1,885 research outputs found

    The role of urban trees in reducing land surface temperatures in European cities

    Get PDF
    Urban trees influence temperatures in cities. However, their effectiveness at mitigating urban heat in different climatic contexts and in comparison to treeless urban green spaces has not yet been sufficiently explored. Here, we use high-resolution satellite land surface temperatures (LSTs) and land-cover data from 293 European cities to infer the potential of urban trees to reduce LSTs. We show that urban trees exhibit lower temperatures than urban fabric across most European cities in summer and during hot extremes. Compared to continuous urban fabric, LSTs observed for urban trees are on average 0-4 K lower in Southern European regions and 8-12 K lower in Central Europe. Treeless urban green spaces are overall less effective in reducing LSTs, and their cooling effect is approximately 2-4 times lower than the cooling induced by urban trees. By revealing continental-scale patterns in the effect of trees and treeless green spaces on urban LST our results highlight the importance of considering and further investigating the climate-dependent effectiveness of heat mitigation measures in cities

    Characterizing Spatiotemporal Variations in the Urban Thermal Environment Related to Land Cover Changes in Karachi, Pakistan, from 2000 to 2020

    Get PDF
    Understanding the spatiotemporal patterns of urban heat islands and the factors that influence this phenomenon can help to alleviate the heat stress exacerbated by urban warming and strengthen heat-related urban resilience, thereby contributing to the achievement of the United Nations Sustainable Development Goals. The association between surface urban heat island (SUHI) effects and land use/land cover features has been studied extensively, but the situation in tropical cities is not well-understood due to the lack of consistent data. This study aimed to explore land use/land cover (LULC) changes and their impact on the urban thermal environment in a tropical megacity—Karachi, Pakistan. Land cover maps were produced, and the land surface temperature (LST) was estimated using Landsat images from five different years over the period 2000–2020. The surface urban heat island intensity (SUHII) was then quantified based on the LST data. Statistical analyses, including geographically weighted regression (GWR) and correlation analyses, were performed in order to analyze the relationship between the land cover composition and LST. The results indicated that the built-up area of Karachi increased from 97.6 km² to 325.33 km² during the period 2000–2020. Among the different land cover types, the areas classified as built-up or bare land exhibited the highest LST, and a change from vegetation to bare land led to an increase in LST. The correlation analysis indicated that the correlation coefficients between the normalized difference built-up index (NDBI) and LST ranged from 0.14 to 0.18 between 2000 and 2020 and that NDBI plays a dominant role in influencing the LST. The GWR analysis revealed the spatial variation in the association between the land cover composition and the SUHII. Parks with large areas of medium- and high-density vegetation play a significant role in regulating the thermal environment, whereas the scattered vegetation patches in the urban core do not have a significant relationship with the LST. These findings can be used to inform adaptive land use planning that aims to mitigate the effects of the UHI and aid efforts to achieve sustainable urban growth.the Strategic Priority Research Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of ChinaPeer Reviewe

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Characterizing geomorphological change to support sustainable river restoration and management

    Get PDF
    The hydrology and geomorphology of most rivers has been fundamentally altered through a long history of human interventions including modification of river channels, floodplains, and wider changes in the landscape that affect water and sediment delivery to the river. Resultant alterations in fluvial forms and processes have negatively impacted river ecology via the loss of physical habitat, disruption to the longitudinal continuity of the river, and lateral disconnection between aquatic, wetland, and terrestrial ecosystems. Through a characterization of geomorphological change, it is possible to peel back the layers of time to investigate how and why a river has changed. Process rates can be assessed, the historical condition of rivers can be determined, the trajectories of past changes can be reconstructed, and the role of specific human interventions in these geomorphological changes can be assessed. To achieve this, hydrological, geomorphological, and riparian vegetation characteristics are investigated within a hierarchy of spatial scales using a range of data sources. A temporal analysis of fluvial geomorphology supports process-based management that targets underlying problems. In this way, effective, sustainable management and restoration solutions can be developed that recognize the underlying drivers of geomorphological change, the constraints imposed on current fluvial processes, and the possible evolutionary trajectories and timelines of change under different future management scenarios. Catchment/river basin planning, natural flood risk management, the identification and appraisal of pressures, and the assessment of restoration needs and objectives would all benefit from a thorough temporal analysis of fluvial geomorphology

    Impact Mechanism and Improvement Strategy on Urban Ventilation, Urban Heat Island and Urban Pollution Island: A Case Study in Xiangyang, China

