J. Andreas Barentzen

Kongens Lyngby 2002

IMM-PHD-2002-BMP 98-0011-311

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

The topic of this thesis is volume graphics, and in particular techniques which
are applicable to volume sculpting.

A volume sculpting system is an interactive computer program for shape mod-
elling where the shape is represented volumetrically in a 3D lattice of so—called
voxels. It is argued that it is reasonable to classify the tools in a sculpting sys-
tem according to whether the tools tend to deform the sculpted object or work
according to the paradigm of Constructive Solid Geometry (CSG). Existing vol-
ume sculpting systems are surveyed, and it is found that almost all systems
provide sculpting tools belonging exclusively to either or both categories. It
is also found that existing systems have a number of important deficiencies.
For instance, none of the systems provide a generic methodology for deforma-
tion. Rather they provide specific solutions for concrete deformation tasks, e.g.
smoothing or the creation of small protrusions or dents. Moreover, most of the
existing systems are based on a volume representation where the value of a voxel
is construed as a pseudo—density with no precise meaning. More precisely, we
can tell from a voxel whether it is on the inside or the outside of a represented
solid, but nothing more.

In this thesis it is argued, that it is useful to be able to give a voxel a more precise
meaning. This leads to a cleaner volume representation, and if we choose (as
the precise meaning of a voxel) the shortest distance from the voxel position
to the closest surface point, we reap additional benefits: It becomes trivial to
find surface points, and it becomes much easier to find offset surfaces and to
compute various geometric properties such as curvature.

Generic techniques for constructive (CSG based) and deformative tools have

been implemented. Both sets of tools maintain a volume representation where
the meaning of a voxel is shortest distance. The deformative tools are based
on a specialization of the Level-Set Method. The main advantage of using the
Level-Set Method is that it is a very generic technique as opposed to methods
previously proposed. The main task here has been to restrict the effect of the
Level-Set Method to a local region of influence and to ensure a smooth transition
between the affected region and the unaffected.

The theoretical problem of what shapes that are suitable for volume represen-
tation has been considered. I reach the conclusion that a shape is suitable if
we can roll a ball on either side of the surface in such a way that no point on
(either side of) the surface is untouched. Here, the size of the ball depends on
the scale of the voxel lattice. The intuitive quality that the ball can roll on
either side of the surface of the solid has been formulated more precisely using
concepts from mathematical morphology. Essentially, if the solid is unchanged
by a morphological opening using the ball as structuring element, then the ball
rolls on the interior side. Likewise, invariance with respect to closing implies
that the ball can roll on the exterior. These results are, of course, of theoretical
interest, but not exclusively: A technique for constructive manipulation which
maintains the properties of openness and closedness has been developed.

A technique for fast volume visualization is an essential part of a sculpting
system. Two techniques for interactive visualization have been implemented: A
novel technique based on point rendering and the well-known Marching Cubes
Method. The point rendering technique is compared to marching cubes and to
texture based visualization. A ray casting method has also been implemented
for the generation of high quality images.

The most important disadvantage of the volume representation is its lack of
support for features at different scales. By choosing a volume representation,
we implicitly choose a scale, and features that are very small with respect to
that scale are essentially un-representable. As a solution, I propose an adaptive
framework, where voxels are no longer stored in a regular grid but in adaptive
grid. This allows for higher concentrations of voxels in some parts of the volume
than others, and this, in turn, allows for features at vastly differing scales.

Resumé

Denne afhandling omhandler volumengrafik generelt, men med seerligt fokus pa
teknikker, der kan anvendes til volume sculpting.

Et system til volume sculpting er et interaktivt computer—program til formgivn-
ing, hvor formen er repraesenteret volumetrisk i et 3D net af sakaldte voxels. Der
argumenteres for rimeligheden af at klassificere redskaber i et sculpting system
i henhold til hvorvidt redskaberne deformerer formen eller fungerer i henhold til
Constructive Solid Geomtry (CSG). Der gives en oversigt over eksisterende sys-
temer pa basis af hvilken det sluttes, at sa godt som alle systemer udelukkende
har redskaber, der hidrgrer i een af de to kategorier. En rackke problemer ved ek-
sisterende systemer bliver ogsa bergrt. For eksempel er der ingen af systemerne,
som er i besiddelse af en generel teknik til deformation. I stedet indeholder de
specifikke teknikker til konkrete deformationsopgaver, herunder udglatning eller
det at skabe et lille hul er en bule. Derudover er de fleste eksisterende systemer
baseret pa en volumenrepracsentation hvor veerdien af en voxel opfattes som
en pseudo—massefylde uden en mere praecis betydning. Helt konkret betyder
det, at vi ud fra en voxel kun kan slutte om den er inden i eller udenfor det
repraesenterede objekt — men ikke andet end dette.

I denne afhandling argumenteres der for, at det er nyttigt at kunne tilskrive
en voxel en mere praecis betydning. Dette leder for det fgrste til en renere
volumenrepraesentation, og hvis vi veelger (som den praecise betydning) den
korteste afstand fra voxel positionen til det nsermeste punkt pa overfladen, da er
der yderligere fordele: Det er i givet fald trivielt at finde punkter pa overfladen,
at finde offset overflader, og det er nemmere at beregne diverse geometriske
egenskaber, herunder krumning.

Vi

Gennerelle teknikker til konstruktive (d.v.s. CSG baseret) og deformative red-
skaber er blevet implementeret. Begge grupper af redskaber bevarer en volu-
menrepraesentation, hvor betydningen af en voxel er korteste afstand. De de-
formative redskaber er baseret pa en specialisering af Level-Set Metoden. Den
vaesentligste fordel ved denn metode er, at det er en meget generel teknik i
modsaetning til de tidligere foreslaede. Den vaesentligste opgave har veaeret at
begraense effekten af Level-Set Metoden til en lokal omegn og at sikre en glat
overgang imellem det som er pavirket, og det som er upavirket.

Det teoretiske problem, der vedrgrer hvilke former, der er velegnede til volu-
menrepraesentationen er blevet overvejet. Jeg nar den slutning, at en form er
velegnet, hvis vi kan trille en kugle pa hver side af formens overflade pa en
sadan made, at intet punkt pa overfladen er ubergrt — hverken nar kuglen er pa
den ene eller den anden side. Her velges kuglens stgrrelse i henhold til voxel
nettets skala. Den kvalitet at en kugle kan trille kan formuleres mere praecist
med operationer fra matematisk morfologi. Hvis formen er uforandret af open—
operationen pa formen med kuglen (fra for) som strukturelement, sa svarer det
til, at vi kan trille kuglen pa indersiden. Tilsvarende sa medfgrer invarians med
hensyn til close—operationen, at kuglen kan trille pa ydersiden. Disse resul-
tater er af teoretisk interesse, men ikke udelukkende: En teknik til konstruktiv
manipulationen, der bevarer invarians m.h.t. open og close er blevet udviklet.

En teknik til hurtig visualisering af volumendata er en uundveerlig del af ethvert
system til volume sculpting. To teknikker til interaktiv visualisering er blevet
implementeret: En ny teknik baseret pa punktrendering og den kendte March-
ing Cubes algoritme. Punktrenderingsteknikken sammenlignes med Marching
Cubes og med teksturbaseret visualisering. En ray casting teknik er ogsa im-
plementeret med det formal at generere billeder af hgjere kvalitet.

Den vaesentligste ulempe ved volumenrepraesentationen er, at det er vanskeligt
at modellere objekter med detaljer i forskellige stgrrelser. Ved at vealge en
volumenoplgsning veelger vi implicit en skala, og detaljer, der er meget sma i
forhold til denne skala er generelt ikke repraesenterbare. Som en lgsning foreslar
jeg et adaptivt system, hvor voxels ikke lsengere gemmes i et reguleert net,
men i et adaptivt net. Dette tillader en hgjere koncentration af voxels i nogle
omrader end i andre, og dette abner igen mulighed for detaljer af meget forskellig
stgrrelse.

Contents

[Prefacd

Notat obbreviationd

lI__Background

[I__Introductiod

(L1 Basics of Volume Graphicd
(L2 Motivation and Goald
[Outlind o

xiii

XV

12

18

19

viii

CONTENTS

B2 S T T |
E3Z The Vol R |
B4 Vomodeld
BA Discussiod
_Solids Suitable for Vol R od
KU1 Permissible Solidd

CONTENTS ix
b2 Voxelizatiod 89
.3 Fast Marching Method 96
B4 Discussiol . . .« oot 103

6__Constructive Manipulationd 105
1 Previous Worl 106
6.2 Correcting the Distance Field 109
(6.3 The Morphological ApproacH 112
(6.4 Alternative implementatiod 119
Bs Resultd. 121
B6 Discussiolo 127

l_Deformative Manipulationd 131
[1_Elastic Deformation and Animatiod 133
2 Warping and Morphind 135
L3 The Level-Set Method 137
(.4 Adapting the Level Set Method 142
.5 Estimating Mean Curvaturd oo ooo 148
[.6 Testing the Deformative Toold 155
FZ Discussiol oot 159

B Visualization and Interaction 167
B1 Volume Visualizatiod 168
R2 Comparison of Strategied 179

CONTENTS

R.3 Visnalization by Point Renderind 180
R4 Visnalization using Marching Cubed 187
RS Visnalization by Ray Castingd 188
R.6The Interactive Sculpting Systend 189
BZ Resultd. 191
R8 Conclusiond 199
IV__Adaptive Volumesd 201
[0__Adaptive Resolution Volume Graphicd 203
0.1 _Choosing a Representation 204
0.2 __The Adaptive Resolution Volume Databasd 207
0.3 The Geometry Databasd 210
0.4 The Voxel Databasd 211
05 Algorithmd 213
06 Resultd. 226
7 Discussiod 228
IV__A Look Back, A Look Ahead 237
(10 Conclusiond 239
01 Contributiond 239

CONTENTS xi

[10.3 Applications of Volume Sculpting 243
[Referenced 244
IVI__Appendiced 261
[A_Definitions from Mathematical Morphology 263
IB_Neighbourhoods and connectednesd 267
IC_Proof of Propaosition 271
ID_Platforms & Source Codd 275
E Appendix to Part ~ 279

[E.1__Comparison of Tinear and Exponential Probing 279

[E2 Floating Point Formad 281

Index 283

xii CONTENTS

Preface

This thesis has been prepared at Informatics and Mathematical Modelling af
the Technical University of Denmark in partial fulfillment of the requirements
for the degree of Ph.D. in engineering.

Some of the work in this thesis has previously been published in [28| [29].

The next 300 or so pages are about many things, but the uniting theme is the
volumetric representation of solids. The driving motivation is the observation
that the volumetric representation lends itself quite well to intuitive, interactive
sculpting of solids of high genus and organic appearance. Interactive volume
sculpting involves many things such as visualization, which is a subject of this
thesis and user interface issues which are not. In general, the focus is on the
underlying technology of sculpting systems. The questions that I ask and try to
answer are: What kinds of solids are suitable for volume representation? How
exactly do we represent a solid volumetrically? Given a volumetric solid, how
should it be manipulated and visualized?

The reader is assumed to have a basic knowledge of mathematics, computer
science, and computer graphics. A basic understanding of the volumetric rep-
resentation is not assumed but would probably be an advantage.

The spelling in this thesis is sometimes British and sometimes American. In
general, the technical terms are spelt in the way they mostly appear in papers
which is the American way, while everyday words (e.g. modelling or colour)
are spelt in the British way. All those “ize” words (e.g. visualize) are spelt
with a ‘z’ rather than an ‘s’. Note, however, that the “ize” ending is, in fact,
legitimate also in British English [57]. One should choose rather than sway, but

Xiv Preface

this is difficult when one has been taught British English yet reads texts mostly
written in American English by people of all sorts of nationalities. It would
go against my inclination to change the British words, and it would be a bit
peculiar (and very difficult) to use only British spelling.

Is there such a thing as a mid—Atlantic [I83] idiom? A language that is neither
British nor American but influenced by both and polluted by the common mis-
takes which non—native speakers generally make? If so, this text is written in
that idiom. Otherwise, excuse my language and my spelling.

Some terms in this thesis have been invented. In one instance, this might have
been avoided: The term “constructive manipulation” is used to denote a manip-
ulation according to the paradigm of constructive solid geometry of a volumetric
solid. Tt would perhaps be more prudent to simply rephrase and use “volumet-
ric CSG”. However, there are constructive and deformative manipulations which
are complementary, and it is nice that there is some symmetry in how they are
named.

I would like to thank my advisor, Associate Professor Niels Jgrgen Christensen,
for letting me choose my own path and for invariably spotting where my argu-
ments need strengthening.

I would also like to thank Professor Arie E. Kaufman, head of the Visualization
Laboratory at the State University of New York at Stony Brook who let me
visit his lab for half a year. In the VisLab, I met many persons whom I like
very much and who broadened my volumetric horizon.

Thanks go to Milos Srdamek, Henrik Aanzes, Mikkel B. Stegmann, Theo Engell-
Nielsen, and Lars Beerentzen, all of whom read parts of this thesis and offered
comments and corrections. Thanks, also, to Henrik Wann Jensen, Bent Dal-
gaard Larsen, and Ingmar Bitter for fruitful discussions and comments on papers
written during my Ph.D. study.

Finally, love and thanks to Stine for being Stine.

Notation and abbreviations

Here the most frequently employed notational devices and abbreviations are
listed.

General

e argmin, f(x) — returns the value of x that minimizes f(x).
e a — b — assign b to a. Notation frequently used in pseudo-code.

e d(A, B) — shortest Euclidean distance from a set A C R3 to a set B C R3.
Either or both A and B may be individual points. E.g. d(p,q) = ||[p—q]l.

e inf — infimum.

e Sup — supremum.

e DT — forward difference operator

e D~% — backward difference operator

o DO _ central difference operator

Vectors, Matrices

e p — vector. Bold face denotes vectorial entities.

XVi Notation and abbreviations

p’, MT — transpose of p or M respectively.

i,j,k—i=11,0,0]7,j=1[0,1,0/7,k = [0,0,1]%.
e H — Hessian matrix.

e p-q — inner product of two vectors.

lpll = /P P — Euclidean norm.

Sets

e 0X — boundary of X.
e X°¢ — complement to X.

E — closed ball of radius r and centre p.

by, — open ball of radius r and centre p.

e X — closure of set X.

Morphology

e O(A, B) opening of set A with set B
e C(A, B) closing of A with B.
e A © B erosion of A with B.

o A @ B dilation of A with B.

Solids

e S - solid: Three-dimensional manifold with boundary in R3.
e S — the inverse solid. S* = 95 U S°.
e M(S) — medial surface of S.

e C(S) — cut locus of S.

XVii

Distance fields and V—models

e dg(p) — value of signed distance field of S at p.
e V(S) — the V-model of S.

e Bg(p) — boundary mapping of point p.

Voxel Grids.

e G — a voxel Grid, i.e. a mapping from Z? to the domain of voxels.

— GI[p] — value of voxel at location p € Z3.

— G[p].g — denotes a secondary (gradient) value g stored in the voxel
along with the primary (scalar) value.

— G(p) — value of G interpolated at p.
e vu — voxel unit, the shortest distance between two voxels.
o V(S) — voxelization of solid S, e.g. G = V(S)
e 1 — size of transition region.

e n,s —flatness constant associated with the adaptive volume representation.

Volumetric CSG

e J, — volumetric union, e.g. Gz = G1 U, Ga.
N , — volumetric intersection.

e \, — volumetric difference.

Abbreviations

e HNF — Hesse Normalform
e FMM - Fast Marching Method

e FMMHA — High Accuracy Fast Marching Method

Xviii Notation and abbreviations

e LSM — Level-Set Method

e DFI — Distance Field Interpolation
e DFV — Distance Field Volume

e ROI — Region of Interest

e MC — Marching Cubes

e CSG — Counstructive Solid Geometry

Part 1

Background

CHAPTER 1

Introduction

Interactive modeling of 3D shapes on a computer should be as simple and intu-
itive as doodling 2D shapes using pencil and paper. Simpler, in fact, since on
a computer changes can always be undone, and the user is more free to explore
and experiment. Unfortunately, intuitive and interactive sculpting is not quite
here yet. Anyone who has worked with software packages such as Maya, 3D
studio or Softimage knows that although it is indeed possible to create beauti-
ful, virtual sculptures with these programs it is very, very difficult. It takes not
only artistic skill but also a lot of experience with these applications. In other
words, the learning curve is quite steep. This can partly be attributed to the
fact that the gap between the computer representation of shape and the human
notion of shape is too large to be bridged easily by a user interface. Moreover,
the tools for modifying the computer representation of shape are frequently less
than intuitive. For instance, although the idea of a polygonal mesh is easy to
come to terms with, it is impossibly slow to sculpt by moving individual ver-
tices. The tools for smoothing and deforming the mesh locally are often quite
crude, and, consequently, the user will have to resort to things like extruding,
lofting, splitting of faces and joining of vertices. These operations are effective
but they are not intuitively linked to what the user really wants to do which is
things like, say, add material, remove material, smoothen &c.

Another problem is that the various internal representations of geometry such
as polygonal meshes, subdivision surfaces, and splines are invariably surface

4 Introduction

oriented — with the exception of implicit surfaces. This means that changing
the genus of a sculpture (for instance by drilling a hole right through) is not a
trivial operation. In fact, one of the most intuitive sculpting systems, namely
the recently proposed (gesture based) Teddy [85] constrains the sculpted object
to be of spherical topology. Both of these problems are addressed by volume
sculpting which we define as shape sculpting where the shape is a solid stored
volumetrically in a 3D raster of elements known as voxels. Volume sculpting
can also be seen as an application of volume graphics [89] which is the general
term for computer graphics involving the volumetric representation. In volume
sculpting each voxel has a binary or scalar value indicating simply the presence,
absence or (in the scalar case) the proximity of matter. Thus, the volumetric
representation, in its simplest form, can be seen as a computer analogue of a
pile of sugar cubes. These sugar-cubes do not only approximate the surface of
the shape but the entire volume. This is a very intuitive concept, and it proves
to be quite simple to implement tools that are both intuitive and allow for quite
powerful, arbitrary manipulations of the represented solids. For instance, genus
changing operations like making a hole can be implemented simply by changing
the values of the voxels that make up the hole.

In spite of this, volume sculpting has not received much attention since the
early work by, for instance, Galyean and Hughes in 1991. However, it seems
that things are changing: The last few years have seen a commercial system
(FreeForm from SensAble Technologies) and an increase in the trickle of publi-
cations that pertain to volume sculpting. It is important to note, though, that
most of the work on volume sculpting is holistic in the sense that authors usually
present whole systems and pay equal attention to rendering, user interface, the
volume representation and its manipulation. Perhaps as a consequence, some
fundamental issues have received less attention than could be desired. For in-
stance, it is well known that to represent smooth surfaces volumetrically, it is
necessary that the voxel value is scalar (as opposed to binary). A threshold
defines the scalar value that corresponds to the surface, and all voxels above
that threshold are considered to be inside. All voxels below the threshold are
considered to be outside. If the voxel values change in a smooth fashion, this
makes for a good representation of smooth surfaces and most authors leave it
at that.

At least that is the case when we consider specifically the manipulation of volu-
metric solids in the context of volume sculpting. When it comes to vozxelization,
things look better. Voxelization is the process of converting a geometric solid
to the volume representation. Basically, a characteristic function f: R3 — R is
associated with the solid and this function is sampled at the voxels. The solid
may be reconstructed from the volume representation by interpolation. Clearly,
the choices of characteristic function and interpolation function have a profound
impact on the quality of reconstruction, and these issues have been considered

by e.g. Gibson [64] and Sramek [I7T} 72].

In this thesis, I will argue that it is a good thing that voxels contain signed dis-
tance values; in other words, the value of a voxel is the shortest distance to the
surface, negative if the voxel is interior. This promotes consistency and simpli-
fies rendering and curvature calculations. In the next chapter I will review the
literature on volume sculpting systems. This review will lead to the conclusion
that the sculpting tools provided by these systems can be categorized as either
constructive or deformative. Constructive means according to the paradigm of
Constructive Solid Geometry or CSG. Deformative means tending to deform.
Warping, creating dents, smoothing &c. are examples of this type of manipula-
tion.

The more practical side of my work is a rethinking of the constructive and
deformative tools found in sculpting systems so that they reflect the theoretical
results mentioned above. This means that both the constructive and deformative
tools should preserve the property that voxels values are signed distances. As a
concrete example, assume that we are computing the union of two volumetric
solids. All voxels in both volumes have values that are the signed distances
from the respective voxel positions to the surface of the solids. Preserving
this property entails that all voxels in the volume that results from the union
operation should have values equal to the signed distance to the surface of the
union of the two solids.

Another area of theoretical endeavour has been an investigation of what kinds
of solids are suitable for volumetric representation: It is well-known that solids
with very small features or sharp edges are hard to represent adequately us-
ing the volume representation. My work has lead to a criterion for suitability
in terms of mathematical morphology. According to this criterion a solid is
suitable for volume representation if it is possible to roll a sphere with a cer-
tain fixed radius on both the interior and the exterior side of the surface. A
technique for constructive manipulations has been designed that preserves this
property. In other words, if the input solids (represented volumetrically) have
this morphological property, it will also be present in their union.

This technique for constructive manipulation avoids the introduction of features
that are hard to represent volumetrically. Another approach to the problem is,
of course, to extend the volume representation so as to be able to handle small
features and sharp edges. This approach has also been tried by myself, and this
work has led to an adaptive volume representation and an associated technique
for constructive operations. The adaptive technique is complicated but makes
it possible to represent things volumetrically at vastly different scales.

In summary, the work that is presented in this thesis can be seen as a rethinking

6 Introduction

of known techniques for manipulating volumetric solids. The techniques have
been selected by the criterion that they must be useful for volume sculpting,
and the rethinking is based on theoretical observations many of which are also
the product of my thesis work. The adaptive technique stands a bit apart and
should be seen as a (partial) solution to one of the greatest problems with the
volume representation, namely that it does not handle large differences in scale
very well.

1.1 Basics of Volume Graphics
The most fundamental notion in volume graphics is that of a vozel.

A voxel is a piece of information (vozel value) associated with a point
in R3 (vomel position).

We usually have to deal with voxels in large quantities; a set of voxels is generally
called a volume, and a volume defines a mapping from voxel position to voxel
value. Throughout this text, we will generally assume that the voxels cannot lie
at arbitrary locations in spaceﬂ. Instead, the voxels are assumed to be placed on
a 3D lattice. This lattice is simply a subset of the points in R? that have integer
coordinates. The smallest cubic regions whose corners are voxel positions will
be denoted cells. Voxels and cells are illustrated in Figure [Tl There is rarely
any reason to store the voxel location. If the voxel values (in the following just
vozels) are stored in a 3D array, the voxel position may be inferred from the
placement of the voxel in the array and vice versa. The lattice may be scaled,
sheared, or somehow deformed, but that will usually not be the case. While
the voxel value can be almost any type of information, we shall most frequently
consider the cases where the value is either binary or scalar. If the voxels
contain binary values, the volume can be thought of as an approximation of a
solid object using cubic blocks. The value 1 denotes the presence of matter in
the Voronoi neighbourhood of the voxel [38] (i.e. the cubic region that is closer
to that voxel than any other). Correspondingly, value 0 denotes the absence
of matter in the Voronoi neighbourhood. Such binary volumes are sometimes
useful, but, if smooth surfaces or amorphous objects are required, the voxels
should be scalar. Volumes containing scalar values are sometimes called gray
level volumes.

LIf the voxel positions are arbitrary, we are dealing with scattered volume data which is
unusual in volume graphics

1.1 Basics of Volume Graphics 7

)
)
0"

< >
e |)/oxel
... ..

Figure 1.1: A volume where a cell and a voxel are circled.

If the volume represents fog, haze, fluid or a similar amorphous material, the
voxel value is frequently thought of as the density of the material. In the case
of medical volume data acquired through the technique called computed tomog-
raphy [I1], the value is, in fact, a physical measurement of tissue density. When
dealing with synthetic volume data that represents solids with smooth surfaces,
scalar voxel values are also thought of as densities. In fact, we can construe the
value of a voxel as a sample of a density function f that is defined (at least) on
the part of R? that lies within the volume. For instance, if the density lies in
the range [0, 1] and the volume encloses the region U C R?, the density func-
tion is f : U — R3. The density function is sometimes called the characteristic
Sfunction.

Now, the obvious question is: How can the characteristic function, f, represent
a solid? The answer is that the surface (boundary) of the solid should be
embedded as an iso—surface, say the iso—surface corresponding to the value 0.5.
In that case, f(x) > 0.5 implies that x is in the interior, f(x) = 0.5 that x is
on the boundary, and, finally, f(x) < 0.5 that we are in the exterior. The idea
is illustrated in Figure [where a 2D circle is shown. As illustrated, the circle
is the 0.5 level iso—surface of f.

Unfortunately, it is a bit misleading to think of the value of a voxel as a density:
Typically, we think in terms of a mathematical abstraction where the density
of a solid object has a sharp and discontinuous transition on the boundary of
the solid. A simple solution is to use the signed distance to the closest point
on the surface in lieu of density [64]. In this case, |f(x)| is simply the shortest

8 Introduction

Ve
@

Figure 1.2: A 2D Circle and its associated characteristic function.

distance from x to the boundary of the solid. f(x) > 0 if x is in the exterior,
and f(x) < 0 in the interior. This is very intuitive choice, since there is now a
simple geometric interpretation of the value of a voxel.

At this point, one might wonder why it is not possible simply to use a binary
representation where f = 0 in the exterior and f = 1 in the interior. The answer
is that this function has a very sharp (in fact discontinuous) transition from 0
to 1, and we know from signal analysis that such a function is very difficult to
sample and reconstruct. The volume can be seen as a set of samples, and if we
are to be able to reconstruct the original scalar field f, it is important that f is
reasonably smooth.

In order to reconstruct f from volumetric data, we have to employ some sort
of interpolation. In the case of acquired data, the type of interpolation depends
heavily on the type of data and the desired smoothness and how much aliasing
that can be tolerated. The construction of suitable interpolation functions is
discussed in detail in [I09, [[T4]. For synthetic volume data, tri-linear interpo-
lation (see Figure [[3)) between the eight nearest neighbours is often sufficient.
Interpolation yields a continuous scalar field, and we can reconstruct the surface
of the solid simply by finding the points whose interpolated value corresponds

1.1 Basics of Volume Graphics 9

V6 A3

V7

®B1

A2
va V5

@IC

1AL
v2
. v3

%180

Vo 1A0 = @

Figure 1.3: Trilinear interpolation. The TAX values are linearly interpolated
between pairs of voxels (VX). THE IBX values are then interpolated between
pairs of IAX values. Finally IC is interpolated between IBO and IB1. All told
seven interpolations.

to the iso-value (which is 0 in the case of distance fields).

The gradient V[is always perpendicular to the surface. This is very useful,
because it means that the normal of the iso—surface is the same as the gradient
(possibly inverted and/or normalized). To obtain the normal at a given point,
we usually estimate the normal at the nearest voxel positions and interpolate it
at the given point. The gradient may be estimated in a number of ways, but
usually we employ central differences, i.e.

Gx+i — Gx-—i
vfest (X) = G[X +j] - G[X - j] (11)
Gx+k - Gx—-X

Very frequently, we clamp the voxel value to a certain range. This means that
far from the boundary of the solid, we merely record if we are inside or outside.
Although, it can be useful to store the value at arbitrary distances, it is rarely
important; and by clamping we can save storage in two ways: The same precision
requires fewer bits, and it is easier to compress the data when there are large
homogeneous regions.

1.1.1 Voxelization and Manipulation

The most fundamental operation in volume graphics is vozelization which is the
process whereby a surface or solid is converted from a continuous to a discrete 3D

10 Introduction

representation. In its simplest form, voxelization consists of visiting all voxels.
Each voxel is assigned a value, e.g. the signed distance to the closest surface.
Issues related to this type of voxelization are discussed in [T73} 711 64} 2711, [T72),
[T48] 29], and binary voxelization of lines and surfaces is treated in a number of

(mostly older) papers [02) B8] A3].

The simplest manipulation of a volume consists of changing the value of a single
voxel. In principle, it is possible to manipulate volumes in that way, but it
makes sense only for binary volumes. For scalar volumes, we generally change
many voxels at a time.

Assume that we have voxelized a solid (A). A simple manipulation operation
would be to voxelize a new solid (B) and combine the voxels of the new solid
with the old. This could be done by superimposing the two volumes and for
each voxel location combine the voxels v4 and vp using some simple operation.

It turns out that if we use a distance coded voxels, we can use min(va,vpg)
on all voxels to generate the union of both solids [I27]. This operation can
be explained by the observation that the shortest distance to the union of two
solids is the minimum of the shortest distance to eitherl. We observe that such
an operation follows the paradigm of Constructive Solid Geometry [81]. Apart
from union, other CSG operations such as intersection and difference are also
possible. Union and intersection are illustrated in 2D in Figure [C4] where a
pacman-like shape is formed by the intersection of a sphere and the union of
two other spheres.

Figure 1.4: Outlines of discs (left) and result of CSG operations (right)

Manipulations where a new shape component is combined with the existing
volumetric solid will be denoted constructive manipulations in the following.

2 Although this does not hold for all points on the interior side of the boundary

1.1 Basics of Volume Graphics 11

Obviously, not all manipulations can be said to be constructive. We might need
to smooth the solid, to morph, to scale or perform a free-form deformation.
Such manipulations will be denoted deformative manipulations. The defining
property of a deformative manipulation is that the starting point is the original
shape and that the change is gradual. In summary:

e Constructive — Follows the paradigm of Constructive Solid Geometry. The
existing shape is combined with a new shape through a set operation.

e Deformative — Models a continuous deformation of the solid. In general,
such a deformation might change the genus of the solid.

An example of a deformative operation that has been used frequently is smooth-
ing. If we apply an averaging filter to the volume, it will ruin the distance prop-
erty (if present) but at the same time, the embedded iso—surface does become
smoother.

Implementation-wise there need not be a big gap between deformative and con-
structive manipulations. For instance, we might add a small bump to a surface
(a deformative manipulation) by adding a tiny sphere (a constructive manipu-
lation). Similarly, if we morph a volumetric solid into another solid, the method
is deformative, but the end—product could have been attained by adding the
second solid to an empty volume which is a constructive operation.

1.1.2 Visualization

Visualization of volume data is a very large topic. The two approaches that
have been used most frequently in the context of volume sculpting are marching
cubes [I06] and ray casting [99].

The fundamental idea in the marching cubes algorithm is to divide the volume
into a number of cubic cells where the eight vertices of each cell correspond to
voxels. If a cell has voxels on either side of the iso—surface, we know that the
surface passes through that cell, and the intersecting surface patch is approxi-
mated with a number of triangles. The algorithm proceeds by marching through
all cells in the volume, generating triangles along the way.

Ray casting is like traditional ray tracing [56] except that the secondary rays
are not cast. Omne approach is to cast a ray through each image pixel, and
march along the ray until we hit the surface. We can either find a single surface
intersection and shade the estimated surface at that point, or we can take a

12 Introduction

number of samples near the surface and blend them according to opacity; opacity
is determined on the basis of the interpolated voxel value.

Shading usually means Phong shading [56] where the normal is computed as the
estimated (perhaps normalized) gradient. There is a great number of extensions,
optimizations, parallelizations and variations of this approach. Visualization will
be discussed in greater detail in Chapter

1.2 Motivation and Goals

Volume sculpting systems typically have very simple user interfaces, yet the
method allows for the creation of complex solids with an organic appearance
that would be difficult to attain otherwise. This is the fundamental reason
for taking an interest in volume sculpting. Nevertheless, volume sculpting is
an idea that dates from around 1990 and has not yet become popular which
might raise the question of whether it is really such a good idea? I surmise
that the main reason why volume sculpting has not become popular is that,
so far, the method has not really been feasible. One of the earliest sculpting
systems is Galyean’s from 1991 [60]. However, at that time it seems that lack of
computer storage impeded an efficient implementation. The highest resolution
was 30 x 30 x 30 voxels, and the lack of storage also affected the technique for
visualization, making a complicated solution necessary.

Ten years later, computers are much faster and can easily hold volumes of, say,
256 x 256 x 256 voxels or more. Increased processing speed and, especially,
hardware facilities for, voxel, point and polygon rendering have made it possible
to visualize volume data interactively in several different ways (see Chapter
Bl). Thus, volume sculpting has become much more practical, and it is time to
turn the attention toward the details of how manipulations of volumetric solids
should be implemented.

In general, very simple principles have been used to implement manipulations
(deformative or constructive). Most sculpting systems implement all manipu-
lations as simple block operations. The volume or a rectangular sub-region is
traversed systematically, e.g. using a triple nested loop, and for each voxel a
simple operation is performed. If the manipulation is to add a new shape, we
might compare the voxel value to the value of the characteristic function of the
new shape at the voxel position, and change the voxel value according to the
result of the comparison. In the case of smoothing, the voxel value is typically
changed to a weighted average of its value and the values of nearby voxels.

1.2 Motivation and Goals 13

While these block—wise volume manipulations are simple and effective, they
also have a tendency to introduce artefacts or imprecisions. An example of the
former is shown in Figure Here two 2D solids (rectangles) and their union
(which is another rectangle) are shown. The characteristic function of the two
rectangles is 1 inside the rectangle and decreases to 0 outside of the rectangle.
The union is computed by applying

c=a+b—ab (1.2)

to each pixel where a is a pixel value from the A rectangle, and b is a corre-
sponding value from the B rectangle. The result ¢ is written to, C, the image of
the union. In the case of volumes, the method is the same: We traverse all voxel
positions and for each voxel position p compute the new value using the voxel
values a = Go[p] and b = Gp[p]. This equation was introduced in the context
of Hypertexturing by Perlin [I28| and later in volume graphics by Wang [I74].
As the figure shows, the computed union has a bulge that the true union of
the two input rectangles would not exhibit. The problem is very clear: The

A B C

Figure 1.5: Two 2D solids and their union computed on a per pixel basis using

).

manipulation (taking the union), which was motivated by the desire to keep the
transition region smooth, introduces spurious features in the shape.

Other techniques for manipulation suffer from problems that are more subtle.
However, to explain these problems, I will first argue it is useful that the charac-
teristic function representing a solid exhibits certain traits (recall that the voxels
can be seen as samples of a characteristic function representing the solid).

In most publications, the authors are lax about the appearance of the character-
istic function. Generally, authors try to preserve smoothness of the characteris-
tic function but the precise value of a voxel is not expected to denote anything
more than whether the voxel lies on one side or the other of the boundary of

14 Introduction

a solid. The proximity of the voxel to the boundary, for instance, cannot be
inferred from the voxel value.

However, we might attach a meaning to a voxel value. For instance, we might
require that the voxel value be the signed, shortest distance to the boundary
of the solid. A possible variation of this approach is to use a function of the
signed, shortest distance. In either case, using this scheme, a voxel contains a
clear geometric piece of information, namely the distance to the surface. We
can also put it in the way that the characteristic function f is constructed by
associating a distance profile with the solid. This is illustrated in Figure
where it is shown how f relates to a distance profile (called g). In this case, the
distance profile is not linear, although a linear distance profile will typically be
preferred in this thesis.

! g(x)

Figure 1.6: Illustration of how the characteristic function relates to a distance
profile. Inside the solid f is 1, and outside 0. In the transition region, f = g(d)
where d is the signed distance to the boundary.

Algorithms which maintain the distance profile are more difficult to design, but
on the other hand many things become simpler since the representation now
contains much more information. For instance, if we know that the value of a
voxel is the shortest distance to the closest surface and that the gradient has
unit length, it is very easy to project a point in the volume on to the boundary
of the represented solid (see Section B3 and Section B]). This operation, called
the boundary mapping is trivial to implement and can be used, for instance,
for fast visualization of the volume. Moreover, the boundary mapping is used
for generating some hypertextures, e.g. hair [I28]. Unsurprisingly, some re-
cent work by Satherley et al. on hypertexturing volumetric data [T45] has lead
to new methods for converting geometry and acquired (medical) volume data
into distance fields. Other advantages of distance fields include the fact that
finding offset surfaces and computing geometric properties such as curvature is

1.2 Motivation and Goals 15

simplified (as explained in Section [LH).

Figure 1.7: Visualization of a volume sculpted head (left), and a visualization
of another iso—surface than the usual (right). Changing the iso—value results in
a slightly larger (inflated) model, but since the voxel values do not correspond
to distances, the model on the right is not a precise dilation of the model on the
left.

Constructive manipulations implemented using (I2) clearly do not preserve the
distance profile. Another common choice of per-voxel CSG operator is min and
max. Assuming the voxel value is the signed distance (negative in the interior),
taking the minimum produces the correct signed distance value in many cases.
However, not in all cases. The details are discussed in Chapter B and the
problems are illustrated in Figure It has been mentioned that smoothing is
typically implemented by, for each voxel, taking the average of the voxel and its
neighbours. It is easy to see that this operation also does not preserve distance
profiles. Smoothing is discussed more in Chapter [

Figure[C7 shows two images of a male head sculpted using the system developed
as a part of the work that led to my master’s thesis [30}, [26]. This system was
developed using block operations of the type discussed above, and consequently,
did not maintain distance profiles but only a fuzzy transition region. While the
sculpting system was effective, it also became clear during testing that noise

16 Introduction

which could sometimes affect the sculpting operations turned up in the volume.
The image on the right shows an iso—surface corresponding to another iso—value
than the value used by the sculptor. In the case of manipulations that preserve
distance profiles, the image on the right should show a dilated shape which it
does — but obviously one that exhibits considerable noise.

A long-standing question in volume graphics is what shapes are really repre-
sentable. It is clear that features which are small when compared to the voxel
lattice are not representable, but what is a “feature”, and how small is too
small?

Some guidelines were provided by Gibson [64] who singled out two qualities in
solids which would make them unsuitable for volume representation. These are
high surface curvature, and proximity of surface components. For example, a
sharp bend or edge (high curvature) or a solid in two pieces where the pieces
almost touch are examples of problematic solids. These criteriae can be com-
bined into a single criterion which may be expressed quite simply in terms of
mathematical morphology.

In the discussion so far, we have generally assumed that a volume is a regular
voxel lattice as defined in Section [[Jl This representation is by far the simplest
to deal with, however one of the biggest drawbacks of volume graphics is the
problem that features at vastly different scales cannot be represented in a regular
voxel lattice.

To give an example, consider a planet and a pebble lying on the planet. If the
scale of the grid is suitable for one it must be too small or too large for the
other. To remedy this problem, adaptive or multiresolution methods must be
considered.

1.2.1 Goals

The main goals that will be pursued are

e Characterization of shapes that are suitable for volume representation.

This characterization will lead to a criterion formulated in terms of math-
ematical morphology for whether a solid is suitable for volume represen-
tation.

e Design and implementation of constructive and deformative manipula-
tions.

1.2 Motivation and Goals 17

The design and implementation of generic techniques for constructive and
deformative manipulations is a major goal. The main requirement is that
these manipulations should maintain the distance profile. More precisely,
it is enforced that voxels values should be closest surface distances.

e Interactive visualization.

Fast visualization is crucial to the viability of volume sculpting, and I
will compare various methods for volume visualization and propose a new
method for visualization of isosurfaces in distance field volumes that is
suitable for sculpting systems.

e Adaptive volume representation.

It has been mentioned that a weakness of the regular grid volume repre-
sentation is the limited range of scales representable in any given volume.
I will propose a volume representation which can be used for solids con-
taining features at vastly different scales.

1.2.2 Limitations

I will restrict the research to the underlying technologies and refrain from work
pertaining to user interface issues. This is mainly because usability testing is a
difficult matter which would detract too much from other efforts.

A number of other issues will also be avoided. One could say that the focus is on
the volumetric representation of shape; things like colour, material properties
&c. will not be investigated. This may seem strange. After all, one of the great
advantages of the volume representation is easy handling of inhomogeneous
materials. However, the volume representation holds many advantages also for
homogeneous solids. These include the easy handling of complex topology and
excellent local control over shape.

Finally, it should be mentioned that I pursue techniques for volume sculpting
that are not aimed at one of the applications that is perhaps most obvious,
namely sculpting of acquired medical data. The reason is that acquired volume
data must, in general, be segmented to extract solid structures, and this seg-
mentation results in a binary data set which is a representation not suitable for
the algorithms employed here. Thus, structures from medical volume data can
certainly be manipulated by the techniques I investigate, but such data must
first be preprocessed to produce a distance field volume [87].

18 Introduction

1.3 Outline

This thesis is divided into a number of parts: Part I is introductory, Part II is
about some theoretical aspects of the volume representation, part III is about
volume graphics in practice, Part IV is about adaptive volume graphics and
finally Part V concludes with a discussion of the major contributions and a look
ahead — toward future work. In greater detail:

e Part I contains the introduction in Chapter [l and a survey of Volume
Sculpting systems in Chapter B2

e Part II contains Chapter Bl which is about the design of the already men-
tioned characteristic functions. In Chapter Bl a morphological criterion for
whether a solid is suitable for the volume representation is discussed.

e Part I1I is more practical and divided into a number of chapters discussing
operations on volumes. Chapter B is about voxelization and fundamental
operations that are used in volume manipulation. Chapter Bl is about
constructive manipulations, aka volumetric CSG, and Chapter [is about
deformative operations. Chapter Blis about visualization and interaction.

e Part IV is devoted to adaptive volume graphics which is discussed in Chap-

ter @

e Part V contains Chapter [which is about contributions and future work.

CHAPTER 2

Survey of Volume Sculpting
Literature

The goal of this chapter is to describe and to compare existing systems for
volume sculpting. In addition, the tools found in each system are classified
according to whether they are constructive or deformative.

In Section BXIl the overall structure of a sculpting system is presented. This
“anatomy” of a volume sculpting system will, hopefully, provide an intuitive
understanding of the necessary constituent components of a sculpting system.

Next, there is a discussion of the literature on actual, interactive volume sculpt-
ing systems in Section Some not so easily categorized but pertinent ap-
proaches to volumetric solid modelling are discussed in Section Finally, in
Section Z4] the sculpting systems are compared and their tools categorized.

It is important to note, that the sections below are a survey only of the litera-
ture that pertains to volumetric sculpting systems. There is, of course, literature
dealing with important sub-topics such as visualization of volume data, volumet-
ric CSG and deformation of volumetric solids. This literature will be discussed
in later chapters where it is more appropriate.

20 Survey of Volume Sculpting Literature

2.1 Anatomy of a Volume Sculpting System

V olume representation

Geometry

I
X)
:o)
:'

0
o
i
i
I

l
)
)

'ozo

i

Display

—3 < User
Constructive or Interface

Deformative |/

Manipulation
\- J

Figure 2.1: Information flow in a stylized volume sculpting system

The core data structure in a volume sculpting system is the volumetric rep-
resentation of the solid being sculpted. The volume is most often stored as
a linear array, but the volume is very storage demanding, and space efficient
data structures such as octrees are sometimes used to bring down the storage
requirements.

In general, the starting point of a volume sculpting session is not an empty
volume but some simple shape such as a sphere or a cube. To obtain an initial
shape, it must first be converted to a volume representation. This process is
known as voxelization, and most sculpting systems have facilities for voxeliza-
tion.

To provide the user with visual (or in some cases haptic) feedback, a sculpt-
ing system should have a visualization module. Visualization can be performed
using many of the methods from volume visualization. Speed is relatively impor-
tant when selecting a visualization method for a sculpting system, since users
tend to prefer immediate feedback. The most common method is probably
Marching Cubes.

Finally, a volume sculpting system must, of course, provide tools for manip-
ulating the volumetric solid. I maintain that, in general, sculpting tools can

2.2 Volume Sculpting Systems 21

be categorized as being either constructive or deformative. Constructive ma-
nipulations (often called volumetric CSG manipulations) consist of adding or
subtracting a new shape which may be either a volume or a primitive solid —
such as a sphere or polyhedron. In the latter case, we need to know the value of
a characteristic function at the voxel positions, hence voxelization can be seen
as a part of a constructive manipulation. Deformative manipulations include
adding little blobs of matter to the solid and smoothing the surface of the solid.

As mentioned previously, most volume sculpting systems (based on the scalar
volume representation) change the volume by a simple iteration over all voxels
in a 3D region. The value of each voxel is replaced by a function of the value
and the characteristic function of a tool evaluated at the voxel position, i.e.

Glp| — f(Gp), T(p))

where G is the voxel grid, and T is the characteristic function of the tool.
Smoothing operations are implemented in a similar fashion. Here the voxel value
is replaced by a weighted average of the value of the voxel and its neighbours.

In summary, a volume sculpting system can be seen as a volumetric database
with three associated processes — voxelization, manipulation and visualization.
The various components are illustrated in Figure 211

2.2 Volume Sculpting Systems

What follows is a survey of sculpting systems since Tinsley Galyean’s early
system from 1991 and till today. There is only a handful of such systems, but
actually two interesting new papers were published in the year 2000. This may
be a sign that volume sculpting is growing in popularity as new, more power-
ful hardware allows simpler and cleaner solutions to the two main problems:
Managing the large amounts of data, and rendering the volume fast enough.

Tinsley Galyean et al. (1991) One of the first published examples of a
volumetric sculpting system was created as Tinsley Galyean’s master’s project
under the supervision of John F. Hughes. It was presented at SIGGRAPH 91
[60]. The system supports two resolution levels: Low resolution at 10 x 10 x 10
voxels and high resolution at 30 x 30 x 30 voxels.

Like in most sculpting systems, the voxels contain scalar values, and the surface
of the solid is an iso—surface which is visualized using Marching Cubes. Inter-
active rendering of all the polygons was not possible at that time; to solve this

22 Survey of Volume Sculpting Literature

problem, only the parts of the screen where changes are visible are updated.
This entails a new problem: Parts of the volume that have not been changed
may also contribute to the parts of the screen that need updating.

To solve both problems, Galyean uses a complex screen space data structure
to keep track of which parts of the volume that contribute to a given region
is screen space. When the volume is modified, the affected screen space region
is determined, and all parts of the volume which contribute to that region are
redrawn.

The tool is represented by a low pass filtered 3D voxel raster at a somewhat
higher resolution than the volume. The motion of the tool snaps to the grid, so
that tool voxels are always on top of grid voxels. When the tool is applied, the
tool voxels are combined with the voxels in the volume.

This is done using min and max

Glpl min(G[pl, 1 - T(p)) (2.1)
Glpl max(G[p), T(p))
where both G € [0,1] and T € [0,1]. T is 1 inside solid matter and 0 outside.

Thus the min tool subtracts and the max tool adds. Other tools (which are
more gradual) use clamped sum and difference

«—
«—

Glp] — min(1,G[p] +T(p)) (2.3)
Glp] — max(0,G[p] - T(p)) (2.4)

where the maximum value of T" is much smaller than 1, since the effect would
otherwise be much the same as for the tools abovdl. The author’s final tool
is the sandpaper tool which is a smoothing tool that works by replacing voxel
values with averages as discussed in Section The sandpaper tool is easily
categorized as deformative, but the tool which adds or removes material is more
tricky. Ome of its uses is to add a small protrusion or create a dent, and for
this reason it could be seen as deformative. On the other hand, the process
of copying a block of material from a template is constructive. Thus, we can
classify it as being either constructive or deformative based on whether the
emphasis in on how it is used or how it is implemented.

A 3D input device known as a Polhemus Isotrack is used to control a 3D locator.
When the user moves the 3D locator, he or she may either add or remove
material along the path of the locator. This is not a very precise way of creating
shapes — especially not at so low resolution, but it does allow for very organic
structures like those presented in the paper.

My conjecture: This detail is not discussed in the paper

2.2 Volume Sculpting Systems 23

Richardson et al. (1990) At about the same time, Alan Richardson et al.
published a paper about a system called sculptbox for binary volume sculpting
136, 137].

Actually the resolution of this system is somewhat higher — 64 x 64 x 64 voxels,
but since each voxel is represented by a single bit, the volume fits in 32k storage.

The problem with the binary volume representation is that it is almost impossi-
ble to render the volume so that it appears to have a smooth surface. Nor does
Richardson attempt that. The volumetric model is rendered using a discrete
ray traversal method and shaded using depth shading.

The user sculpts by adding or removing individual voxels. A ray is cast into the
volume, and when the ray intersects a voxel representing matter, that voxel is
removed. Alternatively, to add material, the intersected voxel is retained and a
new one added in front of it.

The models created with this system look more primitive than those created with
Galyean’s system. On the other hand, the resolution is a bit higher, and it seems
likely that (at the time) this system would be more useful for some purposes (e.g.
layered manufacturing which will be discussed below) than Galyean’s system.

Jerome Broekhuijsen et al. (1991) In [25] another volume sculpting sys-
tem based on a binary volume representation is presented. The volume data is
stored in a run—length coded fashion with runs perpendicular to a base plane.

The most notable thing about the system is that both 3D input and 3D output
devices are used. The input device is a 3D tracker (3Space from Polhemus), and
the graphics are in stereo thanks to a pair of shutter glasses.

The user moves a 3D tool (a sphere is the only example) that functions as a
cutter when it intersects the volume. Thus, the user can edit the volume by
cutting away voxels (called perspectels in the paper) with the spherical tool.

Sidney Wang et al. (1995) The next and perhaps best known system was
developed by Sidney Wang at the VisLab at Stony Brook [I75]. Wang’s system
is like Galyean’s in that the volume is a scalar volume, but it differs in most
other ways. A 2D input device is used, and rather than letting the user sculpt by
pasting or removing blobs of material, the user manipulates the volume through
CSG operations. It seems that there are no fixed limitations on resolution —
except for those imposed by the amount of RAM in the computer.

24 Survey of Volume Sculpting Literature

There are two types of operations: Sawing and carving — both of which should
be seen as constructive tools. Carving works by letting the user choose a volu-
metric sculpting tool which is placed somewhere in the volume (xy position is
determined by the mouse, the z placement by the depth buffer). The tool is
then subtracted or added using respective per voxel CSG operations of the form

Glp] «— G[p] — G[p] - T(p) (2.5)

Glp| «+ G[p] + T(p) — GIp] - T(p) (2.6)

where G is the volume and T is the carving tool which is also represented by a
volume. In general, the tool is not aligned with the volume, though. Hence, the
value of the tool, T, is interpolated at the voxel position p. Both sawing and
carving are really CSG (or constructive) manipulations. In the case of carving,
the tool is represented by a specific volume. In the case of sawing, the tool
volume is generated on the fly by extruding a 2D curve.

The system is based on VolVis [7], and uses VolVis’ ray casting facilities to render
the volume. Wang used the same scheme as Galyean did to allow modifications
at interactive speed; for each modification only the changed parts of the volume
are visualized. However, in this case it is simpler to make local updates. Due to
the fact that ray casting is an image order technique [90], all that needs to be
done is to cast the rays through the pixels that are covered by the projection of
the bounding box of the tool.

Ricardo Avila and Lisa Sobierajski Avila (1996) The system created
by Ricardo S. Avila and Lisa M. Sobierajski Avila is not purely a sculpting
system but more of a haptic volume exploration tool [8]. Their main goal was
to create a tool allowing the user to feel a volumetric solid (either an acquired
medical volume or a sculpture) using a Phantom device. A Phantom consists
of a stylus connected to an arm. The user moves the stylus, and its motion
is sensed by the device. Furthermore, the device has a programmable motor;
this motor provides forces that are used to simulate impedance the motion of
the stylus. With this facility it is possible to simulate many types of physical
interaction. For instance, fairly sophisticated sensations of texture are possible,
but, of course, working with a Phantom resembles probing an object with a
stylus [I39]. This simplicity is probably also the key to understanding why the
Phantom works so well.

While volume exploration is the primary goal, the system incorporates a data
modification module. Using this module, the user can paint or modify the
volume. either by adding or removing material in ways very similar to those in
previous systems. To obtain a smooth tool, a sampled 3D GauBlian has been

2.2 Volume Sculpting Systems 25

used. A stamp tool seems to give the user some functionality akin to a CSG add
operation, but, bye and large, the tools in this system are more similar to those
in Galyean’s system than Wang’s. Again, their tools seem to lean toward being
deformative, but the stamp tool is arguably constructive. The volume and the
tool are combined using a form of alpha blending;:

Glp] = oT + (1 - a)G[p] (2.7)

where T is constant and « decreases smoothly from the centre of the tool, being
the value of a 3D Gauflian.

