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Abstract: There has been a growing interest in finding mitigation measures for urban heat 

islands and urban pollution islands that focus mainly on urban landscape 

mechanisms. However, relatively little research has considered spatial non-

stationarity and temporal non-stationarity, which are both intrinsic properties of 

the environmental system, simultaneously. At the same time, the relevance of 

and differences between the thermal environment and air pollution has also been 

rarely discussed, and both issues are of great importance to urban planning. In 

this study, which is aimed at improving urban ventilation to reduce the urban 

heat island and urban pollution island effects, an urban ventilation potential 

evaluation, land surface temperature time-series clustering and air pollution 

source identification are comprehensively applied to identify the operational 

areas, compensation areas and ventilation corridors in Xiangyang, China, thus 

bridging the gap between academic research and urban planning. The specific 

research areas include: (1) defining the operational areas for urban ventilation 

corridor planning through an urban ventilation potential evaluation featuring 

urban morphology indicators, land surface temperature time-series clustering 

with k-means and an urban air pollution source diffusion analysis via the Hybrid 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and 

geographically weighted regression (GWR) methods; (2) identifying urban cold 

islands through land surface temperatures and delimiting the compensation 

areas in urban ventilation corridor planning; (3) designating urban ventilation 

corridors through an urban ventilation potential evaluation and computational 

fluid dynamics (CFD); and (4) improving urban ventilation corridor planning 

through defining operational areas, compensation areas and ventilation corridors 

as well as proposing corresponding control measures. 

1. INTRODUCTION 

Rapid urbanization has been changing urban forms and functions 

continuously (Stone, 2009), as manifested in increasing surface roughness 

(Chen, Liang & Dirmeyer, 2019),  decreasing ventilation potential, the 

expansion of impervious surfaces (Yang, Chen et al., 2019) and the weakening 

of surface transpiration (Dienst, Lindén, & Esper, 2018). These changes make 
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it difficult to effectively evaluate the energy dissipation and waste emissions 

generated by populations and industries over short periods of time (Kuang et 

al., 2015). Furthermore, interactions between humans and the environment 

aggravate a variety of urban problems, such as urban heat islands and urban 

pollution islands, and exert a dramatic impact on human health and well-being 

as well as potentially increasing cause-specific morbidity and mortality (Patz 

et al., 2005). It has been repeatedly  proven that urban morphology, urban 

landscape composition and urban landscape configuration have significant 

effects on urban ventilation, the urban thermal environment and urban near-

surface aerosol properties (Song et al., 2014; Wang, Z.-b. & Fang, 2016; 

Wang, J., Zhan, & Guo, 2016; Peng et al., 2018). Hence, the detailed spatial 

patterns of these different indicators, for which the most widely used model is 

the local climate zone (LCZ) model put forward by Oke in 2012, are sought 

by urban planners (Shi et al., 2019). However, the spatial variations in the 

intra-city air pollution and thermal environment have rarely been quantified 

simultaneously. Due to the differences between the surface thermal 

environment and air pollution in terms of operational scale and affecting 

factors, further discussion is necessary in order to extend the LCZ model for 

the control of an urban pollution island (Chen, Lei et al., 2018). Therefore, we 

seek to provide a rough framework that can roughly partition a control area 

while limiting detailed information to avoid being misleading. Urban 

ventilation corridor planning, which originated in Germany, is used to divide 

an urban area’s underlying surface into three basic planning control zones: the 

operational areas (where thermal pollution and air pollution exist), 

compensation areas (the areas bringing in fresh air) and ventilation corridors 

(strips with low roughness linking the operational and compensation areas). 

Hence, in order to reduce the urban heat island and urban pollution island 

effects in Xiangyang, China, this study aims to investigate the city’s urban 

ventilation through an urban ventilation potential evaluation, land surface 

temperature (LST) time-series clustering and air pollution source 

identification. The results will then be applied comprehensively to divide the 

city into operational areas, compensation areas and ventilation corridors, thus 

bridging the gap between academic research and urban planning. 

