11 research outputs found

    Emerging images

    Get PDF
    Figure 1: This image, when stared at for a while, can reveal four instances of a familiar figure. Two of the figures are easier to detect than the others. Locally there is little meaningful information, and we perceive the figures only when observing the whole figures. Emergence refers to the unique human ability to aggregate information from seemingly meaningless pieces, and to perceive a whole that is meaningful. This special skill of humans can constitute an effective scheme to tell humans and machines apart. This paper presents a synthesis technique to generate images of 3D objects that are detectable by humans, but difficult for an automatic algorithm to recognize. The technique allows generating an infinite number of images with emerging figures. Our algorithm is designed so that locally the synthesized images divulge little useful information or cues to assist any segmentation or recognition procedure. Therefore, as we demonstrate, computer vision algorithms are incapable of effectively processing such images. However, when a human observer is presented with an emergence image, synthesized using an object she is familiar with, the figure emerges when observed as a whole. We can control the difficulty level of perceiving the emergence effect through a limited set of parameters. A procedure that synthesizes emergence images can be an effective tool for exploring and understanding the factors affecting computer vision techniques.

    Data-driven approaches for interactive appearance editing

    Get PDF
    This thesis proposes several techniques for interactive editing of digital content and fast rendering of virtual 3D scenes. Editing of digital content - such as images or 3D scenes - is difficult, requires artistic talent and technical expertise. To alleviate these difficulties, we exploit data-driven approaches that use the easily accessible Internet data (e. g., images, videos, materials) to develop new tools for digital content manipulation. Our proposed techniques allow casual users to achieve high-quality editing by interactively exploring the manipulations without the need to understand the underlying physical models of appearance. First, the thesis presents a fast algorithm for realistic image synthesis of virtual 3D scenes. This serves as the core framework for a new method that allows artists to fine tune the appearance of a rendered 3D scene. Here, artists directly paint the final appearance and the system automatically solves for the material parameters that best match the desired look. Along this line, an example-based material assignment approach is proposed, where the 3D models of a virtual scene can be "materialized" simply by giving a guidance source (image/video). Next, the thesis proposes shape and color subspaces of an object that are learned from a collection of exemplar images. These subspaces can be used to constrain image manipulations to valid shapes and colors, or provide suggestions for manipulations. Finally, data-driven color manifolds which contain colors of a specific context are proposed. Such color manifolds can be used to improve color picking performance, color stylization, compression or white balancing.Diese Dissertation stellt Techniken zum interaktiven Editieren von digitalen Inhalten und zum schnellen Rendering von virtuellen 3D Szenen vor. Digitales Editieren - seien es Bilder oder dreidimensionale Szenen - ist kompliziert, benötigt künstlerisches Talent und technische Expertise. Um diese Schwierigkeiten zu relativieren, nutzen wir datengesteuerte Ansätze, die einfach zugängliche Internetdaten, wie Bilder, Videos und Materialeigenschaften, nutzen um neue Werkzeuge zur Manipulation von digitalen Inhalten zu entwickeln. Die von uns vorgestellten Techniken erlauben Gelegenheitsnutzern das Editieren in hoher Qualität, indem Manipulationsmöglichkeiten interaktiv exploriert werden können ohne die zugrundeliegenden physikalischen Modelle der Bildentstehung verstehen zu müssen. Zunächst stellen wir einen effizienten Algorithmus zur realistischen Bildsynthese von virtuellen 3D Szenen vor. Dieser dient als Kerngerüst einer Methode, die Nutzern die Feinabstimmung des finalen Aussehens einer gerenderten dreidimensionalen Szene erlaubt. Hierbei malt der Künstler direkt das beabsichtigte Aussehen und das System errechnet automatisch die zugrundeliegenden Materialeigenschaften, die den beabsichtigten Eigenschaften am nahesten kommen. Zu diesem Zweck wird ein auf Beispielen basierender Materialzuordnungsansatz vorgestellt, für den das 3D Model einer virtuellen Szene durch das simple Anführen einer Leitquelle (Bild, Video) in Materialien aufgeteilt werden kann. Als Nächstes schlagen wir Form- und Farbunterräume von Objektklassen vor, die aus einer Sammlung von Beispielbildern gelernt werden. Diese Unterräume können genutzt werden um Bildmanipulationen auf valide Formen und Farben einzuschränken oder Manipulationsvorschläge zu liefern. Schließlich werden datenbasierte Farbmannigfaltigkeiten vorgestellt, die Farben eines spezifischen Kontexts enthalten. Diese Mannigfaltigkeiten ermöglichen eine Leistungssteigerung bei Farbauswahl, Farbstilisierung, Komprimierung und Weißabgleich

