
Real-Time Transition Texture Synthesis
for Terrains

John Ferraris
Faculty of Science and Technology

Bournemouth University

A thesis submitted in partial fulfilment of the requirements of Bournemouth
University for the degree of

Doctor of Philosophy

June 2014

iii

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is un-
derstood to recognise that its copyright rests with its author and due acknowledgment must
always be made of the use of any material contained in, or derived from, this thesis.

v

Abstract

Depicting the transitions where differing material textures meet on a terrain surface presents
a particularly unique set of challenges in the field of real-time rendering. Natural landscapes
are inherently irregular and composed of complex interactions between many different ma-
terial types of effectively endless detail and variation. Although consumer grade graphics
hardware is becoming ever increasingly powerful with each successive generation, terrain
texturing remains a trade-off between realism and the computational resources available.
Technological constraints aside, there is still the challenge of generating the texture re-
sources to represent terrain surfaces which can often span many hundreds or even thousands
of square kilometres. To produce such textures by hand is often impractical when operating
on a restricted budget of time and funding.

This thesis presents two novel algorithms for generating texture transitions in real-
time using automated processes. The first algorithm, Feature-Based Probability Blending
(FBPB), automates the task of generating transitions between material textures containing
salient features. As such features protrude through the terrain surface FBPB ensures that
the topography of these features is maintained at transitions in a realistic manner. The tran-
sitions themselves are generated using a probabilistic process that also dynamically adds
wear and tear to introduce high frequency detail and irregularity at the transition contour.

The second algorithm, Dynamic Patch Transitions (DPT), extends FBPB by applying
the probabilistic transition approach to material textures that contain no salient features.
By breaking up texture space into a series of layered patches that are either rendered or dis-
carded on a probabilistic basis, the contour of the transition is greatly increased in resolution
and irregularity. When used in conjunction with high frequency detail techniques, such as
alpha masking, DPT is capable of producing endless, detailed, irregular transitions without
the need for artistic input.

Contents

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Focus of Thesis . 4

1.2 Organization of Thesis . 6

1.3 Summary of Original Contributions . 6

2 Literature Review 9
2.1 Chapter Overview . 9

2.2 Background Information . 9

2.3 Technique Categorization . 12

2.4 Evaluation Criteria . 12

2.5 Texture Splatting . 13

2.5.1 Implementation . 14

2.5.2 Applications . 15

2.5.3 Evaluation . 19

2.6 Tile-Based Texture Mapping . 21

2.6.1 Implementation . 22

2.6.2 Applications . 22

2.6.3 Evaluation . 24

2.7 Virtual Texturing . 27

2.7.1 Implementation . 28

2.7.2 Applications . 29

2.7.3 Evaluation . 32

viii Contents

2.8 Summary . 35

3 Feature-Based Probabilistic Blending 39
3.1 Chapter Overview . 39

3.2 Background Information . 40

3.2.1 Focus of Research . 41

3.2.2 Novelty of Research . 42

3.3 Related Work . 44

3.4 Implementation . 46

3.4.1 Probabilistic Blending . 46

3.4.2 Uniform Blending of Feature Texels 47

3.4.3 Tiling Considerations . 48

3.4.4 Creating the Meta-texture . 49

3.4.5 Centroid Position . 53

3.4.6 Weight/Seed Texture Lookup . 54

3.4.7 Weighting Coefficients . 54

3.4.8 Weighting Equation . 55

3.4.9 Blending Equation . 56

3.4.10 Feature Variations . 57

3.5 Results . 58

3.6 Performance Analysis . 61

3.7 Conclusion and Future Works . 62

4 Transition Contour Synthesis With Dynamic Patch Transitions 67
4.1 Chapter Overview . 67

4.2 Background Information . 68

4.2.1 Focus of Research . 68

4.2.2 Novelty of Research . 69

4.3 Related Work . 71

4.3.1 Alpha Blending . 71

4.3.2 Tile-Based texture Mapping . 72

4.3.3 Virtual Texturing . 73

4.4 Implementation . 73

4.4.1 Centroid Calculation . 74

4.4.2 Probability Sampling . 74

4.4.3 Weighting Equation . 75

Contents ix

4.4.4 Bilinear Interpolation . 76
4.4.5 Blend Mask Composition . 77
4.4.6 Parallax Mapping . 78
4.4.7 Minification Correction . 79
4.4.8 Using DPT . 81

4.5 Results and Analysis . 84
4.6 Performance Analysis . 87
4.7 Conclusion and Future Works . 88

5 Conclusions 97
5.1 FBPB . 97
5.2 DPT . 98
5.3 Future Works . 99

References 101

xi

List of Figures

2.1 Texture Splatting weight texture (a) and generated transition as per the Bloom
algorithm (Bloom, 2000) (b). 14

2.2 Linear blending (a) and blend maps as per the blend maps algorithm (Hardy
and Mc Roberts, 2006) (b). 16

2.3 Procedural Texture Splatting (Andersson, 2007). 17

2.4 Texture Synthesis Based on Terrain Feature Recognition (Zhang et al., 2008). 18

2.5 Visual Quality of the Ground in 3D Models (Roupé and Johansson, 2009). . 18

2.6 Synthesizing Transition Textures on Succession Patterns (Lai et al., 2005)
(a) and Transition Texture Synthesis (Lai and Tai, 2008) (b). 23

2.7 Pattern-Based Procedural Textures (Lefebvre and Neyret, 2003). 25

2.8 id Software’s Megatexturing (van Waveren, 2009). 30

2.9 Terrain in Battlefield 3 (Widmark, 2012). 31

2.10 Multiscale Texture Synthesis (Kooima et al., 2009). 32

3.1 An example material texture (a) along with isolated features (b). 41

3.2 Overview of FBPB. 43

3.3 Contours from blend maps. 45

3.4 Random values (a) and seeded random values for probabilistic blending (b). 47

3.5 Per-fragment (a) and per-feature probabilistic blending (b). 48

3.6 Split features of the same colour belong to the same feature. 48

3.7 Incorrect centroid placement for split features (a) and correct placement of
feature centroids on the boundary (b). 49

3.8 Overview of the meta-texture generation (the major U and V coordinates
image has been exaggerated for clarity). 50

3.9 A sample terrain texture (a) and the isolate features (b). 51

3.10 A sample terrain texture along with the feature centroids highlighted yellow. 51

3.11 The centroid coordinates (a) and the feature map (b) for a meta-texture. . . 53

xii List of Figures

3.12 A feature rendered without (a) and with (b) softened edges by using the
feature map values to determine blending translucency. 54

3.13 The albedo (a) and normal map (b) for a variation texture. 57

3.17 A terrain shot with examples of a 50% mix of cobble and grass using linear
blending (left), blend maps (middle) and FBPB (right). 65

4.1 A blend between a rock material and grass underlay using slope information
for the blend weight with blend maps (a) and Dynamic Patch Transitions (b).
The bottom row demonstrates the blend masks generated by each algorithm. 70

4.2 Overview of DPT. 74

4.3 At any point on a given patch the three adjacent patches are included to form
a cluster of four patches. 75

4.4 Patch modulation when P is 0.25 (a), 1.0 (b) and 3.75 (c). 76

4.5 Different materials with different weight modulation, from the smoother
contour of the sand (a) to the sharper contour of the mud (b). 77

4.6 The smoothed masks of different patch sizes and parameters (a,b) are com-
bined together to produce the final blend mask (c). 78

4.7 The material’s blend map (a) can further modulate the blend mask (b) to
produce the final blend (c). 78

4.8 A transition between rock and sand (the red square is under magnification)
using no parallax mapping (a), parallax mapping using a height texture (b)
and, finally, using the height and blend mask (c). 79

4.9 Camera movement can cause small patches to exhibit undersampling errors. 81

4.10 A terrain as viewed from a distance of (from top to bottom) 80, 135 and 170
units from origin (a) along with the associated blend weights (b). 82

4.11 As the distance from the viewer increases, the details of DPT (a) become
increasingly difficult to pick out over a simpler linear blend (b). 82

4.12 An example weight (a) and underlay texture (b). 83

4.13 A large initial patch size (a) further softened with W modulation (b). 84

4.14 A smaller size for the second patch (a) further sharpened with W modulation
(b). 85

4.15 A single patch can be sufficient in some cases (a) although excessive W

modulation can produce artefacts (b). 86

4.16 A blend between a sand material and concrete underlay with a low resolu-
tion weight texture (a) using DPT (b) and blend maps (c). 90

List of Figures xiii

4.17 A blend between a rock material and grass underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c). 91

4.18 A blend between a mud material and sand underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c). 92

4.19 A blend between a pebble material and grass underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c). 93

4.20 A FBPB blend between a cobble material and grass underlay with a low
resolution weight texture (a) using DPT (b) and blend maps (c). 94

4.21 A blend between a cobble material and grass underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c). 95

4.22 A small hill blended with three different materials over a grass underlay
using DPT (a, b & c) and blend maps (d, e & f) along with the generated
blend masks (bottom row). 96

xv

List of Tables

1.1 Summary of publications. 7

2.1 Summary of Evaluated Techniques . 37

3.1 Example entries for the meta-texture. 52
3.2 Performance results. 61

4.1 Performance results. 88

xvii

Acknowlegements

I would like to thank my supervisors, Feng Tian and Christos Gatzidis, for their help, guid-
ance and knowledge, without whom this PhD would not have been possible. I would also
like to thank my family for their endless love and support throughout this journey of mine.
Finally, I would like to thank Bournemouth University and its administrative staff for giving
me this opportunity to pursue my passion and ensuring each milestone was met in a timely
fashion.

xix

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other University. This
dissertation is the result of my own work and includes nothing which is the outcome of work
done in collaboration, except where specifically indicated in the text.

John Ferraris
June 2014

1

Chapter 1

Introduction

Cutting edge, 3D graphics real-time applications have always presented a trade-off between
processing power and realism (Rong-hua, 2011). The resources required to accurately
model and render each and every object in a scene to a fine degree of detail have histori-
cally been beyond the reach of practical technology, particularly in real-time. Even the most
mundane of natural scenes has a vastness of scope and detail we take for granted which
casts a long shadow over cutting edge computer generated environments. Instead, computer
graphics is about creating the illusion of reality with an approximation of the complexity
found in the natural world through technological sleight of hand. Take for instance a typical
football pitch; there will be some 190 million blades of grass alone, each of which will have
a unique shape, size and texture that would be unfeasible to recreate by hand and render in
any reasonable timescale. Instead, like a stage magician’s well-honed trick, the appearance
of detail and complexity is achieved with an elaborate setup of smoke and mirrors, creatively
pushing the technology to its limits (Boulanger, 2008; Boulanger et al., 2006; Shah et al.,
2005).

Modelling the subtle and unique nuances of an object’s surface is simply not feasible for
most scenes, thus simpler geometric shapes are used as approximations (Herrera, 2010). The
basic rendering primitives used by the majority of graphics hardware are points, lines and
triangles (Akenine-Möller et al., 2008, p. 8) as these are the primitives that have hardware
paths on modern GPUs. One of the first 3D games ever was “Battlezone”, a simple tank
simulation that used low-polygon-count wireframe graphics to portray a simple landscape
interspersed with cubes, pyramids, and tanks (Rollings and Morris, 2003, p. 516). Modern
3D games use far more sophisticated techniques and effects and are capable of rendering
considerably more geometry and detail. However, the triangle budget for typical scenes is
still far below that which can reflect reality using geometry alone. For example, CryTech’s

2 Introduction

CryEngine 3 recommends a budget of up to 11.5k triangles for main characters, which
includes all body parts and attachments, except weapons (Crytek, 2011a). Compared to id
Software’s “Quake” (arguably the first truly 3D first-person shooter) where triangle counts
were measured in the hundreds this is a significant improvement but still falls far short of
real life, particularly when viewed up close.

The field of real-time, 3D terrain rendering has historically felt the brunt of these tech-
nological limitations. As such, indoor environments dominated the first few generations of
3D games in the 1990s, starting with simplistic interiors populated with sprites (Id Soft-
ware, a,c) before moving swiftly on to fully 3D environments (Epic Games; Id Software,
b). The reason for this head start is the relative simplicity of interior environments: they are
typically composed of simple geometric shapes, contain repetitive and/or uniform surface
patterns that lend themselves to smaller texture sets, contain rooms and corridors that make
for efficient occlusion culling and, are of course smaller in size compared to the natural
landscape.

For terrain rendering, a mesh structure called a heightmap is commonly used, consisting
of a vector field where the height components of each vertex are displaced by a value repre-
senting the elevation of that point on the mesh. Heightmaps are more efficient to store and
render than polygon soups as they take advantage of the contiguous layout of vertices, allow-
ing for easy rendering and level of detail optimizations (Duchaineau et al., 1997; Losasso
and Hoppe, 2004). The displacement values can be encoded as a texture for sampling on the
GPU, allowing for a purely hardware accelerated rendering path and, as properties such as
normals can be derived from the displacement texture the vector field, the vertex data is both
compact to store and can be re-used for different terrains by simply swapping out the dis-
placement texture. The displacement texture itself can be generated algorithmically using
techniques such as Perlin noise (Musgrave et al., 1989; Perlin, 1985, 2002) and mid-point
displacement (Müller et al., 2007) for a realistic-looking fractal terrain or even generated by
hand in any conventional image editing software.

Geometry alone is often insufficient to convincingly model real-time scenes so it is com-
mon to have images projected onto the geometric surface to simulate greater detail, a proce-
dure known as texture mapping. Texture mapping has its roots from over 40 years ago and
has continued to be a busy area of research (Azariadis and Aspragathos, 2000; Heckbert,
1986, 1989; Norton et al., 1982). While the overall shape of the object remains unchanged,
the surface detail is greatly increased by the image that has been wrapped around it. From
some distance away, it can be difficult to even distinguish what pieces of visual detail are
the shape of the object and which are simply features of the image applied to the surface

3

(van Verth and Bishop, 2008, pp. 292-293).

In 1998, Nvidia released the Riva TNT graphics card, the first consumer hardware accel-
erator to utilize a technique called multitexturing in hardware (nVidia, 2013), where textures
are bound to different texture units on the GPU and mapped within a single geometry pass.
This allowed for more elaborate and detailed scenes using techniques such as light mapping
(first demonstrated in real-time on consumer PCs in 1996 with the release of id Software’s
Quake (Abrash, 1996)) to be performed more efficiently (Blythe et al., 1999) as well as
increasing the illusion of interior and exterior surface detail with techniques such as bump
maps (Blinn, 1978a; Cohen et al., 1998; Lewis, 1989; Max and Becker, 1994) and continu-
ing to ever more complex parallax effects (Chen and Chang, 2008; McGuire and McGuire,
2005; Policarpo et al., 2005). Whereas the Riva TNT had a modest two texture units at its
disposal, high end consumer hardware like AMD’s Radeon 9670 family of GPUs have as
many as 96 texture units (AMD, 2010) as multitexturing has become a cornerstone of many
techniques.

As terrains in modern computer games measure in the kilometres, the tessellation of
the mesh is too crude to convey detail for any given material so texture mapping is crucial
to add detail to differentiate the different surface types that make up the terrain. The use
of multitexturing in real-time terrain rendering allowed techniques such as texture splatting
(Bloom, 2000) to be performed more efficiently, allowing for a greater diversity of materi-
als to be applied to the mesh for more realistic looking landscapes. When combined with
programmable GPU hardware, multitexturing can allow for a wide array of terrain textur-
ing techniques, such as procedural shader splatting (Andersson, 2007) and virtual texturing
(Mittring and GmbH, 2008)) as well as greatly increasing the surface detail with normal
mapping and parallax effects.

In the natural world, when we observe an object we are in fact are seeing our brain’s
interpretation of the visible wavelengths of the electromagnetic spectrum (Schacter et al.,
2010, p. 134). Our eyes perceive colour through some 6 million cone cells evenly which are
densely packed in the centre and sparsely distributed over the rest of the retina (Boff et al.,
1986; Schacter et al., 2010, p. 136). These cone cells allow us to perceive some 10 million
colours (Judd, 1953, p. 338) and luminescence with a dynamic range of 5 to 9 orders of
magnitude (Larson et al., 1997), far exceeding the dynamic range of 256:1 for 24 bit RGB
colour.

The colours of an object we perceive is the complex interaction of light as the photons
bounce and trade energy with other objects in the scene. In the natural world, without
light we cannot see but in computer generated imagery the absence of light equates to a

4 Introduction

uniform illumination of the scene. Without light in computer generated scenes we lose our
sense of depth perception as the interaction between an object and light sources provides
information about the 3D shape of the surface (O’Shea et al., 2010). Lighting (Immel et al.,
1986; Kajiya, 1986) in particular has been the focus of much research over the years due
to the inherent complexity of the phenomenon, from modelling basic interaction between
photons and surface material (Blinn, 1978b; Cook, 1984; Newell et al., 1974; Nishita et al.,
1985; Phong, 1975; Warn, 1983) to complex interactions and cumulative contributions from
multiple light sources (Goral et al., 1984; Guitton et al., 1995; Immel et al., 1986; Kajiya,
1986; Ritschel et al., 2008; Teller et al., 1994).

Terrain lighting can adopt the usual illumination and shadowing techniques but can be
simplified when using a heightmap. For example, calculating ambient occlusion, slope
lighting, shadow maps (Marghidanu, 2002) and horizon maps (Stewart, 1998) offline is a
relatively now trivial matter of tracing rays across the displacement texture compared to
the complex ray tracing and intersection testing of arbitrary geometry. However, for scenes
that have a day and night cycle such offline techniques would be inappropriate so instead
real-time techniques must be utilized where possible. Techniques such as atmospheric scat-
tering (Bruneton and Neyret, 2008; Hoffman and Preetham, 2003; Pegoraro et al., 2011) and
dynamic shadowing (Dimitrov, 2007; Ma et al., 2009; Snydre and Nowrouzezahrai, 2008;
Zhang et al., 2006) can be used to great effect to enhance the mood and realism of outdoor
scenes by approximating this natural light cycle.

1.1 Focus of Thesis

The size and detail of the natural landscapes makes it a particularly challenging are of re-
search for real-time computer graphics. Although the power of consumer graphics hardware
continues to increase at an exponential rate we are still far from being able to reproduce
every nuance and detail of the natural world in real-time. As such, the modelling, textur-
ing, lighting and shadowing of computer-generated terrains are but approximations of their
real-world counterparts. More powerful hardware has allowed closer algorithmic approxi-
mations to reality but the vastness and endless variation of the natural world means that at
every turn it is a matter of utilizing all of the latest tricks and techniques of cutting edge
computer graphics to deliver the best results to the end user.

One technique in particular that is essential to terrain rendering is texture mapping. It
would be impossible to model every detail of the natural world using geometry alone so,
instead, texture maps are used to add detail and definition to compensate for this lack of

1.1 Focus of Thesis 5

tessellation. The location where two or more materials meet is called the transition where
the texture maps of said materials gradient from one into the other. The detail and realism
of these transitions is important to suspend the user’s disbelief as an unnatural, unrealistic
transition band will quickly destroy the illusion of detail and complexity.

The focus of the research presented in this thesis is on the synthesis of transitions be-
tween differing material textures. As the surface of a terrain is often covered with a number
of materials, the modelling of these interactions between differing materials is an important
aspect of realistically depicting natural landscapes. Particular focus will be on the chal-
lenges of synthesizing such transitions in real-time through an automated process.

A common technique for transition synthesis is texture splatting (Bloom, 2000), where
a greyscale alpha mask texture for each material is mapped across the terrain to dictate
the translucency of the material at any given point. As said alpha mask textures are of
low resolution comparative to the size of the terrain, they are capable of depicting gradual
transitions but lack the fidelity to represent sharp, detailed transitions between materials.
Derivative techniques (such as blend maps (Hardy and Mc Roberts, 2006) and procedural
shader splatting (Andersson, 2007)) instead use complementary textures or algorithms to
add high frequency detail to these otherwise low frequency transitions.

This additive process of modulating low resolution alpha masks with high resolution
detail textures greatly improves the otherwise vague and blurry transitions that can result
from using alpha masks alone, though they fail to address two key shortcomings of texture
splatting. Firstly, the topology of the materials themselves are not taken into account when
synthesizing the transitions. Prominent features that should protrude through any underlying
materials instead fade into full translucency as their opacity follows the gradient of the alpha
mask texture. Secondly, while the added high frequency information greatly increases the
detail of the transitions when viewed up close, the broader contour of the transition remains
untouched, resulting little variation to the contour shape due to the low frequency detail of
the alpha mask texture.

Overcoming these issues would improve the realism of material transitions. A topographically-
aware algorithm would ensure that features protruding through underlying materials would
eliminate the translucency artefacts that can occur with texture splatting. Sometimes this
gradual fading of features into underlying terrain is desirable (for example, sand or dust,
where partial coverage of features is likely) but for many underlay materials (for example,
grass), it would be more desirable for the material to instead gradually transition in the low
topographical regions of the material (such as in the cracks or mortar spaces between fea-
tures) but leave the features intact. Likewise, the contour of transitions in the real world

6 Introduction

are limitless in their detail and variation, something that is orthogonal to the smooth, un-
varied gradients of texture splatting. By breaking up these low frequency contours with
more stochastic and higher frequency details, more varied and realistic transitions can be
produced.

This thesis presents two novel approaches to address these issues with texture splatting.
Firstly, Feature-Based Probabilistic Blending synthesizes transitions with awareness of to-
pography, allowing for prominent features (such as stones and cobbles) to protrude through
the underlying surface materials. Secondly, Transition Contour Synthesis With Dynamic
Patch Transitions modulates the contour of the transition to introduce intermittency and
variation in the otherwise low frequency contour.

1.2 Organization of Thesis

Chapter 2 outlines the problem domain of terrain texturing and the challenges it presents
for transition synthesis along with a set of criteria to evaluate the research presented in
the chapter. The research is broken down into three broad sections: alpha blending, tile-
based rendering and virtual texturing. Finally, the conclusion of the chapter summarizes the
research and presents a direction for future research.

Chapter 3 presents the challenges of transitioning between materials featuring salient
details that contribute significantly to the topography of the texture before assessing the ex-
isting research with respect to addressing these challenges. The technique “Feature Based
Probabilistic Blending” is presented as a technique for transitioning with materials contain-
ing salient features (such as cobbles and bricks) whilst adding dynamic wear and tear to the
features in real-time.

Chapter 4 presents the challenges of generating detailed and varied transition contours
using alpha blending and derivative techniques. The technique “Transition Contour Synthe-
sis with Dynamic Patch Transitions” is presented as a technique for modulating the contour
of material transitions to add detail and complexity to the transition.

Finally, chapter 5 summarizes the development of transition synthesis along with a sum-
mary of the contributions presented in this thesis.

1.3 Summary of Original Contributions

Feature-Based Probabilistic Blending introduces intermittency and irregularity at transitions
for materials that contain distinct features. It achieves this by ensuring that all texels be-

1.3 Summary of Original Contributions 7

longing to a given feature are drawn with full opacity or full transparency on a probabilistic
basis by using the alpha mask weighting from texture splatting as the probability of said
features appearing. Further detail and variation is introduced through dynamic wear and
tear, modulating the shape and appearance of features to help break up the repetitive nature
of the tiled texture maps used in texture splatting. The performance and memory overhead
of Feature-Based Probabilistic Blending is competitive with alternative techniques (such as
blend maps) yet adds greater detail and variation to the terrain transitions.

