155,381 research outputs found

    Research Articles in Simplified HTML: a Web-first format for HTML-based scholarly articles

    Get PDF
    Purpose. This paper introduces the Research Articles in Simplified HTML (or RASH), which is a Web-first format for writing HTML-based scholarly papers; it is accompanied by the RASH Framework, a set of tools for interacting with RASH-based articles. The paper also presents an evaluation that involved authors and reviewers of RASH articles submitted to the SAVE-SD 2015 and SAVE-SD 2016 workshops. Design. RASH has been developed aiming to: be easy to learn and use; share scholarly documents (and embedded semantic annotations) through the Web; support its adoption within the existing publishing workflow. Findings. The evaluation study confirmed that RASH is ready to be adopted in workshops, conferences, and journals and can be quickly learnt by researchers who are familiar with HTML. Research Limitations. The evaluation study also highlighted some issues in the adoption of RASH, and in general of HTML formats, especially by less technically savvy users. Moreover, additional tools are needed, e.g., for enabling additional conversions from/to existing formats such as OpenXML. Practical Implications. RASH (and its Framework) is another step towards enabling the definition of formal representations of the meaning of the content of an article, facilitating its automatic discovery, enabling its linking to semantically related articles, providing access to data within the article in actionable form, and allowing integration of data between papers. Social Implications. RASH addresses the intrinsic needs related to the various users of a scholarly article: researchers (focussing on its content), readers (experiencing new ways for browsing it), citizen scientists (reusing available data formally defined within it through semantic annotations), publishers (using the advantages of new technologies as envisioned by the Semantic Publishing movement). Value. RASH helps authors to focus on the organisation of their texts, supports them in the task of semantically enriching the content of articles, and leaves all the issues about validation, visualisation, conversion, and semantic data extraction to the various tools developed within its Framework

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Ontologies on the semantic web

    Get PDF
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The “Semantic Web” was touted by its developers as equally revolutionary but has not yet achieved anything like the Web’s exponential uptake. This 17 000 word survey article explores why this might be so, from a perspective that bridges both philosophy and IT

    Secure Data Sharing With AdHoc

    Get PDF
    In the scientific circles, there is pressing need to form temporary and dynamic collaborations to share diverse resources (e.g. data, an access to services, applications or various instruments). Theoretically, the traditional grid technologies respond to this need with the abstraction of a Virtual Organization (VO). In practice its procedures are characterized by latency, administrative overhead and are inconvenient to its users. We would like to propose the Manifesto for Secure Sharing. The main postulate is that users should be able to share data and resources by themselves without any intervention on the system administrator's side. In addition, operating an intuitive interface does not require IT skills. AdHoc is a resource sharing interface designed for users willing to share data or computational resources within seconds and almost effortlessly. The AdHoc application is built on the top of traditional security frameworks, such as the PKI X.509 certificate scheme, Globus GSI, gLite VOMS and Shibboleth. It enables users rapid and secure collaboration

    Conventions and mutual expectations — understanding sources for web genres

    Get PDF
    Genres can be understood in many different ways. They are often perceived as a primarily sociological construction, or, alternatively, as a stylostatistically observable objective characteristic of texts. The latter view is more common in the research field of information and language technology. These two views can be quite compatible and can inform each other; this present investigation discusses knowledge sources for studying genre variation and change by observing reader and author behaviour rather than performing analyses on the information objects themselves

    Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

    Get PDF
    The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics
    corecore