
Open Research Online
The Open University’s repository of research publications
and other research outputs

Research Articles in Simplified HTML: a Web-first
format for HTML-based scholarly articles
Journal Item

How to cite:

Peroni, Silvio; Osborne, Francesco; Di Iorio, Angelo; Nuzzolese, Andrea Giovanni; Poggi, Francesco; Vitali,
Fabio and Motta, Enrico (2017). Research Articles in Simplified HTML: a Web-first format for HTML-based scholarly
articles. PeerJ Computer Science, 3, article no. e132.

For guidance on citations see FAQs.

c© 2017 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.7717/peerj-cs.132

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/131317122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.7717/peerj-cs.132
http://oro.open.ac.uk/policies.html

Submitted 9 October 2016
Accepted 7 August 2017
Published 2 October 2017

Corresponding author
Silvio Peroni, silvio.peroni@unibo.it

Academic editor
Ciro Cattuto

Additional Information and
Declarations can be found on
page 31

DOI 10.7717/peerj-cs.132

Copyright
2017 Peroni et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Research Articles in Simplified HTML:
a Web-first format for HTML-based
scholarly articles
Silvio Peroni1, Francesco Osborne2, Angelo Di Iorio1, Andrea Giovanni
Nuzzolese3, Francesco Poggi1, Fabio Vitali1 and Enrico Motta2

1Digital and Semantic Publishing Laboratory, Department of Computer Science and Engineering, University
of Bologna, Bologna, Italy

2Knowledge Media Institute, Open University, Milton Keynes, United Kingdom
3 Semantic Technologies Laboratory, Institute of Cognitive Sciences and Technologies, Italian National
Research Council, Rome, Italy

ABSTRACT
Purpose. This paper introduces the Research Articles in Simplified HTML (or RASH),
which is aWeb-first format for writingHTML-based scholarly papers; it is accompanied
by the RASH Framework, a set of tools for interacting with RASH-based articles. The
paper also presents an evaluation that involved authors and reviewers of RASH articles
submitted to the SAVE-SD 2015 and SAVE-SD 2016 workshops.
Design. RASH has been developed aiming to: be easy to learn and use; share scholarly
documents (and embedded semantic annotations) through the Web; support its
adoption within the existing publishing workflow.
Findings. The evaluation study confirmed that RASH is ready to be adopted in
workshops, conferences, and journals and can be quickly learnt by researchers who
are familiar with HTML.
Research Limitations. The evaluation study also highlighted some issues in the
adoption of RASH, and in general of HTML formats, especially by less technically savvy
users. Moreover, additional tools are needed, e.g., for enabling additional conversions
from/to existing formats such as OpenXML.
Practical Implications. RASH (and its Framework) is another step towards enabling
the definition of formal representations of the meaning of the content of an article,
facilitating its automatic discovery, enabling its linking to semantically related articles,
providing access to data within the article in actionable form, and allowing integration
of data between papers.
Social Implications. RASH addresses the intrinsic needs related to the various users
of a scholarly article: researchers (focussing on its content), readers (experiencing new
ways for browsing it), citizen scientists (reusing available data formally defined within
it through semantic annotations), publishers (using the advantages of new technologies
as envisioned by the Semantic Publishing movement).
Value. RASH helps authors to focus on the organisation of their texts, supports them in
the task of semantically enriching the content of articles, and leaves all the issues about
validation, visualisation, conversion, and semantic data extraction to the various tools
developed within its Framework.

How to cite this article Peroni et al. (2017), Research Articles in Simplified HTML: a Web-first format for HTML-based scholarly arti-
cles. PeerJ Comput. Sci. 3:e132; DOI 10.7717/peerj-cs.132

https://peerj.com
mailto:silvio.peroni@unibo.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.132
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.132

Subjects Digital Libraries, World Wide Web and Web Science
Keywords Document conversion, XSLT, RASH, Semantic Publishing, Digital Publishing,
Semantic Web

INTRODUCTION
In the last months of 2014, several posts within technical mailing lists of the Web
(https://lists.w3.org/Archives/Public/public-lod/2014Nov/0003.html) and Semantic Web
(https://lists.w3.org/Archives/Public/public-lod/2014Oct/0058.html) community have
discussed an evergreen topic in scholarly communication, i.e., how could authors of research
papers submit their works in HTML rather than, say, PDF, MS Word or LaTeX. Besides
the obvious justification of simplification and unification of data formats for drafting,
submission and publication, an additional underlying rationale is that the adoption of
HTML would ease the embedding of semantic annotations, thus improving research
communications thanks to already existing W3C standards such as RDFa (Sporny, 2015),
Turtle (Prud’hommeaux & Carothers, 2014) and JSON-LD (Sporny, Kellogg & Lanthaler,
2014). This opens complex and exciting scenarios that the Semantic Publishing community
has promised us in terms of increased discoverability, interactivity, openness and usability
of the scientific works (Bourne et al., 2011; Shotton et al., 2009).

Nonetheless, HTML is still primarily used as an output format only: the authors
write their papers in LaTeX or MS Word and submit sources to the typesetters, who are
responsible for producing the final version, that eventually will be published and read on
the Web. Appropriate tools in the publishing toolchain are used to convert papers among
multiple formats.

The interest in Web-first research papers—that are natively designed, stored and
transferred in HTML—is increasing. Just to cite a few research efforts: Scholarly HTML
(http://scholarlyhtml.org) defines a set of descriptive rules for adopting a defined subset of
HTML to describe the metadata and content of scholarly articles; Dokieli (http://dokie.li)
is a Web application that allows authors to create HTML-based scholarly articles directly
on the browser, adding annotations and many other sophisticated features.

This paper introduces a novel approach towards the same goal: providing authors with a
subset of HTML for Web-first papers. The format is called RASH, Research Articles in Sim-
plified HTML, and consists of 32 HTML elements only. This format is also accompanied by
the RASH Framework, a set of specifications and tools for RASH documents (Peroni, 2017).

There are two key differences between RASH and other similar proposals. First of all,
RASH adopts a simplified pattern-based data model. The number of markup elements to
be used by authors was reduced down to the bare minimum, and the elements themselves
were chosen in order to minimize the cognitive effort of authors when writing documents.
Secondly, RASH does not come with a full authoring environment but is expected to be
produced from MS Word, ODT and LaTeX sources. The basic idea is to allow authors
to keep using the word processors on which they routinely write their papers and to

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 2/35

https://peerj.com
https://lists.w3.org/Archives/Public/public-lod/2014Nov/0003.html
https://lists.w3.org/Archives/Public/public-lod/2014Oct/0058.html
http://scholarlyhtml.org
http://dokie.li
http://dx.doi.org/10.7717/peerj-cs.132

provide them with multi-format converters. These converters are included in the RASH
Framework, whose architecture is modular and extensible for handling new formats in
the future.

RASH is in fact intended to help authors in focussing on the organisation of their
texts and supports them in the task of semantically enriching the content of articles,
delegating all the issues about validation/presentation/conversion of RASH documents
to the various tools developed within its Framework. This is a well-known principle in
scientific publishing, even if not yet fully applied: clear separation of concerns. The authors
should focus on organising the content and structure only, and the format should not
require authors to worry about how the content will be presented on screen and in print.
The publishers will then take care of creating the final formatting to best render the
content in the style of their publications, or authors could use self-publishing platforms as
promoted by Linked Research (http://linkedresearch.org).

Such a separation of concerns can be pushed much forward. Pettifer et al. (2011)
explained well the difference between an article as ‘‘an instance of scholarly thought’’ and
‘‘a representation for consumption by human or machine’’, and showed how multiple
representations can be combined, integrated with external data, enhanced and interacted
with in order to provide scholars with sophisticated tools directly within their articles.

Another critical requirement for any HTML-based language used for scientific writing
is good rendering and acceptance by the publishers. Any new HTML-based format should
be beneficial for publishers as well. Of course, publishers, conferences, and workshop
organisers, would like to manage new formats in the same way as for the formats
they already support, such as LaTeX. To this end, these formats should support tools
for their conversion and for rendering the content in specific layouts, such as ACM
ICPS (http://www.acm.org/sigs/publications/proceedings-templates) and Springer LNCS
(http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0). RASH adopts a
pragmatic approach to this issue: while we are interested in a full-fledged native RASH
authoring environment, we implemented a set of converters, in the RASH Framework,
that are easily integrable (and were integrated) with existing publishing platforms.

The goal of this paper is, in fact, to describe the outcomes of some experimentations on
the use of RASH, so as to understand:
1. if it can be adopted asHTML-based submission format in academic venues (workshops,

conferences, journals);
2. if it is easy to learn and use;
3. if it can be used to add semantic annotations and what are the most widely adopted

vocabularies in RASH papers.
The rest of the paper is structured as follows. In ‘Related Works’ we introduce some

of the most relevant related works in the area, providing a functional comparison of the
various works. In ‘Which ‘‘Web-first’’ Format for Research Articles?’ we introduce the
rationale for the creation of a new Web-first format for scholarly publications, discussing
the importance ofminimality. In ‘Writing Scholarly Articles in HTMLwith RASH’ and ‘The
RASH Framework’ we introduce the theoretical background of RASH, and then provide
an introduction to the language and the main tools included in its Framework. In ‘RASH

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 3/35

https://peerj.com
http://linkedresearch.org
http://www.acm.org/sigs/publications/proceedings-templates
http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0
http://dx.doi.org/10.7717/peerj-cs.132

and SAVE-SD: an Evaluation’ we present, as a case study, an analysis of the adoption of
RASH at the SAVE-SD 2015 (http://cs.unibo.it/save-sd/2015/index.html) and SAVE-SD
2016 (http://cs.unibo.it/save-sd/2016/index.html) workshops. Finally, in ‘Conclusions’ we
conclude the paper by sketching out some future developments.

RELATED WORKS
The growing interest in the publication of Web-first research papers has resulted in the
release of some interesting projects related to RASH. In the following subsections, we
discuss all the most important contributions in this area by splitting them into two main
categories: (i) HTML-based formats and (ii) WYSIWYG editors for HTML documents.

Note that we do not discuss in detail some other efforts that have recently been done
by means of non-HTML languages, even if they are equally relevant for the community.
ScholarlyMarkdown (http://scholarlymarkdown.com/) (Lin & Beales, 2015), for instance,
is a syntax to produce scholarly articles according to aMarkdown (http://daringfireball.net/
projects/markdown/) input. ShareLaTeX (https://www.sharelatex.com/) is a Web-based
real-time collaborative editor for LaTeX documents.

In Table 1 we briefly summarise the features and capabilities of the formats presented,
in order to highlight the main differences between them.

HTML-based formats
One of the first documented contributions that proposed an HTML-based format for
scholarly articles was Scholarly HTML (http://scholarlyhtml.org). It is not defined as a
formal grammar, but as a set of descriptive rules which allows one to specify just a reduced
amount of HTML tags for describing themetadata and content of a scholarly article. It is the
main intermediate format used in ContentMine (http://contentmine.org) for describing
the conversion of PDF content into HTML.

Along the same lines, PubCSS (https://github.com/thomaspark/pubcss/) is a project
which aims at pushing the use of HTML+CSS for writing scholarly articles. It does not
define a formal grammar for the HTML element set to use. Rather it provides some
HTML templates according to four different CSS styles, which mimic four LaTeX styles for
Computer Science articles, i.e., ACM SIG Proceedings, ACM SIGCHI Proceedings, ACM
SIGCHI Extended Abstracts, and IEEE Conference Proceedings.

HTMLBooks (https://github.com/oreillymedia/HTMLBook/) is an O’Reilly’s
specification for creating HTML documents (books, in particular) by using a subset of all
the (X)HTML5 elements. This is one of the first public works by a publisher for pushing
HTML-like publications, even if the status of its documentation (and, consequently, of its
schema) is still ‘‘unofficial’’.

