229 research outputs found

    Topology-Aware Neighborhoods for Point-Based Simulation and Reconstruction

    Get PDF
    International audienceParticle based simulations are widely used in computer graphics. In this field, several recent results have improved the simula- tion itself or improved the tension of the final fluid surface. In current particle based implementations, the particle neighborhood is computed by considering the Euclidean distance between fluid particles only. Thus particles from different fluid components interact, which generates both local incorrect behavior in the simulation and blending artifacts in the reconstructed fluid sur- face. Our method introduces a better neighborhood computation for both the physical simulation and surface reconstruction steps. We track and store the local fluid topology around each particle using a graph structure. In this graph, only particles within the same local fluid component are neighbors and other disconnected fluid particles are inserted only if they come into contact. The graph connectivity also takes into account the asymmetric behavior of particles when they merge and split, and the fluid surface is reconstructed accordingly, thus avoiding their blending at distance before a merge. In the simulation, this neighborhood information is exploited for better controlling the fluid density and the force interactions at the vicinity of its boundaries. For instance, it prevents the introduction of collision events when two distinct fluid components are crossing without contact, and it avoids fluid interactions through thin waterproof walls. This leads to an overall more consistent fluid simulation and reconstruction

    Soft Textured Shadow Volume

    Get PDF
    International audienceEfficiently computing robust soft shadows is a challenging and time consuming task. On the one hand, the quality of image-based shadows is inherently limited by the discrete property of their framework. On the other hand, object-based algorithms do not exhibit such discretization issues but they can only efficiently deal with triangles having a constant transmittance factor. This paper addresses this limitation. We propose a general algorithm for the computation of robust and accurate soft shadows for triangles with a spatially varying transmittance. We then show how this technique can be efficiently included into object-based soft shadow algorithms. This results in unified object-based frameworks for computing robust direct shadows for both standard and perforated triangles in fully animated scenes

    Empreinte carbone des heures de calculs : limites et paradoxes

    Get PDF
    National audienceAvec la prise de conscience croissante de l'urgence climatique nous pouvons observer une frĂ©nĂ©sie Ă  la quantification carbone de la moindre action individuel. Le domaine du calcul intensif n'Ă©chappe pas Ă  ce constat, que ce soit pour quantifier les impacts liĂ©s Ă  une publication, un projet, un laboratoire, ou autre. Au travers cet exposĂ© nous commencerons par dĂ©cortiquer la fabrication de ces indicateurs pour mieux comprendre ce qu'ils nous rĂ©vĂšlent de la rĂ©alitĂ© et au contraire ce qu'ils cachent. Cet analyse nous permettra de mettre en lumiĂšre de mauvaises interprĂ©tations frĂ©quemment rĂ©alisĂ©es dont certaines conduisent Ă  des situations paradoxales, voire mĂȘme Ă  des actions contre productives. Enfin, je partagerais quelques pistes pour ce prĂ©munir de ces biais

