision/Recall Table for English and German Using Different Indexing

Methods at Different Cut-off Points (Best Results Marked Bold)
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Language Method Top 5 Top 10 Top 50

Prec Rec Prec Rec Prec Rec

Portuguese H core 0.22 0.10 0.15 0.14 0.05 0.23

S core 0.10 0.05 0.10 0.09 0.08 0.37

S D 0.12 0.06 0.11 0.11 0.08 0.37

S full 0.13 0.06 0.12 0.11 0.08 0.37

S core + 0.26 0.12 0.21 0.20 0.10 0.46

S D + 0.32 0.15 0.27 0.25 0.11 0.53

S full + 0.32 0.15 0.26 0.24 0.11 0.53

M core + 0.32 0.15 0.25 0.23 0.11 0.50

M D + 0.36 0.17 0.29 0.27 0.13 0.59

M full + 0.32 0.15 0.25 0.23 0.11 0.50

Spanish H core 0.11 0.05 0.08 0.07 0.03 0.12

S core 0.21 0.09 0.17 0.15 0.08 0.33

S D 0.25 0.11 0.21 0.18 0.08 0.34

S full 0.25 0.11 0.21 0.18 0.08 0.33

S core + 0.40 0.18 0.30 0.26 0.12 0.52

S D + 0.41 0.18 0.30 0.26 0.12 0.53

S full + 0.40 0.17 0.29 0.25 0.11 0.50

M core + 0.41 0.18 0.29 0.25 0.12 0.53

M D + 0.41 0.18 0.29 0.25 0.12 0.54

M full + 0.41 0.18 0.29 0.25 0.12 0.53

Table 10.4: Precision/Recall Table for Portuguese and Spanish Using Different In-

dexing Methods at Different Cut-off Points (Best Results Marked Bold)
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Language Method Top 5 Top 10 Top 50

Prec Rec Prec Rec Prec Rec

French H core 0.22 0.10 0.15 0.14 0.05 0.23

S core 0.17 0.08 0.13 0.12 0.07 0.30

S D 0.21 0.10 0.17 0.15 0.08 0.38

S full 0.21 0.09 0.17 0.15 0.08 0.36

S core + 0.24 0.11 0.19 0.17 0.09 0.43

S D + 0.30 0.14 0.24 0.22 0.11 0.50

S full + 0.28 0.13 0.22 0.21 0.10 0.48

M core + 0.32 0.14 0.23 0.21 0.10 0.46

M D + 0.35 0.16 0.26 0.24 0.12 0.54

M full + 0.32 0.14 0.23 0.21 0.10 0.46

Average H core 0.23 0.10 0.16 0.13 0.05 0.22

S core 0.20 0.09 0.17 0.14 0.08 0.36

S D 0.24 0.10 0.20 0.17 0.09 0.39

S full 0.23 0.10 0.19 0.16 0.09 0.37

S core + 0.31 0.13 0.25 0.21 0.11 0.47

S D + 0.36 0.15 0.28 0.24 0.12 0.51

S full + 0.34 0.15 0.26 0.23 0.11 0.49

M core + 0.37 0.16 0.28 0.24 0.12 0.51

M D + 0.40 0.17 0.31 0.26 0.13 0.56

M full + 0.37 0.16 0.28 0.24 0.12 0.51

Table 10.5: Precision/Recall Table for Swedish and Average for all Languages Using

Different Indexing Methods at Different Cut-off Points (Best Results Marked Bold)
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4 (3, respectively) percentage points. When incorporating the acronym resolution

module, which tends to add additional noise to the data (but enables cross-lingual

comparisons), precision and recall decrease by at most two percentage points.

By pooling monolingual training data to multilingual evidence via the

MorphoSaurus interlingua, considerable enhancements can be observed for the

statistical approach (for the top 5, 12 percentage points precision gain for (S D) to

(S D +) and 12 percentage points recall for the top 50). Especially for Portuguese,

for which only few training material is available (cf. Table 10.1), additionally using

English training data (that are easily to obtain) is a substantial benefit that can

be expressed in terms of up to 20 percentage points performance increase (S D +

compared to S D).

The different contributions of the two basic approaches (heuristic and statistical)

were examined in more detail, as well. Only focusing on multilingual training data,

the statistical learning approach always outperforms the heuristic one substantially,

for all languages at all cut-off points with respect to recall and precision. The

learned indexing patterns are, therefore, the driving force for the performance of the

system. Pooling both approaches, however, yields additional, substantial, benefits.

Performance values range from 37% precision at 16% recall (top 5, M core + and M

full +) and 12% precision at 51% recall (top 50) up to 40% precision at 17% recall

(top 5, M D +) and 13% precision at 56% recall (top 50).

Figure 10.3 summarizes the resulting precision values for the different languages

for the top 5, 10, 20, 50 and top 100 proposed descriptors and visualizes the dif-

ferences between the experimental conditions. Accordingly, Figure 10.4 shows the

corresponding graphs for recall values.

With recall values ranging between 24% and 28% for each of the languages for

the top ten assigned descriptors, results seem to be not so shiny. However, when

comparing these values to the average agreement of human indexers (for English

5.45 descriptors, for German only 4.15 MeSH terms, according to Funk & Reid

(1983)) the indexing system proposed here derives 2.75 less descriptors in average

for English and only 1.35 less for German in a fully automatic indexing environment.
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Figure 10.3: Exact Precision for MeSH Indexing
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Figure 10.4: Exact Recall for MeSH Indexing
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10.4 Discussion

The experiments of Hersh & Donohoe (1998) and Zweigenbaum et al. (2001) reveal

the usefulness of incorporating morphological knowledge into automatic indexing

procedures. At least for highly compounding languages such as German or Swedish,

however, their proposed methods, viz. the enumeration of morphological variants in

a semi-automatically generated lexicon (Zweigenbaum et al., 2001; Aronson, 2001)

or the incorporation of a simple stemmer (Hersh & Donohoe, 1998) turn out to be

inappropriate.

