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Abstract

We revisit the multiple sparse priors (MSP) algorithm implemented in the

statistical parametric mapping software (SPM) for distributed EEG source

reconstruction (Friston et al., 2008). In the present implementation, multi-

ple cortical patches are introduced as source priors based on a dipole source
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space restricted to a cortical surface mesh. In this note, we present a tech-

nique to construct volumetric cortical regions to introduce as source priors

by restricting the dipole source space to a segmented gray matter layer and

using a region growing approach. This extension allows to reconstruct brain

structures besides the cortical surface and facilitates the use of more realistic

volumetric head models including more layers, such as cerebrospinal fluid

(CSF), compared to the standard 3-layered scalp-skull-brain head models.

We illustrated the technique with ERP data and anatomical MR images in

12 subjects. Based on the segmented gray matter for each of the subjects, cor-

tical regions were created and introduced as source priors for MSP-inversion

assuming two types of head models. The standard 3-layered scalp-skull-

brain head models and extended 4-layered head models including CSF. We

compared with the current implementation by assessing the free energy cor-

responding with each of the reconstructions using Bayesian model selection

for group studies. Strong evidence was found in favor of the volumetric MSP

approach compared to the MSP approach based on cortical patches for both

types of head models. Overall, the strongest evidence was found in favor

of the volumetric MSP reconstructions based on the extended head models

including CSF. These results were verified by comparing the reconstructed

activity. The use of volumetric cortical regions as source priors is a useful

complement to the present implementation as it allows to introduce more

complex head models and volumetric source priors in future studies.

Keywords: electroencephalography, multiple sparse priors, volumetric

sparse priors, Bayesian model comparison, statistical Parametric Mapping
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1. Introduction

In this note we present a new application of hierarchical or empirical Bayes

for distributed EEG source reconstruction. We depart from the paramet-

ric empirical Bayesian (PEB) framework used in the Statistical Parametric

Mapping software (SPM) package (Wellcome Trust Centre for Neuroimag-

ing, London, UK). Within the framework, the multiple sparse priors (MSP)

algorithm is the state-of-the-art inverse technique. Depending on the EEG

data, the algorithm allows the automatic selection of multiple cortical sources

with compact spatial support that are specified in terms of empirical priors

(Friston et al., 2008).

In the present implementation of the MSP algorithm, multiple cortical

patches of sources are constructed based on a source space of dipoles con-

strained to a cortical surface mesh (Mattout et al., 2007) and the field prop-

agation of the surface patches is calculated based on a 3-layered scalp-skull-

brain head model (Henson et al., 2009). Constraining the dipolar sources to

a cortical mesh does not allow the reconstruction of brain activity besides

the cortical surface. Moreover, it is not straightforward to use more com-

plex head models that extend the 3-layered model with extra layers such as

cerebrospinal fluid (CSF). Because the dipoles are located on the boundary

between the CSF and the brain, they will either be located inside the CSF

or brain compartment which does not satisfy the restrictions to the source

space of commonly used numerical methods, such as the boundary element

method (Mosher et al., 1999), finite difference method (Vanrumste et al.,

2001; Hallez et al., 2005) or finite element method (Wolters et al., 2002), to

properly calculate the dipole field propagation (Stenroos & Nenonen, 2012;
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Strobbe et al., 2014).

In this work, we propose a technique to construct volumetric regions

based on a dipole source space restricted to gray matter, segmented from an

anatomical MR image, and using a region growing technique. This approach

allows the inclusion of more prior information about the anatomy and shape

of the sources and does not require the extraction of the cortical surface.

It opens up the possibility to use the MSP algorithm to reconstruct brain

structures besides the cortical surface and facilitates the use of more realistic

volumetric head models including cerebrospinal fluid (CSF) compared to the

currently used 3-layered scalp-skull-brain head models.

To illustrate the volumetric MSP approach, we used realistic ERP datasets

and anatomical MR images in 12 subjects. Based on the segmented gray mat-

ter for each of the subjects, cortical regions were created and introduced as

source priors for MSP-inversion assuming two types of head models. For

every subject, a 3-layered volumetric subject specific head model was con-

structed. Also extended 4-layered head models including CSF were built

to investigate the influence of increasing the head model complexity. We

compared with the present implementation by assessing the free energy cor-

responding with the reconstructions using Bayesian model selection for group

studies (Stephan et al., 2009; Rigoux et al., 2013). The reconstructed activ-

ity was also compared with the results of previous studies using similar ERP

datasets (Mijović et al., 2012).