Transition Contour Synthesis with Dynamic Patch Transitions generates irregular blend
contours of near-endless variation for materials that do not contain distinct features. This is
achieved by dividing texture space into grids where each cell is drawn with full opacity or
full translucency on a probabilistic basis before being bilinearly interpolated with surround-
ing cells to produce varied and detailed contours from the low resolution alpha mask. This
process is entirely automated and requires no additional assets or preprocessing and offers
performance competitive to alternative techniques, allowing it to be integrated into existing
texture splatting implementations seamlessly.

Table 1.1 Summary of publications.

Title Type Journal/Conference Year

Feature-Based Probability Blending Poster SIGGRAPH Asia 2010
Feature-Based Probabilistic Texture Blending with Feature
Variations for Terrains

Full Paper Computer Animation & Virtual Worlds 2012

Automatic Terrain Texturing with Dynamic Patch Transitions Short Paper Computer Graphics International 2013
Transition Contour Synthesis with Dynamic Patch Transitions Full Paper Computers in Entertainment (accepted

and unpublished)
2014

9

Chapter 2

Literature Review

2.1 Chapter Overview

This chapter surveys the research pertaining to the challenges of mapping surface textures to
terrain meshes in real-time. These surface textures are defined as the texture representing the
albedo surface colour at any given point on the mesh. Such surface textures are composited
from different materials (such as grass, sand, rubble etc.) in order to authentically reproduce
the diversity and endless detail of the real world. As capturing these qualities effectively
is an important part of any terrain texturing technique, particular focus is placed on the
depiction of transitions where differing materials meet.

2.2 Background Information

The very nature of terrains makes them particularly difficult to model and display in detail
and thus presents a series of technological challenges for real-time rendering. If one was to
assume the earth is a perfect sphere, a person measuring 2 meters in height standing at sea
level would be able to see the horizon approximately 5.1km from their view position. If this
person’s perspective was modelled with a virtual camera with a field of view of 90 degrees,
the far plane would measure approximately 7.2 km in width and the view frustum would
cover an area of approximately 13 km2 (Plait, 2009). For flight simulators, this challenge
of draw distance is further compounded. For an aircraft traveling at an altitude of 1km, the
horizon is approximately 113 km away with the frustum covering nearly 6,400 km2 (Plait,
2009). Thus, the first challenge of real-time terrain rendering is the sheer expansiveness of
real-world landscapes.

10 Literature Review

The interior of a typical building is relatively simple in its geometric structure. The
floors, walls and ceilings can be approximated with planes and the interior decorations with
rectangular prisms, cylinders, spheres and other meshes of crude tessellation. Terrains,
however, are fractal in nature and thus there is effectively no end to the complexity of their
geometry. In Mandelbrot’s landmark paper he argues that geographical curves are so in-
volved in their detail that their lengths are often infinite or, more accurately, undefinable
(Mandelbrot, 1967). Thus, the second challenge of terrain rendering is approximating this
endless detail.

Consider this building further. Any room or corridor will follow the same design theme
in terms of shape and regularity. The floor may be of the same material and/or pattern,
the walls painted or wallpapered in the same manner and the ceiling may be plastered and
stylized consistently throughout the building. To model these details in a computer gener-
ated scene one need only model the core stylistic themes of the building and repeat these
throughout the environment. Landscapes, however, are stochastic in nature so repetitive pat-
terns are unusual. Even for a landscape populated nearly exclusively with one material such
as the shingle on a beach, each pebble of the many millions will be unique in size, shape
and texture. Thus, the third challenge is rendering landscapes with this illusion of endless
irregularity and diversity.

Modelling the complex features of terrain with geometry alone is currently not feasible
for terrains of non-trivial size. To render a terrain on a 2 megapixel display with a maximum
geometric screen space error below one pixel some 30 million triangles would be required
(Dick et al., 2009a,b). Although features such as tessellation stages of modern GPUs can
be used to increase the geometric detail at run-time (Microsoft, 2012; OpenGL Specifica-
tion, 2012), modelling even a 1km by 1km terrain down to nearest half centimetre would
take some 40 billion vertices, nearly 80 billion triangles and nearly 240 billion indices. If
we were to assume that each vertex is composed of a position, normal and colour vectors
of three floating point values, this would total to over 3.3 TB of vertex and index data, far
beyond the capabilities of existing consumer graphics hardware. Instead, the general topog-
raphy is modelled with a comparatively lower tessellation mesh and the higher frequency
details of the surface and topography are approximated using texture mapping (Azariadis
and Aspragathos, 2000; Heckbert, 1986, 1989; Norton et al., 1982).

However, trading geometric tessellation for texture maps presents a similar challenge
as the size of the texture map needed to convey a convincing approximation of a large
landscape surface is also very large. A 512x512 texture map covering a 2m2 region of
the mesh offers a resolution of 256 texels per meter for a texel size of approximately 0.4

2.2 Background Information 11

cm so our aforementioned terrain mesh would require a texture map measuring 256,000
by 256,000 texels. Assuming 32 bits per channel, this texture would require around 197
gigabytes of storage space, further reduced to about 49 GB using DXT compression (Intel,
2012a). This is considerably less than the geometry required in our previous example and is
certainly within the range for consumer storage but as a typical GPU at the time of writing
such as Nvidia’s GeForce GTX 660 has merely 2 GB of memory (nVidia, 2012) it becomes
clear that naive texture mapping is insufficient to meet the challenges of terrain rendering.

Texture synthesis (Perlin, 1985; Rhoades et al., 1992; Wu and Yu, 2004; Zelinka and
Garland, 2004) is a technique for generating large textures from an algorithm or smaller
example textures. The advantages of this technique are that it is far more compact than
storing and using the larger texture directly so it is of no surprise that such techniques have
been used throughout the history of terrain rendering. The simplest form of texture synthesis
is texture tiling, where a small, tileable example texture is repeated across a plane or surface
to create the illusion of one large texture. However, terrains are rarely uniform in their
surface composition but one way the problem can be addressed is by breaking down the
surface into discrete materials (such as grass, sand, rock, rubble and so on). These materials
can then be mapped independently to the terrain to create the illusion of complexity and
detail on the surface. However, the trade-off is the inherent repetitive nature of texture tiling
that is at odds with the endless irregularity of terrain.

A single surface texture painted by hand can produce terrains that are both detailed and
diverse in their surface properties. This texture would then be sampled on the GPU in real-
time to produce convincing, realistic landscapes limited only by artistic skill and texture
resolution. Modern games set in immersive, outdoor environments can span many kilome-
tres in each direction so generating the texture assets is both time consuming and highly
skilled work. Thus, for practical purposes a trade-off is usually made between the artistic
freedom of freehand texture painting and automating such tasks as much as possible with
procedural methods in order to deliver within the time constraints of the game development
schedule.

The rest of this chapter will assess existing approaches for producing large, detailed and
varied textures for terrains. Of particular focus will be the transitions where different surface
materials meet. Such transitions particularly encapsulate the challenge of detail and irreg-
ularity since they are invariably stochastic in nature as how the different materials interact
with one and other is a complex interplay that must be faithfully reproduced if authenticity
is to be achieved. For example, sand transitioning into pebbles will look different from sand
transitioning into grass and grass transitioning into pebbles will look different from grass

12 Literature Review

transitioning into mud. This bleeding of material boundaries into one and other are integral
to suspending the user’s disbelief in order to successfully immerse them in the computer
generated environment.

2.3 Technique Categorization

Discussed in this chapter are three categories of terrain texturing and transition synthesis:
texture splatting, tile-based texture mapping and virtual texturing. As each technique may
incorporate elements of more than one category, they are placed in the category that pre-
dominantly defines their design. The categories themselves are defined as follows:

Texture Splatting: Techniques that composite a larger surface texture by tiling and lay-
ering a discrete set of smaller material textures. Each material has an alpha mask that
determines the opacity of that material at any given point on the terrain mesh.

Tile-Based Texture Mapping: Techniques that synthesize and/or arrange a discrete set of
pre-generated, connectible tiles according to an algorithm or placement map to composite
a larger surface texture. Each tile depicts variations of a given material and/or transitions
between two or more materials.

Virtual Texturing: Techniques that stream the portions of a pre-generated surface texture
required by a given render frame on-demand as the camera moves around the 3D environ-
ment. This surface texture is usually generated by artists rather than an algorithmic process.

2.4 Evaluation Criteria

The strengths and weaknesses of each category of techniques are evaluated according to the
criteria described below. Whilst each technique in a category may be designed to address
specific needs, each category will be evaluated as a whole although the typical use of each
technique will also be discussed.

Performance and Scalability: The performance of a category is assessed in terms of the
hardware targeted by the techniques, as well as upstream to higher specification hardware.
Some techniques will not run on older hardware so performance on such hardware is mean-
ingless, therefore these initial hardware requirements will be covered in the Fixed Costs. In

2.5 Texture Splatting 13

addition to raw performance, how well a given category of techniques performs with and
depicts terrains large and small will be assessed as the scalability of that category.

Fixed Costs: The techniques in a given category have a number of fixed costs that must
be met in order to be successfully implemented. These costs include the computing re-
sources needed by the algorithm (such as hardware, memory and storage space) along with
any offline pre-processing of data (such as texture masks, material data and transition syn-
thesis). As the performance of each category will be assessed in terms of the algorithm’s
target hardware, the fixed costs offer a useful metric for measuring how well techniques will
perform on a variety of hardware as well as measuring the amount of offline work needed
in preparation for any given technique.

Transition Variation and Detail: The focus of the entire project will be on evaluating
the detail and variation of material transitions. The detail can be loosely broken into two
components: low frequency detail (the detail of the overall shape and contour of the transi-
tion) and high frequency detail (the finer details of a transition, usually at the texel level).
Real-world material transitions are rarely regular and uniform so how well a technique can
depict these stochastic and diverse transitions is evaluated in conjunction with the overall
fidelity of a technique.

2.5 Texture Splatting

Technological constraints are still the limiting factor for real-time photo-realistic rendering
so research has been focused on achieving the maximum level of detail and realism from
the finite resources of the available hardware. Perhaps the simplest form of synthesizing
large textures is texture tiling, a technique where a larger texture is composited by repeating
a smaller sample image periodically over a plane (Dungan et al., 1978). This technique is
so primitive and ubiquitous that it is often the default setting of graphics APIs for texture
sampling (Akenine-Möller et al., 2008, pp. 154).

The problem with simple texture tiling is that it is impractical to map multiple materials
to the terrain mesh without hard, abrupt transitions defined along the edges of the geometry
where the vertices reside. Bloom (2000) proposed a method called ‘texture splatting’ for
compositing terrain surfaces in the frame buffer by using an additional alpha mask for each
material to dictate the translucency of a given material at any given point on the terrain
surface (Figure 2.1). The materials themselves are a set of example textures that are tiled

14 Literature Review

across the terrain using the alpha masks to control the translucency of the materials by using
the mask values as the t value in a linear blend. This technique is often extended to use
low resolution samples for the low frequency detail and further blend high resolution detail
textures (typically gray scale images) to add high frequency detail in regions that are close
to the viewer.

(a) (b)

Figure. 2.1 Texture Splatting weight texture (a) and generated transition as per the
Bloom algorithm (Bloom, 2000) (b).

In Figure 2.1, we can see an example alpha mask depicted as a greyscale image (a).
This alpha mask is used to determine the translucency of the dirt texture, starting with full
opacity at the top of the image and transitioning into full translucency at the bottom. By
enabling blending in the graphics API and using the value from the alpha mask as the blend
alpha of the dirt texture we can see that the dirt texture is blended over the grass texture to
give the illusion of a transition between these two materials.

2.5.1 Implementation

At the core of texture splatting is the linear interpolation between two materials: the material
currently being blended (variable b in Equation 2.1 below) and the material (or sum of
materials) preceding it (a in the equation below), with the alpha value t determining the
opacity of material b. This in turn determines the surface value (typically albedo or normal)
s at that point on the terrain. The value t is in the range [0,1] with values of 1.0 being

2.5 Texture Splatting 15

full opacity and 0.0 being full translucency. However, there is the potential for the sum of
t values to total up to less than 1.0, revealing whatever resides in the frame buffer before
splatting takes place. There are two options to deal with this issue, either ensure that at
any point in the terrain the alpha values sum to 1.0 or, alternatively, designate a neutral
base surface texture that is mapped across the terrain as a pre-processing step. The latter is
favoured for its simplicity and the fact that this step can be achieved effectively for free as
part of an early Z pre-pass of the terrain.

s = a · (1.0− t)+b · t (2.1)

In Bloom’s original proposal, the alpha mask took the form of a texture that was gener-
ated offline by artists or an algorithmic process. The resolution of this texture was frequently
restricted by the hardware restrictions of the time. Bloom suggested a resolution of 2x2 tex-
els for a triangle pair quad so these alpha textures were very low resolution but modern
implementations commonly eschew the use of dedicated weight textures and instead use
shaders to algorithmically determine the alpha masks on the fly in real-time. Historically,
it was often more practical to perform the technique using multiple rendering passes as this
was often cheaper than using multi-texturing which, at the time, was still in its infancy. With
modern hardware, the relative cost of multi-texturing has come down making it possible to
map an entire set of materials to a mesh within a single rendering pass.

2.5.2 Applications

Although largely superseded by more modern techniques where cutting-edge realism is re-
quired, texture splatting remains popular for seamless texture compositing due to its effi-
ciency and simplicity (Catanese et al., 2011; Intel, 2012b), allowing artists to ‘paint’ ter-
rains in an intuitive manner with interactive tools (Crytek, 2011b; Epic Games, 2009a) or
off-the-shelf image editing software. Still, the resolution of the alpha mask is insufficient to
depict blends with per-texel accuracy resulting in vague, undefined transitions. Whilst this
is adequate for materials lacking in high frequency detail, materials containing such detail
are depicted with gradual transitions in translucency.

Hardy and Mc Roberts (2006) address the feature agnosticism of linear blending by
modulating the low frequency blend weight with a material’s high-frequency blend map to
produce higher resolution blends. This blend map is generated by the artist (or algorithmi-
cally) to produce a map that governs the strength of bias used in the blending equation. The
technique adds fidelity at material transitions and helps reduce the translucency artefacts for

16 Literature Review

material with salient features by biasing the alpha mask in favour of such details (Figure
2.2).

(a) (b)

Figure. 2.2 Linear blending (a) and blend maps as per the blend maps algorithm (Hardy
and Mc Roberts, 2006) (b).

This simple, computationally cheap technique is frequently used in video games to add
high frequency detail to texture splatting, although, whilst it reduces the translucency arte-
facts for prominent features it cannot eliminate them entirely. As the low frequency detail
is accommodated by texture splatting, the broader contour of the blend becomes apparent
with low resolution alpha masks. However, as the blend map meta-data is stored with the
material itself (typically in the alpha channel of the material’s albedo texture), the technique
takes up little or no additional video memory and is unaffected by the terrain size.

Texture splatting itself has evolved in many shapes and forms, such as the procedural
shader splatting technique developed by Dice and used in their Frostbite 2 game engine
(Andersson, 2007). Rather than using a low resolution alpha mask to determine the blend
weight at any given point on a surface, the height, slope and normal information of that
point are used to composite an alpha mask for each material in the fragment shader (Figure
2.3). This allows for far more detailed transitions between materials whilst avoiding the
square law increase in video memory needed for the alpha mask textures as the terrain size
increases.

Procedural shader splatting automates the task of synthesizing the alpha masks for each
material type so in principle it can scale for terrains of any size. The terrain materials

2.5 Texture Splatting 17

(a) (b)

Figure. 2.3 Procedural Texture Splatting (Andersson, 2007).

themselves need no prior processing to integrate with the algorithm and their intuitive
artist-driven shader composer makes material generation simple and easy to use for non-
programmers. However, the resolution of the blend masks becomes coupled with the res-
olution of the terrain geometry so noise is added to increase fidelity and intermittency at
material transitions. Areas of the terrain that contain little or no height or slope information
will still require conventional alpha masks if multiple materials are desired.

Zhang et al. (2008) synthesize transitions between materials by analysing the elevation
model of a terrain mesh (real or synthetic) and using it to construct a feature mask that
determines which materials will be applied where on the surface of the mesh (Figure 2.4).
Although such an approach reduces the time required for an artist to texture a terrain and
can adopt material distribution on parts of the terrain not recognized by simple height/slope
analysis, the transitions suffer from the same translucency artefacts of feature-agnostic lin-
ear blending (Figure 2.4(a)).

The utilization of albedo, relief and other pertinent data obtained from satellite photog-
raphy to construct interactive 3D visualizations of real-world landscapes has practical uses
for planning and simulation purposes. A common challenge is to compensate for short-
comings of the photography process such as visual discontinuities and limited/incomplete
data. Typically, the albedo imagery is of a resolution too low to convey detail when the
viewer is at ground level so Roupé and Johansson (2009) propose a technique for adding
high-frequency detail to the low-frequency satellite imagery to help with urban planning
visualizations. They achieve this by synthesizing colour-coded masks that are laid over
the satellite imagery to dictate where a given high-frequency detail texture will be mapped
(Figure 2.5). By using real-world data from city planning authorities they manage to reduce
the artistic workload, allowing integration with the satellite imagery with minimum manual
input. This process of blending high frequency detail on to low frequency imagery delivers

18 Literature Review

(a) (b)

Figure. 2.4 Texture Synthesis Based on Terrain Feature Recognition (Zhang et al., 2008).

sharp, distinct surface materials when using imagery as low resolution as 5 pixels per meter.

Whilst the use of real-world imagery is suitable for civil and military visualizations
where large, real-world data sets need to be processed, the technique’s inherent inflexibility
for artistic control makes it less suitable for procedurally or artistically generated terrain
assets. Computer games typically create entirely new worlds with much emphasis of artistic
aesthetic to create atmospheric and immersive environments so the techniques for surface
texture compositing using real-world data will be of limited use.

(a) (b)

Figure. 2.5 Visual Quality of the Ground in 3D Models (Roupé and Johansson, 2009).

2.5 Texture Splatting 19

2.5.3 Evaluation

Whilst publicly posited by Bloom in 2000, he remarks that texture splatting had found use
in commercial use in games prior to this. As such, it has a comparatively long history com-
pared to other approaches. Whilst the results are potentially less visually pleasing compared
to more modern techniques, its efficiency and ease of implementation have prolonged its
shelf life, even though it has been steadily surpassed by partial resident texturing techniques
in cutting edge video games.

Performance and Scalability: As a technique with over a decade of use, it it unsurprising
that texture splatting can be adopted on pretty much any GPU hardware on the consumer
market. Even legacy, fixed function hardware can utilize this technique through alpha blend-
ing rather than shaders, as described in Bloom’s original report. Mobile devices in particular
can benefit from this technique due to its low consumption of computational resources, al-
though as mobile computing continues to increase in power this may be one of the last hold
outs for texture splatting in its purest form as a viable solution to high performance, cutting
edge terrain rendering. Instead, hybrid techniques could leverage the automation of proce-
dural texture splatting techniques to lay down a template to be further processed by artists
to reduce the amount of manual labour for surface texture composition.

As the computational costs of the technique are low and constant, texture splatting can be
scaled up to theoretically any size terrain, making it suitable for terrains both small and large.
However, if the original alpha mask implementation of texture splatting is to be used, the
square law increase of the size of these alpha masks may well render the performance and
fixed costs benefits of this technique moot, although this is less of an issue with procedural
techniques such as Procedural Shader Splatting (Andersson, 2007) where the blend weights
are calculated in real-time from geometry data.

For terrains without much surface variance, the number of materials needed for varied
and convincing results can be modest but for larger terrains a more diverse set of exam-
ple materials may be required to convincingly depict the wide variety of surface materials
found in the natural world. As the number of texture lookups increases with the number
of materials, this could cause the application to become prematurely fill-rate bound when
an excessive number of materials is used. For modern GPUs this should not present much
of an issue but for older and/or embedded/mobile hardware with more restricted processing
power such limitations should be taken into consideration.

20 Literature Review

Fixed Costs: By tiling and blending a number of example material textures, the fixed
cost of texture splatting is considerably lower than using a single, detailed surface texture
for the entire mesh. A common optimization is to use a low resolution albedo texture for
low frequency detail and a high resolution detail texture for high frequency detail (Crytek,
2011b). Once the desired number of materials and blend resolution per meter has been
decided, the fixed costs of texture splatting can be calculated accurately for any given terrain.
As the blend maps are stored in the material’s alpha channel, the fixed costs of this particular
technique effectively comes for free.

The use of alpha mask textures does present issues in terms of increasing texture mem-
ory required for larger terrains as the size of the alpha mask texture is directly proportional
to the size of the mesh and the desired blend resolution. However, shader-based implemen-
tations can alleviate this fixed cost entirely by deriving the blend weights procedurally in the
fragment shader. Of course, this does increase the fixed costs of the GPU hardware itself
but with the proliferation of programmable consumer cards this should not be an issue on
modern hardware.

For the artist, one need only create an example albedo/normal texture for each material
and the generation of the alpha mask can be achieved with any off-the-shelf image editing
software (or even interactively within the game engine itself) and/or generated procedurally
from parameters such as height, slope and normal information. This means that the number
of man hours required to produce art assets for even very large terrains can be kept to a
minimum as the same set of materials can be applied to any terrain without any additional
pre-processing. In principle, by using procedural techniques to generate the terrain meshes
and the blend weighs, there is no additional artistic cost to adapt a given set of materials
to any terrain. As the only pre-processing requirement for material textures is that they
be tileable, swapping materials in and out of the terrain’s set incur no additional labour or
offline processing penalties, making experimentation both rapid and effortless.

Transition Variation and Detail: As with any approach to compositing surface textures
from tiled example textures, the repetitive effect of the tiling process will be prominent for
areas of sparse, uniformly textured terrain. This effect is somewhat minimized by the use of
multiple materials to break up such parts of the terrain and can be further reduced by pop-
ulating the surface with vegetation such as shrubbery, bush and grass. The main drawback
of texture splatting is the low resolution of transition blends due to the low resolution of the
alpha masks. This can lead to vague, washed out transitions that are not suited for materials
containing salient details. This effect is due to the simple linear blend used to composite the

2.6 Tile-Based Texture Mapping 21

transitions although this can be alleviated by using blend maps or noise to help break up the
transition and add high frequency fidelity.

Materials containing salient features suffer from noticeable translucency artefacts due to
blind interpolation between materials. As the blending process is unaware of the topography
of the material, prominent details that protrude through the surface can be truncated by the
blend contour causing such features to fade into translucency in an unrealistic manner. This
effect is particularly evident in transitions that fade gradually or sharply from one material
to another. Blend maps offers a computationally cheap way of reducing these artefacts by
weighting texels belonging to such features such that they are sustained for longer but the
effect is not eliminated entirely.

There is little variation in the transitions texture splatting can produce so large swathes
of terrain transitions can produce uniform, periodic transitions in areas containing little
variation in weighting. This is largely due to the blending taking place at the fragment level
so higher order details such as contour remain largely unaffected. Although the technique
works well with synthetic and stylized textures, the inherent limitations of texture splatting
become particularly noticeable with photo-realistic textures where the translucency artefacts
are particularly obvious.