The (monolingual) MeSH mapping methods proposed by the NLM (Aronson

et al., 2000; 1999) reach 48% precision for the top 10 proposed descriptors and 20%

precision for the top 40 on a small test corpus comprised of 200 MEDLINE abstracts.

29% precision for the top 25 is reported after carrying out a re-evaluation on 273

MEDLINE articles (Aronson et al., 2004). As a comparison, using the approach

proposed in this work, precision for English (M D +) varies between 36% (top 10)

and 15% (top 50). By using full texts instead of abstracts only, the performance of

an indexing system can be increased by 7%, as reported by Gay et al. (2005).

Névéol et al. (2005a) compared three different MeSH indexing systems for

French by using 82 documents from CISMeF.2 Both a regular expression-based ap-

proach and another one using TF/IDF measures retrieve 21% of all relevant MeSH

terms with respect to the top 10 proposed descriptors. The third indexing sys-

tem which is based upon the use of different medical terminological resources only

achieves 13% precision. CISMeF also contains resources which are available in En-

glish and French, mostly coming from Canadian governmental websites such as

Health Canada3 and the Canadian Pediatric Society4. Using a subset of 51 docu-

ments, the French indexing system based on TF/IDF and the English one developed

by the NLM have been evaluated in parallel. For English, 27% precision are reported

for the top 10 results, while the performance of the French system is 23% (Névéol

et al., 2005b).

2Catalogue and Index of Medical online resources in French, http://www.cismef.org/

3http://www.hc-sc.gc.ca/

4http://www.cps.ca/
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Sebastiani (2002), however, emphasizes that performance comparisons of dif-

ferent evaluations have only limited value. Various experimental conditions have

to be taken into account, viz. structure and size of the documents sets and the

controlled vocabulary, choices of text preprocessing (e.g., morpho-semantic analysis

vs. stemming), the indexing method being applied (e.g., rule-based vs. statistical),

parameter tuning, etc. Nevertheless, he concludes that any content-based indexing

method that incorporates some machine learning algorithm (e.g., probabilistic classi-

fiers, decision tree classifiers) does better than methods without any learning device.

Various experiments carried out on the Reuters-21578 corpus, the most widely

used benchmark collection in automated indexing (Rose et al., 2002), showed that

the combination of different indexing methods seems to perform best, in general.

These considerations are also backed up by the results in this work.

To the best of knowledge, no efforts on direct translingual document indexing

have been made, up until now. Ferber (1997) and Pouliquen et al. (2003) both

apply monolingual indexing techniques to various languages and use a multilingual

controlled vocabulary, for which exact translations exist (the EuroVoc thesaurus

and the OECD macrothesaurus (cf. Section 12.2), respectively). Their learning al-

gorithms have to be adapted to each language-specific document collection. In con-

trast, the statistical approach proposed here ‘learns’ descriptor assignments mainly

from an English corpus, for which training data are easily obtainable. Document

descriptors can then be assigned to any text whose underlying language is covered

by MorphoSaurus.



Chapter 11

Towards a General Multilingual

Medical Lexicon

Lexicons, especially designed for natural language processing purposes, can gener-

ally be characterized along several dimensions. Firstly, lexicons can provide different

amounts of lexical information, such as part of speech, number, gender and case.

Secondly, the coverage of a lexicon, which often captures the terminology of a spe-

cialized domain, indicates for how many words of a (domain-specific) text collection

lexical information is available. For translation dictionaries, finally, special attention

is drawn to the multilingual dimension.

There is currently no large electronic dictionary in the medical domain which is

characterized by a true multilingual dimension, relevant coverage, and substantial

lexical information at the same time. Of course, with the UMLS Metathesaurus

(UMLS, 2005) there already exists a widely used multilingual resource with high

coverage in the medical domain. However, lexical information is missing for other

languages than English.

For non-specialized domains, a remarkable effort for developing mono- and mul-

tilingual dictionaries has been made. For example, WordNet (Fellbaum, 1998)

provides a good coverage for general English. It may be useful for covering lay ter-

minology of medicine (Burgun & Bodenreider, 2001) or bio-medicine (Bodenreider

et al., 2003), for example within a consumer-oriented health information system.
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The European counterpart, EuroWordNet (Vossen, 1998) tends towards a mul-

tilingual system, but with considerably diverse levels of lexical coverage.

Whenever medical terminology has been addressed in the construction of a mul-

tilingual dictionary with substantial lexical information, it lacks reasonable coverage

or has been developed as a demonstration prototype (Chiao & Zweigenbaum, 2002).

The MorphoSaurus subword lexicons, which align medical words in different

languages on the subword-level, provide high coverage of medical terminology in

different languages. But morpho-syntactic information such as part-of-speech, case,

gender, etc. is completely missing in this resource. Nevertheless, morpho-semantic

indexing can be used for linking different monolingual resources into a multilingual

repository with high coverage (Markó et al., 2006a; 2006b).

Multilinguality means at least that corresponding entries in different languages

are connected, which is a difficult task and raises simple questions and concerns

open issues, like e.g., in which cases a translation relationship truly holds for lexical

entities. Therefore, syntactic as well as semantic criteria have to be developed, or,

at least, a consensus of different lexical input providers has to be found.

Of course, monolingual resources exist for different languages, so the first step to

merge them is to create a common framework for the integration of lexical entities

from different languages, with respect to their intrinsic peculiarities.