In the first section of this paper, we will briefly present the PEB frame-

work and the MSP algorithm. We will explain how we extended the cur-

rently used approach based on cortical patches to volumetric regions and

4



subsequently describe how the different head models used in this study were

constructed. Next, we explain how we compared the models using Bayesian

model selection and verified the reconstructed activity. We conclude with a

discussion of the benefits and potential of using volumetric source priors.

2. Methods

2.1. Distributed EEG source reconstruction

Assume we represent the EEG measurements as a multivariate linear

model involving a distributed source model with fixed positions and orienta-

tions (Dale & Sereno, 1992):

V = LJ + ε (1)

where V ∈ RNc×Nt is the EEG dataset of Nc channels and Nt time samples,

J ∈ RNd×Nt the amplitude of Nd current dipoles with fixed orientations,

ε ∈ RNc×Nt is zero mean Gaussian noise and L ∈ RNc×Nd is the lead field

matrix linking the source amplitudes in J to the electrical scalp potentials

in V . The lead field matrix represents the forward model and embodies

assumptions about the head model and the forward modeling technique that

is used.

Because of the ill-posed nature of the EEG source reconstruction problem

(Baillet & Garnero, 1997), we need to add prior information to find a unique

solution. There are different techniques that allow this, such as the weighted

minimum norm (WMN) solution (Hämäläinen & Ilmoniemi, 1994):
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Ĵ = min
J

(||Cε−1/2(LJ − V )||2 + λ||WJ ||2)
(2)

This approach implicates minimizing an energy function, with Cε the prior

covariance of the sensor noise, W a weighting matrix including prior infor-

mation of the source activity and with λ a hyperparameter that tunes the

relative importance of the accuracy of the model ||Cε−1/2(LJ−V )||2, and the

regularisation term ||WJ ||2. Given that (λW TW )−1 = CJ , with CJ the prior

covariance of the sources (i.e., it embodies our assumptions about the inter-

action among the sources), the solution of this equation becomes (Phillips

et al., 2005; Grech et al., 2008):

Ĵ = (CJ)LT [L(CJ)−1LT + Cε]
−1V (3)

It follows that the solution of Eq.(3) directly depends on Cε and CJ .

2.2. Parametric empirical Bayes: multiple priors

Eq.(1) can also be expressed in the context of a two-level hierarchical

parametric empirical Bayesian (PEB) model:

V = LJ + ε1

J = ε2

(4)

with ε1 and ε2 assumed to follow a Gaussian distribution with zero mean:

ε1 ∼ N(0, Cε) and ε2 ∼ N(0, CJ). The covariance matrices Ce and CJ can be

modeled as a linear combination of covariance components (Phillips et al.,

2007):
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Cε = λ
(1)
1 Q

(1)
1 + λ

(1)
2 Q

(1)
2 + ...

CJ = λ
(2)
1 Q

(2)
1 + λ

(2)
2 Q

(2)
2 + ...

(5)

With λ
(1)
1 , λ

(1)
2 , . . . and λ

(2)
1 , λ

(2)
2 , . . . , the hyperparameters that balance the

various covariance components either at the first (sensor) or second (source)

level (Phillips et al., 2005).

In the SPM - PEB framework the hyperparameters are estimated using a

variational Bayesian estimation scheme by optimizing the free energy (Friston

et al., 2007) given the covariance components. As such, Cε(µ1) and CJ(µ2),

with µ1 =
{
λ
(1)
i

}
with i = 1, 2, ... and µ2 =

{
λ
(2)
i

}
with i = 1, 2, ..., can be

calculated. It follows that the expectation of the source intensities J given

V is equal to:

E[J ] = CJ(µ2)L
T [LCJ(µ2)L

T + Cε(µ1)]
−1V (6)

With E[J ] the expected value of J . Note that we obtain the same solution

as in Eq. (3), with the difference that we can introduce multiple constraints

or priors in the form of covariance components.

2.3. Multiple sparse priors algorithm

In absence of prior information, we assume the same amount of prior

variance on all sensors: Cε = λ
(1)
1 INc , where INc ∈ RNc×Nc is an identity

matrix, and λ
(1)
1 is the sensor noise variance.