2.6 Tile-Based Texture Mapping

The images synthesized from repeating textures are inherently periodic. For man-made pat-
terns such as wallpapers, brickwork and floor tiles this is not a great issue but this repetitive
nature is at odds with many of the surfaces in the natural environment which instead tend
to be endless in variation. Texture synthesis (Lewis, 1989; Perlin, 1985) has received a
great deal of focus over the decades (particularly from the film industry), allowing materials
of near-endless variation and uniqueness to be generated procedurally but few techniques
directly address the issue of transition synthesis between terrain materials.

Tile-based texturing is one approach for introducing aperiodicity into textures by using
a small selection of example tiles. These tiles are then assembled off-line or on-the-fly to
produce the final aperiodic image. The individual tiles themselves must connect seamlessly
with other tiles in the set to properly assemble into the final image so compatible tiles must
share a common edge to avoid seams. Wang tiles (Berger, 1966; Wang, 1961) address this
connectivity problem by defining a set of tiles with colour-coded edges to denote connectiv-
ity compatibility along the borders of tiles with matching edge colours. The number of tiles
within a given set will determine the true variation of the tiling although Culik demonstrated

22 Literature Review

that a strictly aperiodic tiling can be produced from as little as 13 tiles with 5 edge types
(Culik, 1996).

2.6.1 Implementation

Although there are many approaches to transition synthesis using tiling, a common theme
observed throughout the literature is the production of different material transition variations
that are assembled to create the final aperiodic transition. These tiles may be generated by
hand or through some algorithmic process depending on the scope and application of the
technique. Prior to the advent of powerful consumer graphics hardware, these tiles were
assembled offline but by using an indirection texture as a tile placement map (lookup table)
the entire assembly process can take place on the GPU in real-time.

This placement map is typically an image that divides up the terrain’s surface into regular
squares where each texel represents a tile location. The colour of each texel can represent a
variation of that given tile or simply a tile of appropriate connectivity, such that a regular 8
bit colour channel has the capacity to represent up to 255 tile connectivity types or variations
(one value, typically zero, must be set aside to represent an empty tile). For four colour
channel images, it is possible to encode up to four separate tile sets in the placement map
by utilizing a colour channel for each tile set.

Inside the fragment shader, the fragment’s texture coordinates are then transformed from
terrain space into the coordinate space encompassing the dimensions of the placement map.
The placement map can then be sampled with nearest neighbour filtering using the newly
transformed texture coordinates to obtain the lookup value for the tile position upon which
the fragment resides. The table entry can be used to pull a specific tile from the set from
either an atlas texture or a texture array and sampled accordingly. As this form of texture
synthesis is performed in real-time, mip-mapping will not be effective at reducing alias-
ing artefacts for distant tiles when the camera moves. Instead, this anti-aliasing must be
performed as a post-step within the fragment shader.

2.6.2 Applications

Stam (1997) originally described the construction of a set of Wang tiles to be used for aperi-
odic texture mapping with Cohen et al. (2003) extending this work by proposing a technique
for populating these tiles with image data and assembling them into the final image. Using
Wang tiles for tile-based texturing has potential for generating a large number of texture
transitions in real-time using graphics hardware (nVidia, 2004; Wei, 2004) although the

2.6 Tile-Based Texture Mapping 23

number of tiles needed to accurately depict every transition junction with enough variations
to break up monotony could be impractical for large terrains with many surface materials.

Wang tiles allow for aperiodic surfaces rendered from a compact set of tile shapes, with
the offline generation of these tiles giving great control and flexibility to the artist in gen-
erating realistic transitions between materials. However, the level of aperiodicity of the
transitions themselves across a large surface is ultimately determined by the number of tile
variations generated for the set as the human brain is apt at picking out patterns in noisy
environments. Although the algorithm used to assemble the tiles is not particularly compu-
tationally expensive, the size of the placement map increases with terrain size and can place
a practical limit on the maximum terrain size addressed by the placement map on limited
hardware for satisfactory levels of detail and aperiodicity.

Lai et al. (2005) propose a technique for synthesizing transitions between surface mate-
rials by identifying 16 fundamental transition shapes between any two given materials and
synthesizing a tile texture for each shape (Figure 2.6(a)). This offline approach uses a patch
based sampling method (Liang et al., 2001) that exploits the cellular automaton ’Game of
Life’ (Conway, 1970) to synthesize realistic, organic transitions between materials. The
final surface texture is then composited by mapping the connectivity tiles to the succession
patterns generated prior.

(a) (b)

Figure. 2.6 Synthesizing Transition Textures on Succession Patterns (Lai et al., 2005)
(a) and Transition Texture Synthesis (Lai and Tai, 2008) (b).

The resulting transition tiles are detailed and natural looking with few artefacts, even
for terrain materials containing numerous salient details such as the pebble texture used
throughout the paper. The tiles must be generated as an offline process and the number of
tiles required to successfully synthesize each possible combination of transitions between
materials is 16 · (n−1), where n is the number of materials on a given terrain. For terrains
with only a few materials this would not present much of a problem but for more complex
surfaces the amount of video memory required to accommodate all of the possible transition

24 Literature Review

tiles could become impractical on limited hardware.
Lai and Tai (2008) expand on the work of Lai et al. (2005) and implement the final

surface texture synthesis in real-time using Wang tiles. Additionally, their work can synthe-
size transition tiles between more than two textures, greatly reducing the tiles sets to depict
multiple terrain materials across a mesh surface (Figure 2.6(b)). For instance, in their pa-
per they demonstrate their technique for transitioning between three and four materials on
a given tile. As more material transitions can occur from a given tile set size, resources can
be diverted to expanding the set size for more aperiodic results.

As with their prior work, the results are detailed and convincing, largely due to their
transition cutting algorithm that takes into consideration the shape and placement of salient
features such as pebbles, grass blades and flowers along the contours of transitions. The
algorithm enjoys the relatively low overhead and decent performance of Wang tiles as well
as the detail and intricacy of the work of Lai et al. (2005). As the process is almost entirely
automated, the technique scales well to any terrain size. However, as with other tile-based
techniques, a limited tile set size can become apparent on larger terrain surfaces.

While texture synthesis techniques offer exciting possibilities for generating terrain ma-
terials, only peripheral research within the field directly addresses the challenges of com-
positing a terrain texture from multiple, overlapping materials. Lefebvre and Neyret (2003)
demonstrate a tile-based technique by compositing a texture from a set of 48 tiles and an 8
by 8 probability map to determine where surface materials and transitions should be (Figure
2.7). However, even with a dedicated set of 32 transition examples the broad shape of the
probability map’s contour was still evident. Furthermore, such a set of transition examples
would be required for each material to ensure that every possible combination of material
transitions can be reproduced.

2.6.3 Evaluation

The adoption of tile-based texture mapping for terrains has not been as widespread as other
approaches discussed in this chapter. Whilst its use was ubiquitous during the 2D and
isometric era of video games, the increasing power of GPUs and the shift towards pro-
grammable pipelines led way to techniques that synthesize the surface texture in real-time
or stream it on demand from system memory or physical media. However, under the use
cases where tile-based texturing is appropriate it does offer some distinct advantages.

Performance and Scalability: As the generation of the tile sets occurs through an off-
line process, the assemblage of these tiles in real-time is comparatively cheap, requiring

2.6 Tile-Based Texture Mapping 25

(a) (b)

Figure. 2.7 Pattern-Based Procedural Textures (Lefebvre and Neyret, 2003).

only the sampling of a placement map on the GPU. As such, provided that the GPU can
accommodate the tile set in video memory, tile-based texture mapping can run on a wide
range of hardware. The run-time costs are low and constant and can even offer performance
advantages over texture splatting as the tiles are rendered as-is without the need for layering
and blending, freeing processing cycles for other duties. In principle, it can run on legacy
fixed-function hardware by rendering regions of the mesh on a per-tile basis although the
tile sets should be kept smaller in order to achieve acceptable performance.

Tile-based texture mapping can scale up and down to terrain meshes of various sizes but
the number of tiles in a set may be insufficient to offer diversity at transitions. Larger tile
sets can be used to circumvent this problem but as the tiles themselves depict the material
transitions (as opposed to being synthesized in real-time like texture splatting), the number
of tiles required for irregular and detailed surfaces on larger terrains can become a limiting
factor. However, where small tile sets are used the overall performance benefit can make
it more suitable for mobile devices and other limited architectures for producing detailed
landscapes and transitions.

Unlike texture splatting, the tile assembly process does not lend itself too well to pro-
cedural techniques for tile placement, at least in real-time. In principle, one such imple-
mentation could use the height, slope and normal to deduce an appropriate tile and then
perform the same calculation for surrounding tiles in tile space to deduce the required tile

26 Literature Review

for connectivity. For tile variations, a noise texture could be sampled to obtain a random tile
using a persistent seed such as the fragment’s tile position in tile space. However, such an
implementation would require at the very least this process to be performed five times to en-
sure that proper tie connectivity is maintained, negating the run-time performance benefits
of tile-based texture mapping over other approaches.

Fixed Costs: The biggest fixed cost of tile-based texture mapping is the tile set. Each
set must contain tiles not just representing the material themselves but also the transitions
between each material. Lai and Tai (2008) demonstrate transition between up to four tran-
sitions on a single tile which can help slow the sets from inflating with material count but a
number of tile variations would be needed to avoid too much repetition. For smaller terrains,
this repetition may not be so noticeable but for large terrains with many material transitions
it can become evident.

The placement map itself is akin to the alpha maps of texture splatting is not needed
per-material. Rather, a single colour channel of a texture would be sufficient; that would be
sampled as a lookup table in the fragment shader to pull the appropriate tile from the set.
Unlike texture splatting, where the resolution of the alpha map determines the resolution of
the low frequency blend, the placement map need only be of a sufficient resolution such that
each texel represents a single tile unit on the terrain surface.

The addition and removal of materials from the set incurs a significantly larger cost
compared to texture splatting as new transition tiles and variations must be generated to
accommodate the new (or lack of) material. Whilst approaches such as Lai and Tai (2008)
synthesize these transitions automatically, the removing of a material from the set could
cause the transitions with that material to become obsolete, requiring a new set (sans the
material) to be generated. Likewise, adding new materials requires another set of transitions
to be generated so materials cannot be mixed and matched like texture splatting without the
overhead of generating these new transition tiles.

Transition Variation and Detail: A surprising level of variation can be achieved from
even small tile sets and the detail of the transitions is limited only by the resolution of the
tiles and the competency of the artist/algorithm used to generate the tiles. As the tiles them-
selves are usually generated offline, the power of direct artistic control cannot be under
estimated. As resource limitations are considerably less of a burden for offline processes,
heavyweight algorithms that are incapable of running in real-time can be used to gener-
ate rich, detailed transitions, as exhibited by the work of Lai et al. (2005) and Lai and Tai

2.7 Virtual Texturing 27

(2008). In particular, when used with real-world textures, the results are far more accurate
and authentic than texture splatting as translucency artefacts are eliminated entirely by the
artist/algorithm generating the transition. This is particularly evident for materials contain-
ing salient features as the topography of the texture can be taken into account when creating
the transitions.

The drawback of using tile sets for terrain rendering is that the variety of the transitions
is limited by the number of tiles in the set. As the number of tiles in the set increases, so does
the required storage and video memory so terrains utilizing large tile sets featuring many
transitions and variations may experience diminishing returns in terms of performance as
the texture data required inflates accordingly.

As tile connectivity must be maintained, this places constraints on the artist or algorithm
as completely arbitrary tile generation will exhibit undesirable seams where incompatible
edges meet. By using tiles uniformly sized and laid on a grid, the transitions noticeably
share the same “flavour” in terms of contour shape and variation when used over large areas
of terrain due to this need for regular shape and connectivity.

2.7 Virtual Texturing

The idea of circumventing the hardware limitations of available texture memory is not a new
concept entirely as texture streaming is a common technique for on-demand loading of tex-
ture resources as and when the scene requires them. For large immersive 3D environments,
a significant portion of the texture resources are not required for any given frame, thus those
which are unneeded may be swapped out of memory in place of those that are. Mipmap
chains in their entirety may be streamed or merely the pertinent mipmap levels required by
the frame to further increase memory savings, although the latter strategy has a less stable
performance due to the increased frequency of stalls (Mayer, 2010; Mittring and GmbH,
2008).

Different strategies of streaming and caching may be taken depending on the require-
ments of the application but for terrain rendering the surface texture can be subdivided into
regions of sizes supported by the graphics hardware that are loaded or unloaded as the player
enters of leaves sections of the terrain. The main issue with this strategy is that the terrain
(and other geometry) must be subdivided to these regions as the geometry must not overlap
into multiple regions and that one must be careful to avoid visual “popping” of geometry
and texture tile data as they are loaded and unloaded on-demand. These issues can further
increase the complexity of texture streaming implementations due to the knock on effect

28 Literature Review

they have on related areas such as geometric level of detail management.

Whereas both texture splatting and tile-based texturing work within the texture size re-
strictions of hardware to produce results that appear to exceed these restrictions in terms of
size and detail, virtual texturing (Mittring and GmbH, 2008; van Waveren, 2009) instead
tackles the problem from the opposite angle by attempting to circumvent these restrictions
all together. The technique is a refinement of texture streaming approaches and takes advan-
tage of modern hardware to offer a system that streams texture data on-demand smoothly
and consistently. By utilizing intermediate texture coordinate spaces and indirection tex-
tures to stream from cached resources, the result is a system that operates transparently to
the artists, allowing them to compose textures of any size for maximum control over the end
result.

2.7.1 Implementation

Virtual texturing is a technique that is loosely based on the concept of virtual memory where
texture address space is divided into chunks called pages (Cornel, 2012; Hollemeersch et al.,
2010; Lefebvre et al., 2004). By subdividing a large texture (far larger than the amount of
video memory available) into such chunks, only those that are visible (the “working set”)
are required to be resident in memory. Similar to the concept of clipmaps (Tanner et al.,
1998), only the mipmap levels required by the scene are streamed into memory to further
reduce the memory and bandwidth cost of updating the virtual texture (Mayer, 2010). By
loading the lower mipmap levels initially, the renderer can fall back to these lower resolution
mipmap levels if the higher levels cannot be streamed in time for a given frame. This helps
to keep the frame rate consistent across a wider range of hardware and whilst the popping
from lower to higher mipmap levels can be noticeable under certain conditions, the effect is
less abrasive than rendering without the required level all together.

The end result of the virtual texturing process is indistinguishable from traditional tex-
ture mapping as the technique is only a means of utilizing textures in real-time that are far
greater in size than GPU resources are available. This allows artists to work on large and de-
tailed textures in a transparent manner without being encumbered by hardware restrictions.
As a testament to the uptake of this technique, both the OpenGL and DirectX graphics APIs
have included hardware support for virtual texturing (Group, 2013; Microsoft, 2013).

2.7 Virtual Texturing 29

2.7.2 Applications

Clipmaps (Tanner et al., 1998) are a precursor to virtual texturing and present an elegant so-
lution to terrain rendering with large textures by utilizing a moving window focused around
the camera that streams clipped portions of the mipmap chain that are pertinent to the visible
frame. By defining concentric rings of increasing coarseness as the distance increases from
the camera, outer rings use progressively lower mipmap levels to further reduce memory
and bandwidth constraints. As player movement is typically smooth and gradual, the up-
dating of this clipmap chain is efficient and minimal. The technique is simple to implement
compared to the more versatile virtual texturing as the assumption that the texture data is
singular and planar makes the clipping, caching and streaming far less involved. However,
this assumption about the texture data was devised specifically for terrain rendering and so
is not appropriate for general use cases.

The groundwork for virtual texturing was laid down by Hall (1999) where he illustrates
an implementation for the hardware management of texture memory with the aims of reduc-
ing memory fragmentation and pipeline stalls whilst increasing performance and stability.
Whilst this system was a feature of the hardware and operated in a transparent manner to the
user, the echoes of this principle can be found in the subsequent works of the more general
techniques used today. One of the first public demonstrations of a general purpose virtual
texturing implementation was Barret (2008), where he demonstrated a means for addressing
and managing textures in a virtual system. Whilst no formal publication exists of his work,
the slides, video and source code presented on his website provided a simple and elegant
demonstration of how such systems could be implemented.

One of the first commercial games to utilize virtual texturing was id’s “Rage”, employing
a technique they called “megatexturing” (van Waveren, 2009). Utilizing huge textures mea-
suring 128k by 128k texels, the game embraced virtual texturing by utilizing it for through-
out the pipeline to produce highly detailed environments (Figure 2.8). The technique has
found its way into many of the big name game engines such as Crytek’s CryEngine and Epic
Games’ Unreal engine (Epic Games, 2009b; Mittring and GmbH, 2008).

Efficient implementations of virtual texturing are complex to implement compared to
other techniques but are capable of rendering stunning landscapes in the hands of skilled
artists. As the technique is essentially an evolution of mapping a single texture to the mesh,
any number of materials may be used and transitions of great detail can be depicted. How-
ever, this manual generation of the virtual texture makes it unsuitable for procedural ap-
plications and whilst manually generating texture transitions is perhaps the most flexible
approach for the artist; it can become impractical when large volumes of surface textures

30 Literature Review

(a) (b)

Figure. 2.8 id Software's Megatexturing (van Waveren, 2009).

need to be composited.

Virtual texturing overcomes the scaling problems of using a single texture to represent
the mesh surface but there are practical limits on today’s hardware. For large terrains, these
generated virtual textures consume large volumes of disk space, with compressed texture
sets measuring in the tens of gigabytes (Kooima et al., 2009). Whilst desktop computers
typically have hard disk storage space measuring in the hundreds of gigabytes to terabytes
for virtual texture storage, mobile and hand-held devices do not have such large volumes of
disk space available at the time of writing.

Dice (Widmark, 2012) developed a hybrid approach of virtual texturing and their proce-
dural shader splatting for terrain rendering in their title Battlefield 3 (Figure 2.9). They note
that whilst artists are capable of creating detailed terrains using shader splatting, the tech-
nique itself can be slow to render and is not scalable in view distance so they instead splat
into a texture to leverage frame-to-frame coherency for performance and to allow multi-pass
rendering for scalability (Widmark, 2012). Whilst they state that they are capable of utiliz-
ing extremely large textures in the terapixel range, in practice the virtual textures typically
measured 64k by 64k texels with a resolution of 32 samples per meter.

The work of Kooima et al. (2009) expands the concept of terrain transitions to a planetary
scale with their multi-scale synthesis technique (Figure 2.10). Rather than using the satellite
imagery directly, they use the data as input to an example-based texture synthesis algorithm
to procedurally generate larger sets of perceptively similar non-periodic textures such as
that used by Han et al. (2008). Using a single exemplar as input restricts the range of scales
that can be practically achieved as features larger than the exemplar image or smaller than
the resolution of said exemplar are missed altogether at widely differing scales. Instead,

2.7 Virtual Texturing 31

Figure. 2.9 Terrain in Battle�eld 3 (Widmark, 2012).

they use a small selection of low frequency example satellite images (in their figures a
set of 16 user-selected exemplars at different scales measuring 256x256 texels is used) to
composite a 16k by 16k virtual texture exhibiting features at all scales, although managing
such large data sets presents its own problems in terms of storing, caching and streaming the
data (Okamoto et al., 2008). The procedural nature of this technique makes it suitable for
applications where terrains need to be generated at the planetary level, a feat that would be
very time consuming to perform by hand. Whilst this technique could be considered niche,
it is applicable to stellar simulations and games where the user can explore on a scale that
dwarfs typical terrain rendering.

Andersson and Goransson (2012) explore the potential for virtual texturing across com-
puter networks, specifically the internet. Virtual texturing has the potential to give perfor-
mance gains for texture-heavy applications so the concept of streaming only the pertinent
texture data across a network can greatly reduce the bandwidth between the client and server.
This approach would be of particular interest to developers of browser-based games where
thin browser clients require the server to stream all asset data needed to render the scenes.

HTML5 includes native support for WebGL (Khronos Group) although the authors
noted that at the time of writing Google Chrome is the only browser that supports this new
technology. The uptake of WebGL is on the rise as the technology matures although the
main bottleneck they experienced was the execution time of the client side JavaScript and
the WebGL command overhead. They conclude that the use of virtual texturing can reduce

32 Literature Review

Figure. 2.10 Multiscale Texture Synthesis (Kooima et al., 2009).

bandwidth and browser support could decrease the required number of features required
for the technique to be implemented. The benefits of virtual texturing over the web are
the reduced load times, circumventing of server-side file size restrictions, less intermediate
storage space and fewer state changes.

2.7.3 Evaluation

Virtual texturing is a relatively new technique so it does not have the ubiquitous foothold
that more mature techniques such as texture splatting have although the support for this tech-
nique from the major graphics APIs and engine developers demonstrates that it will usurp
traditional approaches for terrain texturing where highly detailed landscapes are required.

Performance and Scalability: When all other approaches have reached their saturation
point in order to deliver their goals of diverse and detailed surface textures in real-time,
virtual texturing comes into its own. Whilst the fixed costs are much higher than other
approaches, once the minimum hardware requirements have been met, virtual texturing can
deliver smooth and consistent performance regardless of terrain size. For applications where
large volumes of texture data are required, virtual texturing can deliver performance gains

2.7 Virtual Texturing 33

due to its on-demand approach to texture data fetching, streaming only the pertinent data as
the scene requires it.

For web applications in particular, virtual texturing has the potential to reduce the band-
width requirements from client to server, allowing web-based outdoor environments to ex-
perience a level of detail that surpasses that of traditional approaches. As only the required
data from pertinent mip-map levels is streamed, the network bandwidth costs are greatly
reduced and network lag can be masked by falling back to a lower resident mipmap level.

Virtual texturing can scale up to any terrain size without compromising performance,
detail or variation. This is in direct contrast to texture splatting and tile-based rendering
where the diversity of results is limited to the example textures or tiles. Large terrains need
only be provided with the appropriately sized texture and, other than the increase in storage
space, this should not impact the run-time performance of the approach. The downside is
that the fixed costs make it inappropriate for smaller terrains as the performance costs may
be disproportionate to the actual size of the terrain surface texture. In such instances it may
be more appropriate to use texture splatting or tile-based texturing and provide enough ex-
ample tiles/textures to approximate the detail and diversity required for the surface texture.

Fixed Costs: The technique enjoys the novel benefit of being entirely transparent to the
artist compared to other techniques where the artist has to operate within the constraints
of the hardware and algorithm. However, virtual texturing’s strength of complete artistic
control and uniqueness can be its biggest weakness as, unlike the other approaches discussed
here (where the transition synthesis is largely handled by the algorithm), each and every
virtual texture must be painted by hand. Thus, for large outdoor environments measuring
kilometres across, this poses a lot of work for the artist. In practice, shortcuts may be taken
by re-using portions of the terrain surface or compositing and tweaking from prefabricated
surface templates, somewhat counter to the benefits of virtual texturing.

Whilst performance can be gained by the on-demand texture streaming, there is a fixed
overhead from the indirection texture and other data structures that make it unsuitable for
small-scale terrains or those that do not have significant variation in surface detail. These
fixed costs also restrict the algorithm to modern hardware as the implementation relies heav-
ily on shaders to correctly sample the appropriate areas of the virtual texture.