Urban ventilation research is divided into two parts at the intra-city scale, 

namely, urban ventilation simulation, which is accomplished via a weather 

forecast model and computational fluid dynamics (CFD) model (Kadaverugu 

et al., 2019), and  conducting ventilation potential evaluations via urban 

morphological indicators, which can be used specifically for urban planning 

(Javanroodi, Mahdavinejad, & Nik, 2018). Meteorological simulation models 

and weather forecasting models are generally adopted in urban ventilation 

simulation and predictions done at large regional scales and include the 

Weather Research and Forecast (WRF) model (Sharma et al., 2016) and 

Mesoscale Meteorological model (known as the MM5 model) (Gsella et al., 

2014), both of which are non-hydrostatic models. The MM5 model is designed 

to simulate atmospheric circulation at the regional and megalopolis scales. 

The WRF model is mainly applied to monitor, simulate and predict the real-

time meteorological conditions at an intra-city scale (~10m-~10km), and the 

most suitable grid unit for simulation is 1km*1km (Yang, B., Zhang, & Qian, 

2012). In terms of urban climatological studies, the WRF model is not only a 

good predictive method but also a good retrospective method for obtaining 

continuous, smooth wind fields at a regional scale from the past. Compared 

with the traditional method of obtaining wind fields through ground stations, 

its main advantages are: (1) it is less influenced by the number of stations and 

can obtain a continuous, smooth regional wind field instead of the wind speeds 
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and directions from a few locations without the need to make up the 

smoothness; (2) the algorithm can correct the wind field at the current time 

according to the wind field conditions at a nearby time point, thus reducing 

local interference and obtaining a typical wind field distribution pattern. 

Therefore, the WRF model is also widely used in urban climate studies to 

describe typical wind environmental patterns at the urban and regional scales. 

Translating knowledge of the interactions between physical forms and the 

climate into practical planning applications to address urban ventilation 

effectively has been a challenge. Therefore, it will be advantageous to find the 

widely discussed relationship between urban form and urban ventilation 

because it corresponds to urban design and planning directly. Climatologists 

have been studying how urban structures affect local microclimatic 

conditions. The local climate zone (LCZ) scheme, put forward by Stewart and 

Oke (Stewart & Oke, 2012), attaches urban morphology to urban climatic 

conditions through a set of parameters selected to define the LCZ class. These 

geometric parameters and land cover indicators include building indicators 

and terrain roughness. In an urban climatic study conducted by Xu et al. 

(2017) in Hong Kong, the relationship between architectural morphological 

indicators for urban ventilation and intra-urban land surface temperature was 

discovered, and the significant influence of surface roughness on wind speed 

over the city was also verified. The widely used urban morphology indexes 

include the building density (BD) (Sun et al., 2019), building height (BH) (Yin 

et al., 2018), building volume density (BVD) (Xu et al., 2017), sky view factor 

(SVF) (He, Ding, & Prasad, 2019) and façade area ratio (FAR) (Tsichritzis & 

Nikolopoulou, 2019). In terms of ventilation potential evaluations, it has been 

common practice to utilize morphology indicators for city-scale analyses. 

Finding a suitable method for classifying urban areas dealing with urban 

climate problems has always been a challenge for urban planners from the 

perspectives of both the settlement mechanism and physical phenomena (Fu 

& Weng, 2016). The introduction of urban climate maps, which apply city 

subdivision ideas widely used in urban planning to urban climatology, bridges 

the gap between urban climate research and urban design, and facilitates the 

implementation of specific planning measures (Oke et al., 2017). However, 

models based on a single snapshot analysis are often limited due to the 

interference of chance factors, such as atmospheric hydrological conditions 

(Wang, C. et al., 2019). Time series clustering is a potential research paradigm 

that uses machine learning methods to group objects based on their spatio-

temporal similarities and is widely used in the analysis of spatio-temporal data 

in geographic information science (Liu et al., 2018; Liu, Zhan, Yang, et al., 

2019). It identifies potential patterns of change in climate elements through 

the identification of inter-group variances and trend lines within different 

regions based on multiple images, thereby effectively zoning the climate 

and reducing the interference in the smoothness caused by sensor errors 

and hydrological conditions. 