11.1 Interchanging Lexical Information

The Interchange Format is a convention about the way to exchange linguistic in-

formation entering in the building process of a medical multilingual lexicon (Baud

et al., 2005). The basic idea is that the exchange of information is performed through

the Interchange Format only, and each contributor of lexical resources is converting

available data into that representation.

Table 11.1 lists the fields of the interchange format. The most important ones

are the following:

• Lng: The language field determines to which language a particular entry

belongs. Up until now, the values are: EN for English, FR for French, DE for

German, LA for Latin, SV for Swedish, ES for Spanish and PT for Portuguese.
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Field Description Definition

Lng Language the language to which pertains the

present entry

Id Multilingual Identifier the unique identifier of this entry

Typ Entry Type one of the 4 allowed types of entry

(B,C,S,T)

Err Correctness flag for correctness of this entry

Lem Lemma the entry in its basic form

Mul Morpho-syntactic Features the MULTEXT morpho-syntactic tag of

the lemma

Frm Inflected Form any inflected form

Mfr Features of Inflected Form the MULTEXT morpho-syntactic tag of

the inflected form

Inf Inflection Model language specific information

Mis Language Specific Argument to be used freely by provider of entries

Prt Decomposition the decomposition of a compound entry

into its parts

Str Head the head word of the term

Ref Reference Lemma ID of its lemma’s entry (if inflection form)

Exa Typical Usage a sentence presenting a typical usage of

this entry

Com Comment any comment or warning about

this entry

Table 11.1: Fields of the Lexicon Interchange Format
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• Id: This argument specifies the unique identifier of the multilingual lexicon

entry, made of the concatenation of the name of the input provider and a

consecutive number.

• Typ: The type of entry defines either a basic entry (B), a subword entry (S), a

compound entry (C) or a term entry (T). By definition, these types are mutu-

ally exclusive. The basic entry encodes single words of the language, generally

without a space character in their lemma. The subword entry is a marker for

parts of words entering in the composition of a compound entry. Therefore,

a subword entry can generally not be used standalone and a compound entry

is for words, which have been explicitly recognized as a composition of two or

more subword entries. Finally, a term entry (T) describes a sequence of words,

generally separated by the space character.

• Lem: The lemma is the representation of the entry in its basic form (singular,

nominative for nouns; infinitive for verbs). It is supposed to be recoverable

from any occurring form by an inflectional morphology process which is lan-

guage dependent. There is exactly one unique basic form for any entry.

• Mul: The code for encoding morphological and syntactic information is de-

fined as in the open standard MULTEXT.1 Language dependent extensions of

MULTEXT may be used.

• Frm: An entry that describes a specific inflected form that is linked to an

entry for its lemma through the Ref field.

• Mfr: The morpho-syntactic features of the inflected form using MULTEXT

exactly as for the Mul field.

• Prt: The decomposition of compound entries.

• Ref: If the entry consists of an inflected form, a unique ID of its lemma entry

is given.

1Common Specifications and Notation for Lexicon Encoding and Preliminary Proposal for the

Tagsets (http://nl.ijs.si/ME/V3/msd/related/msd-multext/)
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11.2 Resources

After agreeing upon the Interchange Format, partners from five different institu-

tions who are active in the medical domain, as well as in linguistics, collected their

monolingual lexical resources. These are:

• the French UMLF lexicon from different French health-related organizations

and the University Hospitals of Geneva, Switzerland (33,718 entries) (Zweigen-

baum et al., 2005)

• an English medical lexicon from Linköping University, Sweden (22,686 entries)

(Nyström et al., 2006)

• a Swedish medical lexicon from Linköping University (23,223 entries) (Nyström

et al., 2006)

• a Swedish medical lexicon from Göteborg University, Sweden (6,786 entries)

• the German Specialist Lexicon from Freiburg University Hospital, Germany

(41,316 entries) (Weske-Heck et al., 2002)

In addition,

• the English Specialist Lexicon, which is part of the UMLS (96,621 entries,

avoiding acronyms and chemical names) (UMLS, 2005),

has also been converted into the Interchange Format. Up until now, 224,351 lexical

entries for the biomedical domain, fully encoded with morpho-syntactic features,

were collected covering four languages (cf. Table 11.2 for a sample: The first char-

acter of the Mul field encodes the part-of-speech: N (noun), A (adjective). In case

of nouns, c denotes common nouns, m masculine, s singular, n neuter or nominative,

depending on the position. For adjectives, f stands for qualitative, p for positive.

The character “−” indicates that a particular feature does not fit into the language

given (e.g. gender in English) or is unspecified for this entry. The number of differ-

ent lemmas (thus, ignoring ambiguous lexical information for an entry such as, e.g.,

case) is 105,317 for English, 29,822 for French, 27,480 for German, and 27,093 for



148 Towards a General Multilingual Medical Lexicon

Lng Typ Lem Mul Frm Mfr Prt

FR B doigt Ncms

EN T finger nail Nc-sn

SV B digital Afp-sn

SV C Fingeravtryck Nc-sn Finger–avtryck

DE B Finger Ncmsn Fingers Ncmsg

DE C Fingerfraktur Ncfsn Fingerfrakturen Ncfpn Finger–frakturen

Table 11.2: Sample of Compiled Lexical Resources (some fields omitted)

Swedish (a total of 189,712, therefore, 1.2 morpho-syntactic variants are given per

lexical entry, in average).

