13 research outputs found

    Retinotopic mapping of visual event-related potentials

    Full text link
    Visual stimulation is frequently employed in electroencephalographic (EEG) research. However, despite its widespread use, no studies have thoroughly evaluated how the morphology ofthe visual event-related potentials (ERPs) varies according to the spatial location of stimuli. Hence, the purpose of this study was to perform a detailed retinotopic mapping of visual ERPs. We recorded EEG activity while participants were visually stimulated with 60 pattern-reversing checkerboards placed at different polar angles and eccentricities. Our results show five pattern-reversal ERP components. C1 and C2 components inverted polarity between the upper and lower hemifields. P1 and N1 showed higher amplitudes and shorter latencies to stimuli located in the contralateral lower quadrant. In contrast, P2 amplitude was enhanced and its latency was reduced by stimuli presented in the periphery of the upper hemifield. The retinotopic maps presented here could serve as a guide for selecting optimal visuo-spatial locations in future ERP studiesThis work was supported by the Spanish Ministry of Science and Innovation/Economy and Competitiveness (MICINN/MINECO) (PSI2011-26314, PSI2012-34558 and PSI2014-54853-P

    Data-driven analysis of simultaneous EEG/fMRI using an ICA approach

    Get PDF
    Due to its millisecond-scale temporal resolution, EEG allows to assess neural correlates with precisely defined temporal relationship relative to a given event. This knowledge is generally lacking in data from functional magnetic resonance imaging (fMRI) which has a temporal resolution on the scale of seconds so that possibilities to combine the two modalities are sought. Previous applications combining event-related potentials (ERPs) with simultaneous fMRI BOLD generally aimed at measuring known ERP components in single trials and correlate the resulting time series with the fMRI BOLD signal. While it is a valuable first step, this procedure cannot guarantee that variability of the chosen ERP component is specific for the targeted neurophysiological process on the group and single subject level. Here we introduce a newly developed data-driven analysis procedure that automatically selects task-specific electrophysiological independent components (ICs). We used single-trial simultaneous EEG/fMRI analysis of a visual Go/Nogo task to assess inhibition-related EEG components, their trial-to-trial amplitude variability, and the relationship between this variability and the fMRI. Single-trial EEG/fMRI analysis within a subgroup of 22 participants revealed positive correlations of fMRI BOLD signal with EEG-derived regressors in fronto-striatal regions which were more pronounced in an early compared to a late phase of task execution. In sum, selecting Nogo-related ICs in an automated, single subject procedure reveals fMRI-BOLD responses correlated to different phases of task execution. Furthermore, to illustrate utility and generalizability of the method beyond detecting the presence or absence of reliable inhibitory components in the EEG, we show that the IC selection can be extended to other events in the same dataset, e.g., the visual responses

    Altered neural dynamics in people who report spontaneous out of body experiences

    Get PDF
    It has been suggested that individual differences in cortical excitability leading to disruption of the timing and integration of sensory information processing may explain why some people have out of body experiences (OBE) in the absence of any known pathological or psychiatric condition. Here we recorded EEG from people who either had, or had not experienced an OBE in order to investigate the neural dynamics of OBE in the non-clinical population. A screening questionnaire was completed by 551 people, 24% of whom reported having at least one OBE. Participants who were free of any psychiatric or neurological diagnoses, including migraines, were invited to take part in subsequent EEG recording. EEG data were obtained from 19 people who had had an OBE and 20 who had not. Amplitude of the visual P1 ERP deflection and consistency of alpha-band phase locking were significantly reduced in the participants who had had an OBE. We did not find any group differences in resting state power or in visually induced gamma oscillations. These results provide support for the claim that cortical differences, particularly with respect to the timing of visual information processing, may give rise to OBE in clinically healthy individuals. To our knowledge, this study is the first to compare EEG variables obtained from people who have, and have not, had an OBE

    Exploring the advantages of multiband fMRI with simultaneous EEG to investigate coupling between gamma frequency neural activity and the BOLD response in humans

    Get PDF
    We established an optimal combination of EEG recording during sparse multiband (MB) fMRI that preserves high resolution, whole brain fMRI coverage whilst enabling broad-band EEG recordings which are uncorrupted by MRI gradient artefacts (GAs). We firstly determined the safety of simultaneous EEG recording during MB fMRI. Application of MB factor = 4 produced <1°C peak heating of electrode/hardware during 20-minutes of GE–EPI data acquisition. However, higher SAR sequences require specific safety testing, with greater heating observed using PCASL with MB factor =4. Heating was greatest in the electrocardiogram channel, likely due to it possessing longest lead length. We investigated the effect of MB factoron the temporal signal to noise ratio for a range of GE-EPI sequences (varying MB factor and temporal interval between slice acquisitions). We found that, for our experimental purpose, the optimal acquisition was achieved with MB factor=3, 3mm isotropic voxels and 33 slices providing whole head coverage. This sequence afforded a 2.25s duration quiet period (without GAs) in every 3s TR. Using this sequence we demonstrated the ability to record gamma frequency (55-80Hz) EEG oscillations, in response to right index finger abduction, that are usually obscured by Gas during continuous fMRI data acquisition. In this novel application of EEG - MB fMRI to a motor task we observed a positive correlation between gamma and BOLD responses in bilateral motor regions. These findings support and extend previous work regarding coupling between neural and haemodynamic measures of brain activity in humans and showcase the utility of EEG-MB fMRI for future investigations