The truly interesting feature is the haptic feedback which allows the user to feel
the model being sculpted and how the changes push the sculpting tool away
from the surface, if material is being added. The haptic feedback is a feature
which is shared by only one other tool, namely FreeForm which is discussed
below.

Andreas Barentzen (1998) In 1998 Andreas Beaerentzen created a sculpting
system which, in many ways, represents an attempt to combine the best features
of the systems by Wang and Galyean [26, B0]. Most importantly, it was found
that a tool which allows the user to paste and remove small amorphous blobs
is missing in Wang’s system which, on the other hand, allows for the creation
of more precise shapes through CSG operations. Thus, one of the design goals
was to design a system that would combine deformative and constructive tools.

The former kind of tools are most useful for small changes and the creation of
completely free—form organic shapes. The latter kind is more useful for large
scale changes. The constructive tools allow the sculptor to add or subtract
shapes such as cubes, spheres and tori; and the deformative tools, called spray
tools in [26} B0], allow the user to add or remove matter in much the same way
that the spray can in a paint system works. Another spray tool is for smoothing.
The tools combine the values of volume and tool using min and max. In this
respect, the system is similar to Galyean’s.

However, like Wang’s system, Baerentzen’s sculpting system uses ray casting for
visualization. This is motivated by the conjecture that interactive full screen
updates would not be possible, and in that case image order rendering is the
best approach for the aforementioned reasons.

A space efficient data structure, namely an octree, is used to store the voxels. For
an octree of a maximum of eight levels, this limits the resolution to 256 x 256 x 256
voxels. User interaction is mouse based as in Wang’s system.

26 Survey of Volume Sculpting Literature

Eric Ferley et al. (2000) Recently, Eric Ferley et al. have developed a vol-
ume sculpting system which mostly implements known techniques, but includes
some novel features [BA]. For instance undo which is not hard to implement, but
very useful. Another novelty is the fact that the system has a pseudo physical
deformation tool called the stamp tool. Ferley’s system does not depart from
the standard way of combining volume and tool. Like the grey—level volume
sculpting systems discussed so far, a manipulation consists of visting all voxels
in a neighbourhood and then assigning a new voxel value based on the old voxel
value and the tool. However, the function for subtracting material is a little
more complex than is usual, since it adds a little material around the edges of
the tool to mimick a physical deformation.

The shape of the tool is an ellipsoidal blob; but it is also possible to sculpt a
shape and then use that shape as a tool. It seems that the incorporated tools
are similar in spirit to those proposed by Galyean. Again, the smoothing tool
is clearly deformative, and the rest could equally well be said to be either.

The representation is space efficient. The voxels are stored in a data structure
called a corners tree. This tree is really (in the fastest implementation) a 3D
hash table. Another data structure keeps track of the cells whose corners are
voxels which contain defined values. Finally, there is a list of cells through which
the iso—surface passes. Rendering consists of visiting the cells in this list and
applying the Marching Cubes algorithm.

Alon Raviv et al. (2000) A sculpting tool based on tri-variate B-spline
functions (i.e. Volume splines) was introduced by Alon Raviv in [I34]. The
main difference between this system and previous systems is the fact that the
volume is interpolated using splines rather than linear interpolation. Again, the
main sculpting tool is a small volume containing a template shape that is moved
around inside the volume and copied into the volume when activated, and, once
again, the tool could be classified as either constructive or deformative.

In addition, the system supports spline patches of different resolutions, thus
enabling sculpting at different resolutions. The resolution is set by the user.
However, just one patch at a time is edited. New patches can be created. If a
new patch overlaps an old patch we have a higher resolution area. It is obviously
desirable that we can sculpt this new area at a higher resolution. It would appear
that where patches overlap, their contributions are summed.

To keep track of the patches and to subdivide the volume into polygonization
cells, an octree is used. Octree cells are subdivided till they reach a resolution
suitable for the overlapping patches. The octree leaf nodes are polygonization

2.2 Volume Sculpting Systems 27

cells, and the actual visualization is performed using Marching Cubes; the au-
thors briefly discuss how to handle the cases where cubes of differing resolutions
are adjacent.

Unfortunately, there are no timings in the paper. The speed is apparently
almost interactive; a great deal of preprocessing of the spline evaluation helps
to increase performance. It seems that the mode of operation is very similar
to that found in Wang’s system: The user moves the sculpting tool with a 3D
input device and matter is added or removed.

The motivation for using 3D spline patches is not crystal clear. The splines
yield a smoother interpolation function, but it seems that most of the features
could have been implemented using trilinearly interpolated patches. Neverthe-
less, the use of multiple slabs/patches at different resolutions is an interesting
contribution.

SensAble Technologies (1999) With little doubt the most advanced sculpt-
ing system in existence is the FreeForm sculpting tool from SensAble technolo-
gies

http://www.sensable.com

However, the number of man hours that have gone into the creation of this
system is, probably, greater than what has been spent on the others combined.
The system was first introduced at the SIGGRAPH 1999 exhibition, and it has
currently reached version 3.

As was the case with the system by Ricardo Avila and Lisa Sobierajski Avila,
the user sculpts with a Phantom haptic device. This is unsurprising, because
the Phantom is also made by SensAble technologies.

Unfortunately, the system is very demanding when it comes to resources. 0.5
GB of RAM is the recommended minimum, a dual processor system is also
recommended; one processor is apparently used to control the Phantom.

FreeForm has much the same features of other sculpting systems: The user can
carve away material or paste it in. Of course, the user is able to feel the changes,
thanks to the Phantom. Also, a wire—cutter tool provides functionality compa-
rable to that of Wang’s sawing tool. It is possible to increase the resolution of
the volume in order to add finer detail. An important feature which was also
included in the system designed by Raviv. A list of the features in the FreeForm
system is found on the following web page:

28 Survey of Volume Sculpting Literature

http://wuw.sensable.com/freeform/features.html

FreeForm also supports operations for creating new shapes that are also found
in traditional CAD systems such as lofting and objects of revolution.

FreeForm clearly supports both constructive and deformative tools and some
which are classifiable as either. Like volume sculpting systems in general, the
system has a very flat learning curve; and most of the sculptures in the FreeForm
Gallery

http://www.sensable.com/freeform/gallery/gallery.html

that have been created with the system are quite impressive. Still, FreeForm
does not seem to widely used which may be due to the high price tag, and the
costly configuration that is required.

Unfortunately, there is no literature about the techniques used. The written
material about FreeForm is limited to reviews (e.g. [66]) and brochures.

Andreas Beaerentzen IT (2001) Recently, a new system called Carpeaux II
has been developed by Baerentzen. This system has been written as a part of
the work presented in this thesis, and the algorithms underlying the system are
among the main topics of this thesis.

Carpeaux II differs from other sculpting systems (about which we have published
information) in a few important ways:

e The technique used for volumetric CSG is not a simple block operation.
As will be explained in later chapters, block operations are problematic
for volumetric CSG when the involved volumes contain scalar voxels.

e Second, a deformative tool based on the Level-Set Method has been im-
plemented for creating bumps and smoothing. Although the Level-Set
Method has previously been proposed for volume graphics [I80] — it has
not been used in an interactive setting. In Carpeaux II LSM is used for
smoothing, creating bumps and morphological operations (dilations and
erosions).

e Because the system maintains a volumetric representation where the value
of the volume always corresponds to the signed shortest distance to the
surface of the solid, it is easy to find points on the surface of the represented
solid.

2.3 Alternative Approaches 29

2.3 Alternative Approaches

Some authors have proposed techniques for solid modelling that cannot quite
be categorized as volume sculpting but are somehow related. These approaches
are discussed in the following.

2.3.1 Linked Volumes

Sarah Gibson has worked a great deal on analyzing and improving the volume
representation. In [62] she presents a new approach to volumetric modelling.
The core idea is to use so called linked volumes where each voxel has explicit
pointers to its six neighbours.

Linked volumes have some interesting features: Most notably, they support
deformations, cutting, and joining operations. Deformations are carried out
using the ChainMail algorithm. The algorithm will be discussed in more detail
later, but the basic idea is to, initially, move voxels only as far as required
to satisfy a set of simple distance constraints. When one voxel is moved, its
neighbours are moved to satisfy the constraints, and this updating is propagated
throughout the volume. After the initial update, the volume is relaxed over
several time steps using an algorithm for elastic relaxation. Because the initial
constraint based deformation is very fast, the system feels more responsive than
if a physical simulation had been used for a complete update in one time step.

Cutting and carving is implemented using an occupancy map. An occupancy
map is simply a voxel lattice which contains pointers to voxels in the deformable
voxel grid. We can cut away either voxels (carving) or just links (cutting). If
the cutting of links results in the splitting of an object into two parts, the two
parts can be manipulated separately.

The occupancy map is also used for collision detection. Slightly simplified, the
approach is to test if more than one voxel maps to a single cell. In that case
there is a collision.

It is worth pointing out that linked volumes open up for new manipulations that
are not possible in traditional volume sculpting and which cannot be classified as
either constructive or deformative. For instance cutting changes the connectivity
of voxels and not the shape (at least not directly), hence cutting cannot really be
said to be neither deformative nor constructive. In general, Gibson’s approach
seems to hold many advantages, but it also raises many questions. Everything
becomes more computationally expensive when the voxels cease to be located

30 Survey of Volume Sculpting Literature

on a regular lattice. Much more storage is needed: The links themselves must
account for at least 6 x 4 bytes which is about 24 times what is used in a
parsimonious representation using a byte per voxel. Also it is not clear how to
best render a linked volume; but it is a far harder task to do so at interactive
speeds than for a normal volume.

2.3.2 Adaptive Distance Fields

Adaptive distance fields is another approach due to Gibson et al. A regularly
sampled distance field is simply a volume where each voxel contains the signed,
shortest distance to the surface of the represented solid. A shortcoming of
regular distance fields (and regular volume grids in general) is the fact that
they do not represent small features and sharp edges well. To overcome this
limitation Gibson proposed using an adaptively sampled distance field (ADF)
in [63].

The distance field is stored in a spatial data structure called an octree [140)].
The basic idea behind the octree is to divide a cubic cell into eight identical
sub—cells. Each of these is then recursively divided into eight smaller cells until
some condition is met. The advantage of the octree is that for a given point
and a given cell, it is very easy to compute to what sub—cell the point belongs;
this operation is performed by comparing each of its x, y and z coordinates to
the values at the centre of the cell.

For each bottom level cell, the distance values corresponding to the distances at
the corners of the cell are stored. To reconstruct the distance value at a given
point, the containing leaf—cell in the tree is found, and the distance value is
trilinearly interpolated between the corner values.

To build an ADF corresponding to the distance field of a given solid, Gibson et
al. subdivide the cells until one of several conditions are met: (a) The surface
of the solid does not intersect the cell or (b) the distance value interpolated at
a number of points is (at each point) smaller than a given tolerance or (c) the
maximum level is reached.

Gibson et al. implemented an interactive prototype system for sculpting using
this representation, but the paper contains very little detail about it.

While the method provides a solution to some long standing problems in vol-
ume graphics, it is also problematic. First of all, the method primarily lends
itself to constructive manipulations, and it is not clear how the deformative ma-
nipulations (e.g. smoothing) can easily be implemented for adaptive distance

2.3 Alternative Approaches 31

fields. Some technical issues also pop up: Computation of gradients becomes
more difficult, and far more advanced data structures are now required to hold
the volume.

The method will be discussed more in Chapter @ in the context of an all but
identical method developed independently by myself.

2.3.3 Combining Volume Graphics with Implicit Surfaces

Some researchers advocate an inclusive view of implicit surfaces [18]. According
to this view, a function f : R* — R (howsoever represented), whose zero set is a
surface in R3, is considered to be a function representation or F-Rep [[25] of a
solid. Thus, a volumetric solid cum interpolation function is just one particular
type of F—rep.

In [2] the overall design of a system for manipulating F-rep solids that may be
either functional or volumetric is described.

Carving in such a hybrid environment is discussed in [I26]. The authors propose
to mimic real carving of wood and metal-working using implicit solids. The tools
for cutting e.g. wood are represented as CSG primitives, hence each carving
operation adds a primitive to a CSG tree. In one of the examples a volumetric
human head (presumably a medical data—set) is sculpted in this fashion. It does
look somewhat like a wooden figure.

The model is visualized using ray casting and like some of the volume sculpting
system updates are performed only to pixels where changes are visible. The
system has a relatively slow frame update rate of 2 fps.

2.3.4 Perspectives on Layered Manufacturing

In [T52] Minkowski operators are considered for sculpting. The main contribu-
tions seems to be the algorithms for Minkowski sum of octree & octree and line
@ octree. The authors — Saurabh Sethia and Swami Manohar — show that the
first of these algorithms have a lower computational complexity for octrees than
arrays.

The motivation is that the two algorithms are very suitable for constructive,
binary volume tools and two models presumably created using the system are
shown.

32 Survey of Volume Sculpting Literature

The work of Sethia and Manohar seems to pertain only to binary voxel modelling
which makes it wholly unsuitable for sculpting in a setting where smooth surfaces
are desired.

On the other hand (like Richardson’s approach), it might be suitable for layered
manufacturing. Indeed this seems to be the main application area, since the
techniques have been implemented and used in a sculpting system called Sirpi
[I0R]. Sirpi models can be exported in a format suitable for layered manufac-
turing.

The usefulness of volume graphics in Layered Manufacturing was previously
discussed in [33]. This paper is not so much about sculpting but about how voxel
models could be useful in layered manufacturing where actual physical models
are built (usually layer by layer) from computer models. The authors point out
that the there is a direct correspondence between a voxel and a unit of material
in a manufactured prototype and that a binary voxel model is a more true
representation of an LM prototype than a smooth surface from a CAD model.
Furthermore, the authors discuss some of the advantages of volumetric models
in conjunction with LM technology. For instance, the fact that by assigning
material properties to voxels, it is possible to easily represent objects of in-
homogeneous material.

2.3.5 Cellular Automata

An unusual approach to volume sculpting is proposed in [6] where the voxels
are considered to be cells containing virtual clay. A cell can contain any amount
of clay, but when a push operation is instigated, a fixed fraction of the matter
is transferred to the seven neighbours which lie in the opposite direction of the
pushing force. These neighbours are called the 3D Margolus neighbourhood.

The models that are shown in the paper are not more convincing than those in
other sculpting systems, but the approach is more “physical”; when a plate is
pushed down on the virtual clay, a bulge naturally forms around the depression.
Hence, the method can be seen as a pseudo—physical simulation of deformation,
and, if the goal is to mimic the behaviour of real world material, this approach
is probably superior to Ferley’s stamp tool [BA].

2.4 Summary 33

2.4 Summary

The alternative approaches mentioned in the previous section are very diverse,
and it is instructive to consider the merits of this group of systems, especially
the two approaches due to Gibson et al.: Linked volumes [62] and ADFs [63].
The former brings elastic deformations to volume graphics and the latter in-
creases the amount of detail that is possible. However, both approaches also
introduce entirely new problems. It is much more difficult to visualize linked
volumes than normal volumes, for instance, and it is hard to see how deforma-
tive manipulations (let alone elastic deformations) could be implemented in the
context of ADFs. Hence, the alternatives cannot replace the ordinary volume
representation, but they do highlight some of its weaknesses.

If we turn to the ordinary sculpting systems in Section these can be roughly
divided into two groups: Systems based on a binary volume representation and
systems based on a scalar volume representation. The systems in the latter
group (which is most important in relation to my work) have many similarities.
For instance, all manipulations are implemented as block operations where all
voxels in a rectangular 3D region are processed. Each voxel is modified in one
of two ways:

1. The voxel is replaced with a weighted average of its own value and the
values of the neighbouring voxels.

2. The voxel is replaced with a new value that is a function of the voxel value
and the value of a tool (represented either as a volume or as an implicit
function). Various functions have been proposed to combine the tool and
voxel values, but the aim is the same, namely to add or subtract the tool
shape from the existing solid.

The functions used to combine voxel and tool values vary greatly. Min and max
are used by Bearentzen and Galyean et al. [26] 60]. Wang et al. employ the
smoother functions due to Perlin [I75] [[28]. Ferley et al. use more complex
functions in order to mimic physical deformation. Finally, Avila et al. use
constant tool density but blend the tool and volume using an alpha factor.
While these approaches are very different they all aim at combining the tool
and the existing volume in a reasonably smooth manner. However, none of the
approaches aim at preserving a precise correspondence between the value of a
voxel and the geometry of the represented solid.

The methods used for visualization vary little. Two projects (Wang [I78] and
Avila [§]) use ray casting (and in both cases using VolVis) while the other

34 Survey of Volume Sculpting Literature

sculpting systems employ variations of the Marching Cubes method. The latter
approach currently allows for interactive visualization while the former does not
— at least not unless custom or highly parallel hardware is used (See Chapter BJ).
However, ray casting has the advantage that it is easy to update only changed
parts of the screen.

Another common trait is that many authors (Galyean [60], Raviv [T34], Broekhui-
jsen [28], Avila [§], SensAble, and Ferley [bA]) use either 3D trackers or haptic
devices for input. A convincing argument that 3D input devices are important
seems to be missing — except that since volume sculpting is very intuitive, it is
obvious to make it a Virtual Reality application, and in fact two of the authors,
Broekhuijsen [25] and Ferley [25] also support stereo glasses.

2.4.1 Classification of Tools

We shall now try to classify the sculpting tools provided by the various sculpting
systems. The tools are divided into three categories

e Constructive
e Deformative

e Indeterminate

Tools are labeled as being “constructive” or “deformative”, except if the opera-
tion can equally well be seen as both, the tool is labeled “indeterminate”. Note
that some of the systems provide tools for manipulations (e.g. painting) that
are not shape manipulations, and these tools are not covered at all. The result
of this classification is shown in Table ZJl For each tool and each category, ‘x’
indicates that the system provides at least one tool in that category.

For a deeper analysis, we need to compare exactly what tools in each category
are provided by the various systems. For each category, I have created a table
which lists all the systems that provide tools belonging to that category. These
tables are Table EZ2 Table B33l and Table EZ4l. Unfortunately, there is no
accepted nomenclature for sculpting systems, so comparable tools are called
different things by different authors. Hence, the names are mine. However,
where the authors do have names for their sculpting tools, these are noted in
parentheses.

The cut and join operations in Gibson’s system change the connectedness of
voxels in a linked volume. Since we usually deal with voxels in a fixed lattice

2.4 Summary

35

Table 2.1:
ing systems.

First Author | representation | constr. deform. indet
Arata scalar - X -
Avila scalar - - X
Beaerentzen scalar X X X
Baerentzen II | scalar X X -
Ferley scalar - X X
Galyean scalar - X X
Gibson linked X X -
Gibson adaptive X - -
Pasko implicit X - -
Raviv scalar (splines) - - b'e
Richardson binary X - -
Broekhuijsen | binary X - -
SensAble ? X X x
Sethia binary - - X
Wang scalar X - -

First Author

Constructive tools

Beaerentzen
Beerentzen 11
Ferley

Gibson (adaptive)
Gibson (linked)

Richardson
Broekhuijsen
SensAble

Wang

add, remove

add, remove, cut & paste

cut & paste

add, remove

binary remove

binary add, remove

binary remove

add (add clay), remove extruded (wire cut)
add volume, mirror

add, remove (carving), remove extruded (saw)

Table 2.2: Constructive tools provided by volume sculpting systems.

Classification of shape manipulation tools provided by volume sculpt-

that are implicitly connected to their neighbours, these tools do not apply to
volume graphics in general, and they do not fit into this classification.

Most of the remaining tools were easily classified as being either constructive or
deformative. The tools that have been labeled indeterminate are mostly tools
that add a blob of matter in a constructive way. However, the goal is usually
to create a small local deformation — be it a dent, bump, ridge, or groove. But
the add blob tool can also be used to create a trail of matter. The add blob and

36 Survey of Volume Sculpting Literature

First Author Deformative tools

Arata inelastic deformation

Beerentzen smooth (spray tool)

Beaerentzen 11 smooth, add blob, dilation, erosion

Ferley smooth

Galyean smooth (sandpaper)

Gibson (linked) | elastic deformation, inelastic deformation
SensAble inelastic deformation (tug, emboss), smooth

Table 2.3: Deformative tools provided by volume sculpting systems.

First Author | Indeterminate tools

Avila add blob (construct, squirt), remove blob (melt), stamp
Barentzen add blob (spray tool), remove blob (spray tool)

Ferley add blob, remove blob

Galyean add blob(toothpaste) , remove blob (heat gun)

Raviv add blob, remove blob

SensAble remove blob (carve, groove)

Sethia Minkowski sum

Table 2.4: Indeterminate tools provided by volume sculpting systems.

remove blob tools that are a part of the framework discussed in this thesis have
been labeled deformative, because they are built on top of a general method for
deformations built on the Level-Set Method.

The Minkowski operations proposed by Sethia are only suitable for binary vol-
ume graphics. In a scalar volume framework, dilation (which is roughly the
same as Minkowski sum) and erosion may be implemented for convex structur-
ing elements using the Level-Set Method [144].

Apart from the add blob and remove blob tools that are provided by many
systems, the most popular tools are smoothing tools and constructive tools
for adding or removing shapes. The constructive tools are usually analytically
defined, but many systems also provide facilities for using a volume as a con-
structive tool.

In my work on manipulation tools, I focus on designing tools for constructive and
deformative manipulation. In principle, either kind is sufficient in itself. For
instance, any shape can be created constructively by adding and subtracting
simpler shapes. Because genus changes are allowed, any shape can also be
created by deforming some primitive shape — say a sphere.

2.4 Summary 37

A reasonable question to ask, though, is whether other types of manipulations
than constructive or deformative should have been considered? In light of the
discussion above, the answer seems to be “no”, since almost all sculpting tools
can be said to be constructive, deformative or either. But, it is, of course,
still conceivable, and impossible to refute, that a useful manipulation might
fall outside of both categories. However, the range of possible manipulations
becomes very broad when we take into account manipulations where the tool
is generated on the fly through voxelization. Two examples serve to illustrate
how manipulations that are not simple constructive manipulations might still
be implemented constructively.

The first example is Wang’s sawing tool [I75] which is simply a constructive
manipulation where the tool is the voxelization of a shape created by sweeping
a closed 2D curve. A harder problem would be to sweep a volumetric solid along
some curve in space. This problem could be approached in two ways: Either we
could copy the volume a finite (but large) number of times or we could represent
the swept shape implicitly and voxelize it to generate the new solid. The latter
technique has been implemented in the context of implicit surfaces [Ih8] and
Wang mentions the possibility of an implementation of the former scheme in
volume graphics [T74].

In conclusion, a repertoire of voxelization techniques combined with general fa-
cilities for deformative and constructive manipulations should allow for a satis-
factory range of shape modelling tools. Moreover, constructive and deformative
tools are arguably the only ones found in existing volume sculpting systems.

38

Survey of Volume Sculpting Literature

Part 11

Theory

CHAPTER 3

V-models and Voxelization

A volumetric representation of a solid can be seen as a 3D grid of samples of
the characteristic function associated with the solid. This chapter can be seen
as a critical survey of characteristic functions used in volume representation. In
particular, it is explained why the binary volume representation, is problem-
atic. The merits of the scalar volume representation and especially of distance
field volumes are also explained. I reach the conclusion that the distance field
representation should be preferred.

The outline of this chapter is as follows: In the next section, we shall present
some basic definitions. In section we discuss sampling and reconstruction,
and the phenomenon known as aliasing which has great impact on the construc-
tion of characteristic functions.

In Section we discuss the binary volume representation and the attempts
that have been made at (re)constructing smooth boundary surfaces from binary
volumes. In Section Bl we discuss V-models. A V-model is essentially an
abstraction used to characterize a class of characteristic functions. Finally, we
discuss the issues and select the most appropriate type of characteristic function
in Section

42 V-models and Voxelization

3.1 Basic Definitions

By a solid S we understand a closed subset of R3. The volume representation
is not suitable for the representation of structures with no thickness. Hence, it
is required that S is a 3D manifold with boundary [75]. The manifold condition
implies that the boundary of the solid is locally homeomorphic to a disc. More
intuitively, we can cut out a neighbourhood around every boundary point and
flatten it to a disk. The boundary of the solid is a surface in R® and the
words surface and boundary will be used interchangeably. The surface is clearly
watertight, i.e. any path from the exterior to the interior will cross the surface,
and there are no dangling structures. An example of a solid and its boundary
is shown in Figure Bl Also shown is an illegal solid with a dangling curve that
violates our manifold condition.

0S

Figure 3.1: A solid and its boundary (left). An illegal solid with dangling curves
that violate the manifold requirement.

In the next chapter, the scope will be narrowed to solids that fulfill the condi-
tions above and an additional condition called permissibility, but for now the
definition above is sufficient.

Associated with a solid is an inside—outside function, Is which returns 0 for
points outside the object and 1 for points inside

fs(p)={ (1) g;g (3.1)

3.2 Sampling and Reconstruction

Just like a sampled sound is a discrete 1D signal and a sampled image is a dis-
crete 2D signal, a volume is really a discrete 3D signal sampled from a continuous
representation of a solid. In the case of binary voxelization, the inside—outside

3.2 Sampling and Reconstruction 43

function is sampled. In the case of scalar volumes, the characteristic function is
sampled. In order to render the volume we usually have to have some method
of reconstructing the value of the signal at arbitrary points off the voxel lattice.

Sampling and reconstructing a signal almost always leads to the loss of infor-
mation and/or the introduction of spurious information. Loss and misinter-
pretatiorﬁ of information, in turn, lead to artifacts that are known as aliasing
107, Ba]H.

Understanding the phenomenon of aliasing requires a discussion of how sampling
and reconstruction affects the frequency spectrum of the volume which is the
topic of this section. The goal is to present the sampling and reconstruction
issues as tersely as possible and to explain aliasing. All proofs are omitted. Most
of the formulas are from [I(07] but are found in any book on signal analysis. The
1D illustrations have been made with the FF'TW package developed at MIT.

3.2.1 Sampling and Reconstruction in the Spatial Domain

A continuous signal is sampled by picking out values at a regular set of points.
This is illustrated in the 1D case in Figure where the continuous signal f(t)
is shown along with its samples (the vertical impulses).

For one dimensional signals, a common reconstruction method is to use linear
interpolation. If f is sampled with unit sampling period, the k’th sample will be
written f[k] = f(k) where k is integer. The linearly interpolated value, f,, is

fr(t) = FIRIL = 7) + flk+1]7 (3.2)

where k = |t] and 7 = t — k. This interpolation method has been extended
to bilinear interpolation in 2D: Given a set of samples f[-, -] whence we wish to
interpolate the value at [z, y] we first interpolate along x and then along y:

fr(xvl) = f[kvl](1_7)+f[k+1al]7—
folz,l+1) = flk,I+1)(1=7)+ flk+ 1,1+ 17
fr($7y) = fr(xvl)(l_')/)“'fr(l‘?l_‘_l)’y

= fIROC =)0 =)+ flk+ L7(1 =)
+ flEI+1Q = 1)y + flk+ 1,1+ 17y

1 Strictly speaking, aliasing means low frequency components in a sampled and recon-
structed signal which are spurious representations of high frequency components in the origi-
nal signal. Jaggies which are typically called aliasing errors [I5 [T4] are not an example of this
phenomenon []. However, in computer graphics, aliasing has taken on a broader meaning.

44 V-models and Voxelization

where k = |z|, l = |y], 7 =2 — k, and 7 = y — [. Hence, bilinear interpolation
can be seen either as three linear interpolations or the weighted average of the
four nearest neighbours. The scheme is extended to trilinear interpolation in
3D in a completely analogous way:

frl@,y, 2) FlkLm] (1= 7)(L =)L = &) + flk+ 1,1, m]7(1 = 7)(1 = &)

= f]
+ [l I+ 1L,m+ 1 = 7m)vE+ flk+ 1,1+ 1,m+ 1]77¢

(3.3)
where k = |z|, Il = |y],m=|z], =2 —k,y=y—1,and £ = z —m. The
trilinear interpolation function is C° continuous. Due to its simplicity, trilinear
interpolation is often used in volume graphics and volume rendering. Figure
illustrates trilinear reconstruction.

3.2.1.1 Reconstruction by Convolution

Instead of seeing sampling as a process of “picking out values”, we can see it as
a multiplication of the signal, f, with a function that is only non—zero at the
sample points, namely the Dirac § function. To simplify notation, a time shifted
delta function (¢t — k) is written 0 (¢). The sampled signal f; is

fa®) = £ Y ok(t)= D flKIou(D) (3-4)

k=—o0 k=—o00

where the function Y- 0x(t) is zero everywhere except at integer positions
and is called the comb function for this reason.

The delta function has the property that for any f, f = f*d, and fx0 = f(t—k).
In other words, convolution of a signal with a time shifted delta yields a time
shifted signal. Using this property, we can rewrite the linear interpolation in
terms of convolution

fr(t) = faxh (3.5)

= > flESk(t) xR (3.6)
k=—o0

= > flkA(t-k) (3.7)
k=—o0

where h is the tent—function

o={47 15

3.2 Sampling and Reconstruction 45

Because the tent is only non—zero in [—1, 1] we can write (B
fr(t) = FIKIR(E = K) + [k + 1]A(t = F) (3.9)

where k = |t]. This formula is plainly the same as ([B2). This also holds for
other methods of interpolation. As long as the interpolation method is a time—
invariant, linear filter, the process can be expressed as the convolution of the
samples with the impulse response of the filter. Hence h is the impulse response
of the linear interpolation filter.

The generalization of sampling and reconstruction to multiple dimensions is
straightforward. If f is a 3D continuous signal, the corresponding discrete signal
is
falz,y, 2) = f(z,y, 2 Z 5z —10)d(y—74)o(z—k) (3.10)
i,j,k=—00

where the summation corresponds to the 3D comb function. We can reconstruct
the signal by 3D convolution of the signal and a filter

fr(z,y,2) = (faxh) (3.11)
/ / / fa(r,e,h(x — 1,y — €,z — {)drded (3.12)

h might, for instance, be the filter corresponding to trilinear interpolation. This
filter is the 3D analogue of the tent function which can be obtained as the
product of three tents:

Wz, y, z) = h(x)h(y)h(z) (3.13)

Filters that expand to products of one dimensional filters are called separable.
A filter might not be separable (for instance if it has spherical symmetry) but
many filters used in volume reconstruction are indeed separable [109].

3.2.2 Aliasing

Aliasing is the cause of many errors in computer graphics imagery. For instance
jaggedness and Moire patterns are caused by aliasing [b6], but aliasing pertains
not only to images but to signals in general, and to understand the phenomenon,
it is fruitful to first introduce the Fourier transform of a signal. We can write a
1D signal in terms of the Fourier transform

_ % [7wt (3.14)

46 V-models and Voxelization

T
signal
samples —

! UL A A e
[YT
/ & v
i | FDﬂspemE%f;;i’;‘;:gg ,,,,,,,,]

LA ey
T

VT

s

Figure 3.2: Top: A signal and discrete samples. Middle: The frequency spectra
of the signal and its samples. Bottom: The signal and its reconstruction

3.2 Sampling and Reconstruction 47

T
lopass signal
samples ---—--—--—- .

j \ FD ‘;;;Ji‘fclruln‘
“ | ‘ FDispectrum of sampled} --------
‘ i | " H

I

T
signal
signal .

Figure 3.3: Top: A band-limited signal and discrete samples. Middle: The
frequency spectra of the band-limited signal and its samples. Bottom: The
band-limited signal and its reconstruction

48 V-models and Voxelization

where the Fourier transform is
~ o .
Flw) = / F(t)e— (3.15)
— 00

Like convolution the Fourier transform is easily extended to multiple dimensions.
In 3D

. o0 o0 o0 .
fonwp) = [[[fagae st uyd: (3.0

Let ¢(z,y, z) be the aforementioned 3D comb function. The Fourier transform
of the comb is a comb function in the Fourier domain

Hwy, wy, wy) =21 Z wy — 2mi)6(wy — 27m))d(w, — 27k) (3.17)

i,j,k=—00

where a unit sampling period is still assumed.

Fourier transforms of functions are said to reside in the frequency domain and
the original signals in the spatial domain. There are various important duality
relations between the spatial domain and the frequency domain. In particular,
we will need the fact that convolution in the spatial domain corresponds to
multiplication in the frequency domain and vice versa. Thus

fxh=fh (3.18)
Th= %f*ﬁ (3.19)

In the spatial domain, sampling of f amounts to the multiplication of f with
the comb function, ¢, as per ([BI0). According to the relations above, we could
perform this operation by a convolution of f and ¢. We know that ¢ is also a
comb which is really a sum of shifted deltas, and convolution of a function f by
a shifted delta function amounts to a shifting of f. Finally, because convolution
is a linear operation

f *xC¢ = Z f * 527ri527rj527rk (320)
i,j,k=—00
00
= Z fwe — 27, wy — 27, w, — 27k) (3.21)
i,j,k=—o00

which means, intuitively, that in the frequency domain, sampling amounts to
an infinite replication of the spectrum of the signal that is being sampled. The
copies of the frequency spectrum are known as replica spectra of the original
spectrum. The spectrum is translated by multiples of 27; consequently, if the

3.2 Sampling and Reconstruction 49

spectrum contains frequencies that are numerically greater than 7 the spectrum
and its replicas may overlap.

Reconstruction is convolution in the spatial domain but in the frequency do-
main it becomes multiplication of the spectrum with the Fourier transform of
the reconstruction filter (see [BIF))). So far, we have only considered linear
interpolation, but this filter is certainly not always the best. The ideal recon-
struction filter is easily characterized in the frequency domain: It is a box that
is 1 for frequencies less than 7 and 0 elsewhere

$(Way wy, w;) = {

The product of [FZIl) and [B22) picks out exactly the original Fourier spectrum
but not the replicas. However, if the frequency spectrum f of the signal f
extends outside the frequency domain region wy,wy,w, € [—m, 7] some of the
high frequency information is lost, and, to make matters worse, the overlapping
spectra will contribute to the signal inside the region wg,wy,w, € [—m, 7.

1 wy,wy,w, € [—m, 7]

0 wy,wy,w, ¢ [—7, 7] (322)

To sum up, the ideal reconstruction filter cancels the replicas in the frequency
domain, but if the replicas overlap the original spectrum, we do not get back the
(single) spectrum of the continuous signal. In the spatial domain this translates
to artifacts that are known as pre—aliasing [I12]. Pre—aliasing is illustrated in
Figure B2 where the middle image shows the frequency spectrum of the original
function plus that of the sampled function. Notice how the original spectrum
deviates from the center-most part of the sampled spectrum because of the
contribution from the replicas.

Any function that is not band-limited is subject to pre—aliasing. A band-limited
function is a function whose frequency spectrum is 0 for frequencies (numeri-
cally) greater than some maximum. If we are to avoid pre-aliasing, the max-
imum allowable frequency is w = 7 if we sample with a unit sampling period.
Since w = 27 is the frequency that corresponds to a unit period, this explains
the Nyquist limit: A signal must be sampled at a rate of at least twice the
highest frequency component of the signal.

To lowpass filter a signal, we convolve it, before sampling, with the ideal recon-
struction filter which is also the ideal lowpass filter. In the frequency domain
this corresponds to multiplying all frequencies smaller than the Nyquist limit
with 1 and all frequencies that are greater with 0.

Sampling and reconstruction of a lowpass filtered signal is illustrated in Figure
The signal from Figure B2 has been band-limited. The band-limited signal
is shown in the top image. Notice how the spectrum of the original signal is
not visible. This is because it completely overlaps the spectrum of the sampled

50 V-models and Voxelization

signal. Consequently, the reconstructed signal is now identical to the original,
continuous signal. However, it is also clear that the band—limiting has removed
certain features from the signal.

Of course, the ideal reconstruction filter is not always possible to use. This
is due, in part, to the fact that in the spatial domain the ideal reconstruction
filter has infinite support — there is no region outside of which its value is 0
everywhere. A non-ideal reconstruction filter may be non—zero outside of the
frequency region wy,wy,w, € [—m,m|. This means that it might overlap the
replica spectra, even if the signal is band-limited. Artifacts due to this problem
are called post-aliasing artifacts [T12].

Another problem is smoothing. Formally, smoothing has been defined [T09] as
attenuation of high frequencies (below the Nyquist limit) by the reconstruction
filter. However, smoothing is sometimes an advantage, because the ideal re-
construction filter has a tendency to introduce spurious oscillations known as
ringing artifacts if it is used to reconstruct a signal that has been sampled below
the Nyquist limit.

3.2.3 Gradient Reconstruction

The gradient of a function f : R® — R is the vector of partial derivatives

of /0x
Vi=| 0f/0y (3.23)
of 0z

The gradient evaluated at a point on an iso—surface is parallel to the normal
of the iso—surface. This means that shading of iso—surfaces is usually carried
out by estimating the gradient at a point on the iso—surface and then using the
normalized gradient as the normal in the shading calculations.

When f is not known directly, but only through a set of samples, the gradient
must be estimated from these samples. The most common method of doing that
is estimating the gradient at voxel positions and then interpolating the result
to the point where one wishes to know the value of the gradient.

Commonly, the value of the gradient at a voxel location is estimated using
central differences

J[k+1,Lm]—flk—1,l,m]

Vflk,1,m] = f[k,lJrl,M]gf[k,lfl,M] (3.24)
flk I, m+1]=flk,l,m—1]
2

3.2 Sampling and Reconstruction 51

Generally, the more voxels whose values are taken into account, the smoother the
gradient estimate. While central differences usually yields satisfactory, different
operators are sometimes required. For instance, if the samples are taken from
the inside—outside function, central-differences yields a very poor result.

The Zucker—Hummel normal [I88] was developed as a part of an ideal 3D edge
detection operator. The idea is to estimate the direction [abc|T which is optimal
in the sense that a plane with normal [abc|? best separates the interior and the
exterior part of the volumetric solid. The normal is computed

[abc’ = ffd:@c
= | faxoy (3.25)
fd * ¢z

where

x/\/ 22 +y2 4 22 24yt 2 <y
bule,gyz) = { TVEAP S VRS2 (3.26)
0 Va2 +y2+22>r

and ¢, and ¢, are defined analogously. For r = v/3 this method yields a
3 x 3 x 3 discrete filter, or a 26-neighbourhood discrete filter. The 3D Sobel
operator [I07] is a very similar operator that uses the 26—voxel neighbourhood,
but the filter contains only integer values which means that the gradient can be
computed using integer arithmetic.

Bentum introduced the idea of computing the gradient by functions that are
derivatives of interpolation functions [I1]. In particular Bentum investigated
this method in conjunction with cubic spline interpolation functions. Sometimes
the method is also used in conjunction with trilinear interpolation [63} [[24]. The
partial derivative of the trilinear interpolation function with respect to x is

flE+1,0Lm+1](1 — 7)€ — flk, L m+ 1](1 —)¢
flE+ 1,1+ 1,m+ 1]y — flk, L+ 1,m+ 1]7¢

4+

(3.27)
where k = |z], l = |y|, m = |z], ¥y =y —1, and £ = z — m. The partial
derivatives along y and z are computed analogously. The problem with this
method is that the gradient is discontinuous across cell boundaries.

3.2.4 Issues Pertaining to Volume Graphics

In the preceding section, we have discussed some of the issues facing someone
who is trying to decide on a technique for interpolation and gradient estimation.

52 V-models and Voxelization

However, most of the work that has gone into analyzing reconstruction filters
has been carried out by people whose main concern was reconstruction from
acquired volume data, for instance [IR6] [T4} T3, 09, [T1].

In volume graphics we are able to do things the other way around. This means
that trilinear interpolation and central differences gradients are usually safe
choices, if we make sure that the characteristic functions are appropriate for
these filters. How to do so will be the topic of Section B4l

3.3 The Binary Volume Representation

It was mentioned earlier that binary volumes are not suitable for the represen-
tation of smooth surfaces. On the other hand, binary volumes do have some
virtues. For instance, it has been observed [I79] that compressed binary volume
data is a rather compact representation. In addition, the implementation of
constructive operations is trivial. For instance, the union of two binary volumes
is the result of a Boolean OR operation applied pairwise between all voxels at
the same location in each volume [B3]. Of course, voxelization of solids becomes
simpler too. All we need to do is for each voxel to check if its centre is interior or
exterior with respect to the solid. These examples show that there is ample mo-
tivation for using binary volumes, and we need to explain why the binary volume
representation is wholly unsuitable for the representation of smooth surfaces.

Binary voxelization amounts to sampling the inside—outside function of a solid
directly. We can reconstruct an approximation of the original 3D solid, simply
by construing each voxel as a small cuboid box around the voxel position that is
either empty (it the the value is 0) or full (if the value is 1). This is illustrated
in 2D in Figure B4l Unfortunately, if we simply draw each voxel as a little box,
the result is, of course, blocky. The solution would be simple, if we could recon-
struct the inside—outside function at arbitrary points in space. However, this
is difficult: The inside—outside function is discontinuous at the boundary of the
solid, and functions with discontinuities are known to be prone to aliasing since
the discontinuities are represented by high frequencies in the Fourier domain.

We can also approach the problem in the spatial domain which is perhaps more
intuitive. Looking at Figure B4l it becomes clear that the smooth shape whose
outline is shown is not the only one that could have given rise to the correspond-
ing binary approximation. This leads us to the fundamental problem of binary
volumes: The same binary volume corresponds to infinitely many continuous
solids. Conversely, two very different solids may give rise to the same binary
volume when their inside—outside functions are sampled.

3.3 The Binary Volume Representation 53

Figure 3.4: A 2D example of a binary volume

One approach to this problem is to approximate the boundary of the solid with
a deformable model. A deformable model is basically a representation of the
shape (or its boundary surface) that we are able to deform. Associated with
a deformable model is an energy function. The model is deformed until the
energy is minimized subject to the constraint that the inside—outside function
corresponding to the deformable model must give rise to the same binary volume
as the original solid. The result is the most likely surface (in terms of the energy
function) that could have given rise to the binary volume.

This is exactly the approach taken by Gibson in [61]. The deformable model
is a net of connected nodes. The net is deformed by moving each node. The
associated energy functional is the sum of squared distances between connected
nodes.

For each celfl in the binary volume we check if at least one of the corner voxels
is different from the others. If that is the case, a node is placed in the center of
the cell. The next step is to connect each node to the nodes in face-adjacent
cells. In this way a representation of the boundary is built. This representation
serves as a deformable model, and each node is now moved so as to be at the
same distance from each neighbour. This process is iterated until the energy is
minimized.

It is trivial to construct a triangle mesh from this deformable model, and the

2Recall that a cell is a cube whose eight vertices lie at voxel positions.

54 V-models and Voxelization

mesh can either be rendered or revoxelized to create a distance volume. The
main weakness of the method is that the deformable model is an explicit surface
representation. If the desired end—product is a volume, we have to revoxelize
the mesh.

This problem was addressed by Ross Whitaker [I79]. Whitaker uses the Level-
Set Method (See Section [L3). Hence, the deformable model is represented
implicitly as the level-set of a time—varying volume. The level-set model is
deformed with a flow that minimizes surface area subject to the constraint that
the surface should remain close to the surface of the original binary volume.
The method works well on many examples, but seems to have problems with
certain features such as sharp edges where aliasing artifacts are not removed.
The fundamental problem is that the goal — surface area minimization — is not
always the goal that leads to the most correct surface.

While the methods are interesting, they are not suitable for interactive visual-
ization of volume data. Gibson has no timings, but the method involves iterative
minimization of energy; something that cannot be accomplished quickly for large
volumes. Whitaker reports timings on the order of minutes.

A very different and much simpler approach is to accept the binary nature of
the voxels but to ensure that gradients are smooth. In [53] Fang et al. estimate
the gradients using the Zucker—Hummel gradient operator [I88] of size 3 x 3 x 3
or 5 x 5 x 5. The volume is subsequently rendered using the texture mapping
approach [I76]. The results are not completely satisfactory, however, and the
authors mention a better rendering method as a part of their future research.

Yet another approach is taken in [39]. Here, Cohen et al. propose a method to
reconstruct smooth surfaces from binary volume data by constructing a smooth
scalar field from the binary volume. The authors construct a pair of functions g
and h that are defined on the voxel lattice. The former represents the distance
from an interior (exterior) voxel to the closest exterior (interior) voxel; the latter
is the number of voxels in a given neighbourhood that differ from the given voxel.
A weighted sum of these two functions yields a pseudo—distance measure at each
voxel. A smooth scalar field is constructed by tricubic interpolation (using the
Hermite polynomials) of this measure.

The result is a smooth surface from very low resolution binary volume data.
Judging from the figure in the paper, the method produces a visually pleasing
result. However, it does not hide the block—structure of the binary volume data
— it merely makes the blocks blend in a smooth fashion. The model used in
the paper is extremely low resolution (9 x 6 x 3 voxels). At higher resolutions
one suspects that the blocky appearance would be almost as apparent as when
using simpler methods, although the blocks would be smoothly blended.

3.4 V-models 55

A final method is, of course, to construct a smooth volume by blurring the
binary volume with a large, discrete filter. This simple approach is discussed
by Gibson [64] who reports that only very large smoothing filters (as large as
19 x 19 x 19 vu® GauBian filters) suffice to hide the artifacts. Filtering with
so large kernels is time consuming. Moreover, the blurring will remove small
features which is not desirable.

In summary, the proposed methods for reconstructing smooth boundary surfaces
from binary volume data are either very costly [61l [[79] or yield a result that
is not completely satisfying [39, B3]. Simply blurring the volume combines both
demerits.

3.4 V-—-models

The characteristic function associated with a solid is simply a trivariate function
that represents the solid but is more amenable to sampling and reconstruction
than the inside—outside function. Obviously, there are infinitely many ways in
which we can construct characteristic functions, and it is clear that we might
have to deal with a large family of methods. To be able to discuss such methods
more effectively, Sramek introduced the notion of a V-model [T72).

A V—model is simply a trivariate function which represents the solid but can be
sampled and reconstructed with greater fidelity than the inside—outside func-
tion. The term V—model can be used in two senses. There are V-models of
specific solids. In that case the word V-model is synonymous with the term
characteristic function which has been used so far. However, the word V-model
will also be used in an abstract sense to denote a particular type or class of
characteristic functions.

In the following, the V-model of a solid S C R? will be denoted V(S) and the
value of a V-model at given point p € R? is V(S)(p).

There are several conditions that a good V—model should fulfill. First of all
there should be an isovalue 7 so that

V(8)(S) = 7 (3.28)

In other words, the boundary of the solid should be represented by some unique
value. This is because all methods for visualizing surfaces in volume data basi-
cally render iso—surfaces.

In general, the value of V(5) lies in some interval, say V(S) € [a,b]. At points

56 V-models and Voxelization

far away from the boundary of S, the value of the V—model is usually either a or
b depending on whether the point is inside or outside. The rest of the interval
Ja,b[is used only in a transition region that envelops the boundary surface.
The transition region is of width r if V(S) = a or V(S) = b only for points at a
distance greater than r from 0S.

Since our main concern is to be able to reconstruct the value of the V-model
from the volume in the vicinity of the boundary surface, we require of the V-
model that the transition region is wide enough to accommodate the entire
support of the reconstruction filters and gradient reconstruction filters if the
centre of the support is on or very close to the boundary surface. These issues
are illustrated in Figure

Reconstruction filter support

Transition
region

------ Boundary surface

Figure 3.5: A V-model. The boundary surface (heavy line) and transition region
(filled area). The support of the reconstruction filter is shown as a dashed circle
inside the transition region.

3.4.1 Prefiltering

The first work on non-binary volume sampling of geometric primitives (solids
or polygons) was done by Wang and Kaufman in [I73]. Their method, known as
prefiltering was to convolve the inside—outside function of a geometric primitive

3.4 V-models 57

with a Bartlett filterf] before sampling in order to band-limit the function. While
the Bartlett filter is not the ideal filter, it is probably a good choice, because
it contains a lot of smoothing and does not introduce ringing. In practice its
application is a weighted averaging of the inside—outside function in the region
within its support.

It is only necessary to know the value of the convolution at voxel positions, hence
a numerical solution is feasible, and the method was successful in producing
voxelized objects with few visible aliasing artifacts.

At first it seems that prefiltering is an obvious way to construct V—models; the
inside—outside function is discontinuous, hence cannot be reconstructed with ad-
equate fidelity. The prefiltering approach band—limits the inside-outside func-
tion before sampling which solves that problem. However, there is another
problem. It was stated above that there should be an iso—value, 7, so that
V(S)(9S) =7, but if

V(S)=Is* Ba (3.29)

where Ig is the inside—outside function and Ba is the Bartlett filter, the value
of V(S) at a point p € 95 will depend on the curvature of 95 at p.

The problem is illustrated in Figure where we observe that only a planar
surface divides a spherical support in two identical halves when the centre of
the support is exactly on the surface of the solid. The greater the curvature at
the boundary point, the greater the difference between the part of the support
that intersects the solid and the part that does not, and as the filter is positive
at all points within the support, the result of the convolution will also differ.
Note that the error is not a byproduct of sampling and interpolation, but an
intrinsic problem with the method.

There is one more problem with the prefiltering approach which pertains to
gradient estimation: It has been shown theoretically and verified experimentally
by Srdmek et al. [I71] that systematic errors in the reconstructed gradient
direction are introduced if central differences are used to reconstruct gradients
from a Wang V-model.

The problem is analyzed theoretically by showing that even for a planar surface
a gradient error is introduced if the V-model does not vary linearly with the
distance to the surface. If the V—model is constructed by convolving the inside—
outside function with a GauBlian, the error is as large as 0.07 radians — even
for planar surfaces; the error depends only on orientation and how much the

3Also known as the hypercone filter. The filter has its maximum in the centre of the
support and the value decreases linearly with the distance to the centre to 0 at the edge of
the support

58 V-models and Voxelization

Convolution kernel support

__ solid*

Figure 3.6: Intersection of solid and filter support
V-model deviates from linearity.

3.4.2 Distance Fields

Recently, another and simpler technique has been employed for solid voxeliza-
tion by e.g. Sramek [I7T} [72], Gibson [64], and Breen [2I]. The idea is to
simply sample the distance function ([30) or a function that is proportional to
the distance function. It is possible to sample and interpolate the distance func-
tion just like the convolved inside—outside function; in addition, this approach
has the advantage that it is simpler (in fact the prefiltering method uses the dis-
tance field), and has experimentally been shown to yield superior results [I71].
Moreover, it is obvious that the zero—set of the distance function corresponds
to the boundary surface of the solid. Hence, there is no gratuitous error in this
type of characteristic function.

Formally, we define the distance function associated with a solid S in the fol-
lowing way

—inf lp—dll pes
dg(p) =4 _ HVe€ods 3.30
s(p) { infygeos|p—all p¢S (3:30)

It is apparent from (B30) that we use the convention that dg is positive outside
and negative inside the solid, so it is really a signed distance function.

A typical example of a solid is the sphere. The entire sphere with centre pg and

3.4 V-models 59

radius r is given by

S={p:|lp—pol <r} (3.31)
The boundary is given by
9S={p:|p—po|l=r} (3.32)
and the distance function is
ds(p) =[p—po| —7 (3.33)

Various reconstruction filters may be applied to the voxel raster to reconstruct
the value at arbitrary locations, and the trilinear filter yields quite good results.
Sréamek shows experimentally that the surface reconstruction error for a sphere
decreases as the radius increases and reports an average error of less than 0.05
vu [I72] for the reconstruction of a sphere of a radius of 4 vu. Both Gibson
and Srdmek conjecture that the error is curvature dependent, and Gibson also
notes that certain special cases must be taken into account. These special cases
are when critical points in the distance field come so close to the surface that
they are within the support of reconstruction or gradient reconstruction filters.
This can either be due to sharp edges or, in the case of an object with a smooth
surface, due to two surfaces (or surface components) that are close to each other.
These conditions will be made more specific in the next chapter.