Compared to the urban heat island research that is already quite common 

at the intra-urban scale, intra-urban air pollution research has encountered 

difficulties. Having benefited from an abundance of observation tools and the 

proliferation of monitoring sites, air pollution research at the traditional 

regional scale is increasingly being extended to the urban scale. Urban-scale 

air pollution research is primarily concerned with the impact of urban surface 

elements and human productive life on the formation and spread of pollutants. 

As in urban heat island studies, geographically weighted regression (GWR) is 

widely used in these studies to remove the effect of spatial heterogeneity (Xie, 

W., Deng, & Chong, 2019) on the fitting effect and capture the main factors 
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influencing the diffusion of generated air pollution in different geographical 

subdivisions  (Wang, Z.-b. & Fang, 2016; Yang, C. et al., 2018). However, 

these findings suggest that traditional climate research frameworks may be 

limited for air pollution research, as pollutant concentration monitoring is 

often influenced by the diffusion of aerosol flows at larger regional scales, 

effectively limiting the significance of regression results at the urban scale. 

Hence, distinguishing between exogenous (Dimitriou & Kassomenos, 2014) 

and endogenous (Schindler, Caruso, & Picard, 2017) pollution to better 

interpret urban-scale regression results is an emerging need. The Hybrid 

Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), 

developed by the National Oceanic and Atmospheric Research Center 

(NOAA), provides a new method for determining the proportion of pollution 

sources based on the trajectory of aerosols and aerosol masses to better 

identify dominant gas sources in a city, thus allowing the different impacts of 

exogenous and endogenous pollution to be assessed more accurately. At the 

same time, differences in the influencing factors for air pollution and urban 

heat islands contribute to the variability between the two problems, with air 

pollution being more associated with human activity, while urban heat islands 

are more affected by impervious surfaces and vegetation. These variations 

affect operational area identification and highlight the need to consider both 

effects when delineating an operational area. 

Based on the above background, this study will identify the characteristics 

of the urban surface microclimate and explore the main influencing factors 

from three perspectives, namely, urban ventilation, the urban thermal 

environment and urban air pollution. The purpose of this study is to: (1) define 

the operational areas for urban ventilation corridor planning through an urban 

ventilation potential evaluation using urban morphology indicators, land 

surface temperature time-series clustering with k-means and HYSPLIT and 

GWR urban air pollution source diffusion analyses; (2) identify urban cold 

islands through land surface temperatures and identify the compensation areas 

for urban ventilation corridor planning; (3) designate urban ventilation 

corridors through an urban ventilation potential evaluation and CFD; and (4) 

improve general urban ventilation corridor planning through identifying 

operational areas, compensation areas and ventilation corridors as well as 

proposing corresponding control measures. 

2. DATASETS AND METHDOLOGY 

2.1 Xiangyang, China 

Using the urban ventilation study and planning done for Xiangyang as a 

case study, this paper analyses urban ventilation, urban thermal environment 

and urban air pollution problems through the technical routes mentioned 

above and puts forward urban planning suggestions to solve these problems. 

In recent years, Xiangyang, which is a medium-sized city in the Yangtze river 

basin, has suffered from an intensified urban heat island effect and an 

increasingly serious urban pollution problem due to rapid industry 

development and continuous expansion. By using Xiangyang as an example, 

on the one hand, the distribution rules for the urban heat island effect in 

medium-sized cities under subtropical monsoon climate conditions and the 

differences between the urban heat island effect in large cities and mega-cities 

can be explored. On the other hand, air pollution control strategies for cities 
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transformed by heavy industry in central China can also be explored. As 

shown in Figure 1, using Landsat 8 images collected on July 28, 2015, we 

selected a 30.5 km×20 km area for this study that covers the downtown area 

of Xiangyang and the industrial parks around the city. The research area also 

fully illustrates the heterogeneity of the land cover in terms of bodies of water, 

vegetation and the intensities of built-up areas. The upper left and lower right 

coordinates of the study area are 32°09'24"N, 112°04'18"E and 31°52'46"N, 

112°16'43"E, respectively (as shown in Figure 1). 