    Exploring the advantages of multiband fMRI with simultaneous EEG to investigate coupling between gamma frequency neural activity and the BOLD response in humans

    Get PDF
    We established an optimal combination of EEG recording during sparse multiband (MB) fMRI that preserves high resolution, whole brain fMRI coverage whilst enabling broad-band EEG recordings which are uncorrupted by MRI gradient artefacts (GAs). We firstly determined the safety of simultaneous EEG recording during MB fMRI. Application of MB factor = 4 produced <1°C peak heating of electrode/hardware during 20-minutes of GE–EPI data acquisition. However, higher SAR sequences require specific safety testing, with greater heating observed using PCASL with MB factor =4. Heating was greatest in the electrocardiogram channel, likely due to it possessing longest lead length. We investigated the effect of MB factoron the temporal signal to noise ratio for a range of GE-EPI sequences (varying MB factor and temporal interval between slice acquisitions). We found that, for our experimental purpose, the optimal acquisition was achieved with MB factor=3, 3mm isotropic voxels and 33 slices providing whole head coverage. This sequence afforded a 2.25s duration quiet period (without GAs) in every 3s TR. Using this sequence we demonstrated the ability to record gamma frequency (55-80Hz) EEG oscillations, in response to right index finger abduction, that are usually obscured by Gas during continuous fMRI data acquisition. In this novel application of EEG - MB fMRI to a motor task we observed a positive correlation between gamma and BOLD responses in bilateral motor regions. These findings support and extend previous work regarding coupling between neural and haemodynamic measures of brain activity in humans and showcase the utility of EEG-MB fMRI for future investigations

    Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement

    Get PDF
    Simultaneous EEG-fMRI provides an increasingly attractive research tool to investigate cognitive processes with high temporal and spatial resolution. However, artifacts in EEG data introduced by the MR-scanner still remain a major obstacle. This study employing commonly used artifact correction steps shows that head motion, one overlooked major source of artifacts in EEG-fMRI data, can cause plausible EEG effects and EEG-BOLD correlations. Specifically, low frequency EEG

    Mothers’ and fathers’ neural responses toward gender-stereotype violations by their own children

    Get PDF
    Gender stereotypes facilitate people’s processing of social information by providing assumptions about expected behaviors and preferences. When gendered expectations are violated, people often respond negatively, both on a behavioral and neural level. Little is known about the impact of family kinship on the behavioral and neural reactions to gender-stereotype violations. Therefore, we examined whether parents show different responses when gender stereotypes are violated by their own children vs unknown children. The sample comprised 74 Dutch families with a father (Mage = 37.54), mother (Mage = 35.83), son, and daughter aged 3–6 years. Electroencephalography measurements were obtained while parents viewed pictures of their own and unknown children paired with toy or problem behavior words that violated or confirmed gender stereotypes. In half of the trials, parents evaluated the appropriateness of toy–gender and behavior–gender combinations. Parents showed stronger late positive potential amplitudes toward gender stereotype-violating behaviors by own children compared to unknown children. Moreover, parents’ P1 responses toward gender stereotype-violating child behaviors were stronger for boys than for girls and for parents who evaluated gender-stereotype violations as less appropriate than gender-stereotype confirmations. These findings indicated that gender-stereotype violations by parents’ own children are particularly salient and viewed as less appropriate than gender-stereotype confirmations

    The effects of spatially relevant and irrelevant optic flow

    Get PDF

    The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task

    No full text
    Simultaneous EEG-fMRI measurements can combine the high spatial resolution of fMRI with the high temporal resolution of EEG. Therefore, we applied this approach to the study of peripheral vision. More specifically, we presented visual field quadrant fragments of checkerboards and a full central checkerboard in a simple detection task. A technique called "integration-by-prediction" was used to integrate EEG and fMRI data. In particular, we used vectors of single-trial ERP amplitude differences between left and right occipital electrodes as regressors in an ERP-informed fMRI analysis. The amplitude differences for the regressors were measured at the latencies of the visual P1 and N1 components. Our results indicated that the traditional event-related fMRI analysis revealed mostly activations in the vicinity of the primary visual cortex and in the ventral visual stream, while both P1 and N1 regressors revealed activation of areas in the temporo-parietal junction. We conclude that simultaneous EEG-fMRI in a spatial detection task can separate visual processing at 100200 ms from stimulus onset from the rest of the information processing in the brain. (C) 2010 Elsevier Inc. All rights reserved
    corecore