The signed distance function associated with a solid is sometimes called a Hesse
normalform [7]. The normalform has several useful properties. For instance,
the gradient is always unit length, and we can easily find foot points on the
boundary of the solid. A foot point is simply the orthogonal projection of a
point onto a surface:

Pfoot = P — ds (p)VdS (P) (334)

This turns out to be very useful, because it means that the solid can be rendered
using point rendering [70), [[3T] which is much simpler than either ray casting or
polygonization.

Additionally, it is easier to compute curvature from a normalform than from
other types of V-models. To demonstrate this, I discuss some formulas below
which are taken from [77].

The Hessian, H, of dg is the matrix of second order partial derivatives
dSzz dSzy dez
H=| dsy, dsy, ds,. (3.35)
dS zx dSzy dSzz
The mean curvature at a given surface point can be found very easily, if we can
evaluate the Hessian at that point:

1 1
KM = iTl"(H) = 5 (dszz + dsyy +ds..) (3.36)

60 V-models and Voxelization

The Gaufliian curvature is

dSyy dSyz
dS zy dSzz

dSzz dSzz
dS zx dSzz

dSzz dSzy

3.37
dSyx dSyy ()

i

"

HG—‘

and the principal curvatures are the two non—zero eigenvalues of H. The last
eigenvalue is 0 reflecting the fact that dg changes linearly in the gradient direc-
tion — hence the second order change is 0 in that direction. The characteristic
polynomial of H is

N2k N2 — kg =0 (3.38)

Let f be a generic V-model that does not change linearly with the distance to
the solid. In that case, the mean curvature is computed using the formula below

< (fyy + F22) 2+ (fox + Fo) o + (Fox + fuy) f2 >
(2 + F3 + 27

which is found in the literature [I56]. Clearly, (830) is simpler than [B39) which
indicates that one can estimate curvature properties more easily from volumes
if the voxels are samples of the distance function.

K = (3.39)

3.4.3 Distance Profiles

In [T72] various V-models are examined. These are all constructed as functions
of the signed distance function. In other words

V(S)(p) = g(ds(p)) (3.40)

where g is the density profile associated with the V-model. Sramek finds that
two profiles are of special interest, namely the piece-wise linear proﬁhﬂ

g(x) = min(max(—r, x),r) (3.41)

where 7 is the width of the transition region. This distance profile does not
change the actual distance value but simply clamps its value to the [—r, r] range.
It was found experimentally that for » > 1.8 the surface position could be
reconstructed using trilinear interpolation to within a tolerance of 0.2vu (which
was deemed acceptable) for spheres of radii down to 2. For spheres of radii down
to 10, the normal error is negligible when the normal is based on a trilinearly
interpolated central differences gradient estimate. From the plots, it is clear
that normal error stays below 0.01 radians for spheres down to radius 4.

4In [I72) g(-) € [0, 1] but there is no practical difference between this profile and (EZI]).

3.5 Discussion 61

Even better results were obtained for Gauflian profiles

x
g(z) = / et dt (3.42)
— 0o

where ¢ = 1. However, interpolation is by a tricubic filter and gradients are
calculated using the Gabor filter [I72]. This combination yields very small
surface errors for spheres of radii down to 1 and virtually no errors on gradient
direction. However, rendering is slower (by 20-35 %) and voxelization took up
to twice as long for the Gauflian profile as for the linear.

3.5 Discussion

It is costly in terms of computational effort to reconstruct a smooth surface from
a binary solid. Moreover, it is essentially guesswork. The same is not true of
the scalar volume representation. Here, the fidelity depends on the choice of V-
model, reconstruction filters and volume resolution. By tuning these parameters,
we can make the volume representation as precise as required.

Therefore, we can conclude that it is sensible to choose the V-model paradigm
as the basis for a representation of (smooth) free-form shapes. However, the pre-
filtered V—models have been shown to suffer from certain problems: A curvature
dependent error is introduced before sampling of the V-model. More precisely,
this means that ([B28]) does not always hold. The error is usually small, but the
distance field approach avoids it all together. In addition, central differences
cannot be used for gradient reconstruction without introducing an error that
depends on surface orientation.

Thus, it seems sensible to choose a V-model that is based on a distance profile;
simply using unbounded distances is problematic. It would mean that the ma-
nipulations (which will be discussed in part [Il) will have to maintain correct
V—model values for all voxels and not merely those in the neighbourhood of
the surfaces of represented solids. Furthermore (as mentioned in the introduc-
tion) it is more space efficient to clamp the values, mainly because it facilitates
compression of the volume data.

Srémek has demonstrated that the GauBian profile allows us to reconstruct
rather small features with good precision. However, this profile entails the use
of tricubic interpolation filters and the Gabor filter for reconstructing gradi-
ents. A linear profile (i.e. (BZI)) on the other hand has the advantage that
we can use our knowledge of the Hesse normalform to simplify curvature com-
putations. In addition this profile incurs less overhead for reconstruction and

62 V-models and Voxelization

gradient reconstruction because trilinear interpolation and central differences
gradient estimates yield acceptable results.

For these reasons, the V-model that will be employed in the rest of this thesis
is the clamped, signed distance function

V(S)(p) = min(max(—r,ds(p)),r) (3.43)
where

—inf lp—dll pes
dg(p) =4 . HVe€ds 3.44
s(p) { infygeos|p—all p¢S (8.44)

CHAPTER 4

Solids Suitable for Volume
Representation

In the previous chapter, we discussed various V-models and found that the
clamped, signed distance V-model is a good choice. However, not all solids
are well suited to the volume representation. The V-model itself does not
ensure that we can sample and reconstruct a solid with adequate fidelity. The
aim of this chapter is to develop a criterion for whether a solid is suitable for
voxelization at a given resolution. The essence of the criterion is to test that
the surface curvature does not exceed a given bound and that the features of
the solid are not too fine for the resolution.

In the first section, the scope is narrowed by the definition of permissible solids.
A solid that is not permissible is not suited for volume representation at all, and
throwing away such solids simplifies the criterion. In Section EE2 we shall see how
we can guarantee a transition region where the signed distance function is C'. In
Section B4 tools for characterizing solids in terms of mathematical morphology
are provided, and in Section LI these are tied to reconstruction filters. Finally,
a closed—form and an empirical error bound for the trilinear reconstruction error
are provided in E@l In both cases, we assume that the clamped, signed distance
V-model is used. It is also assumed that trilinear interpolation and central
differences gradient reconstruction are used for the reconstruction of distance
values and gradients, respectively. In Section EE7 contains a discussion of the

64 Solids Suitable for Volume Representation

results and their practical application.

4.1 Permissible Solids

What solids are suitable for volume representation? Clearly the suitability of a
given solid depends on the relative scale of the solid and the voxel grid. How-
ever, some solids are not suitable regardless of scale, and as a starting point,
we shall define permissible solids as those that might be suitable for volume
representation at some scale.

A reasonable starting point is to require that a permissible solid S C R? must
be a three-dimensional manifold with boundary and that its boundary 95 C S
is a two—dimensional manifold [I84} [75]. In fact, we only need to require that
the solid is a three—dimensional manifold with boundary, since it follows that its
boundary must then be a two—dimensional manifold. These requirements are
typical in solid modelling and while traditional CAD-systems based on bound-
ary representations can, in principle, handle non—manifold topologyﬂ, the same
is not true of the volume representation where we can only represent structures
if they have some thickness. In other words, non—manifold structures such as
dangling edges or isolated points are not permissible.

It is also important that the boundary 0S is reasonably smooth, since sharp
edges are a problem in the volume representation. Therefore, as a minimum,
we require that 9 is C1-smooth [I84]. Basically, this means that for any point
p; € 0S we can locally represent the surface 9S with parameterizations of the
form 1; : R? — R? that have continuous first order partial derivatives and the
Jacobian matrix of ¢; must have rank 2 [T05].

In summary, we can define permissible solids in terms of two conditions

Definition 4.1 Permissible Solids: Solid S is permissible if it fulfills the fol-
lowing two conditions:

1. Manifold topology: S must be a three-dimensional manifold R? with
boundary 05 C S. 05 is then a two—dimensional manifold in R3.

2. Minimal smoothness: 9S must be, at least, a C' smooth surface.

1 Typically CAD systems also require solids to have manifold topology, but some solid
modellers like ACIS allow for modelling of non—manifold objects.

4.2 Curvature and Singularities 65

At this point, we can define the inverse, S%, of a solid S. We would expect that
S is a permissible solid. Unfortunately, we cannot simply define the inverse solid
as the complement of S. Because a permissible solid S includes its boundary, it
must be a closed set. It follows that its complement, S¢, is open. Fortunately,
the problem is easy to fix, if we define the inverse solid in the following way

S — SCU(‘)S (4.1)

According to this definition, a solid and its inverse share their boundary, formally
SN S* = 0S. Note that this is quite compatible with the V-model concept
and in particular our chosen V-model BZ3). The V-model is designed so
that the zero—set of the V—model is identical to the boundary of the solid:
0S8 = {x| V(9)(x) = 0}. If we flip the sign of the V-model, the zero—set is
unaffected while the inside and outside are swapped. Thus

V(S§H) = —V(9) (4.2)

4.2 Curvature and Singularities

Of course, permissibility is not sufficient to ensure that a solid is suitable for
representation in any voxel grid. In [64] Gibson discusses issues that influence
the choice of volume resolution. Two causes of error in reconstruction and
gradient reconstruction are singled out, namely high surface curvature and sin-
gularities (meaning gradient discontinuities) in the distance field. Both issues
are relatively unsurprising. The quality of interpolation generally depends on
the smoothness of the function that is being interpolated. If one uses trilinear
reconstruction, one can only exactly reconstruct a function that is linear in x,
y, and z. Thus, a high quality reconstruction depends on the assumption of
linearity being reasonable, and the presence of high curvature and singularities
adversely affect the validity of this assumption.

Later in this chapter, a closed form bound on the reconstruction error as a func-
tion of curvature is presented as well as experiments which show the dependence
of reconstruction error on surface curvatures. However, various measures of cur-
vature are used, so first we need a definition of what is meant by “curvature”. In
this chapter, we will not use Gauflian or average curvature, so curvature means
normal curvature. We recall that a normal curvature at a given point p is the
curvature of a curve resulting from the intersection of the surface and a plane
containing the normal [82]. The principal curvatures at a given point are the
greatest and smallest normal curvature.

The boundary surface of the solid is really just one iso—surface of the distance
function (the zero—level isosurface). It will prove useful to have a definition of

66 Solids Suitable for Volume Representation

the curvature at a point which is not on the boundary of the solid but belongs
to some other iso—surface. These considerations lead to the following definitions

Definition 4.2 Maximum curvature
Let dg be the signed distance function of a solid S.

e The maximum curvature Kp,.x(p) at a point p is the numerical value of
the numerically greatest principal curvature (of the iso—surface of dg cor-
responding to the isovalue dg(p)) at p.

e The maximum curvature of a region X C R is

Krnax(X) = Sup Kmax(p) (43)
peX

With this definition, it is possible to formulate a bound on the reconstruction
error as a function of maximum curvature.

However, low curvature is not sufficient to guarantee good reconstruction. The
reconstruction and gradient reconstruction is also sensitive to singularities in the
distance field, but where do these singularities occur? Recall that the distance
field of a solid is a function that returns the shortest distance to the closest point
on the boundary of the solid. This function is continuous everywhere but the
same is not true of the mapping that maps a point to its closest boundary point,
and the singularities occur where the closest boundary point changes abruptly.
This is clear because the gradient of the distance field at a point p is equal to
the normalized vector from the closest point on 05 to p. For example, if S
consists of two disconnected solid spheres arranged as shown in Figure BTl the
gradient field is discontinuous along the plane illustrated by the vertical line.

A central differences gradient stencil is also shown in the figure. Note that
all but one voxel is closer to the left disk. Clearly, this may result in a poor
gradient estimate since the value of the last voxel represents the distance to the
right sphere whereas the other voxels represent the distance to the left.

The locus where the closest point changes abruptly is called the medial surfactﬂ,
and for permissible solids we can show that the gradient of the distance field is
only discontinuous on points belonging to the medial surface of either the solid
or its inverse.

Hence, to avoid singularities, we need only ensure that the medial surfaces of
the solid and its inverse do not intersect the transition region. Because the

2The medial surface is the three-dimensional analogue of the two-dimensional medial axis.

4.2 Curvature and Singularities 67

M(S)

Figure 4.1: Gradient stencil whose voxels are distributed on both sides of the
medial surface of S°.

thickness of the transition region is defined in terms of voxel units (vu) this
is where scale becomes important. A condition which ensures exactly that the
medial surface is outside of the transition region will be presented in Section EE4]
but first we need to show that the distance field is C! for all other points than
those belonging to the medial surfaces. That this is the case, can be inferred
from the works of Wolter [I84] and Krantz and Parks [94].

Definition 4.3 Medial Surface M (S) of a solid S

If p is the centre of a closed ball, @, of radius r and there is no ball of greater
radius which properly includes @ whilst itself being included in S, then @ is
mazimal, and its centre p belongs to the medial surface. To ensure that the
medial surface is a closed set, the limit points of the centres of maximal balls
are included.

The medial surface is closely linked to a similar concept known as the cut locus:

Definition 4.4 Cut Locus C(A) of aset A C R3 The closure of the set of points
that have at least two distinct nearest neighbours in A, a nearest neighbour being
the closest point in A.

Both of these definitions are adapted from a technical report by F.—E. Wolter
[[84]. Theorem one from the same report states that the medial surface M (S)

68 Solids Suitable for Volume Representation

of a solid S is equal to the intersection of the solid and the cut locus of its
boundary. Formally: M(S) = C(0S)(S. Equivalently, M (S*) = C(8S5%)) S".

the medial surface of the inverse solid S* is equal to C(9S) [S*.

Figure 4.2: Medial surface of a solid and parts of the medial surface of the
inverse.

According to theorem 2B of [I84] the unsigned distance function of a closed set
Ais a C! continuous function in R3\(A|JC(A)). If we identify 95 with A, we
now have a function that differs from the signed distance function only by the
sign in the interior of S which cannot affect its differentiability. Thus, it is clear
that the signed distance function is C' except at points belonging to the cut
locus or the boundary.

What remains is to make sure that the signed distance function is also C' on
the boundary. This can be shown if we assume that 95 is of positive reach.
Essentially, this means that the cut locus of 0S does not touch the surface.
More precisely, any point on the 9S must have an open neighbourhood inside
of which each point has a unique nearest point on 95 [94]. The first theorem
of [94] proves that if S is C' and of positive reach, then there is an open
neighbourhood of the surface where the signed distance function is C*.

We conclude that if the cut locus of S does not touch 95, we are ensured that
the distance function is C' everywhere except at the cut locus. Actually, the
cut locus is guaranteed not to touch the boundary, if we require something that
is slightly stronger than permissibility, namely that the partial derivatives of
o are Lipschitz continuous]. Theorem 4 of [I84] asserts that given the same
conditions as those for a permissible solid plus the condition that the partial
derivatives of a parameterization v are Lipschitz, the cut locus does not touch
the surface.

3A function, e.g. f : R — R is Lipschitz continuous, if there is a constant c so that
|f(a) — f(b)] < cla — b for any pair of a and b.

4.3 The Boundary Mapping 69

4.3 The Boundary Mapping

It is often useful to find the closest point, called the foot point, on the boundary
of a solid. We will denote the mapping that takes a point to the closest point
of a solid, the boundary mapping. This mapping is defined as follows

Definition 4.5 The boundary mapping
Bs : R3\(M(S)uU M(S%)) — 08 (4.4)
of a solid § C R3 is

€ oS
Bs(p) = { g —ds(p)Vds p € R3\(9S Ug(é)S))

S does not have to be permissible for the boundary mapping to be continuous.
If S is closed, it fulfills the conditions in theorem 2B of [I84], and then we know
that the distance function dg is C! (at least) in the open region R\ (9SUC(9S5))
and we can proveE:

Proposition 4.6 Bg is continuous on R3\(9S UC(d9)).

Proof: Bg is continuous at all points not belonging to R3\ (9.SUC(9S)) since it is
the difference of one continuous function and the product of two other continuous
functions in this region. To see that Bg is continuous on the boundary, observe
a point p € 95 and an open ball by, where € is chosen so that the ball does not
intersect the medial surfaces. We can now choose a § < /2. Observe that no
point in bg is closer to a point outside by, than to p. Hence

Bs(b)) C byyp) = b (4.6)

4.4 Openness and Closedness

In addition to being permissible, we must require that a solid has a bounded
maximum curvature and no singularities in a transition region of the bound-
ary. This size of the transition region should be chosen in accordance with our

4The observation in the proof of Proposition EE that the boundary mapping is continuous
because it is composed of continuous functions is due to F.—E. Wolter (private communica-
tions).

70 Solids Suitable for Volume Representation

method of reconstruction. For the time being, we will simply assume that the
transition region (see Section B is of width 7.

Intuitively, it seems that both things are ensured if we can roll a closed ball
of radius r on either side of the boundary of the solid in such a way that it
touches all points on the boundary from either side. This is illustrated in Figure
Since the ball touches the surface at all points, it seems certain that the

Figure 4.3: Balls rolling on either side of the boundary of a solid.

curvature of the boundary does not exceed the curvature of the ball. Likewise,
the medial axis should not come closer to the boundary than r. However these
things need to be made more precise, and this can be done using Euclidean
Morphology. The property that a ball can roll on the inside can be expressed
formally by saying that the solid should be invariant with respect to opening
with a closed ball of radius r. Likewise, we can use invariance with respect to
closing to ensure that the ball can roll on the outside. These properties will be
called r—openness and r—closedness. r—openness is defined as follows

Definition 4.7 A solid S is r—open iff
S =0(S,b") (4.7)

where O(S, b_”) is the open operation on S using b” as a structuring element.
r—openness simply means that we can represent the solid as the union of an
(infinite) number of closed balls of radius r. Hence, the sphere fits everywhere,
and we are thus ensured that we can “roll” the ball on the interior side. Of
course, the same thing must hold for the inverse solid, i.e. S% must also be
r—open. To avoid using the inverse, we observe that it can be shown that

S =C(S,b") = §'=0(S",) (4.8)

where C(5,b") is the close operation on S using b" as the structuring element.
In other words, if S is closed with an open ball it implies that S? is open with

4.4 Openness and Closedness 71

a closed ball. This follows from ([(AJ2) in Appendix[Al Consequently, we can
express the quality that we may roll the sphere on the exterior in the following
way

Definition 4.8 A solid S is r—closed iff
S =C(S,b") (4.9)

where b" is an open ball of radius r.

We can now state the main result of this chapter in the form of two propositions.
Both of these assume that we are dealing with permissible solids that are r—

open and r—closed. The first of these propositions is about the medial surfaces
M(S) and M(S?).

Proposition 4.9 Given a permissible solid S that is r—open and r—closed, the
shortest distance from any point p € 9S to any point belonging to M(S) or
M(S?) is r.

P
by,

Figure 4.4: Illustration of the proof that the medial axis is always at a distance
of at least r from 95.

Proof: Due to symmetry, we only need to show that this holds for one of the
medial surfaces. We choose M(S) and give a proof by contradiction. Let there

72 Solids Suitable for Volume Representation

be given a closed ball of radius < r at a point py, @ C S. Assume that this
ball is maximal and touches 95 at a point p. Because S is r—closed, there is
an exterior ball K C S? which also touches p. Because @ C S* and E cS
they can only share points belonging to the boundary which means they must
be tangent. Consequently, they share the tangent plane of 9S at p. Because S
is r—open there is also a closed ball of radius r, @ C S, containing p. By a
similar argument, @ shares the aforementioned tangent plane. However, if @
and E are tangent and both on the same side of 95 it follows that E C @.

This contradicts the assumption that E is maximal.

Hence, no centre of a maximal ball is closer to 95 than r. Let C' denote the union
of all centres of maximal balls. The arguments above imply that C' C S & b"
since the erosion of S by b" includes all points that are at least a distance of r

from 0S.

We know that S & b" is a closed seiﬁ, and that M(S) = C, i.e. M(S) is C plus
the limit points of C. Using ([AIf), it now follows that M(S) =C C S©b". In
other words, M(S), is fully contained in S © b" any point of which is at least a
distance of r from 05 O

The next proposition regards maximum curvature:

Proposition 4.10 Given a permissible solid S that is r—open and r—closed and
a point q so that |[ds(q)| = o where 0 <o <r

1
r—|o|

Kmax(q) < (4.10)

if Kmax 18 defined at q.

Proof Again due to symmetry, only points in S need to be discussed. Let p
be the point on 95 closest to q. Clearly, o = ||p — q||. Due to the fact that S
is r—open and r—closed, there are two tangent, closed balls of radius r touching
p from either side of the boundary. Let these be b;o C S and b;l C S*. The
configuration is shown in Figure L0

Now, let b7 be a sphere of radius r + ¢ which has the same centre as @, and

let bp, 7 be a sphere of radius r — o with the same centre as @.

For any point x in the interior of bp, 7, it is clear that d(x, 8@) > o and

5Proposition I11-27 in [I5]] states among other things that a closed set eroded by a compact
set is a closed set.

4.4 Openness and Closedness 73

Figure 4.5: Translated instances of b touch q from either side.

consequently, that d(x,0S) > o. Hence, ds(x) < —o. Similarly, for any point
x € bpto, d(x,0by,) < o. Thus, d(x,0S) < o and, therefore, ds(x) > —o.

This means that any point x near q and on the same —o—isosurface must lie on

the boundary or between the two closed balls bp? and bj, °.

Let there be given a normal section, «, which is formed as the intersection of the
—o—isosurface and a plane containing ¢ and the normal to the —o—isosurface at
gq. The centre of the osculating circle to a at q lies in the line defined by the

surface normal [80]. Since the closed balls bp,? and bpt? share the tangent
plane and, consequently, the normal (direction) of the —o—isosurface at q, the
intersection of the normal plane and these balls are circles of the same radii r—o
and r + 0. Because the osculating circle is defined as the limit position of three
points that (as we know from the above) must be on the boundary or outside

o " and b7, we conclude that the minimum radius of the osculating circle
to a normal section is r — o. Finally, the radius of the osculating circle is the
inverse of the curvature of o at q. Consequently, the greatest normal curvature
o 1
18 O

It should be noted that we are not guaranteed that the maximum curvature is
defined at a given point. The signed distance function is only known to be C!

74 Solids Suitable for Volume Representation

and the principal curvatures are computed from the second order derivatives of
the signed distance function. However, the continuity of the distance function
reflects the continuity of the surface in the sense that it can be shown that
for a C* hypersurface where k > 2, the signed distance function is C* in a
neighbourhood of the surface [94]. Since we are typically interested in solids
whose surfaces are piecewise C* where & > 2 (e.g. a cube with filleted edges
and corners) it is likely that the distance function is locally at least C? and
hence that the maximum curvature is continuous in most of the volume and
discontinuous only at points where the closest surface component changes.

4.5 Reconstruction

The first proposition tells us that if a solid is r—open and r—closed, there is a
transition region of thickness r inside of which the medial surfaces do not enter.
According to the observations in Section L2 this means that the distance func-
tion is C' inside this transition region. When finding values of dg or Vdg we
would like to use only voxels in the transition region. This is not feasible in gen-
eral, but an attainable goal is to use only transition voxels when reconstructing
values on the boundary of the solid. More precisely, if we are reconstructing the
value of dg or Vdg at a point belonging to 95, no voxels outside the transition
region should be used.

If a linear method for reconstruction is used, the reconstruction can be seen
as a convolution with a filter of a certain support. Assuming that the support
is spherical (or can be bounded by a sphere), we can now state a criterion for
volume representation suitability:

Definition 4.11 Volume Representation Suitability Criterion

A permissible solid is suitable for volume representation if it is r—open and
r—closed where r is greater than the radius of the support of the largest recon-
struction filter that will be employed.

In the following, we will assume that we are interpolating the distance field using
trilinear interpolation and reconstructing the gradient by trilinear interpolation
of gradients computed using central differences. The gradient reconstruction
involves the largest number of voxels, and should therefore be used to set the
lower bound on r.

We conclude that we must choose a value of 7 > v/6. To understand this observe
that if p is a point on the surface of S then the gradient value is calculated at the
eight nearest voxels and trilinearly interpolated at p. The values at a total 32

4.6 Error Bounds 75

voxels are used. (The voxel configuration is shown in Figure ELl). It is possible

farthest voxel

S
\

Surface point

Figure 4.6: Voxels used in gradient computation

to ascertain visually that the greatest distance from a point within that cube to
any voxel in the configuration is v/6 = v/22 + 12 + 12,

4.6 FError Bounds

The suitability criterion does not specify an exact value of r except that r
should be chosen in accordance with the reconstruction method. Throughout
this thesis, trilinear interpolation is generally used. Now, we would like to know
how the exact value of r influences reconstruction error. In this section, we will
develop a closed form error bound. To do so, we must assume that the second
order partial derivatives of the distance field exist.

First, we need a theorem about linear interpolation: Let f(z) be a function
which is continuous on [a, b] and twice differentiable on (a,b), and let there be
given a linear interpolation function

h(z) = (4.11)

which interpolates between the value of f at a and b. It can be shown that given
a bound on the second order derivative |f”(x)] < M we also have a bound on
the interpolation error

(b—a)?

[f(z) = h(@)| < ———M (4.12)

This formula is from [T87].

76 Solids Suitable for Volume Representation

4.6.1 Analytic Error Bound

Using [I2) we will now derive an error bound for trilinear interpolation in a
voxelized distance field. Given a distance field dg and a line segment between

Vds

Figure 4.7: Line segment from a to b in distance field dg

two neighbouring voxels a and b, we know that the value of the field along the
line from a to b is

f(s) = ds(p(s)) (4.13)
where p is a parameterized line
p(s)=s(b—a)+a (4.14)
and ||p’(s)|| = 1 since a and b are neighboring voxels.

To find the derivative of f, we apply the chain rule to the right hand side of

ETF) yielding

f'(s) = Vds- ‘é—? =
dsy(p(s)) by —ay
dsz(p(s)) bz — ay

The dot product yields a three term expression for f’, and to get f” all we need
to do is to apply the chain rule to each of these three terms. The result is a nine
term sum, where each term is the product of one of the second order partial
derivatives of dg and the corresponding two components of p = p’(s). This nine
term sum can be written in matrix notation in the following way

f(s) = BT Hp (4.16)

4.6 Error Bounds 77

where H is the Hessian of dg evaluated at p(s).

dSzz dSzy dsz
H= dsye ds, ds,. (4.17)
dsz;c dszy dszz

To find a bound for |f”| we need to find the numerical maximum of the right

hand side of (EIH).

This turns out to be simple, because dg fulfills the requirements of a Hesse
normalform [7], and it is known from the theory about such, that the Hessian
of the normalform (i.e. the Hessian of dg) has three eigenvalues 0, Kmin, and
Kmax corresponding, respectively, to the direction of the gradient, g = Vdg, and
the directions of minimum and maximum curvature, tyi, and tyax. Since any
vector € R? can be expressed as a linear combination of these three eigenvectors,

p= lg + M tmin + N tmax (418)
where ||p|| = VI2 + m? + n? = 1, we know that
e — 1oL ol — 12 2, 2
|f (S)| = |p Hp| = |l 0+ M Kmin + N Kmax (419)
< Kumax(P(8))
Consequently,
|f/l(5)| S KIIlax(Xl) (420)
where X1 = {p(s)| s € [0,1]} and using E20) and EIZ) we obtain
1
lin_err = = Kppax(X1) (4.21)

8

Of course, our real interest is in the trilinear interpolation function. A trilin-
ear interpolation may be perceived as a linear interpolation of two values that
are pairwise linearly interpolated between four values which are interpolated
between the eight original voxels. These seven linear interpolations are shown
in Figure To do a worst case analysis of the cumulative error, let us begin
with the value TAQ. TAOQ is linearly interpolated between the voxels VO and V1
and the maximum interpolation error is known to be lin_err. TA1 has the same
maximum error. IB0 is interpolated between TAQ and TA1. If we knew the exact
values at IAQ and TA1, it would follow that the maximum error at IBO would be
just lin_err. However, we must take into account that we are interpolating be-
tween interpolated values. Fortunately, we know that (for linear interpolation)
the difference between interpolation between exact values and interpolation be-
tween imprecise values can not be greater than the greatest of the two errors
associated with the imprecise values. In the present case, the interpolation is
between IAO and TA1l both of which differ from the exact values by at most

78 Solids Suitable for Volume Representation

ve _IA3

LI

A2
va 3

IA1
V2
4 V3

% B0

vo 1A

Vi

Figure 4.8: The seven linear interpolations that constitute trilinear interpolation

lin_err. Therefore, to obtain a bound for the total error at IB0O, we must add
lin_err to the linear interpolation error bound at IB0 yielding a total error bound
of 2 lin_err. By a similar argument, we may conclude that the total error bound
at IC which is interpolated between IB0O and IB1 is 3 lin_err, hence

trilin_err = %Kmax(XQ) (4.22)

where X5 is the set of all points in the interpolation cell.

The final important question is to find the maximum curvature within the cell.
According to Proposition LI, we can find the maximum curvature by finding
the greatest distance from any point in the cell to the surface of the solid and
plugging that distance into [I0). We are only interested in cells which intersect
the surface, so the greatest possible distance from a surface point to any point in
the cell is v/3, and the final expression for the reconstruction error as a function
of the radius r of our structuring element b becomes

(4.23)

where, according to the suitability criterion, » > /6. It is obvious, unfortu-
nately, that the bound is somewhat loose, since we have to make worst case
assumptions at every step, but it is difficult to make a tighter bound without
making assumptions about the shape of the solid or the configuration of the
solid and the trilinear cell. A plot of err(r) can be seen in Figure

4.6 Error Bounds 79

05 T T

Error Error bound for the distance field —

VU]

04

03 \

02

01f T~

Sphere radius [VU]

Figure 4.9: The error function.

4.6.2 Empirical Error Bound

The theoretical error bound is less tight than one might wish. Therefore it seems
to be a good idea to supplement it with an error bound based on empirical
data. If one voxelizes a solid for which it is easy to find the exact value of
the distance function and the gradient, it is also easy to measure the respective
errors. The next question is what solid to choose, and the obvious answer is the
sphere, because we have a closed form representation of the distance function
of a sphere. Another indication that the sphere is a good choice is the fact
that Kmin = Kmax at all points on the boundary of the sphere and on other iso-
surfaces of the distance field of the sphere. Since the minimum curvature is just
as large as the maximum, the value of |f”(s)| computed using ([Id) cannot be
smaller for a point in the distance field of a sphere than it is for a point in the
distance field of some other solid whose Ky,.x is the same at that point. While
this is only a heuristic argument, it indicates that the reconstruction error for a
general solid that is r—open and r—closed for some choice of r should not exceed
the worst reconstruction error for a sphere of radius r.

Based on this, I propose the following experiment to estimate the maximum
reconstruction errors for r—open and r—closed solids: For a sphere of a given ra-
dius, centered at the origin, send a ray toward a random point on the periphery.
Note the intersection point, p, and compute the gradient g. The position error
is the distance from the intersection position to the periphery:

errpos = | [[P]| — 7| (4.24)

where r is the radius of the sphere. Note that the empirical position error mea-

80 Solids Suitable for Volume Representation

sure is slightly different from the analytic. The analytic error bound bounds the
greatest difference between the value of the true and interpolated distance func-
tions, while the empirical error shown in Figure EET0 is the geometric shortest
distance from the point on the interpolated isosurface to the true sphere. The
gradient direction error is the dot product of the normalized direction vector
and the normalized gradient:

€ITgrad—dir = AICCOS P & (4.25)

Ipll - llgll
The gradient length error is

€ITgrad—len = |1 - ||g|| | (426)

With the exception of the last error measure, these error measures have been
adopted from [I72].

The experiment was conducted for a number of spheres of increasing radii (start-
ing at r = 2.5 > \/6), and for each sphere 10000 rays were cast toward random
positions on the periphery, and the mean and max values of the above error
measures were computed. The result is shown in Figure IOl It is comforting
to note that the overall maximum position error is less than 0.11vu which is
comfortably below the value of 0.2 that Srdmek decided should be the high-
est acceptable error. Notice also that the maximum gradient direction error is
everywhere less than 0.01 radians for all but the three smallest spheres. 0.01
radians was found by Deering [A8] to be the greatest difference still indistin-
guishable to humans. We notice that at a sphere radius of r = 3 > /6 the error
has fallen below 0.1 voxel unit, and for many applications this error should be
acceptableﬁ.

4.7 Discussion

In this chapter, I have defined a class of solids that we can regard as being
permissible. These solids are characterized by the fact that they are manifolds
and that their boundaries are at least C' smooth. It has been shown, that if
the medial surfaces of the solid and its inverse do not touch the boundary, we
know that the signed distance function belonging to the solid is C! except at
points belonging to the medial surfaces.

The properties r—openness and r—closedness have been defined, and we have
seen that if a permissible solid is both r—open and r—closed, we also know that

6The results in this chapter were published in a paper with Milos Sramek. Milo§ contributed
the practical experiments in the paper [29]. However, it was decided to repeat the experiments
in this chapter. Mainly because there were no measurements of normal error in the paper

4.7 Discussion 81

max pos error ———
mean pos error --->e---

wu
X

o 25 5 7.5 10 12.5 15 17.5 20
radinsAn

max direction error —+—
mean direction error ---»---

0.018

0.016 \
0.014 XK
0.012 \

0.008 \
0.006

0.004 <
X\\
X\

0.002 > S g
———. T——
e ~ —

rad

o

o

R
/

o 2.5 5 7.5 10 125 15 17.5 20

radinshn

max grad len error ———
mean grad len error ---»--—

wu
o
o
o
T
—

o 2.5

radinsAn

Figure 4.10: Mean and max position error (top), gradient direction error (mid-
dle), and gradient length error (bottom) computed numerically as a function of
sphere radius.

82 Solids Suitable for Volume Representation

its distance field is C! in a transition region of size r. Moreover, we can bound
the curvature of iso—surfaces of the distance field in the vicinity of the surface
of the solid. When these observations are coupled with the properties of the
reconstruction filters, it is possible to formulate a criterion for volume represen-
tation suitability and to find reconstruction error bounds. A criterion and error
bounds for trilinear reconstruction were presented.

This chapter is more theoretical than the rest of this thesis, and it should be
seen as an attempt at providing a theory for the volumetric representation of
solids with smooth surfaces. The obvious question is how these theoretical
results should be applied? In general, solids do not fulfill the r—openness and
r—closedness criteriae, and a method for performing the Euclidean open and
close operations during voxelization is hard to implement. However, apart from
explaining what solids that are representable, the suitability criterion can and
has been used for a number of problems:

e For simple geometric solids whose shape and curvature are known, it is
not difficult to verify whether they are r—open and r—closed.

e Convex shapes can simply be dilated by b”. This ensures r-openness; r—
closedness is trivially fulfilled because of convexity. This principle can also
be used to voxelize lines, or surfaces. However, if the set is not convex, we
are not ensured of closedness.

e For more complex solids, it is frequently obvious that they do not fulfill
the criterion (e.g. if we know the object has a sharp edge), but we want
to voxelize them anyway. Therefore, a general method for finding out
whether a given solid fulfills the criterion would probably be less useful
than a method for filtering solids after voxelization to remove the resulting
artefacts. Such a method, based on the suitability criterion, was developed
by Sramek et al., and is published in [I70]. Basically, this method works
by performing the open and close operations numerically. This method is
discussed in Section 2]

e Another approach that was attempted by myself is to voxelize only simple
objects that fulfill the criterion and then perform only manipulations that
maintain the morphological properties as invariants. This method was
implemented for constructive manipulations, and the results are published
in [28 and will be discussed in Chapter

Part 111

Practice

CHAPTER 5

Data Structures and
Fundamental Operations

This chapter is about data structures for volumes and about voxelization from
a practical perspective. Also discussed is a method known as the Fast Marching
Method which is a technique for computing distance maps. This has obvious
applications to voxelization, but turns out to be even more important for the
volume manipulations that are discussed in later chapters.

This chapter does not contain major contributions, but is included for complete-
ness. The data structures and methods discussed in this chapter are used in the
implementation of the methods discussed in the remainder of this part of the
thesis.

Section ETlis about the volume representation used for most of the experiments
in this thesis. In section we discuss techniques for voxelization and, finally,
Section is about the Fast Marching Method.

86 Data Structures and Fundamental Operations

5.1 Volume Representation

To begin with, we shall consider the contents of a single voxel. As mentioned
earlier, the representation assumed throughout most of this thesis is a clamped,
signed distance field. Hence, a single voxel represents a distance value clamped
to the range [—r,r] where r is the width of the transition region.

In principle, there is no need of other information in a voxel. However, for
experimental purposes the gradient, g, of the distance field is also stored for
each voxel. Frequently, we need to know the position p of a voxel, but since
voxels are always stored in a spatially pre-sorted fashion, p can be inferred from
the position of the voxel in the data structure, and it is not stored explicitly.

From these three pieces of information, one may reconstruct a foot pointﬂ on
the surface of the represented solid:

Pfoot = P—dg (51)

For our purposes, it would be wasteful to maintain distance and gradient infor-
mation arbitrarily far from the surface of the solid. Hence, at a certain distance,
we merely store information about whether the voxel is interior or exterior. To
distinguish voxels that do not contain distance and gradient information, a state
s is associated with each voxel. the value of s may be either interior, exterior or
transition. Only if the value of s is transition are d and g well-defined. Like the
gradient, the state could in principle be inferred from the voxel values. However,
the state is stored in an eight bit entity which leaves room for other information
if the need should arise. For instance, the two—pass algorithm for constructive
manipulation discussed in Section tags voxels, and the tag is stored in the
state of the voxel.

The total contents of a voxel is summarized in table Bl

name position | gradient | distance | state
symbol P g d s
representation || inferred stored explicitly

Table 5.1: Information contained in a voxel

The stored data entities d, g and s take up a total of seven bytes. Out of these
seven bytes, two are used for a fixed point representation of the distance d, four

1See Section

5.1 Volume Representation 87

are used to store the gradient which is represented as a unit length vector coded
as an horizontal and azimuth angle. s takes up one byte. Usually the compiler
adds a final eighth byte automatically for word—boundary alignment.

The decision to choose a fixed point representation of d is motivated by two
things. First of all, we know the range for d which is [—r,r]|. Secondly, in the
regular lattice volume representation there are no very fine details which would
require greater precision than the rest of the volume. In an adaptive volume,
the situation is reversed, and a floating point representation is called for as
mentioned in Section [

5.1.1 Voxel Grid Representation

Choosing a data structure for the volume grid is a relatively simple matter
when the representation is not an adaptive-resolution grid (discussed in Chapter
[). The trade—off is between space conservation and time to access a voxel.
Regarding space conservation, it is clear that only transition voxels need to be
stored individually, whereas exterior and interior voxels can be stored in a more
compact way. As for access time, it is desirable that access to random voxels is
not too time consuming.

Most authors solve the problem by simply using a large contiguous array for
storing the voxels. This choice can be problematic, however. At eight bytes per
voxel, a gigabyte would be required for a 512x 512 x 512 volume. Moreover, large
regions of the volume are likely to contain only exterior or only interior voxels.
This makes it attractive to use a more parsimonious data structure. Ferley at al
58] use a tree data structure or, what turned out to be faster, a 3D hash table.
The present author used an octree in a previous system [27), 26]. Both of these
are reasonable choices, but neither is likely to be as fast as a simple two—level
hierarchical grid. In a two—level hierarchical grid, the top level grid is an array
of pointers to a bottom level grid that is an array of voxels. This structure
is illustrated in Figure Bl If an entry in the top level grid corresponds to a
homogeneous region, there is no need to represent it by a bottom level grid.
This makes the data structure space efficient.

In the actual implementation, the top level grid is an array of pointers to sub—
grids. A sub—grid may be either monolithic or subdivided. A subdivided sub—grid
isan N x N x N grid of voxels of the type described in Table LT} the grid is of
fixed dimensions and stored as an array. Monolithic sub—grids also represent an
N x N x N grid. However, all voxels in a monolithic sub—grid are identical and
either all interior or exterior. Hence, a monolithic sub—grid can be represented
by a single state variable.

88 Data Structures and Fundamental Operations

Figure 5.1: A two—level hierarchical grid.

VoxelGrid::store(p, voxel)
{
sub_grid < top-grid[p];
if(!sub_grid.is_subdivided())
{
if(sub_grid.state == voxel.state)
return;
sub_grid < top-grid[p] « sub_grid.subdivide();
}

sub_grid.store(p,voxel);

}

Figure 5.2: Algorithm for storing a voxel in a hierarchical grid.

If a voxel is inserted into a monolithic sub—grid, it is important to check if the
state of the voxel is the same as the state of the sub—grid. If that is the case,
there is no need to insert the voxel, and no operation is performed. If the state is
different, the sub—grid is subdivided and then the voxel is inserted. Pseudo—code
for the algorithm is shown in Figure .

Clearly, it may happen that all voxels in a subdivided sub—grid are either interior
or exterior. In that case the sub—grid could be replaced by a monolithic sub—
grid. It would be possible to keep track of whether a given subdivided sub—grid
contained only exterior or only interior voxels and, if so, to replace it by a
monolithic sub—grid. However, this has not been implemented. It is simpler
(and does not add overhead to the store routine) to simply run through the
volume and replace subdivided sub—grids by monolithic as needed. A special

5.2 Voxelization 89

function associated with the hierarchical grid has been implemented and is used
to perform the operation.

Some additional data is cached in subdivided sub—grids to speed up visualiza-
tion. More precisely, two arrays of 3D floating point vectors and a flag variable
are stored. The arrays contain the foot points corresponding to transition voxels
and their associated normals. The flag signifies whether the sub—grid is dirty —
i.e. voxels therein have been changed since the vertex and normal arrays were
last updated. The dirty flag is set when a voxel is inserted or changed. The
details of the rendering process are related in Chapter Bl

5.1.2 Reconstruction

Since both distance and gradient information are stored in each transition voxel,
it is possible to reconstruct distance and gradient values using interpolation. The
notation G(p) will be used to indicate an interpolation/approximation of the
value of the volume at an arbitrary point while G[p] denotes the look-up of a
value at a voxel location.

Typically values are reconstructed at arbitrary locations by trilinear interpola-
tion. Unfortunately, interpolation is not always possible. Sometimes we might
want to know the value of the volume at a point which is not contained in a
sub—grid whose corners are all in the transition region. In this case, another
method must be employed. The technique used for off-transition region recon-
struction is similar to the one employed by Hoppe et al. [82] to define a distance
field from a set of unorganized points.

At each voxel a gradient g and a distance d are stored. Hence, a voxel at
position p contains in effect a planar approximation of the boundary. Say p is
the transition voxel closest to q. The signed distance at q is then approximated
by G(q) = d + g(p — q), and the gradient at q is approximated by g. This
method is, of course, not continuous, but if the surface of the solid is relatively
smooth, the reconstruction of the distance value will also be smooth.

5.2 Voxelization

Voxelization is the term used for the generation of volume data from some
other representation. Earlier in this thesis (Chapter Bl and Chapter H) we have
discussed the merits of binary volumes versus scalar volumes and what char-

90 Data Structures and Fundamental Operations

acteristics a shape should be endowed with in order to be suitable for volume
representation. In this chapter the more practical aspects are discussed. In
particular, we will see how to generate distance field volumes from various other
representations.

Voxelization is important in volume sculpting because we typically need to gen-
erate an initial solid from which to start sculpting. In addition, the constructive
(voxel CSG) manipulations (see Chapter) are essentially Boolean operations
between an existing volumetric solid and some new solid that is voxelized as
an integral part of the CSG operation. For both purposes we typically need
only very simple solids, but in some cases there is a need to voxelize complex
geometry. For instance, we might want to modify a laser scanned object [I34] or
some other pre—existing non—volumetric object using volume sculpting. To name
an application other than sculpting, many recent methods for metamorphosis
employ the volume representation [40, 34, 23, 95].

There can never be a single method for voxelization, since there are many dif-
ferent representations for geometry that might serve as input to a voxelization
algorithm. The existing algorithms for voxelization have focused on the follow-
ing representations:

Implicit surfaces

Polyhedra/polygonal meshes
CSG trees

Voxel models (i.e. conversion from one volumetric representation to an-
other.)

The output from voxelization depends on what type of volume representation
that is employed. Most of the early work [92 1] focused on producing binary
volumes — and typically from curves and surfaces rather than solids. However,
the discovery that gray—level volumes are suitable for smooth surfaces spawned
an interest in gray-level voxelization of solids and surfaces. Some of the earli-
est work was by Sidney Wang who developed an algorithm inspired by 2D area
sampling [I73, [[74]. The output from this algorithm is a sampling of the inside—
outside function convolved with a band—limiting filter. Although the method
is not unproblematic for reasons mentioned in Chapter Bl it marked the begin-
ning of research in voxelization techniques for producing volumetric solids with
smooth surfaces.

The simplest solids to voxelize are implicit surfaces. An implicit surface is really
just a function f : R?® — R which serves as the embedding of a surface B where

5.2 Voxelization 91

B is a level-set or iso—surface of f, i.e.

B ={p| f(p) =T} (5.2)

where 7 is the iso—value. In practice f should be constrained so that the value
of f is always f > 7 on the inside and f < 7 on the outside or vice versa.

The analytic definitions of a 3D sphere f(p) = ||p — po|| or hyperplane f(p) =
(p — po) - n are good examples of implicit surfaces, and these two are particular
because the value of f is also the signed distance to the sphere or hyperplane,
respectively. Hence, we can voxelize a sphere or hyperplane simply by sampling
f. In general, more work is required. If we can accept some error, it is frequently
possible to voxelize the implicit surface by sampling an approximation of the
signed distance, typically f/||Vf||. This method is used in the VXT library
by Sramek [I59]. A more precise but also more costly method is to find the
foot point numerically: Given a point p find the closest point pgoos S0 that
f(Ptoot) = 7. The distance is then ||p— proot|| and the sign is trivially computed.
Erich Hartmann has designed such a foot point algorithm [77]. The algorithm
accepts a point p in the vicinity of an implicitly defined surface and produces
a foot point. The basic idea is to move in the gradient direction until a point
po on the surface is found. The estimate is then iteratively refined until the
surface normal points to p. Let the function for finding py from p be called
surfpoint. The complete algorithm consists of the following steps:

1. Find pg < surfpoint(p)
2. A step in the tangent plane yields a foot point qg on the tangent plane.
3. p1 < surfpoint(qo)
4. A parabola is defined by
parab(z) — po + z(qo — Po) + 2*(P1 — qo) (5.3)
The foot point on the parabola is assigned to q;
5. p1 < surfpoint(qy)

6. Set pg < p1 and return to step 1 unless the algorithm has converged.

For a more detailed discussion of the algorithm, see Hartmann’s paper [77].

This algorithm has been implemented by myself and used for the voxelization
of ellipsoids. It is very costly to run the algorithm for each voxel, and to speed
up the process, the following fast voxelization method is employed:

92 Data Structures and Fundamental Operations

First of all, a random point on the surface is found, and the voxel closest to
that point is used as a seed point for the voxelization. The position of the seed
voxel is added to a queue. In the iterative step, the algorithm pops the head
of the queue, and finds the foot point of this voxel position. From the foot
point, the distance is computed, and if the distance is numerically smaller than
the transition region width, the distance is stored as the new voxel value. In
addition, the position of each of its six neighbours is added to the queue. If
the computed distance places the voxel outside the transition region, it is added
to a list of interior voxels, if the distance is negative. Finally, the algorithm
loops back. In this flood—fill way, all transition voxels are computed. When the
transitional voxels have been computed, the list of interior voxels is used as seed
points for flooding the interior.

Probably, the most common representation of geometry is the polygonal mesh.
Because we are here dealing only with solids, the mesh must be closed to be
suitable for voxelization. Thus, in this context, a polygonal mesh is really a
(possibly complex) polyhedron.

A na ive approach to finding the shortest distance to a polygonal mesh is to find
the shortest distance to each polygon. The distance that is numerically smallest
is correct [TZ7]. The problem with this approach is that it is very slow, and if
two polygons happen to have distances that are numerically the same but of
different sign, we are in trouble. These and other issues are discussed in [I27].

An efficient technique for voxelization of a (closed) triangle mesh was proposed
by Mark Jones in [88]. The algorithm initially scan converts the object which
produces a binary voxelization (ternary in fact, since voxels that happen to be on
the surface are given a separate flag). The distance is now calculated at a given
voxel unless all 267neighboursﬁ of all 6-neighbours have the same state —i.e. all
are inside or all are outside the polyhedron. This ensures that distances are only
calculated at those voxels that will be needed for the subsequent visualization.
Jones optimizes further by only calculating the precise distance to a triangle if its
plane is within a certain distance. The actual distance to triangle computation
is also discussed from an efficiency point of view. The method is tested against
the brute force method for (only) one mesh of 2600 triangles. The result is a
reduction of the voxelization time from 30 minutes to 22 seconds. That is a
speed up of about 81 times.

Recently, a new method, the “Meshsweeper” algorithm, for computing the short-
est distance from a point to a triangle mesh has been proposed by André Guéziec
[22]. The fundamental idea is to iteratively simplify the mesh and for each level
of simplification to construct a bounding volume around each triangle. The

2See Appendix

5.2 Voxelization 93

algorithm for shortest distance computation starts at the coarsest level of this
hierarchy and moves toward the full mesh. However, at each level, a given
bounding volume need not be examined if the closest point within is further
away than the furthest point in some other bounding volume at the same level.
This enables an effective pruning of the search tree that gives a substantial
speed up. In the case of multiple queries in a given region, spatial coherence
is exploited. The algorithm is not intended for voxelization although the com-
putation of distance fields is mentioned as an application, and Guéziec reports
a speed up of 52 times compared to the brute force approach for computing
a 64 x 64 x 64 distance field volume. This is somewhat less than what Jones
reported [88]. However, Guéziec’s timing is for a full distance volume whereas
Jones computed the distances only in a transition region. This seems to indicate
that the Meshsweeper algorithm may be faster under identical circumstances.

In some cases, a polygonal mesh represents a convex polyhedron. This simplifies
the problem of determining whether a point is interior or exterior. If the point
is on the exterior side any of the planes containing faces of the polyhedron, the
point is exterior. Otherwise, the point is interior.

Convex shapes are interesting with respect to the suitability criterion presented
in Chapter Bl due to the fact that they can be made to fulfill it quite easily. If
we simply dilate a convex shape with a sphere of radius r, we know that it will
be open with respect to that sphere. Closedness is ensured by the convexity. In
practice, we simply subtract r from the distance field since this corresponds to
a dilation by spherical structuring element. Two examples are shown in Figure
.o

Figure 5.3: Voxelized tetrahedron and cube. Both were created by dilating the
respective polyhedron using a closed ball b".

A method for voxelizing a convex polyhedron in an openness—closedness fulfilling
way has been implemented by myself. The polyhedron is represented solely by

94 Data Structures and Fundamental Operations

the planes containing its faces, and the first step is to find out if the point
is exterior with respect to any of these planes and the distance to the closest
plane. If the point is interior with respect to all planes, the shortest distance
is reported. Otherwise, we determine whether the foot point on the plane that
yielded the closest distance is on the surface of the polyhedron. If it is, we
report the distance to the closest plane. Otherwise, the closest feature might
be an edge or a vertex, and the algorithm tests these possibilities in turn. To
dilate the solid, we simply subtract r from all distances. This corresponds to a
dilation with a sphere of radius r.

A generic, approximate method for voxelization was proposed by Sealy and
Novins [I48]. The idea is to approximate the signed distance function using
ray casting. The advantage of ray casting being that it enables voxelization
of any object that can be ray traced. Their basic algorithm fires a number of
rays in random directions from each voxel, and the closest intersection is used
to compute the shortest distance. This method is very costly and does not
exploit coherence, but it gives a nice result if enough rays are fired. The authors
also propose a more parsimonious method which is to fire rays along the major
axes of the voxel grid. Thus three rays pass through each voxel, and each ray
contains information about the closest intersection in the x, y and z direction
and about whether the ray is inside or outside at the voxel location. This is
only enough for a crude approximation of the signed distance, but it can be
improved upon. The algorithm examines the normal at the closest point and
uses that to create a locally planar approximation of the surface from which
a more precise distance estimate may be computed. Unfortunately, it seems
that one must choose a method which is fast and imprecise (rays cast along
major axes) or precise but slow (many random rays from each voxel). However,
the precise method could probably be accelerated and it might be useful if one
wants to voxelize a heterogeneous object where the more specialized algorithms
are hard to apply. The model used as an example in [T48] is a CSG Model.