2.2 Data Sets 

Figure 1. The study area represented by the Landsat 8 image acquired on 28 July 2015 

2.2.1 Land Surface Temperature (LST) 

In this paper, remote sensing images collected by the Landsat-8 

Operational Land Imager (OLI) were used for surface temperature inversion 

at a spatial resolution of 30m. The classic radiative transfer equation (RTE) 

(Yu, Guo, & Wu, 2014) was employed to retrieve the LST from the selected 

Landsat 8 Thermal Infrared Sensor (TIRS) scenes. In order to study the long-

term law of evolution for the surface thermal environment and make it 

possible to consider the smallest accidental errors made under different 

climatic and hydrological conditions, this study selected annual images from 

2013 to 2016, that is, from August 7, 2013, July 9, 2014, July 28, 2015 and 

June 28, 2016. The images for all four years are from the summer; thus, they 

were taken under similar atmospheric and hydrological conditions, 

minimizing the effect of unexpected errors on the experimental results (Table 

1). 
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Table 1. Data for the representative images from each year for all four years 

Year 
Image 
Data 

Maximum 
Temperature 

(◦C) 

Minimum 
Temperature 

(◦C) 

Average 
Relative 

Humidity 

Average Wind 
Force (km/h) 

2013 7 Aug 38 29.3 51 14.4 

2014 9 Jul 29.4 21.7 70 7.8 

2015 28 Jul 34.2 26.7 67 15.9 

2016 28 Jun 29.4 24.8 68 9.8 

2.2.2 Urban Air Pollution 

The air pollution data used in this paper comes from ground measurement 

stations. A total of 180 micro-stations for air pollution monitoring were set up 

in the downtown area, Yujiahu industrial park in the south and Xiangzhou 

industrial park in the north to monitor the PM2.5, PM10, SOX, NOX and O3 

contents. Particulate matter with an aerodynamic diameter of less than 2.5 µm 

(PM2.5) (Xie, Y. et al., 2015) has been recognized as one of the principal 

pollutants that degrades air quality and increases health burdens. In this paper, 

based on the PM2.5 data, the kriging interpolation method is adopted to obtain 

air pollution distribution images for the entire range. The kriging method is a 

regression algorithm used for spatial modelling and the prediction 

(interpolation) of random processes/random fields  that is based on  a 

covariance function (Gholizadeh et al., 2019). In certain random processes, 

such as inherently stationary processes, the kriging method can provide 

optimal linear unbiased estimates. The kriging method and its improved 

algorithm are widely used in the inversion and interpolation of air pollution 

data at monitoring points. For this paper, the monitoring data obtained on 

February 9, 2018 were selected to interpolate the air pollution distribution 

within the study area. The meteorological conditions on that day were good 

and not affected by exogenous pollution, so interference could be discounted 

in the study of endogenous pollution. 

3. METHDOLOGY 

As shown in Figure 2, the city will be partitioned by various methods to 

improve urban ventilation and cope with the urban heat island and pollution 

island effects. Specifically, we plan to identify the operational areas through 

GWR and HYSPLIT, identify the compensation areas through time series 

clustering, and identify the ventilation corridors through a WRF ventilation 

simulation and a ventilation potential evaluation. 

Figure 2. The methodological framework used in this study 
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3.1 Urban Ventilation Evaluation 

3.1.1 Weather Research and Forecast (WRF) Model 

The WRF model is the latest mesoscale model and is widely used in 

weather forecasting and climatology research. There are two operational 

models available: one is a real case model that simulates real cities, and the 

other is an ideal case model that simulates virtual cities (Zhou & Chen, 2018). 

The WRF model is a fully compressible non-hydrostatic model. The initial 

and boundary conditions of the model were developed by the National Centers 

for Environmental Prediction (National Centers for Environmental Prediction-

Final, NCEP-FNL), which conducts a global analysis at a resolution of 1°×1°. 