Another project, which shares the same name of one of the previous ones, Scholarly
HTML (https://github.com/scienceai/scholarly.vernacular.io), is a work by the science.ai
(http://science.ai) company that aims at providing a domain-specific data format based
on open standards (among which HTML5) for enabling ‘‘the interoperable exchange of
scholarly articles in a manner that is compatible with off-the-shelf browsers’’ (Berjon &
Ballesteros, 2015). While the format is not defined by any particular formal grammar, it has

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 4/35

https://peerj.com
http://cs.unibo.it/save-sd/2015/index.html
http://cs.unibo.it/save-sd/2016/index.html
http://scholarlymarkdown.com/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
https://www.sharelatex.com/
http://scholarlyhtml.org
http://contentmine.org
https://github.com/thomaspark/pubcss/
https://github.com/oreillymedia/HTMLBook/
https://github.com/scienceai/scholarly.vernacular.io
http://science.ai
http://dx.doi.org/10.7717/peerj-cs.132

Table 1 A comparison among existing HTML-oriented formats for scholarly papers according to seven distinct categories.

Format Syntax Doc Formal
grammar

Semantic
annotations

CSS for
different formats

WYSIWYG
editor

Conversion from Conversion to

RASHa HTML Available onlineb RelaxNGc RDFa, RDF/XML,
Turtle, JSON-LD

Web-based and Springer
LNCS

Apache OpenOffice, Mi-
crosoft Word, RASH
Javascript Editor (RAJE)

ODT, DOCX LaTeX: ACM ICPS, ACM
Journal Large, PeerJ CS,
Springer LNCS

Scholarly
HTML
(2011)d

HTML Available online e None RDFa None None PDF
(via ContentMine—
Normaf)

None

PubCSSg HTML Available onlineh Informal
(via HTML
templates)

None ACM SIG Proceedings,
ACM SIGCHI Proceedings,
ACM SIGCHI Extended
Abstracts, and IEEE Confer-
ence Proceedings

None None PDF
(via browser interface)

HTML
Booksi

HTML Available onlinej XML Schemak None CSS files for PDF print-
ing and EPUB/MOBI-
compatible device visualisa-
tions

None None None

Scholarly
HTML
(2015)l

HTML Available onlinem None RDFa, JSON-LD Web-based Microsoft Word (as refer-
enced onlinen and their on-
line platform (no access for
free guaranted as of 20 June
2017)

DOCX None

Scholarly
HTML
(2016)o

HTML Available onlinep None RDFa, JSON-LD Web-based None None None

dokieli
format

HTML Available onlineq Informal
(via HTML
templates
and patterns)

RDFa, Turtle,
JSON-LD, TRiG

Web-based (Native and Ba-
sic), Springer LNCS, ACM
ICPS

dokielir None PDF
(via browser interface)

(continued on next page)

Peronietal.(2017),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.132

5/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

Table 1 (continued)
Format Syntax Doc Formal

grammar
Semantic
annotations

CSS for
different formats

WYSIWYG
editor

Conversion from Conversion to

Fiduswriter
format

HTML None None None Web-based Fiduswriters None HTML, EPUB, LaTeX

Authorea
format

HTML None None None Web-based Authorea t DOCX, LaTeX DOCX, LaTeX (accord-
ing to several stylesheets),
PDF, Zipped structure with
HTML

Notes.
ahttps://github.com/essepuntato/rash/.
bhttp://cs.unibo.it/save-sd/rash.
chttps://raw.githubusercontent.com/essepuntato/rash/master/grammar/rash.rng.
dhttp://scholarlyhtml.org/.
ehttp://scholarlyhtml.org/core-specification/.
fhttps://github.com/ContentMine/norma.
ghttps://github.com/thomaspark/pubcss/.
hhttp://thomaspark.co/2015/01/pubcss-formatting-academic-publications-in-html-css/.
ihttps://github.com/oreillymedia/HTMLBook/.
jhttp://oreillymedia.github.io/HTMLBook/.
khttps://raw.githubusercontent.com/oreillymedia/HTMLBook/master/schema/htmlbook.xsd.
lhttps://github.com/scienceai/scholarly.vernacular.io.

mhttp://scholarly.vernacular.io/.
nhttps://science.ai/overview.
ohttps://github.com/w3c/scholarly-html.
phttps://w3c.github.io/scholarly-html/.
qhttps://dokie.li/docs.
rhttp://dokie.li.
shttps://www.fiduswriter.org.
thttps://www.authorea.com.

Peronietal.(2017),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.132

6/35

https://peerj.com
https://github.com/essepuntato/rash/
http://cs.unibo.it/save-sd/rash
https://raw.githubusercontent.com/essepuntato/rash/master/grammar/rash.rng
http://scholarlyhtml.org/
http://scholarlyhtml.org/core-specification/
https://github.com/ContentMine/norma
https://github.com/thomaspark/pubcss/
http://thomaspark.co/2015/01/pubcss-formatting-academic-publications-in-html-css/
https://github.com/oreillymedia/HTMLBook/
http://oreillymedia.github.io/HTMLBook/
https://raw.githubusercontent.com/oreillymedia/HTMLBook/master/schema/htmlbook.xsd
https://github.com/scienceai/scholarly.vernacular.io
http://scholarly.vernacular.io/
https://science.ai/overview
https://github.com/w3c/scholarly-html
https://w3c.github.io/scholarly-html/
https://dokie.li/docs
http://dokie.li
https://www.fiduswriter.org
https://www.authorea.com
http://dx.doi.org/10.7717/peerj-cs.132

1The main aim of the LinkedResearch
project is to propose principles for
enabling researchers to share and reuse
research knowledge by means of existing
Web and Semantic Web technologies
towards a future world where researchers
can publish and consume human-friendly
and machine-readable (e.g., by using RDFa
(Sporny, 2015)) scholarly documents.

a well-described documentation (Berjon & Ballesteros, 2015) that teaches how to produce
scholarly documents by using a quite large set of HTML tags, accompanied by schema.org
(http://schema.org) annotations for describing specific structural roles of documents as
well as basic metadata of the paper. The company also provides services that enable the
conversion from Microsoft Word document into ScholarlyHTML format.

One of the authors of the previous work is also the chair of a W3C community
group called ‘‘Scholarly HTML’’ (https://www.w3.org/community/scholarlyhtml/) which
aims at developing a HTML vernacular (https://github.com/w3c/scholarly-html) for the
creation of a Web-first format for scholarly articles. It involves several people from all the
aforementioned specifications (including RASH), and the group work should result in the
release of a community-proposed interchange HTML format. As of September 22, 2017,
the online documentation (https://w3c.github.io/scholarly-html/) is mainly a fork of the
Scholarly HTML specification proposed by science.ai discussed above.

HTML-oriented WYSIWYG editors
One of the most important and recent proposals, which is compliant with the principles
introduced as part of the Linked Research (http://linkedresearch.org) project1, is dokieli
(https://dokie.li) (Capadisli et al., 2017). Dokieli is a web application (still under
development) that allows the creation of HTML-based scholarly articles directly on
the browser, and implements several features among which are annotations (in RDF) and
a notification system. The application makes also available some HTML templates and a
series of widgets for navigating, visualising (in different formats) and printing research
documents easily by using common browsers.

Fidus Writer (https://www.fiduswriter.org/) is another Web-based application for
creating HTML scholarly documents by means of a wordprocessor-like interface. While
the particular format used is not explicitly specified, it allows the conversion of the HTML
documents created within the application in two different formats, i.e., EPUB and LaTeX
(alongside with HTML).

Authorea (https://www.authorea.com) is a Web service that allows users to write papers
by means of a clear and effective interface. It enables the inclusion of the main components
of scientific papers such as inline elements (emphasis, quotations, etc.), complex structures
(figures, equations, etc.), and allows the use of Markdown and LaTeX for adding more
sophisticated constructs. In addition, Authorea is able to export the document in four
different formats (PDF, LaTeX, DOCX, and zipped archive with several HTML files) and
according to a large number of stylesheets used in academic venues.

WHICH “WEB-FIRST” FORMAT FOR RESEARCH
ARTICLES?
The term ‘‘Web-first’’ format indicates the possibility of using HTML as a primary format
to write, store and transfer research articles, and not only to make these articles available
on the Web. Some questions naturally arise in this context: shall we use the full HTML? If
we impose a limited subset, which elements should we consider? Shall we demand specific
rules for using the language?

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 7/35

https://peerj.com
http://schema.org
https://www.w3.org/community/scholarlyhtml/
https://github.com/w3c/scholarly-html
https://w3c.github.io/scholarly-html/
http://linkedresearch.org
https://dokie.li
https://www.fiduswriter.org/
https://www.authorea.com
http://dx.doi.org/10.7717/peerj-cs.132

2Note that accepting HTML as format for
submissions in conferences/workshops is
a totally different issue, since this choice
is normally taken by the organisers.
For instance, see the SAVE-SD 2015
call for papers (http://cs.unibo.it/save-
sd/2015/submission.html) and the
various editions of SePublica (http://ceur-
ws.org/Vol-1155/).

Some works, e.g., Capadisli, Riedl & Auer (2015), suggest not to force any particular
HTML structure for research papers. This choice would allow authors to use whatever
HTML structure they want for writing papers and would reduce (even, eliminate) the fear
for the template bottleneck, i.e., the fact that users may not adopt a particular language if
they are compelled to follow specific rules. On the other hand, leaving to the authors the
freedom of using, potentially, the whole HTML specification may affect, in some way,
the whole writing and publishing process of articles. The author could adopt any kind of
HTML linearisation, e.g., using elements div instead of elements section, using elements
table for their presentational behaviour (i.e., how they are rendered by browsers or other
software readers) and not for presenting tabular data, and the like. This freedom could
result in two main kinds of issues:

• visualisation bottleneck—it may affect the correct use of existing, well-developed and
pretty standard CSSs (e.g., Capadisli’s CSSs developed for Dokieli (https://dokie.li))
for both screen and print media, in having to write new codes for handling paper
visualisation correctly;
• less focus on the research content—the fact that a certain paper is not visualised in a
browser very well (or, worse, in a way that is not the one the author expects) could bring
the author to work on the presentation of the text, rather than on focussing on the actual
research content of the text.

Another point against the use of any HTML syntax for writing papers concerns the
possibility of enabling an easy way for sharing the paper with others (e.g., co-authors) who,
potentially, may not use HTML in the same way. If all the co-authors of a paper are able
to use the full HTML, they may not understand other users’ specific use of some HTML
tags —‘‘why did they use the elements section instead of div?’’; ‘‘what is this freaky use
of elements table?’’. Hence, the advantages of using a common HTML format is quite
evident: only one syntax and only one possible semantics.

There is a further issue worth mentioning. Having a shared, unambiguous and simple
format would facilitate conversions from/into other complex ones (e.g., ODT (JTC1/SC34
WG 6, 2006), OOXML (JTC1/SC34 WG 4, 2011), DocBook (Walsh, 2009), JATS (National
Information Standards Organization, 2012), thus enabling authors to use their own text
editors or word-processors to modify the articles. The conversion is instead much more
complex, error-prone and imprecise on the full HTML.

To complicate an already complex scenario there is the necessary involvement of
publishers. Allowing the authors to use their ownHTML format could be counterproductive
from a publisher’s perspective, in particular whenwe speak about the possibility of adopting
such HTML formats for regular conference/journal camera-ready submissions. From a
recent discussion on the Force11 mailing list (https://groups.google.com/forum/#!topic/
forcnet/g4BNAOOMjMM), it emerges that publishers are willing to adopt HTML for
submissions if and only if it is a clear community need. It means that they will include
HTML formats in the publishing workflow only once a number of conference organisers
decides to include HTML among the accepted formats for paper submissions2. However,
using one clear Web-first format, rather than a plethora of possible variations allowed by

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 8/35

http://cs.unibo.it/save-sd/2015/submission.html
http://cs.unibo.it/save-sd/2015/submission.html
http://ceur-ws.org/Vol-1155/
http://ceur-ws.org/Vol-1155/
https://peerj.com
https://dokie.li
https://groups.google.com/forum/#!topic/forcnet/g4BNAOOMjMM
https://groups.google.com/forum/#!topic/forcnet/g4BNAOOMjMM
http://dx.doi.org/10.7717/peerj-cs.132

3OASIS LegalDocumentML is the
standardisation of AkomaNtoso (http:
//www.akomantoso.org/), which is a set
of simple technology-neutral electronic
representations in XML format of
parliamentary, legislative and judiciary
documents, and has been already adopted
by several parliaments in European Union,
Africa, and South America.

the full HTML schema, would certainly lighten the burden of publishers for including
HTML within their publishing workflow. This inclusion could be additionally favoured by
the availability of services (e.g., editors, converters, enhancers, visualisers) for facilitating
the use of such a Web-first format within the existing publishing environments.