    Représentation hybride pour la modélisation géométrique interactive

    Get PDF
    De nos jours, les objets virtuels sont devenus omniprĂ©sents. On les trouve dans de nombreux domaines comme le divertissement (cinĂ©ma, jeux vidĂ©o, etc.), la conception assistĂ©e par ordinateur ou encore la rĂ©alitĂ© virtuelle. Nous nous intĂ©ressons en particulier Ă  la modĂ©lisation d'objets 3D dans le domaine de la crĂ©ation artistique. Ici, la crĂ©ation d'images riches nĂ©cessite de faire appel Ă  des modĂšles trĂšs dĂ©taillĂ©s et donc extrĂȘmement complexes. Les surfaces de subdivision, traditionnellement utilisĂ©es dans ces domaines, voient leur complexitĂ© croĂźtre rapidement lorsqu'on ajoute des dĂ©tails, et la gestion de la connectivitĂ© du maillage de contrĂŽle devient trop contraignante. Une approche standard pour gĂ©rer la complexitĂ© de tels modĂšles est d'utiliser des reprĂ©sentations diffĂ©rentes pour la forme gĂ©nĂ©rale de la surface et les dĂ©tails. Cependant, ces dĂ©tails sont reprĂ©sentĂ©s par des cartes matricielles qui ne possĂšdent pas la plupart des avantages des reprĂ©sentations vectorielles, et cela complexifie certaines tĂąches, comme par exemple l'animation. Dans cette thĂšse, nous proposons deux nouvelles reprĂ©sentations vectorielles, la premiĂšre pour les surfaces de base, la deuxiĂšme pour les dĂ©tails. Nous utilisons pour cette derniĂšre une reprĂ©sentation vectorielle appelĂ©e images de diffusion permettant de crĂ©er des variations lisses Ă  l'aide d'un ensemble rĂ©duit de contraintes. Cela nous permet de reprĂ©senter aussi bien la gĂ©omĂ©trie que la couleur ou d'autres paramĂštres nĂ©cessaires au rendu de façon purement vectoriel, en conservant des contrĂŽles de haut niveau.Notre premiĂšre contribution est une reprĂ©sentation de surfaces, baptisĂ©e LS3, issue de la combinaison entre surfaces de subdivision et -point set surfaces. Cette approche rĂ©duit notablement les artefacts des surfaces de subdivision aux alentours de sommets dits extraordinaires, qui sont connus pour poser problĂšme. Nous prĂ©sentons une analyse numĂ©rique des propriĂ©tĂ©s de ces surfaces, qui tend Ă  montrer que du point de vue de la continuitĂ© elles se comportent au moins aussi bien que les schĂ©mas de subdivision linĂ©aires traditionnels. Notre deuxiĂšme contribution est un solveur pour les images de diffusion dont le principal avantage est de produire en sortie une autre reprĂ©sentation vectorielle lĂ©gĂšre et trĂšs rapide Ă  Ă©valuer. Nous illustrons la force de note solveur sur de nombreux exemples difficiles ou impossibles Ă  rĂ©aliser avec les mĂ©thodes prĂ©cĂ©dentes. Pour conclure, nous montrons comment combiner nos deux contributions pour obtenir une reprĂ©sentation de surface entiĂšrement vectorielle capable de reprĂ©senter des dĂ©tails sans avoir Ă  manipuler la connectivitĂ© d'un maillage.Nowadays, virtual objects have become omnipresent. We can find them in various domains such as entertainment (movies, video games, etc.), computer-aided design or virtual reality. Our main focus in this document is the modeling of 3D objects in the domain of artistic creation, where rich images creation requires highly detailed and complex models.Subdivision surfaces, the most used surface representation in this domain, quickly become very dense as the user add details, and manual handling of the connectivity becomes too cumbersome. A standard approach to handle the complexity of such models is to separate the overall shape of the surface and the details. Although, these detail maps are often stored in bitmap images that does not provide the advantages of vectorial representation, which complicate some tasks, like animation.In this document, we present two new vectorial representations: the first one for the base surface, the second one for the detail maps. For the later, we use a vectorial representation called diffusion images that allow to create smooth or sharp variations from a small set of constraints. This enables us to represent geometry as well as color or any other parameter required for rendering, while keeping high-level controls.Our first contribution is a surface representation, called LS3, based on the combination of subdivision surfaces and point set surfaces. This approach reduces notably artifacts that subdivision surfaces produce around so called extraordinary vertices. We also present a numerical analysis of the mathematical properties of these surfaces, that show that they behave at least as well as classical subdivision schemes.Our second contribution is a solver for diffusion images that has the particularity to produce as output a denser vectorial representation which is light and fast to evaluate. We show the advantages of this approach on several examples that would be hard or impossible to produce with former methods.To conclude, we show how these two contributions can be used together to obtain a fully vectorial surface representation able to produce detailed surfaces without needing to deal with complex connectivity.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    DĂ©formation de la peau d'un personnage avec prise en compte des contacts