11.3 Linking Format Definition

The cross-lingual connection of corresponding entries is the essence of a multilingual

dictionary. This operation transforms a set of monolingual lexicons into a multi-

lingual dictionary. Before this operation, the dictionary entries are independent;

afterwards, they are organized as clusters of synonyms or translations. Multiple

lexical entries, either in the same language or in different languages, are the deno-

tation of the same object in the reality with a common part of speech argument

(POS). Typically, clavicle in English and clavicule in French denote unambiguously

the same object (a bone of the pectoral girdle) and they share the same POS: a

common noun. The two corresponding entries are candidates to be linked by a

translation relation. A similar relation could be defined with the corresponding ad-

jectives, clavicular and claviculaire. Unfortunately, the process of translating lexical

items is not that straightforward, and a couple of cross-lingual phenomena are prob-

lematic to capture, especially regarding the different characteristics of case, gender

and number in different languages, as well as multiple derivations, e.g. for adjec-

tives, dependent on whether a definite or indefinite object follows or whether their

use is attributive or predicative.

Consider the German (Swedish) words Schere (sax ), Hose (bralla) (both noun,
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singular), Scheren (saxar), Hosen (brallor) (both noun, plural) and the English

equivalents, scissors and trousers (both noun, plural). Singular forms of the latter

examples do not exist,2 while for other pairs of lexemes, of course, singular forms

can be translated to a corresponding singular form in the other language. This

information should be kept in a multilingual lexicon, e.g. for the use in machine

translation applications.

Different languages also make different use of grammatical gender or noun classes.

While in German, Greek or Latin, three grammatical genders are distinguished

(masculine, feminine and neuter), French, Portuguese and Spanish only use two

(masculine, feminine). Swedish and Danish discriminate the classes common and

neuter. Finally, English does not account for any of these features at all.

In a first version, in order to find an agreement on the question, in which cases

two lexical items from different languages, A and B, can be regarded as translations

(or, within one language, synonyms) of each other, the following ”grades” of bi-

directional relationships are defined:

1. Synonymy/Translation (S/T): A and B share the same part of speech

(POS) and all MULTEXT features, except of gender

2. Synonymy/Translation, inflected (S/T-i): A and B share the same POS,

but at least one MULTEXT feature differs

3. Synonymy/Translation, derived (S/T-d): A and B do not share the same

POS

Having these types of relations in mind, a simple Linking Format was created, which

is depicted in Table 11.3.

Given this framework, MorphoSaurus is used for the cross-lingual alignment

of lexical entities on the semantic level.

2except for noun compounds, as evidenced by “trouser board” or “scissor kick”
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Field Description Definition

Src Source Entry ID ID of the source entry to be linked to a target entry

Tar Target Entry ID ID of the target entry linked from the source entry

Typ Link Type Type of relation

Table 11.3: Fields of the Linking Format

11.4 Cross-Lingual Alignment

A great deal of work has already been done for the fully automatic cross-lingual align-

ment of lexical items, most of them using aligned corpora and employing statistical

methods, such as context vector comparison (Rapp, 1999; Widdows et al., 2002;

Déjean et al., 2002) or mutual information statistics (Fung, 1998). Considering the

medical domain, in which multilingual resources are available, e.g. within the UMLS,

methods for the automatic search for translation candidates have also already been

explored. One promising idea was to use already existing translations at a subword

level in order to support the acquisition of translations at a term level (Namer &

Baud, 2005; Daumke et al., 2005b). Therefore, the MorphoSaurus system seems

particularly well suited for the cross-lingual linkage of available monolingual lexicons.

In a first step, all lexical entries were processed with the morpho-semantic in-

dexing procedure MSI, as described in Section 3.2. After resolving ambiguous MIDs

(Chapter 7), a quite simple algorithm was used to perform the mappings between

all entries: Every lexeme i and its attributes is compared to any other lexeme j

in the list. If their representations in the interlingua format are identical, they are

considered as potential translations or synonyms and linked. Then the relation type

(S/T, S/T-i, S/T-d, cf. previous section) is determined, by comparing the lexical

attributes of the items involved.

11.5 Results

Using the algorithm introduced, 651,542 bi-directional relations between lexemes

were obtained, a sample of which is depicted in Table 11.4. For English-German,
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Typ Lng-1 Lem-1 Mul-1 Lng-2 Lem-2 Mul-2

S/T EN abdominal hernia Nc-sn SV bukbr̊ack Nc-sn

S/T-i EN abdominal aorta Nc-sn DE Bauchaorten Ncfpn

S/T-d EN alveolar Afp–n FR alvéole Ncfs

Table 11.4: Sample Links between Lexical Items

126,504 translations were generated (31,544 when only different lemmas are taken

into account, thus ignoring ambiguous lexical information), for English-French

70,680 (24,368, respectively) and for English-Swedish 86,655 (34,030). Further-

more, 21,604 (8,312) relations were extracted for French-Swedish, 32,659 (10,458)

for French-German and finally, 41,469 (12,105) for German-Swedish. All other rela-

tions (271,971) cover intralingual synonymy. The distribution of different types of

relations is 66,641 occurrences for S/T (10%), 286,880 for S/T-i (44%) and 298,021

for S/T-d (46%).

11.5.1 Coverage

The UMLS Metathesaurus is the most comprehensive resource for medical termi-

nology. Therefore, it is particularly interesting how many terms of the UMLS are

covered by the multilingual lexicon. Table 11.5 (second column) gives the numbers

for those items in the UMLS, which are marked as a preferred entry and only con-

tain alphabetic characters (thus, multi-word entries and chemical compounds are

not considered in the following discussion). Column three gives the number of those

UMLS entries, which are covered by the multilingual lexicon. Values range between

13% for German up to 71% for Swedish. The numbers in Column four show how

many synonyms and morpho-syntactic variants of UMLS terms are listed in the lex-

icon which are not part of the Metathesaurus, and, therefore, could be added. This

consideration only takes those variants into account, which share at least the same

part of speech with the corresponding UMLS entry (only S/T and S/T-i).