Another technique for creating distance volumes from CSG models was proposed
by David Breen et al. [2T, 22]. The method is closely related to Sethian’s Fast
Marching Method which is the topic of the next section, but the distances are
not computed by solving the Eikonal equation. Another difference is that not
only distances but also closest point information is propagated. Initially, the
distances are computed at the so called zero—set grid of points that is very close
to the surface. The distances are computed at the leaf nodes of the CSG tree
and combined using the rules from the Constructive Cubes paper [20]. When
the distances (and closest points) are propagated, the new distance at a narrow
band voxel is computed by searching an N x N x N neighbourhood of a frozen
voxel for the point closest to the narrow band voxel. This is possible because
not only distances but also closest points are stored in the voxels.

5.2 Voxelization 95

Segmentation of volume data from e.g. CT or MRI scannings yield a binary
volume. The FMM or some other method for propagating distances might be
used to create a distance field based on such a binary volume, but this would
lead to aliasing since the starting point is a binary volume. A method for
computing a distance field volume from a CT data set was recently proposed by
Jones and Satherley [87]. The idea is to use a polygonization algorithm to tile
an isosurface in the data set but instead of generating triangles, the distances
and vectors to the closest points on the isosurface are stored in voxels adjacent
to the isosurface. From this set of voxels, the distance is propagated to the rest
of the voxel grid using the author’s own VCVDT (Vector City Vector Distance
Transform) [I46]. In Chapter Bl some other approaches for computing distance
fields from binary voxel data were discussed. This approach seems simpler and
a comparison would be interesting.

5.2.1 Revoxelization

In some cases we might want to process non—binary volume data in order to
perform some sort of regularization. For instance, there are many solids which
do not fulfill the morphological criterion presented in Chapter Bl and it might
not be practical to change such solids before voxelization. Another approach is
to simply construct a V-model V(S) from a non—fulfilling solid S and sample this
V-model. This produces a voxel-grid G = V(S) that might have ill-represented
features. A method for removing such features was proposed by Sramek et al.
in [I70].

The method amounts to a numerical implementation of the open and close
operations. The open algorithm works by fitting a ball b” of radius r numerically.
This is accomplished by a numerical fitting of the V-model. If the V-model is
the clamped signed distance function (which is generally assumed in this thesis)
the ball fits if

V(b;,,)(p) = G[p] (5-4)

Intuitively, this amounts to saying that for exterior points the distance to @
must be greater than the distance to S and for points inside that the distance
must less to by, than to S. For all voxels in the transition region, the closest,
fitting ball is found and the new distance is ||p — po|| where p is the voxel
position.

The procedure is accelerated by only revoxelizing voxels in the vicinity of sharp
edges. Such voxels are found by thresholding a Laplacian filter.

96 Data Structures and Fundamental Operations

5.3 Fast Marching Method

One of the stated goals of my thesis work is to implement manipulations of
volumetric solids that preserve the property that the volume is a distance field.
In some cases, a manipulation results in a volume where some voxels contain
correct distances but others need to be recomputed. In these cases we need a
technique for propagating the distances from the known voxels and to (parts of)
the rest of the volume.

There are several methods for doing just that. The Chamfer distance trans-
forms [[] is a class of O(N?) algorithms (in 3D) for computing the distance
transform — including (pseudo) Euclidean distance transforms. The VCVDT
algorithm [I46] which was mentioned above is based on propagating closest
point vectors rather than only distances. Sethian’s Fast Marching Methods
153, 55 154] builds the distance field from a boundary condition by solving
the Eikonal equation for all voxels in a systematic way. A variation of the
FMM by Breen and Mauch [ZI] builds the distance volume in the same way
but computes the distances differently. I elected to use a variation of Sethian’s
Fast Marching Method with improved accuracy [I55]. The reason for choosing
the FMM is that it does not traverse the volume systematically, but works by
adding voxels of increasing distance. If we are, say, building a transition region,
it is advantageous to be able to set a threshold so that if the distance at a given
voxel is above that threshold, distances are not propagated further from that
voxel. This is trivially supported by the FMM.

The FMM can be described as a family of schemes for computing the evolution of
fronts. In this context, a front is a closed surface in 3D (or a closed curve in 2D)
which separates an interior and an exterior region. Things become interesting
when the front evolves over time. In general, such a front may expand and
contract, but the Fast Marching Method pertains only to cases where the motion
is limited to expansion. In addition, we assume that the evolution is restricted
to motions in the normal direction. At a given point, the motion of the front is
described by the equation known as the Eikonal equation

IVT ()| F (%) = 1 (5-5)

where T is the arrival time of the front at point x and F > 0 is the speed of
the front at point x. Because the front can only expand, the arrival time T is
single—valued.

The scheme is illustrated in Figure B where a front emanates from a single
point with speed F' = 1 everywhere. Since the front has equal speed in all
directions it becomes circular. The front traverses the point x at time T = 8.

5.3 Fast Marching Method 97

20_|
X
16_|
12_
8 _|
4 _|
0
[[[[[[
0 4 8 12 16 20

Figure 5.4: Front crossing point x at time T' = 8

In the figure, the front evolves from a point, but, of course, this need not be the
case. In general, the front may evolve from any sort of boundary.

The Fast Marching Method operates on a lattice. Although the method is more
general, for simplicity, we will restrict our attention to voxel grids of the usual
sort, i.e. isotropic, rectangular 3D grids. We will also assume that F' = 1
everywhere. In this case, the Fast Marching Method simply propagates the
shortest distance to the boundary to all other points in the grid. In the context
of volume graphics this is most frequently what we need. For instance, the Fast
Marching Method can be used to rebuild the full transition region from a very
thin or incomplete transition region. This application will be discussed later.

5.3.1 The algorithm

The philosophy of the method is to work outwards from the boundary. For each
iteration of the central loop of the algorithm, the distance value at the voxel
having the smallest distance value is frozenE. Frozen voxels are used to compute

3Sethian uses the word alive, but frozen seems more intuitive

98 Data Structures and Fundamental Operations

the values of other voxels but are never computed again. Thus, we can see the
method itself as a front that propagates from the boundary, freezing voxels as
it moves along.

The initial condition is a set of voxels whose distance values we know. These
voxels are frozen, and for each frozen voxel, we visit all the neighbours in a
six—connected neighbourhood (see Figure Efl) and at each of these neighbours,
the distance is computed using only information from frozen voxels. Each of
the recomputed voxels is now tagged as a narrow band voxel and inserted into
a binary heap. This data structure is a good choice, because in the following,
we need to be able to find the narrow band voxel having the smallest distance
value.

The loop ensues, and the first step is to extract the narrow band voxel that
has the smallest distance. We tag this voxel as being frozen, i.e. we consider
its distance value to be computed, and for each neighbour that is not frozen
we compute the distance, tag the neighbour as being a narrow band voxel and
insert it into the heap. Of course, the neighbour may already be in the narrow
band. In this case, we merely recompute the value and change its position in
the heap to reflect the new value. Finally, we loop back and extract the new
smallest distance narrow band voxel. (The loop is illustrated in Figure B3l)

Figure 5.5: Level set lattice. Black circles indicate frozen voxels, gray circles
indicate narrow band voxels and the white circles are un-visited voxels. In (b)
we see a new voxel has been frozen and two previously un-visited voxels added
to the narrow band.

We need to be able to find the heap elements that correspond to voxels whenever
the distance value of a voxel changes. In order to find the corresponding heap
element, Sethian suggests [I53] that each narrow band voxel in the grid should
contain a pointer to the corresponding heap element.

However, that is not in itself enough, since elements in the heap might change

5.3 Fast Marching Method 99

their positions when they have been recomputed. This means that the pointers
into the heap must be updated when the heap is changed. This entails that
the heap and the grid cannot be entirely separate data structures which is
unfortunate from a software engineering perspective. Hence, it is a good idea
to use a heap consisting of a list of values and a list which is a permutation of
their ordering. The permutation list contains pointers to the value list and vice
versa. This heap implementation is suggested in [I50)].

After a value has been inserted into the heap, its position in the value list is
never changed — only the permutations. Hence, the heap element pointers in
the grid never have to be changed and the heap does not require access to the
grid.

5.3.2 Computing distances

Distances are computed by solving the Eikonal equation. In other words, we
must find a distance value for the narrow band voxel so that the estimated
length of the gradient ||VT|| is equal to 1/F.

V|| = 1/F (5.6)

Sethian proposes the following formula (borrowed from the field of hyperbolic
conservation laws) for the squared length of the gradient

maX(VA — VB, Va4 — Vg, 0)2 +
IVT|)? = { max(Va —Vp,Va — Vg, 02 + (5.7)
maX(VA — VF, VA — Vg, 0)2

where Vy is the unknown distance value and Vg, Vi, Vp, Vg, Vi, Vi are the dis-
tance values at the neighbouring voxels (in the six—connected neighbourhood).
The stencil is illustrated in Figure B8

It is not entirely clear from the literature how to solve (BH) using (&) because
neither the book [I56] nor the many papers [IH3} [[55] [[54] describe this in a com-
plete and precise way. Hence, the following method is based upon experiments
and analysis of ([&).

To solve this equation, we look at each term of the form

maX(VA — VB, VA — VC7 0)2

It is clear that we should choose to solve (&) using the smaller of the two values
VB and V¢ for
V< Vo = Vi -V >Va—-Vo

100 Data Structures and Fundamental Operations

Be oC

Figure 5.6: Stencil for the fast marching neighbourhood

In addition, we only use frozen values. If neither Vz nor V¢ are frozen, this
term drops out of the equation. It is possible to include non—frozen values in
the corrrﬁut:autions7 but tests indicate that it is detrimental to the quality of the
solutiont].

With these things in mind, we form the quadratic equation, say
(Va—=VB)* + (Va = V)’ + (Va — Vp)? = F?

assuming Vg < Vi, Vg < Vp, Vg < Vg, and that Vg, Vg, and Vg are frozen

The largest solution (if there are two) to this equation is the one we want. This
follows from the fact that V4 must be greater that the three known values (since
they are frozen). If there are two solutions, it is easy to that V4 can only be
greater than all of Vg, Vg, and Vg for one of these solutions.

5.3.3 The High Accuracy Fast Marching Method

The precision of the FMM does leave something to be desired. A simple 2D
examphﬂ exemplifies where the method might go wrong: In Figure B the
front emanates from the frozen (black) vertex labeled 0, the distance has been
computed at the two other frozen vertices, and the white vertex is being updated.
From (&), it is clear that the value at the white vertex should be the larger
solution to (z—1)2+4(z—1)? = 1 which is 1++/1/2 Unfortunately, it is also clear
that the correct distance is v/2 which means that the value is wrong by almost

4 Using non—frozen values would also lead to situations where a voxel is used to update
another voxel that has just been used to update itself. However, it appears that Sethian et
al. do use non—frozen values except in the higher accuracy version of the scheme [I56| p. 96.

5although not found in the literature to my knowledge

5.3 Fast Marching Method 101

1 0

Figure 5.7: 2D illustration of the problem with the FMM

0.3 vu. The error can be explained intuitively by observing that the FMM does
not know the curvature of the front. If the front had been linear, the value
would have been exact. This seems to indicate that the problem is worst when
using the FMM to compute distance from high curvature boundary conditions.

To explore the problem further, a simple experiment was conducted. The dis-
tance from a point to all voxels within a radius of 20 vu was computed. This
yields a max error of 1.48 vu and a mean error of 0.89 vu. If the exact distances
at all voxels in the 26-neighbourhood of the centre voxel are precomputed, the
results are only slightly better: The max error drops to 1.24 vu and the mean
error drops to 0.73 vu.

This has motivated the implementation of the higher accuracy version of the
scheme [I56]. The normal FMM is based on the use of one sided derivatives
computed using forward and backward differences:

G, ~ G = G[xayvz] - G[x - 1ayvz] =Va—Vg (58)
G, = DG = Glz+1,y,2] = Gla,y,2] = Ve —Va (5.9)

where D~ and D** are the standard notation for backward and forward dif-
ferences and G is the voxel grid (note that we implicitly assume that the voxel
distance is unit). When these approximations to the derivative in the x direction
and the corresponding approximations for the y and z directions are plugged
into () we have the ordinary FMM method. The main difference between
this and the higher accuracy version (FMMHA) of the method is that the first
order approximations (D% and D*) to the partial derivatives are replaced by
second order approximations:

3G[$7y, Z] - 4G[$ - 17ya Z] + G[l‘ - 2) Y, Z]

G, = D;°Glz,y,2] = 5 (5.10)

When these second order approximations are used, the scheme still works in
exactly the same way — except that we get different polynomial coefficients. To
use the scheme, the voxels at 2 vu distance must be frozen and have smaller

102 Data Structures and Fundamental Operations

FMM FMMHA
Average error 0.00467565 v 0.000496425 vu
Maximum error | 0.120639 vu 0.0270829 vu

Table 5.2: Comparison of the Fast Marching Method and the higher accuracy
Fast Marching Method. The voxelized primitive is an ellipsoid.

distance values than those at 1 vu distance, e.g. G[x — 1] > Gz — 2]. If these
two conditions are not met, the first order approximations to the derivative can
be used instead.

When the experiment above is repeated using FMMHA we get far better results.
Of course, it does not make sense to use the high accuracy scheme starting from
a single voxel, because in that case it must resort to the first order approxi-
mations to the derivative for the first few steps where voxels at 2 vu distance
are not available. Consequently, when the FMMHA scheme is tested, the exact
distances are computed at the centre voxel and in its 26-neighbourhood. For
this experiment we obtain a max error 0.27 vu and a mean error 0.07 vu. Notice
that the mean error is an order of magnitude better than using plain FMM.

A practical volume graphics experiment was also conducted. An ellipsoid with
principal axes of length 20 vu, 80 vu, 120 vu was voxelized. The voxels adjacent
to the surface (meaning that the voxel has a 6-—neighbour on the other side of the
surface) of the ellipsoid had their distance values computed numerically using
Hartmann’s foot point algorithm. The remaining voxels in the 2.5 vu transition
region were computed using the FMM or the high accuracy FMM. The results
are summarized in Table 22l The average error is the average difference between
the distance as computed by the foot point algorithm and the distance stored
in the voxel (i.e. computed using FMM). The maximum error is the greatest of
these differences. It is noticeable that the average error has dropped by almost
an order of magnitude and that the maximum error by more than half an order
of magnitude.

Visually, both ellipsoids are indistinguishable from the same ellipsoid voxelized
using only the foot point algorithm. However, in some cases there can be a
visual difference between the result of the two Fast Marching Methods. This
is illustrated in Figure which shows two spheres that have been created by
running the FMM (or FMMHA) starting from a single voxel. The sphere created
using the high accuracy method is clearly more round although not perfect.
This example was timed to get an idea about the difference in performance.
The actual “marching” took 1.4 seconds using FMM and 1.62 seconds using
FMMHA (measured using the clock system call) on the Linux platform. Thus,
the performance difference between the two methods is only marginal.

5.4 Discussion 103

Figure 5.8: Comparison of two spheres voxelized using (left) FMM and (centre)
the high accuracy variant. A difference image is shown on the right.

5.4 Discussion

In this chapter, we have laid the groundwork for the coming chapters by dis-
cussing some of the fundamental data structures and methods that are used in
most of my work:

e The data structure used to store the distance field volumes which have
been used throughout much of the thesis work.

e Techniques for reconstructing distance field values at arbitrary locations.

e The Fast Marching Method which will be used both in the constructive
and deformative manipulations.

I have also discussed a number of techniques for voxelization. The techniques
that have been implemented by myself are techniques for voxelization of solids
represented by distance fields (spheres and planes), implicit surfaces (using Hart-
mann’s foot point algorithm), and convex polyhedra. This is easily enough for
generating a reasonably rich set of volumetric solids that can be used as starting
points for sculpting operations.

The revoxelization technique by Sramek [I70] is important, because it builds
upon my own work discussed in Chapter @l There is more work to do in this
direction. Sramek has proposed a method for postprocessing a volume to remove
artefacts from voxelized solids that do not fulfill the r—openness r—closedness
criterion. It would be interesting to see if the correction could be done at an
earlier stage. If a representation of the cut locus can be obtained from a shape,
this seems feasible. Roughly, one could then perform the voxelization as a
reconstruction from the cut locus using only maximal balls of radii > r.

104 Data Structures and Fundamental Operations

It would also be very interesting to compare methods for generating distance
fields. In fact, this could easily have been a part of my thesis work. However, the
algorithmic structure of the FMM is very suitable for the applications considered
in this thesis. The FMM always computes the smallest distance that has not
been computed yet, and this makes it trivial to instruct an implementation to
stop once all distances in a given transition region have been computed.

CHAPTER 6

Constructive Manipulations

Many techniques in wvolume graphics are easily designed for binary volumes,
but turn out to be quite difficult to generalize to gray-level volumes. A good
example of this is Constructive Solid Geometry. Constructive solid geometry
(CSG) [&T] is a powerful paradigm for composing more complex shapes from
simpler ones, and at first sight it seems to be very simple to use this paradigm
in volume graphics. Indeed, for binary volumes, it is simple, since a constructive
manipulation can be implemented as a block operation between the two input
volumes. For each voxel location the new voxel value is calculated as a Boolean
operation between the old values.

For volumes where the voxel values are scalar and not Boolean, CSG has, so
far, also been implemented using block operations, but it is less clear what
operations should be used to combine two voxels. In fact, it is not clear that it
is at all possible to define a block traversal based constructive manipulation on
scalar volumes.

To clarify where the problem lies, consider the case where the voxel value rep-
resents the geometric distance to the solid. The distance to two objects from a
given voxel location is not always in itself enough to estimate the distance to
the new solid which results from the constructive manipulation. Although it
may be perfectly feasible to visualize the resulting object, it is problematic that
most of the voxels in the resulting object will have a value that corresponds to

106 Constructive Manipulations

a geometric property while others will not. Put differently, the problem is that
no volumetric CSG operation has so far been proposed that ensures consistency
with respect to the type of 3D scalar function from which the original volumes
were sampled. This may not be a problem in some of the application areas
of volumetric CSG (e.g. for highlighting regions of interest in medical volume
data), but for volumetric CSG in the context of shape modelling, preserving the
distance field has some clear advantages that were discussed in Section

In this chapter, two new techniques for constructive manipulation are presented.
Both preserve the property that voxel values correspond to distances and one
of them preserves also the r—openness and r—closedness properties previously
discussed in Chapter Bl

Only one CSG operation, namely union, is discussed. Of course, we are also
interested in difference and intersection, but these may be defined in terms of
union and inversion: S1 () S2 = (Si | S%)" and S1\S2 = (S |JS2)!. When using
the clamped signed distance V-model which is assumed throughout this part of
the thesis, the inversion of a solid may be performed simply by flipping the sign
of each voxel. Therefore, the same code is used for all CSG operations and the
signs of the voxels are inverted as needed.

In general, it is most useful to perform a constructive manipulation between a
voxel grid and a continuously represented solid such as a sphere, torus, polyhe-
dron, ellipsoid &c. Consequently, we will generally assume that the input is a
voxel grid and a continuous V-model. This is not a limitation since interpolation
can be used to define a continuous solid from a voxel grid.

6.1 Previous Work

Previous approaches to volumetric CSG [I74}, 54 [26] have in common that they
are block operations where the new value at each grid point is calculated using
only the voxel values for this grid point from each of the volumes being combined.
This mode of operation is sometimes called vozblt (Voxel Block Transfer) [89].

Ghew [P] =Gy [P] Uy G2 [P] (6-1)

Where G, are volumes and p is a grid point in Gyey. In some of the approaches
the voxel grids on the right hand side (rhs) of (Il may themselves be defined
by the same equation [35), B4]. In this way, the recursive application of (Gl
defines a CSG tree where the leaf nodes are volumes. To evaluate the value
at a given grid point, we traverse the CSG tree, performing binary per—voxel
operations at each node until we reach a leaf.

6.1 Previous Work 107

Other authors [I74] 26] let one of the volumes on the rhs be object and the other
tool, and let the value of (BII) be assigned to the object volume.

The approaches also differ in the exact nature of the U, operator. Some authors
[20, 127, 211, 26] prefer to use min:

G1[p] Uy G2 [p] = min(G1 [p], Gz [p)) (6.2)

Figure 6.1: Closest points on S; | J Sz using min distance.

If the V—model represents the signed shortest distance to the solid [29, [64], {E2)
yields the correct signed distance to the surface of the union in most cases. In
fact, it is easy to show that the result must be correct for voxels that are exterior
with respect to both solids: In that case the minimum of the distances is the
distance to the closest point in the union of the solids. It clearly leads to a
contradiction that this point should be an interior point, since that would entail
the existence of an even closer boundary point. However, [£2) fails to give the
correct result for interior points if the point corresponding to the minimum of
the signed distances is itself interior. This is illustrated in Figure Gl where p’ is
the point corresponding to the minimum of the signed distances from p to the
boundaries of the two solids. We see that p’ is interior in the combined solid.

The issue is further illustrated in Figure [E2 which shows three contours from a
CSG operation on 2D distance fields. The image is computed from three discs
represented by the 2D distance fields dy, di, and deo. The CSG operation is
the intersection of dy and the union of d; and dy implemented thus: pixel =
— min(—dy(z,y), — min(di (x, y),d2(x,y)). Notice the blue and pink contours
which correspond to the 0 and -1 vu isovalues, respectively. If the blue contour

108 Constructive Manipulations

Figure 6.2: Example of CSG using the min operator. The pink contour corre-
sponding to the -1 vu isovalue is clearly erroneous.

is right, clearly the pink is wrong since the distance from the pink contour to
the blue is far more than 1 vu in the centre of the figure. It is worth noting
that it is not possible to bound the error: A CSG operation according to (G2
might yield a value that is very close to 0 (i.e. the point should be close to the
surface) while the point is in fact very far from the surface. An extreme example
is the union of two half spaces delimited each by a plane of infinite extent. If
the planes are parallel, point toward each other, and if the half spaces overlap,
then the union is all of space, and the distance to the surface should be —oo
everywhere. Hence, ([£2) is wrong everywhere — except infinitely far from the
original planes.

In [I74] the authors argue that the following operator is better

G1[p] Uy G2 [p] = G1[p] + G2 [p] — G1[p] G2 [p] (6.3)

(largely) because the result is smoother. The same reason was given by Ken
Perlin who used the method for combining hypertextured implicit solids [I2§].
By design, this operator does not yield the distance to the union but rather a
smooth “pseudo—distance”. That may not be a problem, but it is important to
note that G|JG # G which has some unpleasant implications. If, for instance,
one is building a volumetric wall by taking the union of overlapping volumetric
bricks, the overlapping areas will have another density profile than the non
overlapping areas. Precisely this problem is illustrated in Figure The min

6.2 Correcting the Distance Field 109

EXTERIOR

e o |40 INTERIOR

Figure 6.3: Illustration of voxels whose distance values are erroneous when
computed with the min technique. White voxels are erroneous

approach does not have this problem.

6.2 Correcting the Distance Field

Ideally, we want the result of the CSG operation to be the signed distance to the
boundary of the union of the operands. None of the previous methods produce a
result that is correct in this sense. However, the approach based on min is most
promising as a starting point. For most voxels, the minimum of the distances is
the correct distance to the union. Therefore, a possible solution would be to use
the min technique but correct the distances that are wrong. This entails two
new problems: First we need to detect the voxels that would be erroneous after
a min CSG operation, and, secondly, the correct distances must be computed.

The aim of the next proposition is to help us find out if the distance needs to
be recomputed. The proposition asserts that the combined distance is equal to
the minimum of the distances if there is a point, q, belonging to the boundary
of the union whose distance to the voxel at position p is equal to the minimum.

Proposition 6.1 Let S = S1|JS2 where S1,S2 C R®. Given a point p € R3
and a point q € 0S. Let i = argmin;c 9ds; (P)

la—pll = lds,(p)| = ds(p) = ds,(p) (6.4)

110 Constructive Manipulations

Proof: To simplify the discussion, we assume arbitrarily that ¢ = 1.

Case 1: p is outside both solids, i.e. 0 < dg,(p) < dg,(p). In this case, the
right hand side of (&) is always true. Assuming otherwise would mean that
ds(p) # ds, (p) which amounts to saying that the distance to the union is not
the shorter of the distance to either solid which is clearly a contradiction.

Case 2: p is inside S; and outside Ss, i.e. dg,(p) < 0 < dg,(p). This case
can be treated in the same way as case 3 where p is inside both S; and S5, i.e.
ds, (p) <dg, (p) <.

We can construct a ball b;dsl(p) C S;. Any point closer to p than —dg, (p) is

interior to that ball and hence cannot belong to the boundary. By assumption
q € 0S and by the Lh.s. of @), g € 9S lies on the boundary of the ball.
Hence, q is a closest boundary point which implies the r.h.s. of ([E4). O

Notice that the solids are not assumed to be permissible or even closed.

To give an example of how this proposition should be applied, assume again
that dg, (p) < ds,(p) and the boundary mapping Bg, (p) yields a point that is
exterior with respect to the other solid (i.e. dg,(Bs, (p)) > 0) then we know that
ds(p) = ds, (p). Of course this example (but not the proposition) assumes that
the boundary mapping is defined at p. Since this is true except on the medial
surface which is infinitely thin, we can assume that the boundary mapping is
defined everywhere. If a point should lie on the medial surface, an arbitrary
closest point can be assigned.

In practice we are not dealing with continuous solids and distance fields but
sampled voxel grids G; and G2. However, the gradient g can be estimated e.g.
using central differences and then we can compute the foot point of a voxel p by
B¢, (p) = p — G1]p]g. If the interpolated value Ga(psoot) < 0, the distance at
voxel p needs to be recomputed. There is an illustration in Figure where
the white voxels have foot points that are interior after the CSG operation.

However, if G1[p] = —r where r is the size of the transition region, then the
distance need not be recomputed. Recall that the distances are clamped to the
range [—r, 7], and a value of —r indicates that the voxel is outside the transition
region. As noted, the boundary cannot move closer, hence p remains an interior
voxel if it is interior with respect to either Sy or Ss.

The second problem is recomputing the distances. In Chapter B, we discussed

6.2 Correcting the Distance Field 111

the Fast Marching Method and the higher accuracy variant. This method can
be used to recompute the distances at incorrect voxels: We simply freeze the
voxels whose distances are known to be correct. Here, it is important that min
yields the correct distance values for all voxels that have positive distances to
both solids. This means that we are guaranteed a closed shell of voxels whose
distances are known — namely all voxels in the transition region whose distance
values are positive. These voxels can be used as the initial condition for the Fast
Marching Method. In fact, we could leave it at that and recompute all voxels
where min(G1,G2) < 0. However, it is unavoidable that some numerical error
is introduced and to avoid gratuitous errors it is best to recompute only where
needed. To sum up, the idea is to freeze all voxels whose distance values are
correct, and to rebuild the remaining voxels using the Fast Marching Method.
We will call this technique the FMM technique and the algorithm is detailed
below:

e Input: Voxel grids G; and Gs.

e Qutput: Grid G representing the union.

For each voxel p
dy «— G1[p], d2 < Ga[p].
(Assume dy < da, otherwise swap 1 and 2 below)
If —r < d; <0 then
g1 — VGi|p]
Proot +— P — d181
If G2(Pfoot) > 0 freeze the voxel.
else add voxel position to list L.
For each voxel p compute G[p] < min(G1[p], G2[p])-
For each voxel p in L
Mark G|p] as interior.
Call FMM (rebuild distance field using frozen voxels as initial condition).
Copy recomputed voxels to G

In order to compare this technique to the min technique, an experiment was
conducted. The experiment is to subtract a number of spheres from a cube in a
random fashion. The experiment was carried out using both the min technique
and the FMM technique, and images of the results are shown in Figure 41
These images have been rendered using point rendering. The basic idea is to
find a set of foot points from voxels in the transition region and to render these
foot points so large that the surface is covered. This method requires that the
distance field is reasonably precise. The technique will be discussed in detail in
Chapter

112 Constructive Manipulations

Figure 6.4: Point Rendered images. min CSG (left) FMM CSG (right).

The black parts of the min CSG image are caused by foot points pointing away
from the viewer. Since the boundary surface is supposed to be a closed 2D
manifold this is clearly an error. We also observe some spurious structures in
the min CSG image that are not present in the FMM CSG image. Unfortunately,
the result produced by the FMM technique is not perfect: Some noise is present
along the edge. This is aggravated by the point rendering technique; a large
point size is used to ensure that the rendered points cover the surface but this
simple approach makes edges look bad. However, the fundamental problem is
that the volume representation cannot represent features that are significantly
smaller than the grid spacing. The problem has two solutions. The first solution
is to use a deformative technique to remove the sharp edges by smoothing. The
second is to use a technique for volumetric CSG that blends the input solids
and, hence, does not introduce sharp edges. A deformative tool for smoothing
is discussed in the next chapter, and the next section is devoted to a CSG
technique which avoids sharp edges.

6.3 The Morphological Approach

The idea behind the morphological technique is to preserve the morphological
features discussed in Chapter Bl Assuming the input is two solids that are r—
open and r—closed, the output should also have this property. The following
procedure would yield the desired result:

e Reconstruct the original solids from their volumetric representation,

6.3 The Morphological Approach 113

e Perform the CSG operation on the reconstructed solids.

e Modify the result to ensure that the result fulfills the openness-closedness
criterion.

e Voxelize once more to obtain a volumetric representation.

This scheme cannot be implemented directly, though, and, consequently, the
technique operates quite differently, but produces the same result as the above.

Central to the approach is the link between morphology and propagating fronts.
For instance, dilation with a spherical structuring element can be implemented
by pushing the boundary in the normal direction at unit velocity. This was
exploited by Sapiro et al. who implemented Euclidean morphology in a discrete
setting using Level-Set Methods [T44} [T43]. Another example is [I64]. In some
cases the front evolving in the normal direction might collide with itself causing
self intersections, but if we view the propagating surface as front of burning
material, self-intersections should be removed because the self-intersecting parts
would propagate through material already burnt. This is known as the Hiiygens
principle [I56], and the Level-Set Method which will be discussed in Chapter [
handles the problem according to that principle.

Observe that the boundary of a solid dilated with a sphere of radius r consists
of points that are at a distance of exactly r from the boundary of the original
solid. This indicates that it is possible to implement the dilation of a solid (by a
spherical structuring element) simply by finding the offset surface at a distance
equal to the radius of the structuring element (See Figure BHl). Of course, it
is possible that the offset surface is self-intersecting and in that case it would
not correspond exactly to the boundary of the dilated solid. Now, if the solid
is r—closed, its r—level offset surface can at most touch itself as the surface is
the locus of a ball rolling on the exterior side of the solid. At a point of self-
intersection the ball would be stuck (see Figure BH). This indicates that for
r—closed solids, dilation can be implemented simply by finding the r—level offset
surface. This is central to the implementation of the morphological approach to
volumetric CSG. Until section B3 the approach will be discussed theoretically
and only in terms of the signed distance functions.

We assume we are given two permissible, r—open and r—closed solids S7 and Ss
The union of these two solids S; |J Se might not fulfill the criterion. However, it
is easy to show that union preserves r—openness. This means that we only need
to perform the close operation to ensure that the resulting solid is both r—open
and r—closed.

S = C(S; U Sy, b7) (6.5)

114 Constructive Manipulations

Figure 6.5: A ball of radius r rolling on the exterior side of the solid is stuck if
the r—level offset surface is self-intersecting.

Figure 6.6: Closest points on surfaces of dilated solids.

Of course, performing the close operation may ruin openness. This means that
the input solids are assumed to be in a configuration so that when closed they
remain open. Now, using the facts that close is dilation followed by erosion and
that dilation distributes over union [T51], we obtain

S=((S1@bt)u(S200))0b (6.6)

To simplify notation we will use these definitions in the following

G=S19b" (6.7)
(o=S2db" (6.8)
(=QUCGC (6.9)

See Figure for an illustration of theses definitions. The plan is now to (a)
find the distance functions d¢, and d¢, and then (b) d¢ whence (c) dg is finally
computed.

It is assumed that the solids S; and Sy are r—open and r—closed. Hence, the
r—level offset surface corresponds to the dilation with a ball of radius r, and

6.3 The Morphological Approach 115

Figure 6.7: ¢, (1, (o, 1

the shortest signed distance to the r—level offset surface is the distance to the
surface minus r

d¢, (p) = ds, (p) — (6.10)
d¢,(p) = ds,(p) — (6.11)

Thus step (a) was trivial. It is, unfortunately, more complicated to perform step
(b), but Proposition 1l is helpful. According to this proposition, if there is a

point q € 9¢ so that |[p—q|| = min(de, (p), d¢, (p)) then d¢(p) = min(d, (p), de, (p))-

Now, where would the closest point be, if the condition does not hold? In that
case, the next proposition (whose proof is in appendix B) gives us the answer:

Proposition 6.2 Given two permissible solids S1 and Sy and a point p so that
—2r < d¢(p) <0.

Be,(p) ¢ 0C = Be(p) € 1 C 0 (6.12)
where I = 0¢1 N OC (see Figure[67]) and i = argmin;¢ g 9yd; -

Consequently, we can compute d¢ in the following way

dc(p) _ { min(dCl (p)de (p)) BCi (p) € 9(¢ (6.13)

argmingc /||p — q|| otherwise

where
i = argmin; ¢, »d¢; (P) (6.14)

116 Constructive Manipulations

This step was clearly a bit more complicated. In practice, we can check whether
B¢, (p) € 0¢ simply by checking that d¢,(B¢,) > 0 and vice versa. It is harder
to find the closest point on I and that part has to be done numerically.

Fortunately, step (c) is also trivial. To perform the erosion, we simply add r to
the distance value of d¢. Thus

6.3.1 Examples

Assume that the input is two V-models V(S7) and V(S2) and the output is
a new V-model V(S). Using the results above and the fact that the distance
values are clamped we shall see how to compute the value of V(5) at any given
point p.

The first step is to classify p according to the rules in table [l Any point whose
signed distance to the (un—dilated) solid is greater than r is called exterior. Any
point whose distance is smaller than —r is called interior. As the table indicates,

state | 1 T E
1 I I I I=interior
T I| T|I | T || T=transition
E I T E E=exterior

Table 6.1: Transition rules for volumetric union

points that are exterior to both solids remain exterior, and points that are
interior with respect to either solid become interior. For instance, ps and p3 in
Figure are exterior and interior, respectively. The values of the V-model at
these points are V(S) = r and V(5) = —r.

For points in the transition region of one solid which are simultaneously in the
transition region or exterior to the other solid, more work is required. If the
corresponding point on the surface of the dilated solid (say (1) is exterior to the
other dilated solid, we simply use the value of V(S1) in accordance with ([EI3).
This case is exemplified by po in Figure B8 where V(S)(po) = V(51)(po)-

If the corresponding point on the surface of the dilated solid is an interior
point in the other dilated solid, the problem is less trivial. We will call such
points (or voxels) inconsistent in the following (in Figure 8 p; is inconsistent).
For inconsistent points, we need to find the distance to I C 9¢ according to

6.3 The Morphological Approach 117

Figure 6.8: Point classification

Proposition If the distance is greater than 2r, we ignore the value and the
point is classified as being interior.

In summary, the algorithm should work like previous volume CSG algorithms
based on (), except that for some points we need to estimate the distance to
1. Hence, the main difficulties lie in representing I and finding the inconsistent
points.

6.3.2 Implementation

We shall look at how the algorithm actually operates and take into account
that the operands are not signed distance functions or V-models (i.e. clamped,
signed distance functions). The algorithm works on two operands: The left
operand is the voxel grid being modified, G = V(S7), and right operand is
the tool, V(S2), which is an un—sampled V-model since sampling it before the
CSG operation would only complicate matters. Except, of course, if we want
to do cut and paste operations. CSG operations between two voxel grids is a
feature which has also been implemented, but in this case the right operand is
interpolated and thus takes on the role of a V-model.

The result of the CSG operation is assigned back to the grid:
G — GU,V(52) (6.16)

The algorithm works in two passes, and both passes traverse all voxels.

118 Constructive Manipulations

First pass The goal of the first pass is to find and tag inconsistent points
and to find a set of points belonging to I. For each voxel two operations are
performed:

1. A foot point is estimated on either 9¢; or (> depending on which distance
is smaller. If the foot point is interior with respect to the other solid, the voxel
is tagged as being inconsistent. My volume representation contains gradient
information, which speeds up this process, although the gradient could also
have been estimated.

2. If the estimated value of B¢, (p) is within % vu distance to 92, the closest
point in [is estimated by assuming that 9(; and 9(s are planes and finding the
point on the intersection of these planes that is closest to B, (p). The point is

added to a set of points that make up the estimate of I.

Second pass In the second pass, the new voxel values are computed. This
pass amounts to an implementation of ([EI3).

For each voxel, a case analysis is performed according to table BEJl For voxels
that are in the transition region of one solid and either exterior or in the tran-
sition region of the other, it is checked whether they are tagged as inconsistent.
For un-tagged voxels the new value is simply min(G, V(S2)). For inconsistent
voxels, the closest point in the set of points representing I C 9¢ is found, and
the distance to that point is used to calculate the new voxel value.

Estimating the closest point in [is one of the trickiest parts of the algorithm,
and it cannot be done simply by finding the closest point in the set of I-estimate
points generated during the first pass, because these estimates may be as far
apart as 1 vu if the surfaces of both S; and S, are parallel to coordinate axes
in the grid. Hence, the distance to an I—estimate would sometimes deviate too
much from the true distance to I. To solve this problem, we store an estimated
tangent direction vector with (nearly) all points in the point set representing
I. To estimate the distance from a voxel to I, we find the closest I—estimate
and the projection of the voxel onto the line defined by the I-estimate and the
associated direction vector. The projected point is used as the estimate of the
closest point in I, and this point is used to update both the distance and normal
direction of the voxel.

In some cases, the union of two solids may contain a corner. In these cases, I
bends sharply and the direction vector associated with the I—estimate at the
bend would be misleading. The solution is to find the closest I-estimate before
and after any given [—estimate. If the angle defined by a given estimate and

6.4 Alternative implementation 119

its two neighbours is above a given threshold (set to 0.52 rad) we assign the
null-vector to the direction vector of the I-sample.

It should be observed that in places where the angle between S; and Ss is too
small, we do not find I-estimates. Since there are no inconsistent voxels in
regions where 057 and 0S5 are parallel, this is not a problem.

While the distance between [-estimates can be great, there are also cases where
the I—-estimates cluster. To speed up searching for the nearest I-estimates these
clusters are merged.

The representation of I is simply a set of points and associated tangent direction
vectors. Since we need to search for the closest I—estimate, we have elected
to store the [—estimates in a k—d tree, k-d trees being well suited to nearest
neighbour queries [10].

As previously mentioned, intersection and difference can be expressed in terms
of union and complement. Therefore, a voxel inversion function has been im-
plemented. If flips the direction of the normal and the sign of the distance, and
using this function the two other operations are possible.

By its nature, the intersection operation can change the volume far from the
solid used as CSG tool. Fortunately, the same is not true in the case of union
and subtraction. This is utilized by restricting the effect of the CSG operation
to a region of effect about the CSG tool. The size of this region depends on the
value of r. For intersection, the region of effect is simply the entire volume.

6.4 Alternative implementation

The algorithm described above, and especially the processing of points belonging
to I is quite complex. It involves a spatial sorting of I—estimates, and the
special case where I bends is hard to handle. Consequently, the implementation
becomes quite complex, and this has motivated the development of a simpler
technique. The result is a new technique which is similar except that the closest
point belonging to I is estimated independently for each inconsistent voxel.

Finding the point in I closest to a given voxel could be cast as a constrained
optimization problem. However, a somewhat simpler approach has been taken.
The idea is to find a point on 9¢; and then trace the surface in the direction
of 0(, until that surface is hit: For a given, inconsistent, voxel at grid point p,
the foot point q = B¢, (p) is found. The algorithm proceeds by taking steps

120 Constructive Manipulations

aZZ return value of q

/

oC

Figure 6.9: Hlustration of algorithm for finding closest point € I.

toward 9> but constrained so that the stepping direction must be in the tangent
plane of d¢s at q. When the distance to d(s is sufficiently small, the algorithm
terminates. Pseudo-code for the algorithm is shown below, and the scheme is
illustrated in Figure

e Input: G =V/(S7) and V(S2) and point p.

e Output: The estimated q € I closest to p.

q < B¢, (p)
do
Jold < q
g1+ VG(q)
dy —r —V(52)(q) and g2 — VV(S52)(a)
q—q+ (g —gi(g1-82))d2
d; < r—G(q) and g1 «+ VG(q)

q << q+dig
while ||qola — q|| > threshold
return q

This algorithm returns when a point belonging to I has been found.

One challenge when implementing this technique is the interpolation of the value
of G at non—voxel locations and, likewise, the reconstruction of the gradient at
non—voxel locations. Since 0¢ defines the edge of the transition region, we
cannot interpolate the value using trilinear interpolation. To overcome this

6.5 Results 121

problem, the off-transition region reconstruction method discussed in Section
is employed.

Admittedly, there is no guarantee that the algorithm presented above finds the
closest point in I. However, in practice, it works very well.

6.5 Results

A number of solids created using the first implementation of the morphological
technique are shown in Figure

a (SpheresA) is a model consisting of a sphere of radius 80 from which a
sphere of radius 66 has been subtracted, forming a bowl-like shape.

b (Ellipsoid) is an ellipsoid 22/a? + y2/b% + 22/c* — 1 = 0 where a = 80,
b =60 and ¢ = 20. A plane cuts off part of the ellipsoid.

¢ (Cube) is constructed from a voxelized plane. By taking the intersection
of this model and five additional planes, the cube is created.

d Interactively sculpted model.

e ¢ (SpheresB) is a the union of a sphere of size 50 and a sphere of size 15.

f Interactively sculpted model.

Most of these have already been mentioned, except d and f which show sculpted
models generated using my interactive program. The d image is also shown in
Figure [E11 along with an image of the I—curves that were generated during the
first passes of the CSG algorithm.

The timings were performed on an 800MHZ Intel PIII based system running
Linux. The timings are shown in table The last column shows the timings
for the alternative algorithm. The two columns in front of it, show the timings
for the first pass and both passes of the normal algorithm.

A few of the details in table are noteworthy. First of all, it is obvious that
the run—time of the algorithm depends heavily on the choice of r. The CSG
operation for the solid SpheresA takes almost twice as long for » = 6 as for
r=2.9.

122 Constructive Manipulations

C

Figure 6.10: Examples of CSG operations

@
v
&

a
e

6.5 Results 123

Note also that a simple operation like adding a small sphere (SpheresB) takes
no more than a second in both implementations. This is important, since the
CSG operations have been implemented in an interactive system.

The alternative algorithm is somewhat slower than the standard algorithm, es-
pecially in the case of intersection. As mentioned, all voxels are visited when
performing intersection. This magnifies any difference in performance and ex-
plains the issue. For small operations my experience is that the impact on
interaction is negligible. Hence, both algorithms are acceptable for interactive
sculpting.

In some cases the implicit close in the volumetric union operation creates an
object that does not have the openness property. In this case, the algorithm pro-
duces an object that looks correct until the surface collapses (see Figure G.12).
The main problem is that such objects do not have the required volumetric
properties to be used in further volumetric CSG operations.

Model Op. r | Voxelization Pass 1 Passes 142 | Alternative
SpheresA | \, 2.5 8.1 7.8 16.1 26.4
6 9.1 13.0 29.3 89.8

Cube N, 4 1.3 1.7 3.8 44.4
3.0 6.2 75.2

1.7 3.7 44.4

1.7 3.6 43.1

2.9 6.1 73.1

Ellipsoid N, 4 8.1 32.6 67.8 72.6
SpheresB Uy 4 2.2 0.4 0.8 1.0
vu seconds | seconds seconds seconds

Table 6.2: Timings

Figure 6.11: Sculpted models

124 Constructive Manipulations

Figure 6.12: Objects produced by U, that do not have openness property

6.5.1 Comparison of techniques

In this section, we shall compare the methods for volumetric CSG. Four methods
are compared:

e min CSG
e FMM CSG
e FMM CSG with smoothing

e Morphological CSG

These four methods are illustrated in Figure The images in the top row
have already been discussed. In the bottom row, we see the morphological
technique (alternative implementation) on the right and the FMM technique
after interactive smoothing on the left. The most visually pleasing result is
produced by the morphological technique.

To analyse the distance error, an experiment was conducted. The idea is to
compute the gradient using central differences at all voxels if all six neighbours
are in the transition region. The mean and max deviation of the gradient value
from the correct unit length is recorded. This test was carried out for all four
methods and the result is shown in Table Perhaps surprisingly, the maxi-
mum gradient error is rather large for all four methods. Some further insight is
provided by rendering the gradient error. The four images in Figure [£14] show

6.5 Results 125

Figure 6.13: Point Rendered images. min CSG (top left,) FMM CSG (top right),
smoothed FMM CSG (bottom left), morphological approach (bottom right)

min FMM FMM-smooth morph
Mean grad err | 0.0137 0.0095 0.0055 0.0042
Max grad err | 0.84 0.75 0.22 0.32

Table 6.3: Comparison of gradient errors

126 Constructive Manipulations

Figure 6.14: Visualization of gradient magnitude error. min CSG (top left,)
FMM CSG (top right), smoothed FMM CSG (bottom left), morphological ap-
proach (bottom right). White denotes a gradient length error of 0 whereas black
denotes a gradient length error of 1.

the max gradient error at the point of intersection. It is clear from the bottom
right image, that the gradient error in the case of the morphological technique
is generally quite low, but some darker patches indicate areas of higher error. It
seems likely that these patches occur where the conditions for using the method
are not completely fulfilled. Both the min and the FMM technique exhibit con-
siderable gradient error. However, the distance field is not C' near sharp edges,
and furthermore the central differences gradient estimator is not precise near
high curvature. Hence, these errors are not surprising.

In fact, the real test is whether the method produces a voxel grid whence foot
points may be reconstructed with adequate fidelity for point rendering. All
methods except the min technique pass this test. As previously discussed the

6.6 Discussion 127

min technique introduces qualitative errors in the distance field that leads to
foot points far from actual surfaces. The FMM technique produces a somewhat
aliased result. However, the point rendering is partly to blame here.

It is also interesting to analyse the curvature in the case of the morphological
technique. Theoretically, the morphological technique ensures that the volume
resulting from a CSG operation corresponds to an r—open, r—closed solid. Con-
sequently, the greatest principal curvature should be 1/r. To see whether this
holds, a curvature image was rendered]. The curvature image and a histogram
are shown in Figure The histogram shows two interesting things: Before
pixel value 150 there is mostly noise. Then there is a peak shortly after pixel
value 150 and a very sharp peak at pixel value 230. The value of r is 2.5 which
corresponds to a curvature of 0.4 and to pixel value 153.0. The radius of the
spheres that are subtracted is 10 vu which corresponds to a curvature of 0.1 and
to pixel value 229.5. I conclude that the spikes are explained by the curvatures
that one would expect to dominate.

6.6 Discussion

Several methods for constructive manipulations of volumetric solids have been
discussed in this chapter. The FMM based technique and the two techniques
based on morphology are novel, and aim at solving the problem that the tra-
ditional min based CSG technique produces erroneous distances in some cases.
The FMM technique solves the problem by recomputing the distances that are
wrong. The FMM-based technique is very simple to implement as long as the
Fast Marching Method is taken for granted. Unfortunately, the same cannot
be said of the two techniques that implement the morphological scheme. On
the other hand, these techniques aim at a more ambitious goal, namely the
preservation of r—openness and r—closedness. This goal was met. However, the
method has two important prerequisites: First, the solids being combined must
be r—open and r—closed. Worse, the union must remain r—open when closed. It
is easy to provide examples where this does not hold. See for instance Figure
0. 12

Which method should be preferred? One might create a sculpting system with
an undo facility. In that case, the morphological approach would be safe, because
the user could simply undo in case the result was unexpected. However, as we
have seen, it is also possible to smoothen the ill-represented edges and corners

1The method for computing the curvature is based on estimating the Hessian matrix of the
signed distance function at a surface point. The max principal curvature is then an eigenvalue
of the Hessian. Curvature issues are discussed in greater detail in Section [ZH

128 Constructive Manipulations

10000

1000

) I
Nk

1
70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260
pixel value

!
{
2
2
L

Figure 6.15: Max principal curvature rendition (top) and histogram (below).
Notice that the y axis of the histogram is logarithmic and the x axis is inversely
proportional to curvature. Black (pixel value 0) equals a curvature of 1.0, white
(pixel value 255) equals curvature = 0.0.

6.6 Discussion 129

Figure 6.16: Visualization of gradient magnitude error. min CSG (top left,)
FMM CSG (top right), smoothed FMM CSG (bottom left), morphological ap-
proach (bottom right). White corresponds to an error of 0, and black corre-
sponds to an error of 1.

130 Constructive Manipulations

produced by the FMM technique. Thus, there is no clear winner. Moreover,
both methods could probably be improved. For instance, the morphological
technique can be cast as a constrained optimization problem: For each voxel we
wish to find the closest point belonging to I. This point is really the centre of
the closest sphere of radius r that is exterior to the union of the two solids. Thus
techniques for constrained optimization should be investigated when improving
this method.

CHAPTER 7

Deformative Manipulations

Some shapes are not easily created through constructive manipulations. For
instance, a crude approximation of a torus can be created by subtracting a
cylinder from a sphere, but finishing the job of turning the sphere-with—a—hole
into a torus is more difficult. It is easier to see how we are able to finish the
torus if the sphere-—with—a—hole is of soft and deformable material. In Figure [Tl
we see an illustration of this process. Of course, a torus can easily be created
from its analytic representation, but in general, many shapes are created more
easily through deformative than than constructive manipulations.

Figure 7.1: Sphere-with—a—hole deformed through mean curvature flow to a
torus.

132 Deformative Manipulations

Intuitively, we can define deformative manipulations by assuming the object
to be made of soft, compressible clay. A manipulation that can be effected
by applying forces to the clay is a deformation. Genus change is allowed: For
instance, we might deform the sphere directly into a torus by squeezing the
surface of a clay object until a hole appears and then continue deformation
until the shape is toroidal. Of course, allowing genus change implies that, in
principle, any solid can be deformed to any other solid. Similarly, any solid
can, in principle, be created by constructive manipulations. For instance, the
torus could have been constructed by sweeping a sphere along circular path.
This manipulation could be approximated constructively as the CSG union of
a finite number of spheres.

Thus, the distinction between constructive and deformative manipulations lies
mainly in our intuitive understanding of what they do. Some manipulations are
hard to classify. Many creators of sculpting systems have the add blob facility
8, 26, BA, 60, [[34] which is usually implemented constructively by adding a
sphere or an ellipsoid to the solid. However, add blob can also be construed as
a local deformation of the shape.

Perhaps the most common deformation in volume sculpting systems is smooth-
ing which is often implemented by blurring the volume with a discrete averaging
filter [26} B BO]. When a volume is smoothed, the embedded isosurface also
tends to become smoother. However, if the volume is a distance field, this
smoothness comes at a price, since the voxel values will not be distances after
such a filtering.

Smoothing and add blob are common manipulations in volume sculpting sys-
tems. However, many interesting deformative manipulations for volumetric
solids have been proposed in other contexts than sculpting systems. The main
topic of this chapter is the development of a general facility for deformative
manipulations that can be used to implement smoothing and add blob as well
as some of the manipulations that are not typically found in sculpting systems.

Of course, this manipulation should preserve the distance field representation,
and, preferably, the morphological features of the solid. As will be made clear,
the Level-Set Method is quite suitable for a general deformation facility.