Last but not least, using a controlled subset of HTML is more appropriate for
Semantic Publishing applications (Shotton et al., 2009; Peroni, 2014b). The development
of scripts and applications to extract, for instance, RDF statements directly from the
markup structure of the text is a sort of nightmare if different authors use HTML in
different manners. For instance, what happens when trying to extract the rhetorical
organisation of a scientific paper according to the Document Component Ontology
(DoCO) (http://purl.org/spar/doco) (Constantin et al., 2016) from two HTML documents
that use HTML tags in different ways? Is an HTML element table an actual table
(containing tabular data)? Which are the tags identifying sections? These analyses are
all easier within a controlled and unambiguous subset of HTML.

WRITING SCHOLARLY ARTICLES IN HTML WITH RASH
The subset of HTML we propose in RASH is strictly compliant to a patterns theory we have
developed over the past few years. Patterns are widely accepted solutions to handle recurring
problems. Firstly introduced for architecture and engineering problems (Alexander, 1979),
they have been successfully deployed in computer science and in particular in software
engineering (Gamma et al., 1994). In this section, we briefly introduce our patterns for
document engineering and then we go into the details of RASH.

Theoretical foundations: structural patterns
While we have plenty of tools and languages for creating new markup languages
(e.g., RelaxNG (Clark & Makoto, 2001) and XMLSchema Gao, Sperberg-McQueen &
Thompson, 2012), these usually do not provide any particular guideline for fostering
the development of robust and well-shaped document languages. In order to fill that
gap, in the last decade we have experimented with the use of a theory of structural
patterns for markup documents (Di Iorio et al., 2014), that has since been applied in
several national and international standards, among which OASIS LegalDocumentML
(https://www.oasis-open.org/committees/legaldocml/)3, a legal document standard for the
specification of parliamentary, legislative and judicial documents, and for their interchange
between institutions in different countries.

The basic idea behind this theory is that each element of a markup language should
comply with one and only one structural pattern, depending on the fact that the element:

• can or cannot contain text (+t in the first case, −t otherwise);
• can or cannot contain other elements (+s in the first case, −s otherwise);
• is contained by another element that can or cannot contain text (+T in the first case,
−T otherwise).

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 9/35

http://www.akomantoso.org/
http://www.akomantoso.org/
https://peerj.com
http://purl.org/spar/doco
https://www.oasis-open.org/committees/legaldocml/
http://dx.doi.org/10.7717/peerj-cs.132

By combining all these possible values—i.e.,±t ,±s, and±T—we basically obtain eight
core structural patterns, namely (accompanied by a plausible example within the HTML
elements):
1. inline [+t+s+T], e.g., the element em;
2. block [+t+s−T], e.g., the element p;
3. popup [−t+s+T], e.g., the element aside;
4. container [−t+s−T], e.g., the element section;
5. atom [+t−s+T], e.g., the element abbr;
6. field [+t−s−T], e.g., the element title;
7. milestone [−t−s+T], e.g., the element img;
8. meta [−t−s−T], e.g., the element link.
Instead of defining a large number of complex and diversified structures, the idea is that

a small number of structural patterns are sufficient to express what most users need for
defining the organisation of their documents. Therefore, the two main aspects related to
such patterns are:

• orthogonality—each pattern has a specific goal and fits a specific context. It makes it
possible to associate a single pattern to each of the most common situations in document
design. Conversely, for every situation encountered in the creation of a new markup
language, the corresponding pattern is immediately selectable and applicable;
• assemblability—each pattern can be used only in some contexts within other patterns.
This strictness provides expressiveness and non-ambiguity in the patterns. By limiting
the possible choices, patterns prevent the creation of uncontrolled and misleading
content structures.

Such patterns allow authors to create unambiguous, manageable and well-structured
markup languages and, consequently, documents, fostering increased reusability (e.g.,
inclusion, conversion, etc.) among different languages. Also, thanks to the regularity they
provide, it is possible to perform easily complex operations on pattern-based documents
evenwhen knowing very little about their vocabulary (automatic visualisation of document,
inferences on the document structure, etc.). In this way, designers can implement more
reliable and efficient tools, can make a hypothesis regarding the meanings of the document
fragments, can identify singularities and can study the global properties of a set of
documents, as described in Di Iorio et al. (2012) and Di Iorio et al. (2013).

HTML does not use the aforementioned patterns in a systematic way, as it allows the
creation of arbitrary and, sometimes, quite ambiguous structures. To apply the structural
pattern guidelines for RASH, we restricted HTML by selecting a good subset of elements
expressive enough to capture the typical components of a scholarly article while being also
well-designed, easy to reuse and robust.

RASH: Research Article in Simplified HTML
The Research Articles in Simplified HTML (RASH) format is a markup language that
restricts the use of HTML (http://www.w3.org/TR/html5/) elements to only 32 elements
for writing academic research articles. It allows authors to use embedded RDF annotations.

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 10/35

https://peerj.com
http://www.w3.org/TR/html5/
http://dx.doi.org/10.7717/peerj-cs.132

4Please refer to the official RASH
documentation, available at https:
//rawgit.com/essepuntato/rash/master/
documentation/index.html, for a complete
introduction of all the elements and
attributes that can be used in RASH
documents.

5The following prefixes are always
mandatory in any RASH document:
• schema: http://schema.org/
• prism: http://prismstandard.org/
namespaces/basic/2.0/.

In addition, RASH strictly follows the Digital Publishing WAI-ARIA Module 1.0 (Garrish
et al., 2016) for expressing structural semantics on various markup elements used.

All RASH documents begin as a simple HTML5 document4 (Hickson et al., 2014),
by specifying the generic HTML DOCTYPE followed by the document element html
with the usual namespace (‘‘http://www.w3.org/1999/xhtml’’) and with additional (and
mandatory) prefix declarations through the attribute prefix5. The element html contains
the element head for definingmetadata of the document according to the DCTERMS (http:
//dublincore.org/documents/dcmi-terms/) and PRISM (http://www.prismstandard.org/)
standards and the element body for including the whole content of the document. The
element head of a RASH document must include some information about the paper,
i.e., the paper title (element title), at least one author, while other related information
(i.e., affiliations, keywords and categories included using the elements meta and link) are
optional. The element body mainly contains textual elements (e.g., paragraphs, emphases,
links, and quotations) for describing the content of the paper, and other structural elements
(e.g., abstract, sections, references, and footnotes) used to organise the paper in appropriate
blocks and to present specific complex structures (e.g., figures, formulas, and tables).

In the following subsection, we provide a quick discussion about usage patterns in
RASH, and introduce the tools used for developing its grammar.

Development and patterns
The development of RASH started from the whole HTML5 grammar, and proceeded by
removing and restricting the particular use of HTML elements, to make them expressive
enough for representing the structures of scholarly papers and to have the language totally
compliant with the theory on structural patterns for XML documents (Di Iorio et al., 2014)
introduced in ‘Theoretical foundations: structural patterns’.

The systematic use of these structural patterns is an added value in all stages of the
documents’ lifecycle: they can be guidelines for creating well-engineered documents and
vocabularies, rules to extract structural components from legacy documents, indicators
to study to what extent documents share design principles and community guidelines.
All these characteristics have allowed us to simplify, at least to some extent, the handling
of all the requirements introduced in ‘Introduction’ and ‘Which ‘‘Web-first’’ Format for
Research Articles?’ in RASH. Table 2 shows what is the current pattern assignment for each
element in RASH.

Notice that we do not use two patterns presented in ‘Theoretical foundations: structural
patterns’, namely atom and popup. The elements compliant with the former pattern are
contained in discursive blocks (e.g., paragraphs) and contain only textual content with no
additional elements. This is very infrequent in scholarly writings since any element used for
emphases, links, and other in-sentence elements can always contain additional elements
(e.g., an emphasis can contain a link).

A different discourse can be done for the pattern popup, which is meant to represent
complex substructures that interrupt but do not break the main flow of the text, such
as footnotes (Di Iorio et al., 2014). An element compliant to the popup pattern, while still
not allowing directly text content inside itself, is found in elements with a mixed context

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 11/35

https://rawgit.com/essepuntato/rash/master/documentation/index.html
https://rawgit.com/essepuntato/rash/master/documentation/index.html
https://rawgit.com/essepuntato/rash/master/documentation/index.html
http://schema.org/
http://prismstandard.org/namespaces/basic/2.0/
http://prismstandard.org/namespaces/basic/2.0/
https://peerj.com
http://www.w3.org/1999/xhtml
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://www.prismstandard.org/
http://dx.doi.org/10.7717/peerj-cs.132

Table 2 The use of structural patterns in RASH.

Pattern RASH element

inline a, code, em, math, q, span, strong, sub, sup, svg
block figcaption, h1, p, pre, th
popup none
container blockquote, body, figure, head, html, li, ol, section,

table, td, tr, ul
atom none
field script, title
milestone img

meta link, meta

[t+s+]. In particular, in developing RASH, we discussed which of the following two
possible approaches for defining footnotes was more adequate to our needs.

The first option was a container-based behaviour, also suggested by JATS (National
Information Standards Organization, 2012) by means of the element fn-group and not
included in HTML specifications, that allows the authors to specify footnotes (through
the element ft) by using a tag that is totally separated from the main text from which it is
referenced (usually through XML attributes), as shown in the following excerpt:
<-- A paragraph referring to a footnote -->
<p>

In this paragraph there is an explicit reference to the
second footnote <xref rid="n2"></xref >.

</p>

<-- The group containing all the footnotes -->
<fn-group >

<fn id="n1">
<p>This is a paragraph within a footnote.</p>

</fn>
<fn id="n2">

<p>This is a paragraph in another footnote.</p>
<p>

All the footnotes are contained in a group , so as
to collect them together.

</p>
</fn>
...

</fn-group >

The alternative was a popup-based behaviour, used by default in LaTeX (through the
marker \footnote{}) and even possible in JATS (which is a very permissive language
by design), where a paragraph can be abruptly interrupted by one or more paragraphs
specified in a footnote, as shown in the following excerpt:
<-- A paragraph containing a footnote -->
<p>

In this paragraph the footnote <fn id="n3"><p>That is
what we call popup -based behaviour !.</p></fn> has been
defined directly within it.

</p>

We considered the latter approach a bit confusing, since it actually decreases the
readability of the HTML source where footnotes are needed. We thus decided to adopt a
solution similar to the JATS fn-group element, extending the HTML5 section element
with @role set to doc-endnotes and doc-endnote:

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 12/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

6The content model of an element is the
particular organisation of its content in
terms of text, attributes and elements that
it can contain.

<-- A paragraph referring to a footnote -->
<p>

In this paragraph there is an explicit reference to the
second footnote .

</p>

<-- The group containing all the footnotes -->
<section role="doc -endnotes">

<section role="doc -endnote" id="fn1">
<p>This is the text of a footnote.</p>

</section >
<section role="doc -endnote" id="fn2">

<p>This is the text of another footnote.</p>
</section >
...

</section >

Grammar and peculiarities
The formal grammar of RASH (https://raw.githubusercontent.com/essepuntato/rash/
7ef4c2f2ea63575fb32f17e826d60333543eda67/grammar/rash.rng) (current version: 0.6.1)
has been developed by means of RelaxNG (Clark & Makoto, 2001), which is a simple,
easy to learn, and powerful schema language for XML. The grammar has been logically
organised in four distinct logical blocks of syntactic rules, defining respectively elements,
attributes, content models6 for the elements and their related attribute lists, as summarised
in the following excerpt:
...
<define name="p">

<element name="p">
<ref name=" attributes_html_element_no_role" />
<ref name=" cm_inline" />

</element >
</define >
...
<define name=" aClass">

<attribute name="class">
<data type=" NMTOKENS" />

</attribute >
</define >
...
<define name=" cm_inline">

<zeroOrMore >
<choice >

<text />
<ref name="a" />
<ref name="aRef" />
<ref name="img" />
<ref name="svg" />
<ref name="math" />
<ref name=" img_math" />
<ref name=" span_latex" />
<ref name="span" />
<ref name="code" />
<ref name="sub" />
<ref name="sup" />
<ref name="em" />
<ref name=" strong" />
<ref name="q" />

</choice >
</zeroOrMore >

</define >
...
<define name=" attributes_html_element_no_role">

<ref name=" attributes_html_generic" />
<optional >

<ref name=" aClass" />
</optional >
<ref name=" attributes_rdfa" />

</define >
...

