321 research outputs found

    Context-based Normalization of Histological Stains using Deep Convolutional Features

    Full text link
    While human observers are able to cope with variations in color and appearance of histological stains, digital pathology algorithms commonly require a well-normalized setting to achieve peak performance, especially when a limited amount of labeled data is available. This work provides a fully automated, end-to-end learning-based setup for normalizing histological stains, which considers the texture context of the tissue. We introduce Feature Aware Normalization, which extends the framework of batch normalization in combination with gating elements from Long Short-Term Memory units for normalization among different spatial regions of interest. By incorporating a pretrained deep neural network as a feature extractor steering a pixelwise processing pipeline, we achieve excellent normalization results and ensure a consistent representation of color and texture. The evaluation comprises a comparison of color histogram deviations, structural similarity and measures the color volume obtained by the different methods.Comment: In: 3rd Workshop on Deep Learning in Medical Image Analysis (DLMIA 2017

    Instance Segmentation of Dense and Overlapping Objects via Layering

    Full text link
    Instance segmentation aims to delineate each individual object of interest in an image. State-of-the-art approaches achieve this goal by either partitioning semantic segmentations or refining coarse representations of detected objects. In this work, we propose a novel approach to solve the problem via object layering, i.e. by distributing crowded, even overlapping objects into different layers. By grouping spatially separated objects in the same layer, instances can be effortlessly isolated by extracting connected components in each layer. In comparison to previous methods, our approach is not affected by complex object shapes or object overlaps. With minimal post-processing, our method yields very competitive results on a diverse line of datasets: C. elegans (BBBC), Overlapping Cervical Cells (OCC) and cultured neuroblastoma cells (CCDB). The source code is publicly available
    • …
    corecore