As the surface texture is generated off-line, the storage costs of virtual texturing are
considerably higher than other approaches with textures measuring in the gigabytes being
common. Certain devices, especially mobile and embedded platforms, are greatly restricted
in terms of storage space compared to their desktop counterparts so storing large, detailed

34 Literature Review

surface textures in the terapixel range is not currently feasible. Memory bandwidth is also an
issue as new texture data must be streamed on a frequent basis, placing further restrictions
on the hardware classes capable of implementing the technique.

Implementations must utilize physical media and multi-threading effectively for a smooth
experience. For consoles, this is of particular importance as often the data will be streamed
from comparatively slow DVD media. Although hybrid approaches (Widmark, 2012) lever-
age the advantages of both texture splatting and virtual texturing, it remains to be seen how
valid this approach is for procedural applications or where large volumes of terrains must
be textured without artistic input.

Transition Variation and Detail: The detail of terrain transitions is only limited by the
skill of the artist, giving them full control over the final result without being encumbered by
hardware texture size limitations. The irregularity diversity of terrains can be approximated
to an unprecedented level, providing rich, detailed and unique transitions throughout the
terrain. Unlike texture splatting and texture tiling, virtual texturing does not rely on example
textures to synthesize the surface texture so repetition artefacts of the texture tiling process
can be avoided completely.

Both the high and low frequency details of a terrain transition can be modelled to an
arbitrary resolution in a manner beyond the reach of texture splatting and tile-based texture
mapping. By not relying on low resolution alpha masks or contiguous tile layouts, contours
of any size and shape may be painted with each transition on the surface being bespoke in
terms of shape and contour. This can greatly help suspend the user’s disbelief as virtual
texturing can faithfully reproduce the irregularity of real-world landscapes in a manner that
cannot be achieved with the other approaches discussed.

Virtual texturing suffers from none of the translucency artefacts found in texture splat-
ting as the artist is in direct control over how the transitions are formed. By not relying on an
algorithmic process, the artist is free to design transitions that are both accurate and detailed.
Whilst the individual tiles of tile-based texture mapping offer a level of detail comparable
to virtual texturing, by not being restricted to a discrete set of tiles to represent the surface
artists are able to create textures that are free from any repetition artefacts to create truly
unique and diverse transitions.

2.8 Summary 35

2.8 Summary

The vastness of size, detail and variation in real-world landscapes makes it a particularly
challenging field of research for real-time rendering. For decades, all but the most simplis-
tic approximations of the natural world were out of reach for consumer-grade hardware.
However, the rapid adoption and advancement of dedicated consumer graphics processing
units has accelerated the field, allowing for a variety of techniques to be used to add depth
and definition to computer generated terrains. The use of texture maps is still prevalent in
terrain rendering so of particular importance is the synthesis of transitions where any given
materials meet. A successful algorithm will reproduce transitions that are rich and varied
in their shape and detail but for ultimate artistic control the human touch is still required.
However, due to the sheer scope and expanse of outdoor environments this presents its own
set of challenges as generating material transitions by hand is both laborious and skilled
work. The techniques pertaining to the synthesis of material transitions have been described
in this chapter and a summary of these techniques can be found below in Table 2.1 below.

Alpha blending techniques work well on a wide range of hardware and can produce tran-
sitions either procedurally (such as deriving weights from the mesh geometry) or with min-
imal effort using common, off-the-shelf image editing software. However, the transitions
produced are low frequency in detail although some techniques augment the basic premise
with additional stages in the blending process such as specialist high frequency blend maps
(Hardy and Mc Roberts, 2006) and noise (Andersson, 2007). Still, the broader shape of the
contour is tied to the resolution of the blend mask and the use of discrete material textures
can make large material sets prohibitively expensive to store and blend.

Tile-based texture mapping has its roots in the 2D era of video gaming but did not
quite gain the adoption for 3D terrain rendering compared to other techniques. Like alpha
blending, it can run on a wide range of hardware but because the transition tiles are generated
prior to assembly the results can be much more detailed than alpha blending. The drawback
of tile-based texture mapping is that the variety and shape of transitions is limited by the
number and size of the tiles in the set. As each tile contains a static combination of materials
of a given connectivity, expanding the variety of transitions can result in a sharp increase of
video memory.

Virtual texturing is a relatively new technique that removes the restrictions on texture
size that were the driving force for alternative terrain texturing techniques. Instead of at-
tempting to fit the entire surface texture in video memory, pertinent portions are instead
streamed into memory on-demand. Unlike alpha blending and tile-based texture mapping,

36 Literature Review

the technique requires relatively modern GPU hardware to execute in real-time but allows
the greatest control over the detail and variety of material transitions. However, this absolute
artistic control comes at a cost of time, man power and skill.

The next chapter will address one of the major shortcomings of alpha blending, namely
the translucency artefacts exhibited in materials containing salient features and the effect
alpha blending has on the blend contour. Although the work of Hardy and Mc Roberts
(2006) makes improvements in this regard, the inherent lack of awareness of topography
means that whilst tempered, these artefacts still remain. As alpha blending techniques work
by blindingly blending fragments according to a blending equation, modulating the overall
shape of the blend contour is beyond the scope of such approaches. As such, the technique
described in the following chapter will address the translucency and contour shortcomings
of alpha blending for features containing salient details.

2.8 Summary 37

Table 2.1 Summary of Evaluated Techniques

Technique Performance and Scalability Fixed Costs Transition Variation and Detail

Texture Splatting (Bloom,
2000)

Performs well on fixed-function
and programmable hardware, mem-
ory increases with terrain size and
texture set

Terrain textures, blend
masks

Low frequency detail,
minimal variation

Blend Maps (Hardy and
Mc Roberts, 2006)

Performs well on any pro-
grammable hardware, memory
increases with terrain size and
texture set

Terrain texures,
shaders, blend maps,
blend masks

High frequency detail,
minimal variation

Procedural Shader Splatting
(Andersson, 2007)

Performs well on modern pro-
grammable hardware, memory in-
creases with texture set

Terrain textures,
shaders

High frequency detail,
reasonable variation

Texture Synthesis Based on
Terrain Feature Recognition
(Zhang et al., 2008)

Performs well on fixed-function
and programmable hardware, mem-
ory increases with terrain size and
texture set

Terrain textures, blend
masks

Medium frequency
detail, minimal
variation

Visual Quality of the Ground in
3D Models (Roupé and Johans-
son, 2009)

Performs well on fixed-function
and programmable hardware, mem-
ory increases with terrain size and
texture set

Satellite imagery,
shaders, blend masks,
detail textures

High frequency detail,
reasonable variation

Synthesizing Transition Tex-
tures on Succession Patterns
(Lai et al., 2005)

Performs well on fixed-function
and programmable pipeline, mem-
ory increases with tile set

Offline transition syn-
thesis, tile sets, place-
ment map

High frequency detail,
reasonable variation

Transition Texture Synthesis
(Lai and Tai, 2008)

Performs well on fixed-function
and programmable pipeline, mem-
ory increases with tile set

Offline transition syn-
thesis, tile sets, place-
ment map

High frequency detail,
reasonable variation

Pattern-Based Procedural Tex-
tures (Lefebvre and Neyret,
2003)

Performs well on fixed-function
and programmable pipeline, mem-
ory increases with tile set

Offline transition syn-
thesis, tile sets, place-
ment map

High frequency detail,
minimal variation

Megatexturing (van Waveren,
2009)

Performs well on modern shader
hardware, memory costs remain
constant

Shaders, modern
hardware, virtual
texture, manual
transition synthesis

High frequency detail,
high variation

Terrain in Battlefield 3 (Wid-
mark, 2012)

Performs well on modern shader
hardware, memory costs remain
constant

Shaders, modern
hardware, virtual
texture, manual
transition synthesis

High frequency detail,
high variation

Multiscale Texture Synthesis
(Han et al., 2008)

Performs well on modern shader
hardware, memory costs remain
constant

Shaders, modern
hardware, virtual
texture, manual
transition synthesis

Multiscale detail, high
variation

Virtual Texturing with We-
bGL (Andersson and Gorans-
son, 2012)

Performs well on modern shader
hardware, memory costs remain
constant

Shaders, modern
hardware, virtual
texture, manual
transition synthesis

High frequency detail,
high variation

39

Chapter 3

Feature-Based Probabilistic Blending

3.1 Chapter Overview

The use of linear interpolation to blend different material types with distinct features pro-
duces translucency artefacts that can detract from the realism of the scene. The approach
presented in this chapter addresses the feature-agnosticism of linear blending and makes the
distinction between features (bricks, cobble stone, etc.) and non-features (cement, mortar,
etc.). Using the blend weights from Bloom’s texture splatting, intermittent texture transi-
tions are generated on the fly without the need for artistic intervention. Furthermore, feature
shapes are modified dynamically to give the illusion of wear and tear, thus further reducing
repetition and adding authenticity to the scene. The memory footprint is constant regardless
of texture complexity and uses nearly eight times less texture memory compared to tile-
based texture mapping. The scalability and diversity of this approach can be tailored to a
wide range of hardware and can utilize textures of any size and shape compared to the grid
layout and memory limitations of tile-based texture mapping.

In addition to being used for tiled texture splatting, feature-based probabilistic blending
(FBPB) can be used by artists to help generate transitions for virtual textures that would
otherwise be laborious to paint by hand. After generating such transitions, the artist can
import the computed blend masks into image editing software as layers and use them as
templates for transition synthesis to be further fine-tuned by hand. The work presented in
this chapter has been published as a poster in SIGGRAPH Asia and a full paper in Computer
Animation & Virtual Worlds (Ferraris et al., 2010b, 2012).

40 Feature-Based Probabilistic Blending

3.2 Background Information

The textures representing the materials of a terrain depict the surface detail and topography
of the material in question. For some materials (such as those in Figure 2.1(b)) the detail is
vague and ambiguous or small enough to not contribute significantly to the overall topogra-
phy of the surface. For example, a sand texture would depict a swathe of small grains, each
measuring a few texels at most in such a manner that no particular grain stands out to the
viewer. Likewise, a texture representing a dirt surface would also depict a mix of dust and
other particles such that the sum of these particles is an indistinct cluster of matter that has
no clear detail or topography. Transitioning between such materials can be as simple as a
linear interpolation using an alpha mask as there are no salient details to be subjected to the
translucency artefacts of linear blending.

Other materials (such as the cobble in Figure 2.2) contain salient details that should pro-
trude through the surface of the underlying mesh and have their own distinct topography,
giving them a three dimensional quality that alters the topography of the mesh in a signif-
icant way. Examples of such materials are cobble stones, brickwork or perhaps a rocky
terrain surface. Such details are at odds with the two dimensional nature of texture mapping
but can be given an approximated three dimensional feel through lighting, parallax effects
or a combination of the two. Although the effect of these techniques is diminished or elim-
inated entirely at oblique angles, when used carefully and strategically by an artist they can
help with the illusion of three dimensional topography, thus greatly increasing the perceived
complexity of the underlying geometry.

However, such illusions are easily shattered when transitioning between materials con-
taining salient details. The linear blending process of texture splatting works blindly on a
fragment by fragment basis without taking into consideration the topography of the materi-
als. This can cause such salient details to shift from opacity into translucency should they
lie within the transition band, ruining the three dimensional effect. For non-salient details
this is not an issue as such details are either small enough for this effect not to be noticeable
or ambiguous and non-protruding enough for this translucent partial covering of other ma-
terials to be plausible. For salient details however, their protrusion through the underlying
surface should have the effect of them being exempt from the occlusion of overlaying ma-
terials and thus should protrude through, regardless of the alpha mask value or simply be
occluded entirely.

The obvious solution to this problem would be to use an alpha mask texture of sufficient
resolution that the artist can manually exempt such salient details from the blending process

3.2 Background Information 41

or obscure them entirely towards the end of the transition. However, the resolution required
to depict such detail in a blend would be near-enough the resolution of the material texture
itself in order to offer per-texel (or close to) blending accuracy. As the efficiency of texture
splatting is derived from using low resolution alpha masks, increasing the resolution to a
sufficient level to alleviate the translucency artefacts is nearly always impractical.

3.2.1 Focus of Research

The material’s features are defined as the areas of the texture that protrude through under-
lying materials with full opacity rather than being linearly blended according to the alpha
mask weightings. The features include bricks, cobble stones and other salient details whilst
non-features are the areas of a texture that are not part of a feature, such as (but not limited
to) mortar and cement. Non-features lend themselves to linear blending or blend mapping
because they neither protrude from the surface nor contain distinct visual details. Figure 3.1
shows a sample material (a) along with the isolated features (b).

(a) (b)

Figure. 3.1 An example material texture (a) along with isolated features (b).

When materials containing salient details transition with other materials, the typically
regular layout of man-made materials should increase in disorder and intermittency until
the material has fully transitioned. This intermittent transitioning of a material’s features
has a large impact of the material’s contour as the distinct details of the features themselves
draw the eye to the overall shape of the transition. A material containing such features that

42 Feature-Based Probabilistic Blending

transitions in a uniform manner will likewise result in a uniformly regular contour. However,
by introducing even subtle variation in which features protrude through or are occluded by
another material will have a big impact on the overall transition contour. As the transitioning
of texture mapping occurs in real-time, an algorithm to introduce such irregularity of feature
placement would also be executed in real-time.

The features of man-made materials in particular are frequently subjected to wear and
tear if the surface is not regularly maintained. A cobble stone path may have holes for miss-
ing stones or chipped, cracked and other damage to the features. This effect is particularly
prominent at transitions as a real-world surface subjected to the elements and other wear
would have an irregular shape to its features along the contour as they bear the brunt of such
abuse. Even if the material is not man-made but natural (such as a rocky surface), the reg-
ularity of tiled materials detracts from the realism of the terrain as their uniform layout and
detail is at odds with the irregularity of the real-world. In order to approximate this natural
disorder, the features of materials should be depicted with the wear and tear they would be
subjected to in the natural environment. Depicting such effects at the texture level would
be insufficient as the irregularity would be negated when the texture is tiled so, instead, a
real-time solution must be found.

3.2.2 Novelty of Research

Feature-Based Probabilistic Blending (FBPB) is a novel approach for adding detail and
definition to the transition contour. By ensuring that salient features that protrude through
the surface are drawn with full opacity, the translucency artefacts of texture splatting are
removed entirely. Rather than use a static blend map to alter the transition contour, such
features are dynamically drawn or discarded on a probabilistic basis to add stochastic shape
to the contour. To add further detail and variation, the features themselves are dynamically
modified with wear and tear to give the illusion of detail and variation to the material itself.
The key to this approach is to ensure all texels of a given feature receive the same blend
weight and thus are drawn (full opacity) or discarded (full translucency) together. Figure
3.2 illustrates an overview of the FBPB process.

To deduce whether a feature is drawn or not, the blend weights used in Bloom texture
splatting are used as the probability of a given feature appearing. For each feature, a random
number is generated. If that number lies under or equal to the probability of the feature ap-
pearing, the feature will be drawn with full opacity. Otherwise, the feature will be discarded,
exposing underlying texture detail. If the texture sample is that of a non-feature, a standard

3.2 Background Information 43

Figure. 3.2 Overview of FBPB.

44 Feature-Based Probabilistic Blending

linear blend using the Bloom blend weights is performed.

3.3 Related Work

Texture splatting is particularly susceptible to translucency artefacts as the blending pro-
cess is agnostic to the detail and topography beyond the particular material texel(s) being
sampled. In Figure 2.2(a), a cobble material is transitioning from full opacity to full trans-
parency into a grassy material. The non-salient details of the mortar in between the cobble
features has the same translucency artefacts of the cobble features but the effect is not as
strong as the mortar does not have any distinct detail or topography. It is comprised mostly
of dust and uniform sections of cement so it is difficult to distinguish any part clearly from
another. Although the contour of the transition is uniformly horizontal, the patchy covering
of such non-salient details does not make this too noticeable.

On the other hand, the features themselves fade from opaque into fully transparent.
These translucency artefacts not only makes them look ethereal and unrealistic but also they
do not look anchored to the surface, appearing detached and "‘floating"’ instead of firmly
rooted to the ground. The features should clearly protrude through the grass material as they
have a distinct height and topography but instead they fade away. This fading effect is due
to the blind mixing of the cobble and grass texel data but in the real-world, a 50% coverage
of grass and cobble would not result in a 50/50 mix of these materials. For non-salient
materials such as sand and dirt this effect would not appear too unrealistic but as can be
seen, when there is distinct detail and topography the result is far from realistic.

Blend maps (Hardy and Mc Roberts, 2006) are a simple embellishment of texture splat-
ting that uses a grayscale image (the eponymous ‘blend map’) to weight all texels within
the material’s texture in order to give certain texels more prominence during the blending
process. As the blend map is typically of the same resolution as the texture itself, it offers a
resolution with accuracy to the texel level. Whilst the results do still suffer from the translu-
cency artefacts of linear blending, they are more suppressed and less noticeable. The fraying
of edges along the border of features help reduce the ethereal floating of translucent features
and the overall effect does offer more detail and realism than straight linear blending.

Perhaps the biggest drawback of blend maps is the lack of variation amongst repetitions
of the material when it is tiled across the terrain. As can be seen in Figure 3.3, the features
of the cobble stones in each repetition of the texture all receive the same weighted blend
along the contour of the transition. This effect would not be so noticeable for non-salient
details but for prominent features the eye is drawn to the regularity and uniformity of the

3.3 Related Work 45

Figure. 3.3 Contours from blend maps.

transition contour. These artefacts are particularly noticeable along sections of the terrain
that contain broad transitions spanning large sections of the underlying terrain surface.

Lai et al. and Lai and Tai’s work on transition synthesis (Lai and Tai, 2008; Lai et al.,
2005) is capable of producing results that far exceed texture splatting or any derivative tech-
nique in terms of detail for transitions containing salient features, especially materials using
real-world photography. The transition cut process eliminates translucency artefacts entirely
as it does not rely on a masked blending to combine multiple materials. The contours are
both distinct and varied, producing transitions that have both detail and variation on a level
that is beyond simple linear blending. The variety of contours helps minimize the repeti-
tion artefacts when tiling textures as the detail of the transition contour draws the eye to it,
making it focus less on the tiled texture itself.

However, the works of Lai et al. and Lai and Tai are not a real-time process. Whilst the
results can certainly be rendered in real-time, the transitions themselves are generated pro-
cedurally offline. As an offline process, the algorithm used to generate the transitions has the
luxury of time, computational power and (perhaps most importantly) holistic information of
both materials that is difficult to achieve efficiently with per-texel accuracy inside the GPU.
However, such a technique could be utilized by artists when using a virtual texturing system
to aid them in generating transitions that would be difficult and laborious to do in volume
by hand, although with less direct control over the final results than a real-time algorithm.

Virtual texturing for transitions has the distinct advantage of both being an offline pro-
cess and having full artistic control over the resulting textures. Translucency artefacts can
be eliminated entirely and the contour and variation of transitions featuring salient details
can be as detailed and varied as time and artistic skill permits. However, as discussed in the
Literature Review section of this thesis, this absolute manual control over transition detail
poses the problem of just how much time can be realistically allocated to generating tran-
sitions across numerous large terrains that would be required for a modern computer game.
A 512x512 texture of small pebbles or gravel could contain hundreds or thousands of indi-

46 Feature-Based Probabilistic Blending

vidual pebbles that must be manually isolated and transitioned in a realistic fashion. To do
this by hand for a terrain spanning many kilometers in each direction would be very labour
intensive and almost certainly impractical for most scenarios.

Instead, the works of Lai et al., Lai and Tai and Hardy and Mc Roberts could be used
to generate transition templates that could be further tuned manually by the artist. Using
Lai et al. and Lai and Tai’s transition cutting as an offline process could help produce a
variety of templates to be stamped across the terrain but also real-time techniques such as
the Hardy and Mc Roberts one have the benefit of the artist getting instant feedback for the
results. Whilst offline techniques have the advantage of producing more realistic results,
there is certainly an advantage to having a real-time technique that an artist can experiment
with before committing to a particular style and shape of a transition. Any technique that
can help alleviate the tedium and labour when transitioning between materials containing
many individual yet distinct features would be of use for applications utilizing the power of
virtual texturing.

3.4 Implementation

3.4.1 Probabilistic Blending

FBPB uses the Bloom blend weight as the probability of a given feature appearing. A
random number is thus generated at run-time to perform a probability check against each
feature to deduce whether it will be drawn or discarded. Two approaches to random num-
ber generation are used, each yielding different results as to how a material’s features are
distributed at transitions. The first approach is to generate and store a random number in
the [0,1] range for each weight texture texel and use this to check against the probability of
a feature appearing (alternatively, one can use the fragment’s texture coordinates in terrain
space as a unique value pair). The result of this approach gives a neater, less random effect
as features trail off abruptly and in a uniform manner (Figure 3.4(a)). This is due to the
fact that surrounding features share similar random numbers due to the low resolution of the
blend weight texture. If the weightings (and thus probabilities) at surrounding features are
high and the random numbers are low (or visa versa), groups of features are more likely to
pass or fail their probability checks together.

The second approach uses the random number as a seed to a noise function to derive
a more random value at run-time. This produces a wider variance in feature draw/discard
tests as similar seed values result in different random values, meaning that neighbouring

3.4 Implementation 47

(a) (b)

Figure. 3.4 Random values (a) and seeded random values for probabilistic blending (b).

features are drawn or discarded with less predictability. This introduces more intermittency
of features appearing as the material weightings trail off at terrain transitions (Figure 3.4(b)).

3.4.2 Uniform Blending of Feature Texels

The most important aspect of FBPB is to ensure that all texels within a given feature share
the same probability and random value to ensure the check will pass or fail uniformly for
all texels that make up that feature. If the probability and random value of the fragments
sampling the material texture were used, a random pattern of feature would appear instead
of a uniform block. Instead, the probability blending needs to be applied at a per-feature
level rather than at a per-fragment or per-texel level. Figure 3.5 illustrates the difference
between per-fragment and per-feature probabilistic blending.

Each material texture to be probabilistically blended has an accompanying meta-texture
that describes the parent/child relationship of every texel in the material and the feature
(if any) they belong to. Each texel that lies within a feature is considered a child texel
of that feature. To ensure that all child texel samples of a given feature receive the same
weight and seed, a single texel for each feature is nominated to be the parent texel whose
weight and seed will be shared between all other child texels of that feature. Any child
texel may be nominated as the parent texel although typically the centroid texel is used as
the parent, considering it holds the average weight of the feature. The exception to this are
features which are split along the texture boundary (such as the features along the perimeter
of Figure 3.1(a)), more of which will be discussed in the section below.

48 Feature-Based Probabilistic Blending

(a) (b)

Figure. 3.5 Per-fragment (a) and per-feature probabilistic blending (b).

3.4.3 Tiling Considerations

Tiled textures are designed so that the features are laid out in a manner that allows the
texture to be tiled without any seams or artefacts. Often, to improve the results of texture
tiling, segments of the features are placed on the tile boundaries, with the other segments
that complete the feature placed on opposing boundaries. In Figure 3.6, features that are
split on the tile boundaries of the texture are highlighted in the same colour.

Figure. 3.6 Split features of the same colour belong to the same feature.