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 13/35

https://peerj.com
https://raw.githubusercontent.com/essepuntato/rash/7ef4c2f2ea63575fb32f17e826d60333543eda67/grammar/rash.rng
https://raw.githubusercontent.com/essepuntato/rash/7ef4c2f2ea63575fb32f17e826d60333543eda67/grammar/rash.rng
http://dx.doi.org/10.7717/peerj-cs.132

7In the paper, for the sake of clarity, we use
the prefix ‘‘@’’ when we name attributes
(e.g., the attribute named ‘‘role’’ is
introduced as @role), while we just name
elements with their name (e.g., section).

Starting from the latest versions of the language, there has been a clear shift towards
an extended use of HTML5 semantic elements, despite the fact they are not backwards
compatible with their more generic alternatives in HTML4 (Raggett, Le Hors & Jacobs,
1999). In particular, the elements section, figure, and figcaption have been adopted
so as to clearly refer to paper sections and boxes with tables, figures, listings and formulas,
accompanied by a particular caption.

While this choice has fostered the readability of the source, the use of these HTML5
elements was not enough to provide proper semantics and accessibility to the RASH source.
Thus, in order to improve the user experience in terms of accessibility of such HTML-based
papers, RASH reuses some items from the W3C Accessible Rich Internet Applications 1.1
(Diggs et al., 2015), and also exploits several roles introduced in the Digital Publishing
WAI-ARIA Module 1.0 (Garrish et al., 2016), which allows the ‘‘digital publishers to
apply the structural semantics they need to drive the authoring process while getting free
accessibility’’ (https://lists.w3.org/Archives/Public/public-dpub-aria/2016Feb/0032.html).
The use of such semantics is implemented by means of the attribute @role7, that can be
used on certain RASH elements, e.g., sections, and it is very useful for specifying a clear
structural semantics where it is not formally defined. For instance, all the references are
organised in a list within a special section defined by using the element section with the
attribute @role set to ‘‘doc-bibliography’’. This special section contains one list with a
bibliographic reference for each list item (i.e., the element li accompanied by the attribute
@id for referencing to it within the text and the attribute @role set to ‘‘doc-biblioentry’’),
as shown in the following excerpt:
<section role="doc -bibliography">

<h1>References </h1>

<li id=" Per2014" role="doc -biblioentry">
<p>Write here the reference entry.</p>

...

</section >

Formulas require special consideration, since there are differentways to implement them.
The standard specification for representing mathematics on the Web is MathML (Carlisle,
Ion & Miner, 2014). Even if MathML is the best accessible way for writing mathematical
formulas, the organisation of the elements for defining even a simple formula is quite
verbose and this is a reasonable obstacle to its direct adoption, as shown in the following
excerpt for describing the formula πr2:
<math xmlns="http ://www.w3.org /1998/ Math/MathML">

<mi>π </mi>
<mo ><!-- ⁢ --></mo>
<msup >

<mi>r</mi>
<mn >2</mn>

</msup >
</math >

To help the creator of RASH documents in dealing with formulas, RASH adds two other
ways for writing formulas in addition to MathML. The first one is to use an image (element
img), which is a very simple way to include maths in a paper. On the other hand, it is
not accessible at all since the various elements of the formula are not marked-up properly

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 14/35

https://peerj.com
https://lists.w3.org/Archives/Public/public-dpub-aria/2016Feb/0032.html
http://dx.doi.org/10.7717/peerj-cs.132

so as to distinguish them. Another option is to use LaTeX (or, alternatively, ASCIIMath:
http://asciimath.org), which is one of the most common ways to write formulas in many
scientific papers. Both options are specifiable in RASH by using either the element img
or the element span respectively, accompanied by the attribute @role set to ‘‘math’’, as
shown in the following excerpt:
<-- Specifying a formula through the element 'img ' -->

<-- Specifying a formula in LaTeX through the element 'span ' -->
\pi r^2

The rendering of any LaTeX or ASCIIMath formula and the multi-browser support
for MathML is implemented by using MathJax (https://www.mathjax.org/), which is a
Javascript display engine for mathematics that works in most modern browsers. Of course,
it is necessary to explicitly import MathJax in the element head if any rendering of formulas
is actually needed, as shown in the following:
<!-- MathJax for multi -browser support of LaTeX formulas and MathML -->
<script src="https :// cdnjs.cloudflare.com/ajax/libs/mathjax /2.7.1/ MathJax.js?config=TeX -AMS -

MML_HTMLorMML">
</script >

RASH has been developed in order to allow anyone to add RDFa annotations (Sporny,
2015) to any element of the document. For instance, this paragraph contains the following
RDF statement (in Turtle (Prud’hommeaux & Carothers, 2014)):
@prefix cito: <http :// purl.org/spar/cito/> .
<> cito:credits <http ://www.w3.org/TR/rdfa -syntax/> .

That was implemented by using specific RDFa attributes (@property and @resource,
in this case) within the paragraph content, while the prefixes were defined in the element
html, as shown in the following excerpt:
<html prefix ="cito: http :// purl.org/spar/cito/">

...
<p>

RASH has been developed in order to allow anyone to add
<span

property ="cito:credits"
resource ="http ://www.w3.org/TR/rdfa -syntax/">RDFa

annotations to any element of the document.
</p>
...

</html >

In addition to RDFa, RASH makes available another way to inject RDF statements
(Cyganiak, Wood & Lanthaler, 2014) to the document, by means of an element script
(within the element head):

• with the attribute type set to ‘‘text/turtle’’ for adding plain Turtle content
(Prud’hommeaux & Carothers, 2014);
• with the attribute type set to ‘‘application/ld+json’’ for adding plain JSON-LD content
(Sporny, Kellogg & Lanthaler, 2014);
• with the attribute type set to ‘‘application/rdf+xml’’ for adding plain RDF/XML
content (Gandon & Schreiber, 2014).

An example of the use of the script for Turtle and JSON-LD statements is shown in
the following excerpt:

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 15/35

https://peerj.com
http://asciimath.org
https://www.mathjax.org/
http://dx.doi.org/10.7717/peerj-cs.132

<script type="text/turtle">
@prefix pro: <http :// purl.org/spar/pro/> .
@prefix foaf: <http :// xmlns.com/foaf /0.1/& gt; .
@prefix sd: <https :// w3id.org/scholarlydata/person /> .
sd:silvio -peroni a foaf:Person ;

foaf:givenName "Silvio" ;
foaf:familyName "Peroni" ;
foaf:homepage <http ://www.essepuntato.it> ;
pro:holdsRoleInTime [

a pro:RoleInTime ;
pro:withRole pro:author ;
pro:relatesToDocument <>

] .
</script >

<script type=" application/ld+json">
{

"@context ":
{

"nick": "http :// xmlns.com/foaf /0.1/ nick",
"sd": "https :// w3id.org/scholarlydata/person /"

},
"@id": "sd:silvio -peroni",
"nick": ["S.", "essepuntato "]

}
</script >

It is worth noticing that RASHdoes not require any particular vocabulary for introducing
RDF statements, except three properties from schema.org (http://schema.org) for defining
author’s metadata (see the RASH documentation (https://rawgit.com/essepuntato/rash/
master/documentation/index.html#metadata) for additional details). For instance, in
this document (in particular, in its RASH version (https://w3id.org/people/essepuntato/
papers/rash-peerj2016.html)) we mainly use CiTO (Peroni & Shotton, 2012) and other
SPAR Ontologies (Peroni, 2014a) for creating citation statements about the paper itself,
but alternative and/or complementary vocabularies are freely usable as well.

THE RASH FRAMEWORK
One of the issues we had to face, and in general anyone has to face when proposing a new
markup language, was to provide tools for writing papers in RASH. It is undeniable that:

• not all the potential authors are able (or willing) to write scholarly articles in HTML,
even within the Web community;
• not all the potential authors are able (or willing) to manually add additional semantic
annotations, even within the Semantic Web community.

The authorial activity of writing an article by using RASH, but also any other new
Web-first format, must be supported by appropriate interfaces and tools to reach a broad
adoption.

A possible solution was to implement a native HTML authoring environment, so that
authors did not have to deal directly with the new language. However, this solution would
have forced all co-authors to use to the same tool and introduced a variety of technical
difficulties, since it is not easy to create and support a user friendly and flexible work
environment. We believe that a more liberal approach, that allows each author to keep
using her/his preferred tools, even off-line, is more practical.

This is the idea behind the RASH Framework (https://github.com/essepuntato/rash)
(Peroni, 2017): a set of specifications and writing/conversion/extraction tools for

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 16/35

https://peerj.com
http://schema.org
https://rawgit.com/essepuntato/rash/master/documentation/index.html#metadata
https://rawgit.com/essepuntato/rash/master/documentation/index.html#metadata
https://w3id.org/people/essepuntato/papers/rash-peerj2016.html
https://w3id.org/people/essepuntato/papers/rash-peerj2016.html
https://github.com/essepuntato/rash
http://dx.doi.org/10.7717/peerj-cs.132

Figure 1 RASH Framework. The RASH Framework and its main components.

writing articles in RASH. In this section, we give a brief description of all the tools
we have developed in the framework. All the software components are distributed
under an ISC License (http://opensource.org/licenses/ISC), while the other components
are distributed under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). A summary of the whole framework is
introduced in Fig. 1.

Validating RASH documents
RASH has been developed as a RelaxNG grammar (Clark & Makoto, 2001), i.e., a well-
known schema language for XML documents. All the markup items it defines are fully
compatible with the HTML5 specifications (Hickson et al., 2014).

In order to check whether a document is compliant with RASH, we developed a script
(https://github.com/essepuntato/rash/blob/master/tools/rash-check.sh) to enable RASH
users to check their documents simultaneously both against the specific requirements
in the RASH RelaxNG grammar and also against the HTML specification through W3C
Nu HTML Checker (http://validator.w3.org/nu/). This will hopefully help RASH users to
timely detect and fix any mistakes in their documents. This script also checks datatype
microsyntaxes.

In addition to the aforementioned script, we developed a Python application
(https://github.com/essepuntato/rash/tree/master/tools/rash-validator) that enables one to
validateRASHdocuments against theRASHgrammar. This applicationmakes also available
a Web interface for visualising all the validation issues retrieved in RASH documents.

Visualising RASH documents
The visualization of a RASH document is rendered by the browser by means of appropriate
CSS3 (http://www.w3.org/Style/CSS/specs.en.html) stylesheets (Atkins Jr, Etemad &
Rivoal, 2017) and Javascript developed for this purpose.

RASH adopts external libraries, such as Bootstrap (http://getbootstrap.com/) and JQuery
(http://jquery.com/), in order to provide the current visualisation and include additional
tools for the user. For instance, the footbar with statistics about the paper (i.e., number of

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 17/35

https://peerj.com
http://opensource.org/licenses/ISC
http://creativecommons.org/licenses/by/4.0/
https://github.com/essepuntato/rash/blob/master/tools/rash-check.sh
http://validator.w3.org/nu/
https://github.com/essepuntato/rash/tree/master/tools/rash-validator
http://www.w3.org/Style/CSS/specs.en.html
http://getbootstrap.com/
http://jquery.com/
http://dx.doi.org/10.7717/peerj-cs.132

8The layouts currently available are Web-
based and Springer’s Lecture Note in
Computer Science (http://www.springer.
com/computer/lncs?SGWID=0-164-6-
793341-0)—the latter is based on the
Springer LNCS CSS included in dokieli
(http://dokie.li) (Capadisli et al., 2017).

words, figures, tables and formulas) and a menu to change the actual layout of the page8,
the automatic reordering of footnotes and references, the visualisation of the metadata of
the paper, etc.

Note that this kind of automatic rendering of paper items, such as references to a
bibliographic entry or a figure, reduce the cognitive effort of an author when writing a
RASH paper. For instance, a piece of text referencing a table, e.g., ‘‘as shown in Table 2’’, is
created without caring about the particular text to specify for that reference (‘‘Table 2’’ in
the example), since RASH prescribes to specify just an empty link to the object one wants
to refer to, as shown in the following excerpt:
<p>... as shown in ...</p>

For these objects, the Javascript scripts decide which is the most suitable text to put there
according to the type of the item referenced.