The FNL analysis is done with data from the global data assimilation system 

(GDAS), which collects observations continuously from sources such as the 

global telecommunications system (GTS). The transverse boundary 

conditions of the model are updated every 6 hours, and the geophysical 

parameters, such as topography, land use, vegetation type, vegetation 

composition and soil type, are taken from the data set maintained by the 

United States Geological Survey (USGS). The model is configured using a 

triple-nested domain, in which the outer two domains (D1 and D2) use the 

default USGS Land-Use/Land-Cover (LULC) scheme and the innermost (3) 

domain is classified according to the new Landsat-based classification. The 

WRF model can predict the wind speed, wind direction, temperature, water 

vapor, cloud cover, precipitation and pressure distributions for different 

underlying surfaces. However, the basic WRF model does not fully consider 

human impacts and urban morphologies (Jiménez et al., 2010). 

In this study, GDAS observation data are used to simulate the ventilation 

conditions of Xiangyang city in the winter and summer, respectively. The 

basic grid unit is set as 1km, and the simulation range is downtown Xiangyang 

and the Yujiahu industrial zone. The underlying surface condition is based on 

the Landsat land cover data for the system. The spatial distributions of the 

wind speed, wind direction and wind frequency are obtained by inversion. 

3.1.2 Ventilation Potential Evaluation 

According to related research, the average building height, building 

density, building volume density, sky-view factor and building frontal area 

ratio are widely used to investigate the relationship between urban 

morphology and ventilation. Hence, these parameters are selected for the 

systematic evaluation of the urban ventilation potential (Table 2). The urban 

morphology indicators are calculated from building survey data and resampled 

to 50 m, 100 m, 200 m, 300 m and 500 m scales. The 300-meter scale is 

selected, as it does not lose too much detail and is not misleading. 

Table 2. Comprehensive information on the selected indicators 

 Morphological indicators retrieved from building survey data  

BD The total area of the building divided by the pixel area [0,1] 

BH The area-averaged building height [0, max] 

BVD A 3D indicator calculated as the building volume divided by the pixel area [0, max] 

SVF The fraction of sky visible at a given point [0,1] 

FAR Total front area divided by the pixel area [0, max] 



Zhan et al 75 

 

3.2 Land Surface Temperature Time-Series Clustering  

3.2.1 The LST Retrieval  

In this paper, Landsat 8 OLI data was used to carry out the inversion of the 

urban surface temperature through the classic radiative transfer equation 

(RTE). The thermal infrared radiance value 𝐿𝜆 received by the satellite sensor 

is composed of three parts: the atmospheric upward radiance L, the actual 

radiance of the ground reaching the energy of the satellite sensor after passing 

through the atmosphere (the atmosphere radiates downward and reflects 

energy as it reaches the ground) and the thermal infrared radiation luminance 

value received by the satellite sensor 𝐿𝜆. The RTE is then: 

Where ε is the surface-specific emissivity, 𝑇𝑆 is the actual surface temperature 

(K), 𝐵(𝑇𝑆) is the black-body thermal radiance and 𝜏 is the permeability of the 

atmosphere in the thermal infrared band (Sobrino, Jiménez-Muñoz, & Paolini, 

2004). 

3.2.2 The Spatial-Temporal Pattern 

The commonly used methods for time series clustering include k-means, 

k-cdba, k-shape, and so forth, among which the k-means method is the most 

robust for experimental comparisons. In the dataset for the land surface 

temperatures and times, the study area is divided into multiple geographical 

clusters with a uniform distribution over time via the k-means method. Using 

the k-means algorithm for unsupervised classification as opposed to 

supervised classification provides the following advantages: (1) the 

classification center is selected solely from the inherent data characteristics,  

needing neither human intervention nor any defaults; (2)  it classifies all pixels 

according to Euclidean distance in high-dimensional space so that the 

classification results better retain the variance in the data naturally, resulting 

in the largest possible differences between classes and the smallest possible 

differences within classes (Wang, J. & Ouyang, 2017); furthermore, for the 

time-series clustering, the time distance is taken into account. 