Finally, the number of additional lexemes in the lexicon that are neither found

in the Metathesaurus, nor constitute morpho-syntactic variants of existing UMLS
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Language UMLS Covered Synonyms Additional

English 122,035 32,668 3,807 68,842

German 21,162 2,832 1,269 23,379

French 10,260 3,590 309 25,923

Swedish 12,012 8,520 994 17,579
∑

165,469 189,712

Table 11.5: Comparison of Lexical Entries: UMLS Metathesaurus and Multilingual

Lexicon

entries, are depicted in Column five. In total, the multilingual lexicon contains

189,712 different lemmas, i.e. 24,243 more than the part of the UMLS considered

here.

11.5.2 Cross-Lingual Mappings

For the language pairs considered, the UMLS Metathesaurus already contains be-

tween 6,700 and 16,000 translations (cf. Table 11.6, Column two). Within a range

of 8% (EN-DE and DE-SV) to 36% (EN-SV), these mappings are also included

in the multilingual lexicon (Column three). A total of 30,282 synonymous entries

(Column four) could be added to 64,837 existing UMLS translations. Finally, those

cross-lingual mappings which are captured in the multilingual lexicon but not in

the UMLS Metathesaurus, sum up to 81,321 alignments (again, only considering

the relations S/T and S/T-i). While there are 64,837 word-to-word translations in

the UMLS for the languages considered, the multilingual lexicon contains 120,817

different translations.

11.6 Discussion

In this chapter, a common framework for the integration of heterogeneous lexical

resources covering different languages has been introduced. Furthermore, a simple

linkage format has been defined, in which lexical relations can be coded. Using such
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Language Pair UMLS Covered Synonyms Additional

English-German 15,979 1,259 8,801 21,484

English-French 12,589 1,783 6,974 15,611

English-Swedish 9,554 3,403 10,124 20,503

German-French 9,859 850 773 8,835

German-Swedish 10,063 810 1,699 9,596

French-Swedish 6,793 1,109 1,911 5,292
∑

64,837 120,817

Table 11.6: Comparison of Cross-Lingual Mappings

a simple architecture eases the integration of different language pairs.

It has been shown that a substantial amount of subword-based translations can

be generated using the MorphoSaurus system. First examinations of the data

proved many alignments to be valid (which is also evidenced by those entries and

relations that are also part of the UMLS Metathesaurus). Some erroneous trans-

lations are due to the coarse-grained semantics underlying the MorphoSaurus

model, since it is tailored for text retrieval rather than for exact translations. Many

suffixes that encode subtle differences in meaning are ignored in the subword model.

This explains, for instance, the automatic alignment of the English word therapist

to German Therapie (“therapy”). Obviously, such kind of relation can only be

identified by a sophisticated multilingual word model.

The collection of raw lexical data in the medical domain and the identification

of translations is an ongoing initiative. An extensive evaluation of the multilingual

medical lexicon is still a desideratum.





Chapter 12

Scalability, Generalizability and

Limitations of Subword Indexing

A series of proof-of-concept implementations are available in order to show the

benefits and scalability of the subword approach with respect to Cross-Language

Information Retrieval. It can be shown that the MorphoSaurus approach can be

applied for indexing huge document collections in different medical subdisciplines.

Furthermore, there is evidence that other technical domains such as law or economics

are suited for the adaptation of the subword approach, as well.

12.1 Applications

12.1.1 Searching in Scientific Databases

Institutions such as the U.S. National Library of Medicine manage dozens of

databases of medical content, each containing up to 15 million entries (publica-

tions, product and pharmaceutical data, etc.). In this context, MorphoSaurus’

capability of multilingual document retrieval in no less than six European languages

is of special importance with regard to content information in English (e.g. scientific

publications).

In collaboration with the German Institute for Medical Documentation and In-



156 Scalability, Generalizability and Limitations of Subword Indexing

Figure 12.1: Multilingual Bibliographic Information Retrieval

formation Services (DIMDI1) MorphoSaurus was implemented for multilingual

bibliographic searches. Figure 12.1 depicts the user interface for the search in two

heterogeneous databases which are maintained by DIMDI, one covering the fields

of social medicine (SOMED), the other focusing on peripheral regions of medicine,

such as health policy, health care financing, medical products, etc. (HECLINET:

Health Care Literature Information Network). A total of more then 650.000 multilin-

gual documents were indexed. The figure illustrates an interface to those databases

for which German queries also retrieve documents with synonymous expressions in

different languages.

Another showcase application has been implemented for the German Na-

1http://www.dimdi.de/
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tional Library of Medicine (ZBMed2). A multilingual search engine based on

MorphoSaurus has been made available for searching within the ‘Current Con-

tents Medicine’ (CCMED) database, a bibliographic repository including more than

1,000 medical journals, which are not accessible via PubMed, the online interface to

MEDLINE. It currently covers more then 320,000 references.

Starting in 2007, MorphoSaurus will be installed at ZBMed for providing an

intelligent, multilingual search engine for all contents maintained by the institution

which sum up to over 240 million articles, including the whole content of MEDLINE.

To the best of knowledge, this will give multilingual access to one of the most

important (bio-) medical information repositories for the first time.