Converting RASH into LaTeX styles
We spent some effort in preparing XSLT 2.0 documents (Kay, 2007) for converting
RASH documents into different LaTeX styles, such as ACM ICPS (http://www.acm.
org/sigs/publications/proceedings-templates) and Springer LNCS (http://www.springer.
com/computer/lncs?SGWID=0-164-6-793341-0), among the others. We believe this is
essential to foster the use of RASH within international events and to easily publish RASH
documents in the official LaTeX format currently required by the organisation committee
of such events. Obviously, the full adoption of RASH or any other Web-first format would
make these stylesheets not necessary but, currently, they are fundamental for the adoption
of the overall approach.

Producing RASH from ODT and DOCX
We also developed two XSLT 2.0 documents to perform conversion from Apache
OpenOffice documents (https://github.com/essepuntato/rash/blob/master/xslt/from-
odt.xsl) and Microsoft Word documents (https://github.com/essepuntato/rash/blob/
master/xslt/from-docx.xsl) into RASH documents. The RASH documentation provides a
detailed description of how to use Apache OpenOffice (https://rawgit.com/essepuntato/
rash/master/documentation/rash-in-odt.odt) and Microsoft Word (https://rawgit.
com/essepuntato/rash/master/documentation/rash-in-docx.docx) for writing scientific
documents that can be easily converted to the RASH format. The standard features of these
two editors (e.g., styles, document properties, etc.), elements (e.g., lists, pictures, captions,
footnotes, hyperlinks, etc.) and facilities (e.g., mathematical editor, cross-reference editor,
etc.) can be used to produce fully compliant RASH documents. A web-based service,
for converting documents online (presented in ‘ROCS’) and two Java applications
for ODT (https://github.com/essepuntato/rash/tree/master/tools/odt2rash) and DOCX
(https://github.com/essepuntato/rash/tree/master/tools/docx2rash) documents (that can
be downloaded and used offline on the local machine) were developed to facilitate the
conversion process of Apache OpenOffice and Microsoft Word documents into the RASH
format.

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 18/35

http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0
http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0
http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0
http://dokie.li
https://peerj.com
http://www.acm.org/sigs/publications/proceedings-templates
http://www.acm.org/sigs/publications/proceedings-templates
http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0
http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0
https://github.com/essepuntato/rash/blob/master/xslt/from-odt.xsl
https://github.com/essepuntato/rash/blob/master/xslt/from-odt.xsl
https://github.com/essepuntato/rash/blob/master/xslt/from-docx.xsl
https://github.com/essepuntato/rash/blob/master/xslt/from-docx.xsl
https://rawgit.com/essepuntato/rash/master/documentation/rash-in-odt.odt
https://rawgit.com/essepuntato/rash/master/documentation/rash-in-odt.odt
https://rawgit.com/essepuntato/rash/master/documentation/rash-in-docx.docx
https://rawgit.com/essepuntato/rash/master/documentation/rash-in-docx.docx
https://github.com/essepuntato/rash/tree/master/tools/odt2rash
https://github.com/essepuntato/rash/tree/master/tools/docx2rash
http://dx.doi.org/10.7717/peerj-cs.132

Figure 2 ROCS. The architecture of ROCS.

In the past few years, as sort of alpha-testing, we have used these conversion approaches
with many internal projects in the Digital and Semantic Publishing Laboratory of
the Department of Computer Science and Engineering at the University of Bologna.
Moreover, also our co-authors and collaborators from different disciplines (e.g., business
and management, humanities, medicine, etc.) have successfully used this approach for
producing their documents, giving us a chance to have fruitful feedback, comments, and
suggestions. In particular, we have been able to convert with discrete success several ODT
and DOCX files of research papers, PhD theses, documentations, and project proposals
and deliverables.

ROCS
We created an online conversion tool called ROCS (RASH Online Conversion Service)
(http://dasplab.cs.unibo.it/rocs) (Di Iorio et al., 2016) for supporting authors in writing
RASH documents and preparing submissions that could be easily processed by journals,
workshops, and conferences. ROCS integrates the tools introduced in the previous sections.

The abstract architecture of the tool is shown in Fig. 2. ROCS allows converting either
an ODT document or a DOCX document, written according to specific guidelines, into
RASH and, then, into LaTeX according to the following layouts: Springer LNCS, ACM
IPCS, ACM Journal Large, PeerJ. Such guidelines, introduced in ‘Producing RASH from
ODT and DOCX’, are very simple and use only the basic features available in Apache
OpenOffice Writer and in Microsoft Word, without any external tool or plug-in.

ROCS allows users to upload four kinds of file, i.e., an ODT document, a DOCX
document, an HTML file compliant with RASH, and a ZIP archive which contains an

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 19/35

https://peerj.com
http://dasplab.cs.unibo.it/rocs
http://dx.doi.org/10.7717/peerj-cs.132

9The source code and binaries of SPAR
Xtractor are available at https://github.
com/essepuntato/rash/tree/master/sources/
spar-xtractor and https://github.com/
essepuntato/rash/tree/master/tools/spar-
xtractor, respectively.

10The prefix po: stands for the namespace
http://www.essepuntato.it/2008/12/
pattern#.

HTML file compliant with RASH and related files (i.e., CSSs, javascript files, fonts,
images). It returns a ZIP archive containing the original document plus all its converted
versions, i.e., RASH, if an ODT/DOCX file was given, and the LaTeX file.

The main advantage of having the paper both in RASH and in LaTeX is that it is fairly
easy for RASH to be adopted by workshops, conferences or journals. Since the program
committee, the reviewers, and the editors have also access to a LaTeX or a PDF version of
the paper, the RASH file is an addition that does not preclude any current workflows. Of
course, the hope is that the inherent advantages of an HTML-based format such as RASH
will eventually persuade stakeholders to adopt the HTML version whenever it is possible,
keeping the alternatives as fall-back options.

Enriching RASH documents with structural semantics
Another development of the RASH Framework concerns the automatic enrichment of
RASH documents with RDFa annotations defining the actual structure of such documents
in terms of the FRBR-aligned Bibliographic Ontology (FaBIO) (http://purl.org/spar/fabio)
and the Document Component Ontology (DoCO) (http://purl.org/spar/doco) (Constantin
et al., 2016). More in detail, we developed a Java application called SPAR Xtractor suite9.
SPAR Xtractor is designed as a one-click tool able to add automatically structural semantics
to a RASH document. SPAR Xtractor takes a RASH document as input and returns a new
RASH document where all its markup elements have been annotated with their actual
structural semantics by means of RDFa. The tool associates a set of FaBIO or DoCO types
with specific HTML elements. The set of HTML elements and their associations with
FaBIO or DoCO types can be customised according to specific needs of expressivity. The
default association provided by the current release of SPAR Xtractor is the following:

• the root html element is mapped to an individual of the class fabio:Expression
(http://purl.org/spar/fabio/Expression). The class fabio:Expression identifies the
specific intellectual or artistic form that a work takes each time it is realised;
• the body element is mapped to an individual of the class doco:BodyMatter

(http://purl.org/spar/doco/BodyMatter). The class doco:BodyMatter is the central
principle part of a document, it contains the real document content, and it is subdivided
hierarchically by means of sections;
• p elements are represented as individuals of the class doco:Paragraph (http:
//purl.org/spar/doco/Paragraph), i.e., self-contained units of discourse that deal with a
particular point or idea;
• figure elements containing the element img within a paragraph are represented as
individuals of the class doco:FigureBox (http://purl.org/spar/doco/FigureBox), which
is a space within a document that contains a figure and its caption;
• section elements are mapped to individuals of the class doco:Section (http:
//purl.org/spar/doco/Section), which represents a logical division of the text. Sections
can be organised according to a variable level of nested sub-sections. Accordingly, SPAR
Xtractor reflects this structural behaviour by representing the containment relation
by means of the object property po:contains (http://www.essepuntato.it/2008/12/
pattern#contains)10. For example, a certain section element with a nested section

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 20/35

https://github.com/essepuntato/rash/tree/master/sources/spar-xtractor
https://github.com/essepuntato/rash/tree/master/sources/spar-xtractor
https://github.com/essepuntato/rash/tree/master/sources/spar-xtractor
https://github.com/essepuntato/rash/tree/master/tools/spar-xtractor
https://github.com/essepuntato/rash/tree/master/tools/spar-xtractor
https://github.com/essepuntato/rash/tree/master/tools/spar-xtractor
http://www.essepuntato.it/2008/12/pattern#
http://www.essepuntato.it/2008/12/pattern#
https://peerj.com
http://purl.org/spar/fabio
http://purl.org/spar/doco
http://purl.org/spar/fabio/Expression
http://purl.org/spar/doco/BodyMatter
http://purl.org/spar/doco/Paragraph
http://purl.org/spar/doco/Paragraph
http://purl.org/spar/doco/FigureBox
http://purl.org/spar/doco/Section
http://purl.org/spar/doco/Section
http://www.essepuntato.it/2008/12/pattern#contains
http://www.essepuntato.it/2008/12/pattern#contains
http://dx.doi.org/10.7717/peerj-cs.132

element produces two individuals of the class doco:Section (e.g., :section_outer
a doco:Section and :section_inner a doco:Section) related by the property
po:contains (e.g., section_outer po:contains :section_inner).

In addition to these semantic annotations, which come from the actual structure
of a document, the tool is also able to automatically detect sentences and annotate
them as individuals of the class doco:Sentence (http://purl.org/spar/doco/Sentence). A
doco:Sentence denotes an expression in natural language forming a single grammatical
unit. For the sentence detection task, SPAR Xtractor relies on the sentence detection
module of the Apache OpenNLP project (https://opennlp.apache.org/), which provides
a machine learning based toolkit for the processing of natural language text. By default,
SPAR Xtractor is released to support English only. However, it is possible to extend it with
new languages by adding their corresponding models for Apache OpenNLP, most of which
are available with an open licence (http://opennlp.sourceforge.net/models-1.5/).

We remark that the object property po:contains is used for representing any kind
of containment relation among the structural components that SPAR Xtractor deals
with. Hence, the usage of such a property is not limited to the individuals of the class
doco:Section only. In fact, the property po:contains can be used, for example, for
expressing the containment relation between a doco:BodyMatter and a doco:Section or
between a doco:Section and a doco:Sentence. For example, let us consider the following
code snippets that provide a sample HTML document.
<html >

...
<body >

...
<section ><h1>A section </h1>

...
<p>This is a sentence. This is another sentence of this paragraph.</p>
...
<section ><h1>A sub -section </h1> ... </section >
...

</section >
...

</body >
</html >

The HTML document in the snippet above is enriched by SPAR Xtractor resulting in
the document reported in the snippet below.
<html

resource =" expression"
typeof ="http :// purl.org/spar/fabio/Expression">
...
<body resource ="body"

typeof ="http :// purl.org/spar/doco/BodyMatter"
property ="http ://www.essepuntato.it /2008/12/ pattern#contains">
...
<section resource =" section_outer"

typeof ="http :// purl.org/spar/doco/Section"
property ="http ://www.essepuntato.it /2008/12/ pattern#contains">
<h1 resource =" section_outer/title"

typeof ="http :// purl.org/spar/doco/SectionTitle" >

A section

</h1>
...
<p resource =" section_outer/paragraph -1"

typeof ="http :// purl.org/spar/doco/Paragraph"
property ="http ://www.essepuntato.it /2008/12/ pattern#contains" >

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 21/35

https://peerj.com
http://purl.org/spar/doco/Sentence
https://opennlp.apache.org/
http://opennlp.sourceforge.net/models-1.5/
http://dx.doi.org/10.7717/peerj-cs.132

<span property ="http ://www.essepuntato.it /2008/12/ pattern#contains"
resource =" section_outer/paragraph -1/ sentence -1"
typeof ="http :// purl.org/spar/doco/Sentence">

This is a sentence.

<span property ="http ://www.essepuntato.it /2008/12/ pattern#contains"

resource =" section_outer/paragraph -1/ sentence -2"
typeof ="http :// purl.org/spar/doco/Sentence">

This is another sentence of this paragraph.

</p>
...
<section resource =" section_inner"

typeof ="http :// purl.org/spar/doco/Section"
property ="http ://www.essepuntato.it /2008/12/ pattern#contains">
<h1 resource =" section_inner/title"

typeof ="http :// purl.org/spar/doco/SectionTitle" ">

A sub -section

</h1>
...