Note that although the split features in the above diagram only cross at most two bound-
aries, a feature may cross as many boundaries as necessary so long as the feature centroid
is placed in a position that is common to all the split segments of that feature. In Figure

3.4 Implementation 49

3.7(a), each split feature has its own centroid, yet this violates the principle of one centroid
per feature and thus is prone to artefacts as centroids of split segments belonging to the
same feature may pass or fail their probability check differently. By placing the centroid on
the boundary that is common to all segments of a given split feature, all child texels of the
feature are guaranteed to receive the same weight and seed value (Figure 3.7(b)), ensuring
that all segments succeed or fail uniformly.

(a) (b)

Figure. 3.7 Incorrect centroid placement for split features (a) and correct placement of
feature centroids on the boundary (b).

3.4.4 Creating the Meta-texture

Figure 3.8 illustrates the meta-texture generation process. The feature list contains the
colour-coded list of features where each feature receives a unique colour, thus all child
texels of a given feature are of the same colour. Split features are considered separate fea-
tures for this meta-texture generation process and thus receive their own colour. Non-feature
texels are coloured black. The centroid list is a black and white image where the centroid
texel for each feature is coloured white whilst all other texels are coloured black.

Before the feature centroids can be calculated, the features themselves must be isolated.
Currently this is a manual task but through some image processing by adding contrast and
brightness to the texture to bring the lighter, protruding features to the forefront an algorithm
could make a best guess at what features lay where before allowing the user to fine-tune
the regions by hand. Alternatively, if a procedural approach to texture generation is used,
this can be done algorithmically without the need for artist intervention if the procedural

50 Feature-Based Probabilistic Blending

Figure. 3.8 Overview of the meta-texture generation (the major U and V coordinates
image has been exaggerated for clarity).

3.4 Implementation 51

algorithm is adapted to be made aware of the distinction between features and non-features.
This need be done only once offline for each texture as the processed results are stored in
an associated meta-texture for future use. Figure 3.9 shows a sample material texture along
with a colour-coded region list to illustrate the isolation of said features.

(a) (b)

Figure. 3.9 A sample terrain texture (a) and the isolate features (b).

With the features being isolated, the centroids can then be calculated algorithmically or
placed manually. Figure 3.10 shows a sample material texture along with each feature’s
centroid (yellow dots).

Figure. 3.10 A sample terrain texture along with the feature centroids highlighted yellow.

Once the centroids have been calculated in texture space, it will need to be known which
texels belong to which feature and this information is stored in the separate meta-texture

52 Feature-Based Probabilistic Blending

that can be accessed within the fragment shader at run-time. The meta-texture acts as a
look-up table, with the input being the texel’s UV coordinates. This meta-texture stores an
entry for every texel position of the material texture in texture space, where upon each entry
will store 2 values: the texture space position (U and V) of the centroid for the feature that
the texel belongs to (if the texel is a non-feature, the output position will be the same as the
input position used to perform the look-up) and the feature map which determines how a
feature texel will be blended (0 indicates a non-feature, 1 to 255 indicates a feature, with
the number dictating the opacity of the texel when blended). The table below shows some
example entries in the meta-texture.

Table 3.1 Example entries for the meta-texture.

Input UV Coordinates Output UV Coordinates Feature Map Entry

(0.0, 0.0) (0.6, 0.6) 255
(0.3, 0.6) (0.6, 0.6) 128

(0.75, 1.0) (0.75, 1.0) 0
(0.0, 0.25) (0.2, 0.1) 255
(0.9, 0.6) (0.9, 0.6) 0

(0.85, 0.75) (0.85, 0.75) 0

The first two entries in the table are separate texels that belong to the same feature. As
such, although the input coordinates differ, the output UV coordinates are the same (i.e. that
of the feature’s centroid). The first entry is 100% opaque (like most feature texels) whereas
the second entry is 50% transparent (possibly a texel on the periphery of the feature). The
3rd entry in the table is texel that is a non-feature. Because it does not belong to a feature, the
output UV coordinates are the same as the input coordinates used to make the look-up. The
equations later on in this thesis use the feature map along with the output UV coordinates
to perform a probability blend for features and a standard linear blending or blend maps for
non-features.

The centroid position coordinates of the meta-texture are stored in base 256, where the
red and green channels hold the digits of the 0th column for the U and V coordinates respec-
tively (called the minor coordinates), whilst the blue channel stores two nibbles (packed into
a byte, U being the high nibble and V being the low nibble), with each nibble denominating
the digits of the 1st column (called the major coordinates). This allows the centroid positions
to be stored in three colour channels rather than four, freeing up the alpha channel for the
feature map.

To construct the meta-texture, the centroid list is parsed to gather the centroid positions

3.4 Implementation 53

of all features in the colour-coded feature list. The feature list is then parsed to populate
the meta-texture. For black texels, the position of the texel being read is encoded in the
corresponding texel of the meta-texture. For non-black feature texels, the centroid position
for the associated feature is instead encoded.

Figure 3.11 illustrates the meta-texture generated for the cobble terrain texture used
throughout this document. Note that in Figure 3.11(a) some feature colours look out of
place. This is due to the centroids being clamped to the texture and centroid number base
boundaries. For example, the red-ish features about halfway down the meta-texture are so
because the border at which their centroid lies is of that colour. Feature texels are uniform
in colour, whereas non-feature texels transition in a gradient across the axis of the red and
green channels in colour space.

(a) (b)

Figure. 3.11 The centroid coordinates (a) and the feature map (b) for a meta-texture.

Figure 3.11(b) shows the feature map for said material texture. Non-features are black
whereas features are largely white. The exceptions to this are texels near the border of the
parent feature which trail off in transparency. This softens the edges of features when they
are blended on top of underlying terrain types to take away the harsh, jagged edges that
would otherwise appear (Figure 3.12).

3.4.5 Centroid Position

The meta-texture is sampled using the texture coordinates −→uv to obtain the centroid position
of the sampled texel, giving the minor coordinate vector

−→
min and the major coordinate vector

−−→
ma j, as unpacked from the nibbles into the range [0,255]. The centroid vector c⃗ is obtained

54 Feature-Based Probabilistic Blending

(a) (b)

Figure. 3.12 A feature rendered without (a) and with (b) softened edges by using the
feature map values to determine blending translucency.

by adding the vectors
−→
min and

−−→
ma j and expressing them as decimal fractions of the meta-

texture dimensions in the range of [0,1].

3.4.6 Weight/Seed Texture Lookup

The blend weights and seeds are stored in a texture of the same dimensions as the terrain
mesh where the coordinates −→ws used to perform the weight/seed texture lookup are calcu-
lated by truncating the vector −→uv to obtain the integer components and adding them to the
centroid position. The range of−→ws is reduced to [0,1] proportional to the weight/seed texture
dimensions. Sampling the weight/seed texture with the newly transformed −→ws coordinates
yields the weight value p (which is also the probability) and the seed value s from the red
and blue channels respectively.

3.4.7 Weighting Coefficients

A set of weighting coefficients can be introduced to the weighting equation (Equation 3.1)
to further shape and control the blending of feature and non-feature texture samples when
p ≤ 1.0. These coefficients are stored in the vector

−→
C m f n and refer to the feature map,

feature texel and non-feature texel coefficients respectively. Coefficients greater than 1.0
sustain a given parameter whilst coefficients in the range [0,1] dampen a given parameter
(values of 1.0 leave the parameter untouched).

3.4 Implementation 55

The feature map is a blurred version of the meta-texture’s feature mask stored in the
alpha channel of the texture itself and is used within the blending equation to taper the
perimeter of features from full opacity to slight translucency, causing the edges of features
to be smoothed rather than appear sharp. The sampled feature map coefficient

−→
C m is used

to smoothen the edges of features when viewed up close.

The feature coefficient
−→
C f and non-feature coefficient

−→
C n are used to sustain or dampen

the feature and non-features. These optional coefficients are stored in the weight/seed tex-
ture at each vertex to offer finer control over how little or much features and non-features
appear on the terrain mesh.

3.4.8 Weighting Equation

The weighting equation (Equation 3.1) yields the blend weight w and uses the variables
f , d, r and p, all within the range [0,1]. f is the optional feature map value as sampled
from the texture’s alpha channel, d is the feature mask as sampled from the meta-texture’s
alpha channel and r is the random value obtained by sampling the noise texture using the
seed value s as input. Areas of the terrain with a 0% blend weight should always fail the
probability test, thus the noise function should produce values in the range (0,1].

The purpose of the weighting equation is to return either a binary translucency value
(0 or 1) for feature texels and a translucency value in the range [0,1] for non-feature texels.
The key to this is the binary feature mask value d which ensures that a value of 1 will nullify
the right hand side of the equation and a value of 0 will nullify the left hand side.

w = sgn(⌊1
r

d p
−→
C f ⌋)

−→
C mmax(p, f)︸ ︷︷ ︸

feature texels

+ p(1.0−d)
−→
C n︸ ︷︷ ︸

non-feature texels

(3.1)

The first part of the weighting equation accommodates feature texels and returns a value
of either 0.0 or 1.0. The reciprocal of r is multiplied by p to give a value of < 1.0 for
texels whose probability is less than the value of r and≥ 1.0 for probabilities greater than r.
The floor function ensures that values < 1.0 are truncated to zero, allowing this side of the
equation to nullify if the probability check fails. The sgn function caps results of the floor
function to 1.0 should the result be greater than 1.0.

If p or d is zero or if the random value is greater than the probability, the sgn function
returns 0.0, causing the ‘feature texels’ part of the equation to null, allowing the ‘non-feature
texels’ to generate a non-feature weight. A feature map value f that is less than the non-
feature translucency at that point will cause visible seams along the boundary of features so

56 Feature-Based Probabilistic Blending

the max function is used to take the greater value of the variables p and f .

The second part of the equation accommodates non-feature texels. If the feature mask
value d is 1.0 (a feature texel), this side of the equation will null, allowing the left-hand side
to generate a feature weight. For non-feature texels, the Bloom weight p is used to perform
a linear blend in the range of [0,1] with the underlying texture.

3.4.9 Blending Equation

Previous work of Ferraris and Gatzidis (2009) and Ferraris et al. (2010a) blended multiple
textures in order of precedence, such that lower precedence textures were masked by higher
precedence textures of a higher blend weight. With FBPB, feature texels of lower prece-
dence textures always take priority over higher precedence non-feature texels. This ensures
that features will always be visible even for lower precedence textures. Features for higher
precedence textures are blended in priority over features for lower precedence textures.

Equation 3.2 keeps track of whether or not any features have been drawn for precedence
levels below the level that is being blended. For each level, a visibility flag V and feature
flag F is calculated for a given precedence level n. (Equation 3.3). Here, the value V is set
to 1.0 should a given texel be a visible feature texel, otherwise it is set to 0.0. The value
F is then set to either 1.0 or 0.0 using the sgn function should the value of V for a given
precedence level or the value of F for a previous precedence level be 1.0.

Vn = dnwn

Fn = sgn(Fn−1 +Vn)
(3.2)

Once the feature and visibility flags have been calculated for a given level, the blending
equation (Equation 3.3) is executed for each precedence level to dictate how much of said
precedence level’s texture is blended with the previous. The Heaviside step function will
return a value of 1.0 should the current texel be a visible feature texel or if neither of the
previous levels contain visible feature texels. Should the current texel be a visible feature
texel and any of the previous levels contain visible feature texels, the feature texel of the
current level (of being higher precedence) will be visible instead. The result of this function
is then multiplied by the weight value of this current precedence level (wn) to give the final
blend value that level (bn).

bn = H (Vn,Fn)wn (3.3)

3.4 Implementation 57

3.4.10 Feature Variations

Feature variations are used to dynamically introduce unique wear and tear to texture fea-
tures when the probability of appearing lies below 100%. Executed prior to the weighting
equation, they are achieved by using the seed and an additional random number at each
weighting to sample the grayscale variation map (Figure 3.13) detailing various cracks, div-
ots and holes at a random point. This random sample is then used to modulate a given
texture to darken the colour. Furthermore, by modulating the texture’s normal map with the
variation normal map (generated from the variation map) and nullifying d when the varia-
tion map lies under a certain threshold, holes can be created and chunks removed, exposing
any underlying texture information as shown in Figure 3.16(c). Feature variations work es-
pecially well when modulating the texture’s normal map with the variation normal map to
add depth to the illusion of surface deformation.

(a) (b)

Figure. 3.13 The albedo (a) and normal map (b) for a variation texture.

The variations texture is sampled using the texture coordinates −→uv offset by a random
vector. The first component of the random vector is the original random value obtained by
the seeded lookup to the noise texture. To obtain a random value for the second component,
the green channel weight/seed texture is filled with another set of random seeds. Thus, when
the weight/seed texture is sampled, a vector s⃗ is yielded rather than the original variable
s. This vector is used to perform a lookup to a two dimensional noise texture, yielding
the random vector r⃗ rather than the original variable r (the weighting equation remains
unchanged, however, the first component of r⃗ is used in place of r). The vectors u⃗v and r⃗

are added together to give the vector −→var which is used to sample the variation texture.

58 Feature-Based Probabilistic Blending

Algorithm 1 Modulating feature with the variation texture
if d then

if variation map < 1.0 then
t_norm← v_norm+(t_norm− v_norm) ·w

end if
if variation map < threshold then

d← 0
colour← colour · coe f f icient

end if
end if

Algorithm 1 shows the pseudo-code for implementing feature variations. Firstly, only
feature texel samples are subjected to variations; non-feature samples pass through unmod-
ified. The texture normal map t_norm is modulated by the variation normal map v_norm

by blending between the two using w as the blend amount. This allows high probability
features to remain unchanged whilst features of decreasing probability receive more pro-
nounced modulation. Optionally, should the variation map sample lie underneath a thresh-
old, the colour of the texture is modulated by a coefficient and the feature mask d is set to
zero, darkening surface deformations and allowing cuts and holes to expose any underlying
texture detail. For the variations in the results in this chapter, a threshold of 0.3 and a colour
coefficient

−→
C c of 0.75 were used to darken the divots and reveal the underlying surface for

particularly deep divots.

3.5 Results

In this section FBPB will be compared with linear blending (Bloom, 2000), blend maps
(Hardy and Mc Roberts, 2006) and tile-based texture mapping (Cohen et al., 2003; Wei,
2004) (where applicable).

Figure 3.14 is an example of a tile terrain texture blending from right (100%) to left
(0% tile). With both FBPB and tile-based blending, the tiles trail off intermittently rather
than uniformly, whilst FBPB introduces deterioration in the form of cracks, chipped tiles
and scratches, breaking up the uniformity of the transition. The blend map delivers a more
convincing result than linear blending with the dirt appearing in the gaps between the tiles
although compared to FBPB the uniform nature of the blend would result in obvious texture
repetition when blended over a large area of the terrain mesh. Note that the tile-based blends
are restricted to such grid-like textures whilst FBPB can be used with any feature layout and
also produces random variations that increase in frequency and prominence as the blend

3.5 Results 59

(a) (b)

(c) (d)

Figure. 3.14 Blending comparison of (a) linear blending, (b) blend maps, (c) tile-based
texturing and (d) FBPB.

weight reduces.

The lookup table for the tile-based texturing was generated manually using the results
from the FBPB blend in order to determine which features were drawn and discarded. It
was found that the limitations of the grid layout and labour intensity of manually populating
the lookup tables significantly impacted the work flow and flexibility of results. FBPB
suffers from none of these limitations as the intermittent pattern of features is generated
automatically and our approach can be used with any textures with salient detail.

As tile-based texture mapping obtains the lookup table address implicitly from the frag-
ment texture coordinates, the technique is restricted to features that are laid out uniformly
on a grid, as shown in Figure 3.14(d). In the following examples it will not be compared
with FBPB.

Figure 3.15 illustrates a particular terrain transition that cannot be reproduced properly
using existing blending approaches. Both the tile and mosaic textures blend from 100%
(right) to 0% (left). Whilst FBPB can achieve this complex blend in a convincing manner
with no artefacts, the blend map and linear blend simply cannot represent such a transition
as the two textures cannot be distinguished from one and other, giving FBPB a significant
advantage.

Figure 3.16 shows close up shots of a top to bottom blend with parallax mapping en-
abled. For this, a cobble stone texture was blended with a grass underlay. This particular
texture was chosen because it represented a hypothetical ‘worst case’ insofar as having fea-
tures of unique shapes and sizes laid out in an irregular manner. For linear blending, the
mixture of texture and underlay at a mid-point of the blend transition produces an artificial

60 Feature-Based Probabilistic Blending

(a) (b)

(c)

Figure. 3.15 Blending comparison of (a) linear blending, (b) blend maps and (c) FBPB.

result with heavy translucency artefacts as the cobble and grass cannot be distinguished from
each other. The illusion of relief the parallax effect should be producing is undermined by
these heavy blending artefacts. The blend maps still suffer from the translucency artefacts,
albeit to a lesser degree as the two textures can be distinguished but, like linear blending, the
parallax effect is still lost when the artefacts are at their most prominent as the blend weight
approaches closer to 0%. In some instances, the opacity effects of linear blending and blend
maps may be desirable, for example if the occluding material is a fine dust where partial
coverage of features is to be expected. However, for situations where this partial coverage is
not desirable, FBPB ensures that features properly protrude through the underlying surface.

For FBPB, none of these translucency artefacts are displayed, resulting in a far more
convincing blend. Here, even at the mid-point of the transition, the stochastic nature of
the probability blend breaks up the banding artefacts that are exhibited by linear and blend
maps as they blend from top to bottom. Furthermore, the features where chunks have been
removed from the corners and sides illustrate how convincing the feature variation process
is when combined with parallax mapping, especially when considering the fact that all of
the variations were generated dynamically with no artistic input.

Figure 3.17 depicts a terrain with 3 patches of cobble blended with a 50% mix of grass
and cobble using linear blending, blend maps and FBPB. For linear blending, the 50% mix
of grass gives the cobbles an artificially dull appearance and the translucency artefacts be-
come more pronounced as the blend weight drops off from the centre towards the perimeter
of the patch. The blend maps do not suffer from the dull appearance although the shape of
the circular brush used to paint the patch is revealed at the perimeter. This could be fixed

3.6 Performance Analysis 61

by having the artist manually touch up the periphery of the patch to introduce irregularity
but in practice this will be limited by time and mesh resolution. FBPB breaks up the uni-
form shape of the brush automatically and can be further fine-tuned using the weighting
coefficients (either globally or per-vertex).

3.6 Performance Analysis

A ‘worst case’ scenario was fabricated by blending two textures using FBPB and the ex-
isting alternatives along with a base texture across an entire mesh that was rendered with
no optimizations. For tile-based texture mapping, the approach described by Wei (2004)
was extended to draw or discard feature texels together in the same manner as FBPB. The
weighting algorithm was a simplified version of Eq. 3.1 as illustrated below, where m is the
binary result of sampling the lookup table:

w = sgn(md)max(p, f)+ p(1.0−d) (3.4)

The terrain mesh consisted of 512 quads (513x513 vertices) with a texture scale of 1.0.
The texture sets used were the lowest common denominator that the tested approaches could
support (as discussed in Section 3.5). The two textures blended algorithmically measured
8x8 and 10x10 in features respectively whilst the base texture was mixed in with a standard
linear blend. Three configurations were tested: a straight blend (no lighting or parallax
effects), a normal mapped blend and a parallax blend. The viewport was filled entirely with
blended fragments and the hardware used was a Radeon Mobility 4600 Series GPU in a
Dual Core 1.5 GHz CPU laptop with 3 GB of RAM.

Algorithm Straight Normal Parallax
FPS Ms1 Memory Usage2 FPS Ms1 Memory Usage2 FPS Ms1 Memory Usage2

No Texturing 385 2.597 -n/a- -n/a- -n/a- -n/a- -n/a- -n/a- -n/a-
Base Texture Only 313 3.194 1,024 -n/a- -n/a- -n/a- -n/a- -n/a- -n/a-
Linear Blending3 264 3.788 3,586 215 4.651 5,634 203 4.926 5,634

Blend Maps3 263 3.802 3,586 214 4.673 5,634 199 5.025 5,634
Tile-Based Texturing3 235 4.255 45,570 137 7.299 47,618 135 7.407 47,618

FBPB3 226 4.424 5,891 135 7.407 7,939 134 7.462 7,939
FBPB With Variations3 219 4.557 7,172 127 7.874 9,220 125 8.000 9,220
1 Frame time (in milliseconds)
2 Total texture memory usage (in kB)
3 Straight blend between two terrain textures and a base texture with no other effects

Table 3.2 Performance results.

Table 1 details the results of the performance tests. The relative performance of the ap-
proaches is in sync with their relative complexity. Once normal and parallax mapping were

62 Feature-Based Probabilistic Blending

enabled, the extra overhead of these techniques introduced reduced the relative difference in
performance between the approaches. The four key advantages FBPB offers over tile-based
texture mapping are (i) the considerably lower video memory overhead (the texture usage
of tile-based texturing is nearly eight times more) (ii) the complete automation (compared
to manually populating lookup tables with feature data) (iii) the scalability and diversity
and (iv) more importantly, the fact that FBPB can utilize textures of any size and shape
compared to the grid layout and memory limitations of tile-based texture mapping.

3.7 Conclusion and Future Works

A novel approach FBPB has been proposed in this section to introduce intermittency and
irregularity at transitions for terrain types that have distinct features. FBPB completely
removes the translucency artefacts that exist in traditional Bloom texture mapping and can
generate a near-endless number of transitional variations in real-time without any artistic in-
tervention. Compared to tile-based texture mapping, FBPB uses considerably less memory
to store texture data. Furthermore, FBPB can handle any number of features at a constant
overhead in terms of memory usage and algorithmic operations.

Performance and Scalability: The performance of FBPB is as good as tile-based texture
mapping but slower than blend maps although this is a reflection of the relative complexity
and diversity in results. The technique is capable of scaling to terrains of any size as the
meta-texture resources are required on a per-material basis rather than being an attribute of
the mesh geometry. When many materials are used (how many is ultimately dependent on
the hardware and texture format), FBPB (like texture splatting) is susceptible to becoming
file rate bound however real-world applications can optimize the level of overdraw by mask-
ing the materials such that only those that are required for the frame are utilized (Andersson,
2007).

Fixed Costs: FBPB has significantly lower memory overhead compared to tile-based tex-
ture mapping as the variations of contour and feature shape are dynamic, as opposed to
a static selection of pre-generated tiles. The only additional over head at run-time is the
noise function and meta-texture, although meta-texture generation is an offline and cur-
rently manual process. However, the meta-textures need only be generated once and are
fixed in cost for each material, making the texture memory overhead both consistent and
predictable. GPUs with a programmable pipeline are required as the technique is not pos-

3.7 Conclusion and Future Works 63

sible to implement with the fixed-function pipeline but this should not be an issue given
that most consumer grade desktops, consoles and mobile devices meet this basic minimum
requirement.

Transition Variation and Detail: The primary focus of FBPB is to alter both the contour
and layout of features in real-time in order to create the illusion of the irregularity and
variation found in the real world. The dynamic altering of feature shape through the wear
and tear strengthens this illusion and adds details that are further embellished with normal
mapping and parallax mapping. Parallax mapping in particular helps alter the topography
of the features to further add detail and variation to the material, breaking up the regularity
that is typical of tiled textures. The technique is however restricted to materials containing
prominent features so the use case is more restricted than a more general purpose algorithm.