12.1.2 Searching in Electronic Health Records

In individual healthcare and disease management, the efficient retrieval of documents

is a task required on a daily basis. With the introduction of electronic patient

files, sophisticated search facilities become increasingly important. According to its

simplest definition, the electronic health record (EHR) is a computer-stored collection

of health information about one person linked by a person identifier (Waegemann,

1996; 2002). On the other hand, the Healthcare Information and Management

Systems Society (HIMSS) is claiming more: The Electronic Health Record (EHR) is

a secure, real-time, point-of-care, patient centric information resource for clinicians.

[...] The EHR also supports the collection of data for uses other than direct clinical

care, such as billing, quality management, outcomes reporting, resource planning,

and public health disease surveillance and reporting.3

According to those definitions and to individual patient care, access to the med-

ical information contained in current Hospital Information Systems (HIS) is mostly

horizontal, i.e. patient-centered (cf. Figure 12.2). The HIMSS definition suggests

more scenarios of use by aggregating information in the vertical view of all electronic

patient records. This information relies usually on structured entries like billing in-

formation, coded diagnoses and procedures, structured laboratory or microbiology

2http://www.zbmed.de/

3http://www.himss.org/content/files/ehrattributes070703.pdf
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Figure 12.2: Views on the Electronic Health Record

results: it easily can be selected using appropriate and well-known database and

data warehouse technologies. On the other hand, for the clinician, non-structured

and very heterogeneous information such as admission or discharge summaries and

finding reports (pathology, radiology, etc.) and other narrative data are of high

relevance for patient care. The more information is stored in the HIS, the more

interesting are its vertical, i.e. inter-patient interdependencies.

In conjunction with the Department of Dermatology at the University Hospital in

Freiburg (Germany), a search engine for patient reports has been realized employing

the MorphoSaurus technology. The user can search the free text portions of the

reports for key words in addition to being able to seek out other patient-specific

information such as name, patient ID, date of report, authorship etc. Supplementary

to any exact matches to a given query, the system also recovers documents containing

synonymous information, independent of any linguistic variations that might exist

with regard to the query. These new features allow a clinician to pose questions

such as:

• “Which patients did I treat that had the same symptoms?”

• “What was the treatment and what was its outcome?”

• ”Did I treat patients with disease X and symptoms Y?”
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Figure 12.3: MorphoSaurus Search for Electronic Health Records (Anonymized)

• ”Can I have a discharge summary for a patient with disease X that I can use

as a template?”

• “What was the name of the person with that particular symptom X that I

treated three weeks ago?”

Although several promising technologies like the Clinical Document Architecture

(Dolin et al., 2006) and medical terminologies have been developed in order to

standardize and structure clinical information, there is still a large gap between this

clinical need and today’s practice. Here, intelligent search facilities within narrative

data, as implemented with the MorphoSaurus system, can augment existing HIS

functionality for clinical, scientific, educational and economic reasons. Figure 12.3

shows a screenshot of the application using an anonymized sample of the underlying

patient data.
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Figure 12.4: ICD Coding based on MorphoSaurus (German)

12.1.3 Searching in Medical Terminology Systems

Another application presented in Figure 12.4 is a coding system for the Interna-

tional Classification of Diseases ICD-10 (2005) based on MorphoSaurus. With

the introduction of DRGs (diagnosis related groups) as a performance-oriented and

fixed-rate system of financial reimbursements in the health care system, coding of

diagnoses and procedures has gained enormous importance in some countries. To

this purpose, physicians have to invest significant efforts in the careful assignment

of disease and procedure codes. Whereas diseases are globally being encoded by

the International Classification of Diseases (ICD), no universal procedure encoding

systems exist. In Germany, the classification OPS-301 (OPS, 2006) is used to en-

code diagnostic and therapeutic procedures, while other countries use different ones,
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e.g. CCAM (Classification Commune des Actes Médicaux ) in France or ICD-9-CM

(clinical modification) in the United States.

An efficient assignment of medical information to these indexing systems dictates

the need for intelligent coding systems. In this, the ability to combine several

different ways of accessing the classifications as well as the quality of the test-oriented

access (search of key words) decisively influence correctness, quality, and general

performance of the coding effort. Here, MorphoSaurus is used to supply the

efficient search of key words, mediating between the user’s query and the indexing

system on the level of subwords. Moreover, foreign physicians and employees, who

are not familiar with country-specific classification systems, are given multilingual

access to aid in finding the correct codes.

12.1.4 Multimodal Retrieval

As introduced in Section 8.1, the ImageCLEFMed 2006 corpus was used for the

evaluation of MorphoSaurus in a cross-lingual environment. At the same time,

a search interface to more than 40,000 medical images (mainly covering pathology

and radiology for educational purposes) has been implemented. Figure 12.5 shows

a screenshot of the application where images with English, French and German

captions are retrieved based on a German user query.

Another interface has also been implemented where all search alternatives, i.e.

search in health records, bibliographic databases, medical classifications and, finally,

pathology and radiology images are accessible within on framework. The user who

enters a query can easily switch between the different modalities.

12.2 Generalizability of the Subword Approach

The question that may arise now is whether the subword approach that is proposed

in this work can be adopted to other domains, as well. Whenever large, domain-

specific (mono- or multilingual) terminologies exist to help people in managing their

documents, correspondences or databases by the provision of synonymous terms,

this may be the hint for a potential beneficial use of MorphoSaurus. At the
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Figure 12.5: Image Retrieval

same time, these reference terminologies can serve as the basis for subword lexicon

population for covering these domains.