In the next section, techniques for elastic deformation and animation of volu-
metric solids will be discussed. In Section [we turn to techniques for warping
and morphing. Most of these techniques have never been applied to sculpt-
ing, but it is inspirational to see what deformative techniques that have been
used in other contexts. In Section we discuss the Level-Set Method, and in
Section [CA how it is adapted to volume sculpting. In Section [curvature com-
putation which is useful for smoothing is discussed in detail, and examples of

7.1 Elastic Deformation and Animation 133

deformative manipulations implemented using the Level-Set method are found
in Section Finally, results are discussed in Section [L71

7.1 Elastic Deformation and Animation

The use of volume graphics and the volume representation have many uses
besides sculpting. One of these is virtual surgery the aim of which is to allow
the simulation of surgical procedures. Often, the simulated tissue is represented
volumetrically, and the simulation might require that the tissue can be deformed
elastically.

Elastic deformations usually do not work directly on the volume. Instead, a
deformable model in the form of a mass network or a tetrahedral lattice is used.
Elastic deformations are also mainly of interest in the field of wvirtual surgery
which is related to volume graphics by the fact that volume data is frequently
the input to surgery simulations. For instance, the deformable model might be
created from a segmented volume data set [44]. The two prevailing methods
are the Mass—Spring Method [65] 6] and the Finite Element Method [44] 24].
In Mass—Spring models, a 3D lattice of mass—nodes (conceptually similar to a
voxel lattice except that the nodes may move) are connected by springs. When
the nodes are moved the springs are stretched and a force is introduced. Due to
this force, the system is in a non—minimal energy configuration, and it will try
to get back to the minimum energy configuration. This problem can be solved
by a simple iterative energy minimization. Essentially, nodes are moved until
the energy reaches its minimum. The problem with this approach is that the
material is only simulated as points not as volumes, and that is why the Finite
Element Method is more precise.

When using the Finite Element approach, space is decomposed into small poly-
hedral elements (usually tetrahedra) and it is these elements that are deformed.
This is more precise but also slower which is a problem: Speed is very important
in the context of virtual surgery because it is a real time simulation.

An example of the use of Finite Element methods in virtual surgery is given in
[#4]. To speed up the calculations, time consuming preprocessing is employed
and this prevents interactive cutting manipulations, because the preprocessing
would have to be repeated after a change to the mesh. This is essentially the
problem that is addressed by Gibson in [62]. Her linked volumes are deformed
using the 3D ChainMail approach [65] which was mentioned in the beginning.

When using the ChainMail technique, an augmented volume representation is

134 Deformative Manipulations

used. Voxels are linked to the six closest neighbouring voxels. A simple geomet-
ric constraint is imposed on neighbouring voxels, namely that each voxel must
be within a certain distance of any of its neighbours. Using this constraint, a
crude approximation to deformation can be implemented: A voxel is moved, and
the system responds by moving its neighbours so that the distance constraints
are satisfied.

This allows for real time deformations. Gibson then applies an elastic deforma-
tion algorithm. The deformed voxel mesh is relaxed until it reaches a minimum
energy configuration. This (spring-mass procedure) is carried out in a stepwise
fashion and only in so far as processing time is available [65].

Cutting in the ChainMail representation simply amounts to removing links.
Recently, cutting has also been extended to the realm of Finite Elements. In
H35] Cotin et al. propose a hybrid approach whereby two different Finite Element
methods are used. One of these methods requires little preprocessing and thus
allows for cutting. This method is used in regions where the tetrahedral mesh
models tissue that might be cut. The other method requires preprocessing and
is used elsewhere.

The Mass—Spring Method, ChainMail and the Finite Element Method are all in-
teresting approaches for elastic deformations of volumes but, for volume sculpt-
ing purposes, elasticity of the volumetric solid is not really necessary since the
alm is to create a static shape. The importance of methods for elastic deforma-
tions of volume data in conjunction with volume graphics is mainly in relation
to animation. In [36] both Mass—Spring and FEM are, in fact, considered for
animation of volume data.

Another approach to volumetric animation is found in |58, BY] both by Gagvani
et al. Gagvani uses volume thinning to create the skeleton of a volumetric object.
Initially, each interior voxel is tagged with its distance to the boundary. If a
voxel does not have a neighbour with a significantly higher boundary distance
(with respect to a user—defined threshold) it is considered to lie on the skeleton.
The volume can be reconstructed simply by placing a sphere at all skeletal voxels
where the sphere radii are set to the distance of the respective skeletal voxels.
The union of these spheres are the reconstruction. Animation is performed by
connecting the skeletal voxels in a graph. This graph is then converted to a
bones—like hierarchy used for animation.

7.2 Warping and Morphing 135

7.2 Warping and Morphing

In [I66], True and Hughes propose a method for Warpingﬂ volumetric solids
by applying a free—form deformation [I49] to the volume. More precisely, the
volume data is mapped into the parameter space of a trivariate spline which
defines a mapping from a 3D parameter space into another 3D space. When the
control points are moved from their initial position, the mapping of voxels from
parameter space into the image space constitutes a warping of the volume data.
The basic technique is to transform all voxels in this way and then resample the
warped voxels in a new volume.

Morphing, or metamorphosis, is the term used to describe a set of techniques for
gradually deforming one shape into another. More precisely, the morph of one
shape into another is a sequence of intermediate shapes that gradually change
from the first shape and into the second. If the shapes are volumetric solids, it is
easy to see how this could be implemented. The simplest way would be to create
a set of intermediate volumes where each voxel in the intermediate volume is
a linear interpolation of voxels in the source and target volumes. In fact this
method was suggested for signed distance volumes in [I27] and it is sometimes
called Distance Field Interpolation (DFI) for this reason. Unfortunately, DFI
does not always yield a nice result; there is no guarantee that the isosurface will
deform smoothly from one shape and into the other [40)].

One of the earliest attempts to create a better technique for morphing between
two volumetric solids is due to Hughes [R3] who proposed a method in the
Fourier domain: First, the Fourier spectra of both solids are computed. At each
time step, a new spectrum is computed which is a blend of the two spectra,
and the volume at that time-step is computed by the inverse Fourier trans-
form of the blended spectrum. Now, the trick is to multiply the spectra by
weighting functions so that the high frequency components of the first solid
fade out and, contemporaneously, the high frequencies of the other solid fade
in. Halfway through the morph there are no high frequency components while
the low frequency components are blended.

A similar approach was proposed by He [7§] et al. who use the wavelet transform
[[07] rather than the Fourier transform. Essentially, wavelet analysis consists of
taking the inner product of the volume and increasingly detailed wavelet func-
tions. As the wavelets become smaller, increasingly fine detail (high frequency
content) is picked out. This means that the wavelet transform splits the vol-
ume into frequency bands, and the scheme that Hughes used, can be employed:
The high frequencies of the first volume are faded out, the low frequencies are

1The word “warp” is used here to denote a deformation of an object through a deformation
of the underlying space.

136 Deformative Manipulations

blended, and the high frequencies of the second volume are faded in. The main
difference is that wavelets are localized in the spatial domain. Also, some effort
is made to ensure that the topologies of the intermediate volumetric objects
resemble those of the first and second.

Lerios et al. [05] proposed an improvement to the simple volume interpolation
scheme. The basic idea is to combine warping and interpolation. Initially, the
user specifies corresponding features in the source and target volume which
are used to specify a warp. The source volume is deformed halfway to the
target volume. Then the halfway deformed source volume and the halfway
deformed target volume are interpolated and finally the deformed target volume
is warped back to its original appearance. The advantage of only interpolating
between the warped volumes is that they are far more similar than the source
and target volumes, and the interpolation scheme works much better in this
case. In particular, it solves the problem that the surface may suddenly jump
at some point during the morph sequence.

In [34] various methods are compared. The simple interpolation schemes are,
predictably, found to yield a poor result while schemes involving simultaneous
warping and interpolation are found to work better. Another such scheme was
recently proposed by Cohen-Or et al. [H0]. Based on user specified, corre-
sponding points in both input volumes, the source volume is warped so that
the point configuration corresponds to that of the target volume. The second
volume is warped inversely. Thus, for any given time-step during the morph, we
have two intermediate volumes that are warped to be similar, and distance field
interpolation is performed between these two warped volumes to produce the
intermediate morph volume. The main novelty seems to be that, at any point
in time, the intermediate volume is the interpolation of two warped volumes,
whereas Lerios used a warp—interpolate—warp sequence.

All the methods discussed above are really based on the assumption that one can
simply interpolate the volumes (be it in the spatial, Fourier or wavelet domain)
and the embedded isosurface will behave reasonably well in the intermediate
volume. This is rarely the case, and although good results can be obtained by
combining interpolation with a user—guided warping [95], 4], we can do even
better if the interpolation is replaced with the Level-Set Method as proposed by
Breen and Whitaker [I80} 23]. The Level-Set Method [I56] is a technique for the
propagation of interfaces in a direction normal to the interface. In this context,
the interface is the boundary surface of the solid. A speed function defined on
the deforming surface determines how much each point on the surface should
move in the normal direction. Since the Level-Set Method assumes that the
surface is represented as the level-set (or isosurface) of a time—varying volumel

2in 3D that is — a time varying image in 2D

7.3 The Level-Set Method 137

the Level-Set representation is, in fact, a volume representation.

Figure 7.2: Figure illustrates how the exterior part of the source volume (oval)
shrinks while the interior expands to approach the target volume.

The work of Breen and Whitaker rests on the observation that if the shape in
the source volume is deformed by a speed function that is the signed distance
function of the target volume, the shape in the source volume will deform to
the target volume. When using this method, the behaviour of the deforming
surface is more clearly defined: The part of the source solid that is outside the
target solid will shrink, and the part that is exterior expands. Genus change
is not a problem since the expanding and collapsing surfaces may merge and
break. However, the initial surfaces must overlap.

The Level-Set Method can be used for many things beside morphing. For in-
stance, if curvature is used to specify the speed function, smoothing is possible
as well as filleting and blending [I8(]. The add blob deformation can be imple-
mented through a speed function with the shape of a bump, say a 3D GauBian.
Outside the volume graphics community, 2D Level-Set methods have been used
to implement things like morphological manipulations [[44], and shearing [I63]
that can easily be extended to 3D.

7.3 The Level-Set Method

The Level-Set method [T56] is a technique for tracking the evolution of a deform-
ing interface or surface. Assume that we are dealing with a surface B(t) C R3
where t is the time parameterization. B is assumed to change according to some
speed function that pushes B in the normal direction. The speed function may
depend on the geometry of B or be completely independent of B. A good exam-
ple of the latter is a speed function that is always constant causing B to grow by
constantly moving in the normal direction. A good example of a speed function
that does depend on B is one that depends on the curvature of B and pushes

138 Deformative Manipulations

the surface in the direction of the curvature centre. Such a speed function will
smooth the surface and can be very useful.

The Level-Set method tracks the motion of B in the normal direction, and this
is expressed by a relationship with an embedding function ® : R* x Rt — R.
For all points on B the value of ® must be zero. This leads to the equation

B(B(1),t) = 0 (7.1)

where B(t) denotes a given point on B at time ¢. ([ZII) simply says that B(t)
is an isosurface (here called a level-set) of ®(-,t). Because this holds for any
point in time, both B and ¢ may evolve but the Level-Set equation continues
to hold implying that also

dB(B(t),)/dt = 0 (7.2)

To see how the change of ® and B are coupled, we take the derivative of (1))
using the chain rule

AD(B(t),t)/dt = d®(B(t), BY(t), B*(t),t)/dt (7.3)
0P dB

where V& = [g—fg—f%—f]. Because all motion is in the normal direction, we can

write the change of B in terms of a speed function F' times the normal %
dB(t) Vo

=F 7.5
dt [|IVO[| (7.5)

Plugging this equation back into [Z4l), we obtain the Level-Set equation

O
5 TEIVel =0 (7.6)

The Level-Set Method works on a discrete grid representation of @, that i
D"i, 5, k] = P(iAx, jAy, kAz, nAt)

This is a 4D discrete function, but, in general, only one time step is stored. In
other words, ® is really represented as a 3D voxel grid. Moreover, the initial
value, ®Y is typically a distance field. In other words, the voxel grids G that are
used throughout this thesis are precisely the same type of representation as the
discretized embedding function ® that the Level-Set Method works on.

3For simplicity we will assume in the following that unit time step is used and that the
grid spacing is unit.

7.3 The Level-Set Method 139

The Level-Set Method is, essentially, a solver for an initial value problem: Given
a ®° what is the value at time step n. With a little care, it is possible to ensure
that ®™ remains a distance field. That is important since the distance field
property is one of the things we wish to be preserved by manipulations.

7.3.1 Discrete Implementation

The basic Level-Set Method as introduced by Osher and Sethian is to approxi-
mate the time derivative with the forward difference operator

0P
E ~ DM = (I>n+1[iaj7 k] _(I)n[i7j7 k] (77)
This leads to an algorithm for computing the solution to ([ZH) from an initial
value ®°

" i, j, k] = ®"[i, j, k| — F||[Ve"|| (7.8)

where the gradient ||[V®"|| must be computed in the upwind direction. If F' > 0
max(D~%,0)? 4+ min(D**,0)2+
0)?

IVO™||? = { max(D~¥,0)? + min(D*Y,0)%+ (7.9)
max(D~*,0)% + min(D*#,0)?

(D
(D

Conversely, if FF <0

max(D**,0)? + min(D~%,0)%+
IVe" (> = { max(D*¥,0)? + min(D~¥,0)%+ (7.10)
2

max(D*#,0)% + min(D~%,0)
where

DJFI = q)n[z +]-ajv k] - (I)n[zvja k]
D™ =®"[i,j,k] — O"[i — 1, j, k]

At first this upwinding seems to be a bit odd; why not simply approximate the
gradient with central differences? The answer is that F' indicates which way
information propagates, and the gradient should be approximated using only
voxels that lie in the direction whence information comes. If this principle is
not obeyed, the numerical solution can easily become unstable in the presence
of discontinuities. A more mathematical explanation is that the upwinding
scheme is necessary because ® might have discontinuities in which case the
differential equation doesn’t have a normal solution. However, an integral form
of the equation can have a weak solution and the upwinding is a part of this
weak solution. This is explained in [T56] but the discussion of weak solutions

140 Deformative Manipulations

is sketchy. To fully appreciate the issues, insight into the field of conservation
laws [96] is required.

What time-step is appropriate? A condition known as the CFL (Courant
Friederichs Lewy) condition asserts that given a first order scheme like the one
discussed above, the speed function must obey

max F' < Az /At (7.11)

If we consider only grids with unit spacing and unit time step, this reduces to
the simple condition that the speed function should not exceed 1. The CFL
condition is mentioned by Sethian [T56] and explained more deeply by LeVeque
[96].

If F depends on the curvature of the evolving surface, discontinuities do not
occur because the role of curvature is to keep things smooth. Sethian suggests
using central differences both for the gradient and for the computation of the
first and second order partial derivatives involved in computing the curvature.
In 3D there is more than one type of curvature, but in the context of the Level—
Set Method mean curvature [80, 32] is almost always used.

7.3.2 Narrow Banding

A simple implementation of the Level-Set Method would update all voxels ac-
cording to (LX) but that is highly inefficient. In this context, we are only in-
terested in the zero—set of ® which corresponds to the boundary of an evolving
solid. To address this problem, narrow band methods are used [I56].

When using the narrow band approach, the values of ® are updated only in a
narrow band around the zero—set of ®. Since the zero—set moves, we have to
reinitialize the narrow band at times. This is done by tagging certain voxels
as being “land mines”. When the evolving zero—set crosses a land mine, the
narrow band is reinitialized. This is typically done by using the fast marching
method to recompute distances to the zero—set.

Whitaker introduced a variation of this approach called the sparse—field tech-
nique [I78]. The idea is to keep track of a so—called active set which is the set
of all voxels that are immediately adjacent to the zero—set — in the sense that
one of their 6-neighbours are on the other side of the zero—set. From the active
set the distances are propagated to neighbouring voxels using the city block
distance. In practical terms, for each voxel that is 6—neighbour to a voxel in the
active set, we set the distance to 1 plus the value of the active set neighbour.

7.3 The Level-Set Method 141

Whitaker keeps track of the voxels that are within 1/2vu distance to the surface,
and these voxels are updated using the Level-Set Method. The rest are updated
layer—wise. If a voxel, a, that is not in the active set has a neighbour, b, in the
active set, the distance value of a becomes a = b+1. Further layers are computed
similarly. This method is faster than the Fast Marching Method but less precise.

7.3.3 Extension Velocities

It is important to note one problem with ([ZH). The speed F is defined as the
speed of the evolution of the surface B, and it is not always trivial to decide
what value F' should take away from the surface.

Adalsteinsson and Sethian demonstrate in [1] (and chapter 11 of [T56]) that if the
initial @ is a distance field and the gradient of the speed function is everywhere
orthogonal to V® i.e. VF-V® = 0 then 4|[V®|| = 0. In other words ® remains
a distance field. Certain other conditions must hold: For instance, the gradient
is not well defined if the surface has a sharp edge. Never the less, this gives us a
good indication that the speed function should be constant along the direction
of V¢. Because, the gradient of the speed function V F' is only orthogonal to V&
if F'is constant in the direction of V®. Consequently, a good way of extending
the speed function from the surface to R? is by finding the closest point on B
and evaluating the result.

How to do this in practice is a new problem which Adalsteinsson solves by
propagating the speed function using a variation of the fast marching method
that propagates not only distances but also the speed function. However, a
simpler approach and the one taken here is to simply find the foot pointﬂ of a
given voxel and evaluate the speed function at the foot point.

7.3.4 The CIR Scheme

The CIR (Courant Isaacson Rees) scheme has recently been used to solve the
Level-Set equation by John Strain [I62]. Say we are following the characteristic
curve s(t) defined by

s'(t) = FV® s(0) =x (7.12)
for some point x, then
d 0P , 0P B
ﬁfb(s(t),t)— 5 +Vo.s' = 5 + F||V®||=0 (7.13)

4See Section B3

142 Deformative Manipulations

In other words, ® is constant along s. At any given point, we can approximate
a step along s by the speed function times the gradient, and that leads to the
CIR scheme which is, essentially, to track the characteristic curve from a voxel
position one time—step back and then assign the value at that point.

The algorithm as implemented by Strain consists of three steps carried out for
all grid points. Let the grid point be x. First we evaluate the speed function
F(x). A step back along the characteristic is approximated by

s=x—F(x)V® (7.14)

where (as usual) unit time step is assumed. The value of ® at s is computed.
Strain uses the so—called ENO scheme [96] to find the value at s (which is not in
general a grid point), but trilinear interpolation is also a good choice. Finally,
the interpolated value ®(s) is assigned to the grid point x.

When all grid points have been updated, the entire grid is redistanced by re-
placing the values at all grid points with the computed distance to the zero—set.

Strain claims that several features of his method makes it possible to use larger
time steps than with other methods. The reasoning rests on showing heuristi-
cally that the CFL condition is satisfied. Also, experiments indicate that the
method converges to the exact solution when the time step is refined.

7.4 Adapting the Level-Set Method

The Level-Set Method provides a good framework for deformative operations
on distance field volumes. As discussed earlier, the method has been used in
volume graphics for morphing, but interactive, local deformations like add blob
and local smoothing have not been implemented in an interactive framework
using LSM. In this section, we shall discuss how the Level-Set method was
adapted to distance field volumes and implemented. In the next section the
various speed functions that govern the behaviour of the method are discussed.

Because the field is a distance field, it was felt that there is no need to compute
the gradient. If the correct upwind scheme is employed, the gradient should be
of unit length. Of course, the gradient might cease to be unit length after a
few time steps, but this should be prevented by extending the speed function
in the manner proposed by Adalsteinsson. Furthermore, as described below the
voxel grid is redistanced at each time step. Hence, the gradient drops out of the
equation. The distance d = G[p] at a voxel position p is now updated

Glp] < G[p] — F(Ptoot) (7.15)

7.4 Adapting the Level-Set Method 143

where F' is the speed function evaluated at the foot point

Pfoot = P — dg (716)

where g = G[p].g is the gradient. In accordance with Adalsteinsson’s findings,
the speed function, F, is always extended from the evolving surface by finding
the closest surface point and then computing the value of F' there. Note that
([ZT3) is simply ([ZF)) in the notation used for voxel grids throughout this thesis.
The updating procedure can quite easily be changed to update the voxels using
the CIR approach suggested by Strain [T62]

Glp] < G(p — gF (Ptoot)) (7.17)

where G(-) denotes the value of the volume interpolated at a given location.
Exactly the same fundamental loop is used in conjunction with both (ZIH) and
([ZTD). The only difference lies in how the voxels are updated.

The basic approach is to update all voxels in the transition region using either
([ZT3) or [LTQ). However, it is not enough to simply update the voxels. As the
surface deforms, some voxels should be added to the transition region, and other
voxels should be removed. Recall that voxels are in the transition region if their
distance values fall in the range | — r,7[where r is the width of the transition
region. If the distance value after updating falls outside this range, it becomes
an interior/exterior voxel as appropriate. This does not pose a problem, but it
also happens that voxels outside the transition region come closer to the surface
than r. In this case the distance needs to be recomputed. This problem could
be solved by freezing all transition voxels and then running the fast marching
method. However, my experience is that even when evaluating the speed func-
tion only at foot points, the voxels in the outer layers of the transition region
have a tendency to become less precise. Consequently, a better idea seems to
be to retain only the voxels in the immediate neighbourhood of the surface
and rebuild the rest using the Fast Marching Method. To concretize “immedi-
ate neighbourhood” only voxels at 1/2vu distance or less from the surface are
retained and the rest are rebuilt. This is illustrated in Figure

The complete algorithm for a level-set update is as follows:

1. Compute new distance value for all voxels using ([LIH) or ([(ZI7).
2. Freeze all voxels at 1/2 vu distance from the surface.

3. Rebuild transition region using the (high accuracy) fast marching method.

The set of 1/2 vu distance voxels is similar to Whitaker’s notion of an active
set [I78], but rebuilding the transition region using FMMHA is more accurate
than Whitaker’s approach to reconstructing the transition region.

144 Deformative Manipulations

[Exterior/interior voxel

[[] Transition region voxel
[L]voxel exiting transition region
Voxel entering transition region
Bl voxels at 1/2 vu distance

Figure 7.3: Level-Set Method. Illustration of voxels whose transition-region
status is changed as a result of a manipulation. To simplify graphics, voxels are
drawn as squares. The voxel positions are the centres of the squares.

When this algorithm is used for an interactive manipulation of a distance field
volume, only one iteration is used. In general, this moves the surface about one
vu. In fact, it is sometimes useful to reduce the effect of a tool. This can be
done simply by multiplying the speed function with a constant < 1. We will get
back to this in the next section.

7.4.0.1 Implementation details

Some details regarding the implementation deserve mention. First of all, the
Fast Marching Method is implemented in its own class. This promotes modu-
larity without being prohibitive in terms of computational effort. However, it
does imply that a separate voxel grid is used for the FMM. The voxels in this
grid are simply floating point values.

Step 2 and 3 of the algorithm are also a bit more complex than discussed so far.

7.4 Adapting the Level-Set Method 145

Step 2: When all voxels have been updated in step 1, all transition voxels are
visited. If a transition voxel is within the 1/2 vu band, it is copied to the FMM
grid. In any case, the voxel is replaced by an exterior voxel (in the normal
voxel grid) if it is outside the surface, and an interior voxel if it is inside. The
reason for this is that if the surface contracts quickly, we cannot be sure that
spurious voxels are overwritten. The problem is illustrated in Figure [Tl where
a dumbbell collapses under mean curvature flow.

Step 3: As mentioned in Chapter Bl gradients are stored in transition voxels. It
was decided to update gradients using central differences. To be able to update
the distance values for voxels at the rim of the transition region, the distances
are actually computed 1 vu further than the width of the transition region. This
means that the gradient can be estimated using central differences in the voxel
grid maintained by the FMM class.

For interactive uses, it is important to be able to run the Level-Set algorithm
only in a region of interest (ROI). This requires that the speed function is pulled
down to 0 on the boundaries of the ROI. In addition, there must be a padding
layer of two voxels thickness all around the ROI. All voxels in this layer are
considered frozen when the FMMHA is run to rebuild the distances. When
these steps are taken, there are no artefacts along the edges of the ROI.

7.4.1 Speed Functions

The Level-Set Method is a very versatile tool in volume graphics, and quite
different types of deformations can be obtained by varying only the speed func-
tion.

The simplest speed function is a constant function

Feonst (P) =T (718)

This speed function corresponds to a uniform erosion or a dilation of the solid
depending on sign. In this case, it does not make any difference whether the
speed function is evaluated at the foot point or elsewhere.

A slightly less trivial speed function is needed for computing a small bump on
the surface. What is needed is a speed function that is only non—zero in a
small region around the center of the bump. Also the speed should decrease
smoothly. The ideal method for creating such a speed would be as follows:
1. Somehow generate a parameterization of the surface. The origin of the
parameterization should be the centre of the deformation. 2. Define a 2D
Gauflian in the parameter space. 3. For each voxel, transform its foot point

146 Deformative Manipulations

into parameter space and evaluate the Gauflian; this yields the speed function.
A somewhat simpler approach has been taken. Instead of parameterizing the
surface, a 3D GauBlian has been used, and this function is evaluated only at the
foot points. The Level-Set Method in conjunction with a bump speed function
is illustrated in Figure [C4l

Figure 7.4: Illustration of deformation scheme: Normals scaled (exaggerated) by
the magnitude of the speed function (top left), Lines indicate closest boundary
points from voxels where the speed function is sampled (top right). The surface
is changed (bottom).

The resulting speed function is

Fhump(p) = expIIP7Poll/27* (7.19)

Finally, a very important speed function is based on the mean curvature.

Fcurv(p) = —Km (720)

where the mean curvature, K., is interpolated at the foot point. The sign of the
curvature is defined to be positive at a convex point and negative at a concave
point. The result is that all regions of high curvature are made smoother,
protrusions shrink, and cavities are filled in. This process is known as mean
curvature flow and it is a well known and explored application of the Level-Set
Method [37]. In 2D the curvature flow can be shown to deform any simple (i.e.
not self-intersecting) shape to a circle that shrinks to a point [I56} B7]. The 3D

7.4 Adapting the Level-Set Method 147

mean curvature flow is similar: Any convex shape will deform to a sphere that
will shrink to a point [I22], but non—convex shapes may break into pieces before
they shrink to spheres. For Fi,,, the best results were obtained when ([ZI1)
was used to update voxel values. This is possibly due to the added smoothness
implied by the interpolation of the new voxel value. Also, the value of Fiy,y is
not always less than 1 which implies that the CFL condition for [ZIT) is not be
fulfilled. ([ZTH) is used in conjunction with the other speed functions discussed
here.

An important goal was to be able to use the Level-Set Method for local, in-
teractive operations: Especially it seemed desirable to implement the add blob
and smoothing tools using the method. To localize the effect, it is necessary to
constrain the speed function to be zero outside of a the ROI (region of interest)
associated with the tool. In addition, it is important that the speed function
can be scaled to enable the user to decide how great effect the tool should have.
Finally, it should be possible to invert the effect of the tool which can, in general,
be effected by inverting the sign of the speed function.

To make these things possible, a scaling-windowing speed function has been
designed. This speed function is controlled by four parameters: A scaling factor
«, a window radius r, a window transition region thickness k, a centre point, and
another speed function F'. The definition is

FO”"POF(p) = aF(p)wTkpo (p) (7'21)

where wyip, is the window which is defined as follows:

Wrkp, (P) = wrk(||P — Pol|) (7.22)
where
1 0<t<r
we(t) =4 1=3(t—r)/k)?=2(t—-7)/k)® r<t<r+k (7.23)
0 t>r+k

wr), decreases smoothly from 1 to 0 since w)., (r) = w], (r + k) = 0. A window
that merely truncates the speed function would leave an ugly border between
the affected and un—affected regions, a linear transition might be sufficient, but
to be on the safe side, it was decided to use a C' function. Merely windowing
the speed function ensures a local deformation, but it does not significantly
reduce the run—time. To complete the localization, the size of the window is
determined, and only voxels inside that window are visited by the Level-Set
algorithm.

The scaling—windowing speed function (together with a region of interest) en-
ables the design of local sculpting tools based on the Level-Set Method. Of

148 Deformative Manipulations

course, global tools are also possible if we simply run the algorithm on the
entire volume.

The following concrete sculpting tools have been implemented:

1. Add blob: Fiump used in conjunction with the scaling-windowing speed
function. The Level-Set Method is run only in the ROI where the speed
function is non—zero.

2. Remove blob: Same as above, but with negative scaling.

3. Smooth: Feyv used either in conjunction with the scaling—windowing
speed function or without, depending on whether a global or a local
smoothing is desired. If local smoothing is desired, the Level-Set Method
is run only in the ROI where the speed function is non—zero.

4. Un-smooth: Same as above but with a negative scaling.

5. Dilate: Fionst used with scaling but usually not windowing since a dilation
of a part of an object is rarely desirable.

6. Erode: Same as above but with negative scaling.

Number 4 deserves special mention: When doing mean curvature flow, the sur-
face moves in the direction of the curvature center. This tends to make the
surface smoother. By inverting the sign, we can make the surface less smooth:
Small curvatures are enhanced. The result is chaotic but potentially useful for
imitating certain features such as hair, although hypertextures would be a far
more correct way of implementing just that [I45].

7.5 Estimating Mean Curvature

In the following, we shall briefly review methods for estimating curvature in
volumes, and then see how k,, is computed for distance field volumes.

The common assumption is that the voxels correspond to samples of a scalar field
f :R3 — R, and that the surface whose curvature we are trying to estimate is an
iso—surface {x|f(x) = 7}. Furthermore, f should be at least twice differentiable
and the gradient V f must exist at all points on the 7 iso—surface. In the context
of the Level-Set Method, we are interested in the case where f(-) = ®(-,1).

7.5 Estimating Mean Curvature 149

The older of the two previous methods [T41], [[42 [TT5], consists of fitting para-
metric patches to a neighbourhood around a given surface point. The position
and normal of the surface point is used to initialize a local orthonormal coor-
dinate system where one axis is parallel to the normal and the two other axes
are perpendicular. A simple parametric patch z = h(z,y) is then fitted (using
local coordinates) to the cloud of neighbouring points using e.g a Kalman filter
[I15]. The fitted function is the simple second order function

h(z,y) = az® + bry + cy? (7.24)

and once its coefficients a, b, and ¢ are determined, the principal, mean and
GauBlian curvatures can readily be computed using formulae from [32].

The other approach (and the one that is usually employed in the context of the
LSM) is to estimate the first and second order partial derivatives of the scalar
field (e.g. fu, fuy --.). From these derivatives the various curvatures may be
computed directly [T23] [T [T80].

For instance, the mean curvature of the iso—surface {x| f(x) = 7} at a given
point p which fulfills f(p) = 7 is

< (fyy + f22)f2 + (fow + f22) fo + (fow + fyy) f2 >
1

_2(fwf fm +fzfzfxz+f fzf z)
3 B (7:2)

([CZ) may be found in [37] or [I56. A more detailed description of a similar
method is given by Monga et al in [I16]. In this paper, the authors wish to
find the principal curvatures at previously detected surface points in acquired
volumetric data sets. It is shown that the normal curvature of the iso—surface
at a given point p in the direction of a tangent vector w is

wl Hw

Kw

where H is the Hessian matrix (i.e. the matrix of second order derivatives) of
f evaluated at p. Monga et al. estimate the Hessian matrix using the so—called
DeRiche filters to estimate the partial derivatives. Subsequently, [Z28]) is used
in conjunction with a Lagrangian Multipliers technique to find the principal cur-
vatures, i.e. the normal curvatures in the principal directions. Unsurprisingly,
this method turns out to be more efficient than the scheme based on fitting
[I16]. In the case of distance field volumes, the underlying scalar field is really
a distance field which simplifies matters.

5In Sethian’s book [I56] the factor % is missing. Another erroneous version of the formula
is found in [I80] [I78]

150 Deformative Manipulations

Erich Hartmann has observed that for 3D distance fields which he calls 3D Hesse
Normalforms, the normal curvature in the direction of a tangent vector w is

bw = wW! Hw (7.27)

where H is now the Hessian of a distance field V. ([ZZ0) follows directly from
[CZ8), because the gradient is unit length in the case of distance fields. Further-
more, two of the eigenvalues of the Hessian are the principal curvatures sy, and
Kmax, and the third eigenvalue is zerdd 7.

By definition, the mean curvature is k,, = % To compute the mean
curvature, we could approximate the Hessian and find the eigenvalues, but since
the last eigenvalue is zero, Kmin + Kmax is equal to the trace of H (the sum of
eigenvalues being equal to the trace of a matrix). Hence, we can use the simpler
formula [77]:
SiHi
2
In order to apply this result to DF'Vs, we need a discrete operator for approxi-
mating the Hessian. Fortunately, gradients are stored in the volume, and since
the gradient is really a vector of first order partial derivatives we can estimate
the Hessian simply by applying a central differences filter to the gradients:

= (Glp+vilg—Glp—vilg)/2 (7.29)

where v; is the ith canonical basis vector, e.g vi = [100]. We only need the
diagonal elements, so

(7.28)

Rm —

T
est est est
[Hl,i HQ,i H3,i}

S,Glp +vil-gi — Glp — vil-g
4

This method is a bit unorthodox, and should be compared to previous meth-

ods. A well-known and more conventional way to compute second order partial

derivatives that was used in [I80] is the following scheme:

(7.30)

Rm =

82 f
@ ~ f(l‘—l— 1,y,2’)+f(l‘— 1,y72) —Qf(l‘,y,Z) (731)
{ f(x+1ay+1az)+f(x_17y_17z)
an N _f(x+17y_1,2)_f(x_17y+172)
dxdy 4 (7:32)

If [Z31) is used to compute the second order derivatives along the diagonal of
the Hessian, we get another estimate of the mean curvature.
~ {%%,Glp+vi] + Gp — vi]} — 6Gp]
N 2

6Since a distance field changes linearly when moving in a direction n perpendicular to the
surface, the gradient does not change in that direction, and Hn =0

(7.33)

Km

7.5 Estimating Mean Curvature 151

In other words, we have two schemes: One that employs the usual methods for
computing second order derivative (i.e. (Z31)) and one that is based on the fact
that the gradients already stored in the volume can be used in the computation
of second order partial derivatives.

Of course, it is possible to use the standard method ([ZZH) with either of the
two methods for computing the second order partial derivatives. This yields a
total of four different ways to estimate curvature. In the following, the methods
that rely on the fact that we are dealing with a sampled distance field will
be called DF methods. The usual methods based on ([Z2H) will be called NDF
(non distance field) methods. Methods that use [C31) in the computation of the
second order partial derivatives will be called CD (central differences) methods.
The methods that compute the second order partial derivatives using gradient
information will be called GCD (gradient central differences) methods.

Hence ([Z30) is the DF-GCD method and ([Z33)) is the DF-CD method. The
two last methods based on ([L2H) are NDF-GCD and NDF-CD.

7.5.1 Testing Curvature Filters

It is important to know how these four methods compare with respect to speed
and precision. To test the latter, we need to compute the curvature for a voxel
model where the exact curvature is known. The sphere and the ellipsoid were
selected.

For the sphere, the experiment is as follows: For 12 radii in the range from 2.5
vu to 30 vu

e Voxelize a sphere of given radius.

Estimate curvatures at 100000 random surface locations.

Print out the maximum and average errors.

Select new radius (i.e. loop back).
The error is always computed as the percentage of the numerical error with
respect to the true curvature, i.e

|Km — K]

Km

err, = 100 (7.34)

152 Deformative Manipulations

Ellipsoid Sphere

DF NDF DF NDF
CD 26.6 74.3 CD 12.4 57.5
GCD | 28,5 405 || GCD | 15.1 27.1

Table 7.1: Timings (in seconds) of curvature filters.

The experiment with the ellipsoid is almost identical, the only difference being
that instead of a sphere of a given radius, r, an ellipsoid with principal axes
[r 2r 3r] is used. Notice that for the same choice of r, the ellipsoid has a broad
range of mean curvatures. In addition, the highest mean curvature for any given
r is much higher than for the sphere. This means that we should expect greater
errors for the ellipsoid than for the sphere.

Both the sphere and ellipsoid experiments were run using each of the four meth-
ods for computing the curvature and in each case the mean and max errors were
recorded for each choice of radius. The mean and max errors for the sphere ex-
periments are plotted in the graphs in Figure [L3 and the results for the ellipsoid
experiments are shown in Figure[Lfl Timings are summarized in Table[ZIl The
timings are in “wall clock” seconds measured on the Athlon platform and the
times are the best out of three runs.

Clearly, the DF methods are faster than the NDF methods. The tests indicate
that the DF methods are between 1.4 times and 4.6 times faster than the NDF
methods. This can be attributed to the fact that pow must be called because
of the denominator in ([Z2H) which is raised to the power of 3/2. Because the
mean curvature is used for curvature-based smoothing in interactive volume
sculpting, the DF schemes are clearly preferable.

Precision is also an issue and by looking at the plots, it seems that DF—CD
is the overall most precise scheme. However, interactive tests showed that the
DF-CD scheme is, unfortunately, less stable than the DF—-GCD scheme. In
practice, smoothing with a DF-CD smoothing tool added some noise to the
surface. Moreover, Figure [indicates that the DF—CD error actually increases
slightly for very small curvatures. The superior stability of the DF—GCD scheme
can probably be explained by the fact that the gradients themselves have been
computed using central differences. Thus, the effective stencil used in computing
the curvature with the DF-GCD scheme is much larger than with the DF-CD
scheme.

Since stability and speed are the most important issues, the DF-GCD scheme
has been selected. This is also justified by the fact that although the error is vast

7.5 Estimating Mean Curvature 153

Spheres, mean curvature error in percentages of true value

45 . : : ;
Mean error, DF-GCD —+—
a Mean error, DF-CD ---x---
4 + Mean error, NDF-GCD ---*--- |
Mean error, NDF-CD &
35 | 4
*
3 ; 4
i
25 | : 4
2 F 4
15 | 4
1r 4
0.5 | -
0 ¥ 5
0 15 20 25 30
radius
Spheres, max curvature error in percentages of true value
8 T T T T T
Max error, DF-GCD —+—
Max error, DF-CD --
Max error, NDF-GCD ------
Tr * Max error, NDF-CD & .
X
6 ;]
5F
4+
3 |-
2+
1F
0
0

radius

Figure 7.5: Curvature errors for sphere test

154 Deformative Manipulations

Ellipsoids, mean curvature error in percentages of true value

35 . . X ‘ ‘
Mean error, DF-GCD —+—
Mean error, DF-CD ---x---
Mean error NDF-GCD ------
I Mean error, NDF-CD & i
30
25 |
20 |
15 - |
10 + |
5 I -
0 " ‘
0 15 20 25 0
size
Ellipsoids, max curvature error in percentages of true value
140 . . X ‘ ‘
Max error, DF-GCD —+—
Max error, DF-CD ---x---
Max error, NDF-GCD ------
wor Max error, NDF-CD & |
100 |
80 |
60 |
40 | |
20 |
0 ¥ " ‘
0 15 20 25 20
size

Figure 7.6: Curvature errors for ellipsoid test

7.6 Testing the Deformative Tools 155

for the smallest ellipsoids, it quickly drops off to the level of the other schemes.

7.6 Testing the Deformative Tools

In this section, I present some of the results that have been attained through
applying the Level-Set method to volumetric sculpting. The experiments were
conducted using the volume sculpting system that will be discussed in greater
detail in Chapter

7.6.0.1 Speed

Speed is relatively important in volume sculpting, and the Level-Set Method is
somewhat more complicated than the algorithms typically employed in volume
sculpting. For this reason, it could not be taken for granted that it is possible to
use the Level-Set Method in an interactive setting but, fortunately, it is possible.
The performances of the add/remove blob tool and the local smoothing tool were
measured through a very simple experiment: Initially, the ROI is selected. Then
a user applies the add blob tool and the smoothing tool at random a number of
times. The total number of applications of each tool and the total time for all
applications is recorded. From these numbers, the average times can easily be
computed. The experiment was carried out on the Athlon platform for ROIs of
size 10 x 10 x 10 up to 70 x 70 x 70. The results are summarized in Table

The worst case run—time complexity of the Level-Set Method in the presented
implementation is O(N?3log N) where N is the side length of the ROIL. This
is clear because the FMM is O(N®log N) and apart from the invocation of
the FMM, the algorithm does an amount of work for each voxel that is if not
constant then at least independent of the size of the ROI. However, judging from
the timings, one would not expect that the increase in run—time is proportional
to N3log N (see Figure[l). Especially the plot for the smoothing tool indicates
a much less steep increase in run—time. This can be interpreted in a number of
ways.

First of all, some of the difference may be due to the fact that for each experiment
random manipulations are performed. Also, there are much fewer applications
of the large tools than the small tools. A more optimistic, but not unrealistic,
explanation is based on the observation that most of the work is done for voxels
that are in the transition region — either before or after an application of the tool.
When the ROI is small with respect to the thickness of the transition region,

156 Deformative Manipulations

ROI Tool Applications Time/s Average time /s
10x10x10

Add blob 612 27 0.044

Smoothing 1674 78 0.047
20x20x20

Add blob 654 88 0.134

Smoothing 738 113 0.153
30x30x30

Add blob 192 59 0.307

Smoothing 250 88 0.352
40x40x40

Add blob 128 90 0.703

Smoothing 132 116 0.878
50x50x50

Add blob 110 107 0.973

Smoothing 138 153 1.109
60x60x60

Add blob 65 81 1.246

Smoothing 140 181 1.293
70x70x70

Add blob 43 75 1.744

Smoothing 64 93 1.453

Table 7.2: Timings for the add blob and smoothing tools.

7.6 Testing the Deformative Tools 157

18

Add blob tool ——
Smoothing tool ---*---

seconds

L
10 20 30 40 50 60 70
ROI side length

Figure 7.7: Tool performance as a function of ROI side length.

a proportionally greater part of the voxels can be expected to be transition
voxels than when the ROI is large. These timings do not include visualization,
but the time it takes to render the model is very dependent on the size of the
model, its complexity and the resolution of the volume. Therefore, visualization
performance is best measured separately, and we will get back to that issue in
Chapter

7.6.0.2 Add/remove blob tool

The visual result of the add/remove blob and smoothing tools should also be
documented: In Figure[[§ a few features have been added to a cube solid using
the add/remove blob tool and the smoothing tool. Notice that the topology of
the solid has been changed: A hole has been created with remove blob, and two
prongs have been added and have grown together. In addition, the corner has
been smoothed.

7.6.0.3 Mean Curvature Flow

The smoothing tool really implements a localized mean curvature flow [37], and
we know that a convex shape (and some nearly convex shapes) should shrink

158 Deformative Manipulations

to a sphere collapsing to a point. Another standard example is the dumbbelld.
In general a dumbbell deforms to two spheres that separately collapse to points
after the handle has been pinched off [87, [[56]. The high curvature of the
cylindrical handle of the dumbbell makes it split into two parts before each of
these parts shrink to points.

We can test that the algorithm handles these cases correctly by setting the ROI
to the entire volume. Figure shows the marzipan pig deforming under mean
curvature flow. The images show the sculpture after 0, 2, 9, and 100 iterations
of smoothing (i.e. applications of the smoothing tool). Notice how the figure
approaches a sphere in the final image.

The dumbbell experiment is shown in Figure [[T0l The images show the dumb-
bell after 0, 34, 35, and 44 iterations. As expected, the handle pinches off.

The dumbbell can also be used to illustrate another issue: In general, there is no
need to remove old voxels because after the shape deforming step, the marching
step should overwrite spurious transition voxels. However, when the dumbbell
handle collapses, a large region of the shape simply vanishes and in this case
some old voxels may be too far from the new shape to be overwritten during
the FMM step. Expressed in a different way, if the curvature is always less
than (say) lvu, the curvature flow cannot move the surface a greater distance
than lvu. At the point where the dumbbell handle is pinched off, however, the
surface has a point of infinite curvature, and we cannot bound the motion of
the surface. If this happens, the result is like that shown in Figure [ZT11

An example of the negative mean curvature based deformation is shown in
Chapter B Figure

Outside of the volume graphics community, the Level-Set Method has been
used for a number of things that are also potentially useful in the context of
volume sculpting. A good example is Euclidean Morphology [144]. If the speed
function is always constant, say k, the resulting deformation corresponds to an
Euclidean dilation with a sphere or radius k. Thus, it is exceedingly simple
to perform dilations and, if k& < 0, erosions. Dilations and erosions may, in
turn, be combined to implement openings and closings. Figure shows a
“marzipan pig” — the ordinary sculpture is on the left. In the centre it has been
eroded three times with a sphere of radius 1 and, subsequently, dilated with
the same sphere. The result is a marzipan pig opened with a sphere of radius
3. As expected this removes some structure from the sculpture. On the right,
the close operation (i.e. the inverse) has been performed. The results are less
obvious but there are some visible changes around the eyes.

"Two spheres connected by a cylinder

7.7 Discussion 159

7.6.0.4 Preservation of Distance Field

The presented technique for deformative manipulations seeks to ensure that the
volume remains a distance field. This is ensured by a combination of two meth-
ods previously discussed: First, velocities are extended in a way that preserves
the distance field under certain conditiondl. However, my initial experiments
indicated that after a number of manipulations, visible errors appeared. To
avoid numerical errors from accumulating, the distances are now recomputed at
all voxels not adjacent to the isosurface for each application of a deformative
tool. Of course, it is interesting to measure the error, and in a distance field
the gradient should always be unit length. Hence, to measure the error, one
might measure the deviation of the gradient from unit length. In the following
experiments, the gradient is estimated using central differences. Unfortunately,
the quality of the central differences gradient is also influenced by curvaturﬁ.
To avoid measuring the gradient error, the following setup was used: The exper-
iment consists of 400 random applications of the add blob tool and 400 random
applications of the smoothing tool. These 800 manipulations were applied to
one side of the cube. The result is that each voxel in the vicinity of this side of
the cube has been modified many times, but there is little high curvature since
the applications are distributed equally across the surface and applications of
add blob have been interspersed with applications of the smoothing tool. Hence,
the remaining error can be assumed to be due to the method. The volume is
rendered using ray casting, and at the ray intersection, the gradient error is es-
timated at the corners of the enclosing cell. The maximum of these eight error
values is the intensity of the pixel. Figure [[I3lshows the rendition and an image
of the surface rendered using normal ray casting. As one would expect the error
is quite low — nowhere higher than 0.07vu. Moreover, the greatest error is near
the edges where curvature is an important source of error.

7.7 Discussion

In this chapter, we have reviewed some common techniques for deformation of
volumetric solids. These include schemes for warping, metamorphosis, elastic
deformation, and skeleton based animation. One of the most successful tech-
niques for metamorphosis was Breen and Whitaker’s technique based on the
Level-Set Method.

The main contribution in this chapter was begotten by the observation that the

8See Section
9See Chapter €

160 Deformative Manipulations

Level-Set Method could be used for local deformations and that a local version
of the Level-Set Method could be used equally well for add blob and local
smoothing which are arguably the most important sculpting tools. The local
tools were realized through the introduction of the scaling—windowing speed
function which makes manipulations local, and allows inversion and scaling of
the speed function. As demonstrated by the timings, the speed is interactive for
tools of reasonable sizes, and the implementation could probably be optimized
further.

An important characteristic of the new deformative tools is that they preserve
the property that the voxel values are signed distances. This is not an auto-
matic feature of the Level-Set Method but due to the way the speed function is
extended and to the fact that the volume is redistanced after each application
of a deformative tool.

A novelty is the fast method for mean curvature computation. The method
traditionally used in conjunction with the Level-Set Method does not take ad-
vantage of the fact that the representation is really a distance field. By exploiting
this fact, the expensive pow call is avoided which greatly speeds up curvature
computation.

Unfortunately, the morphological features openness and closedness are not pre-
served, so it is not difficult to create solids that do not fulfill the morphological
criterion. On the other hand, none of the deformative tools have quite the same
propensity for introducing sharp edges that the constructive tools do. Moreover,
the local smoothing tool can actually be used to remove the sharp edges that
might be introduced.

In summary, the Level-Set Method allows for the implementation of any defor-
mative tool as long as it can be expressed through a speed function. So far, only
add/remove blob, smoothing and the global tool for erosion and dilation have
been implemented, but with suitable speed functions, a warping tool could, for
instance, be implemented. Thus, the main advantage of the Level-Set Method
in the context of volume sculpting is that it provides a general framework for
deformative manipulations whereas the technologies underlying previously pro-
posed add blob or smoothing tools are far less generic.

Finally, it should be mentioned that since the novel smoothing tool implements
a localized mean curvature flow, it now has a clear interpretation: It removes
high curvature. If we should assign a similar interpretation to the effect of a
typical smoothing tool [BA, 26, [60] (i.e. take the average value of a voxel and
its neighbours) it would be that these tools remove high frequency components
from the volume. This does, in turn, tend to reduce high curvature, but only
indirectly and the effect of multiple smoothings is not clear. On the other hand,

7.7 Discussion 161

the mean curvature flow is quite well understood.

162 Deformative Manipulations

Figure 7.8: Add blob and remove blob have been used to create new features
on a cube solid.

7.7 Discussion 163

Figure 7.9: Volume Sculpture of a “marzipan pig” under mean curvature flow.

164 Deformative Manipulations

Figure 7.10: Dumbbell under mean curvature flow

Figure 7.11: Spurious voxels are sometimes left behind if the old voxels are not
erased at each iteration of the smoothing.

7.7 Discussion 165

DOy

Figure 7.12: Volume Sculpture of a “marzipan pig”. Normal (left). After open
with a sphere or radius 3 (centre) and after close with the same sphere (right).

Figure 7.13: Gradient length error image compared to ray casting based ren-
dering (right)

166 Deformative Manipulations

CHAPTER 8

Visualization and Interaction

In this chapter methods for visualization and interaction are discussed. The
emphasis is on the development of a technique for visualizing volume data that
is fast enough to be used in an interactive sculpting system. Details about
the user interface are provided mainly for the sake of completeness since no
particular claims are made regarding the efficacy of the user interface.

In Section Bl a survey of volume visualization techniques is provided. The
discussion focuses on techniques for rendering surfaces, since these are the most
relevant. In Section a technique for fast rendering of foot points on the
surface of the volumetric solid is presented. It is this technique that I use in
conjunction with the interactive sculpting system. The method is compared to
Marching Cubes which was also implemented, and my implementation is dis-
cussed in Section B4l In Section B a technique for visualization by ray casting
is proposed. This method is slower but produces images of higher quality. In
Section Bl the user interface to the sculpting system is described. In Section B
results are presented and in B8 the visualization techniques and the interactive
volume sculpting system are discussed.

168 Visualization and Interaction

8.1 Volume Visualization

Volume visualization is a relatively large field. This is probably due to the fact
that there is a need for interactive frame rates which are difficult to achieve since
volume data sets are large (and still growing). Thus, there is a great incentive
to develop optimizations and parallelizations and to explore new techniques.

The purpose of the following discussion is to motivate my own choice of ren-
dering technique, and since the topic is large, the discussion will be limited
to techniques for rendering of surfaces in volume data and to regular isotropic
grids. This excludes topics like rendering of scattered volume data, anisotropic
grids, and very interesting topics such as participating media and rendering of
volume data from the Fourier or Wavelet domains. In short, I do not aim at
completeness; instead I give an overview of visualization techniques and go into
detail with the relevant techniques. For a more complete survey, see [90]. On
the other hand, point rendering which is a somewhat different topic will be dis-
cussed because the method I actually use for interactive visualization is based
on point rendering.

The common assumption is that we are trying to render a surface, say X, that
is contained in the volume. This means that the volume is supposed to be a
sampled from a function f(z,y, z) so that f~!(p) = X where p is the iso—value
corresponding to X.