    Get PDF
    There has been a growing interest in finding mitigation measures for urban heat islands and urban pollution islands that focus mainly on urban landscape mechanisms. However, relatively little research has considered spatial non-stationarity and temporal non-stationarity, which are both intrinsic properties of the environmental system, simultaneously. At the same time, the relevance of and differences between the thermal environment and air pollution has also been rarely discussed, and both issues are of great importance to urban planning. In this study, which is aimed at improving urban ventilation to reduce the urban heat island and urban pollution island effects, an urban ventilation potential evaluation, land surface temperature time-series clustering and air pollution source identification are comprehensively applied to identify the operational areas, compensation areas and ventilation corridors in Xiangyang, China, thus bridging the gap between academic research and urban planning. The specific research areas include: (1) defining the operational areas for urban ventilation corridor planning through an urban ventilation potential evaluation featuring urban morphology indicators, land surface temperature time-series clustering with k-means and an urban air pollution source diffusion analysis via the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and geographically weighted regression (GWR) methods; (2) identifying urban cold islands through land surface temperatures and delimiting the compensation areas in urban ventilation corridor planning; (3) designating urban ventilation corridors through an urban ventilation potential evaluation and computational fluid dynamics (CFD); and (4) improving urban ventilation corridor planning through defining operational areas, compensation areas and ventilation corridors as well as proposing corresponding control measures

    The use of satellite data, meteorology and land use data to define high resolution temperature exposure for the estimation of health effects in Italy

    Get PDF
    Introduction. Despite the mounting evidence on heat-related health risks, there is limited evidence in suburban and rural areas. The limited spatial resolution of temperature data also hinders the evidence of the differential heat effect within cities due to individual and area-based characteristics. Methods. Satellite land surface temperature (LST), observed meteorological and spatial and spatio-temporal land use data were combined in mixed-effects regression models to estimate daily mean air temperature with a 1x1km resolution for the period 2000-2010. For each day, random intercepts and slopes for LST were estimated to capture the day-to-day temporal variability of the Ta–LST relationship. The models were also nested by climate zones to better capture local climates and daily weather patterns across Italy. The daily exposure data was used to estimate the effects and impacts of heat on cause-specific mortality and hospital admissions in the Lazio region at municipal level in a time series framework. Furthermore, to address the differential effect of heat within an urban area and account for potential effect modifiers a case cross-over study was conducted in Rome. Mean temperature was attributed at the individual level to the Rome Population Cohort and the urban heat island (UHI) intensity using air temperature data was calculated for Rome. Results. Exposure model performance was very good: in the stage 1 model (only on grid cells with both LST and observed data) a mean R2 value of 0.96 and RMSPE of 1.1°C and R2 of 0.89 and 0.97 for the spatial and temporal domains respectively. The model was also validated with regional weather forecasting model data and gave excellent results (R2=0.95 RMSPE=1.8°C. The time series study showed significant effects and impacts on cause-specific mortality in suburban and rural areas of the Lazio region, with risk estimates comparable to those found in urban areas. High temperatures also had an effect on respiratory hospital admissions. Age, gender, pre-existing cardiovascular disease, marital status, education and occupation were found to be effect modifiers of the temperature-mortality association. No risk gradient was found by socio-economic position (SEP) in Rome. Considering the urban heat island (UHI) and SEP combined, differential effects of heat were observed by UHI among same SEP groupings. Impervious surfaces and high urban development were also effect modifiers of the heat-related mortality risk. Finally, the study found that high resolution gridded data provided more accurate effect estimates especially for extreme temperature intervals. Conclusions. Results will help improve heat adaptation and response measures and can be used predict the future heat-related burden under different climate change scenarios.Open Acces

    Remote Sensing in Applications of Geoinformation

    Get PDF
    Remote sensing, especially from satellites, is a source of invaluable data which can be used to generate synoptic information for virtually all parts of the Earth, including the atmosphere, land, and ocean. In the last few decades, such data have evolved as a basis for accurate information about the Earth, leading to a wealth of geoscientific analysis focusing on diverse applications. Geoinformation systems based on remote sensing are increasingly becoming an integral part of the current information and communication society. The integration of remote sensing and geoinformation essentially involves combining data provided from both, in a consistent and sensible manner. This process has been accelerated by technologically advanced tools and methods for remote sensing data access and integration, paving the way for scientific advances in a broadening range of remote sensing exploitations in applications of geoinformation. This volume hosts original research focusing on the exploitation of remote sensing in applications of geoinformation. The emphasis is on a wide range of applications, such as the mapping of soil nutrients, detection of plastic litter in oceans, urban microclimate, seafloor morphology, urban forest ecosystems, real estate appraisal, inundation mapping, and solar potential analysis