    Perceptually-motivated, interactive rendering and editing of global illumination

    Get PDF
    This thesis proposes several new perceptually-motivated techniques to synthesize, edit and enhance depiction of three-dimensional virtual scenes. Finding algorithms that fit the perceptually economic middle ground between artistic depiction and full physical simulation is the challenge taken in this work. First, we will present three interactive global illumination rendering approaches that are inspired by perception to efficiently depict important light transport. Those methods have in common to compute global illumination in large and fully dynamic scenes allowing for light, geometry, and material changes at interactive or real-time rates. Further, this thesis proposes a tool to edit reflections, that allows to bend physical laws to match artistic goals by exploiting perception. Finally, this work contributes a post-processing operator that depicts high contrast scenes in the same way as artists do, by simulating it "seen'; through a dynamic virtual human eye in real-time.Diese Arbeit stellt eine Anzahl von Algorithmen zur Synthese, Bearbeitung und verbesserten Darstellung von virtuellen drei-dimensionalen Szenen vor. Die Herausforderung liegt dabei in der Suche nach Ausgewogenheit zwischen korrekter physikalischer Berechnung und der künstlerischen, durch die Gesetze der menschlichen Wahrnehmung motivierten Praxis. Zunächst werden drei Verfahren zur Bild-Synthese mit globaler Beleuchtung vorgestellt, deren Gemeinsamkeit in der effizienten Handhabung großer und dynamischer virtueller Szenen liegt, in denen sich Geometrie, Materialen und Licht frei verändern lassen. Darauffolgend wird ein Werkzeug zum Editieren von Reflektionen in virtuellen Szenen das die menschliche Wahrnehmung ausnutzt um künstlerische Vorgaben umzusetzen, vorgestellt. Die Arbeit schließt mit einem Filter am Ende der Verarbeitungskette, der den wahrgenommen Kontrast in einem Bild erhöht, indem er die Entstehung von Glanzeffekten im menschlichen Auge nachbildet

    Optimization techniques for computationally expensive rendering algorithms

    Get PDF
    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesis, we will focus on rendering methods that require high amounts of computational resources. Our intention is to consider several conceptually different approaches capable of reducing these requirements with only limited implications in the quality of the results. The first part of this work will study rendering of time-­¿varying participating media. Examples of this type of matter are smoke, optically thick gases and any material that, unlike the vacuum, scatters and absorbs the light that travels through it. We will focus on a subset of algorithms that approximate realistic illumination using images of real world scenes. Starting from the traditional ray marching algorithm, we will suggest and implement different optimizations that will allow performing the computation at interactive frame rates. This thesis will also analyze two different aspects of the generation of anti-­¿aliased images. One targeted to the rendering of screen-­¿space anti-­¿aliased images and the reduction of the artifacts generated in rasterized lines and edges. We expect to describe an implementation that, working as a post process, it is efficient enough to be added to existing rendering pipelines with reduced performance impact. A third method will take advantage of the limitations of the human visual system (HVS) to reduce the resources required to render temporally antialiased images. While film and digital cameras naturally produce motion blur, rendering pipelines need to explicitly simulate it. This process is known to be one of the most important burdens for every rendering pipeline. Motivated by this, we plan to run a series of psychophysical experiments targeted at identifying groups of motion-­¿blurred images that are perceptually equivalent. A possible outcome is the proposal of criteria that may lead to reductions of the rendering budgets

    Real-time transition texture synthesis for terrains.