8.1.1 Taxonomy

Traditionally, methods for volume visualization are divided into two categories.
Methods that visualize volume data directly are called volume rendering meth-
ods. Methods where the surface is first extracted and represented using surface
primitives (typically triangles) and subsequently rendered are called surface ren-
dering methods. Thus, volume rendering methods are characterized by the lack
of any intermediate representation of geometry whereas the opposite is true of
surface rendering methods. The advantage of surface rendering methods is that
the extracted surface is typically represented by polygons, and most modern
graphics hardware is optimized for polygons. On the other hand, volume ren-
dering techniques often produce nicer images. Volume rendering methods are
divided into two classes of methods. Methods where the volume is traversed sys-
tematically and voxels are projected onto the image plane and methods where
the image is traversed systematically and rays are cast from each pixel into the
volume. Methods belonging to the first class are denoted object order methods,
and methods belonging to the latter are called image order methods. Image

8.1 Volume Visualization 169

[Volume Visualization}

/\

{ Surface Rendering J {Vol ume Rendering J

{ Object Order} Emage Order J
Domain order

Figure 8.1: Taxonomy of volume visualization techniques

order methods have a lot in common with ray tracing, but specular or shadow
rays are typically not cast. For this reason, the word ray casting is used instead
of ray tracing. The two classes of techniques lend themselves to different kinds
of optimizations: Object order techniques need only visit each voxel once. On
the other hand, when using image order techniques it is possible to cull parts of
the volume that are obscured by surfaces already rendered.

We might add one more branch to the taxonomy, namely domain rendering
techniques [00]. This is a highly diverse class encompassing all techniques where
the volume is first transformed to another domain and then rendered directly
from that domain. It might, for instance, be advantageous to render from the
frequency domain [I65] or the wavelet domain [T04].

8.1.2 Surface Rendering

The earliest techniques for extracting surfaces from volumes were based on con-
necting contours. Each slice of the volume was considered separately, and a
surface contour was traced. Afterward the contours were stitched together.
This and other early methods such as the cuberille method are discussed in the
survey by Elvins [B0].

More recent techniques consider a polygonizing cell at a time. Most of the time,
the polygonizing cells are simply the cells of the voxel lattice, i.e. cubic regions
of 1vu side-length whose vertices lie at voxel positions. The basic principle is
to visit all cells and for each cell detect whether the iso—surface intersects the

170 Visualization and Interaction

cell. If the surface does intersect, the intersecting piece is approximated using
geometric primitives. The approximating primitives are almost invariably but
not exclusively polygons. For instance, Hamann et al. suggested triangular,
rational, quadratic Bezier patches [74]. For an illustration of a polygonization
cell, see Figure

The most well-known technique for surface extraction is undoubtedly Marching
Cubes [106]. The Marching Cubes algorithm traverses all cells in the volume,
and for each cell the value of the corner voxels are retrieved. The corners are
classified according to whether they are on the interior or exterior side of the
iso—surface. If the cell is found to straddle the iso—surface, the classification
is used as an index to a table of polygonization templates. There are 256
possible combinations. However, due to symmetry the table can be reduced
to 14 entries. It is not enough to generate polygons based on the classification,
though. The precise location of the vertices of the generated polygons must
be found. The polygon vertices lie on cell edges that are intersected by the
iso—surface, and the vertex is placed at the point on the edge where the value
of the linear interpolation function interpolating between the voxels is equal to
p. The scheme is illustrated in Figure for p = 0.

Polygonization has also been investigated in the field of implicit surfaces [I8, [T6].
Bloomenthal has written a very efficient polygonizer which tracks the surface
instead of brute force marching through the volume [I7]. The polygonizer also
supports tetrahedra as polygonization cells. This produces more polygons but
the algorithm is simpler.

8.1.3 Image Order Volume Rendering

For the purpose of visualizing surfaces in volume data, it is only necessary
to take single scattering into account. Single scattering means that all light
reflected from the visualized surfaces is assumed to emanate directly from the
light source(s). The opposite of single scattering is multiple scattering where
light may be reflected many times before reaching the eye. In the following, the
single scattering (aka low albedo) volume rendering equation will be discussed
I3, [10]. The discussion follows the clear exposition by Max [LI{].

The volume is assumed to contain an infinite number of infinitely small light
absorbing and light emitting particles. The density of these particles varies
throughout the volume, but at each point we are able to evaluate an emission
g(x) and an extinction coefficient 7(x). The former corresponds to how much
light is emitted, and the latter to how much light is absorbed at that point.
Say the volume is traversed by a ray x moving in the direction of the eye. The

8.1 Volume Visualization 171

= . :

Figure 8.2: Illustration of the ray integral

change in the amount of light at any given point on the ray x(s) can now be
modelled by the differential equation

L = 4(5) ~()10s) (51)

using the terminology of Max [IT0]. Intuitively, the change in the amount of
light moving toward the eye is equal to the emission minus the absorption. Max
shows that this differential equation is solved by

D D D
I(D) = Igexp <—/0 T(t)dt> +/0 g(s) exp <—/ T(t)dt> ds (8.2)

where ¢ = D corresponds to the position of the ray as it hits the eye, and t =0
corresponds to the ray origin. Ip is the background intensity. A numerical
method for solving (B2 is the back—to—front equation

N

N N
IN] =1 [Tt =ali) +>_glil JT (1 —ali) (8.3)

j=i+1

where afi] is the i’th opacity sample. Interpreted strictly, o ought to be the
integral of the extinction 7 from sample i to sample i+1, i.e

(i+1)As
ali] = 1— exp (/ " T(t)dt> (8.4)

As

Typically, though « is produced by a transfer function whose input is volume
density. Thus, « is really a point sample of a transparency function.

The emission at a point is computed g = aC, where C, is computed from an
input colour C; using an illumination model. Cj; in turn is typically produced
by a transfer function analogously to «. Often the Phong model [T33] b is
used, and in this case:

C, = Cl(de L+ kS(R . V)w + ka) (85)

where N, L, V, and R are normalized vectors in the direction of the normal, the
light source, the eye, and the light source direction reflected about the normal,

172 Visualization and Interaction

respectively. kg, ks and k, are the diffuse, specular and ambient reflectance
terms, respectively, and w is the specular exponent. The first of the three terms
inside the parenthesis models the diffuse reflection of light (assuming a Lam-
bertian surface [B6]), the second term models the specular highlights and the
third corresponds to a simulation of reflected diffuse light from the environment.
Regarding the second term, higher values of w result in a sharper, narrower high-
light. There are various variations of this illumination equation. For instance,
depth or light source attenuation have not been taken into account in (8Hl). The
notation is illustrated in Figure

Figure 8.3: Phong Illumination model.

In most recent methods the surface normal N is computed as the normalized,
estimated gradient of the volume density. Colour has been ignored so far, but
is easily incorporated. (B3] is simply evaluated separately for red, green and
blue.

In summary, a ray is cast through the volume. At equidistant intervals, values
of @ and g are computed. Finally, the opacity and colour values are composited
using ([B3)). This is precisely the approach taken by Marc Levoy in one of the
earliest papers on volume rendering by ray casting [09]. The idea is to compute
new volumes of colour values and opacity values from the original (density)
volume. Colour and opacity are computed using respective transfer functions.

From each pixel, rays are cast into the volume, and colour and opacity values are
resampled at regular intervals using trilinear interpolation. Finally the resam-
pled values are composited in back—to—front order using [83). An important
thing to note is that colours must be multiplied by opacity before interpolation.
The reason is that low opacity voxels should not be given the same weight as
high opacity voxels. This is explained here [I82]. Levoy did it correctly, but he
didn’t explain the issue much to his chagrin some ten years later [T01].

8.1 Volume Visualization 173

A few of the most common optimizations should be mentioned. The first two
are also due to Levoy [I00]. The simplest is early ray termination. The back—
to—front equation can be evaluated in reverse order. Starting from the eye, we
can compute the result using the following algorithm

I—0

A—0

fori —0to N I—TI+(1-A)gl]
A— A+ (1-Aal]

I<—I—|—(1—A)IB

where the indices are reversed so that ¢ = N corresponds to the sample furthest
from the eye. A is the accumulated opacity and I is the accumulated intensity.
When A is close to 1 there is no need to continue the ray traversal, since sub-
sequent samples will have little influence. In this case, we may brake out of the
loop. This is an optimization known as early ray termination.

Another important optimization is the creation of a hierarchy of volumes at
lower resolution. This is essentially a complete octree [I40]. The leaf nodes
correspond to the cells of 1vu side length whose corners are voxel positions. If
at least one voxel has opacity > 0 the cell is tagged as non—-empty, otherwise
it is tagged as empty. Cells above are then recursively tagged as non—empty or
empty depending on whether they have at least one non—empty sub—cell. This
hierarchy can be used to quickly skip over empty regions. However, the method
can be improved by storing more information in the octree. More recent work
is due to Danskin and Hanrahan [46], and Stander and Hart [I60]. Another
solution for the same problem is to use distance coding. If all voxels with 0
opacity are marked with the distance d to the nearest voxel which has non—
zero opacity, we can take a step of length d. This scheme seems to have been
proposed first by Zuiderveld [I89].

Polygon assisted ray casting (PARC) is a method due to Avila et al [0]. The
idea is to render a polygonal approximation of the volumetric solid to a z—buffer.
The z—buffer values are then used to initialize the ray starting point. A variation
of this technique has been used by myself and will be discussed in Section

Ray casting is usually not very fast, and this is, at least in part, due to the
fact that each ray is treated separately, and a single voxel may be considered
many times. In object order approaches, the volume is traversed in a system-
atic fashion and each voxel is considered once. However, ray casting has other
possibilities for optimization, and to combine the best of both worlds, Lacroute
proposed a method where the volume and image are traversed in a synchronous
fashion [97]. If we consider only orthographic projections, it is possible to shear

174 Visualization and Interaction

the volume so that rays are perpendicular to slices of the sheared volume. Rather
than considering each ray separately, the image and a slice of the volume are
traversed in scanline order. Thus the contribution of each voxel in a volume
slice is computed before voxels in slices behind it. This makes it possible to do
early ray termination by considering voxels in a slice only if the corresponding
pixel is not opaque. Finally, the intermediate image is warped to produce the
final image.

Further speedup is obtained by run—length coding volume slices, and the method
is extended to perspective projections by both shearing and scaling the inter-
mediate volume. The method is very fast, but it requires the volume to be
preprocessed. The preprocessing is independent of viewing parameters but not
of the transfer function. However, with some more overhead it is possible to
make the method independent also of transfer function. The fastest method
renders a 256 x 256 x 256 volume in one second on an SGI Indigo.

Volume rendering based on single (or multiple) scattering models is not the only
possible image order approach. If only surfaces are of interest, it is also possible
to compute the surface intersection analytically [I03]. The basic algorithm is to
traverse the volume until the ray encounters a cell that straddles the iso—surface.
The ray equation is plugged into the trilinear interpolation function which yields
a cubic polynomial that can be solved analytically. Gradients can be computed
either by interpolating the central differences estimate (as usual) or computed
from the partial derivatives of the interpolation function.

Given a very powerful, shared memory, multiprocessor computer, it is possible to
implement this method running at interactive speeds [124]. Using 64 processors
on an SGI Reality Monster Parker, et al. demonstrate that they are able to
render the 1GB visible woman data set at between 6 and 15 fps. The authors
take care to ensure good load balancing and cache coherence. Perhaps the most
important optimizations are that the voxels are grouped in cache-line—fitting
blocks and that a tri level hierarchical grid is used. At each level the max
and min value of the volume in the levels below are stored. The ray traversal
proceeds at the coarsest level, unless the iso—value lies in the min max interval.

For very demanding applications where both speed and quality are essential,
special purpose hardware may be the only solution. The only commercially
available piece of hardware developed especially for volume rendering is the
VolumePRO PCI card for PCs which implements a ray casting technique [132]
based on the Cube-4 architecture developed at the State University of New York
at Stony Brook [I30]. The board does not handle perspective, but achieves 30
fps for a 256 x 256 x 256 volume.

8.1 Volume Visualization 175

8.1.4 Object Order Volume Rendering

Object order methods traverse the volume in a systematic fashion, and the
contribution of each voxel is computed using only information at the voxel and
its immediate neighbours (e.g. to compute the gradient). This makes it easy to
parallelize object order algorithms on architectures without shared memory.

This advantage prompted Westover’s splatting method [I77]. To explain splat-
ting, it is easiest to first consider ray casting. If a point sample along a ray
is close to a given voxel it will contribute to the interpolated intensity at that
point. Thus, in ray casting a single voxels may contribute to a number of rays
and consequently a number pixels. An alternative approach is to take a voxel
and (in one go) compute its contribution to all affected pixels. This is a bit
like splatting a snowball onto the framebuffer, hence the name. To resolve vis-
ibility, voxels are first splatted onto intermediate framebuffers, called sheets,
corresponding to axis parallel slices of the volume, and afterward the sheets are
composited. The sheet orientation is always chosen so that the slice normal
is the most perpendicular to the image plane. Splatting suffers from artifacts
such as fuzzyness and popping when the direction in the volume most paral-
lel to the image plane changes. These problems have recently been addressed
by Miiller et al., who introduced image aligned splatting sheets [I17] and post
shaded splatting [TT8].

Splatting could be said to be voxel driven in the sense that the contribution is
computed for each voxel independently. An alternative is to consider a cell at a
time instead of a voxel at a time [I68| [[8T]. In this case, cells are processed either
in front—to—back or back—to—front order. Front—to—back order makes it possible
to cull cells, because the cells in front are rendered first and may obscure the cells
lying behind. On the other hand, back—to—front compositing is slightly simpler
[TT0], and does not require an alpha buffer [I8T]. In the V-buffer approach [I68]
individual cells are rendered by scan conversion. For each pixel in a scanline,
closest and furthest point on the cell is found, and a fast technique is used to
evaluate the contribution of the cell to [&2).

Shell rendering [167] is one of the simplest object order techniques and a very
fast alternative to techniques based on surface rendering. A shell is a set of
voxels fulfilling a certain criterion. Typically that the voxel density is within a
certain range. Such a shell is rendered by projecting each voxel using parallel
front—to—back projection. Front—to—back is preferred to back—to—front since an
alpha test can then be used to omit voxels that project onto opaque pixels. Due
to the incredible simplicity of the method, it is consistently faster than Marching
Cubes as pointed out in [68]. However, it is not clear that this would be the
case if perspective projection was used.

176 Visualization and Interaction

8.1.4.1 The Use of Texture Mapping Hardware

With the introduction of 3D texture mapping in graphics hardware [B], a new
method for rendering volumes became possible [31]. The idea is to slice the vol-
ume with a large number of parallel planes. The intersection of the volume and
each plane defines a polygon. It is possible to apply the intersection of the plane
and the volume to the polygon as a texture using 3D texture mapping. These
textured polygonal-slices are rendered in back—-to—front order and composited
using the back—to—front equation [B3]). This method is known as texture based
volume rendering using wviewport aligned slices. In some cases, when 3D texture
mapping is not available (or not hardware accelerated), slices aligned to the vol-
ume (object aligned slices) are used instead. In this case, the volume is treated,
essentially, as a stack of images, and 2D texture mapping suffices.

In [I76], Westermann et al. discuss practical aspects of this method such as how
to render only the parts of the volume that represent surfaces (classification) how
to clip parts of the volume, and how to do gradient based shading of isosurfaces.
Alpha testing is employed in order to draw only those voxels that represent the
isosurface. The volume intensities are simply stored in the alpha channel of
the texture, and the alpha test is set to allow a fragment to pass only if the
alpha value is above a given threshold. Gradient based shading is effected by
storing the gradient in the rgb channels of the texture. After rendering, the
image is copied onto itself and the rgb channel is multiplied on a colour matrix.
This matrix multiplication comprises the effects of a scaling, a rotation and dot
product with the light direction. Thus diffuse shading is performed by a simple
copying of the image. Another method which does not impose the overhead
of storing the gradients in the rgb channel is also proposed, but this method
requires an extra rendering pass.

Texture based rendering has also been implemented on PC hardware. For in-
stance, Rezk—Salama et al. have proposed a number of methods using the
Geforce256 PC graphics board [I35]. Unfortunately, the Geforce256 does not
support trilinear interpolation, hence object aligned rather than viewport aligned
slices are used. On the other hand, the Geforce256 is equipped with flexible fa-
cilities for combining textures. These make it possible to enhance image quality
by interpolating more slices and to render shaded iso—surfaces in a single pass.
The register combiners of the multi-texture unit of the board are used to imple-
ment a dot product between light source direction and surface normal. Thus,
the colour matrix trick employed by Westermann [I76] is no longer necessary,
although gradients still need to be stored in the volume.

The most recent work on texture based volume rendering is by Klaus Engel et al.
[B1]. The idea is to use the programmable pixel shader in the NVIDIA Geforce3

8.1 Volume Visualization 177

to do a better approximation of ([&Z). Instead of point sampling, the value of
the integral is approximated in a piecewise fashion based on two slices. A single
slab (the volumetric interval between the slices) is rendered by drawing a single
quadrilateral with both texture maps. The intensity values of the two slices are
used in a lookup table that is also a texture, and the lookup is performed on
the graphics card using pixel programs. The main improvement is that a nicer
result is possible with fewer slices.

8.1.5 Point Rendering

We shall briefly shift the main focus from volume rendering to a method for
rendering surfaces that has received some attention recently.

Many models in computer graphics are represented by large triangle meshes.
Especially meshes that have been created by 3D digitalization processes have
a tendency to be very large. For instance, the computer model of Michelan-
gelo’s statue “David” generated by the 3D Michelangelo project [8] contains 2
billion polygons. This may be an extreme example, but meshes generated by
polygonizing volumes or implicit surface can also be quite large. When such
meshes are rendered, the average size of a triangle is often less than the area of
a pixel. When this situation arises, the advantage of using polygons as display
primitives becomes less clear, and it becomes more attractive to discard mesh
connectivity and simply render points.

Point rendering of surfaces is an idea that was originally conceived by Marc
Levoy and Turner Whitted [T02]. The authors require that the surfaces involved
are differentiable and that the Jacobian of the parameterization has rank 2. The
points in question are samples of such a surface. These samples should be spaced
regularly. Points are splatted by centering a Gaufian kernel on the projected
center of a point, and for each pixel, the contributions from overlapping points
are summed and this sum is divided by the number of points. If the normalized
sum is small, it means that too few points overlap and the pixel is assumed
to be a silhouette pixel. The points may be rendered in random order, and
perturbation of the points can be used for creating real bumps as opposed to
bump mapping.

More recent work on point rendering seems to have been spurred by Grossman
et al. [{0, [7T]. The authors use a technique that is different in a few but impor-
tant ways. No assumptions are made about the surface being differentiable. A
fast, incremental block warping technique is used to map points to screen space.
Grossman et al. employ a hierarchy of z-buffers at lower resolutions to detect
holes. Holes are filled by interpolating colours from a downsampled image. The

178 Visualization and Interaction

same warping technique is employed by Pfister et al. in [I31]. In fact, their work
seems to be closely related to that of Grossman et al., the main difference being
the way visibility is computed. Each point (called a surfel) is projected into im-
age space, and the orthographic projection of a disk is placed at the projected
point and scan converted into the z—buffer (in other words it is assumed that an
orthographic projection is locally an acceptable approximation). Holes (points
with no assigned colour but a z value) are filled either by interpolation or the
same method employed by Grossman. Reflection maps are used in image space
to compute Phong Illumination. Recently, Zwicker et al. proposed a frame-
work for rendering points [T90] based on an extension of the EWA texture filter
[67]. The central notion is to project points as elliptical GauBians. A further
convolution with a Gauflian serves to bandlimit the image. This procedure has
nice properties with regard to both minification and magnification of texture.
Finally, Schaufler et al. proposed ray tracing points in order to incorporate
global illumination [I47]. The method is simple and works in conjunction with
the photon map [86].

All of the above methods have been implemented entirely in software and the au-
thors report modest framerates. For instance, 1.3 fps is the maximum reported
by Zwicker et al. [T90]. Hence, much of the recent work in point rendering
seems to be most interesting in the light of future hardware implementations.
However, with some compromises it is possible to exploit current hardware sup-
port for transformation and lighting. For instance, OpenGL may be used to
render points which can be drawn either as squares or disks [IRA]. Unfortu-
nately, OpenGL cannot fill holes. This implies that the only feasible approach
is to render the points so large that it is ensured they cover the surface.

A system based on OpenGL point rendering was proposed by Rusinkiewicz et al.
in [I38]. The points are stored in a tree of bounding spheres which serves as a
levels of detail representation. If there is too little time to render all points, the
bounding spheres at some level may be rendered instead. Of course, this leads to
larger points and hence a coarser image. In [I61] Stolte et al visualize implicit
surfaces using OpenGL rendered points. In this case, an octree is employed
to store the points. The octree is subdivided to a certain level and points
are stored in leaf nodes that intersect the surface. These points are rendered
using either IRIS GL or OpenGL. Earlier still, dividing cubes [[[9] is a method
similar to marching cubes but rendering points rather than polygons. Instead
of polygonizing cells, cells are subdivided until their projected area is about the
size of a pixel, then the surface intersecting subdivided cells are assigned an
interpolated normal and rendered as points. In analogy to shell rendering, this
approach seems to be problematic to use in perspective rendering since, in that
case, cells project to a varying number of pixels requiring a point generation for
each frame.

8.2 Comparison of Strategies 179

8.2 Comparison of Strategies

Having reviewed the various techniques for volume and point rendering, the
question is which method to choose? Since the method is to be used for an
interactive system, speed is of great concern.

Previous authors proposing volume sculpting systems have typically either used
ray casting [I75), 8, 26] or a method based on polygonization [60), b3l [[34]. Ray
casting is attractive in some cases. The main advantage is that it is easy to
update only parts of a screen since the method is image order. However, speeds
of several frames per second are not realistic unless very powerful hardware
[124] or special purpose hardware [I32] is available. Hence, ray casting is only
attractive, if interactive frame rates are a priori ruled out.

Texture based volume rendering at interactive rates is now possible using com-
modity hardware [I35] BI]. However, it is not clear that the method is suitable
for sculpting. First of all, using texture based volume rendering would either
require the volume representation to be compatible with that approach or entail
the need of storing two copies of the volume. Secondly, texture based volume
rendering supports only diffuse rendering of isosurfaces so far. This is unfortu-
nate since specular highlights can give important shape cues. Finally, texture
based rendering of shaded iso—surfaces is typically not very fast due to the band-
width overhead associated with sending not only the scalar volume but also the
gradients from main memory to the graphics board. The speed of texture based
volume rendering is compared to surface visualization in Section

One might consider some of the heavily optimized methods. Especially shell ren-
dering [I67] and Lacroute’s method based on the shear warp factorization of the
viewing transformation [97] are very fast. To some degree both methods trade
quality or features for speed. The shear-warp method uses bilinear interpola-
tion rather than trilinear interpolation, and the final image warp also degrades
quality. Shell rendering has apparently only been implemented for orthographic
projections [I67, 68]. However, the main reason that these methods are faster
is that they preprocess the volume to extract the voxels that contribute visual
information. Consequently, a preprocessing overhead — comparable to that of
surface visualization methods — is imposed. I conclude that there is little rea-
son to choose these methods in preference to surface rendering methods, since
the main motivation would be to avoid the memory and preprocessing overhead
associated with surface visualization.

Indeed surface visualization (in particular Marching Cubes) is the most conser-
vative choice for interactive visualization of volume data, and MC has been used
a number of times in volume sculpting systems. However, Marching Cubes has

180 Visualization and Interaction

a tendency to generate many triangles, and it is natural to ask whether it would
be preferable to use point rendering instead.

To answer that question, both methods have been implemented as visualization
techniques for interactive sculpting. Finally, a method based on ray casting has
also been implemented. The implementation is not fast enough for sculpting,
but generates high quality images useful for evaluating the results from the two
other methods.

8.3 Visualization by Point Rendering

There are many possible strategies for generating points on the boundary of the
volume, but keeping in mind that speed is a concern, a very simple strategy
has been selected. The idea is to traverse all voxels and to select voxels in
a given distance range. For each voxel in the distance range, the boundary
mapping is computed. This yields a surface point which, together with the
normal, is enough information to render a shaded point. The points are stored
in a temporary buffer and rendered using OpenGL. The OpenGL point size
attenuation extension is used to scale points in such a way that the rendered
point cloud is ensured to cover the surface.

8.3.1 Overview of algorithm

Recall that the volume is stored in a hierarchical grid. The top level grid contains
pointers to sub—grids which in turn contain the actual voxels. Each sub—grid
also contains an array of foot points and associated normals. If the sub-grid
has been modified since the last time this arrays was updated, the sub—grid is
said to be dirty.

In the main loop, the top level grid is traversed, and the rendering method of
each sub—grid is called. If the sub—grid is not dirty, the vertices and normals
contained in the vertex and normal arrays are simply sent to OpenGL and
rendered using vertex arrays and the GL_POINTS primitive.

In case the sub—grid is dirty, all voxels are traversed and for each transition
voxel in the distance range, the boundary mapping is used to compute a surface
point. This point and its associated normal are stored in an array. When all
voxels in the sub—grid have been visited, point rendering proceeds as described
above.

8.3 Visualization by Point Rendering 181

Very few OpenGL features other than lighting are enabled during rendering: To
resolve visibility, the z—buffer is enabled, and because it incurs little additional
overhead, point smoothing is enabled. Point smoothing means that a point is
drawn as a disk rather than a box. When points become significantly larger
than a pixel, this makes a difference. The user may select to render the volume
using either a perspective or orthogonal projection.

8.3.2 Selecting Algorithm Parameters

Two basic parameters govern the behaviour of the algorithm. These are the
distance range and the point diameter.

The distance range controls what voxels are actually mapped onto the boundary
and drawn, and the point size controls at what size the points are drawn.

The distance range must be so large that enough points to cover the surface are
drawn. However, the more points that are drawn the slower the rendering. A
good trade—off turns out to be rendering all points in the distance range [0, \/5]
It might seem odd to choose an asymmetrical range, but the result is smoother
than for a narrower, symmetrical range. Notice that when this range is used,
all voxels belonging to cells intersected by the surface are rendered if the voxels
lie on the exterior side of the surface.

As mentioned, a point is rendered as a small disc, and the diameter of this disc
must be specified. Here, a good choice is

D= \/5% (8.6)

where H is the height of the viewport rectangle and h is the height of the corre-
sponding rectangle in voxel units. More precisely, h is the rectangle produced by
the intersection of the viewing frustum and a plane perpendicular to the viewing
direction that contains a point p we need to render. h and H are illustrated
in Figure The ratio H/h is simply the scaling factor that relates a unit
distance in a plane perpendicular to the viewing direction to a unit distance in
the image plane. Say we are rendering a volumetric “wall” that is parallel to
slices of the volume and perpendicular to the viewing direction. In this case,
the value of D produced by (B is the smallest value ensuring that the points
cover the surface. (See Figure).

Experiments have shown that the point diameter yielded by (&) is also suffi-
cient: When the points are rendered using this diameter, holes do not appear,
although, theoretically, it is possible to find cases where D is, in fact, insufficient.

182 Visualization and Interaction

Figure 8.4: A square in the viewport (right) and the corresponding slice of the
view frustum.

Figure 8.5: Point splats which exactly cover a plane

8.3 Visualization by Point Rendering 183

8.3.3 Using Attenuation to Scale Points

For perspective projection, D is not constant but depends on h which is a
function of the distance to the image plane. Assume the plane in question is
placed at z along the z—axis. Using the field of view angle 6, we can now compute
the height (and width — but we assume they are the same) of the part of the
plane that is within the frustum in world coordinates. For a given value of z,
the height is

0
h =22 tan(§) (8.7)
It is now easy to compute D in terms of z

p_ Y2 _ V2H Do (5.8)

h z2tan($) z

_ H

where Dy = Vatan(D)”

We wish to implement () in OpenGL, but by default the point size is con-
stant in OpenGL. One way around this is to use the OpenGL point parameter
extensionll. When this extension is used, the point is scaled so that the final

point size s is
1
= _— 8.9
TN G bd + e (8.9)

where s is the user defined point diameter set using glPointSize. a, b, and
¢ are user defined constants, and d is the distance from the point to the eye

(which for the moment we will assume is the distance from the point to the

image plane). If we set a =b =10, sp =1, and ¢ = DLOQ then

1 H
s=8o > = (8.10)
\/ Ao dv/2tan($)

We are almost home safe. [8I0) is identical to ([BF]) except that d is not z but
the distance to the eye point which is greater than z except for points directly
on the line of sight. However, the problem is easy to fix. The difference between
d and z is greatest for points along the edges of the viewing frustum. Therefore

0 0
d* < 22+2(ztan§)2 :22(1+2tan25) (8.11)

Consequently,
0
22 > d*(1 + 2tan? 5)*1 = d’k (8.12)

IThe extension is documented here:
http://oss.sgi.com/projects/ogl-sample/registry/ARB/point_parameters.txt

184 Visualization and Interaction

If we correct d by multiplying with k& = (1 + 2tan? g)_l, we know that the
result is smaller than or equal to 22. They are equal only in the case where the

point lies on the edge of the frustum. Put together, the attenuation constants
are a =0, b =0, and ¢ = k/D}.

T @)

z tgn(é]é)

0/2 T

Figure 8.6: Frustum illustrating the relationship between z and the distance to
the eye d.

The OpenGL implementation is now straightforward. After a call to
gluPerspective the angle f can be obtained from the projection matrix. The
code required to set up point attenuation is shown below:

int viewport[4];

float mat[16];

glGetFloatv(GL_PROJECTION_MATRIX, mat);

glGetIntegerv (GL_VIEWPORT, viewport);

const float H = viewport[2];

const float h = 2.0f/mat[0];

const float DO = sqrt(2)*H/h;

const float k = 1.0£/(1.0f + 2*sqr(1/mat[0]));

const float atten[3] = {0,0,sqr(1/D0) *k};
glPointParameterfvEXT (GL_DISTANCE_ATTENUATION_EXT,atten) ;

8.3 Visualization by Point Rendering 185

8.3.4 Determining Sub—grid Size

It is important to determine the optimal sub—grid size. To resolve this issue,
the same scene was voxelized a number of times using different sub—grid sizes,
namely 4, 8, 16, and 32. Each resulting volume was point rendered from different
angles, and the speed was recorded. The results are shown in Figure It

750

rendering time/milliseconds
B a o [[} ~
a o a o a o
o o o o o o
X
//
/

N
[=}
o

w
a
o

0 7 8 12 16 20 24 28 32 36
Size (sidelength) of subdivided cell

Figure 8.7: Frame rate as a function of sub—grid size

is unsurprising that the increase in sub—grid size means lower rendering time,
since sub—grids are fewer if they are bigger, and this means that we have few
vertex arrays which translates into fewer OpenGL API calls. Unfortunately, it
also takes longer to update the vertex and normal arrays for large sub—grids.
Additionally, larger sub—grids incur greater memory requirements, and the jump
from a sub—grid size of 16 to 32 almost doubled the size of the volume. Since
the speed up going from a size of 162 to 323 is small, usually sub-grids of 163
voxels are used.

8.3.5 Extensions and Quality Improvements

There are two problems with the method. The first problem is that the algorithm
as described above relies on the z—buffer to depth sort the rendered points. This
is a bit unfortunate because it precludes blending of points. In practice the
results are satisfactory but when the point size becomes sufficiently large, it is
possible to make out individual points. The second problem is that when the
point size becomes larger than one pixel, structures are dilated a bit. This means
that structures look a bit “fatter” when point rendered than when rendered using
some other method.

186 Visualization and Interaction

To facilitate blending, Rusinkiewicz proposes a two—pass method [I38] were
all points are first rendered to the z—buffer in the first pass. In the second
pass, the scene is moved a bit closer to the eye and rendered again, this time
additively. Unfortunately, this method can only be implemented approximately
in standard OpenGL. The number of points that overlap a given pixel is not
constant, and this will lead to some pixels being visibly brighter than others,
except if normalization is implemented: The pixel values should be divided by
the number of overlapping points, and that is presently not possible, at least
not without adding passes. One solution is to use back—to—front compositing
which is implementable using OpenGL, but then some points are necessarily
weighted more than others. I have implemented the method, but the increase in
quality is slight and sometimes quality actually suffers. This is due to the fact
that GL_POINT_SMOOTH cannot be enabled since this affects the alpha values of
the rendered primitives, thereby changing the blending weights.

8.3.6 A Variation

A number of experiments were carried out to explore the point rendering method
and to see if a more advanced technique could be implemented. The major
goal being that the method should exploit the graphics hardware which means
essentially that it should make use of the OpenGL API. Most of the experiments
resulted in rather slow multipass algorithms, and below I will discuss only one
of these algorithms called the 2D Polygonization method.

A z-buffer can be used to draw an approximate 2D Voronoi diagrams of planar
point sets [IRH]. The procedure is simple. For each planar point a cone is
rendered. Since all the cones are the same height, the greatest z value will
belong to the closest cone. We also know that the dual of a Voronoi diagram is
the Delauney triangulation of the point set. This can be exploited in a multipass
algorithm:

e Render Points using z—buffer to resolve visibility. Read z—buffer to detect
visible points.

e Render all visible points as cones. Scan z—buffer for triples of adjacent
Voronoi regions.

e For each triple, draw 2D polygon

Unfortunately, reading the framebuffer to main memory and scanning it is a
time consuming process. Hence the method is not practical. However, it does

8.4 Visualization using Marching Cubes 187

solve the problem with the dilation artifacts noted above, and it improves the
image quality. However, it also introduces new artifacts. These are due to the
problem that the polygonization is 2D, and sometimes 2D polygon is drawn
where one of the vertices is on a different part of the surface than the other two.
This can lead to artifacts along contours.

8.4 Visualization using Marching Cubes

Figure 8.8: Polygonization cell. White voxels are on the exterior side of the
surface, black on the interior. Black dots indicate where polygon vertices are
placed, namely at the intersection of the iso—surface and the cell edges.

The basic idea of all polygonization methods is to find cells intersected by the
isosurface and approximate the intersecting part of the surface by geometric
primitives. The salient point of Marching Cubes is that the polygonization of a
single cell is almost completely table driven. In the original paper, the authors
simply marched through all cells in the volume, and applied the method to
each cell in turtd. However, since the volume is stored in a hierarchical grid
in this case, there is no need to march through the volume naively. In fact,
the implemented procedure for traversing the volume is much the same as for
point rendering. Also in this case each subdivided sub—grid contains a list of
rendering primitives, but now the primitives are triangles rather than points.
The top level grid is traversed, and each subdivided sub—grid is visited. If the

2 My implementation is a modified version of the example found here
http://astronomy.swin.edu.au/pbourke/modelling/polygonise/ courtesy of Paul Bourke.
The actual tables are due to Cory Gene Bloyd.

188 Visualization and Interaction

sub—grid is not dirty, the associated triangles are rendered. Otherwise, all cells
containing voxels in the sub—grid are polygonized.

The polygonization algorithm employs two tables: An edge table and a triangle
table; both contain 256 entriedl. The index to both tables is an eight bit number
where each bit corresponds to a corner of the cell. The value of a “corner bit”
is 1 if the voxel at that corner is inside the surface and 0 otherwise.

For each cell in a subdivided sub—grid, a lookup in the edge table produces a
list containing those of the twelve edges that are intersected by the isosurface.
For each intersected edge, the precise intersection is found as the point where
the distance value interpolated between the corners is equal to 0. The gradients
are interpolated to that point. A lookup in the triangle table produces a list of
the triangles whose vertices and normals have just been found. These triangles
are added to the list associated with the sub—grid and rendered. Finally, the
traversal proceeds to the next cell.

8.5 Visualization by Ray Casting

To produce high quality images for non—interactive purposes, a ray casting al-
gorithm has been implemented. Ray casting is a good choice if speed is not of
major concern, because the algorithm is simple and, generally, produces images
of good quality.

For each pixel a user defined number of jittered [I11] rays are cast, and the
volume is traversed by marching along each ray with uniform steps. For each
step, the distance value is interpolated at the current point along the ray. When
the surface is crossed (i.e. the sign of the distance value changes) the step
direction is reversed, the step length is halved, and the stepping continues. The
algorithm iterates until either the step—length or the distance value falls below a
given threshold. At that point, the gradient is interpolated and Phong shading
is used to generate the colour value.

Clearly, analytic root finding could have been used to find the exact location of
intersection — perhaps more efficiently. Moreover, step length could be deter-
mined from the distance value. However, it was decided to completely decouple
the ray tracing from the volume representation. The implemented stepping and
bisection method is very general and can be used also for e.g. implicit surfaces.
Instead, a simple but effective optimization has been implemented: The volume

3] mentioned earlier that it is possible to reduce the table size by symmetry, however, it is
simpler to use full length tables.

8.6 The Interactive Sculpting System 189

is rendered first using point rendering. This only takes a fraction of a second
and produces a depth image. For each pixel the depth value is now used to
initialize the starting point of the volume traversal. If the value of the Z-buffer
should (e.g. due to numerical inaccuracies) correspond to a point slightly inside
the represented solid, this is not a problem as the direction of traversal depends
on the sign of the distance value. This is a variation of the well-known PARC
scheme mentioned earlier [9].

In addition to improving the starting point of the ray traversal, the method
also makes it possible to cull a number of rays, namely those that would other-
wise have been cast through pixels whose z—buffer value corresponds to the far
clipping plane.

Especially because the ray traversal is naive, the optimization has an enormous
impact. Informal tests indicate that the starting point optimization alone can
increase the speed of rendering by more than 100 times.

8.6 The Interactive Sculpting System

In the previous chapters, we have discussed the constructive and deformative
manipulations and in the preceding sections also techniques for visualization.
These methods have all been incorporated in an interactive sculpting system
which is the topic of this section. The sculpting system is fairly simple, and
should, above all, be seen as a testbed for the implementation of the algorithms.
The user interface to the sculpting system was implemented using FLTKH which
is a simple GUI framework for C++ that meshes well with OpenGL.

In spite of the simplistic nature of the user interface, it is not difficult to create
complex models using the system (depending on the talent of the sculptor, of
course) since most sculpting manipulations do not require a sophisticated user
interface to be effective. In fact, all deformative manipulations are implemented
in a simple point and click fashion. The user points to a particular location on
the model and clicks to carry out the manipulation.

Slightly more complex facilities are desirable when it comes to constructive
manipulations. Here, the user should be able to control the placement and
orientation of the tool completely and precisely. To retain simplicity, the system
is modal. In one mode, the navigation mode, the user mainly controls the object.
In the other mode, manipulation mode the user has more precise control over
the tool. However, only the constructive tools require the manipulation mode.

4http://www.fltk.org

190 Visualization and Interaction

Initially, in navigation mode, the user is able to pan, rotate and zoom in on the
object he or she is working on. When the user has found an appropriate angle
to work from, a number of constructive tools may be applied. So far, cube,
cylinder, tetrahedron and sphere tools may be selected directly by the user, but
ellipsoids and convex polyhedra in general are also supported by the software
framework.

In navigation mode, the user places the tool on the surface of the object. This is
done simply by moving the mouse over the desired location on the object surface.
The initial position of the tool is found by un-projecting the screen space x,y,z
position of the locator. The x,y position is simply the mouse coordinates, and
the corresponding z value is obtained from the z—buffer. The initial orientation
of the tool is either set to the surface orientation at that point or to the direction
toward the eye point.

Once the tool is placed, the user can lock the view (switching to manipulation
mode) and rotate or translate the tool to a more precise location if desired.

When switching to manipulation mode, the initial position and orientation of
the tool are used to define a coordinate system, the tool coordinate system
— TCS, for further manipulation of the tool. The user can now perform the
following operations.

e Rotation. The tool is rotated using a separate trackball. It is always
rotated about its own center.

e XY Translation. The tool can be moved around in the XY plane of the
tool coordinate system.

e 7 Translation. Again in the TCS. This motion is useful for boring holes
or to extend cylindrical shapes.

The described operations are all performed using the mouse in the graphics
window. A separate window containing a control panel allows the user to set
the size and type of the tool and to choose whether to add or subtract the tool
shape. The control panel also allows the user to change visualization parameters
including:

e Switching between parallel and perspective projection.
e Automatic or manual point size.

e Shaded or black points.

8.7 Results 191

e Number of visualized points.

e Visualization of auxiliary points. Auxiliary points are used, for instance,
to visualize the point set I discussed in Chapter @l Finally the control
panel allows the user to save the volume and to render the volume to a
file using one of the methods discussed earlier in this chapter.

A screenshot of the sculpting system is shown in Figure

Ball X| Y
Tool X| Y

Figure 8.9: Screenshot showing the control panel and the graphics window.

8.7 Results

8.7.1 Sculpting Techniques

Constructive tools and deformative tools complement each other well. In gen-
eral, it is advantageous to begin sculpting using the constructive tools and then
continue using deformative tools. An example is shown in Figure The
head on the left was created using only constructive manipulations. The second

192 Visualization and Interaction

Figure 8.10: The head on the left was sculpted using only constructive manipu-
lations. The two other heads were created from the leftmost using deformative
manipulations.

head was created using add/remove blob and smoothing. The same tools were
used for the last head, but to make the head thicker dilation was also employed.

Another powerful technique is to begin sculpting at low resolutions where large
scale changes are easy to make and then gradually increase resolution as more
detail is added. An example of a model sculpted in this way is shown in Figure
The bear was sculpted using only deformative tools. The initial model was

Figure 8.11: Bear was sculpted first at low resolution, and then the resolution
was gradually increased as more details were added.

a cube at a resolution of 32 x 32 x 32 voxels, and then while adding detail, the
resolution was gradually increased to 256 x 256 x 256. The extra distance values
were interpolated linearly. This process turned out to introduce artefacts, but,
fortunately, these artefacts can easily be removed by smoothing since they are
high—curvature features.

When sculpting, it quickly becomes obvious that certain features would be very

8.7 Results 193

useful. Creating symmetrical shapes requires great patience, and a tool for
mirroring a shape would be useful. Alternatively, a symmetry feature which
automatically reflected all manipulations could be implemented. Also conspicu-
ously lacking is an undo facility. Neither feature represents a technical challenge,
though, and for this reason they have not been implemented.

8.7.2 Visualization

In Figure a mask model is visualized using four different techniques. The
mask model is stored in a 256 x 256 x 256 voxel grid with 72056 transition
voxels. The beard was generated using the negative smoothing tool discussed
in Chapter [, and the reason for including this feature here is that it helps
highlight some of the problems. All images have been generated with methods
that have been discussed in the previous sections.

Comparing the image generated by ray casting and the point rendered image,
it is easy to see the dilation artifact. This artifact is not present in the ray
cast image or in the polygon rendering. The dilation artifact is still present
but ameliorated in the image generated using the 2D polygonization method.
Purely judging from these images it seems that the Marching Cubes approach
is preferable. However, this is mainly because the model is a relatively low
resolution model. The problem is much less noticeable in Figure RT3 which is a
volume of the same size (256 x 256 x 256) but containing an order of magnitude
more transition voxels, namely 753763. It is the polygon model on the left,
but the difference between the two models is all but indistinguishable. Another
good example is the following model, portraying the head of a female shown in
Figure The parameters of the Phong illumination model differ resulting
in a more smeared highlight in the point rendered image, but otherwise the two
images are, again, nearly identical.

8.7.2.1 Performance

In the following, the performance of the point rendering method is compared to
my implementation of Marching Cubes. Two tests were carried out, a primitive
generation test and a rendering test. The object of the former is to test how
long it takes to generate the points or triangles, respectively. The rendering test
measures only the time it takes to render these primitives.

The starting point for the primitive generation test is a model that has just
been loaded, hence all subdivided sub—grids are dirty, and no primitives (points

194 Visualization and Interaction

Figure 8.12: Mask model rendered using normal point rendering (top left),
ray casting (top right), Marching Cubes (bottom left), and 2D polygonization
(bottom right).

8.7 Results 195

Figure 8.13: Bear model rendered using Marching Cubes (left) and point ren-
dered (right).

Model | Resolution Platform Points Triangles

no. seconds no. seconds
Cube | 2563 Pentium 27506 0.14 47624 0.52
Cube | 2563 Athlon 27506 0.10 47624 0.41
Mask | 2563 Pentium 30812 0.20 53040 0.47
Bear 2563 Pentium 274887 0.90 464899 3.72
Head | 10243 Athlon 728950 2.02 1242774 9.05

Table 8.1: Primitive generation test.

or polygons) have been created. The test measures the time it takes to generate
and render all the primitives once. The rendering performance test consists of
rendering 1000 frames, but the first frame where the primitives are generated is
not included. To make the test completely independent of the user, a random
rotation is performed for each frame.

All timings were measured in wall clock milliseconds using system facilities.
Tests were carried out both on a 900 MHz AMD Athlon system and a system
based on an 800 MHz Pentium III. Both are equipped with Geforce 2 GTS
graphics cards. For a more detailed description of the platforms, see Appendix
)

The results of the primitive generation test are summarized in Table and

196 Visualization and Interaction

Figure 8.14: Female head visualized using ray casting (left) and point rendering
(right).

Point rendering | Marching Cubes
Model | Resolution Platform | Points Fps | Triangles Fps
Cube 2563 Pentium 27506 111.8 47624 422
Cube 2563 Athlon 27506 110.9 47624 57.9
Mask 2563 Pentium 30812 1114 53040 38.8
Bear 2563 Pentium | 274887 18.6 464899 4.5
Head 10243 Athlon | 728950 10.4 | 1242774 2.5

Table 8.2: Rendering performance test. The table shows the result of random
spinning of voxel models for the duration of 1000 frames.

the results of the rendering test are shown in Table With the exception of
cube, the model names refer to the models shown in figures in this Chapter.

The tables show that the point rendering method is consistently faster both
regarding primitive generation and rendering. The difference in speed is between
circa two and four times both when it comes to primitive generation and when
it comes to rendering.

It is easy to explain the differences. Although MC is table driven, it is a more
complex operation to generate the triangles than the points. Admittedly, my
MC implementation is not heavily optimized, and while the triangle generation
could never become as fast as the point generation it is likely that the difference
could be made a bit smaller. The same is not true when it comes to rendering.

8.7 Results 197

Points or triangles are both rendered in tight and very similar loops, and the
difference in performance is easily explained by the fact that Marching Cubes
simply produces more geometric primitives.

I conclude that the point rendering technique is preferable except when the
model is very small, either because the resolution is low or because only a small
part of the volume is used. In this case, the MC approach is fast enough, and at
low resolutions the Marching Cubes method produces a better image. Another
problem when resolution is low is that the point rendering becomes fill-limited
[I21]. This has been tested by reducing the viewport size to a minimum. In this
case, there is an increase in framerate of at least 50 % for the small models (cube
and mask) but only a very small increase in framerate (< 10%) for the larger
models. That fillrate is a limiting factor at low resolutions is not surprising. A
great deal of overdraw is unavoidable, because the points must overlap to cover
the surface, and at low resolutions the actual point size becomes fairly large (~
10 pixels).

However, these problems with point rendering at low resolutions are unsurprising
given that both OpenGL and the hardware is optimized for polygons. Point
rendering seems to be gaining ground, and improvements to the facilities for
point rendering in OpenGL and hardware might make point rendering attractive
also at lower resolutions.

It should be mentioned that not all possibilities for optimization have been
exploited. For instance the fast AGP transfer mode supported by the NVIDIA
Geforce2 graphics card was not enabled, since the performance is acceptable
and because it would make the code much less portable.

8.7.2.2 Texture Based Volume Rendering

It is interesting to compare the speed of the two rendering methods to texture
based volume rendering. In order to do so, I have obtained the demo made
publicly available by Klaus Engeﬂ from the Visualization and Interactive Sys-
tems Group at the University of Stuttgart. This demo implements the methods
proposed by Rezk—Salama et al. [I35] which are, to my knowledge, the currently
fastest texture based methods for PC hardware. Two methods have been tested:

e The compositing—only method where the volume is rendered back—to—front
using alpha blending to implement the back—to—front equation.

5 http://wwwvis.informatik.uni-stuttgart.de/ engel/

198 Visualization and Interaction

e The gradient—based method where diffuse shading is computed using gra-
dients stored in the volume, and alpha testing is used to select voxels above
the iso—value.

The bear volume was selected for the speed comparison, and the test was carried
out on the Intel platform. Two window sizes were used — first the default
window size and then the window size used for other tests in this chapter,
namely 768 x 768 pixels. In this case, I also zoomed in on the bear to make it as
large as in the tests above. In both cases, the speeds of compositing—only and
of gradient—based volume rendering were tested. The results are summarized in
Table B3l and images are shown in Figure

Unscaled window Scaled
Normal 8.3 2.2
Iso—surface | 1.7 1.5

Table 8.3: Results of the texture based volume rendering speed test.

Frame rate: 1

Figure 8.15: Texture based volume rendering. Image on the left is the result of
the compositing—only method, and on the right the gradient—based method is
used to render shaded iso—surfaces.

It is clear that the method employing gradient—based shading makes it possi-
ble to see much more detail. Unfortunately, this method is also the slowest,
and clearly much slower than the either point rendering or MC. Even the fast
compositing—only method is only half as fast as MC using (approximately) iden-
tical viewing parameters and viewport size. It seems that the compositing—only
method is fill limited since the speed is very dependent on the size of the view-
port. The gradient—based method is probably limited by the bandwidth between

8.8 Conclusions 199

main memory and the graphics board, since the volume containing gradients is
too large to fit in the graphics board memory.

8.8 Conclusions

In this chapter, I have given an overview of techniques for visualizing volume
data. On the basis of the overview it was concluded that the only techniques that
are fast enough for interactive visualization are surface visualization algorithms
or algorithms such as Lacroute’s approach [97] and shell rendering [167]. I
have elected to implement two surface visualization methods: The well-known
marching cubes, and a novel point rendering method which computes a set of
surface points in a very simple fashion, exploiting the fact that the volume is a
distance field.

The user interface to the sculpting system has been described, and various
sculpting techniques were discussed. The system can be extended in many
ways, but the most obvious shortcomings are the lack of an undo facility and a
symmetry tool. Since neither poses an unsolved problem, these tools have not
been included.

Finally, I have compared the quality of the point rendering method to the tra-
ditional Marching Cubes method. The tests indicate that point rendering is
preferable in general, since it is much faster. Only when the models become
very small does the difference in speed become irrelevant while the difference
in quality becomes noticeable, and in such cases it is better to use Marching
Cubes. Fortunately, it is easy to support both.

Finally, T have tested the texture based volume rendering method, and the
tests indicate that this method is slower than both the implemented surface
rendering methods. However, the scope is also different, and texture based
volume rendering can be used for applications where the surface visualization
methods are less useful.

200 Visualization and Interaction

Part 1V

Adaptive Volumes

CHAPTER 9

Adaptive Resolution Volume
Graphics

Imagine a planet and a pebble or any other combination of two things at utterly
diverse scales. Such combinations are not easy to handle using a regular voxel
grid, since we must choose resolution based on either object. Choose the pebble,
and no computer will have enough storage for the entire planet; choose the planet
and the pebble will be far too small to represent.

To pick a less extreme example, think of a sharp edge. A sharp edge is also a tiny
feature that cannot be represented well in a regular grid. In other words, there
is a need for a volume representation that handles differences in scale. The goal
of this chapter is to discuss a scheme for representing volumetric information
at diverse scales and associated algorithms for voxelization and constructive
manipulations.

In the next section, the choice of an adaptive scheme is motivated and compared
to other solutions. in Section the database for storing adaptive resolution
volume data, the ARVDB, is discussed. In Section and Section 4] the
constituent components of the ARVDB, the geometry database and the voxel
database are discussed. In Section we shall take a look at the algorithms
for voxelizing objects and performing constructive manipulations. Results are
presented in Section [At the end of this chapter in Section [T will discuss

204 Adaptive Resolution Volume Graphics

my own work and compare it to the Adaptive Distance Field representation
proposed by Gibson et al. [63]. In many ways my scheme is similar to ADFs
but was developed independently.