Specifically, for any pixel n in the range of the study area, there is a vector 

p with d indicators. For the experiment in this paper, d=7. For all pixels, there 

are vector families (p1, p2..., pn). The purpose of k-means is to divide all n 

pixels into K clusters in this 7-dimensional space, so as to minimize the 

Euclidean distance to each pixel in the high-dimensional space. The result of 

selecting the appropriate K value can be expressed as: 

arg min ∑ ∑‖𝑝 − 𝜇𝑖‖
2

𝑘

𝑖=1

, (3.2) 

where k is the number of classes selected in the optimal clustering, 𝜇𝑖 is the 

clustering centre of class i, that is, the average vector of dimension d in this 

class i. 

𝐿𝜆 = [𝜀𝐵(𝑇𝑆) + (1 − 𝜀)𝐿 ↓]𝜏 + 𝐿 ↑, (3.1) 
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3.3 Identification of the Distribution and Diffusion 

Dynamic of Urban Air Pollution 

3.3.1 Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) Model 

The mixed single-particle Lagrangian composite trajectory model 

(HYSPLIT) (Draxler & Hess, 1998) developed by NOAA's Air Resources 

Laboratory (ARL) is a complete system for calculating simple air-parcel 

tracks as well as complex transport, dispersion, chemical conversion and 

deposition simulations. HYSPLIT remains one of the most widely used 

atmospheric transport and diffusion models in the field of atmospheric 

science. One of the most common applications of the model is reverse 

trajectory analyses to determine the origin of air masses and establish source-

receptor relationships (Fleming, Monks, & Manning, 2012). It is also used in 

various simulations of atmospheric transport, dispersion and deposition of 

pollutants and hazardous substances.  

3.3.2 Geographically Weighted Regression (GWR) 

Unlike a conventional (global) regression model, GWR is able to model 

spatial variations in the relationship between dependent and independent 

variables (Liu, Zhan, Gao, et al., 2019). A GWR model takes the following 

form: 

𝑦0 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)

𝑝

𝑘=1

𝑥𝑖𝑘 + 𝜀𝑖, (3.3) 

where 𝑦0, 𝑥𝑖𝑘, and 𝜀𝑖 are the dependent variables, the kth independent variable 

(subscripted as k), and the random error at point i (subscripted as i), 

respectively. The location of a given point i is denoted by the coordinates 

(𝑢𝑖, 𝑣𝑖) . The coefficients 𝛽𝑘(𝑢𝑖, 𝑣𝑖)  are the location-varying weights, and 

𝛽0(𝑢𝑖, 𝑣𝑖) is the geographically-varying intercept. Thus, the GWR extends the 

global regression model by adding the geographical location parameter to 

generate the local coefficients accounting for spatial non-stationarity. The 

estimates of 𝛽0(𝑢𝑖, 𝑣𝑖) and 𝛽𝑘(𝑢𝑖, 𝑣𝑖) are based on the unbiased estimation of 

a set of observations, in which the weight matrix is used to weight the 

observations differently The variation in 𝛽𝑘(𝑢𝑖, 𝑣𝑖)  at different locations 

makes the GWR different from the Ordinary Least Squares (OLS)  method 

(Zhao et al., 2018).  

4. RESULTS AND DISCUSSION 

4.1 Urban Ventilation Potential 

As shown in Figure 3, the dominant summer wind direction in Xiangyang 

is southeast to northwest, with the main wind channels distributed along the 

Han River and Jiao Liu line railway. However, due to the barrier imposed by 

the mountains, the wind direction changes at the local scale. The wind speed 

is higher on Wolong Avenue, which is located between Xian Mountain and 

the Lumen Mountains, due to the narrow pass there. At the same time, as the 

Han River flows from southeast to south in Yuliangzhou, there are inland sea-
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land breezes along the Han River that flow from the river to the city. Overall, 

the winds in downtown Xiangyang are milder, with fewer windy days and 

gales. In addition, the built-up area has an impact on wind speed, with 

secondary wind channels within the built-up area mainly along the main road. 