In the multiple sparse priors (MSP) algorithm (Friston et al., 2008), a

weighted sum of Np predefined source covariance candidate matrices is used,

where each covariance matrix represents a potential activated area of cortex:
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CJ =

Np∑
i=1

(λ
(2)
i )Q

(2)
i (7)

The hyperparameters {λ(2)1 , . . . , λ
(2)
Np
} weight these covariance components

and control the power allocated to each of them. Note that these components

may embody different types of informative priors, e.g., different smoothing

functions, medical knowledge, fMRI priors (Henson et al., 2011).

2.3.1. Multiple sparse priors (MSP) based on cortical surface mesh

In the currently used MSP approach implemented in the SPM software

package, the dipole source space is constrained to the nodes of a cortical sur-

face mesh. Based on this surface mesh, covariance components {Q(2)
1 , Q

(2)
2 . . . , C

(2)
Np
}

are constructed that are each corresponding to a different locally smooth fo-

cal patch of cortex. The covariance components are constructed using the

columns of a Green’s function, QG ∈ RNd×Nd defined as:

QG = exp(σGL) (8)

and calculated based on a graph Laplacian GL ∈ RNd×Nd , with inter-dipole

connectivity information containing the neighboring dipoles, and σ, a positive

constant value that determines the smoothness of the current distribution or

spatial extent of the activated regions (Friston et al., 2008). The graph

Laplacian GL is calculated using an adjacency matrix corresponding with

the vertices and faces provided by the cortical surface mesh.

As such, each column of QG corresponds with a cortical patch and has

a bell shape, with a full width half maximum depending on the neighboring

dipoles and the smoothing factor σ which is equal to 0.6 in the SPM software.
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The centers of these patches correspond to the original set of dipoles used to

form the lead field matrix.

2.3.2. Extension to multiple sparse volumetric priors (MSVP)

In the construction process of the surface patches, a cortical mesh is

used to calculate the adjacency matrix using the faces and vertices of the

cortical mesh. Therefore the connections between the sulci of gray matter

are automatically taken into account. In order to incorporate the shape of the

cortical layer based on the segmented gray matter, we propose a technique

to construct volumetric sparse regions using a region growing approach.

Assume a source space of distributed dipoles located inside the segmented

gray matter. For each dipole in the source space, a volumetric region is

determined based on region growing within the segmented gray matter. The

region growing approach starts from a dipole and is characterized by a certain

maximum distance to the dipole. As such, the neighboring dipoles for each

dipole of the source space can be determined as the dipoles located within

the corresponding region of each dipole. An example of the approach in 2D

is given in Fig. 1. In this example, we assume that we have a slice of a cubic

3D volumetric head model (1 × 1 × 1 mm resolution) with dipoles in the

segmented gray matter equidistant to each other, with a 3mm spacing.

With the information of the neighboring dipoles within the region of each

dipole, the adjacency matrix, graph laplacian and Green’s function can be

calculated. Each column of the Green’s function QG represents a volumetric

region and has a bell shape, with a full width half maximum depending on the

maximum distance to the original dipole used in the region growing approach

and the smoothing factor σ.
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air!

scalp!
skull!

CSF!

GM!

WM!

Figure 1: An example of the used region growing approach in 2D. The original dipole from

which the region growing starts is depicted by the red circle on the left. The maximum

distance to the original dipole is 5 mm (i.e. 5 voxels). Based on this restriction, the

original dipole has 2 neighboring dipoles depicted by the green circles on the right. CSF

= cerebrospinal fluid, GM = gray matter, WM = white matter

2.4. Illustration on realistic data

To illustrate the proposed approach, we used ERP data and anatomical

MR images in 12 subjects to which checkerboard stimuli were presented. The

whole data-acquisition process and preprocessing of the data is described in

detail in Mijović et al. (2012). In brief, twelve healthy individuals performed

80 trials of circular black-and-white checkerboard stimuli presented to one

of the four quadrants of the visual field. The EEG data were collected from

62 electrodes using the BrainAmp MR+ system (BrainProducts, Gliching,

Germany). To extract task-related ERPs, data were then segmented from

-100 ms before until 500 ms after stimulus onset, and baseline corrected.

Finally, the data were average referenced resulting in 12× 4 different grand

averaged ERP datasets corresponding with each condition: down left, down

right, upper left or upper right.