9.1 Choosing a Representation

When problems of scale turn up, multiresolution analysis and wavelets come to
mind [I07, @7. To understand why, a brief digression about wavelets follows:

The central notion in multiresolution analysis is to represent a signal using
various translations and scaling of an analyzing function ¢ which is appropriately
called the scaling function. A multiresolution representation is a sequence of
function spaces V; where each space at a coarser level is a subset of the finer level
space, i.e V;_1 C V;. At each level, the scaling function (scaled to that level) ¢;
is a basis of the function space. The difference between V;_; and V; is captured
by the wavelet space W; which means that W; is the orthogonal complement of
Vi—1 in the space V;. In other words, a function f € V; can be expressed as a
linear combination of functions from V;_1 and W;. In practice and in a discrete
setting, a multiresolution representation is typically generated in a bottom up
fashion from the coefficients to the scaling function at the finest level Viy by
using discrete linear filters to generate the coefficients of the scaling functions
in Vy_1 and the coefficients for the wavelet functions in Wy. This process is
repeated recursively, and some of the wavelet coefficient typically become very
small and can be discarded. In practice, a fairly good approximation can often
be generated from a modest percentage of the coefficients. There are two ways
of extending wavelet analysis to 3D. The simplest is to use a separable wavelet
transform and then transform along x, y, and z axes sequentially. Alternatively,
it is possible to generate 3D wavelets. There are different classes of wavelets:
Orthogonal, semi—orthogonal and bi—orthogonal and different types of wavelets
in each class. In the context of volume data, authors typically employ relatively
smooth wavelets such as B-Spline wavelets.

Shigeru Muraki was among the first people to use wavelets for volume data
20, IT9]. More recently, multiresolution representations have also been pro-
posed as a representation for implicit surfaces [I69, [69]. In both cases, the rep-
resentations are based on B—Spline wavelets. A generic method for converting
solids (represented e.g. using polygonal meshes) to the wavelet representation
was proposed in [69]. In fact the starting point of this method is the generation
of a distance field. However, the distance field is generated from a binary sam-
pled 3D model, and the final result exhibits considerable aliasing. Another ap-
proach due to Muraki employs the DoG (Difference of Gauflian) non—orthogonal

9.1 Choosing a Representation 205

wavelet. This spherically symmetrical wavelet is defined in terms of exponen-
tial functions and can be said to be a blob [I2]. Thus the wavelet transform is
arguably an automatic generation of a blobby model. However, the possibility
of editing the blobs is not discussed. Ken Perlin’s surflets is another related
topic [49]. Surflets are more intuitive and less rooted in wavelet theory, but the
principle is similar: An implicit surface is represented by a sum of a number of
local basis functions.

While wavelets have successfully been applied to the problem of producing a
more compact representation of volume data organized according to scale, it
is unclear that the wavelet representation is suitable for our purpose which is
not just a volume representation that captures diverse scales but also one that
allows for relatively fast manipulations. To my knowledge a framework where a
3D multiresolution representation is edited directly has not yet been proposed,
and there is no obvious way to perform, say, constructive manipulations short
of reconstructing the fine level representation before a manipulation and then
recoding the multiresolution representation after the manipulation.

Another argument against wavelets is that when wavelet coefficients are thrown
away, the signal is simplified — not the geometry. In effect, this means that we get
a (probably) smoother function that is only approximately a distance function.
Although this simplification might have a smoothing effect on the 0 level iso—-
surface it would be more correct to build a multiresolution representation where
the geometry is simplified and the distance values at each level represent correct
distances to the simplified geometry at the corresponding level. Some more
thoughts on this are found in Section

As an alternative to the multiresolution volume representation, I propose an
adaptive volume representation. The idea is to use a volumetric representation
where voxels are no longer placed on a regular grid. Instead a subdivided grid is
used. Cells are subdivided according to the local level of detail. In addition, not
all information is stored in the voxels. Each cell now endowed with information
about whether the cell is interior, exterior or intersects the boundary of the
represented solid. In the latter case, the cell is called a surface cell. When
this information is stored in the cells, less information is required in the voxels.
In fact, there is no longer any need for interior and exterior voxels. Their
information is now stored in the celldl. Consequently, voxels are now stored
only if their position corresponds to a corner of a surface cell. The scheme is
illustrated in Figure @11

1See Chapter [l for a definition of interior, exterior, and transition voxels.

206 Adaptive Resolution Volume Graphics

Interior cell

Exterior cell

~ISurface cell

Figure 9.1: The adaptive scheme. Cells are classified as being interior cells,
surface cells or exterior cells. Voxels are only stored at the corners of surface
cells.

9.1.1 Choosing Resolution

The essence of the adaptive scheme is to use a voxel grid that is subdivided
only where needed, but where is that? In Chapter Bl we saw that the lower
the maximum curvature of a surface, the tighter it is possible to bound the
reconstruction error. Therefore, I surmise that it is a good idea to subdivide
until the surface is nearly flat compared to the scale of the cell. More precisely,
cells are subdivided recursively until the cell side length s and the numerically
greatest principal curvature x within the cell fulfill

1

NysS

K <

where n,.s is a flatness constant. mn,s serves a purpose very similar to r in the
case of regular grids, but in the case of adaptive grids, even less curvature is
acceptable than in the case of regular grids. This is because cells at different
levels of subdivision may be adjacent, and in this case, it is difficult to interpolate
the shading smoothly unless the surfaces are very flat. A suitable n,4 value was
determined empirically in an experiment with two spheres. At the intersection
of the spheres we have a sharp edge which is interpreted as a curve on the
surface of infinite curvature. All cells intersected by this intersection curve are
subdivided until they reach the maximum level of subdivision. The adjacent

9.2 The Adaptive Resolution Volume Database 207

cells are merely subdivided as far as local curvature requires. For low values of
n.,s this results in aliasing errors in the regions where the resolution is stepped
up. For high values of n,.; no visible artefacts are introduced.

In Figure the results are shown. To make the artefacts visible in reproduc-
tion, an edge detection filter was applied to the images. It is clear that there are
very noticeable edges between bigger and smaller cells for n,.s = 2, and only at
n.s = 20 do these artefacts go away almost entirely. At n,.; = 20 we still see a
vague response from the edge detection filter, but there are no visible artefacts
in the shading.

9.2 The Adaptive Resolution Volume Database

The design of a data structure that implements the representation scheme which
was outlined in the previous section is a challenging task. The problem is that
we are dealing with two different kinds of data, namely cells and voxels, that
are very different.

The octree data structure [26} [[40)] is a recursive subdivision of space, and if we
design our hierarchical grid in such a way that each cell is recursively divided
into eight smaller cells, then the natural representation is precisely that of an
octree where the leaves are those cells that are not subdivided further. The
problems are due to the fact that apart from the cells there are the voxels at
the cell corners. Since any cell that is not on the boundary shares at least one
corner with another cell, it also shares any one of it’s voxels with at least one
other cell. To illustrate why this is problematic, it is worthwhile to analyse how
we might put the voxels into an octree that represents the cells.

A first proposal might be to simply store the eight values within each leaf
node, but obviously this would mean that much redundant information would
be stored, since neighboring cells share voxels. A second guess would be to apply
some ordering and choose for a given voxel which of the (up to eight) neighbor-
ing cells should contain it. Here, the problem is that when a very subdivided cell
is adjacent to a not so subdivided cell, the ordering might imply that the less
subdivided cell should contain the voxel, although it is located at its face and
not corner. This, again, implies that we might need to store an almost arbitrary
number of points in each octree cell. Alternatively, the voxel could be stored
once (e.g. on the heap) and each cell sharing the voxel could contain a pointer
to the voxel. This is the approach taken by Gibson et al. [63]. Unfortunately,
it often leads to a situation where as many as eight pointers (eight cells may be
adjacent to a voxel) point to a voxel which itself may take up no more space

208 Adaptive Resolution Volume Graphics

Figure 9.2: Edge detection filter applied to images of spheres voxelized with
various values of n,;. The values are from top to bottom n,., = 2,10, and 20.

9.2 The Adaptive Resolution Volume Database

209

than a single pointer.

Adaptive Resolution Volume Database

Geometry Database

Figure 9.3: Decoupling of cell geometry and voxel databases

Voxel Database

My solution is to decouple the storage of cells from the storage of voxels. The
designed data structure (the ARVDB) is composed of two other data structures:
The geometry database which contains the cells and the voxel database which
contains the voxels as illustrated in Figure This has the added advantage
that since different things are desirable when we store cells and voxels, we can
exploit the decoupling by creating the type of database most suitable for their
respective needs. For instance, the space subdivision information inherent in
an octree can be very useful, and this entails that it makes sense to store the
cells in an octree, since the cell database will be used to traverse the volume
and to locate points, whereas the voxel database will only be accessed when we

210 Adaptive Resolution Volume Graphics

know what voxels are needed because we have found the cell whose corners they
constitute. Hence, only speed (time to access and modify data) and memory
requirements have to be taken into account when designing a data structure for
the voxel database.

9.3 The Geometry Database

As indicated above, an octree is a good choice when it comes to choosing a
data structure for the cells. Although there are different types of octrees, the
only practical solution is the pointer based octree (the alternative being a linear
octree [2] from which it is very difficult to delete nodes). It is possible to search,
insert and delete cells in an octree in O(lg N) time where N is the number of
cells.

Since most of the information about the precise shape of the object is stored
in the voxel database, we do not need an elaborate data structure to represent
the leaf nodes of the tree. For instance, we could represent all leaf nodes by
a 0 pointer in the octree. However, we do need to distinguish between three
types of nodes; nodes on the interior of an object, exterior nodes and nodes that
are intersected by the surface. This information can be stored without using
any additional storage, if we choose special pointer values to signify each of the
possible cell types.

Putting these things together yields a pointer based octree where each non—leaf
node is an array of eight pointers. The value of each of these eight pointers may
be

A pointer if the node represents a cell that is subdivided.

e A constant signifying that the node is a leaf node that represents a cell
which is exterior to the represented volumetric object.

A constant signifying that the node is a leaf node that represents a cell
which intersects the surface of the volumetric object. (the cell is a surface
cell)

A constant signifying that the node is a leaf node that represents a cell
which is interior to the represented volumetric object.

This layout is illustrated in Figure 21

9.4 The Voxel Database 211

A C

A IInterior cell
B “|Surface cell
C Exterior cell
D

E

F

B D

Figure 9.4: Layout of geometry database. Each node contains either a pointer
to a child node or a value signifying that the node represents an interior, exterior
or surface cell. To simplify the figure, a quadtree is used rather than an octree.

9.4 The Voxel Database

An octree has qualities that makes it an obvious data structure for the geometry
database, but choosing an appropriate data structure for the voxel database is
a more thorny issue.

An octree can also be used to represent points in space, but we don’t really need
the information about subdivision in this case. Furthermore, we may be able to
do better storage—wise.

An other option would be to use a k-d tree [I0, M50]. A k-d tree is a k-
dimensional generalization of a binary tree. When balanced it can be stored
without pointers in an array, and we can do searching in lg N time. The k-d
tree is useful for storing scattered points, and in a balanced k-d tree a point can
be found in lg N time. However, it is time consuming to rebalance a k-d tree
which makes it doubtful that it is a good choice for a dynamic data structure.

Yet another option is a hash table where we combine the x, y and z position of
the voxel to form the hash key. A hash table is usually very compact, and often
very fast. For these reasons a hash table was chosen for the representation of the
voxel database. A hash table of static size would quickly become too small — or
be to large to begin with. Therefore, a dynamically expanding and contracting
hash table is necessary. Furthermore, it is necessary to store the key along with

212 Adaptive Resolution Volume Graphics

the data. Since the key is the position in the volume of the voxel the size of the
key depends on the resolution of the volume. To avoid large keys, the volume
is divided into areas of a resolution of 256 x 256 x 256 voxels, and each area
has an associated dynamically resized hash table that contains all the voxels.
In practical terms the voxel position is a triple (x,y,z) and the concatenation
of the lower eight bits from each coordinate makes up the hash key while the
remaining bits decide which hash table to use. This data structure is basically a
grid of hash tables and can be seen as a simplified version of a multidimensional
stratified tree [A].

One of the central issues in the design of hashing schemes is the resolution of
collisions (i.e. what do we do when two keys hash to the same) usually, collision
resolution in hash tables is resolved by chaining, and this requires pointers, but
another way of resolving collisions is by rehashing (i.e. we compute a new hash
value using the same key but a slightly modified hash function) Again, there are
several ways of rehashing, but the simplest way is the following: if a key hashes
to a table entry that is occupied, we simply take the next entry or the one after if
that is also occupied &c. This technique is called linear probing, and, according
to Knuth [93], linear probing may lead to clustering which causes searching to
degrade to O(N), but only if the table becomes very full. If the table is less than
70% full, the occurrence of clustering is very infrequent, and since linear probing
is simple and optimal regarding cache coherence, it seemed like a good choice. A
comparison (Appendix [EZJ]) was made between linear probing and exponential
probing, where we do not try the next element repeatedly but double the skip
each time. This comparison also indicates that linear probing is preferable.

A final issue is the deletion of voxels. It is difficult to delete from a hash
table where collisions are resolved using rehashing. The problem is that we
usually know that an element is not in the hash table when an empty element is
encountered, since the one we are looking for would otherwise be inserted into
that position. This means that some special voxel must be inserted to signify
that the voxel was there but is erased. The deletion issue is further complicated
by the fact that several cells share a given voxel. An acceptable solution for
both problems is to use a reference counter. When the voxel table is created,
empty elements have a reference counter value of -1. Hence, probing the table,
we know that it is safe to stop when an element of value -1 is encountered. When
a cell is removed, the reference counters of it’s associated voxels is decremented
by 1. A reference counter value of 0 indicated that this element in the table
used to contain a voxel, but that we may now overwrite it. However, 0 also
means that if we are looking for a voxel we must continue looking — as opposed
to if the value had been -1.

These design considerations lead to a data structure that is essentially a 3D
array of dynamically expanding and contracting, linearly probed hash tables

9.5 Algorithms 213

where each element in a hash table is of the format

[XYZKEY (24 bits) | RC (8 bits) | V (16 bits) |

where XYZKEY is a vector of 3 bytes that is used as the hash key, and RC is
the reference counter and V is the actual value of the voxel. The format used
for the voxel value is a 16 bit floating point format that is discussed in greater
detail in Appendix

9.5 Algorithms

There are three operations that we can perform on an ARVDB: Voxelization,
constructive manipulation, and rendering. Voxelization and constructive ma-
nipulation is really the same, since voxelization can be construed as the union
of an empty ARVDB and a new solid.

These three algorithms can be split up into simpler steps. For instance, voxeliza-
tion and constructive manipulations require a complex algorithm for subdivision
and a garbage collection algorithm that removes voxels which no longer corre-
spond to corners of surface cells. Rendering requires a technique for traversal
of the geometry database and a method for computing gradients.

The input to voxelization or a constructive manipulation is either a primitive
solid or a number of primitive solids combined in a CSG tree [26]. A CSG tree
is simply a tree where the leaves represent solids and the intermediate nodes
represented set operations such as union, intersection or difference (see Figure
[H) In either case, it is necessary to be able to compute the distance to the solids.
The following solids have been implemented: plane, sphere, and ellipsoid. The
exact distance to a plane or a sphere can easily be calculated. The same is not
true of ellipsoids, but a numerical method [76] has been implemented.

The ellipsoid is the only one of the solids where finding the maximum curvature
of the patch that intersects a given cell is non—trivial. The maximum curvature
is approximated by finding the maximum of the principal curvatures where the
ellipsoid intersects the edges of the cell.

If a CSG tree is constructed, this tree as a whole is construed as an object, and
we need to evaluate the distance to the CSG tree. This is done in the usual way
using min. As discussed in Chapter [l min does not always yield the correct
distance value. However, subdivision continues until all voxels in a cell have

214 Adaptive Resolution Volume Graphics

O

2l
—

5

Figure 9.5: Illustration of a CSG tree. Two root node represents the union of
the two leaf nodes.

closest points belonging to the same CSG leaf or the lowest level of subdivision
has been reached. Hence, the error occurs only on the lowest level.

9.5.1 Sampling Geometric Solids

When an adaptive volume is changed either through voxelization or adaptive
manipulation, the input is a solid or a CSG tree as explained above. The
voxelization and manipulation algorithms work on a cell at a time. To process
the cell we need information about how it relates to the solid that is given as
input to the algorithm. Hence, a sample function is implemented for all solids
whether primitives or CSG trees. When passed a cell, the sample function
returns an estimate of the distance from each of the corners to the surface of
the geometric solid and three variables which describe how the cell relates to
the solid. All together, sample returns the following variables

e inside is true if the cell is inside the object.
e intersects is true if the cell intersects the object.

e adequate is true if the part of the solid’s surface that intersects the cell has
a curvature that is less than the curvature threshold for a cell of that size.
In other words, the cell is adequate if it is sufficiently small to represent
the geometric solid. adequate is never false if intersects is false. In other
words, all non—intersecting cells are adequate.

e samples is an array of samples of the distance function for each of the
eight corners of the cell.

9.5 Algorithms 215

For now, the reason for having these values is, perhaps, not immediately obvi-
ous, but their use should become clear in Section when the voxelization
algorithm is described.

9.5.1.1 Sampling CSG Trees

CSG can be used to combine primitives to create more complex solids (albeit
still unvoxelized) solids. It is necessary to extend the sampling scheme discussed
above to CSG trees.

If a geometric solid is really a non-leaf node in a CSG tree, it contains pointers to
two children, and the sample function of the CSG node calls the sample functions
of the children, and then calculates the shortest distance to the combined solid
for each of the cells corners as well as a combined value for each of inside,
intersects and adequate.

For instance, a union node will determine that the cell is inside if it is inside
either of its children. The cell intersects a union node if it intersects either and
is inside neither of its children, and the cell is adequate if it only intersects one
of the child nodes, and the cell is adequate with respect to that node. Moreover,
all voxels must be closer to either of the two children.

Similar rules are applied for intersection and difference nodes, and these rules
are essentially the same that are used when inserting a new geometric solid
into an ARVDB, i.e. when CSG is performed between a geometric solid and an
ARVDB, and these rules are described in greater detail in the next section.

9.5.2 Voxelization and Constructive Manipulations

Initially, the ARVDB is empty, and the geometry database contains only one
exterior cell. When a geometric solid is inserted into the empty volume, this
single cell is recursively subdivided until the criterion for subdivision is no longer
fulfilled. In this case the criterion is very simple, the cell is only subdivided if it
is (a) not adequate and (b) the cell is not at the maximum level of subdivision.
When the criterion is no longer fulfilled, the geometric solid is sampled at the
positions of the voxels associated with the cell. The cell is then inserted into
the geometry database, and the voxels are inserted into the voxel database.

216 Adaptive Resolution Volume Graphics

9.5.2.1 Constructive Manipulations

When the ARVDB is not empty, we have to compose a new volumetric solid
from the existing volumetric data and the new geometric solid. The principle
is almost the same as for voxelization into an empty volume except that rather
than one cell we have all the cells of the ARVDB to start with.

Two constructive manipulations are implemented: add (union) to add the ge-
ometric solid and sub (difference) which cuts the shape of the geometric solid
out of the volumetric solid.

: \
Ll

D Interior cell Exterior cell s Surface cell

Figure 9.6: The ARVDB before and after inserting a new geometric solid using
the add and sub operations.

The algorithm is illustrated in Figures and The compose function iter-
ates over all cells, and for each cell in the existing octree the subdivide function
is called, and the cell is subdivided into smaller cells until the resulting cells are
adequate. The corresponding voxels are (for reasons that are dealt with later)
stored in a temporary array, and when subdivide has been called for all cells,
they are inserted into the voxel database.

9.5 Algorithms 217

conpose()

subdi vi de(0)

o= next cell

foreach voxel Insert v in
v in tenp voxel database

Figure 9.7: The (simplified) compose algorithm

9.5.2.2 Subdivision Criterion

The most tricky issue is the subdivision criterion — i.e. finding out whether
the cell is adequate. Like before, subdivision proceeds until the deepest level
has been reached or until the cell is adequate. However, if both the preexisting
volumetrically represented solid G and the new solid S intersect a cell, it is no
longer enough to simply check whether the cell is adequate with respect to S.

The rule is that a cell is subdivided if it intersects (G U S) and any of the
following statements are true

1. The cell is not adequate with respect to S
2. Both 0S and JG intersect the cell.

3. Not all voxels are closer to one of 9S or G — at least one voxel is closer
to the other solid.

Item three is due to the fact that if all voxels in a cell are not closest to either
voxel, the distance field is essentially blended. To avoid this, we subdivide. The
property that all voxels are closest to either surface will be called monovalence
in the following.

218 Adaptive Resolution Volume Graphics

subdi vi de(octree cell 0)
(start)

Is o
adequate ?

for each octant
r of o subdivide(r)

insert oin
octree

I nsert voxels
of oin tenp

return

Figure 9.8: The (simplified) subdivide algorithm

While the rules above are simple in principle, they are tricky to implement
because each cell can be completely outside, inside or intersect both the surface
of the volumetric object G and the geometric object S, and this yields nine
different cases each of which must be treated slightly differently.

Fortunately, it is possible to apply the rules above to each of these nine different
cases and on the basis of the analysis we can deduce more concrete rules. Table
[T shows the case analysis for the add operation where each case is illustrated
in Figure @Il The truth table can easily be translated to an if-else statement.
Pseudo-code to decide whether the cell is adequate with respect to the combi-
nation of the ARVDB represented solid and the new solid is shown in Figure
ga

The corresponding truth table for the subtraction function and the correspond-
ing snippet of source code are shown in Table and Figure @10

If the cell is adequate, we must compute the voxels at the corners of the cell.
If the geometric solid is being added, we compute the new value of each voxel

9.5 Algorithms

219

OU b W N =

Inside G, Inside S

Inside G, Intersects S
Inside G, Outside S
Intersects G, Inside S
Intersects GG, Intersects S

Intersects G, Outside S
Outside G, Inside S

Outside G, Intersects S

Outside G, Outside S

adequate = true
adequate = true
adequate = true

adequate = true
adequate =
monovalence (=false)
adequate =
monovalence
adequate = true
adequate =

S is adequate
and monovalence
adequate = true

Table 9.1: Case analysis for the ADD operation

if (G_intersects && !'S_inside)

comb_adequate =

monovalence;

else if(G_outside && S_intersects)

comb_adequate =

else

comb_adequate =

true;

S_adequate && monovalence;

Figure 9.9: Calculating comb_adequate for the add function

1
2

S W

oo

Inside G, Inside S
Inside G, Intersects S

Inside G, Outside S
Intersects G, Inside S
Intersects G, Intersects S

Intersects G, Outside S
Outside G, Inside S

Outside G, Intersects S
Outside G, Outside S

adequate = true
adequate =

S is adequate
and monovalence
adequate = true
adequate = true
adequate
monovalence (= false)
adequate =
monovalence

adequate = true
adequate = true
adequate = true

Table 9.2: Case analysis for the SUB operation

as the minimum of the voxel values and the values of the geometric solid at the
same position. We then determine whether the cell is inside, outside or intersects
the surface of the composed solid by testing whether the new voxel values are

220 Adaptive Resolution Volume Graphics

if(G_intersects && !'S_inside)

comb_adequate = monovalence;
else if(G_inside && S_intersects)

comb_adequate = S_adequate && monovalence;
else

comb_adequate = true;

Figure 9.10: calculating adequate for the sub operation

Figure 9.11: The various cases for how the geometric and volumetric solids may
intersect a cell

all on one side of the iso value or straddle it. Finally, the cell is inserted into
the geometry database, and the voxels are appended to the temporary voxel
storage.

9.5.2.3 Subdivision of Inadequate Cells

If a cell is not adequate, it must be subdivided which amounts to a recursive
function call to subdivide (shown as a block diagram in Figure[@X). When a cell
is subdivided we trilinearly interpolate the values of the volumetric volume at
the positions of the new cells corners. Calculated naively, that is 64 (eight times
eight) trilinear interpolations, but many of the voxels are shared by several of

9.5 Algorithms 221

the new cells, and only one voxel (in the centre of the old cell) requires a trilinear
interpolation. (See Figure [LIZ) Six of the new voxels lie on the faces of the old

Figure 9.12: An octree cell divided into eight smaller cells

cell and are interpolated bilinearly. Twelve lie on the edges and are reduced to
linear interpolations. Eight of the new voxels are coincident with the corners of
the old cell, and they can be copied directly, and the voxel in the centre of the
old cell requires a trilinear interpolation.

It is, of course, possible that the voxels at the corners of the subdivided cells
already exist. If the volume was created by voxelization of a geometric solid
and has undergone no constructive manipulations since then, we know that the
existing voxel value was sampled directly from the geometric solid, and it is
better to use that value than an interpolated value. Hence, we always check the
voxel database for an existing value for a voxel before we use an interpolated
value.

Having interpolated the values at sub—cell corners, it is a very important ques-
tion how we decide whether the sub—cell is inside, outside or intersects the
surface of the volumetric object. Since we use trilinear interpolation, the an-
swer is, fortunately, very simple. If the value at the corners of the subdivided
cell are all above or below the iso-value (zero) then the interpolated value can
nowhere cross the iso-value inside the subdivided cell. This is simply because
the interpolated value inside the sub—cell must everywhere be the same as the
value interpolated between the corners of the sub—cell.

222 Adaptive Resolution Volume Graphics

9.5.2.4 Temporary Voxel Storage

A sub-tree of the octree is visited only once in the course of the constructive
manipulation algorithm. Since new cells are inserted as children of the octree
node that they subdivide, they will not be visited by the voxelization algorithm,
and may safely be inserted in the octree.

Voxels, conversely, are usually shared between neighbouring cells and are there-
fore often visited several times during the algorithm. For this reason, we cannot
insert new voxels in the voxel database, because we will need the old value later
on. To solve this problem, a temporary data structure has been introduced,
and during the subdivision stage, the new voxels (or voxel values) are inserted
into this temporary data structure. When subdivide has been called for the last
cell, the contents of the temporary data structure is transferred to the voxel
database.

9.5.2.5 Maximum Voxel Value and Bounding Boxes

The distances stored in the voxel database are not unbounded. Only surface
voxels (voxels that are incident to surface intersecting cell corners) are used
to find surface intersections, and in the gradient computation it is again only
surface voxels that are used (see Section [LBEA). Since we do not need values
larger than the largest possible surface voxel value, larger values are clamped
(and in fact not even stored in the voxel database).

The maximum surface cell size is a program constant. s* where s = 1/64 is
reasonable, and all surface cells (but not non—surface cells) are subdivided until
they reach that size. It is clear that a surface voxel cannot be further away from
the surface than v/3s2 since the surface must intersect the cell at one of whose
corners the voxel is incident.

Since the distance values cannot exceed d = v/3s2 we know that an ob ject being
inserted in the ARVDB cannot affect cells whose closest distance is greater than
d. Hence, compose needs not call subdivide for all octree cells but only those
that are closer to the object than the distance d. In practical terms this is
handled by putting a bounding box around each object that has been increased
with length d in both directions along all three axes with respect to the tightest
fitting bounding box.

9.5 Algorithms 223

9.5.3 Coalescing Cells

Exterior cells and interior cells are not subdivided by the algorithm described in
the previous section. However, it may happen that cells change status as a part
of the process of voxelizing a new solid into the ARVDB. In some cases it can
happen that eight cells which are all children of the same node have the same
status after a constructive manipulation. In this case, we should lump them
together in one cell at one level higher in the octree.

Doing this on the fly turns out to complicate the voxelization algorithm unnec-
essarily since there are relatively few cells that need to be coalesced. A better
solution is to implement the coalescing as a garbage collection that may be
performed after a specified number of operations.

Coalescing of exterior and interior cells is therefore implemented as a function
call to the ARVDB class. This function call should be invoked at regular in-
tervals. Like subdivide, the coalesce function traverses all cells and each time
the last cell in a group of eight has been visited, it is checked whether they are
all interior or exterior cells. If this happens to be the case, the eight cells are
removed, and one cell of the same kind is put in their place.

9.5.4 Computing Gradients

The central difference operator is an obvious choice for gradient computation
whenever linear profiles are used. In a non—adaptive framework, the gradient is
normally estimated at voxel positions (i.e. lattice points) and then trilinearly
interpolated at arbitrary positions.

We cannot use this scheme in the adaptive framework, because the voxels we
need to compute the central difference gradient may not exist. We could inter-
polate the values of missing voxels, but there is another issue, namely that we
only need to compute the gradient near the surface, and we know that voxels at
the corners of surface cells fulfill some criteria that do not hold for other voxels.
Hence, a gradient estimation algorithm has been constructed that yields results
similar to the central difference operator but only uses surface voxels and han-
dles cases where some of the voxels are missing. To describe the algorithm, we
will need a couple of definitions: A voxel that is at the corner of a surface cell
will be called a surface vozxel, and the voxel at whose position we try to estimate
the gradient will be called the central vozxel.

The basic idea of the gradient estimation algorithm is to find the surface voxels

224 Adaptive Resolution Volume Graphics

L 4 O

Figure 9.13: The gradient is computed for the voxel marked O while the voxels
marked e are used in the computation. The cells surrounded by heavy lines are
surface cells.

that are closest to the central voxel along each of the six major directions (+x,
-X, +¥, -y, +2, -z) and use those for the gradient estimation (see Figure [ILI3]).
For the central voxel, we need to locate surface voxels in each of the six major
directions, and each of these voxels should belong to a surface cell that has the
central voxel as a corner. We do this by finding in the geometry database all
surface cells that share a voxel with the central voxel. For each direction we
choose the closest voxel (in that direction) belonging to one of these cells, if
there is any. In some cases there is only a voxel in the positive direction or the
negative direction as we see in Figure [LT4l In these cases the central voxel must
take the place of the voxel in the missing direction.

All this may seem very opaque, but the scheme is illustrated in Figure @14 We
see that voxel G has surface voxel neighbors in the directions +x, +y, -y, while
there is no voxel in the direction of -x. In this (2D) example we would calculate
the gradient at G as

H-G D—-J
dist(G, H) dist(D,J))

((9.1)

Fortunately, it cannot happen that the voxels in both the positive and negative
directions along one of the major axes are missing, because any surface voxel
has neighbors along each of the three major directions that are at corners of

9.5 Algorithms 225

the same cell as itself. In other words, this algorithm will always estimate the
gradient using at least four voxels. All four voxels will at the time of sampling
all have been closest to the same surface (subject to the condition that one of
the cells is not at the bottom level of subdivision).

While the description of this algorithm is complicated, the implementation
turned out to be reasonably simple. The biggest problem is that the loca-
tion of the (at most) eight cells that share the central voxel requires us to make
eight lookups in the geometry database.

When the gradient is required at an arbitrary surface point, the containing
surface cell is looked up in the geometry database, the gradients are computed
at the corners using the method just discussed, and finally the gradients are
interpolated to the surface point.

9.5.5 Rendering

Rendering is performed using ray casting. This choice is motivated mainly by
the fact that ray casting is simple to implement and the octree allows an efficient
implementation where all cells that do not intersect the surface are skipped.

O ’\A ’7B
lc D E__JF
? G H
D O

X

Figure 9.14: Examples of voxels and their neighbors. The cells touched by heavy
lines are surface cells.

226 Adaptive Resolution Volume Graphics

For each pixel one or more rays are sent. Initially, the point of intersection of
the ray and volume is found, and then the geometry database is searched for
the cell containing that point. That cell is no doubt an exterior cell, and the
point where the ray exits the cell is found next. This process is repeated until a
surface intersecting cell is found. At that point, the precise surface intersection
is computed, and the pixel corresponding to the ray is shaded. This method is
illustrated in Figure

Figure 9.15: Viewing ray and ARVDB

The actual intersection between the surface and the ray is computed by plugging
the line equation of the ray into the trilinear interpolation equation. This yields
a cubic polynomial that can be solved analytically. The shading is performed
using Phong’s illumination model, and to perform anti-aliasing, jittered super-
sampling has been implemented; in general four rays are cast from each pixel.

9.6 Results

In the following, we shall look at some results, but first a brief remark about
scale. In most of this thesis, the distance between neighbouring voxels is used as
the unit distance. In an adaptive volume, the voxel spacing is no longer constant,
and the side length of the volume has been adapted as the unit distance.

9.6 Results 227

Three test solids have been used to illustrate the merits of the method:

e Sphereflake. This is the wall known object from the SPD library by Eric
Haines [73]. The object is basically a sphere recursively growing nine
smaller spheres at 1/3 radius. The ARVDB model of the sphereflake is
created by iteratively adding spheres. Two versions have been used: A low
detail model with five levels of spheres where the smallest spheres have
radii of 0.0015. This model contains 7381 spheres. In addition theres is
a high detail model with seven levels where the smallest spheres have a
radii of 0.00017 but this sphereflake is not complete, containing only 1000
spheres.

The high detail model has been voxelized at level 14 which corresponds
to a resolution of 16384 x 16384 x 16384 voxels. The low detail model has
been voxelized at levels 8 and 11 corresponding to 256 x 256 x 256 and
2048 x 2048 x 2048.

e Hollowcube. The hollow cube is a CSG object formed by six planes and
a sphere. The intersection of the planes yields a cube hollowed by the
subtraction of the sphere. This object has been voxelized at a range of
resolutions in order to show how the sharp edges become more well defined
as the resolution is increased.

e Ellipsoid. The ellipsoid is interesting because it has non—constant cur-
vature. To ensure a great range of curvatures, ellipsoids with a great
difference between the lengths of the principal axes have been used.

Table shows the sizes of ARVDB models (the size is of the uncompressed
disk file) generated from the three types of solids discussed above. The model

Name File size Max level Primitives
sphereflake 13 MB 8 7381
sphereflake 529 MB 11 7381
sphereflake 18 MB 14 1000
hollowcube 1.1 MB 6 1
hollowcube 2.3 MB 8 1
hollowcube 7 MB 10 1
hollowcube 29 MB 12 1
ellipsoid(0.3,0.3,0.02) | 1.7 MB 8 1
ellipsoid(0.3,0.3,0.02) 25 MB 12 1

Table 9.3: Summary information about various adaptive volumes.

228 Adaptive Resolution Volume Graphics

size is evidently very dependent both on model complexity and on the maximum
level of subdivision.

To demonstrate that the method handles sharp edges well, the hollow cube
was rendered from ARVDB models at resolutions ranging from 64 x 64 x 64 to
4096 x 4096 x 4096. The results are shown in Figure

The sharp edges almost look blended in the low resolution model. 256 x 256 x 256
is acceptable, but the edges are visibly sharper when going up to 1024 x 1024 x
1024. At this point the projected size of a cell at the lowest level is far smaller
than a pixel, but actually there is also a visible difference between this model
and the model at the highest resolution. Blow—ups of the 1024 x 1024 x 1024
and 4096 x 4096 x 4096 models are shown in Figure Notice that on the
close—up of the high resolution model, the highlight stops only at the edge of
the model — indicating a sharp edge — while a very faint rounding is visible in
the low resolution model on the left.

To demonstrate how the level of subdvision changes depending on curvature, an
ellipsoid of principal axes (0.4,0.04,0.004) was voxelized and rendered in such a
way that the colour corresponds to level of subdivision. The result is shown in
Figure The ellipsoid is shown from the flat side. Notice how the edges are
darker than the central part.

Perhaps the most serious shortcoming of the standard, non—adaptive, volume
representation is that features at very different scales cannot be represented well
in the same volume. To a great extent, this problem is addressed by the adaptive
volume representation. Figures and show a series of renditions of the
same model (the high detail sphereflake model) where the camera zooms in on
a small part of the model. Two things are noticeable: First, there are features
that are not visible in the first image that gradually become visible as we move
closer. Second, even the smallest spheres are well represented. This would not
have been possible with an ordinary volume representation.

9.7 Discussion

An adaptive volume representation has been proposed. This representation is
capable of handling volumetric solids whose features are extremely small com-
pared to the overall size of the volume. For instance, it has been shown that it
is possible to represent spheres of radius 0.00017 in a unit cube volume. The
method is also suitable for the representation of very sharp edges. It is possible
to voxelize primitive solids or solids that are combined using CSG. Construc-

9.7 Discussion 229

Figure 9.16: The Hollowcube solid illustrates how the method can be used to
ensure sharp edges. The maximum subdivision is set to resolutions of respec-
tively 64 x 64 x 64 (top left), 256 x 256 x 256 (top right), 1024 x 1024 x 1024
(bottom left) and 4096 x 4096 x 4096 (bottom right).

230 Adaptive Resolution Volume Graphics

Figure 9.17: Closeups of the hollowcube voxelized at resolutions of 1024 x 1024 x
1024 (left) and 4096 x 4096 x 4096 (right). Notice how the edge is a bit sharper
in the latter case.

Figure 9.18: Rendition of an ellipsoid. Darker areas are more subdivided.

tive manipulations (also known as volumetric CSG) can be performed on the
adaptively represented volumetric solid.

The discussion has focused on how well the representation handles surface fea-
tures, but it is still a volumetric representation and as such just as capable
of handling genus changes and complex topology as the non—adaptive volume
representation discussed throughout most of this thesis.

One shortcoming is the lack of a method for deformative manipulations. I have
not proposed such a method, nor has such a technique been proposed for the
very similar ADF representation [63, [[29]. Indeed a deformative method would
have to dynamically change the resolution in a more sophisticated way than
a constructive manipulation. A constructive manipulation cannot change the
curvature of a surface except by introducing a sharp edge. The same is not true
of deformative manipulations.

9.7 Discussion 231

Figure 9.19: Small Features I. In this sequence of images, we are zooming in
on a sphereflake voxelized with a max depth corresponding to a resolution of
16384 x 16384 x 16384 cubed.

232 Adaptive Resolution Volume Graphics

Figure 9.20: Small Features II. Smallest spheres are of radius 0.00017 which
means that they are roughly 7 voxels across at 16384 voxels cubed.

9.7 Discussion 233

Since the method is very similar to the ADF method [63] [[29] it is interesting
to compare. It seems that the ARVDB is a more complex data structure than
the one used for ADFs. In an ADF the bottom level cells contain pointers to
the voxels. By storing the voxels in a hash table I avoid this, and in fact the
ARVDB does not have a bottom level, since the leaf nodes are represented by
special pointer values.

The subdivision rules are different. During voxelization Gibson et al. subdivide
based on a comparison of the interpolated value of the distance and the true
distance at 19 points in the cell. If the error is above a certain threshold, the
cell is subdivided.

As previously mentioned, I store only voxels that are corners of surface cells.
In other words, the ARVDB representation is a distance field representation
close to the surface and a binary volume representation far from the surface.
It seems that Gibson et al. store distance values at all voxels. This is useful
in some cases but it also introduces problems. Constructive manipulations are
performed using min but as we know the result is not always correct. There is
no mention of how the problem is handled in [63], but in the sequel [I29] Perry
et al. mention briefly that the distances are recomputed after a constructive
manipulation.

To estimate normals, Gibson et al. basically use the partial derivatives of the
trilinear interpolation function [63], and these are not continuous across cell
boundaries. This would lead to visible shading discontinuities even for regular
volumes. Arguably such discontinuities appear only when projected cells are
larger than a pixel, and it may not have an impact on the utility of ADFs for
representing solids with sharp edges. On the other hand, it is difficult to see
how visible shading discontinuities can be avoided when zooming in on small
details.

To overcome this problem, I employ a combination of two methods:

e Aggressive subdivision to ensure that a surface cell is always subdivided
unless the curvature of the piece of the surface contained is very low com-
pared to the size of the cell.

e A gradient estimation technique that is identical to central differences in
the case of homogeneously subdivided regions and less prone to shading
discontinuities.

The actual rendering is performed using ray casting in [63] and using ray casting,
point rendering or polygonal rendering in [129].

234 Adaptive Resolution Volume Graphics

In summary, the ADF techniques proposed by Gibson et al. [63] and more
recentlyE by Perry et al. [[29] seem to use a simpler data structure, and I
surmise that at least in [63] it would be impossible to render smooth surfaces if
the projected area of some cells were significantly larger than a pixel.

9.7.1 Future Work

One of the weaknesses of my adaptive framework is that curvature (or the
presence of sharp edges or close surface components) is used to decide the level of
subdivision. Finding the maximum principal curvature of the piece of a surface
that happens to intersect a cell is difficult in general. Hence, a simpler and more
easily evaluated criterion for subdivision would improve the method. In fact, the
morphological suitability criterion from Chapter Bl might be worth considering,
and would have been considered except that I worked on the adaptive scheme
before the morphological ideas discussed in Chapter El

The first step would be to implement a method for performing opening and
closing as an integral part of the voxelization. This seems feasible. If the +r and
—r offset surfaces could be computed for a given solid, then the distance to the
corresponding r—open and r—closed solid could be computed from the distances
to these offset surfaces. Call this distance the modified distance. A good starting
point would be to voxelize the solid by computing the modified distance at
all voxels of a regular grid. Whenever the modified distance differs from the
distance to the original solid, we know that detail is removed and that is where
subdivision would be appropriate. An illustration of an r—opened and r—closed
shape is shown in Figure

Thus, in summary the idea is to perform voxelization using still higher resolu-
tions and still smaller values of r but each time the resolution is increased, one
only needs to voxelize regions where the modified distance differs from the true
distance at the coarser resolution.

9.7.1.1 Multiresolution Distance Volumes

In the present framework, only one distance is stored for any given voxel. There
is information at various resolution in the ARVDB but all distances are com-
puted directly from the voxelized solid. Since there is no simplification of ge-
ometry, we could only throw away distances but there is no apparent way to
generate a lower resolution distance volume from the ARVDB. That is why it

2In fact, the Kizamu paper [[29] has not been presented at the time of writing.

9.7 Discussion 235

Figure 9.21: Heart shape, dilation and erosion. The dotted lines indicate where
the r—opened and r—closed shape differs from the original. This is also where the
modified distance differs from the true distance, and hence where subdivision
would be called for.

is an adaptive rather than a multi resolution scheme. However, the scheme
sketched above would actually generate a multiresolution distance volume since
the morphological voxelization would amount to a simplification of the geometry.

To round off the picture, operations for changing the resolution of existing
volumes would become necessary. Mean curvature flow could be used to re-
move small features before decreasing resolution and interpolation could be used
to generate the additional voxel values necessary when resolution is increased.
Thus changing resolution seems feasible, and a method for increasing the reso-
lution has, in fact, been implemented for the ordinary representation which was
discussed in Part [Tl This method was discussed in Section

236 Adaptive Resolution Volume Graphics

Part V

A Look Back, A Look
Ahead

CHAPTER 1 O

Conclusions

In this thesis, I have presented my work in the field of volume graphics and its
applications to interactive sculpting. The purpose of this chapter is to summa-
rize the contributions, to present my ideas for future work, and to discuss the
outlook for volume sculpting.

10.1 Contributions

This section has been divided into four parts. The theoretical contributions will
be discussed first, then work regarding manipulations, then visualization, and
finally adaptive resolution volumes.

10.1.1 Theory

To better understand which solids are suitable for volume representation, I have
introduced the notions of permissible solids and r—openness and r—closedness.
A solid is permissible if it is a manifold and does not have any sharp edges —
i.e. the tangent plane is defined at all points of the surface. Permissible solids

240 Conclusions

are representable at some scale. Permissible solids that are simultaneous r—
open and r—closed for some value of r, are endowed with a transition region (of
width r) where the distance field is C!. Since we are interested in sampling and
reconstructing the distance field and its gradient in a transition region about
the surface of the solid, this property is important.

10.1.2 Manipulation

Much of my work has focused on the development of general facilities for con-
structive and deformative manipulations. This choice is motivated by the fact
that a great many manipulations can be seen as either a deformation or a CSG
operation. Furthermore, the survey of previous sculpting systems led to the
conclusion that almost all sculpting tools found in previous systems could be
said to belong to either or both of these two categories. The important excep-
tions are tools which require voxels to be linked, but linked voxels lead to a
representation with other advantages and drawbacks and is beyond the scope of
this thesis.

A common theme that distinguishes the manipulations I propose from earlier
work [60) 70, BAL, [T34] is that my manipulations preserve the property that voxel
values are signed shortest distances to the surface of the represented solid. There
are many reasons why this is desirable. One is that when the voxel value is really
a distance, it is an exceedingly simple operation to find the foot point on the
surface, and this promotes fast point rendering of the surface of the solid. In fact,
the transition voxels could be seen as a point cloud representation of the surface.
My method for computing curvature relies on the volume being a distance field
by omitting an expensive normalization. Finally, many applications that I have
not investigated rely on distance fields. Examples are hypertexturing [T28] of
volumetric solids [T45] and offset surface computation [72.

Two different methods for constructive manipulation have been proposed. The
first of these techniques can be seen as constructing the blended union of the
two input solids. More precisely, the result is the close of the union by a sphere
of radius r. Provided the input solids are r—open and r—closed, this ensures that
the result of the constructive manipulation corresponds to a solid that retains
the r—openness and r—closedness properties. In more practical terms, it simply
means that sharp edges (which cannot be represented volumetrically) are not
introduced. In most cases, this method yields a good result, but there are cases
which it does not handle.

The second method is based on the usual approach of implementing the union
of two volumetric solids simply by taking the minimum voxel value for each

10.1 Contributions 241

voxel position. However, a min based volumetric union of two solids introduces
incorrect distances. To remedy this problem, the novel technique uses Sethian’s
Fast Marching Method to recompute the distance values, but only at voxels
where distances are incorrect. This method assumes less about the input solids,
but does not remove sharp edges. However, sharp edges can be removed by
applying a deformative manipulation after the constructive manipulation.

My method for deformative manipulations is based on the Level-Set Method
which is a numerical technique for computing the evolution of interfaces. The
Level-Set Method can be used to implement mean curvature flow which is
an excellent tool for smoothing surfaces. Other sculpting applications include
add/remove blob facilities and morphological dilation and erosion. The Level-
Set Method has previously been used in the context of volume graphics, but the
use of LSM in an interactive setting and the windowing of the speed function
which leads to a localized version of LSM are novel contributions. An advan-
tage of LSM is that it can be used to deform the surface in any way that can
be specified by a speed function. Hence, it is a very general method for defor-
mation whereas previous implementations of deformative (i.e. smoothing and
add/remove blob) tools are more ad hoc.

10.1.3 Visualization

Volume visualization has not been one of the main foci of research, but a fast
method for visualization is, of course, very important in volume sculpting. Only
few methods for volume visualization are fast enough to be used interactively.
A variation of Marching Cubes is the most common choice in volume sculpting
systems. I have chosen a point rendering method that is arguably simpler to
implement. I have compared MC to that method and conclude that whenever
the resolution of the volume is reasonably large compared to the image, the
point rendering method is preferable. For very low resolutions however, MC is
preferable.

10.1.4 Adaptive Volumes

One of the biggest drawbacks of volume graphics is the fact that features on a
completely different scale than the overall scale of the model are simply not pos-
sible. To address this problem, a great deal of effort was put into a framework
for adaptive resolution volume graphics. This framework allows for voxeliza-
tion of primitive solids, CSG trees and for constructive manipulations. I have
demonstrated that using my method it is possible to create adaptive volumes

242 Conclusions

with very small features and sharp edges.

10.2 Future Work

In this thesis, I have been concerned only with shape, but colour, texture and
inhomogenous materials are also very interesting. In fact, the ability to handle
inhomogenous materials is one of the major virtues of the volume representation.
Thus a logical next step is to add attributes to the voxel representation. These
attributes could be used for a variety of purposes but the most obvious are

e to represent colour
e to represent texture

e to represent material parameters such as density or how hard or soft the
material is. These parameters could be used to influence the effect of the
sculpting tool.

The morphological criterion for the suitability of shapes for volumetric repre-
sentation (Definition EETT]) could be used in a new method for voxelization. The
main idea is to perform Euclidean open and close operations during voxeliza-
tion in order to ensure that solids fulfill the criterion. This method could be
extended to a method for generating a multiresolution volume representation
where each level has been morphologically filtered.

Methods for changing the resolution of volumes is another area of future en-
deavour. The ability to change resolution makes any sculpting system far more
powerful since it is rarely possible to sculpt coarse features and fine detail at the
same resolution. When resolution is increased, new distance values should be
interpolated, and linear interpolation leads to artifacts as discussed in a previ-
ous chapter. When resolution is decreased, the model must be smoothed using
e.g. mean curvature flow to remove small features. The challenge is to smooth
only where needed and only as much as needed.

The final goal is, of coarse, a full blown sculpting system allowing the user
to change resolution globally as well as locally, to sculpt constructively and
deformatively, and to control surface colour and texture completely.

10.3 Applications of Volume Sculpting 243

10.3 Applications of Volume Sculpting

The vision is that people will use volume sculpting to create more complex
and organic shapes which should lead to a richer visual vocabulary in virtual
environments, games, movies and multimedia.

Also applications outside of the entertainment industry present themselves. Vol-
ume visualization has many medical applications, and it seems that volume
sculpting might also be useful here. I do not think the techniques used in
sculpting are suitable for surgery planning or surgery simulation where interac-
tive, elastic deformations and hence other methodologies are called for, but the
design of prostheses is a likely application.

Volume sculpting is probably not suitable for the design of objects with stream-
lined surfaces such as those found in cars or airplanes, but many everyday objects
or architectural elements might benefit from volume sculptingﬂ.

Volume sculpting is very intuitive, and this suggests that volume sculpting is
suitable also as an application of virtual reality. Interactive stereo visualization
is no longer out of reach, and in fact a version of the sculpting system presented
in this thesis runs in a VR facility allowing users to sculpt using a stereo wall
as display device.

The VR perspective adds stereo—visualization and full haptic interaction to the
vision of the perfect sculpting system that was outlined above.

IThe 20th century saw the banning of decorative elements from architecture, but maybe
the 21st will see the introduction of the volume sculpted gargoyle. This could be either a
dream come true or a nightmare depending on your point of view.

244 Conclusions

Bibliography

1]

[7]

8]

D. Adalsteinsson and J.A. Sethian. The fast construction of extension ve-
locities in level-set methods. Journal of Computational Physics, 148(1):2—
22, 1999.

Valery Adzhiev, Maxim Kazakov, Alexander Pasko, and Vladimir
Savchenko. Hybrid system architecture for volume modeling. Comput-
ers and Graphics, 24:67-78, 2000.

K. Akeley. Realityengine graphics, 1993.

Mark Watt Alan Watt. Advanced Animation and Rendering Techniques.
Addison-Wesley, 1992.

A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient regular data struc-
tures and algorithms for location and proximity problems. 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37059),
pages 16070, 1999.

H. Arata, Y. Takai, N.K. Takai, and T. Yamamoto. Free-form shape mod-
eling by 3D cellular automata. Proceedings Shape Modeling International
’99. International Conference on Shape Modeling and Applications, pages
242-7, 1999.

Ricardo Avila, Taosong He, Lichan Hong, Arie Kaufman, Hanspeter Pfis-
ter, Claudio Silva, Lisa Sobierajski, and Sidney Wang. Volvis: a diversified
volume visualization system. Proceedings Visualization, pages 31-38, 1994.

Ricardo S. Avila and Lisa M. Sobierajski. A haptic interaction method
for volume visualization. In Roni Yagel and Gregory M. Nielson, editors,
Visualization ‘96. IEEE, 1996.

246

BIBLIOGRAPHY

[9]

R.S. Avila, L.M. Sobierajski, and A.E. Kaufman. Towards a compre-
hensive volume visualization system. Proceedings. Visualization ‘92 (Cat.
No.92CH3201-1), pages 13-20, 1992.

Jon Louis Bentley. Multidimensional binary search trees used for associa-
tive searching. Communications of the ACM, 18(9), 1975.

Mark Bentum. Interactive Visualization of Volume Data. PhD thesis,
University of Twente, Netherlands, 1996.

James F. Blinn. A generalization og algebraic surface drawing. 1(3), July
1982.

J.F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. Computer Graphics, 16(3):21-9, 1982.

J.F. Blinn. return of the jaggy. IEEE Computer Graphics and Applica-
tions, 9(2):82 -89, 1989.

J.F. Blinn. What we need around here is more aliasing. IEEE Computer
Graphics and Applications, 9(1):75 ~79, 1989.

J. Bloomenthal. Polygonization of implicit surfaces. Computer-Aided Ge-
ometric Design, 5(4):341-55, 1988.

Jules Bloomenthal. An implicit surface polygonizer. In Paul S. Heckbert,
editor, Graphics Gems IV. Academic Press, 1994.