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Potential impacts of green infrastructure on NOx and PM10 in different local climate zones of Brindisi, Italy

    Get PDF
    This study delves into Green Infrastructure (GI) planning in Brindisi, Italy, evaluating its influence on urban air quality and thermal comfort. Employing an LCZ-centred Geographic Information System (GIS) based classification protocol, the prevalence of LCZ 6 (Open low-rise) and LCZ 2 (Compact mid-rise) is highlighted. Despite generally low PM10 levels in Brindisi, intermittent NOx spikes surpassing WHO and EU standards pose health risks. Within LCZ 2, diverse GI interventions (green walls, hedges, trees) were tested, with green walls emerging as the most effective, albeit falling short of expectations, while trees exhibited adverse air quality impacts. LCZ 6 demonstrated enhanced air quality attributed to wind patterns, GI, and urban canyon improvements. Thermal comfort analysis consistently revealed positive outcomes across various GI types, reducing discomfort by a minimum of 10%. The study emphasized GI's favourable com-fort impact on sidewalks but cautioned against trees in street canyons with aspect ratios exceeding 0.7, heightening pollutant levels and implying increased exposure risks. Conversely, street canyons with lower aspect ratios displayed variable conditions influenced by prevailing regional wind patterns. In conclusion, the integrated assessment of LCZ and GI holds promise for in-formed urban planning, guiding decisions that prioritize healthier, more sustainable cities. This underscores the crucial need to balance GI strategies for optimal urban development, aligning with the overarching goal of promoting urban well-being and sustainability

    Advancing large-scale analysis of human settlements and their dynamics

    Get PDF
    Due to the importance for a range of sustainability challenges, it is important to understand the spatial dynamics of human settlements. The rapid expansion of built-up land is among the most extensive global land changes, even though built-up land occupies only a small fraction of the terrestrial biosphere. Moreover, the different ways in which human settlements are manifested are crucially important for their environmental and socioeconomic impacts. Yet, current analysis of human settlements heavily relies on land cover datasets, which typically have only one class to represent human settlements. Consequently, the analysis of human settlements does often not account for the heterogeneity within urban environment or their subtle changes. This simplistic representation severely limits our understanding of change processes in human settlements, as well as our capacity to assess socioeconomic and environmental impacts. This thesis aims to advance large-scale analysis of human settlements and their dynamics through the lens of land systems, with a specific focus on the role of land-use intensity. Chapter 2 explores the use of human settlement systems as an approach to understanding their variation in space and changes over time. Results show that settlement systems exist along a density gradient, and their change trajectories are typically gradual and incremental. In addition, results indicate that the total increase in built-up land in village landscapes outweighs that of dense urban regions. This chapter suggests that we should characterize human settlements more comprehensively to advance the analysis of human settlements, going beyond the emergence of new built-up land in a few mega-cities only. In Chapter 3, urban land-use intensity is operationalized by the horizontal and vertical spatial patterns of buildings. Particularly, I trained three random forest models to estimate building footprint, height, and volume, respectively, at a 1-km resolution for Europe, the US, and China. The models yield R2 values of 0.90, 0.81, and 0.88 for building footprint, height, and volume, respectively. The correlation between building footprint and building height at a pixel level was 0.66, illustrating the relevance of mapping these properties independently. Chapter 4 builds on the methodological approach presented in chapter 3. Specifically, it presents an improved approach to mapping 3D built-up patterns (i.e., 3D building structure), and applies this to map building footprint, height, and volume at a global scale. The methodological improvement includes an optimized model structure, additional explanatory variables, and updated input data. I find distance decay functions from the centre of the city to its outskirts for all three properties for major cities in all continents. Yet, again, the height, footprint (density), and volume differ drastically across these cities. Chapter 5 uses built-up land per person as an operationalization for urban land-use intensity, in order to investigate its temporal dynamics at a global scale. Results suggest that the decrease of urban land-use intensity relates to 38.3%, 49.6%, and 37.5% of the built-up land expansion in the three periods during 1975-2015, but with large local variations. In the Global South, densification often happens in regions where human settlements are already used intensively, suggesting potential trade-offs with other living standards. These chapters represent the recent advancements in large-scale analysis of human settlements by revealing a large variation in urban fabric. Urban densification is widely acknowledged as one of the tangible solutions to satisfy the increased land demand for human settlement while conserving other land, suggesting the relevance of these findings to inform sustainable development. Nevertheless, local settlement trajectories towards intensive forms should also be guided in a large-scale context with broad considerations, including the quality of life for inhabitants, because these trade-offs and synergies remain largely unexplored in this analysis
    • …
    corecore