In addition, full brain anatomical images were obtained with the mag-

10



netization prepared rapid gradient echo (MPRAGE) imaging sequence (230

coronal slices, time to echo [TE] = 4.6 ms, TR = 9.7 s) which we used to

construct the subject specific head models (see Section 2.4.1).

2.4.1. Construction of head models

Because we used a volumetric finite difference method based on reci-

procity (FDRM) (Hallez et al., 2005; Strobbe et al., 2014) to calculate the

dipole field propagation, each of the considered head models was volumetric

with a 3D, 1× 1× 1 mm voxel resolution.

3-layered models

We followed the default approach implemented in the SPM software to con-

struct subject specific 3-layered models based on the anatomical MR images

of the subjects. Meshes representing the scalp, outer skull and inner skull

were extracted from the subjects’ MR images (see Fig. 2A). These meshes

were subsequently converted to filled volumes in order to construct volumet-

ric 3-layered head models. Isotropic conductivities of the brain, scalp layer

and skull layer were set to 0.33 S/m, 0.33 S/m and 0.022 S/m (Oostendorp

et al., 2000) respectively. In Fig. 2B an example is given of a 3-layered vol-

umetric model, denoted as 3lay. We coregistered the 62 electrode positions,

corresponding with our realistic EEG data, to the scalp surface and embed-

ded them inside the boundary of the scalp.

4-layered models

Using the anatomical MR images of the subjects, we segmented gray mat-

ter, white matter and CSF using SPM8 segmentation techniques (Ashburner
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& Friston, 2003). Based on these segmentations and the 3-layered models,

4-layered head models were constructed including a brain and CSF compart-

ment. The conductivity of the CSF was set to 1.79 S/m (Baumann et al.,

1997) and 0.33 S/m for the brain layer. In Fig. 2C an example is given of a 4-

layered volumetric model, denoted as 4lay. We coregistered the 62 electrode

positions, corresponding with our realistic EEG data, to the scalp surface

and embedded them inside the boundary of the scalp.

2.4.2. Construction of dipole source spaces

Cortical surface mesh

For each subject, the source space was constructed using a canonical cortical

mesh, defined in a standard stereotactic space. This mesh was warped, in

a nonlinear fashion, to match the subjects’ anatomy (Mattout et al., 2007).

This resulted in 8196 dipoles distributed on the nodes of the warped cortical

surface mesh, with fixed orientations orthogonal to the mesh.

Volumetric

For each of the models the source space was constructed based on the seg-

mented gray matter. Dipoles were assumed inside gray matter on a cubic

grid equidistant to each other with a spacing of 3 mm. Because the dipole

model in the FDRM method extends over 3 nodes of the voxel elements in

the x, y and z direction (Hallez et al., 2005), we ensured that at least 2 voxels

of gray matter were between the central node of the dipole model and the

boundaries with other tissues in the x, y and z direction. This resulted in

approximately 10.000 dipoles for each of the models. The orientations of

the dipoles were determined based on a method described in (Phillips et al.,
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4lay!

scalp! skull! brain!

scalp! skull! CSF! brain!

3lay!

Figure 2: Example of the subject specific head models constructed based on an anatomical

MR image. The subject specific anatomical MR image is depicted in gray. The electrodes

are depicted in yellow. In the first row, the surface meshes used to construct the 3-

layered models in SPM are shown in red. The inner mesh corresponding with the red dots

corresponds with the inner skull surface. The second row depicts 3 orthogonal slices of

the 3-layered volumetric model denoted as 3lay. The third row depicts 3 orthogonal slices

of the 4-layered volumetric model including CSF denoted as 4lay.
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2002). This method starts from the segmented white matter to calculate the

orientations of the grid points in gray matter after smoothing and taking the

gradient of the volume. An example is given in Fig. 3.

air!

scalp!
skull!

CSF!

GM!

WM!

Figure 3: Example of the dipole orientations depicted by the white arrows shown in a

detailed view corresponding with 3 orthogonal slices. The different colors in the slices cor-

respond with different tissue types shown in the legend on the right. CSF = cerebrospinal

fluid, GM = gray matter, WM = white matter.

2.4.3. Construction of the source priors

Cortical surface

We considered a subset of Np = 256 source priors, sampled from the total

set of priors (or columns of QG), covering the entire cortical surface mesh.