</section >
...

</section >
...

</body >
</html >

Writing RASH documents with a native editor
A recent development of RASH is the RASH Javascript Editor (RAJE) (https://github.com/
essepuntato/rash/tools/RAJE) (Spinaci et al., 2017), a multiplatform What You See Is What
You Get (WYSIWYG) word processor for writing scholarly articles in HTML, according
to the RASH format. In particular RAJE allows authors to write research papers in HTML
natively by means of a user-friendly interface, instead of writing raw markup with an IDE,
a text editor or any external word processor

RAJE guarantees to its users the benefits of a word processor combined with those given
by an HTML-based format, i.e., interactiveness, accessibility and easiness to be processed
by machine. In addition, RAJE uses the GitHub API (https://api.github.com/) so as to
allow authors to store their articles online, to keep track of changes by means of the GitHub
services, and to share the articles with others.

RASH AND SAVE-SD: AN EVALUATION
The true validation for RASH as a format for research papers rests on its adoption by
authors and workshops and its integration in the publishing process. For this reason,
RASH was first released in conjunction with the Semantics, Analytics, Visualisation:
Enhancing Scholarly Data (SAVE-SD 2015) workshop (http://cs.unibo.it/save-sd/2015/
index.html), co-located with WWW 2015. It was subsequently adopted by a number of
workshops and conferences (https://github.com/essepuntato/rash/#rash-papers-accepted-
in-scholarly-venues). In this section, we will present an evaluation of RASH based on
the analysis of questionnaires completed by authors and reviewers of SAVE-SD 2015 and
SAVE-SD 2016 (http://cs.unibo.it/save-sd/2016/index.html) workshops and a study on
RDF annotations in the relevant papers.

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 22/35

https://peerj.com
https://github.com/essepuntato/rash/tools/RAJE
https://github.com/essepuntato/rash/tools/RAJE
https://api.github.com/
http://cs.unibo.it/save-sd/2015/index.html
http://cs.unibo.it/save-sd/2015/index.html
https://github.com/essepuntato/rash/#rash-papers-accepted-in-scholarly-venues
https://github.com/essepuntato/rash/#rash-papers-accepted-in-scholarly-venues
http://cs.unibo.it/save-sd/2016/index.html
http://dx.doi.org/10.7717/peerj-cs.132

The users were asked to fill a questionnaire which included a section about their
background, a SUS questionnaire and six open questions about their experience with
RASH. We will first introduce the two workshops and then discuss and compare the
evaluation results. Finally, we will present an analysis of the most frequent vocabularies and
entities in RASH papers. The completed questionnaires and the outcomes of the analysis are
available atOsborne & Peroni (2016), while the RDF annotations considered in the study are
embedded in the RASH papers available in the SAVE-SD 2015 and SAVE-SD 2016 websites.
We used the online version of the RDFa 1.1 Distiller (https://www.w3.org/2012/pyRdfa/)
for extracting the RDF annotations from the RASH papers.

It is worth noting that in 2015 there were no converters in the RASH framework, and
ROCS was introduced immediately before SAVE-SD 2016. Thus, in both years authors
wrote RASH papers with plain text editors or XML editors, apart from one author that
used ROCS in 2016. In general, the authors appreciated RASH and the tools in the RASH
framework, even if the editing environment and the converters are still limited.

SAVE-SD 2015 and 2016
SAVE-SD 2015 was organized by some of the authors of this paper with the aim of bringing
together publishers, companies, and researchers in order to bridge the gap between the
theoretical/academic andpractical/industrial aspects in regard to scholarly data. It was thus a
multifacetedworkshopwhich drew researchers fromanumber of heterogeneous fields, such
as Document and Knowledge Engineering, Semantic Web, Natural Language Processing,
Scholarly Communication, Bibliometrics and Human–Computer Interaction. Since many
of the interested researchers were keen on experimenting with novel technologies regarding
semantic publishing, it was a natural choice for the debut of RASH. For this reason,
SAVE-SD 2015 allowed authors to submit papers using either RASH or PDF, explicitly
encouraging authors to test the new format. To this end, the organisers introduced a special
award for the best submission in RASH, according to the quality of themarkup, the number
of RDF statements defined in RDFa, and the number of RDF links to LOD datasets. The
possibility of submitting in RASH was also advertised on social media (e.g., Twitter (https:
//twitter.com/savesdworkshop)), Facebook (https://www.facebook.com/savesdworkshop))
and during various international events (e.g., DL 2014 (http://www.city.ac.uk/digital-
libraries-2014), EKAW 2014 (http://www.ida.liu.se/conferences/EKAW14/home.html),
FORCE 2015 (https://www.force11.org/meetings/force2015)).

The initiative had a substantial success: the workshop received six out of 23 submissions
in RASH and after the review process an additional author chose to prepare the camera-
ready paper in RASH. Out of these seven final submissions, three were research papers, one
was a position paper, and three posters/demo. These papers were submitted by 16 authors
from Switzerland, Italy, Germany, Netherlands, United Kingdom, Ireland, and the USA.

At the time of the workshop submission deadline, there were no public tools available
for converting other formats into RASH. However, the authors were able to self-learn it by
simply referring to the documentation page, confirming that computer scientists have no
particular problem in handling it directly. The conversion of the RASH submissions into
the ACM format requested by the Sheridan publisher (responsible for the publications of

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 23/35

https://peerj.com
https://www.w3.org/2012/pyRdfa/
https://twitter.com/savesdworkshop
https://twitter.com/savesdworkshop
https://www.facebook.com/savesdworkshop
http://www.city.ac.uk/digital-libraries-2014
http://www.city.ac.uk/digital-libraries-2014
http://www.ida.liu.se/conferences/EKAW14/home.html
https://www.force11.org/meetings/force2015
http://dx.doi.org/10.7717/peerj-cs.132

Table 3 User background for SAVE-SD 2015, SAVE-SD 2016.

Year MSWord OOWriter LaTeX HTML XML RelaxNG SW RDFa Turtle JSON-LD

2015 33% 33% 83% 83% 100% 67% 83% 100% 100% 50%
2016 57% 0% 71% 71% 71% 29% 57% 57% 57% 43%
AVR 40% 13% 67% 67% 73% 40% 60% 67% 77% 40%

all WWW proceedings) was handled by the organisers through a semi-automatic process.
In particular, they used the XSLT files introduced in ‘Converting RASH into LaTeX styles’
and had to fix only a few layout misalignments.

Six authors and four reviewers involved in SAVE-SD 2015 participated in our evaluation.
SAVE-SD 2016 had the same characteristics and goals of the predecessor. In order to

give authors full freedom, the organizer decided to accept not only RASH, but any kind
of HTML-based format. Since it was not possible to handle the conversion of all possible
HTML-based format to the publisher layout, the authors of alternative formats were asked
to prepare a PDF of the camera-ready version according to the publisher needs.

SAVE-SD 2016 received 6 out of 16 submissions in RASH from 14 authors from Italy,
Sweden, Greece, Germany, Belgium, and the USA. In total, five out of the 14 accepted
papers were in RASH, including two full papers, two demos, and one position paper. Even if
no author chose to submit in other HTML-based formats, this possibility will be kept open
in future editions. Differently from the previous edition, the proceedings were published
as a dedicated LNCS volume. The conversions of RASH papers to the PDF documents in
Springer LNCS layout was automatically handled by ROCS.

As in the previous workshop, we evaluated RASH by conducting the same study (with
the same exact questions) on ten people. Seven authors of RASH papers and three reviewers
participated in the survey.

User background
It is useful to first assess the background of RASHpioneer users in termof their knowledge of
relevant technologies and software. For this reason, the first section of the survey included
a number of statements about the user expertize (e.g., ‘‘I have extensive experience in
writing academic papers with LaTeX’’) and allowed five response options, from ‘‘Strongly
Agree’’ to ‘‘Strongly Disagree’’. Table 3 shows the percentage of users who claimed to be
familiar with a range of technologies (by selecting ‘‘Agree’’ or ‘‘Strongly Agree’’).

In 2015, the authors were mainly from the Semantic Web community and therefore
familiar with technologies such as RDFa and Turtle. Most of them knew how to correctly
annotate an HTML file and understood the advantages of including semantic relationships
in the paper. They also commonly used LaTeX rather than Microsoft Word or OpenOffice
Writer. This suggests that they were acquainted withWYSIWYG editors and had experience
with complex formats. A qualitative analysis of the survey answers confirms this intuition;
for example, an author remarked: ‘‘I am used to writing papers in LaTeX so I do not want
to bother with formatting and in that sense RASH is similar’’.

In 2016 the situation changed and only 57% of the users were familiar with semantic
technologies. In addition, even if most of them knew how to use LaTex, the majority of

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 24/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

them had experience also with Microsoft Word. It seems thus that RASH started to interest
also less technical users with different research backgrounds.

User survey
We assessed the strengths and weaknesses of RASH by means of six open questions.
We summarize here the answers of both authors and reviewers for the 2015 and 2016
workshops. The reviewers answered only questions 2, 3, 4 and 5. Note that the questions
were exactly the same in both editions and none of the users partecipated in both the
surveys.

SAVE-SD 2015 survey
• [Q1] Why did you choose the RASH format for your paper?
Four authors answered that the main reason was to try it out, mostly because they
‘‘supported the idea of publishing academic papers as HTML’’ and were convinced
that ‘‘PDF should be replaced’’. Two of them added that they were motivated by the
possibility of adding semantic annotations to their papers.
• [Q2] How effectively did RASH support you in writing/reviewing the paper?
Themajority of the authors suggested that some tasks, such as setting up the bibliography,
were still cumbersome. They added that the development of tools that could solve these
issues and hide the technical details from the common users would be very important
for a broader adoption. The reviewers remarked that their experience was very similar
to reviewing a paper in PDF format and did not present any particular challenge (e.g.,
‘‘did not have many features that would distinguish it from a PDF’’, ‘‘it met all of my
needs and was easy to use’’).
• [Q3] What were the most useful features of RASH to help you writing/reviewing the
paper?
The authors listed a number of functionalities including the multiple graphical layouts
(two authors), the support of RDFa annotations (two) and the built-in validation
(one). The ability to display the paper according to different layouts was praised also by
reviewers.
• [Q4] What were the main weaknesses that RASH exhibited in supporting the writing/re-
viewing of the paper?
Most authors suggested that the handling of bibliography, figures and captions should
be improved. Half of them also pointed out that the manual insertion of semantic
annotations was cumbersome and a large amount of RDFa ‘‘introduces a bit of confusion
in the paper’’. An author observed that using the word count as a limit in the RASH
venues rather than the number of pages introduces the issue of possibly exceeding the
editor limits. Most reviewers did not report any problem in using RASH for assessing a
paper. However, one of them noted that it still lacked a menu for easily navigating the
different sections, as PDF files instead support.
• [Q5] Can you think of any additional features to be included in RASH that would have
helped you to write/review the paper?
The majority of authors suggested that the aforementioned limitations were mainly

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 25/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

due to the use of an HTML editor, requesting the development of a WYSIWYG editor
or a tool for converting from ODT to RASH. A user also suggested developing a tool for
graphically showing the semantic annotations, as ‘‘what is linked to what, in order to
check the correctness of assertions’’ and a reviewer advised to implement a way to easily
access the different sections of the document.
• [Q6] Would you use RASH regularly for writing your academic papers?
Five out of six authors answered they would like to keep using RASH. Most of them,
however, added that this would also depend on the creation of a better editor and a
solid array of tools for managing technical details and converting standard formats for
writing a research paper to and from RASH.