For the automatic acquisition of lexical entries (cf. Chapter 5) in order to support

cross-lingual applications, the availability of large aligned corpora can be regarded

as the crucial point. For example, with Eurovoc4 there exists a thesaurus covering

13 languages in the fields in which the European Community is active, i.e. poli-

tics, international relations, law, economics, trade, science, transport, environment,

agriculture, education, etc. (cf. Table 12.1). Its entries, as well as those from other

terminologies mentioned subsequently, are arranged similarly to those of the UMLS

Metathesaurus, including word-to-word translations and complex noun phrases. The

4http://europa.eu.int/celex/eurovoc/
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Thesaurus Languages Subject

Eurovoc 13 European Community

GEMET 19 activities: science,

UNESCO 3 politics, law, culture,

OECD 4 economics, etc.

Eurodicautom 12 technical terminology

Europ. Education 18 education, teaching,

Europ. Schools 13 individual development

Treasury Browser research, etc.

AGROVOC 6 agriculture

Astronomy Thes. 5 astronomy

Table 12.1: Overview of Selected Multilingual Resources

GEneral Multilingual Environmental Thesaurus (GEMET)5 covering 6,500 terms in

19 languages, the UNESCO Thesaurus (UNESCO, 1995) covering English, French

and Spanish, and the OECD Macrothesaurus6 (English, German, French, Spanish)

all include subject terms for the following areas of knowledge: education, science,

culture, social and human sciences, information and communication, politics, law

and economics. The Eurodicautom classification7 includes technical and specialized

terminology such as telecommunications, transport and finance in 12 languages. The

European Education Thesaurus (EET)8 as well as the European Treasury Browser

Thesaurus9 focus on terms concerning education, teaching, individual development,

etc. in over 11 languages. AGROVOC10 covers the area of agriculture in En-

glish, French, Spanish, Portuguese, Czech, Chinese and Arabic. The Astronomy

5http://www.eionet.eu.int/GEMET

6http://info.uibk.ac.at/info/oecd-macroth/

7http://europa.eu.int/eurodicautom/

8http://www.eurydice.org/TeeForm/

9http://etb.eun.org/etb/index.html

10http://www.fao.org/agrovoc/
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Thesaurus11, to give a last reference, covers English, French, German, Italian and

Spanish.

The coverage of these thesauri range from, e.g. 6,500 descriptors translated to

19 languages in GEMET, up to over five million entries (terms and abbreviations)

in Eurodicautom.

With the existence of these resources, it has already been shown that there is a

need for structuring information in terms of using controlled vocabularies in other

domains than medicine. Using subwords as representation units instead of full word

forms can substantially reduce the amount of work in organizing those thesauri.

As a conclusion, in what concerns the generalizability of MorphoSaurus and

the work presented here, for the proposed lexical acquisition approach on the level

of subwords (Chapter 5), one can rely on large-coverage multilingual thesauri avail-

able for several relevant domains (cf. Table 12.1), both in terms of the number of

languages covered and the number of alignment units available. Acronyms also play

a crucial role in other domains than medicine, as evidenced by the high amount of

acronym entries in the Eurodicautom thesaurus. The methods for the cross-lingual

alignment of acronyms and their expansions (Chapter 6) are useful in understanding

how these abbreviations are used in different domains and languages. The methods

for cross-lingual disambiguation of subwords (Chapter 7) can be used in a straightfor-

ward way. What concerns the evaluation of MorphoSaurus (Chapter 8 and 9) in

other domains, one could refer to the GIRT corpus (German Indexing and Retrieval

Testdatabase, with alignments to English (Kluck, 2004)), which is also used for the

CLEF campaign (cf. Section 8.1). It mainly covers the areas of social sciences. The

assignment of descriptors from a controlled vocabulary to documents (Chapter 10)

is also an important need in, e.g. the industrial domain (for example the North

American Industry Classification System12 or the European equivalent Nomencla-

ture Génerale des Activités Économiques dans les Communautés Européennes13). If

products from different manufacturers are assigned one or several key(s) of one of

11http://msowww.anu.edu.au/library/thesaurus/

12http://www.census.gov/epcd/www/naics.html

13http://forum.europa.eu.int/irc/dsis/nacecpacon/info/data/en/index.htm
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these classifications, electronic trade across different branches and language barriers

is efficiently made possible.

Hence, the MorphoSaurus system and its underlying methodology bears fur-

ther potential in other domains than Medicine, as well.

12.3 Limitations of the Subword Approach

The subword approach drawn up in this work delineates an efficient way to cover

morphological phenomena which notoriously cause so many problems during the

processing of natural language expressions, especially with regard to single noun

composition. Using high-quality specialized lexicons for the automatic deflection,

dederivation and decomposition rarely leads to false segmentations of words within a

particular domain, in contradistinction to other systems which are based on heuris-

tic rules or statistical analysis. At the same time, the need of curating such lexical

repositories can be seen as the main drawback of the MorphoSaurus system.

Lexicographers have to discriminate between subtle shifts of meaning, which imme-

diately have effect on the performance of the system, e.g. for information retrieval

or term mapping.

For example, when defining equivalence classes of subwords, fuzzy semantic

boundaries may lead to a loss of performance. The term “somnolent” can be re-

garded as a synonym to “sleepy” which is derived from “sleep”. Grouping together

the corresponding subwords into one equivalence class has the effect that query-

ing for “somnolence” retrieves any document (or term) in the collection containing

“sleep”, which in many cases would be undesirable.

Another issue that frequently influence the performance of lexicon-based natural

language processing systems is the treatment of so-called out-of-vocabulary words,

i.e. terms which cannot be processed due to missing lexicon entries. Within the

MorphoSaurus system, words that are not covered by the subword model and

the underlying lexicons are restituted and, therefore, available in their original form

for further processing. But missing specifications can still lead to severe errors

during semantic analysis. As an example, the German word “Venedig” (counterpart
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for “Venice”) gets (formally correct) segmented into “vene⊕d⊕ig”, if not specified

separately in the lexicon. The German suffixes “d” and “ig” do not have a particular

meaning (and thus, are ignored). The stem “vene” (English “vein”) is linked to the

MID #vein, together with all other subwords sharing the same meaning.. As a

consequence, the German query “Veneninsuffizienz” or – in a cross-lingual setting

– its translation “venous insufficiency” may unintentionally match any document

containing the German word “Venedig”. A sufficient lexical coverage of a given

domain is therefore a prerequisite for applications based upon the subword model.