The size of each patch was approximately 1 cm2 (dependent on the distance

to the nearest dipoles). This type of source priors is denoted as Surf.

Volumetric

Again a set of Np = 256 volumetric regions was considered covering the en-

tire cortical layer. The maximum distance to the original dipole and the

smoothing factor σ were set to 5 mm and 0.6 respectively. The size of the
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regions was therefore approximately 1 cm3. In order to compare with the

default approach, we chose the centers of the 256 volumetric regions as close

as possible to the centers of the 256 surface patches. All distances between

the centers were below 9 mm. This type of source priors is denoted as Vol.

2.4.4. Bayesian model comparison based on free energy

In order to compare the different models we applied Bayesian model se-

lection based on free energy for group studies (Stephan et al., 2009; Rigoux

et al., 2013). For all the comparisons reported in this study, we used the free

energy values corresponding with the reconstructions of the full ERP time

window, this means from 100 ms before stimulus to 500 ms after stimulus.

This resulted in 3 different free energy values for each of the 12 subjects

and each of the stimulus conditions. Bayesian model selection was used to

identify the best model using 4 measures: the log group Bayes factor, the

expected posterior model frequencies, the exceedance probability and the

Bayesian omnibus risk (BOR). These measures are described in mathemat-

ical detail in Stephan et al. (2009) and Rigoux et al. (2013). To compare

the considered models, the free energy of the reconstructions were grouped

over stimulus conditions, meaning that we compared 48 free energy values

for each of the models.

We performed a fixed effects analysis at the group level. This is accom-

plished by calculating the log group Bayes factor which is the sum across

subjects of individual log Bayes factors (Stephan et al., 2009), see (Strobbe

et al., 2014) for more details. According to a decision rule described in Penny

et al. (2004) one model can be chosen in favor of the other when there is a

difference larger than 3.
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We also performed a random effects analysis and reported the expected

posterior model frequency, exceedance probability and the BOR. The ex-

pected posterior model frequency reflects the proportion of participants that

favor a certain model. The exceedance probability expresses belief that a

model has the highest posterior probability, relative to the other model. The

BOR directly quantifies the probability that the expected posterior model

frequencies are all equal to each other. If the BOR is smaller than 0.25, then

we can be confident in choosing the best model based on the results of the

exceedance probability.

2.4.5. Comparison of the reconstructed activity

To check the validity of the reconstructions based on the different mod-

els, we compared the evoked energy of the ERP reconstructed activity corre-

sponding with the P1-peak. We used time windows of 16 ms centered around

the peak. In Fig. 4 an example is given of the ERP waveforms in each of the

stimulus conditions for one of the subjects on a left and right lateral occipital

channel. The time windows for which we calculated the evoked energy are

depicted by the different colors.

For the volumetric approaches, the subject specific volumetric source ac-

tivity was transformed to MNI space, based on a spatial normalization trans-

formation used to normalize the MR images to the MNI template in SPM8

(Friston et al., 1996). Because a canonical cortical mesh in MNI space was

used warped to the subject’s anatomy to construct the cortical patches, each

source of the mesh in subject space was directly corresponding with a loca-

tion in MNI space (Mattout et al., 2007). As such, we generated 3D images

corresponding with the P1 activity in MNI space. We averaged the result-
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ing images over subjects for each condition to compare the mean evoked P1

energy for each of the models.

From previous studies with similar ERP waveforms, we know that P1-

activity is mainly generated contralateral to the stimulus, located around

the calcarine sulcus, in the fusiform gyrus and lingual gyrus (see (Novitskiy

et al., 2011) and (Mijović et al., 2012)). These findings are used to compare

the reconstructed activity based on the different models and for the different

stimulus conditions (see Section 3.2).

A B 

Figure 4: ERP data averaged over trials of one of the subjects for a (A) left lateral occipital

and a (B) right lateral occipital channel. DL = down left stimuli, DR = down right stimuli,

UL = upper left stimuli, UR = upper right stimuli. The arrows depict the time windows in

which we calculated the mean evoked energy across subjects, 100 - 116 ms for DL stimuli,

100 - 116 ms for DR stimuli, 92 - 108 ms for UL stimuli and 132 - 158 ms ms for UR

stimuli.