    Get PDF
    Depicting the transitions where differing material textures meet on a terrain surface presents a particularly unique set of challenges in the field of real-time rendering. Natural landscapes are inherently irregular and composed of complex interactions between many different material types of effectively endless detail and variation. Although consumer grade graphics hardware is becoming ever increasingly powerful with each successive generation, terrain texturing remains a trade-off between realism and the computational resources available. Technological constraints aside, there is still the challenge of generating the texture resources to represent terrain surfaces which can often span many hundreds or even thousands of square kilometres. To produce such textures by hand is often impractical when operating on a restricted budget of time and funding. This thesis presents two novel algorithms for generating texture transitions in realtime using automated processes. The first algorithm, Feature-Based Probability Blending (FBPB), automates the task of generating transitions between material textures containing salient features. As such features protrude through the terrain surface FBPB ensures that the topography of these features is maintained at transitions in a realistic manner. The transitions themselves are generated using a probabilistic process that also dynamically adds wear and tear to introduce high frequency detail and irregularity at the transition contour. The second algorithm, Dynamic Patch Transitions (DPT), extends FBPB by applying the probabilistic transition approach to material textures that contain no salient features. By breaking up texture space into a series of layered patches that are either rendered or discarded on a probabilistic basis, the contour of the transition is greatly increased in resolution and irregularity. When used in conjunction with high frequency detail techniques, such as alpha masking, DPT is capable of producing endless, detailed, irregular transitions without the need for artistic input

    A History of Art in Africa

    Get PDF
    This is an adapted version of the second edition of A History of Art in Africa, published in 2008 by Pearson/Prentice Hall. It has been scanned and digitized with the original graphics and illustrations redacted for Monica Blackmun Visonà, who now holds copyright to the entire text. The text is complete, and chapters 1-5 include thumbnails with weblinks to alternate illustrations. Dr. Visonà is preparing a third edition of A History of Art in Africa for University of Michigan Publishing Services, which will appear both online and in print. As this textbook remains the most comprehensive art historical survey of the African continent, UKnowledge is making the 2nd edition of this reliable resource accessible in the interim.https://uknowledge.uky.edu/art_textbooks/1000/thumbnail.jp

    Génération et édition de textures géométriques représentées par des ensembles de points

    Full text link
    Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

    Proceedings of the 21st International Congress of Aesthetics, Possible Worlds of Contemporary Aesthetics Aesthetics Between History, Geography and Media

    Get PDF
    The Faculty of Architecture, University of Belgrade and the Society for Aesthetics of Architecture and Visual Arts of Serbia (DEAVUS) are proud to be able to organize the 21st ICA Congress on “Possible Worlds of Contemporary Aesthetics: Aesthetics Between History, Geography and Media”. We are proud to announce that we received over 500 submissions from 56 countries, which makes this Congress the greatest gathering of aestheticians in this region in the last 40 years. The ICA 2019 Belgrade aims to map out contemporary aesthetics practices in a vivid dialogue of aestheticians, philosophers, art theorists, architecture theorists, culture theorists, media theorists, artists, media entrepreneurs, architects, cultural activists and researchers in the fields of humanities and social sciences. More precisely, the goal is to map the possible worlds of contemporary aesthetics in Europe, Asia, North and South America, Africa and Australia. The idea is to show, interpret and map the unity and diverseness in aesthetic thought, expression, research, and philosophies on our shared planet. Our goal is to promote a dialogue concerning aesthetics in those parts of the world that have not been involved with the work of the International Association for Aesthetics to this day. Global dialogue, understanding and cooperation are what we aim to achieve. That said, the 21st ICA is the first Congress to highlight the aesthetic issues of marginalised regions that have not been fully involved in the work of the IAA. This will be accomplished, among others, via thematic round tables discussing contemporary aesthetics in East Africa and South America. Today, aesthetics is recognized as an important philosophical, theoretical and even scientific discipline that aims at interpreting the complexity of phenomena in our contemporary world. People rather talk about possible worlds or possible aesthetic regimes rather than a unique and consistent philosophical, scientific or theoretical discipline
    corecore