    Get PDF
    National audienceLors de l'animation d'un maillage représentant la peau d'un personnage ou d'un animal par exemple, des techniques dites de skinning sont utilisées pour le déformer au niveau des articulations. Bien que trÚs populaires dans l'industrie pour leur trÚs faible coût d'évaluation, les techniques de skinning géométrique comme le LBS (Linear Blending Skinning) ou les dual quaternions, ne permettent pas d'imiter de façon crédible les déformations des membres. Pour mieux capturer le comportement de la peau, d'autres méthodes basées seulement sur le maillage, utilisent des calculs coûteux comme la détection de collisions ou la correction de volume. Toutefois ces approches restent seulement adaptées au rendu hors ligne. Nous présentons la premiÚre méthode temps réel produisant une déformation du maillage en prenant en compte le contact de la peau et, éventuellement, le gonflement des muscles. Nous proposons d'utiliser de façon conjointe le maillage et une représentation volumique. Le maillage est approximé avec une surface implicite qui nous permet de le déformer de façon plausible tout en traitant les collisions et en conservant les détails du maillage

    Multi-Resolution Meshes for Feature-Aware Hardware Tessellation

    Get PDF
    International audienceHardware tessellation is de facto the preferred mechanism to adaptively control mesh resolution with maximal performances. However, owing to its fixed and uniform pattern, leveraging tessellation for feature-aware LOD rendering remains a challenging problem. We relax this fundamental constraint by introducing a new spatial and temporal blending mechanism of tessellation levels, which is built on top of a novel hierarchical representation of multi-resolution meshes. This mechanism allows to finely control topological changes so that vertices can be removed or added at the most appropriate location to preserve geometric features in a continuous and artifact-free manner. We then show how to extend edge-collapse based decimation methods to build feature-aware multi-resolution meshes that match the tessellation patterns. Our approach is fully compatible with current hardware tessellators and only adds a small overhead on memory consumption and tessellation cost

    Least Squares Subdivision Surfaces

    Get PDF
    International audienceThe usual approach to design subdivision schemes for curves and surfaces basically consists in combining proper rules for regular configurations, with some specific heuristics to handle extraordinary vertices. In this paper, we introduce an alternative approach, called Least Squares Subdivision Surfaces (LS^3), where the key idea is to iteratively project each vertex onto a local approximation of the current polygonal mesh. While the resulting procedure have the same complexity as simpler subdivision schemes, our method offers much higher visual quality, especially in the vicinity of extraordinary vertices. Moreover, we show it can be easily generalized to support boundaries and creases. The fitting procedure allows for a local control of the surface from the normals, making LS^3 very well suited for interactive freeform modeling applications. We demonstrate our approach on diadic triangular and quadrangular refinement schemes, though it can be applied to any splitting strategies

    Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression

    Get PDF
    International audienceMoving least squares (MLS) is a very attractive tool to design effective meshless surface representations. However, as long as approximations are performed in a least square sense, the resulting definitions remain sensitive to outliers, and smooth-out small or sharp features. In this paper, we address these major issues, and present a novel point based surface definition combining the simplicity of implicit MLS surfaces [SOS04,Kol05] with the strength of robust statistics. To reach this new definition, we review MLS surfaces in terms of local kernel regression, opening the doors to a vast and well established literature from which we utilize robust kernel regression. Our novel representation can handle sparse sampling, generates a continuous surface better preserving fine details, and can naturally handle any kind of sharp features with controllable sharpness. Finally, it combines ease of implementation with performance competing with other non-robust approaches

    Predicted Virtual Soft Shadow Maps with High Quality Filtering

    Get PDF
    International audienceIn this paper we present a novel image based algorithm to render visually plausible anti-aliased soft shadows in a robust and efïŹcient manner. To achieve both high visual quality and high performance, it employs an accurate shadow map ïŹltering method which guarantees smooth penumbrae and high quality anisotropic anti-aliasing of the sharp transitions. Unlike approaches based on pre-ïŹltering approximations, our approach does not suffer from light bleeding or losing contact shadows. Discretization artefacts are avoided by creating virtual shadow maps on the ïŹ‚y according to a novel shadow map resolution prediction model. This model takes into account the screen space frequency of the penumbrae via a perceptual metric which has been directly established from an appropriate user study. Consequently, our algorithm always generates shadow maps with minimal resolutions enabling high performance while guarantying high quality. Thanks to this perceptual model, our algorithm can sometimes be faster at rendering soft shadows than hard shadows. It can render game-like scenes at very high frame rates, and extremely large and complex scenes such as CAD models at interactive rates. In addition, our algorithm is highly scalable, and the quality versus performance trade-off can be easily tweaked
    • 

    corecore