3. Results

3.1. Bayesian model comparison

In Fig. 5, the log Bayes factors are shown, computed as differences in free

energy (F) corresponding with the reconstructions based on the considered
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models for each stimulus condition and every subject. In the first row, we

compared the 3-layered models assuming volumetric regions, Vol3lay, with the

3-layered models assuming cortical surface patches, Surf3lay. In the second

row, the 4-layered models assuming volumetric regions, Vol4lay were compared

with the Surf3lay models. The Vol4lay models were compared versus the Vol3lay

models in the last row. We can notice a trend in favor of the Vol4lay models

compared to both 3-layered models and of the Vol3lay modes in favor of the

Sur3lay models.

To verify these trends statistically over subjects and stimulus conditions,

we performed Bayesian model selection for group studies. We performed

two analysis resulting in summary statistics for model comparison. In the

first analysis we compared the Surf3lay and Vol3lay models. The results are

presented in the left panel of Fig. 6. In the first row, the log group Bayes

factor is shown calculated versus the 3-layered volumetric models. It is clear

it is considerably lower than -3, which corresponds with very strong evidence

in favor of the model assuming volumetric regions. The expected posterior

model frequency and exceedance probability confirm this with an exceedance

probability of the volumetric models equal to 0.99. The BOR for this com-

parison is equal to 0.018, which is below 0.25 and suggests that we can be

very confident about the results of the exceedance probability.

In the second analysis we also included the Vol4lay models. The results are

shown in Fig. 6 on the right panel. The first row shows the log group Bayes

factor calculated versus the 4-layered volumetric models. Both 3-layered

models have log group Bayes factors much lower than -3, which corresponds

with very strong evidence in favor of the 4-layered volumetric model. The
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Vol3lay > Surf3lay!

Vol3lay < Surf3lay!

Vol4lay > Surf3lay!

Vol4lay < Surf3lay!

Vol4lay > Vol3lay!

Vol4lay < Vol3lay!

Down Left! Upper Left! Down Right! Upper Right!

F(Vol3lay) - F(Surf3lay)!

F(Vol4lay) - F(Surf3lay)!

F(Vol4lay) – F(Vol3lay)!

Figure 5: log Bayes factors computed as differences in free energy (F) to compare the

considered models across subjects and stimlus conditions: Surf3lay, for the 3-layered surface

based models, Vol3lay, for the 3-layered volumetric models and Vol4lay for the 4-layered

volumetric models. The different subjects are represented by the different colors and each

column represents a different stimulus condition. We used the < and > signs when there

were differences bigger than 3 to denote evidence in favor of a one of the models. When

comparing Vol3lay versus Surf3lay for example, a difference bigger than 3 corresponds with

very strong evidence in favor of the Vol3lay model, indicated as Vol3lay > Surf3lay on the

left side of the bar graph. We restricted the y-axis to differences bigger than 20 to increase

the interpretation of smaller differences.
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exceedance probability of the 4-layered model is equal to 0.99. With a BOR

of 0.001 we found very clear evidence in favor of the 4-layered volumetric

model.

3.2. Comparison of the reconstructed activity

In the first row of Fig. 7, maximum intensity projections are shown of the

99th percentile mean evoked energy across subjects corresponding with the

P1 peak for the down left stimulus condition shown in different columns for

the Surf3lay, Vol3lay and Vol4lay model. To enhance interpretation of the loca-

tion of the reconstructed activity, the second row depicts the 99th percentile

mean evoked energy rendered on the canonical cortical mesh in 2 views.

For the reconstructions based on the Surf3lay models, the activity is spread

above the right calcarine sulcus, right lingual gyrus and right cuneus. As-

suming both volumetric models, we found clear focal activity above the right

calcarine sulcus and in the lingual gyri.

For both volumetric models, the P1 reconstructed activity agrees very well

with the P1-activation found in a previous EEG/fMRI study using the same

ERP data based on a jointICA decomposition (see Mijović et al. (2012) for

more details). The late P1-activity that was found is included in the third row

depicted in 3 orthogonal slices. The correspondence for the reconstructions

based on the Surf3lay models was less pronounced.

The maximum intensity projections for the other stimulus conditions are

shown in Fig. 8. For the down right stimuli, the reconstructed activity based

on Vol4lay was located above the left calcarine sulcus, left lingual gyrus and

left fusiform gyrus. Assuming Vol3lay the reconstructed activity was less lat-

eralized. We found a strong activation in the right parahippocampal region.
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Vol3lay! Vol4lay!