However, such false segmentations can be avoided by incorporating methods for

Named Entity Recognition (NER) or even more sophisticated approaches to text

understanding, e.g. by incorporating syntactic and ontological knowledge during

natural language processing. After syntactic preprocessing (part-of-speech annota-

tion, chunking to phrase groups, parsing) unstructured texts can be semantically

enriched by assigning object classes to language expressions. For example, each

occurrence of a city or drug name is marked with a special tag which enables a dif-

ferentiated subsequent processing of those entities. In particular, word and phrase

ordering constraints, which are not determined in the bag-of-words approach pur-

sued in this work, can be used to properly interpret, e.g. negated statements or

prepositional phrases.

Thus, the conflation of the MorphoSaurus system (that basically operates on

the word level) with syntactic analysis (which take effect on the phrase and sentence

level), and the integration of additional (ontological) knowledge resources seem to

constitute a promising challenge for future work.



Chapter 13

Conclusions

The main goal of this work has been to provide a theory for implementation and eval-

uation of subword indexing for Cross-Language Information Retrieval and related

applications.

Given the productivity of medical terminology it seems almost impossible to cre-

ate, maintain, and curate high-coverage lexicons, dictionaries and thesauri. The au-

tomatic morphological segmentation of words into subwords and their cross-lingual

organization in a thesaurus based on these morphological units is one way to face

this challenge. A pragmatic approach for defining atomic units (subwords) is used

for the automatic deflection, dederivation and decomposition of complex word forms.

By grouping subwords into classes of equivalent expressions within (synonymy) and

across languages (translation), effective cross-lingual free-text retrieval is made pos-

sible, with comparably low manual effort. At the same time, performance increases

substantially for mono- as well as multilingual retrieval, as shown in different re-

trieval settings.

It has also been shown how machine learning algorithms can be used for the ac-

quisition of new subword lexemes for different languages. By using bilingual corpora

which are available (not only) for the medical domain, new subwords of a particu-

lar language are identified and automatically aligned to already available resources.

Similarly, biomedical acronyms and their definitions can be linked across different

languages. Furthermore, a new probabilistic methodology for the automatic reso-
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lution of multiple word senses has been proposed. It is based upon cross-lingual

considerations on the level of subwords. The remarkable impact of subwords dis-

ambiguation on retrieval effectiveness is evidenced by large-scale evaluations carried

out on standardized test sets. The interlingual representation of textual input is

also the basis for the classification according to medical terminologies. In the work

at hand, a new approach for the automatic assignment of document descriptors has

been elaborated, in which indexing patterns from one language are learned for the

benefit of others.

In a series of proof-of-concepts it has been demonstrated that the

MorphoSaurus approach can be used in different applications, such as biblio-

graphic search, retrieval within electronic patients records, medical images or med-

ical classifications. The MorphoSaurus technology offers both medical profes-

sionals and the general information-seeking public an easy-to-use query interface in

order to retrieve health-related content. The importance of this capability is also

underlined by market researchers which estimate that about 90% of health care pro-

fessionals use the Internet for researching clinical matters, reading journal articles

(78%) or continuing medical education (45%).1 Similarly, 80% of all people with

Internet access use the Web for searching health information,2 which is increasingly

available in many different languages. In the U.S., each day there are more people

seeking medical information on the Web than visiting physicians (Fox & Rainie,

2002). Thus, medical information systems contribute much to the empowerment of

health care consumers (Eysenbach, 2000). A partnership on equal terms between

health professionals and well informed consumers/patients is becoming more and

more accepted.

Considering clinical information systems in intranets, on the other side, the elec-

tronic health record is an important challenge in contemporary medicine. It should

contain all patients medical information from multiple sources. Since it should be

1Taylor, H. & Leitman, R. (2001): The Increasing Impact of eHealth on Physi-

cian Behavior (http://www.harrisinteractive.com/news/newsletters/healthnews/

HI HealthCareNews2001Vol1 iss31.pdf)

2Taylor, H. (2002): Cyberchondriacs Update.

http://www.harrisinteractive.com/harris poll/index.asp?PID=299
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accessible by any provider caring for the patient, intelligent search facilities have

to be provided. Additionally, the medical record should be available from different

locations, thus, interoperability has to be guaranteed. For this purpose, the assign-

ment of information in terms of controlled vocabularies (such as MeSH, ICD, etc.)

or more sophisticated, domain-specific ontologies is a major desideratum. With

MorphoSaurus, there exists a methodology for easing this process, including the

possibility to exchange information and knowledge across different languages.

As a conclusion, if the access to health information is one prerequisite for im-

proving the health of society, then the outcome of this work can be regarded as a

small, but substantial contribution for reaching this goal.
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Hahn, Udo, Kornél Markó, Michael Poprat, Stefan Schulz, Joachim Wermter &

Percy Nohama (2004a). Crossing languages in text retrieval via an interlin-

gua. In RIAO 2004 – Conference Proceedings: Coupling Approaches, Coupling



BIBLIOGRAPHY 183

Media and Coupling Languages for Information Retrieval, pp. 100–115. Avi-

gnon, France, 26-28 April 2004. Paris: Centre de Hautes Etudes Internationales

d’Informatique Documentaire (CID).
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