SAVE-SD 2016 survey
• [Q1] Why did you choose the RASH format for your paper?
As with the 2015 results, the majority of the authors (four) claimed that they adopted
it for trying a new format, three authors because they were motivated by the workshop
and three because they actively support the ideas behind RASH.
• [Q2] How effectively did RASH support you in writing/reviewing the paper?
Five users wrote the papers directly in RASH and only one used Open Office and
then converted it with ROCS. In the first group, one user was positive, one neutral,
and three suggested the need for a WYSIWYG editor, since ‘‘writing in html is not
so effective’’ and ‘‘not everyone [of the co-authors] knew how to validate against the
schema’’. In particular, it was suggested the need for a Microsoft Word converter, since
the ODT produced by Microsoft Word could not be processed by ROCS. As in 2015,
the reviewers did not find many differences with respect to PDF papers. One of them
claimed to actually prefer RASH since it ‘‘makes better use of the page space’’.
• [Q3] What were the most useful features of RASH to help you writing/reviewing the pa-
per?
The authors mentioned a variety of different features including the formatting semantics
(‘‘no worries about section and layout’’), the bibliographic reference management and
the ability to display the paper according to different layouts. A reviewer also praised the
ability to convert RASH to PDF.
• [Q4] What were the main weaknesses that RASH exhibited in supporting the writing/re-
viewing of the paper?
Differently from 2015, the authors had no particular problem with the handling of
bibliography, figures, and captions. However, most of them (five) remarked that directly
writing the HTML code was not trivial. Three of them suggested solving the problem by
introducing a WYSIWYG editor, while two of them suggested creating new converters
to translate LaTeX and Microsoft Word into RASH. One user also flagged that the
visualization of RASH document can change in different browsers. The reviewers, as in
2015, did not report any particular problem in using RASH.
• [Q5] Can you think of any additional features to be included in RASH that would have
helped you to write/review the paper?
Consistently with the aforementioned weaknesses and the 2015 results the users called

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 26/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

11The authors who answered ‘‘Strongly
Agree’’ to the background questions
where classified as ‘‘Experts’’, the ones
who answered ‘‘Agree’’ as ‘‘Familiars’’, and
all the others as ‘‘Not familiar’’.

for the creation of a WYSIWYG editor (3) and a way to convert from LaTeX and
Microsoft Words (3). In addition, a user suggested a tool for automatically generating a
bibliography, similar to BibTeX.
• [Q6] Would you use RASH regularly for writing your academic papers?
Three authors asserted that they would be happy to keep using RASH, two of them
that they were ready to use it again, depending on its development, and only one was
negative about it.

RASH usability
We also performed a quantitative analysis of the usability of RASH, using the System
Usability Scale (SUS) questionnaire (Brooke, 1996). The scores are acceptable, though not
very high, especially if we consider that all authors but one edited RASH files directly with
text/XML editors. Users perceived even a ‘vanilla RASH’ as acceptable, though they need
more sophisticated converters as remarked in the open questions of the survey.

RASH yielded a mean score of 62.7 ± 11.9, slightly lower than the average SUS score
(68). However, SUS scores varied dramatically according to the person’s background.
Figure 3 shows the results of different categories of expertize11 in HTML, LateX, and
Semantic Web Technologies (SWT), which appear correlated with the average SUS scores
(respectively r = 0.78, 0.97, 0.99). Users with a strong expertize in LaTeX and SWT yielded
significantly better SUS scores than the other authors, while authors with HTML expertize
yielded only slightly better scores. For this reason, authors from 2015, who as previously
discussed had a higher expertize in these categories obtained an average SUS score of 69.6
± 11.9, while the authors from 2016 yielded 57.1 ± 9.7. However, the difference is not
statistically significant because the two samples are small and the test power is low.

These results further confirm that most users with limited expertize in non-WYSIWYG
editors and semantic technologies find it unfeasible to write HTML directly, even in a
simplified form.

Analysis of RDF annotations in RASH documents
To complete the previous analysis, we also studied the nature of the semantic annotations
in RASH papers. We focused on a sample of 1,751 annotations obtained from 11 papers
published in SAVE-SD 2015 and 2016. The number of statements in a single paper was
found to range from 24 to 903, yielding a median value of 46 (25th percentile 34, 75th
percentile 175).We extracted all the RDF statements by running theW3CRDFa 1.1Distiller
service (https://www.w3.org/2012/pyRdfa/) on each article. We then considered only the
statements that used http-based entities as predicates, or their objects if used for typing
resources. The data are organised in several CSV files and have been obtained by running
a Python script we developed for gathering the data used in this evaluation. The script and
all the aforementioned data have been made available at Osborne & Peroni (2016).

The first goal of the studywas to determine the prevalent vocabularies andhowmuch they
were used in the average paper. The left panel of Fig. 4A shows the common vocabularies.
Schema.org and PRISM are actually enforced by RASH: the first is used for standard
metadata such as emails, affiliations and organization names and the second for keywords.

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 27/35

https://peerj.com
https://www.w3.org/2012/pyRdfa/
http://dx.doi.org/10.7717/peerj-cs.132

Figure 3 Expertize vs. perceived usability.User expertize in HTML, LaTeX and Semantic Web Tech-
nologies versus average SUS score.

Figure 4 Average number of statements per vocabulary. Percentage of papers and average number of
statements using a vocabulary.

In addition, a quantity of RDF statements was automatically extracted when processing
DPUB-ARIA roles (Garrish et al., 2016). Thus we will not consider such vocabularies in the
rest of the evaluation. The other common vocabularies are Dublin Core, which appears in
82% of the papers, FOAF (27%) and the SPAR ontologies (Peroni, 2014a), such as FABIO
(36%) and CITO (27%) (Peroni & Shotton, 2012). The right panel of Fig. 4B illustrates the
average number of statement for each of these vocabularies. Dublin Core characterizes the
highest number of annotation (9.4), followed by FOAF (7.4) and FABIO (6.4).

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 28/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

Figure 5 Average number of entities per vocabulary. Average percentage of vocabulary entities in a
RASH paper (excluding the mandatory ones).

We also performed a more fine-grained analysis considering the amount of entities
of these vocabularies within the various RDF statements. The goal was to understand
the percentage of contribution that the various entities provide (on average) to the
statements of the document analysed. As expected, the entities that contribute to about
60% of the statements are either those that are obliged by RASH (prism:keyword 6.9%,
schema:affiliation 5.7%, schema:name 5.3%, and schema:email 4.7%) or those
automatically extracted by processing the DPUB roles included, mandatorily, in the
documents (xhtml:role 38%). Excluding these, the following top ten entities, shown in
Fig. 5, cover about 20% of the statements.

Among these entities, there are three classes describing three diverse but
interlinked kinds of objects, i.e., people (foaf:Person) authoring a research work
(fabio:ResearchPaper) and the sentences (doco:Sentence) therein contained. The
other seven entities are three object properties—two of them (pav:authoredBy and
pattern:contains) provide the links between the three aforementioned classes, while
the other, i.e., cito:cites, describes citation links between papers—and four data
properties—used for providing additional metadata about the entities (dcterms:title,
dcterms:bibliographicCitation, foaf:name) and for describing bunches of textual
content of the sentences (c4o:hasContent).

Discussion
The evaluation study confirmed that RASH is ready to be adopted in workshops,
conferences, and journals and can be quickly learnt by researchers who are already familiar
with HTML. However, it also highlighted some issues in the adoption of HTML formats,
especially by less technically savvy users.

Interestingly, the 2016 survey showed that RASH is being tried also by users unfamiliar
with semantic web technology. While the expansion of the user base represents a positive
development, it also yields a number of challenges. The mass of authors accustomed to

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 29/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.132

WYSIWYG editors such as Microsoft Word or OpenOffice Writer, tend to have difficulties
withHTML editors. In addition, since research papers are oftenwritten bymultiple authors,
it is usually simpler to use the most well-known solutions. For these reasons, we need to
offer the authors who currently cannot or do not want to change their workflow the tools
for converting their favourite format in to RASH and annotate the resulting paper. While
ODT was a first step in this direction, it is imperative to be also able to process DOCX
(which has been already implemented) and LaTeX. A second important issue is that authors
who are not expert in semantic technologies can find it hard to correctly annotate their
papers. Hence, we also need to use and/or develop simple tools for helping authors in this
phase—such as the OpenLink Structured Data Editor (http://osde.openlinksw.com/). The
introduction of these solutions will be critical for motivating users to adopt HTML-based
approaches and for creating a robust framework that can be used by expert and common
users alike.

As far as the analysis of the RDF annotations in RASH documents is concerned,
the outcomes highlighted that the users decided to adopt a few well-known standard
vocabularies, rather than using a multiplicity of different solutions. The most used
vocabularies other than Schema.org and PRISM (used by default by RASH), are Dublin
Core, FOAF, and the SPAR ontologies. However, the outcomes of our evaluation generally
show a quite low number of statements specified by the authors. This behaviour could
derive from the lack of appropriate support for the annotation of RASH papers with RDF
data. In addition, this low number seems not to be related to the research community the
authors work in. For instance, several of the papers written by Semantic Web experts do
not include any RDF statements other than those enforced by RASH.

CONCLUSIONS
In this paper we have introduced RASH, a markup language defined as a subset of
HTML for writing scientific articles, and the RASH Framework, a set of specifications
and tools for writing articles in RASH. In particular, we have discussed the rationale
behind the development of RASH, and we have presented the language and the
validation/visualisation/conversion/extraction/editing tools developed so far.

The goal of the paper was also to investigate the applicability and the potentialities of
RASH, though the evaluation of its adoption in two SAVE-SDworkshops. To the best of our
knowledge, this is the first empirical evaluation on the adoption of HTML-based languages
for writing scientific papers. The experiments proved that RASH can be successfully used
for workshops and conferences, with a good acceptance by the authors and a smooth
integration in the existing publishing process.

As immediate future developments, we plan to develop tools for automating the process
of semantic enrichment of RASH documents. For instance, we are currently working on
the automatic identification of section rhetorics and citation functions so as to describe
them according to two SPAR Ontologies (Peroni, 2014a), i.e., the Document Component
Ontology (DoCO) (http://purl.org/spar/doco) and the Citation Typing Ontology (CiTO)
(http://purl.org/spar/cito) respectively.

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 30/35

https://peerj.com
http://osde.openlinksw.com/
http://purl.org/spar/doco
http://purl.org/spar/cito
http://dx.doi.org/10.7717/peerj-cs.132

We intend to further develop the RASH framework. In first instance, we are working
on more sophisticated authoring tools and converters. For instance, we are currently
developing additional XSLT documents in order to convert RASH documents into
several different LaTeX formats for scholarly communications—such as IEEE conference
proceedings and IOS Press—as well as into EPUB for easing its (offline) portability in
mobile devices, which is something that would guarantee a better archival and accessibility
of the whole document including its figures, CSS files, and JS scripts.

We are also experimenting techniques for automatically generating accessible graphs
from data contained in a referenced CSV file. Some results of this experimentation are
already discussed in Di Mirri et al. (2017).

ACKNOWLEDGEMENTS
We would like to thank Sarven Capadisli (http://csarven.ca/) for our inspiring discussions
on the topic, all the authors and the reviewers of the accepted papers of the SAVE-SD
2015 (http://cs.unibo.it/save-sd/2015/accepted-papers.html) and the SAVE-SD 2016 (http:
//cs.unibo.it/save-sd/2016/accepted-papers.html) workshops for having provided us useful
suggestions and insights for improving RASH and the related tools, as well as all the other
early adopters of RASH. We would also like to thank the other two organisers of the past
two edition of SAVE-SD, i.e., Jun Zhao (https://sites.google.com/site/junzhaohome/) and
Alejandra Gonzalez-Beltran (http://www.oerc.ox.ac.uk/people/alejandra) for supporting
us in the adoption of RASH as possible HTML submission format. In addition, we are
particularly grateful to all the GitHub users that suggested and introduced new features
to RASH and developed the tools included in its Framework: Alberto Nicoletti (https:
//twitter.com/illbexyz), Vincenzo Rubano (https://twitter.com/titengodocchio), Mike
Smith (https://sideshowbarker.net/), Gianmarco Spinaci (https://twitter.com/spino9330),
Ruben Verborgh (http://ruben.verborgh.org).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Silvio Peroni is an Academic Editor for PeerJ Computer Science.

Author Contributions
• Silvio Peroni conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or
tables, performed the computation work.

• FrancescoOsborne conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work.

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 31/35

https://peerj.com
http://csarven.ca/
http://cs.unibo.it/save-sd/2015/accepted-papers.html
http://cs.unibo.it/save-sd/2016/accepted-papers.html
http://cs.unibo.it/save-sd/2016/accepted-papers.html
https://sites.google.com/site/junzhaohome/
http://www.oerc.ox.ac.uk/people/alejandra
https://twitter.com/illbexyz
https://twitter.com/illbexyz
https://twitter.com/titengodocchio
https://sideshowbarker.net/
https://twitter.com/spino9330
http://ruben.verborgh.org
http://dx.doi.org/10.7717/peerj-cs.132

• Angelo Di Iorio wrote the paper, prepared figures and/or tables, reviewed drafts of the
paper.