BOR = 0.018! BOR = 0.001!

Sur3lay!

Figure 6: Bayesian model comparison results of the different models we assumed for

reconstructing the ERP data: Surf3lay, Vol3lay and Vol4lay. On the left, the comparison

results are shown between the 3-layered models. On the right, the comparison results

are shown for both the 3-layered models and the 4-layered volumetric models. For both

comparisons, we show the log group Bayes factor (log GBF), the expected posterior model

frequency and the exceedance probability. The different models we used for reconstruction

are depicted by the different colors shown in the legend. The log GBF is calculated versus

Vol3lay for the comparison on the left and versus Vol4lay for comparison on the right. We

also show the Bayesian omnibus risk (BOR). If the BOR is smaller than 0.25, then we can

be confident in choosing the best model based on the results of the exceedance probability.
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Mijovic et al. (NeuroImage 2012)!

Figure 7: Maximum intensity projections of the 99th percentile of the mean evoked energy

across subjects for the MSP inversions corresponding with the P1-peak (see Section 2.4.5)

assuming Surf3lay, Vol3lay or Vol4lay depicted in the different columns. In the second row,

2 views are shown of the 99th percentile mean evoked energy rendered on the canonical

cortical mesh. In the third row, the late P1-activity is shown from a jointICA EEG/fMRI

decomposition reprinted from NeuroImage, Mijović et al. (2012), Copyright 2012, with

permission from Elsevier.
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The reconstructed activity based on Surf3lay was mainly located in the left

lingual gyrus, left inferior occipital gyrus, left midcingulate cortex, right pre-

cuneus and right fusiform region.

For the upper left stimuli, the reconstructed activity based on Vol4lay was

mainly located in the right lingual and right fusiform gyrus. For Vol3lay the

reconstructed activity was less lateralized with strong activation around the

left calcarine sulcus. The reconstructed activity based on Surf3lay was mainly

located in the right inferior occipital and temporal gyrus and the left inferior

temporal gyrus.

For the upper right stimuli, the reconstructed activity based on Vol4lay and

Vol3lay was mainly located around the left calcarine sulcus. The reconstructed

activity based on Surf3lay was more widespread with the strongest activation

located in the left cuneus.

4. Discussion

We have extended the current application of the multiple sparse priors

algorithm (Friston et al., 2008) from sparse surface based priors to volumetric

sparse regions. This extension provides the ability to use the MSP algorithm

to reconstruct brain structures besides the cortical surface and opens up

the ability to introduce more advanced volumetric head models based on

volumetric forward modeling approaches using finite differences (Vanrumste

et al., 2001), finite elements (Wolters et al., 2002) or finite volume modelling

(Pruist et al., 1993). Both the Bayesian model selection analysis and the

comparison of the reconstructed P1 activity demonstrated the value of the

extension compared to the currently used approach.
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Figure 8: Maximum intensity projections of the 99th percentile of the mean evoked energy

across subjects for the MSP inversions of the P1-peak (see Section 2.4.5) assuming Surf3lay,

Vol3lay or Vol4lay. The columns correspond with the different stimulus conditions
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Because we could not rely on a ground truth, we could not explain the dif-

ferences in reconstructed activity quantitatively. However, we did find clear

differences between the reconstructed activity assuming each of the models.

By using maximum intensity projections of the P1 reconstructed activity for

down left stimuli and showing this activity on the canonical cortical surface

mesh we showed a high correspondence of the reconstructions based on the

volumetric models with the findings of previous studies for down left stim-

uli (Novitskiy et al., 2011; Mijović et al., 2012). This was less pronounced

assuming the surface based models. Also the reconstructions for the other

stimulus conditions showed clear differences assuming each of the considered

models. In general, the reconstructed activity assuming Vol4lay was conse-

quently focused in occipital regions contralateral to the stimulus which is

congruent with previous studies in literature. This was less expressed for the

reconstructions based on the 3-layered models. Notice that we would expect

the activity for the upper stimuli to be more focused below the calcarine sul-

cus contralateral to the stimulus. Because the P1-components for the upper

stimuli were not as highly expressed across subjects compared to the down

stimuli we found deviations from the expected retinotopic locations in each

of the models.