Future Works: Currently, FBPB only works with textures that contain salient details.
Future work will involve expanding the technique to work with textures that do not con-
tain distinct feature information, such as grass, mud and sand by procedurally generating
“feature masks” in real-time by dividing up texture space into logical grids where, instead,
each cell of the grid will be probabilistically drawn or discarded. Instead of using static
feature masks, an elaboration of the feature variations aspect of our approach will be ex-
plored to generate unique shapes in real-time to deliver splatters, clumps and pockets of
non-feature textures at terrain transitions. Furthermore, features of lower precedence will
occlude non-features of higher precedence but currently there is no scheme to ensure that
lower precedence features are not partially occluded by features of higher precedence. Fur-
ther research will look into a hierarchical approach to feature occlusion to ensure that such
partial occlusion does not take place.

64 Feature-Based Probabilistic Blending

(a)

(b)

(c)

Figure. 3.16 Close up parallax shots of linear blending (a), blend maps (b) and FBPB
(c).

3.7 Conclusion and Future Works 65

Figure. 3.17 A terrain shot with examples of a 50% mix of cobble and grass using linear
blending (left), blend maps (middle) and FBPB (right).

67

Chapter 4

Transition Contour Synthesis With
Dynamic Patch Transitions

4.1 Chapter Overview

The technique of splatting multiple textures to a terrain mesh using an alpha texture is of-
ten restricted to low frequency detail due to the texture memory overhead needed to depict
highly detailed transitions. Instead, it is common to modulate this low frequency blend with
a high frequency blend map (stored with each terrain material) to greatly increase the reso-
lution of the transition. However, the overall shape of the transition remains untouched and
can display unnatural uniformity when adjacent areas of the terrain mesh receive the same
blend weight. This chapter presents a novel automated approach for generating stochastic
contours when transitioning between material textures. This is achieved by modulating the
alpha masks on-the-fly with the subdivision of texture space into different sized patches to
produce irregular contours from minimal artistic input. The results have proven that the en-
riched detail of the transition contour can be achieved with a performance competitive to ex-
isting approaches without additional texture and geometry resources or asset pre-processing.
This approach is of particular importance for applications where GPU resources or artistic
input is limited or impractical. The work presented in this chapter was presented as a short
paper for Computer Graphics International and accepted as a full paper in Computers in
Entertainment (Ferraris et al., 2015).

68 Transition Contour Synthesis With Dynamic Patch Transitions

4.2 Background Information

In a typical texture splatting implementation, the low resolution alpha mask is filtered lin-
early by the GPU when it is sampled in the fragment shader. This filtering process results
in very low frequency shapes to the transition contour with smooth and gradual transitions
between texel sample points on the alpha mask. This low frequency detail results in blurry,
washed out transitions when interpolating between materials. When using blend maps, the
contour of the transition can be “frayed” and broken up somewhat by adding high frequency
detail but such detail lacks irregularity due to the blend maps being tiled alongside the ma-
terial textures. This static nature of blend maps makes it inadequate for modulating the
broader contour of the transition with sufficient detail and irregularity.

When the resolution of the alpha mask is low enough, the limitations of the linear filter-
ing process can produce regular, grid-like shapes to the contour where the mask texels are
too large in comparison to the material textures. For FBPB, this effect was not particularly
noticeable because the dynamic drawing or discarding of the features was sufficient to break
up the contour, drawing the eye away from the less noticeable non-salient details that were
subjected to a linear blend. Increasing the resolution of the alpha mask will help suppress
these filtering artefacts but, in order to add truly high frequency detail to the contour, the
required resolution of the alpha mask would be impracticable for most applications.

In order to dynamically affect the contour of a transition between materials which con-
tain non-salient details, storing addition modulation information along with the material
textures themselves is insufficient. Instead, the process must operate at a higher domain
of the blending process independent of the material textures themselves. Extrapolating the
concept of blend maps to the level of the alpha mask textures to provide high frequency
modulation would not be practical as the efficiency of blend maps is due to the fact that
the blend maps are stored in the alpha channel of the albedo texture, effectively coming at
no extra cost. Thus, a successful technique would need to balance the efficiency of texture
splatting with the additional overhead needed to appropriately add detail and irregularity to
the transition contour.

4.2.1 Focus of Research

An algorithm that aims to address the issues outlined in the previous section should focus
on adding detail and variation to alpha mask contours in order to increase the fidelity of the
material transitions. The detail added need only be sufficient enough to break up the broad
shape of the filtered alpha mask as the blend maps will add the higher frequency detail to

4.2 Background Information 69

the transition. The variation should be sufficient enough to avoid obvious repetitions of
the contour shape in order to give the illusion of the endless variation found in the natural
world. In order to add sufficient variation, the algorithm must have the appearance of non-
determinism so would need to execute at run-time rather as a static off-line process (albeit
without compromising frame-to-frame coherency).

For materials containing no salient details, there are no distinct topographical features
that need to be preserved so the issue of translucency artefacts is not a focus like with FBPB,
allowing a greater degree of flexibility with regards to how the contours are modulated. As
the high frequency detail can be accommodated with blend maps, one need only implement
a means of adding mid-level frequency detail to break up the shape of the contour suffi-
ciently to avoid the unvaried, washed out contours of regular splatting. Thus, the challenge
can be broken further into three tiers: low frequency detail (derived from the alpha mask),
mid frequency detail (derived from the algorithm) and high frequency detail (derived from
the blend maps).

As the materials used by such an algorithm will contain little or no salient details, there
should be no need to store meta-information along with the albedo texture (as is the case
with FBPB). Thus, the algorithm should be able to work with a variety of materials without
the need to process the materials themselves to gather meta-information about the layout and
topography of the material surface. This will require the algorithm to be flexible enough in
its parameters to be able to be tuned to a given material to produce authentic and varied
transitions.

4.2.2 Novelty of Research

In this chapter a novel approach is proposed for transition contour synthesis with dynamic
patch transitions (DPT). DPT builds on the previous work of Feature-Based Probabilistic
Blending (FBPB) (Ferraris et al., 2012), expanding the concept of probabilistic blending to
present a general purpose algorithm for material transitions for textures that contain non-
salient details. The work presented here is an extension of a paper published in Computers
in Entertainment (Ferraris et al., 2015), with this section detailing the approach, addressing
minification aliasing and contrasting the performance and results of the algorithm to blend
maps (Hardy and Mc Roberts, 2006).

A typical approach to increase the quality of transitions is to modulate the low frequency
blend weight with a material’s high frequency blend map (Hardy and Mc Roberts, 2006).
Whereas this technique adds texel-level accuracy to transitions (Figure 4.1 (a)), DPT fur-

70 Transition Contour Synthesis With Dynamic Patch Transitions

(a) (b)

Figure. 4.1 A blend between a rock material and grass underlay using slope information
for the blend weight with blend maps (a) and Dynamic Patch Transitions (b). The bottom
row demonstrates the blend masks generated by each algorithm.

4.3 Related Work 71

ther increases the resolution of the blend by addressing the broader shape and contour (b),
generating stochastic, detailed material transitions of near-endless variations ranging from
sporadic, intermittent transitions across flat plains to sharp, sudden transitions where abrupt-
ness is required.

The generation of the transitions themselves is entirely automatic, reducing the workload
of the artist and making it suitable for procedural applications. Unlike the mapping of large,
offline texture sets using virtual texturing, DPT does not require the storage or bandwidth
necessary to stream such textures into memory in real-time. As DPT does not need any
additional assets, it is particularly useful for environments where video memory is limited,
such as hand-held devices and very large terrains. By combining patches of different sizes
and parameters, complex transitions suitable for a wide range of terrain materials can be
produced.

4.3 Related Work

4.3.1 Alpha Blending

There has been no direct research on contour synthesis for alpha blending although other
works have indirectly touched on the topic. The contour of a blend is usually painted in by
hand using image editing software or derived procedurally from a set of criteria using the
topography of the mesh itself to determine how and where transitions occur. As discussed,
the low resolution of the generated alpha mask alone is insufficient to depict varied and detail
transitions so additional techniques are commonly used to circumvent these limitations to
produce the necessary detail needed for high quality terrains.

Andersson’s work with procedural shader splatting (Andersson, 2007) uses the height,
slope and normal to generate the alpha masks and use procedural noise on a per-material
basis to add detail to the transition where necessary. However, he notes that there are many
terrain surfaces that cannot be generated in a purely procedural manner, especially when
using only basic parameters of height, slope and normal. Using the example of open fields,
he states that they are created artificially by the level designers in order to have full control
over the shape and size. These manually generated masks are then stored in a sparse quad-
tree texture representation that stores only the unique 32x32 pixel tiles. Whilst this solution
does allow for custom mask shapes for materials on geometrically flat regions of the terrain,
the resolution (and thus detail) of the masks is limited in order to conserve space.

72 Transition Contour Synthesis With Dynamic Patch Transitions

Zhang et al.’s work synthesizes a surface texture from the feature points and ridge lines
of the terrain mesh that can then be mapped to the geometry (Zhang et al., 2008). The
algorithm is capable of producing contours that follow the topography of the mesh but as
with Andersson’s work, such approaches fall short on regions of the mesh that are flat or
continuous in topography as there is insufficient geometry to derive recognizable shape and
variation to the transition.

Roupé and Johansson’s work uses satellite imagery for the low frequency albedo infor-
mation and blends high resolution detail masks to compensate for the low fidelity of the
satellite data (Roupé and Johansson, 2009). The advantage of this technique is that the tran-
sitions and contours are both natural looking and readily available as real-world imagery is
used directly. However, whilst such a technique is useful for visualization software used
to explore a simulation of a real-world environment, video games usually require bespoke
environments created to suite both artist and gameplay goals.

4.3.2 Tile-Based texture Mapping

The works of Lai et al. and Lai and Tai is capable of producing very detailed and realistic
transitions but the perhaps biggest drawbacks are the limitations of tile-based texturing itself
(Lai and Tai, 2008; Lai et al., 2005). When one is deciding on the size and number of tiles in
a set, one must weigh up the costs and benefits between having tiles large enough to depict
contour diversity and shape and the number of tiles required to avoid obvious repetition.
Each tile must conform to the connectivity criteria required to reproduce transitions without
displaying any seam artefacts so a uniform tile size is commonly used. As such, contour
features must be self-contained in order to effectively connect to neighbouring tiles.

Larger tiles allow for greater diversity in shape as the contour itself is able to span a
greater region of the terrain surface before properly terminating at tile boundaries. However,
the number of variations of tile types needed to minimize repetition increases the amount
of video memory in line with the square law increase compared to tiles of half the size.
Smaller tiles allow for more diversity in tile variation for the same memory cost but reduce
the variety and scope of contour shape. This limitation of contour shape presents itself in
the form of a grid-like layout to the transition as if the transitions were sculpted around the
square blocks that the tiles themselves are laid out on. This effect is further compounded
when an insufficient number of tile variations is used in the set.

4.4 Implementation 73

4.3.3 Virtual Texturing

As discussed in the previous chapters, the detail and variation of virtual texturing for transi-
tions between materials containing no salient details is only limited by the time and skill of
the artist. This flexibility can increase the workload of artists but transition synthesis algo-
rithms can aid in reducing this workload. Procedural techniques for transition synthesis can
be used to great effect to perform a lot of the heavy lifting when generating virtual textures
as the results are rich and detailed where there is sufficient topography but such algorithms
fall short on plains and other flat regions of the mesh. As such, these regions will usually be
painted by hand which can be a laborious task for large terrains in the numbers required for
video games.

4.4 Implementation

DPT aims to synthesize a high frequency blend mask for each material from the low fre-
quency blend weights of texture splatting (Bloom, 2000) in real-time to produce rich and
detailed transition between material textures. The outline of the approach is illustrated in
Figure 4.2. The texture space (Figure 4.2(a)) is divided up into arbitrary-sized patches. The
texture coordinates of the patch’s centroid are assigned to each point within a given patch
(b) whereupon each point samples the low frequency blend weight texture using these new
texture coordinates. This sampled blend value, common to all points within a patch, is in-
terpreted as the probability of a given patch appearing (c). These patches are then drawn or
discarded in a probabilistic manner (Ferraris et al., 2012) to produce a binary patch mask
(d). The patch mask is smoothed at a given point by bi-linearly interpolating the mask value
of the patch upon which the point lies with that of the three adjacent patches. The point’s
position relative to the area enclosed by the four patches in the range [0,1] is used as the
interpolation amount between the four patch mask values (e).

This process can be repeated to synthesize multiple patch masks using different patch
sizes and parameters to increase the detail and complexity of the transition. The result-
ing smoothed patch masks are accumulated and clamped within [0,1] range (f) before op-
tionally being further modulated by the material’s high frequency blend map (Hardy and
Mc Roberts, 2006) to produce the final blend mask (g). The details of the approach are
given in the subsequent sections below.

74 Transition Contour Synthesis With Dynamic Patch Transitions

Figure. 4.2 Overview of DPT.

4.4.1 Centroid Calculation

The patch dimensions are specified by the artist as the two-dimensional vector
−→
D in the

range (0,1], which determines the percentage of a material’s texture space a given patch
spans. Assuming a bottom-left texture space origin, the origin of a given patch is defined
by the vector o⃗ and is determined by Eq. 4.1 below, where −→uv is the texture coordinates of
a given point on the surface of the terrain mesh. The centroid vector c⃗ in texture space can
then be deduced by adding 1/2

−→
D to this newly calculated origin vector.

o⃗ =
−→
D ⌊−→uv

1
−→
D
⌋ (4.1)

Figure 4.3 illustrates a point on a patch along with the three adjacent patches. To bi-
linearly interpolate the patch mask at the blue point, the mask values of the three adjacent
patches are evaluated along with the mask value of the patch upon which the point resides.
The centroids of the three patches adjacent to a given patch are calculated by adding either
one or both components of vector

−→
D to the patch’s centroid. For convention, the patch upon

which a given point lies is denoted as the bottom left (bl) of the set of four patches, thus the
centroids for the bottom right (br), top right (tr) and top left (tl) patches are calculated by
adding

−→
D x,
−→
D xy and

−→
D y to c⃗ respectively to yield four centroid vectors c⃗bl , c⃗br, c⃗tr and c⃗tl .

4.4.2 Probability Sampling

The probability for each of the four patches is obtained by transforming the centroids from
the material’s texture space into the blend weight texture’s space and then sampling the

4.4 Implementation 75

Figure. 4.3 At any point on a given patch the three adjacent patches are included to
form a cluster of four patches.

blend weight with these newly transformed vectors. The random value is obtained for each
patch following this same process, albeit sampling a noise function or texture instead. The
four probability and random values are stored in the four component vectors p⃗ and r⃗ respec-
tively.

The probability value of the patches is modulated by an artist-defined constant P. By
raising the components of vector p⃗ to the power of P, the proliferation of patches can be
sustained (when P is less than 1.0) or dampened (when P is greater than 1.0). For this see
Figure 4.4. This constant is set for each patch mask allowing for artistic control over the size
and shape of the transition. The constant R modulates r⃗ in an identical manner by raising r⃗

to the power of P in order to control the density of the patch mask.

4.4.3 Weighting Equation

To determine whether a patch will be drawn or be discarded altogether, the random value
is checked against the probability of that patch appearing. Should the value lie equal to or
under the probability, all points within that patch will contribute the value 1.0 to the binary
patch mask, otherwise they will be discarded with no contribution. A simplified version of
the weighting equation from FBPB (below) is used to obtain the mask values for the four
patches given the probability and random value for each patch. The mask values of each of

76 Transition Contour Synthesis With Dynamic Patch Transitions

(a) (b) (c)

Figure. 4.4 Patch modulation when P is 0.25 (a), 1.0 (b) and 3.75 (c).

the four patches are stored in the four component vector m⃗.

m⃗ = sgn(⌊1
r⃗

p⃗⌋) (4.2)

4.4.4 Bilinear Interpolation

For any given point on a patch, the position f⃗ within the unit square enclosed by the
four patch cluster (Figure 4.3) is calculated by taking the fractional components of the
component-wise product of the vectors −→uv and

−→
D . This new normalized position is then

used to bilinearly interpolate the four patch mask values to obtain a smoothed scalar weight
value w at that point −→uv using Equation 4.3 below.

a = m⃗tl · (1.0− f⃗x) + m⃗tr · f⃗x

b = m⃗bl · (1.0− f⃗x) + m⃗br · f⃗x

w = t⃗a · (1.0− f⃗y) + t⃗b · f⃗y

(4.3)

The patch masks can be further shaped by modulating w with a constant scalar W that
is set for each mask. The weight is raised to the power of W such that values less than
1.0 sharpen the mask contour whilst values greater soften it. Different patch masks can
have different modulation amounts, allowing for a broad range of transition shapes. Figure
4.5 below illustrates this modulation, with the sand material on the left having a smoother,
broader contour of the lower modulation amount, whilst the mud material has a sharper,
more distinct contour from the higher amount.

4.4 Implementation 77

(a) (b)

Figure. 4.5 Di�erent materials with di�erent weight modulation, from the smoother
contour of the sand (a) to the sharper contour of the mud (b).

4.4.5 Blend Mask Composition

The steps in the grey shaded area of Figure 4.2 can be performed multiple times inside the
fragment shader using different patch sizes and parameters to produce different patch masks
for more complex and detailed blends. These patch masks are accumulated to compose the
final blend mask. In Figure 4.6, the first patch mask was synthesized using a patch size of
0.9 (a) and the second mask using a size of 0.045 (b), thus the steps in the grey shaded area
of Figure 4.2 are performed twice. These two masks are accumulated to yield a final blend
mask weight of b at any given point (c).

To add further details to the transition (as seen in Figure 4.7), the material’s high fre-
quency blend map (a) is used to modulate the lower frequency blend mask b to produce the
final blend weight (b). This weight is then used as the interpolation amount between the
material and the underlying texture (c).

The steps to compose the final blend mask (the light brown shaded area in Figure 4.2) are
illustrated in the pseudo-code below (Algorithm 2), where j is the number of patch masks
to accumulate and PatchWeight is a function that calculates the patch weight value w from
the artist supplied size and modulation constants for each mask (as described in previous
subsections, indexed by the variable i). For materials containing high frequency details, the
blend mask is then reduced to [0,1] range before the material’s blend map is applied with

78 Transition Contour Synthesis With Dynamic Patch Transitions

(a) (b) (c)

Figure. 4.6 The smoothed masks of di�erent patch sizes and parameters (a,b) are com-
bined together to produce the �nal blend mask (c).

(a) (b) (c)

Figure. 4.7 The material's blend map (a) can further modulate the blend mask (b) to
produce the �nal blend (c).

the function BlendMap (Hardy and Mc Roberts, 2006).

4.4.6 Parallax Mapping

Materials using displacement effects such as parallax mapping can benefit from interpreting
the smoothed patch masks as height information. This is particularly useful for material
textures that contain little in the way of meaningful height data, such as the textures used
throughout this paper. In Figure 4.8, the rock material has been blended three times, first
without parallax mapping (a), then with parallax mapping using the texture’s height channel
(b) and, finally, using the smoothed patch masks as height maps (c). As the rock texture has
little in the way of distinct height details, the magnified element of (a) and (b) looks very

4.4 Implementation 79

Algorithm 2 Overview of Blend Mask Composition
b← 0.0
for i = 0→ j do

b← b+PatchWeight(i)
end for
b←min(b,1.0)
b← BlendMap(b,

−−−−→
albedoa)

similar, with the only difference being the noisy peppering of parallax offsetting from the
texture’s height map in the latter. On the other hand, the lump of rock synthesized with the
DPT blending process (c) has a recognisable shape and depth to it.

(a) (b) (c)

Figure. 4.8 A transition between rock and sand (the red square is under magni�cation)
using no parallax mapping (a), parallax mapping using a height texture (b) and, �nally,
using the height and blend mask (c).

The parallax mapping technique is applied after the final blend mask has been synthe-
sized so that the albedo and normal maps are properly offset by the height data. As seen in
the code listing below, the heightfield h accumulates the patch masks in a similar manner
to the blend mask, albeit each patch mask is being modulated by the constant H (set by the
artist for each patch mask in the range [0,1]), allowing masks to contribute different amounts
to the heightfield. In this particular code listing (Algorithm 3), Parallax is a function that
samples the material’s height field (typically stored in the normal texture) and modulates
it with the synthesized height field before performing the parallax operations (omitted for
clarity).

4.4.7 Minification Correction

As the DPT process alters the shape and content of a texture after the texture has been
sampled, texture mipmapping no longer eliminates the aliasing artefacts from undersam-
pling errors so, instead, this undesirable effect must be corrected manually. For materials
containing particularly small patch sizes, these artefacts manifest themselves as “swimming

80 Transition Contour Synthesis With Dynamic Patch Transitions

Algorithm 3 Parallax Mapping with DPT
b← 0
h← 0
for i = 0→ j do

k← PatchMask(i)
b← b+ k
h← h+ kH

end for
b←min(b,1.0)
h←min(h,1.0)
−→
plx← Parallax(−→uv,h,

−−→
Eye)

−−−−→
albedo← TextureSampler(

−→
plx,Albedo)

−−−−→
normal← TextureSampler(

−→
plx,Normal)

b← BlendMap(b,
−−−−→
albedoa)

pixels” as the camera moves around when the screen-space patch size approaches one pixel.
An example of this is shown in Figure 4.9. Here, the camera has moved backwards slightly
between the two images which has caused some of the high frequency details of smaller
patches to distort or be removed completely. Whilst it is difficult to spot these artefacts in a
still image, this effect is pronounced when viewing animated images of camera movement.

To eliminate these aliasing artefacts, a transition band is used to derive a distance value d

in the range [0,1] which is used to modulate the translucency of a given patch, as described
in Equation 4.4 below. Here, the value z represents the distance of the fragment from the
viewer, O f f set is the distance at which the band starts and Size is the distance that the band
spans.

d = max(
z−O f f set

Size
,0.0) (4.4)

The value d is then used to modulate a given patch mask value w, causing it to fade over
the duration transition band before being removed completely from the composition of the
final blend weight. This can be seen in Figure 4.10 where the high frequency pebble details
are displayed when the terrain is viewed from closer distances but gradually faded over
distance to be removed entirely at further distances. The size and offset of transition bands
will be entirely dependent on the size of the patch and the size of texture space relative to
object/world space (in this particular example, an offset of 75 units was used with a band
size of 150 units).

For larger patches, we cannot resort to transitioning them all into translucency as we will

4.4 Implementation 81

Figure. 4.9 Camera movement can cause small patches to exhibit undersampling errors.

be left with none of the original material. However, as the undersampling errors for such
patches occur at greater distances we can simply transition the final blend mask b between
DPT and a simple linear blend using the technique described above. As the details of DPT
are difficult or impossible to pick out over large distances this also has the advantage of
reducing processing overhead by falling back to the simpler linear blending process when
such details offer negligible or no benefit to the scene. In Figure 4.11, we can see a terrain
feature viewed from increasing distances (100, 500 and 1000 units respectively). Here, the
details of DPT (a) become increasingly difficult to spot compared to the linear blend (b)
such that in the final image the differences are near impossible to identify at run-time.

4.4.8 Using DPT

DPT is a texture space effect so the size and parameter range will be entirely dependent on
the size of texture space and the texture information contained within. However, in our use
of DPT we have developed a work flow that should translate to other materials regardless
of the actual texture and parameter settings used. Consider Figure 4.12, which shows the
example low resolution weight texture (a) along with a grass underlay texture that span three
units of texture space along the x-axis and one unit along the y-axis.