• AndreaGiovanniNuzzolese and Francesco Poggi contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables, performed the computation work.

• Fabio Vitali and Enrico Motta reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Osborne, Francesco; Peroni, Silvio (2017): Outcomes of SAVE-SD 2015 and 2016
questionnaires on RASH and analysis of RDF annotations in the RASH papers. figshare.

https://dx.doi.org/10.6084/m9.figshare.3980463.v5.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.132#supplemental-information.

REFERENCES
Alexander C. 1979. The timeless way of building. Oxford: Oxford University Press.
Atkins Jr T, Etemad EJ, Rivoal F. 2017. CSS Snapshot 2017. W3CWorking Group Note

31 January 2017. World Wide Web Consortium. Available at https://www.w3.org/
TR/ css3-roadmap/ .

Berjon R, Ballesteros S. 2015.What is scholarly HTML? Available at http:// scholarly.
vernacular.io/ .

Bourne PE, Clark T, Dale R, DeWaard A, Herman I, Hovy EH, Shotton D. 2011.
FORCE11 White Paper: improving The Future of Research Communications and
e-Scholarship. White Paper, 28 October 2011. FORCE11. Available at https://www.
force11.org/white_paper .

Brooke J. 1996. SUS-A quick and dirty usability scale. Usability Evaluation in Industry
189(194):4–7.

Capadisli S, Guy A, Verborgh R, Lange C, Auer S, Berners-Lee T. 2017. Decentralised
authoring, annotations and notifications for a read-write web with dokieli. In:
Proceedings of the 17th international conference on web engineering. Cham: Springer,
469–481 DOI 10.1007/978-3-319-60131-1_33.

Capadisli S, Riedl R, Auer S. 2015. Enabling accessible knowledge. In: Proceedings of
the 2015 International conference for e-democracy and open government (CeDEM
2015). Krems: Universität Krems. Available at http:// csarven.ca/ enabling-accessible-
knowledge.

Carlisle D, Ion P, Miner R. 2014.Mathematical Markup Language (MathML) Version
3.0. 2nd edition. W3C Recommendation 10 April 2014. World Wide Web Consor-
tium. Available at http://www.w3.org/TR/MathML3/ .

Clark J, MakotoM. 2001. RELAX NG specification. Committee specification, 3 Decem-
ber 2001. OASIS. Available at http:// relaxng.org/ spec-20011203.html .

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 32/35

https://peerj.com
https://dx.doi.org/10.6084/m9.figshare.3980463.v5
http://dx.doi.org/10.7717/peerj-cs.132#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.132#supplemental-information
https://www.w3.org/TR/css3-roadmap/
https://www.w3.org/TR/css3-roadmap/
http://scholarly.vernacular.io/
http://scholarly.vernacular.io/
https://www.force11.org/white_paper
https://www.force11.org/white_paper
http://dx.doi.org/10.1007/978-3-319-60131-1_33
http://csarven.ca/enabling-accessible-knowledge
http://csarven.ca/enabling-accessible-knowledge
http://www.w3.org/TR/MathML3/
http://relaxng.org/spec-20011203.html
http://dx.doi.org/10.7717/peerj-cs.132

Constantin A, Peroni S, Pettifer S, Shotton D, Vitali F. 2016. The Document Compo-
nent Ontology (DoCO). Semantic Web 7(2):167–181 DOI 10.3233/SW-150177.

Cyganiak R,Wood D, Lanthaler M. 2014. RDF 1.1 concepts and abstract syntax. W3C
recommendation 25 February 2014. World Wide Web Consortium. Available at
http://www.w3.org/TR/ rdf11-concepts/ .

Di Iorio A, González Beltrán A, Osborne F, Peroni S, Poggi F, Vitali F. 2016. It ROCS!:
the RASH online conversion service. In:WWW (Companion Volume) 2016. New
York: ACM, 25–26 DOI 10.1145/2872518.2889408.

Di Iorio A, Peroni S, Poggi F, Vitali F. 2012. A first approach to the automatic
recognition of structural patterns in XML documents. In: Proceedings of the
2012 ACM symposium on document engineering. New York: ACM, 85–94
DOI 10.1145/2361354.2361374.

Di Iorio A, Peroni S, Poggi F, Vitali F. 2014. Dealing with structural patterns of XML
documents. Journal of the American Society for Information Science and Technology
65(9):1884–1900 DOI 10.1002/asi.23088.

Di Iorio A, Peroni S, Poggi F, Vitali F, Shotton D. 2013. Recognising document compo-
nents in XML-based academic articles. In: Proceedings of the 2013 ACM symposium
on document engineering. New York: ACM, 181–184 DOI 10.1145/2494266.2494319.

DiMirri S, Peroni S, Rubano V, Salomoni P, Vitali F. 2017. Towards accessible graphs in
HTML-based scientific articles. In: Proceedings of the 2nd international workshop on
accessible devices and services (ADS 2017). IEEE DOI 10.1109/CCNC.2017.7983287.

Diggs J, Craig J, McCarron S, Cooper M. 2015. Accessible rich internet applications
(WAI-ARIA) 1.1. W3C Candidate Recommendation 27 October 2016. World Wide
Web Consortium. Available at http://www.w3.org/TR/wai-aria-1.1/ .

Gamma E, Helm R, Johnson R, Vlissides J. 1994. Patterns: elements of reusable object-
oriented software. New York: Addison-Wesley.

Gandon F, Schreiber G. 2014. RDF 1.1 XML syntax. W3C recommendation 25 February
2014. World Wide Web Consortium. Available at https://www.w3.org/TR/ rdf-
syntax-grammar/ .

Gao S, Sperberg-McQueen CM, Thompson HS. 2012.W3C XML schema definition
language (XSD) 1.1 Part 1: structures. W3C recommendation, 5 April 2012. World
Wide Web Consortium. Available at https://www.w3.org/TR/xmlschema11-1/ .

GarrishM, Siegman T, GyllingM,McCarron S. 2016. Digital publishing WAI-ARIA
module 1.0. W3C candidate recommendation 15 December 2016. World Wide Web
Consortium. Available at https://www.w3.org/TR/dpub-aria-1.0/ .

Hickson I, Berjon R, Faulkner S, Leithead T, Doyle Navara E, O’Connor E, Pfeiffer
S. 2014.HTML5: a vocabulary and associated APIs for HTML and XHTML. W3C
recommendation 28 October 2014. World Wide Web Consortium. Available at
http://www.w3.org/TR/html5/ .

JTC1/SC34WG 4. ISO/IEC 29500-1:2011 - Information technology - Document
description and processing languages - Office Open XML File Formats - Part
1: Fundamentals andMarkup Language Reference. 2011. Geneva: International

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 33/35

https://peerj.com
http://dx.doi.org/10.3233/SW-150177
http://www.w3.org/TR/rdf11-concepts/
http://dx.doi.org/10.1145/2872518.2889408
http://dx.doi.org/10.1145/2361354.2361374
http://dx.doi.org/10.1002/asi.23088
http://dx.doi.org/10.1145/2494266.2494319
http://dx.doi.org/10.1109/CCNC.2017.7983287
http://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/dpub-aria-1.0/
http://www.w3.org/TR/html5/
http://dx.doi.org/10.7717/peerj-cs.132

Organization for Standardization. Available at http://www.iso.org/ iso/ iso_catalogue/
catalogue_tc/ catalogue_detail.htm?csnumber=59575.

JTC1/SC34WG 6. ISO/IEC 26300:2006 - Information technology - Open Document
Format for Office Applications (OpenDocument) v1.0. 2006. Geneva: International
Organization for Standardization. Available at http://www.iso.org/ iso/ iso_catalogue/
catalogue_tc/ catalogue_detail.htm?csnumber=43485.

KayM. 2007. XSL transformations (XSLT) version 2.0. W3C recommendation 23
January 2007. World Wide Web Consortium. Available at http://www.w3.org/TR/
xslt20/ .

Lin TTY, Beales G. 2015. ScholarlyMarkdown Syntax Guide. Guide, 31 January 2015.
Available at http:// scholarlymarkdown.com/Scholarly-Markdown-Guide.html .

National Information Standards Organization. 2012. JATS: journal article tag suite.
American national Standard No. ANSI/NISO Z39.96-2012, 9 August 2012. Available
at http://www.niso.org/apps/ group_public/download.php/10591/ z39.96-2012.pdf .

Osborne F, Peroni S. 2016.Outcomes of SAVE-SD 2015 and 2016 question-
naires on RASH and analysis of RDF annotations in RASH papers. Figshare.
DOI 10.6084/m9.figshare.3980463.

Peroni S. 2014a. The semantic publishing and referencing ontologies. In: Semantic web
technologies and legal scholarly publishing. Cham: Springer, 121–193.

Peroni S. 2014b. Semantic web technologies and legal scholarly publishing. In: Law,
governance and technology series 15. Cham: Springer.

Peroni S. 2017. RASH framework 0.6.1. Zenodo DOI 10.5281/zenodo.815603.
Peroni S, Shotton D. 2012. FaBiO and CiTO: ontologies for describing bibliographic re-

sources and citations.Web Semantics 17:33–43 DOI 10.1016/j.websem.2012.08.001.
Pettifer S, McDermott P, Marsh J, Thorne D, Villeger A, Attwood TK. 2011. Ceci

n’est pas un hamburger: modelling and representing the scholarly article. Learned
Publishing 24(3):207–220 DOI 10.1087/20110309.

Prud’hommeaux E, Carothers G. 2014. Turtle—Terse RDF triple language. W3C
recommendation 25 February 2014. World Wide Web Consortium. Available at
http://www.w3.org/TR/ turtle/ .

Raggett D, Le Hors A, Jacobs I. 1999.HTML 4.01 specification. W3C recommendation,
24 December 1999. World Wide Web Consortium. Available at http://www.w3.org/
TR/html401/ .

Shotton D, Portwin K, Klyne G, Miles A. 2009. Adventures in semantic publishing:
exemplar semantic enhancements of a research article. PLOS Computational Biology
5(4):e1000361 DOI 10.1371/journal.pcbi.1000361.

Spinaci G, Peroni S, Di Iorio A, Poggi F, Vitali F. 2017. The RASH Javascript editor
(RAJE)—a wordprocessor for writing Web-first scholarly articles. In: Proceeding of
the 17th ACM symposium on document engineering (DocEng 2017). New York: ACM,
85–94 DOI 10.1145/3103010.3103018.

SpornyM. 2015.HTML+RDFa 1.1: support for RDFa in HTML4 and HTML5. W3C
recommendation 17 March 2015. World Wide Web Consortium. Available at http:
//www.w3.org/TR/ rdfa-in-html/ .

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 34/35

https://peerj.com
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59575
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59575
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://scholarlymarkdown.com/Scholarly-Markdown-Guide.html
http://www.niso.org/apps/group_public/download.php/10591/z39.96-2012.pdf
http://dx.doi.org/10.6084/m9.figshare.3980463
http://dx.doi.org/10.5281/zenodo.815603
http://dx.doi.org/10.1016/j.websem.2012.08.001
http://dx.doi.org/10.1087/20110309
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://dx.doi.org/10.1371/journal.pcbi.1000361
http://dx.doi.org/10.1145/3103010.3103018
http://www.w3.org/TR/rdfa-in-html/
http://www.w3.org/TR/rdfa-in-html/
http://dx.doi.org/10.7717/peerj-cs.132

SpornyM, Kellogg G, Lanthaler M. 2014. JSON-LD 1.0—a JSON-based serialization for
linked data. W3C Recommendation 16 January 2014. World Wide Web Consortium.
Available at https://www.w3.org/TR/ json-ld/ .

Walsh N. 2009. The DocBook Schema Version 5.0. OASIS Standard, 1 November 2009.
Burlington: Organization for the Advancement of Structured Information Standards.
Available at http://docs.oasis-open.org/docbook/ specs/docbook-5.0-spec-os.html .

Peroni et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.132 35/35

https://peerj.com
https://www.w3.org/TR/json-ld/
http://docs.oasis-open.org/docbook/specs/docbook-5.0-spec-os.html
http://dx.doi.org/10.7717/peerj-cs.132