We did not compare the considered models with the currently used ap-

proach based on cortical patches and assuming a 4-layered head model in-

cluding CSF because of the fact that the dipoles are located on the boundary

between the CSF and brain compartment. Because we used a finite difference

approach with a dipole model extending over 3 nodes of each voxel (the outer

nodes have opposite currents (monopoles) in x, y or z direction (Hallez et al.,
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2005)), the dipoles placed onto the CSF-brain boundary will have one side of

the dipole source feeding directly to the CSF which is physically wrong and

may have a large effect. We therefore had to ensure that at least 2 voxels

of gray matter were between the central node of the dipole model and the

boundaries with other tissues in the x, y and z direction, in order to have

a proper source model. To construct such a model based on the cortical

surface mesh is very difficult because the mesh would need to be resampled,

inflated or deflated to ensure no dipoles were modeled inside the CSF. With

the extension proposed in this work, we could avoid this.

Note that we found evidence in favor of the Vol3lay models compared to

the Surf3lay models, although the same number of priors was used and these

were at approximately the same cortical locations. The modeling of the

volumetric regions was however closer to the actual anatomy of the subjects.

They were constructed based on the actual segmented gray matter using the

subject’s anatomical MR image. For the construction of the cortical surface

patches, a canonical cortical surface mesh was used which was warped to the

subject’s anatomy. This warping process is not faultlessly and the resulting

cortical surface does not necessarily fully overlap with the actual cortical

surface itself. Therefore also the orientations of the considered dipoles were

different. For the dipoles located inside the gray matter layer, the orientations

were determined based on the curvature of the segmented white matter and

interpolating for gray matter. For the dipoles located on the cortical surface

mesh, the orientations were set orthogonal to the surface. We could have

used an approach in which we determined the individual cortical surfaces for

each of the subjects based on subject’s anatomical MRI. This is however not
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how it is done in the present implementation and the construction of these

cortical surfaces often requires manual intervention (Henson et al., 2009).

Clearly, there are many issues that we have not addressed in this technical

note. There are for example a lot of different other possibilities to construct

the volumetric regions by introducing fMRI prior regions, anatomical priors,

different smoothing functions, etc. Also other parameters can be optimized.

These include the spacing of the dipoles, the optimal number of regions, the

spacing of the regions, the smoothness of the regions, the dipole orientations,

etc. The question of which set of priors will work best in practice depends on

the data, and the Bayesian framework is a useful tool to evaluate different

sets of priors in future work.

Note that the free energy we used to compare models, only provides an

approximation to the Bayesian log evidence (see Wipf & Nagarajan (2009)

for a detailed discussion). Based on almost 30 years of advances and success-

ful results in the field we have enough confidence however that it provides a

good measure to compare models (Friston et al., 2007; Stephan et al., 2009;

Penny, 2011). Moreover, we have no absolute information of how good the

models are, but only which model is more probable depending on the data.

In this context, future works including more complex models are highly rec-

ommended to be tested using the proposed framework.

We think that the use of realistic volumetric regions using advanced volu-

metric forward models can further improve PEB-EEG source reconstruction.

In future studies, volumetric brain activity could be reconstructed based on

volumetric regions including more anatomical or functional information. For

example using cortical parcellation information (Knösche et al., 2013). Also
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future studies including more realistic head models should be introduced in

the framework. For example, with accurate modeling of the skull includ-

ing compact bone and spongy bone (Montes-Restrepo et al., 2013) or tissue

anisotropy (Hallez et al., 2007). An important issue here is to assign the

conductivity values to the different modeled tissues in the head model. The

skull conductivity for example is strongly debated. Assuming a lower con-

ductivity, for example 0.0041 S/m assumed in the Fieldtrip software package

(Oostenveld & Oostendorp, 2002), would cause differences in source depths

(Dannhauer et al., 2011; Montes-Restrepo et al., 2013). Again the Bayesian

framework is a useful tool to evaluate different modeling options based on

realistic data.

A drawback of using volumetric forward modeling techniques could be the

computation time. In this study, the FDRM computation was done in parallel

on a HPC cluster. Because of the reciprocity principle the computation was

parallelized for each electrode pair (Vanrumste et al., 2001). It took about

10 minutes to calculate a subject specific model. Regarding the increasing

computer power and memory this should not be an issue for future studies.

5. Software note

The described methods in this technical note are freely available. Please

contact the authors for the scripts. We are currently working on a toolbox

to integrate volumetric forward models into the SPM framework.
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