82 Transition Contour Synthesis With Dynamic Patch Transitions

(a) (b)

Figure. 4.10 A terrain as viewed from a distance of (from top to bottom) 80, 135 and
170 units from origin (a) along with the associated blend weights (b).

(a) (b)

Figure. 4.11 As the distance from the viewer increases, the details of DPT (a) become
increasingly di�cult to pick out over a simpler linear blend (b).

DPT can work with any number of patches although it was found that two is sufficient
for most cases. The first patch is used to lay down the body of the transition so we will use a
relatively large size of 5 units and a probability modulation constant P value of 6.5 to cover
a broad area of the transition (Figure 4.13(a)). As the material used is sand, we would expect
mostly mid and low frequency details so we will soften the patch with a weight modulation
constant W value of 0.5 (Figure 4.13(b)).

With the first patch providing the bulk of the transition, we will use the second patch to
add subtle detail and shape to the transition contour. We achieve this by using a far smaller
patch size of 12.5 units but with a slightly higher P value of 7.1 to extend the range of this
patch slightly beyond the first patch (Figure 4.14(a)). We add more definition to this patch

4.4 Implementation 83

(a)

(b)

Figure. 4.12 An example weight (a) and underlay texture (b).

layer by increasing its W value to 3 to sharpen the patch shapes. This combination of sharp,
mid frequency detail from this patch with the softer, low frequency detail of the first patch
results in a transition that has far more contour detail and variation from the low resolution
weight texture that can be obtained from standard texture splatting.

This method of using smaller patches to modulate the contour shape of larger patches is
sufficient for most material types, although for materials composed of high frequency detail
one patch may be sufficient (Figure 4.15(a)). However, excessive W values can produce
geometric artefacts as a by-product of the bilinear interpolation stage of DPT where adjacent
patches cause thin spines (4.15(b)). This is because the resulting patch shape from high W

values is too small compared to the unmodulated patch shape. In such cases, one can either
instead use smaller patch sizes, reduce the strength of W modulation or ensure that the
proliferation of such patches does not greatly exceed that of any other larger patches.

84 Transition Contour Synthesis With Dynamic Patch Transitions

(a)

(b)

Figure. 4.13 A large initial patch size (a) further softened with W modulation (b).

4.5 Results and Analysis

The figures in this (and the following) section demonstrate a single terrain material being
blended over an underlay material using DPT and blend maps. For DPT, two patch masks
were accumulated to synthesize the final blend mask. In Figures 4.16 to 4.21 a low res-
olution texture was used as the blend weight source (where a grid of 4x4 weight texels
spanned one unit of the material’s texture space) whereas Figure 4.1 instead used the slope
information of the underlying geometry.

In all Figures it can be seen that whilst blend maps help to add high frequency detail to
the transition, the contour of the transition remains unchanged. On the other hand, DPT uti-
lizes blend maps for finer details but also adds stochastic detail and definition to the broader
shape of the transition. The flexibility of DPT by using different patch and modulation
settings allows for a wide range of materials to be represented. In Figure 4.16, DPT adds
subtle definition and variation to the sand’s transition, helping break up the uniformity of the

4.5 Results and Analysis 85

(a)

(b)

Figure. 4.14 A smaller size for the second patch (a) further sharpened with W modulation
(b).

blend. The sharper contour of the DPT transition in Figure 4.17 is achieved by using higher
W values for each patch mask with the different patch masks adding detail and irregularity
to the transition. In contrast, blend maps produce the same uniform and monotonous blend
contour shape regardless of material.

Figures 4.18 and 4.19 demonstrate DPT’s effectiveness with materials containing non-
salient details. Whereas these details would be too ambiguous and indistinct for techniques
such as FBPB (Ferraris et al., 2012), they contain enough contour information to exhibit
the translucency artefacts demonstrated by blend maps transitions. DPT masks these arte-
facts by creating the illusion of contour preservation to produce more sporadic, intermittent
transition rather than the faded, uniform transitions of blend maps.

The uniformity of a blend’s contour becomes apparent when geographical features pro-
trude from a ground plane, such as in Figures 4.22 and 4.1. In Figure 4.22, blend maps
exhibit strong banding artefacts around the hill, causing it to float artificially above the

86 Transition Contour Synthesis With Dynamic Patch Transitions

(a)

(b)

Figure. 4.15 A single patch can be su�cient in some cases (a) although excessive W
modulation can produce artefacts (b).

ground. DPT’s stochastic and detailed blend contour conveys a greater sense of shape to the
hill, allowing it to “sit” more realistically with the grass beneath. In Figure 4.1 the use of
height/slope information rather than a texture as the blend source does help to break up the
banding of blend maps but the uniformity of the contour shape still looks unnatural. The
intermittency of the DPT blend obfuscates the uniformity of the slope information around
the base of the hill, conveying far more detail and rooting it naturally to the grassy ground
beneath.

In Figure 4.20, the transition uses FBPB for the salient cobble stones and either DPT
or blend maps for the grey non-salient mortar. Whereas the uniform contour of blend maps
exaggerates the translucency artefacts of the non-salient details, DPT completely reshapes
the contour into one that is sharper and more ragged. This helps break the uniformity of the
transition giving it a more natural, more realistic look. When used in conjunction with one
another, FBPB and DPT complement each other, with the former accommodating the more

4.6 Performance Analysis 87

prominent, salient details of a material and the latter introducing variation to the shape and
contour of the non-salience that cannot be easily identified by FBPB.

Figure 4.21 illustrates the limitations of DPT. Here, the cobble features are too large and
salient for DPT to handle correctly as DPT does not take into consideration the topography
of the material. As such, the patch shapes bear no correlation to that of the cobble features
resulting in a contour shape that is nonsensical and unrealistic. In comparison, blend maps
handles this particular material with far more plausibility, preserving the feature shapes
without disrupting the overall detail of the texture. Instead, such materials would be better
handled by an algorithm such as FBPB which can take into consideration the size and shape
of salient features and ensure that the integrity of such features is retained at the transitions.

4.6 Performance Analysis

The performance test case consisted of a multi-pass rendering approach where two ter-
rain materials were blended over a base texture to cover a 256x256 vertex terrain mesh
completely (with no culling or geometry level of detail optimizations for the mesh itself).
The first pass was an early z pre-pass that mapped the base texture onto the mesh with a
subsequent blending pass for each terrain material. The material and base textures were
mipmapped and sampled with anisotropic filtering. The camera was positioned to fill the
viewport (measuring 1920 by 1080 pixels) entirely with a distribution of near and far frag-
ment data. The hardware upon which the tests were performed was a Radeon HD6970M
GPU on a 2.2 GHz CPU laptop with 8 GB of RAM running Microsoft Windows 7.

The two algorithms tested were blend maps and DPT blending. In particular, DPT was
tested accumulating one and two patch masks for each terrain material. For each algorithm,
three blends were performed: a straight blend, where only the blending process is executed,
a normal mapped blend and a normal & parallax mapped blend. As the technique for elim-
inating minification distortion in DPT can be extended to switch over to linear blending for
distance fragments, this basic optimization was used for both algorithms.

Referring to Table 4.1, it can be seen that DPT performs only slightly slower than blend
maps in all cases which is to be expected considering the difference in complexity and detail
of the transitions. As the normal and parallax mapping techniques were applied, the relative
performance of DPT to blend maps remained the same, with the single patch mask blend
increasing slightly as the overhead of normal and parallax mapping begins to become the
bottleneck. After averaging the performance of DPT in relation to blend maps for each test
case, DPT typically operates at 98% (one patch) or 95% (two patches) of the performance

88 Transition Contour Synthesis With Dynamic Patch Transitions

of blend maps. Nevertheless, DPT has a number of advantages over blend maps. The
performance is competitive with blend maps without any extra video memory overhead or
asset pre-processing. DPT is capable of producing transitions of far greater variation than
blend maps. As the generation of these stochastic transitions is entirely automated at run-
time, artists need not manually create transitions for each and every shape and variation for
any given material combination.

Algorithm
Straight Normal Parallax

FPS MPS1 FPS MPS1 FPS MPS1

Base Texture 650 1347.8 -n/a- -n/a- -n/a- -n/a-
Blend Maps 333 690.5 322 667.7 311 644.9
DPT 1 Patch 324 671.8 315 653.2 305 632.4

DPT 2 Patches 316 655.3 305 632.4 297 615.9
1 Pixel throughput (in megapixels per second)

Table 4.1 Performance results.

4.7 Conclusion and Future Works

A novel technique DPT has been proposed for creating irregular blend contours of near-
endless variation in real-time that offer far greater resolution using low resolution blend
weights than conventional techniques. This is achieved by breaking up the contour of the
blend to create detailed and stochastic transitions between materials. This process is entirely
automated and offers consistent, competitive performance for no additional video memory
overhead. Artists have great freedom to create a wide range of material transitions through
patch mask accumulation and parameter modulation. As DPT does not require any pre-
processing of assets, any non-salient textures can be used, allowing for instant previewing
and appraisal of results.

Performance and Scalability: The performance of DPT is 98% and 95% that of blend
maps for one and two iterations accordingly so, the technique performs well given the extra
detail added to the transition contours. As DPT does not require any additional assets for
the materials used it can scale adequately to terrains of any size. However, the algorithm
operates on a per-material basis so if many materials are used the technique can become fill-
rate bound, especially if a large number of patch masks are used per material. In practice,
the number of fragment shader cycles dedicated to DPT can be reduced through dynamically

4.7 Conclusion and Future Works 89

reducing the patch mask count on a distance basis and/or minimizing the fragment overdraw
through masking the terrain on a per-material basis as with the work of Andersson (2007).

Fixed Costs: As DPT does not require any additional per-material assets, the only ad-
ditional resource is the noise function. This can be either a texture or an algorithm, with
the former being favoured for simplicity and efficiency to free up algorithmic logic units for
other duties. As with most of the techniques surveyed in the Literature Review chapter, DPT
requires a GPU with programmable stages, although considering the proliferation of such
units in the consumer market this should rarely be an issue. The technique makes heavy use
of the fragment shader stage of the GPU pipeline so the performance will be a reflection of
the sophistication of this stage. For dynamically controlled patch mask iterations, the GPU
hardware will require hardware paths for dynamic flow control as specified in Shader Model
3.0 (Rege, 2004).

Transition Variation and Detail: DPT works well with a variety of materials without de-
fined features, even those with features that are smaller than the patch sizes. The diversity of
the results is limited only by the randomness of the noise function as textures or algorithms
that are biased to a particular range of values (either due to insufficient texture resolution
or probability distribution) will result in noticeable patterns emerging. This effect can be
reduced by increasing the number of patch masks generated for a particular material but if
greater shape and control is required for contour shape then quilted decal patches can be
used instead of the bilinearly interpolated patches used for the majority of the results.

Future Works: Future work will look into incorporating elements of FBPB’s feature
awareness to preserve salient contours of the materials themselves to further minimize arte-
facts caused by abrupt changes in blend weighting mid-way through such contours. Finally,
research will be conducted into re-synthesizing the tiled material textures in order to address
the inherent regularity of tiled textures to produce truly rich and diverse surfaces at the ma-
terial level. Furthermore, a user study will be performed as a priority to quantitatively show
the improvement of DPT over existing techniques in terms of the resulting transitions and
artist work flow.

90 Transition Contour Synthesis With Dynamic Patch Transitions

(a)

(b)

(c)

Figure. 4.16 A blend between a sand material and concrete underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c).

4.7 Conclusion and Future Works 91

(a)

(b)

(c)

Figure. 4.17 A blend between a rock material and grass underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c).

92 Transition Contour Synthesis With Dynamic Patch Transitions

(a)

(b)

(c)

Figure. 4.18 A blend between a mud material and sand underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c).

4.7 Conclusion and Future Works 93

(a)

(b)

(c)

Figure. 4.19 A blend between a pebble material and grass underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c).

94 Transition Contour Synthesis With Dynamic Patch Transitions

(a)

(b)

(c)

Figure. 4.20 A FBPB blend between a cobble material and grass underlay with a low
resolution weight texture (a) using DPT (b) and blend maps (c).

4.7 Conclusion and Future Works 95

(a)

(b)

(c)

Figure. 4.21 A blend between a cobble material and grass underlay with a low resolution
weight texture (a) using DPT (b) and blend maps (c).

96 Transition Contour Synthesis With Dynamic Patch Transitions

(a) (b) (c)

(d) (e) (f)

Figure. 4.22 A small hill blended with three di�erent materials over a grass underlay
using DPT (a, b & c) and blend maps (d, e & f) along with the generated blend masks
(bottom row).

97

Chapter 5

Conclusions

With the steady advancement of consumer graphics and computing hardware, virtual land-
scapes are becoming ever richer in detail and scope. The latest generations of gaming con-
soles and proliferation of cheap, powerful desktop hardware have pushed the boundaries
and expectations of terrain rendering towards the ever closer goal of photo-realism. Finally,
after decades of research, the approach to terrain texturing has come full circle with the
adoption of virtual texturing. Although certainly not the final word in terrain texturing, the
circumvention of hardware limits on texture size is giving artists unprecedented control and
freedom on how the landscapes are depicted to the user.

In recent years, the adoption of rapid mobile, tablet and other computationally lightweight
platforms have sustained the need for lightweight and efficient algorithms for the rendering
outdoor environments. Techniques such as texture splatting, previously the staple of terrain
texturing for nearly a decade, have continued to find success where hardware resources are
limited. Although simple to conceptualize and implement, the technique and its derivatives
have matured to offer a wide suite of algorithms for texturing terrains without the need for
cutting edge hardware.

5.1 FBPB

Texture splatting and other alpha blending techniques typically exhibit translucency arte-
facts for salient features where the blending process has no regard for the topology of the
material texture. Furthermore, this lack of contextual awareness can also result in contours
that are limited in shape and variation to the blend mask texture, which itself is often of low
resolution. This can lead to transitions between materials containing such salient features
that have unrealistic translucency artefacts and uniform, unvaried contour shapes.

98 Conclusions

FBPB is a novel approach for eliminating these translucency artefacts for salient fea-
tures and introducing variation to the transition contour by ensuring that such features are
drawn in a probabilistic fashion. By using the blend weight as the chance of such features
appearing, the features can be rendered with full opacity or discarded entirely to produce
stochastic transitions. Furthermore, the features themselves have their albedo, normal and
height modulated by dynamic wear and tear to give the appearance of the endless stochastic
detail found in the natural world.

The advantage of FBPB over existing approaches is its awareness of the material topog-
raphy. This allows it to introduce intermittency and irregularity at the transition and along
the contour for materials containing distinct features. The translucency artefacts are elimi-
nated completely and the process is entirely automated in real-time. Compared to tile-based
texture mapping, this detail and variation comes at no extra memory cost other than that of
the meta-texture itself. The performance of FBPB is constant regardless of the number of
features and is capable of scaling up to terrains and materials of any size as the resources
required are on a per-material basis rather than being tied to the geometry of the mesh.

5.2 DPT

As texture splatting and other alpha blending techniques operate at the fragment level no
accommodation is taken into consideration for the overall contour of the transition. Tech-
niques such as blend maps Hardy and Mc Roberts (2006) add much needed high frequency
detail to the resulting transitions but the overall shape of the transition remains the same.
This can result in transitions that have little variation or richness to them on areas of the
terrain that receive similar blend weight values.

DPT is a novel approach for modulating the contour of the transition by dividing texture
space into patches. These patches are then drawn or discarded on a probabilistic fashion
in a manner derived from FBPB. By accumulating the weights of multiple different patch
sizes and filtering them to produce a smooth result, the contour can be greatly enhanced in
both shape and detail. When combined with blend mapping, the result is a transition that is
far richer and more detailed than can be achieved with texture mapping or blend mapping
alone.

The advantage of DPT over blend mapping is that DPT operates on the contour rather
than the material, creating irregular blend contours of near-endless variation in real-time that
offer far greater resolution using low resolution blend weights than conventional techniques.
This process is entirely automated and offers consistent, competitive performance for no

5.3 Future Works 99

additional video memory overhead. Artists have great freedom to create a wide range of
material transitions through patch mask accumulation and parameter modulation. As DPT
does not require any pre-processing of assets, any non-salient textures can be used, allowing
for instant previewing and appraisal of results.

5.3 Future Works

FPBP was designed to work with materials featuring salient features but this general prob-
abilistic approach can be extended to non-salient materials. This has partially been ac-
complished with DPT but could be modified to create variation and irregularity within the
material itself. Much in the way that the variation textures of FBPB work, materials could
be synthesized in real-time by probabilistically combining different surface parameters to
create truly stochastic and detailed materials.

In order to achieve this, the terrain material can be broken up into two layers, the feature
and non-feature layer. These two layers can then be composited together in the fragment
shader to produce the final material texture. The non-feature layer will contain non-salient
details and can be tiled across the terrain without any obvious repetition as the contribution
of this layer is low frequency detail devoid of any distinct information. The feature layer
instead would contain various salient details such as cracks, features, debris and any other
relevant information that looks unnatural when tiled across the terrain due to the repetition
of such details from the tiling process.

A naive solution would be to break up texture space into grids in the same manner as
DPT and render a feature detail per cell of the grid from a list of features (perhaps a texture
array) in a probabilistic manner. However, any regularity of possible feature placement
could become apparent when large enough repetitions of the material texture are in view so,
instead, the placement of each feature could be offset from the cell by a random amount to
minimise the possibility of the same feature occupying the same cell position in a repetition
of the texture close by.

An alternative to offsetting the position of features by random amounts would be to
adopt a process similar to DPT through the use of layering features using different grid
sizes and compositing the results. If a high resolution feature list was used as the exemplars
then the features could be stretched to fit the cell sizes, allowing for far greater variation
in feature size and layout without a noticeable loss in resolution. Additional processing
could be performed in the fragment shader to composite multiple features together in more
elaborate ways than simply summing the albedo of each feature, such as features from

100 Conclusions

higher precedence layers modulating the normal maps of lower precedence features along
the contours of said features.

DPT was designed to work with materials that contain little salient surface information.
However, in practice many materials contain intermittent details such as the odd pebble,
crack or any other topographical information. Although the translucency artefacts of blend-
ing such details with DPT are minimal, preserving these details and extending them beyond
the transition contour will add more detail and richness to the transition. This could be
achieved by integrating some of the feature-aware principles of FBPB to ensure that such
details are rendered more intelligently by the algorithm.

In order to ensure that such intermittent details are not prematurely truncated by the sort
of sharp transitions that DPT is capable of producing, said details could either be suppressed
at the contour of transitions (ensuring that they do not reach beyond the transition boundary
of the material in question) or the transition could be sustained for long enough to ensure
that transition always fully encapsulates a given detail. In either case, the idea would be
to ensure that the details in question are rendered within the boundary of the material’s
transition so that this truncation does not occur.

As such details are often indistinct enough from the material to make isolation (as per
FBPB) difficult, isolating the non-feature and indistinct feature parts of the material into two
separate layers (as described above) and compositing them together in real-time would allow
for more flexibility when implementing an algorithm to address these truncation issues.
Such details could then be probabilistically blended in the same manner to FBPB. If the
extension of such details past the boundary of the transition (for example, a crack or pebble
that straddles the transition boundary of a material) looks unnatural, the alpha channel of
this indistinct feature layer could contain a feature map for that detail that extends beyond
the boundary of said detail so that a portion of the non-feature layer along the periphery of
that detail is also extended past the transition boundary.

The two techniques described above for extending FBPB and DPT could potentially be
unified under one algorithm, allowing for a single solution to be adopted for materials con-
taining details that are either salient, non-salient or both. This would require a modification
to the artistic process as, instead of painting details into one material texture, the algorithm
would require separate layers for both salient/quasi-salient and non-salient details. This
would make adopting stock textures more difficult as the salient feature isolation can be
very difficult for materials with ambiguous details. However, it would offer more variation
in results by allowing any combination of different salient and non-salient texture sets to be
combined together in real-time.

101

References

Michael Abrash. Quake’s lighting model: Surface caching, 1996. URL http://www.

bluesnews.com/abrash/chap68.shtml.

Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering 3rd Edition.
A. K. Peters, Ltd., Natick, MA, USA, 2008. ISBN 987-1-56881-424-7.

AMD. AMD Radeon HD 6970 graphics, 2010. URL http://www.amd.com/en-us/

products/graphics/desktop/6000/6970.

Johan Andersson. Terrain rendering in frostbite using procedural shader splatting. In ACM
SIGGRAPH 2007 courses, SIGGRAPH ’07, pages 38–58, New York, NY, USA, 2007.
ACM.

S. Andersson and J. Goransson. Virtual texturing with WebGL. 2012.

Phillip N. Azariadis and Nikos A. Aspragathos. On using planar developments to perform
texture mapping on arbitrarily curved surfaces. Computers & Graphics, 24(4):539–554,
2000.

Sean Barret. Sparse virtual textures. In Game Developers Conference, 2008.

Robert Berger. Undecidability of the Domino Problem (Memoirs ; No 1/66). Amer Mathe-
matical Society, 1966. ISBN 0821812661.

James F. Blinn. Simulation of wrinkled surfaces. In Proceedings of the 5th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’78, pages 286–292,
New York, NY, USA, 1978a. ACM.

James Frederick Blinn. Computer display of curved surfaces. The University of Utah,
1978b.

Charles Bloom. Terrain texture compositing by blending in the frame-buffer, November
2000. URL http://goo.gl/xDALP.

David Blythe, Brad Grantham, Tom Mcreynolds, and Scott R. Nelson. Advanced Graphics
Programming Techniques Using OpenGL. Number 29 in Course Notes for SIGGRAPH
’99. ACM, August 1999.

K. R. Boff, L. Kaufman, and J. P. Thomas, editors. Handbook of Perception and Human
Performance: Sensory Processes and Perception, volume 1. John Wiley & Sons, New
York, 1986.

http://www.bluesnews.com/abrash/chap68.shtml
http://www.bluesnews.com/abrash/chap68.shtml
http://www.amd.com/en-us/products/graphics/desktop/6000/6970
http://www.amd.com/en-us/products/graphics/desktop/6000/6970
http://goo.gl/xDALP

102 References

Kevin Boulanger. Real-Time Realistic Rendering of Nature Scenes with Dynamic Lighting.
PhD thesis, University of Rennes I, 2008.

Kévin Boulanger, Sumanta Pattanaik, and Kadi Bouatouch. Rendering grass terrains in real-
time with dynamic lighting. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New
York, NY, USA, 2006. ACM. ISBN 1-59593-364-6.

Eric Bruneton and Fabrice Neyret. Precomputed atmospheric scattering. In Proceedings
of the Nineteenth Eurographics Conference on Rendering, EGSR’08, pages 1079–1086,
Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association.

Salvatore A. Catanese, Emilio Ferrara, Giacomo Fiumara, and Francesco Pagano. Ren-
dering of 3d dynamic virtual environments. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques, SIMUTools ’11, pages 351–358,
ICST, Brussels, Belgium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering). ISBN 978-1-936968-00-8. URL
http://dl.acm.org/citation.cfm?id=2151054.2151116.

Ying-Chieh Chen and Chun-Fa Chang. A prism-free method for silhouette rendering in in-
verse displacement mapping. Computer Graphics Forum, 27(7):1929–1936, 2008. ISSN
1467-8659.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplifica-
tion. In Proceedings of the 25th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’98, pages 115–122, New York, NY, USA, 1998. ACM. ISBN
0-89791-999-8.

Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang tiles for image
and texture generation. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 287–
294, New York, NY, USA, 2003. ACM. ISBN 1-58113-709-5.

John Conway. Mathematical games. Scientific American, 1970.

Robert L. Cook. Shade trees. In Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’84, pages 223–231, New York, NY,
USA, 1984. ACM. ISBN 0-89791-138-5.

Daniel Cornel. Texture virtualization for terrain rendering. Technical report, Vienna Uni-
versity of Technology, 2012.

Crytek. Character budgets, 2011a. URL http://docs.cryengine.com/display/SDKDOC2/

Character+Budgets.

Crytek. Painting terrain, 2011b. URL http://freesdk.crydev.net/display/SDKDOC2/

Painting+Terrain.

Karel Culik, II. An aperiodic set of 13 wang tiles. Discrete Math., 160(1-3):245–251,
November 1996. ISSN 0012-365X.

Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU ray-casting for scalable terrain
rendering. In Proceedings of Eurographics 2009 - Areas Papers, pages 43–50, 2009a.

http://dl.acm.org/citation.cfm?id=2151054.2151116
http://docs.cryengine.com/display/SDKDOC2/Character+Budgets
http://docs.cryengine.com/display/SDKDOC2/Character+Budgets
http://freesdk.crydev.net/display/SDKDOC2/Painting+Terrain
http://freesdk.crydev.net/display/SDKDOC2/Painting+Terrain

References 103

Christian Dick, Jens Schneider, and Rüdiger Westermann. Efficient Geometry Compression
for GPU-based Decoding in Realtime Terrain Rendering. Computer Graphics Forum, 28:
67–83, M 2009b.

Rouslan Dimitrov. Cascaded shadow maps. Technical report, NVIDIA Corporation,
2007. URL http://developer.download.nvidia.com/SDK/10/opengl/src/cascaded_

shadow_maps/doc/cascaded_shadow_maps.pdf.

M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B. Mineev-
Weinstein. Roaming terrain: Real-time optimally adapting meshes. In Visualization ’97,
Proceedings, pages 81–88, 1997.

William Dungan, Jr., Anthony Stenger, and George Sutty. Texture tile considerations for
raster graphics. In Proceedings of the 5th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’78, pages 130–134, New York, NY, USA, 1978.
ACM.

Epic Games. Unreal technology. URL http://www.unrealengine.com/.

Epic Games. Setting up terrain in Unreal, 2009a. URL http://udn.epicgames.com/Three/

SettingUpTerrain.html.

Epic Games. Terrain advanced textures, 2009b. URL http://udn.epicgames.com/Three/

TerrainAdvancedTextures.html.

John Ferraris, Christos Gatzidis, and Feng Tian. Automating terrain texturing in real-time
using a rule-based approach. The International Journal of Virtual Worlds, 9(4), December
2010a.

John Ferraris, Feng Tian, and Christos Gatzidis. Feature-based probability blending. In
ACM SIGGRAPH ASIA 2010 Posters, SA ’10, pages 51:1–51:1, New York, NY, USA,
2010b. ACM. ISBN 978-1-4503-0524-2.

John Ferraris, Feng Tian, and Christos Gatzidis. Feature-based probabilistic texture blend-
ing with feature variations for terrains. Computer Animation and Virtual Worlds, 23(3-4):
435–445, 2012. ISSN 1546-427X.

John Ferraris, Feng Tian, and Christos Gatzidis. Automatic terrain texturing with dynamic
patch transitions. Computers in Entertainment, ahead of print, 2015.

Jonathan Ferraris and Christos Gatzidis. A rule-based approach to 3D terrain generation
via texture splatting. In Proceedings of the International Conference on Advances in
Computer Entertainment Technology, ACE ’09, pages 407–408, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-864-3.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Model-
ing the interaction of light between diffuse surfaces. In Proceedings of the 11th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’84, pages
213–222, New York, NY, USA, 1984. ACM. ISBN 0-89791-138-5.

Khronos Group. Khronos releases Opengl 4.4 specification. July 2013. URL https://www.

khronos.org/news/press/khronos-releases-opengl-4.4-specification.

http://developer.download.nvidia.com/SDK/10/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://www.unrealengine.com/
http://udn.epicgames.com/Three/SettingUpTerrain.html
http://udn.epicgames.com/Three/SettingUpTerrain.html
http://udn.epicgames.com/Three/TerrainAdvancedTextures.html
http://udn.epicgames.com/Three/TerrainAdvancedTextures.html
https://www.khronos.org/news/press/khronos-releases-opengl-4.4-specification
https://www.khronos.org/news/press/khronos-releases-opengl-4.4-specification

104 References

Pascal Guitton, Jean Roman, and Gilles Subrenat. Implementation results and analysis
of a parallel progressive radiosity. In Proceedings of the IEEE symposium on Parallel
rendering, PRS ’95, pages 31–38, New York, NY, USA, 1995. ACM. ISBN 0-89791-
774-X.

Chris Hall. Virtual textures texture management in silicon. Technical report, 3Dlabs Inc.,
1999.

Charles Han, Eric Risser, Ravi Ramamoorthi, and Eitan Grinspun. Multiscale texture syn-
thesis. In ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pages 51:1–51:8, New York,
NY, USA, 2008. ACM. ISBN 978-1-4503-0112-1.

Alexandre Hardy and Duncan Andrew Keith Mc Roberts. Blend maps: enhanced terrain
texturing. In Proceedings of the 2006 annual research conference of the South African
institute of computer scientists and information technologists on IT research in developing
countries, SAICSIT ’06, pages 61–70, Republic of South Africa, 2006. South African
Institute for Computer Scientists and Information Technologists. ISBN 1-59593-567-3.

Paul S Heckbert. Survey of texture mapping. IEEE Comput. Graph. Appl., 6:56–67, Novem-
ber 1986. ISSN 0272-1716.

Paul S. Heckbert. Fundamentals of texture mapping and image warping. Technical Re-
port UCB/CSD-89-516, EECS Department, University of California, Berkeley, Jun 1989.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html.

Alex Herrera. Ending the tradeoff of time vs. quality when creating 3D computer graphics
content - stepping up the production workflow with real-time rendering software. ACM
Computer Graphics, 44(1), February 2010.

Naty Hoffman and Arcot J. Preetham. Graphics programming methods. chapter Real-time
Light-atmosphere Interactions for Outdoor Scenes, pages 337–352. Charles River Media,
Inc., Rockland, MA, USA, 2003. ISBN 1-58450-299-1.

Charles-Frederik Hollemeersch, Bart Pieters, Peter Lambert, and Rik Van de Walle. Ac-
celerating virtual texturing using CUDA. In Wolfgang Engel, editor, GPU Pro, pages
623–642. A K Peters, 2010.

Id Software. Ultimate doom, a. URL http://www.idsoftware.com/games/doom/

doom-ultimate/.

Id Software. Quake, b. URL http://www.idsoftware.com/games/quake/quake/.

Id Software. Wolfensten 3d and spear of destiny, c. URL http://www.idsoftware.com/

games/wolfenstein/wolf3d/.

David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for non-
diffuse environments. SIGGRAPH Comput. Graph., 20(4):133–142, August 1986. ISSN
0097-8930.

Intel. Fast CPU DXT compression. Technical report, Intel, 2012a.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html
http://www.idsoftware.com/games/doom/doom-ultimate/
http://www.idsoftware.com/games/doom/doom-ultimate/
http://www.idsoftware.com/games/quake/quake/
http://www.idsoftware.com/games/wolfenstein/wolf3d/
http://www.idsoftware.com/games/wolfenstein/wolf3d/

References 105

Intel. Pre-compositing textures for terrain rendering, 2012b. URL http://software.intel.

com/en-us/articles/pre-compositing-textures-for-terrain-rendering.

Deane B. Judd. Color in business science and industry. Appl. Spectrosc., 7(2):90–91, May
1953.

James T. Kajiya. The rendering equation. In Proceedings of the 13th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’86, pages 143–150, New
York, NY, USA, 1986. ACM. ISBN 0-89791-196-2.

Khronos Group. WebGL specification. URL http://www.khronos.org/registry/webgl/

specs/latest/.

R. Kooima, J. Leigh, A. Johnson, D. Roberts, M. SubbaRao, and T.A. DeFanti. Planetary-
scale terrain composition. Visualization and Computer Graphics, IEEE Transactions on,
15(5):719 –733, sept.-oct. 2009. ISSN 1077-2626.

Yueh-Yi Lai and Wen-Kai Tai. Transition texture synthesis. J. Comput. Sci. Technol., 23(2):
280–289, March 2008. ISSN 1000-9000.

Yueh-Yi Lai, Wen-Kai Tai, Chin-Chen Chang, and Chen-Duo Liu. Synthesizing transi-
tion textures on succession patterns. In Proceedings of the 3rd international conference
on Computer graphics and interactive techniques in Australasia and South East Asia,
GRAPHITE ’05, pages 273–276, New York, NY, USA, 2005. ACM. ISBN 1-59593-201-
1.

G.W. Larson, H. Rushmeier, and C. Piatko. A visibility matching tone reproduction operator
for high dynamic range scenes. Visualization and Computer Graphics, IEEE Transactions
on, 3(4):291–306, 1997.

Sylvain Lefebvre and Fabrice Neyret. Pattern based procedural textures. In Proceedings
of the 2003 symposium on interactive 3D graphics, I3D ’03, pages 203–212, New York,
NY, USA, 2003. ACM. ISBN 1-58113-645-5.

Sylvain Lefebvre, Jérome Darbon, and Fabrice Neyret. Unified Texture Management for
Arbitrary Meshes. Rapport de recherche RR-5210, INRIA, 2004. URL http://hal.

inria.fr/inria-00070783.

J. P. Lewis. Algorithms for solid noise synthesis. In Proceedings of the 16th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’89, pages 263–270,
New York, NY, USA, 1989. ACM. ISBN 0-89791-312-4.

Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. Real-time texture
synthesis by patch-based sampling. ACM Trans. Graph., 20(3):127–150, July 2001. ISSN
0730-0301.

Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using nested
regular grids. ACM Transactions on Graphics, 23:769–776, 2004.

Shang Ma, Xiaohui Liang, Zhuo Yu, and Wei Ren. Light space cascaded shadow maps for
large scale dynamic environments. In Proceedings of the 2nd International Workshop on
Motion in Games, MIG ’09, pages 243–255, Berlin, Heidelberg, 2009. Springer-Verlag.
ISBN 978-3-642-10346-9.

http://software.intel.com/en-us/articles/pre-compositing-textures-for-terrain-rendering
http://software.intel.com/en-us/articles/pre-compositing-textures-for-terrain-rendering
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
http://hal.inria.fr/inria-00070783
http://hal.inria.fr/inria-00070783

106 References

Benoit Mandelbrot. How long is the coast of britain? statistical self-similarity and fractional
dimension. Science, 156(3775):636–638, 1967.

Mircea Marghidanu. Fast computation of terrain shadow maps. Technical report, nervus.org,
2002. URL www.nervus.org/files/fctsm.pdf.

Nelson L. Max and Barry G. Becker. Bump shading for volume textures. IEEE Comput.
Graph. Appl., 14:18–20, July 1994. ISSN 0272-1716.

Albert Julian Mayer. Virtual Texturing. PhD thesis, University of Technology, Favoriten-
strasse 9-11/186, A-1040 Vienna, Austria, October 2010.

Morgan McGuire and Max McGuire. Steep parallax mapping. I3D 2005 Poster, 2005. URL
http://www.cs.brown.edu/research/graphics/games/SteepParallax/index.html.

Microsoft. Programming Guide for Direct3D 11: Tessellation Overview. Microsoft, 2012.

Microsoft. DirectX tiled resources. Technical report, Microsoft Corporation, 2013. URL
http://msdn.microsoft.com/en-us/library/windows/apps/bg182880.aspx.

Martin Mittring and Crytek GmbH. Advanced virtual texture topics. In ACM SIGGRAPH
2008 classes, SIGGRAPH ’08, pages 23–51, New York, NY, USA, 2008. ACM.

Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based procedural mod-
eling of facades. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY,
USA, 2007. ACM.

F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of eroded fractal
terrains. In Proceedings of the 16th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’89, pages 41–50, New York, NY, USA, 1989. ACM.
ISBN 0-89791-312-4.

M.E. Newell, R.G. Newell, and T.L. Sancha. A new approach to the shaded picture problem.
In Proc. ACM National Conference,, pages 443–450. ACM, 1974.

Tomoyuki Nishita, Isao Okamura, and Eihachiro Nakamae. Shading models for point and
linear sources. ACM Trans. Graph., 4:124–146, April 1985. ISSN 0730-0301.

Alan Norton, Alyn P. Rockwood, and Philip T. Skolmoski. Clamping: A method of an-
tialiasing textured surfaces by bandwidth limiting in object space. In Proceedings of the
9th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’82, pages 1–8, New York, NY, USA, 1982. ACM. ISBN 0-89791-076-1.

nVidia. GPU gems - chapter 12. tile-based texture mapping, 2004. URL http://http.

developer.nvidia.com/GPUGems2/gpugems2_chapter12.html.

nVidia. Geforce GTX 660 specifications. Technical report, 2012. URL http://www.

geforce.co.uk/hardware/desktop-gpus/geforce-gtx-660.

nVidia. Corporate timeline, 2013. URL http://www.nvidia.com/page/corporate_

timeline.html.

www.nervus.org/files/fctsm.pdf
http://www.cs.brown.edu/research/graphics/games/SteepParallax/index.html
http://msdn.microsoft.com/en-us/library/windows/apps/bg182880.aspx
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter12.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter12.html
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-660
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-660
http://www.nvidia.com/page/corporate_timeline.html
http://www.nvidia.com/page/corporate_timeline.html

References 107

Renato M. Okamoto, Flávio L. de Mello, and Claudio Esperança. Texture management
in view dependent application for large 3D terrain visualization. In Proceedings of the
2008 Spring simulation multiconference, SpringSim ’08, pages 641–647, San Diego, CA,
USA, 2008. Society for Computer Simulation International. ISBN 1-56555-319-5. URL
http://dl.acm.org/citation.cfm?id=1400549.1400652.

OpenGL Specification. ARB_tessellation_shader, 2012. URL http://www.opengl.org/

registry/specs/ARB/tessellation_shader.txt.

James P. O’Shea, Maneesh Agrawala, and Martin S. Banks. The influence of shape cues on
the perception of lighting direction. Journal of Vision, 10, December 2010.

Vincent Pegoraro, Mathias Schott, and Philipp Slusallek. A mathematical framework for ef-
ficient closed-form single scattering. In Proceedings of Graphics Interface 2011, GI ’11,
pages 151–158, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2011. Canadian Human-Computer Communications Society. ISBN 978-1-4503-
0693-5.

Ken Perlin. An image synthesizer. In Proceedings of the 12th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH ’85, pages 287–296, New York,
NY, USA, 1985. ACM. ISBN 0-89791-166-0.

Ken Perlin. Improving noise. In Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’02, pages 681–682, New York, NY,
USA, 2002. ACM. ISBN 1-58113-521-1.

Bui Tuong Phong. Illumination for computer generated pictures. Commun. ACM, 18:311–
317, June 1975. ISSN 0001-0782.

Phil Plait. How far away is the horizon? 2009. URL http://blogs.discovermagazine.

com/badastronomy/2009/01/15/how-far-away-is-the-horizon/#.Uz55wPldXmt.

Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time relief mapping on
arbitrary polygonal surfaces. In Proceedings of the 2005 symposium on Interactive 3D
graphics and games, I3D ’05, pages 155–162, New York, NY, USA, 2005. ACM. ISBN
1-59593-013-2.

Ashu Rege. Shader model 3.0. Technical report, nVidia Corporation, 2004.

John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann, and Amitabh Varsh-
ney. Real-time procedural textures. In Proceedings of the 1992 symposium on Interactive
3D graphics, I3D ’92, pages 95–100, New York, NY, USA, 1992. ACM. ISBN 0-89791-
467-8.

Tobias Ritschel, Thorsten Grosch, Jan Kautz, and Hans-Peter Seidel. Interactive global illu-
mination based on coherent surface shadow maps. In Proceedings of graphics interface
2008, GI ’08, pages 185–192, Toronto, Ont., Canada, Canada, 2008. Canadian Informa-
tion Processing Society. ISBN 978-1-56881-423-0.

Andrew Rollings and David Morris. Game Architecture and Design: A New Edition. New
Riders Games, 2003. ISBN 0735713634.

http://dl.acm.org/citation.cfm?id=1400549.1400652
http://www.opengl.org/registry/specs/ARB/tessellation_shader.txt
http://www.opengl.org/registry/specs/ARB/tessellation_shader.txt
http://blogs.discovermagazine.com/badastronomy/2009/01/15/how-far-away-is-the-horizon/#.Uz55wPldXmt
http://blogs.discovermagazine.com/badastronomy/2009/01/15/how-far-away-is-the-horizon/#.Uz55wPldXmt

108 References

Zhang Rong-hua. Real-time optimization technology and its application in terrain rendering.
In Image and Signal Processing (CISP), 2011 4th International Congress on, volume 3,
pages 1349–1352, 2011.

Mattias Roupé and Mikael Johansson. Visual quality of the ground in 3D models: using
color-coded images to blend aerial photos with tiled detail-textures. In Proceedings of
the 6th International Conference on Computer Graphics, Virtual Reality, Visualisation
and Interaction in Africa, AFRIGRAPH ’09, pages 73–79, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-428-7.

Daniel L. Schacter, Daniel T. Gilbert, and Daniel M. Wegner. Psychology. Worth Publishers,
2010. ISBN 1429237198.

Musawir A. Shah, Jaakko Kontinnen, and Sumanta Pattanaik. Real-time rendering of
realistic-looking grass. In Proceedings of the 3rd International Conference on Computer
Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE
’05, pages 77–82, New York, NY, USA, 2005. ACM. ISBN 1-59593-201-1.

John Snydre and Derek Nowrouzezahrai. Fast soft self-shadowing on dynamic height fields.
Computer Graphics Forum, 27(4):1275–1283, 2008. ISSN 1467-8659.

Jos Stam. Aperiodic texture mapping. Technical report, European Research Consortium for
Informatics and Mathematics (ERCIM), 1997.

A. James Stewart. Fast horizon computation at all points of a terrain with visibility and
shading applications. IEEE Transactions on Visualization and Computer Graphics, 4(1):
82–93, March 1998.

Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The clipmap: a virtual
mipmap. In Proceedings of the 25th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’98, pages 151–158, New York, NY, USA, 1998. ACM.
ISBN 0-89791-999-8.

Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and or-
dering large radiosity computations. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’94, pages 443–450, New
York, NY, USA, 1994. ACM. ISBN 0-89791-667-0.

J.M. van Verth and L.M. Bishop. Essential Mathematics for Games & Interactive Ap-
plications: A Programmer’s Guide. Morgan Kaufmann series in interactive 3D tech-
nology. Elsevier, Morgan Kaufmann Publ., 2008. ISBN 9780123742971. URL http:

//books.google.co.uk/books?id=zkEY9RIm4WkC.

J. van Waveren. id tech 5 challenges: From texture virtualization to massive paralleliza-
tion. In ACM Annual SIGGRAPH Conference 2009: Beyond Programmable Shading,
SIGGRAPH ’09, New York, NY, USA, 2009. ACM.

Hao Wang. Proving theorems by pattern recognition ii. Bell System Technical Journal, 40:
1–42, 1961. ISSN 0001-0782.

http://books.google.co.uk/books?id=zkEY9RIm4WkC
http://books.google.co.uk/books?id=zkEY9RIm4WkC

References 109

David R. Warn. Lighting controls for synthetic images. In Proceedings of the 10th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’83, pages
13–21, New York, NY, USA, 1983. ACM. ISBN 0-89791-109-1.

Li-Yi Wei. Tile-based texture mapping on graphics hardware. In ACM SIGGRAPH 2004
Sketches, SIGGRAPH ’04, pages 67–, New York, NY, USA, 2004. ACM. ISBN 1-58113-
896-2.

Mattias Widmark. Terrain in battlefield 3: A modern, complete and scalable system. In
Game Developers Conference 2012, GDC ’12, 2012.

Qing Wu and Yizhou Yu. Feature matching and deformation for texture synthesis. In ACM
SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 364–367, New York, NY, USA, 2004.
ACM.

Steve Zelinka and Michael Garland. Jump map-based interactive texture synthesis. ACM
Trans. Graph., 23:930–962, October 2004. ISSN 0730-0301.

Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split shadow maps for large-
scale virtual environments. In Proceedings of the 2006 ACM International Conference on
Virtual Reality Continuum and Its Applications, VRCIA ’06, pages 311–318, New York,
NY, USA, 2006. ACM. ISBN 1-59593-324-7.

Huijie Zhang, Dantong Ouyang, Heping Lin, and Weizhou Guan. Texture synthesis based
on terrain feature recognition. In Proceedings of the 2008 International Conference on
Computer Science and Software Engineering - Volume 02, pages 1158–1161, Washing-
ton, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3336-0.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Focus of Thesis
	1.2 Organization of Thesis
	1.3 Summary of Original Contributions

	2 Literature Review
	2.1 Chapter Overview
	2.2 Background Information
	2.3 Technique Categorization
	2.4 Evaluation Criteria
	2.5 Texture Splatting
	2.5.1 Implementation
	2.5.2 Applications
	2.5.3 Evaluation

	2.6 Tile-Based Texture Mapping
	2.6.1 Implementation
	2.6.2 Applications
	2.6.3 Evaluation

	2.7 Virtual Texturing
	2.7.1 Implementation
	2.7.2 Applications
	2.7.3 Evaluation

	2.8 Summary

	3 Feature-Based Probabilistic Blending
	3.1 Chapter Overview
	3.2 Background Information
	3.2.1 Focus of Research
	3.2.2 Novelty of Research

	3.3 Related Work
	3.4 Implementation
	3.4.1 Probabilistic Blending
	3.4.2 Uniform Blending of Feature Texels
	3.4.3 Tiling Considerations
	3.4.4 Creating the Meta-texture
	3.4.5 Centroid Position
	3.4.6 Weight/Seed Texture Lookup
	3.4.7 Weighting Coefficients
	3.4.8 Weighting Equation
	3.4.9 Blending Equation
	3.4.10 Feature Variations

	3.5 Results
	3.6 Performance Analysis
	3.7 Conclusion and Future Works

	4 Transition Contour Synthesis With Dynamic Patch Transitions
	4.1 Chapter Overview
	4.2 Background Information
	4.2.1 Focus of Research
	4.2.2 Novelty of Research

	4.3 Related Work
	4.3.1 Alpha Blending
	4.3.2 Tile-Based texture Mapping
	4.3.3 Virtual Texturing

	4.4 Implementation
	4.4.1 Centroid Calculation
	4.4.2 Probability Sampling
	4.4.3 Weighting Equation
	4.4.4 Bilinear Interpolation
	4.4.5 Blend Mask Composition
	4.4.6 Parallax Mapping
	4.4.7 Minification Correction
	4.4.8 Using DPT

	4.5 Results and Analysis
	4.6 Performance Analysis
	4.7 Conclusion and Future Works

	5 Conclusions
	5.1 FBPB
	5.2 DPT
	5.3 Future Works

	References