Jules Bloomenthal, editor. Introduction to Implicit Surfaces. Computer
Graphics and Geometric Modeling. Morgan Kaufman, 1997.

G. Borgefors. Distance transformations in digital images. Computer Vi-
sion, Graphics, and Image Processing, 34(3):344-371, 1986.

David E. Breen. Constructive cubes. In F.H. Post and W. Barth, editors,
FEurographics 91, 1991.

David E. Breen, Sean Mauch, and Ross T. Whitaker. 3D scan conversion of
csg models into distance volumes. In Stephen Spencer, editor, Proceedings
of IEEE Symposium on Volume Visualization, October 1998.

David E. Breen, Sean Mauch, and Ross T. Whitaker. 3D scan conversion
of csg models into distance, closest point, and colour volumes. In Min
Chen, Arie Kaufman, and Roni Yagel, editors, Volume Graphics, pages
135-158. Springer, 2000.

D.E. Breen and R.T. Whitaker. A level-set approach for the metamorpho-
sis of solid models. Visualization and Computer Graphics, IEEE Trans-
actions on=20, 7(2):173-192, 2001.

BIBLIOGRAPHY 247

[24]

[25]

32]

33]

[34]

Morten Bro-Nielsen. Finite element modeling in surgery simulation. Pro-
ceedings of the IEEE, 86(3):490-503, 1998.

Jerome A. Broekhuijsen, Robert P. Burton, and William A. Barrett. In-
teractive editing of volumetric objects with 3D input and output devices.
Journal of Imaging Technology, 17(6):269-274, December 1991.

Andreas Beerentzen. Octree-based volume sculpting. In Craig M. Wit-
tenbrink and Amitabh Varshney, editors, LBHT Proceedings of IEEE Vi-
sualization ’98, October 1998.

Andreas Beerentzen. Volume sculpting (danish). Eksamensprojekt, 1998.

Andreas Beerentzen and Niels Jgrgen Christensen. A technique for vol-
umetric csg based on morphology. In Klaus Mueller and Arie Kaufman,
editors, Proceedings of International Workshop on Volume Graphics, pages
117-130. Springer, 2001.

Andreas Beerentzen, Milos Sramek, and Niels J grgen Christensen. A mor-
phological approach to the voxelization of solids. In Vaclav Skala, editor,
Proceedings of WSCG 2000, volume 1, February 2000.

J. Andreas Berentzen. Volume sculpting. Master’s thesis, Technical Uni-
versity of Denmark, 1998.

B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. Proceedings.
1994 Symposium on Volume Visualization, pages 91-8, 131, 1995.

Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice Hall, 1976.

Vijay Chandru, Swami Manohar, and C. Edmond Prakash. Voxel-Based
Modeling for Layered Manufacturing. IEEE Computer Graphics & Appli-
cations, pages 42-47, November 1995.

M. Chen, M.W. Jones, and P. Townsend. Methods for volume meta-
morphosis. In Y. Parker and S. Wilbur, editors, Image Processing for
Broadcast and Video Production, pages 280-292. Springer-Verlag, Berlin,
1995.

Min Chen, John V. Tucker, and Adrian Leu. Crove — a rendering system
for constructive representations of volumetric environments. In Interna-
tional Workshop on Volume Graphics, Swansea 1999, 1999.

Y. Chen, Qing-Hong Zhu, A. Kaufman, and S. Muraki. Physically-based
animation of volumetric objects. Proceedings Computer Animation ’98
(Cat. No.98EX169), pages 154—60, 1998.

248

BIBLIOGRAPHY

[37]

[38]

D. L. Chopp and J. A. Sethian. Flow under curvature: Singularity for-
mation, minimal surfaces, and geodesics. Journal of Experimental Math-
ematics, 2:235-255, 1993.

Daniel Cohen and Arie Kaufma. Scan-conversion algorithms for linear and
quadratic objects. In Arie Kaufman, editor, Volume Visualization, pages
280-301. IEEE Computer Society Press, 1990.

D. Cohen-Or, A. Kadosh, D. Levin, and R. Yagel. Smooth boundary
surfaces from binary 3D data sets. In Min Chen, Arie Kaufman, and Roni
Yagel, editors, Volume Graphics, pages 71-78. Springer, 2000.

D. Cohen-Or, D. Levin, and A. Solomovici. Three-dimensional distance
field metamorphosis. ACM Transactions on Graphics, 17(2):116-41, 1998.

Daniel Cohen-Or. Voxel traversal along a 3D line. In Paul S. Heckbert,
editor, Graphics Gems IV. Academic Press, 1994.

Daniel Cohen-Or and Arie E. Kaufman. Discrete ray tracing. IEEE Com-
puter Graphics & Applications, 12(5), September 1992.

Daniel Cohen-or and Arie E. Kaufman. 3D line voxelization and connec-
tivity control. IEEE Computer Graphics & Applications, 17(6), Novem-
ber/December 1997.

S Cotin, H Delingette, and N Ayache. Real-time elastic deformations of
soft tissues for surgery simulation. IEEE Transactions on Visualization
and Computer Graphics, 5(1):62-73, 1999.

S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model for real-
time cutting, deformations, and force feedback for surgery training and
simulation. Visual Computer, 16(8):437-52, 2000.

John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing.
In Proceedings of the 1992 workshop on Volume visualization, pages 91-98,
October 1992.

Ingrid Daubechies. Ten Lectures on Wawvelets, volume 61. Society for
Industrial and Applied Mathematics, Philadelphia, 1992.

M. Deering. Geometry compression. Computer Graphics Proceedings.
SIGGRAPH 95, pages 13-20, 1995.

David S. Ebert, F. Kenton Musgrave, Darwin Peachey, Ken Perlin, and
Steven Worley. Tezturing and Modeling. AP Professional, second edition,
1998.

T.T. Elvins. A survey of algorithms for volume visualization. Computer
Graphics, 26(3):194-201, 1992.

BIBLIOGRAPHY 249

[51]

Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In Proceed-
ings of Eurographics/SIGGRAPH Workshop on Graphics Hardware 2001,
2001.

Gargantini et al. Viewing transformations of voxel-based objects via linear
octrees. IEEE CG & A, October 1986.

Shiaofen Fang and Hongsheng Chen. Hardware accelerated voxelisation.
In Min Chen, Arie Kaufman, and Roni Yagel, editors, Volume Graphics,
pages 301-318. Springer, 2000.

Shiaofen Fang and Rajagopalan Srinivasan. Volumetric-csg — a model
based volume visualization approach. In WSCG’98. The Sixth Interna-
tional Conference in Central Furope on Computer Graphics and Visual-
ization’98, 1998.

Eric Ferley, Marie-Paule Cani, and Jean-Dominique Gascuel. Practical
volumetric sculpting. the Visual Computer, 16(8):211-221, December
2000.

J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics
Principles and Practice. Addison—Wesley, second edition, 1993.

Henry Watson Fowler and R. W. Burchfield (editor). The New Fowler’s
Modern English Usage. Oxford, third edition, 1999. Revised edition.

N. Gagvani, D. Kenchammana-Hosekote, and D. Silver. Volume animation
using the skeleton tree. IEEE Symposium on Volume Visualization (Cat.
No.989EX300), pages 47-53, 166, 1998.

N. Gagvani and D. Silver. Realistic volume animation with alias. In-
ternational Workshop on Volume Graphics. Preprint, pages 35767 vol.2,
1999.

Tinsley A. Galyean and John F. Hughes. Sculpting: An interactive volu-
metric modeling technique. ACM Computer Graphics, 25(4), July 1991.

Sarah F. Frisken Gibson. Constrained elastic surface nets: generating
smooth surfaces from binary segmented data. Medical Image Comput-
ing and Computer-Assisted Intervention - MICCAI’98. First International
Conference. Proceedings, pages 888-98, 1998.

Sarah F. Frisken Gibson. Using Linked Volumes to Model Object Colli-
sions, Deformation, Cutting, Carving and Joining. IEEE Transactions on
Visualization and Computer Graphics, 5(4), October—December 1999.

250

BIBLIOGRAPHY

[63]

[73]

[74]

Sarah F. Frisken Gibson, Ronald N. Perry, Alyn P. Rockwood, and
Thouis R. Jones. Adaptively sampled distance fields: A general repre-
sentation of shape for computer graphics. In Proceedings of SIGGRAPH
2000, pages 249-254, 2000.

Sarah F.F. Gibson. Using distance maps for accurate surface representa-
tion in sampled volumes. In Stephen Spencer, editor, Proceedings of IEEE
Symposium on Volume Visualization, October 1998.

S.F.F. Gibson. 3D chainmail: a fast algorithm for deforming volumetric
objects. Proceedings 1997 Symposium on Interactive 8D Graphics, pages
149-54, 195, 1997.

Joe Greco. Freeform modeling - can you say haptic? this month, greco
explores the freeform modeling system from sensable technologies that
employs this sense-of-touch technology. Cadence - World’s Largest Inde-
pendent AutoCAD Magazine, pages 49-54, 2001.

N. Greene and P.S. Heckbert. Creating raster omnimax images from mul-
tiple perspective views using the elliptical weighted average filter. IEEE
Computer Graphics and Applications, 6(6):21-7, 1986.

G J Grevera and J K Udupa. An order of magnitude faster isosurface ren-
dering in software on a pc than using dedicated, general purpose rendering
hardware. IEEFE Transactions on Visualization and Computer Graphics,
6(4):335-345, 2000.

L. Grisoni and C. Schlick. Multiresolution representation of implicit ob-
jects. In Proceedings of Implicit Surface’98, pages 1-10, 1998.

J.P. Grossman. Point sample rendering. Master’s thesis, MIT, 1998.

J.P. Grossman and William J. Dally. Point sample rendering. In Pro-
ceedings of the 9th Eurographics Workshop on Rendering, pages 181-192,
June 1998.

André Guéziec. "meshsweeper”: Dynamic point—to—polygonal mesh dis-
tance and applications. IEEE Transactions on Visualization and Com-
puter Graphics, 7(1):47-60, January—March 2001.

Eric A. Haines. A proposal for standard graphics environments. [EEFE
Computer Graphics and Applications, 7(11):3-5, 1987.

B. Hamann, I.J. Trotts, and G.E. Farin. On approximating contours of the
piecewise trilinear interpolant using triangular rational quadratic bezier
patches. [EEE Transactions on Visualization and Computer Graphics,
3(3):215-27, 1997.

BIBLIOGRAPHY 251

[75] Vagn Lundsgaard Hansen. Forelesninger over differentialgeometri og dif-
ferentialtopologi. Odense Universitets Trykkeri, 1985.

[76] John C. Hart. Distance to an ellipsoid. In Paul S. Heckbert, editor,
Graphics Gems IV. Academic Press, 1994.

[77] Erich Hartmann. On the curvature of curves and surfaces defined by
normalforms. Computer Aided Geometric Design, 16(5):355-376, 1999.

[78] Taosong He, S. Wang, and A. Kaufman. Wavelet-based volume morphing.
Proceedings. Visualization '94 (Cat. No.94CH35707), pages 8592, CP8,
1994.

[79) W.E. Lorensen H.E. Cline and S. Ludke. Two algorithms for the
three-dimensional reconstruction of tomograms. Medical Physiscs, 15(3),
May/June 1988.

[80] David Hilbert and S Cohn-Vossen. Geometry and the Imagination. AMS
Chelsea Puplishing, 1990.

[81] Christoph M. Hoffmann. Geometric and Solid Modeling. Morgan Kauf-
mann, 1989.

[82] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. Computer Graphics,
26(2):71-8, 1992.

[83] J.F. Hughes. Scheduled Fourier volume morphing. Computer Graphics,
26(2):43-6, 1992.

[84] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-
Point Arithmetic. IEEE, New York, NY, USA, August 1985.

[85] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketch-
ing interface for 3D freeform design. In Proceedings of SIGGRAPH 1999.

[86] Henrik Wann Jensen. Realistic Image Synthesis using Photon Mapping.
AK Peters, 2001.

[87] M. W. Jones and R. Satherley. Shape representation using space filled
sub-voxel distance fields. In Proceedings of International Conference on
Shape Modelling and Applications, May 2001.

[88] Mark W. Jones. The production of volume data for volume rendering.
Computer Graphics Forum, 15(5):311-318, 1996.

[89] Arie Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics. IEEE
Computer, 26(7), July 1993.

252

BIBLIOGRAPHY

[90]

[91]

[92]

[99]

[100]

[101]

[102]

[103]

Arie E. Kaufman. Volume visualization. Volume Visualization Course
Notes SIGGRAPH 96, 1996.

Arie E. Kaufman and Daniel Cohen-Or. Scan conversion algorithms for
linear and quadratic objects. Interactive 3D Graphics, October 1991.

Arie E. Kaufman and Eyal Shimony. 3D scan-conversion algorithms for
voxel-based graphics. Interactive 3D Graphics, October 1986.

Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting
and Searching. Addison-Wesley, second edition, 1998.

S. G. Krantz and H. R. Parks. Distance to C* hypersurfaces. Journal of
Differential Equations, 40(1):116-20, 1981.

Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature-based
volume metamorphosis. Proceedings of the ACM SIGGRAPH Conference
on Computer Graphics, pages 449-456, 1995.

Randall J. Leveque. Numerical Methods for Conservation Laws.
Birkhauser, 1992.

Lacroute & Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. SIGGRAPH Proceedings 94, July 1994.

M. Levoy, S. Rusinkiewcz, M. Ginzton, J. Ginsberg, K. Pulli, D. Koller,
S. Anderson, J. Shade, B. Curless, L. Pereira, J. Davis, and D. Fulk.
The digital Michelangelo project: 3D scanning of large statues. Computer
Graphics Proceedings. Annual Conference Series 2000. SIGGRAPH 2000.
Conference Proceedings, pages 131-44, 2000.

Marc Levoy. Display of surfaces from volume rendering. IEEE Computer
Graphics & Applications, 8(3), 1988.

Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3), July 1990.

Marc Levoy. Error in volume rendering paper was in exposition only.
IEEE Computer Graphics & Applications, 20(4):6, July/August 2000.

Marc Levoy and Turner Whitted. The use of points as a display primitive.
Technical Report 85-022, UNC-Chapel Hill Computer Science Technical
Report, January 1985.

Chyi-Cheng Lin and Yu-Tai Ching. An efficient volume-rendering algo-
rithm with an analytic approach. Visual Computer, 12(10):515-26, 1996.

BIBLIOGRAPHY 253

[104]

[105)

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

L. Lippert, M.H. Gross, and S. Haring. Ray—tracing of multiresolution
b—spline volumes. Comp. Sc. Dept. internal report no. 239, Institute for
Information Systems, Computer Science Department, Swiss Federal Insti-
tute of Technology.

Martin Lipschultz. Differential Geometry. McGraw—Hill, 1969.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. ACM Computer Graphics, July 1987.

Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press,
1999.

Swami Manohar. Computer graphics in india: Advances in volume graph-
ics. Computers and Graphics, pages 73-84, 1999.

S.R. Marschner and R.J. Lobb. An evaluation of reconstruction filters for
volume rendering. Proceedings. Visualization '94 (Cat. No.94CH35707),
pages 100-7, CP10, 1994.

Nelson Max. Optical models for direct volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics, 1(2), June 1995.

D.P. Mitchell. Spectrally optimal sampling for distribution ray tracing.
Computer Graphics, 25(4):157-64, 1991.

D.P. Mitchell and A.N. Netravali. Reconstruction filters in computer
graphics. Computer Graphics, 22(4):221-8, 1988.

T. Moller, R. Machiraju, K. Mueller, and R. Yagel. A comparison
of normal estimation schemes. Proceedings. Visualization '97 (Cat.
No.97CB36155), pages 19-26, 525, 1997.

T. Moller, R. Machiraju, K. Mueller, and R. Yagel. Evaluation and design
of filters using a taylor series expansion. IEEE Transactions on Visual-
ization and Computer Graphics, 3(2):184-99, 1997.

0. Monga, N. Ayache, and P. Sander. From voxel to curvature. In Proc.
IEEE Computer Vision and Pattern Recognition, 1991.

Olivier Monga, Serge Benayoun, and Olivier D. Faugeras. From partial
derivatives of 3-d density images to ridge lines. Proceedings of SPIE - The
International Society for Optical Engineering, 1808:118-129, 1992.

K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet buffer-
based splatting. Proceedings Visualization 98 (Cat. No.98CB36276),
pages 239-45, 539, 1998.

254

BIBLIOGRAPHY

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

K. Mueller, T. Moller, and R. Crawlis. Splatting without the blur. Pro-
ceedings Visualization 99 (Cat. No.99CB37067), pages 363544, 1999.

Shigeru Muraki. Volume data and wavelet transforms. IEEE Computer
Graphics & Applications, 13(4), July 1993.

Shigeru Muraki. Approximation and rendering of volume data using
wavelet transforms. In Arie E. Kaufman and Gregory M. Nielson, edi-
tors, Visualization ‘92. IEEE, 1996.

Tomas Moéller and Eric Haines. Real-Time Rendering. AK Peters, 1999.

Peter J. Olver, Guillermo Sapiro, and Allen Tannenbaum. Invariant Geo-
metric Evolutions of Surfaces and Volumetric smoothing. SIAM Journal
of Applied Mathematics, 57(1):176-194, 1997.

Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton—jacobi formulations.
Journal of Computational Physics, 79:12—49, 1988.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
ray tracing for isosurface rendering. Proceedings Visualization 98 (Cat.
No.98CB36276), pages 233-8, 538, 1998.

Pasko, Adzhiev, Sourin, and Savchenko. Function representation in geo-
metric modeling: Concepts, implementation and applications. The Visual
Computer, 11(8), 1995.

Alexander Pasko, V. Savchenko, and A. Sourin. Synthetic carving using
implicit surface primitives. Computer—Aided Design, 33:379-388, 2001.

Bradley A. Payne and Arthur W. Toga. Distance field manipulation of
surface models. IEEE Computer Graphics & Applications, 12(1), 1992.

K. Perlin and E.M. Hoffert. Hypertexture. Computer Graphics, 23(3):253—
67, 1989.

Ronald N. Perry and Sarah F. Frisken. Kizamu: A system for sculpting
digital characters. In Proceedings of SIGGRAPH 2001, 2001.

H. Pfister and A. Kaufman. Cube-4 a scalable architecture for real-time
volume rendering. Volume Visualization, 1996. Proceedings., 1996 Sym-
posium on, pages 47 —54, 100, 1996.

Hans Peter Pfister, Matthias Zwicker, Jeoren Van Baar, and Markus
Gross. Surfels: Surface elements as rendering primitives. In Proceedings
of SIGGRAPH 2000, 2000.

BIBLIOGRAPHY 255

[132] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and Larry
Seiler. The volumepro real-time ray—casting system. In SIGGRAPH 1999
Conference Proceedings, pages 251-260, 1999.

[133] Bui Tuong Phong. Illumination for computer generated pictures. Com-
munications of the ACM, 18(6):311-17, 1975.

[134] Alon Raviv and Gershon Elber. Three-dimensional freeform sculpting via
zero sets of scalar trivariate functions. Computer—Aided Desing, 32:513—
526, August 2000.

[135] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive
volume rendering on standard pc graphics hardware using multi-textures
and multi-stage rasterization, 2000.

[136] Alan E. Richardson, Robert P. Burton, and William A. Barrett. Sculpt-
box - a volumetric environment for interactive design of 3D objects. In
Proceedings, 1990 SPIE/SPSE Symposium on Electronic Imaging Science
and Technology, pages 198-209, 1990.

[137] Alan E. Richardson, Robert P. Burton, and William A. Barrett. A volu-
metric system for interactive three-dimensional design. Journal of Imaging
Technology, 17(4):188-194, August/September 1991.

[138] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of SIGGRAPH 2000,
2000.

[139] Salisbury and Srinivasan. Phantom-based haptic interaction with vir-
tual objects. IEEE Computer Graphics & Applications, 17(5), Septem-
ber/October 1997.

[140] Hanan Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.

[141] P.T. Sander. Generic curvature features from 3-d images. IEEE Transac-
tions on Systems, Man and Cybernetics, 19(6):1623-36, 1989.

[142] P.T. Sander and S.W. Zucker. Inferring surface trace and differential
structure from 3-d images. IEFE Transactions on Pattern Analysis and
Machine Intelligence, 12(9):833-54, 1990.

[143] Guillermo Sapiro. Geometric Partial Differential Equations and Image
Analysis. Cambridge University Press, 2001.

[144] Guillermo Sapiro, Ron Kimmel, Doron Shaked, Benjamin B. Kimia, and
Alfred M. Bruckstein. Implementing Continuous Scale Morphology via
Curve Evolution. Pattern Recognition, 26(9):1363-1372, 1993.

256

BIBLIOGRAPHY

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

R. Satherley and M. Jones. Extending hypertextures to non-geometrically
definable volume data. International Workshop on Volume Graphics.
Preprint, pages 77-88 vol.1, 1999.

R. Satherley and M. W. Jones. Vector-city vector distance transform.
(found on authors’ homepage) Submitted to Computer Vision and Image
Understanding, 2001.

G. Schaufler and H.W. Jensen. Ray tracing point sampled geometry. Ren-
dering Techniques 2000. Proceedings of the Furographics Workshop, pages
319-417, 2000.

G. Sealy and K. Novins. Effective volume sampling of solid models using
distance measures. Proceedings Computer Graphics International, pages
12-19, 1999.

T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric
models. Computer Graphics, 20(4):151-60, 1986.

Robert Sedgewick. Algorithms. Addison—Wesley, 2 edition, 1988.

Jean Serra. Image Analysis and Mathematical Morphology, volume 1.
Academic Press, 1982.

Saurabh Sethia and S. Manohar. Minkowski Operator for Voxel Based
Sculpting. Computers and Graphics, pages 593—-600, 1998.

J. A. Sethian. A fast marching level set method for monotonically advanc-
ing fronts. Proceedings of the National Academy of Sciences of the USA -
Paper Edition, 93(4):1591-1595, 1996.

J.A. Sethian and A. Mihai Popovici. 3-d traveltime computation using
the fast marching method. Geophysics, 64(2):516-23, 1999.

James A. Sethian. Fast marching methods. STAM Review, 41(2):199-235,
1999.

James A. Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge Monographs on Applied and Computational Mathematics. Cam-
bridge University Press, second edition, 1999.

Irwin Sobel. An isotropic 3x3x3 volume gradient operator. Voxelator
CDROM.

AL Sourin and A.A. Pasko. Function representation for sweeping by a
moving solid. Visualization and Computer Graphics, IEEE Transactions
on, 2(1):11-18, 1996.

BIBLIOGRAPHY 257

[159]

[160]

[161]

[162]

[163]

[164]

[165)

[166]

[167]

[168]

[169]

[170]

[171]

[172]

M. Sramek and A. Kaufman. vxt: a c++ class library for object vox-
elization. International Workshop on Volume Graphics. Preprint, pages
295-306 vol.2, 1999.

B.T. Stander and J.C. Hart. A lipschitz method for accelerated volume
rendering. Proceedings. 1994 Symposium on Volume Visualization, pages
107-14, 1995.

Nilo Stolte and Ari Kaufman. Parallel spatial enumeration of implicit
surfaces using interval arithmetic for octree generation and its direct vi-
sualization. In Proceedings of Implicit Surfaces’98, pages 81-87, 1998.

John Strain. Semi-Lagrangian methods for level set equations. Journal of
Computational Physics, 151(2):498-533, 1999.

John Strain. A fast modular semi-Lagrangian method for moving inter-
faces. Journal of Computational Physics, 161(2):512-36, 2000.

Hiiseyin Tek and Benjamin B. Kimia. Curve evolution, wave propagation,
and mathematical morphology. In Fourth International Symposium on
Mathematical Morphology, June 1998.

T. Totsuka and M. Levoy. Frequency domain volume rendering. Computer
Graphics Proceedings, pages 271-8, 1993.

Thomas J. True and John F. Hughes. Volume warping. In Arie E. Kauf-
man and Gregory M. Nielson, editors, Proceedings of IEEE Visualization
1992, 1992.

J.K. Udupa and D. Odhner. Shell rendering. IEEE Computer Graphics
and Applications, 13(6):58-67, 1993.

C. Upson and M. Keeler. V-buffer: visible volume rendering. Computer
Graphics, 22(4):59-64, 1988.

Luiz Velho, Demetri Terzopoulos, and Jonas Gomes. Multiscale implicit
models. In Proceedings of SIBGRAPI "94, pages 93-100, 1994.

Milo§ Sramek, Leonid Dimitrov, and J. Andreas Beaerentzen. Correction
of voxelization artifacts by revoxelization. In Proceedings of International
Workshop on Volume Graphics, 2001.

Milos Sramek and Arie Kaufman. Object voxelization by filtering. In
Stephen Spencer, editor, Proceedings of IEEE Symposium on Volume Vi-
sualization, October 1998.

Milo§ Srdamek and Arie Kaufman. Alias—free voxelization of geometric
objects. IEEE Transactions on Visualization and Computer Graphics,
5(3), July/September 1999.

258

BIBLIOGRAPHY

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

Sidney Wang and Arie E. Kaufman. Volume sampled voxelization of ge-
ometric primitives. In Gregory M. Nielson and Dan Bergeron, editors,
Proceedings, Visualization 93. IEEE, 1993.

Sidney Wang and Arie E. Kaufman. Volume—sampled 3D modeling. I[EEE
Computer Graphics € Applications, 1994.

Sidney Wang and Arie E. Kaufman. Volume sculpting. In 1995 Symposium
on Interactive Graphics. ACM SIGGRAPH, 1995.

Riidiger Westermann and Thomas Ertl. Efficiently using graphics hard-
ware in volume rendering applications. In SIGGRAPH 98 Conference
Proceedings. ACM SIGGRAPH, 1998.

Lee Westover. Footprint evaluation for volume rendering. ACM Computer
Graphics, 24(4), August 1990.

Ross T. Whitaker. A level-set approach to 3D reconstruction from range
data. International Journal of Computer Vision, 29(3):203-231, 1998.

Ross T. Whitaker. Reducing aliasing aritfacts in iso—surface of binary
volumes. In Proceedings of the 2000 IEEE symposium on Volume visual-
ization and graphics, pages 23-32, 2000.

Ross T. Whitaker and David E. Breen. Level-set models for the deforma-
tion of solid objects. In Proceedings of the 3rd International Workshop on
Implicit Surfaces. Eurographics, June 1998.

J. Wilhelms and A. Van Gelder. A coherent projection approach for direct
volume rendering. Computer Graphics, 25(4):275-84, 1991.

C.M. Wittenbrink, T. Malzbender, and M.E. Goss. Opacity-weighted
color interpolation for volume sampling. IEEE Symposium on Volume
Visualization (Cat. No.989EX300), pages 135-42, 177, 1998.

Tom Wolfe. The Pump House Gang, chapter The Mid-Atlantic Man.
Farrar, Straus and Giroux, 1968.

Franz Erich Wolter. Cut locus and medial axis in global shape interroga-
tion and representation. Technical report, MIT, 1993.

Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide.
Addison Wesley, second edition, 1998.

R. Yagel, D. Cohen, and A. Kaufman. Normal estimation in 3D discrete
space. Visual Computer, 8(5-6):278-91, 1992.

David M. Young and Robert Todd Gregory. A Survey of Numerical Math-
ematics. Dover, 1988.

BIBLIOGRAPHY 259

[188] Steven W. Zucker and Robert A. Hummel. A three-dimensional edge op-

erator. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
3(3), May 1981.

[189] Karel J. Zuiderveld, Anton H. J. Koning, and M. A. Viergever. Acceler-
ation of ray-casting using 3D distance transforms. In Richard A. Robb,
editor, Visualization in Biomedical Computing 1992, volume 1808 of Pro-
ceedings SPIE, pages 324-335, 1992.

[190] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting.
SIGGRAPH 2001. Conference Proceedings, 2001.

260 BIBLIOGRAPHY

Part VI

Appendices

APPENDIX A

Definitions from
Mathematical Morphology

This appendix contains definitions of basic concepts from Mathematical Mor-
phology. For more details see [Th1].

Definition A.1 A closed ball of radius r at location p is defined

ro— 3 .

b = {x € B |Ip — x|/ < 7} (A1)
Definition A.2 An open ball of radius r placed at location p is defined

b’};:{xeR3|||p—x||<r} (A.2)
Definition A.3 Dilation is

Seb=Jb (A.3)
ves

where b, denotes b translated by the vector v.
Definition A.4 Erosion is

veb

264 Definitions from Mathematical Morphology

The above definition is slightly abusive, since S © b is usually called Minkowski
subtraction, whereas erosion is S © —b. However, when b = —b, there is no
difference between erosion and Minkowski subtraction. Since we are mainly
interested in using a sphere as structuring element, the two are identical in the
context of this thesis. Another, equivalent, definition of erosion is

SEb={v|b, C S} (A.5)

Definition A.5 Open of a set S with a structuring element b is

0(S,0) = J by (A.6)
b,CS

The close operation of S with respect to b may be expressed in terms of the
open operation

Definition A.6 Close of a set S with a structuring element b is

C(S,b) = O(S°, b)° (A7)

Intuitively, the open operation corresponds to moving the structuring element
b around inside the set S. The result of the operation is the subset of S where
b fits. The little protrusions where b does not fit are cut off. Similarly, the close
operation fills out the cavities where b does not fit.

Still assuming that we are dealing with a symmetrical structuring element, open
and close may be rewritten

O(S,b) = (Seb) @b (A.8)
C(S,b) = (S@®b) &b (A.9)

One of the important properties of open and close is that both operators are
idempotent, meaning that repeated application does not change the result:

In Chapter ll we need the following property:
S=C(S,r) = 5°=0(S,7) (A.12)

where S is a closed set, and z is an open set.

265

Proof: Taking the complement of the left side of the implication in ([(AT2) we
obtain.

S¢ = 0(8°, z) (A.13)

and see that we might instead prove that if a set is open with respect to an
open structuring element x, its closure is open with respect to the closure of the
structuring element. Performing the closure of the equation above yields

S =0(S¢,z) U Ty = U Ty (A.14)

v CS zyCS

The last equality follows from the fact that a Ub =aUb (see e.g. [75]). Now,
clearly _
aCbh = aCb (A.15)

Moreover, it is known [T05] that

aCbhb = aChbh (A.16)
Put together L
zy €8¢ = 7Ty C5¢ (A.17)
Therefore o L
o= |J zw=0(57) (A.18)
z,C5°
O

It is worth pointing out that the converse of ([(AIH) does not hold. Thus the
converse of ([AT2) is also not true and it is easy to find counterexamples.

266 Definitions from Mathematical Morphology

APPENDIX B

Neighbourhoods and
connectedness

Throughout most of this thesis, we construe a voxel as a tuple consisting of a
point and an associated value. While this is the most fruitful outlook in our
type of volume graphics, it is sometimes useful to see a voxel as a small cube.
In fact, this is arguably the most common view in computer graphics outside of
volume graphics.

If a voxel is seen as a cube, we can classify its neighbours according to whether
they share

e a face

e a face or an edge

e a face, an edge or a vertex

with the voxel in question. Every voxel has six neighbours in the first category,
18 in the next and 26 in the final category. Each category is called a neigh-
bourhood. Thus voxels have three kinds of neighbourhoods: 6-neighbourhoods,
18-neighbourhoods, and 26—neighbourhoods. If we go back to the a—voxel-is—
a—point outlook, the 6-neighbourhood contains all voxels at Euclidean distance

268 Neighbourhoods and connectedness

lvu, the 18 neighbourhood contains all voxels at Euclidean distance < v/2uvu,
and the 26—neighbourhood contains all voxels at Euclidean distance < V3vu.
The neighbourhoods are illustrated in Figure [B1]

Figure B.1: A voxel and its 6-neighbourhood (left) and a voxel and its 26—
neighbourhood (right).

In this text, the neighbourhoods are mainly used for characterizing what set of
neighbouring voxels that are used to compute something. As an example, the
central differences gradient is a 6-neighbourhood operator while the Zucker—
Hummel gradient is a 26-neighbourhood operator.

However, the neighbourhood concept can also be used to characterize discrete
curves and surfaces. The definitions below are taken from [38]. An N—path is
a sequence of voxels 0..n where voxel i-1, ¢ € [1,n], is an N-neighbour of voxel
i. An N—curve is an N—path where voxel j is only an N-neighbour of voxel i iff
j=i-1.

In particular an N—curve may represent a straight line segment. This leads
to 6, 18 and 26—connected line segments. The connectedness implies various
properties. For instance, the length (i.e. the number of hops) of a 6—connected
line from [0, 0, 0] to [a, b,] is dg = a+b+c whereas the length of the more sparse
26—connected line is only deg = max(a, b, ¢) voxel units long. The length of an
18 connected line is a bit curious: dig = max(dsg, [ds/2]). It can be shown [43]
that dg, dig, and dag are in fact metrics in Z3.

Discrete lines can sometimes be useful if we traverse a ray in a voxel space. In
this case, we might want to visit all voxels along the ray, and an algorithm exists
|1, [A3] for a 6-connected line that is guaranteed to contain the continuous line
from [0,0,0] to [a,b,c]. In general, a 26—connected line cannot contain the con-
tinuous equivalent. On the other hand, since 26—connected lines contain fewer
voxels, they are faster to traverse. In discrete ray tracing [42] it is useful to be
able to switch from one to the other: Large parts of the volume are traversed by
going from voxel to voxel along 26—connected lines. When something interesting
is approached, traversal continues along the same line, but using 6—connectivity.

269

Very fast algorithms for computing 6, 18, and 26—connected discrete rays have
been proposed by Cohen and Kaufman [T, E3].

Surfaces are not characterized by connectedness but rather by impenetrabil-
ity. For instance, a surface is 26-impenetrable if a 26—connected curve cannot
penetrate it without containing a voxel belonging to the surface. Scan conver-
sion algorithms for creating discrete curves and surfaces have been designed by
Kaufman et al. [92 [1].

270 Neighbourhoods and connectedness

APPENDIX C

Proof of Proposition

This appendix contains the proof of the proposition from Chapter Bl We assume
that we are given two permissible, r—open and r—closed solids S7 and S3. Recall
that (G =51 D0, (o =5S2@®b", and (= (1 U 2. (1, (2, and (are open sets,
since 0" is an open ball. In the following, we will also need the medial axis of (3
and (3. The medial axis of an open set is defined in the same way as that of a
closed set, except that the maximal balls are open. According to this definition,
the medial axis is the closure of Serra’s skeleton [I51].

Proposition 621 Given two permissible solids S1 and So and a point p so that
—2r < d¢(p) < 0.

Bu(p) £0C = B¢(p) € I C ¢ (C.1)

where I = 0C1 N OC (see Figure[67) and i = argmin;¢ g4 93d; -

In the following, we assume arbitrarily that d¢, (p) < d¢,(p). Let 9¢; be divided
into two parts 9¢{ C 9¢ and 9¢? C (. We assume that Be, (p) € 9¢? which is
the same as saying that the left side of the implication is true. We know need
to show the right side follows.

Let q be the point in 9 closest to p. We note that I C 9¢{ and that I delimits
A¢¢ and A¢Ch. (See Figure)

272 Proof of Proposition

Figure C.1: aC?v 84?7 Iv p, BCl (p)a q

Let C' = Be, (pq) be the boundary mapping of the line segment pq. We need
to analyse two cases: First, assume that pq does not cross a medial surface. In
that case, by the continuity of the boundary mapping (Proposition EE3), C' is
a continuous curve on the surface 9¢; connecting B¢, (p) and q. Because C is
continuous, it must intersect I. Let x be the first point in pq so that B¢, (x) €
INC C 9¢}. But then pxBg, (x) is a shorter path to d¢f than pq violating our
assumption that q is the closest point in 9¢{ unless q = B, (x) € C(1.

On the other hand, if pq intersects the medial surface at a point x, we know
that from x to q there is a distance of at least 2r since:

Lemma C.1 Given the conditions of the proposition: Any open ball that is a
mazimal ball of (; where i € {1,2} has a radius of at least 2r.

Proof: By contradiction. Assume ¢; had a maximal ball by where x < 2r. In
this case, there would be a corresponding closed ball bY where y=ax—r<r
which is maximal in ¢; ©b". (See Figure and p. 377 of [I21]) However,
due to r—closedness, S1 = (31 ©b". S7 is r—open, and we recall from Proposition
that an r—open solid cannot have any maximal balls of radius < r which
contradicts the assumption O

In the above, we assumed that the closest point belonged to d¢;. This need not
be the case, but the following lemma tells us, that there is some symmetry in
the situation:

Lemma C.2

B (p) ¢ 9¢ = Bq,(p) ¢ ¢ (C.2)

273

Figure C.2: When a solid is eroded by a ball of radius r, the radius of any
maximal ball is reduced by r.

Swap 1 and 2 if de,(p) < d¢, (p).

Proof: We assume d¢, (p) < d¢,(p) and that Be, (p) ¢ 0(. We can construct
a closed ball E of radius * = —d¢, (p) centered at p that is contained in ¢i:
This follows from our assumption that B, (p) which is the closest point of (;
does not belong to 9¢. Because d¢, (p) < d¢,(p) < 0, we know that Be,(p) is
contained in E and hence does not belong to 9¢ O

If B¢, (p) does not belong to 9¢, then neither does B¢, (p). This means that we
can repeat the proof letting q € 9¢3. Thus, it is shown that either the closest
point in 9¢ = I¢{ U 9¢S belongs to I or it is further away than 2r O

274 Proof of Proposition

APPENDIX D

Platforms & Source Code

The source code for the work leading to this thesis amounts to a little more
than 30000 lines of C++. The main layout of the code is shown in Table [D.11

Directory Contents
Carpeaux/ARVDB Adaptive Resolution Volume Database library
Carpeaux/FoPoVol Distance field volume library
(basis of sculpting system)
Carpeaux/Rendering Rendering library (ray casting)
Carpeaux/Volume Volume representation library
Foundation/CGLA Vector and matrix library
Foundation/Common Common datastructures
Foundation/Graphics Graphics library
Foundation/HMM Memory management library
Foundation/Math Math library
Projects/ARVDB-app Executables for adaptive resolution
volume graphics
Projects/FoPo-App Executables for the sculpting system

Table D.1: Source code directory layout

The directories in Table [Tl are only those whose contents is directly related to

276 Platforms & Source Code

the projects discussed in this thesis.

Throughout this thesis references have been made to three platforms: Two
Linux platforms one based on an AMD Athlon processor and one based on an
Intel Pentium IIT processor. In addition an SGI/IRIX platform has been used.
Regarding operating system, Linux kernels >= 2 have been used for all testing
and IRIX version 6.5. The hardware is summarized below.

e Linux/Athlon Platform

Main memory size: 256 Mbytes

AuthenticAMD AMD Athlon(tm) Processor processor

16550A serial ports

post-1991 82077 floppy controller

1.44M floppy drive

vga+ graphics device

keyboard

IDE devices:

/dev/hda: 90069840 sectors (46116 MB) w/1916KiB Cache, CHS=5606/255/63

/dev/hdc: ATAPI DVD-ROM drive, 512kB Cache, UDMA(33)

PCI bus devices:
Host bridge: VIA Technologies, Inc. VI8363/8365 [KT133/KM133] (rev 2).
PCI bridge: VIA Technologies, Inc. VT8363/8365 [KT133/KM133 AGP] (rev 0).
ISA bridge: VIA Technologies, Inc. VT82C686 [Apollo Super South] (rev 34)
IDE interface: VIA Technologies, Inc. Bus Master IDE (rev 16).
USB Controller: VIA Technologies, Inc. UHCI USB (rev 16).
USB Controller: VIA Technologies, Inc. UHCI USB (#2) (rev 16).
Host bridge: VIA Technologies, Inc. VI82C686 [Apollo Super ACPI] (rev 48).
Ethernet controller: 3Com Corporation 3c905C-TX [Fast Etherlink] (rev 116).
Multimedia audio controller: Creative Labs SB Live! EMU10000 (rev 8).
Input device controller: Creative Labs SB Live! (rev 8).
Unknown mass storage controller: Promise Technology, Inc. 20265 (rev 2).
VGA compatible controller: nVidia Corporation NV15 (Geforce2 GTS) (rev 163).

MR R R R DR

e Linux/Pentium Platform

Main memory size: 256 Mbytes

GenuineIntel Pentium IIT (Coppermine) processor

16550A serial ports

post-1991 82077 floppy controller

1.44M floppy drive

vga+ graphics device

keyboard

IDE devices:

/dev/hda: 90069840 sectors (46116 MB) w/1916KiB Cache, CHS=5606/255/63, UDMA(33)

/dev/hdc: ATAPI 40X CD-ROM drive, 128kB Cache, UDMA(33)

ethernet interface

ethO: RealTek RTL8139 Fast Ethernet

PCI bus devices:
Host bridge: Intel Corporation 440BX/ZX - 82443BX/ZX Host bridge (rev 3).
PCI bridge: Intel Corporation 440BX/ZX - 82443BX/ZX AGP bridge (rev 3).
ISA bridge: Intel Corporation 82371AB PIIX4 ISA (rev 2).
IDE interface: Intel Corporation 82371AB PIIX4 IDE (rev 1).
USB Controller: Intel Corporation 82371AB PIIX4 USB (rev 1).
Bridge: Intel Corporation 82371AB PIIX4 ACPI (rev 2).
Multimedia audio controller: Ensoniq ES1371 [AudioPCI-97] (rev 8)
Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139 (rev 16).
VGA compatible controller: nVidia Corporation NV15 (Geforce2 GIS) (rev 163).

[SIE SN

-

e SGI/IRIX Platform

CPU: MIPS R4400 Processor Chip Revision: 6.0
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0
1 250 MHZ IP22 Processor
Main memory size: 256 Mbytes
Secondary unified instruction/data cache size: 2 Mbytes on Processor 0
Instruction cache size: 16 Kbytes
Data cache size: 16 Kbytes
Integral SCSI controller O: Version WD33C93B, revision D
Disk drive: unit 1 on SCSI controller 0
CDROM: unit 3 on SCSI controller O
Integral SCSI controller 1: Version WD33C93B, revision D

277

Disk drive: unit 6 on SCSI controller 1
On-board serial ports: 2
On-board bi-directional parallel port
Graphics board: GU1-Extreme
Integral Ethernet: ecO, version 1
XPI FDDI controller: xpiO, firmware version 9603091512, DAS
Iris Audio Processor: version A2 revision 1.1.0
EISA bus: adapter 0

278 Platforms & Source Code

APPENDIX E

Appendix to Part

E.1 Comparison of Linear and Exponential Prob-
ing

In order to explore whether linear probing is really superior to exponential
probing some tests were performed. When we do linear probing, collisions in
the hash table are resolved by trying the next element until a free one turns up.
In the exponential scheme we first try the next, then hop two elements, then
four &c.

The test program is a very simple loop. For each iteration of the loop, an
element is inserted into the hash table and then looked up.

The test itself consists of running the program, repeatedly, with an increasing
number of iterations.

The test was repeated four times but under different conditions. For two of
the tests the load factor [3] threshold was 0.99 and for the remaining two it
was 0.7. In one of the 0.7 tests and one of the 0.99 tests we modified the hash
function so that it was less random.

280 Appendix to Part [V

For each of these four tests we timed each run of the program and the results
are shown in the graphs below [E]

It is interesting to note that if the 0.7 threshold is used, the runtime seems to
be approximately linear in the number of iterations for both the linear and the
exponential scheme, suggesting (what we hope for) that insertion is amortized
constant time. When the load factor threshold for doubling the table size is
changed to 0.99 growth is, clearly — and as expected, greater than linear (again
for both the linear and the exponential scheme).

Reducing the quality of the hash function has an even greater impact on the
runtime, and makes the result very jumpy.

150 250
—— Exponential probing p —— Exponential probing
--~-- Linear probing ---- Linear probing
200
100
150
0] 0]
° °
c c
o o
o o
@ @
0 0
100
50
50
0 0
0 2e+06 4e+06 6e+06 8e+06 le+07 0 2e+06 4e+06 6e+06 8e+06 le+07
Number of iterations Number of iterations
80 T T T T 300 T T T T
—— Exponential probing —— Exponential probing
-~~~ Linear probing -~~~ Linear probing
60 -
200
0 @
2 2
g 8
Q Q
@ 2
100
20 -
0 ‘ ‘ ‘ ‘ 0 = ‘ ‘ ‘
0 20000 40000 60000 80000 1e+05 0 20000 40000 60000 80000 le+05

Number of iterations Number of iterations

Figure E.1: The runtime in seconds as a function of the number of iterations.
The good hash functions are in the top row, and the bad ones below. The
expand load factor is 0.7 in the graphs on the left and 0.99 on the right.

E.2 Floating Point Format 281

We observe that linear probing is better than exponential probing in almost all
cases, albeit only by a small margin. This can probably be attributed to better
cache consistency — i.e. when doing linear probing there is a great probability
that the next element will be in the same cache line as the one you are looking
at. The same is not true for exponential probing.

When the quality of the hash function is reduced the difference between the
linear scheme and the exponential scheme is pronounced. Only in parts of the
graph showing results for high load factor threshold and poor hash function is
the exponential scheme at an advantage. This seems to indicate that only when
the quality of the hashing function is poor and the table is very nearly full does
the exponential probing have an advantage.

E.2 Floating Point Format

Numerical precision is an important issue that has not been dealt with in the
previous sections.

In normal volume graphics, voxel values are usually represented using fixed point
variables. This is not a good solution in adaptive resolution volume graphics
where the scale-range of features is greater. In an adaptive framework this
would lead to a bad representation of fine scale features.

The best way to understand this is to look at gradient computation. The voxel
values represent distances to the closest surface. Consequently, if the voxels
used for gradient computation are very close together, the difference in distance
to the surface is small, meaning that in a fixed point representation few of the
bits used to represent the voxel values actually differ between the voxels.

In the adaptive scheme, the cells that are very subdivided are close to the
surface, and they have distances that are close to zero. In fixed point format
that would be a problem, but since we use floating point the exponent is just
smaller, and the precision is retained.

An IEEE Standard 754 [84] floating point number has the following layout
| S (1bit) | E (8 bits) | M (23 bits) |

where S is the sign, E is the exponent and M is the mantissa. The real value of
the number is
S 1.M - 2E12T

Notice that 127 is subtracted from the mantissa. To represent numbers that are

282 Appendix to Part [V

smaller than 0 it is necessary to have negative exponents, but for reasons that are
related to comparisons of floating point numbers, it is inconvenient to use two’s—
complement representation for the exponent. Instead 127 is always subtracted
from the exponent. If E = 127 then the actual exponent is 0. Another important
point is that M is actually the true mantissa minus 1. In the floating point
representation the mantissa is always scaled so that there is just one non—zero
digit to the left of the point, and since 1 is the only possible binary digit we
might as well not store it.

It was decided to use a floating point type for the voxel distances but one with
fewer bits than a standard IEEE floating point number which is four bytes long.
Since the volume is a unit cube, we know that we will not need numbers bigger
than 1, and in the IEEE floating point format that corresponds to an exponent
of 127. Therefore, we only need the first seven digits of the exponent. That
saves only one digit, but then only eight bits of the mantissa is used. The sign
is also required, which adds one bit for a total of sixteen bits or two bytes.

The smallest non—zero number that is adequate with the 16 bit floating point
representation is 1.18009e-38. Since the smallest cell distance is 1/16384 =
6.10351562e — 05 that precision should be more than adequate.

Index

Sramek Milos, @11 @3,

adaptive

rendering,
ADF, Bl
aliasing, gl

Avila, Ricardo,

Bloomenthal, Jules,
Breen, David, [[36],

cell,
chainmail,
close,
Cohen—Or, Daniel,
connectedness,
constructive, B [, B4
convolution, B4
curvature
estimating,
maximum,

deformation
elastic,
deformative, B [Tl B4
tools, [HH

Engel, Klaus, [[70l

Fast Marching Method,
Ferley, Eric, B3
Fourier

transform, B5

Freeform, B 27

Galyean, Tinsley, 2 211

Gibson, Sarah, 29 B0 B3 B4 B B3

gradient,

Hanrahan, Pat,
hashing
exponential,
linear,
Hessian,
hierarchical grid,

Kaufman, Arie E., ki 23, Bl

Level-Set Method, (31
Levoy, Marc,
locus

cut,
Lorensen, Bill,

Miiller, Klaus, 73
manifold, B4
manipulation
constructive,
deformative, [C31
mapping
boundary,

Marching Cubes, B0 E11, 6, 79, X7,

i fozal

284

INDEX

mass—spring, [34
morphing, [[35
morphology,

neighbourhood,
Nelson, Max, 70

octree, 20
open,

permissible,
Pfister, Hans Peter, [74]
prefiltering,
profile
distane,
Gauflian,

r—open,

Raviv, Alon,

Ray Casting, [70
reconstruction,
revoxelization,

sampling,

Satherley, Richard, @4

sculpting, 2]

SesAble Technologies, 21
Sethian, James A., @8 g1
skeleton,

Sobierajski Avila, Lisa, 24
Speed function,

Splatting, [C7H

Sramek, Milos, BA 57 B, B,

surface

medial, {1
surfaces
implicit, BTl

v—model,
visualization
image order, [70
object order,
point rendering, [T
surface,
texture based, [[7H

volume,
adaptive,
binary,
distance,
representation,

voxel, @
database, ETT1
grid,
position, @l
value, @l

voxelization, [,

Wang, Sidney, B3]
warping, [30

wavelet,

Westermann, Riidiger, [70
Westover, Lee,
Whitaker, Ross, 24 [[36]

	Preface
	Notation and abbreviations
	I Background
	1 Introduction
	1.1 Basics of Volume Graphics
	1.2 Motivation and Goals
	1.3 Outline

	2 Survey of Volume Sculpting Literature
	2.1 Anatomy of a Volume Sculpting System
	2.2 Volume Sculpting Systems
	2.3 Alternative Approaches
	2.4 Summary

	II Theory
	3 V--models and Voxelization
	3.1 Basic Definitions
	3.2 Sampling and Reconstruction
	3.3 The Binary Volume Representation
	3.4 V--models
	3.5 Discussion

	4 Solids Suitable for Volume Representation
	4.1 Permissible Solids
	4.2 Curvature and Singularities
	4.3 The Boundary Mapping
	4.4 Openness and Closedness
	4.5 Reconstruction
	4.6 Error Bounds
	4.7 Discussion

	III Practice
	5 Data Structures and Fundamental Operations
	5.1 Volume Representation
	5.2 Voxelization
	5.3 Fast Marching Method
	5.4 Discussion

	6 Constructive Manipulations
	6.1 Previous Work
	6.2 Correcting the Distance Field
	6.3 The Morphological Approach
	6.4 Alternative implementation
	6.5 Results
	6.6 Discussion

	7 Deformative Manipulations
	7.1 Elastic Deformation and Animation
	7.2 Warping and Morphing
	7.3 The Level--Set Method
	7.4 Adapting the Level--Set Method
	7.5 Estimating Mean Curvature
	7.6 Testing the Deformative Tools
	7.7 Discussion

	8 Visualization and Interaction
	8.1 Volume Visualization
	8.2 Comparison of Strategies
	8.3 Visualization by Point Rendering
	8.4 Visualization using Marching Cubes
	8.5 Visualization by Ray Casting
	8.6 The Interactive Sculpting System
	8.7 Results
	8.8 Conclusions

	IV Adaptive Volumes
	9 Adaptive Resolution Volume Graphics
	9.1 Choosing a Representation
	9.2 The Adaptive Resolution Volume Database
	9.3 The Geometry Database
	9.4 The Voxel Database
	9.5 Algorithms
	9.6 Results
	9.7 Discussion

	V A Look Back, A Look Ahead
	10 Conclusions
	10.1 Contributions
	10.2 Future Work
	10.3 Applications of Volume Sculpting

	References

	VI Appendices
	A Definitions from Mathematical Morphology
	B Neighbourhoods and connectedness
	C Proof of Proposition
	D Platforms & Source Code
	E Appendix to Part IV
	E.1 Comparison of Linear and Exponential Probing
	E.2 Floating Point Format

	Index