In the downtown areas, the Fancheng and Xiangcheng Districts have 

predominately south winds, whereas the Xiangzhou District has 

predominately southeast winds (Figure 3a). 

Figure 3. Assessments for: (a) wind distribution; (b) ventilation potential 

The building morphological indicators are used to calculate the local 

ventilation potential, and possible ventilation corridors are tapped. The 

parameters used in the construction of the comprehensive ventilation potential 

evaluation indicator system include building density, building volume density 

and the downtown’s windward surface density. As shown in Figure 3b, the 

ventilation potential rises from low to high, with 1 indicating that ventilation 

is most affected, and 7 indicating that it is not affected. The results show that 

the ventilation potential is lower in urban centers due to the high intensity of 

construction and that the hills also have an impact on urban ventilation, 

although not as strong an impact as in the built-up areas. However, in some 

areas, local wind conditions can also be fine, and these spaces are usually 

water bodies, open spaces, green spaces and wide roads. In addition, once 

these spaces are strung together, there is a good ventilation corridor within the 

city. 

4.2 Urban Thermal Environment 

As can be seen from Figure 4, the spatial pattern of the urban heat island 

effect from 2013 to 2016 shows obvious evolutionary changes. However, due 

to the influence of atmospheric hydrological conditions and cloud cover, the 

absolute mean temperature of the surface temperature time series images that 

can be adopted have statistically significant fluctuations and time 

heterogeneities, e.g., 2013 (37.23°C), 2014 (39.94°C), 2015 (33.96°C) and 

2016 (30.44°C), and do not form a continuous time series. The trend in the 

urban heat island effect cannot be directly reflected by fluctuations in average 

air temperatures and average surface temperatures. Similarly, the UHI (urban 

heat island) images do not intuitively recognize spatio-temporal patterns. The 
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strongest heat island effects are concentrated in the northern industrial parks 

and central urban areas. Among them, the heat island intensity in the northern 

industrial park shows a continuous upward trend, and the heat island effect in 

Dongjin District is also increasing in parallel with the intensity of 

construction. It is worth noting that the heat island effect in Yuliangzhou, 

which was originally an ecological reserve, has increased in intensity in recent 

years due to the growth of tourism. The above conclusions are based on 

intuitive visual decoding with questionable reliability, some of which can be 

solved by the application of time-series clustering. 

Time-series clustering can identify the rules and patterns in changes among 

clusters, so it can solve incomparability problems involving similar images in 

a long time series that are caused, to a certain extent, by time heterogeneity. 

The clustering results for surface temperature in Xiangyang show the 

robustness of the temporal clustering method, which is in line with intuitive 

perceptions and expectations. Cluster 1 represents an extremely strong heat 

island area from beginning to end; it is mainly an industrial area and a high-

intensity construction area. Cluster 2 also represents a built-up area and heat 

island concentration area, but the intensity for this cluster is lower than that 

for Cluster 7, partly due to the expansion area of the heat island. Cluster 3 is 

mostly impermeable to water and also a potential heat island area. Cluster 4 is 

also a potential heat island area. The overall heat island intensity for Cluster 4 

is lower than that of Cluster 3, but its heat island intensity has increased 

significantly in the past four years. Cluster 5 is the main water area, which can 

be considered to be the Han river. Both Cluster 6 and Cluster 7 can be 

considered to be vegetation-covered areas. Among them, Cluster 7 can be 

considered to be a cold island, as it is mainly composed of mountains and 

concentrated green land and wetlands (Figure 5). 

Figure 4. The spatial distributions of the land surface temperatures (LSTs) 

Major urban heat islands are concentrated in the downtown areas, 

including Xiangcheng District, Fancheng District, Xiangzhou District and the 

industrial park to the north, and there are also small heat islands in Yujiahu to 

the south. From 2013 to 2016, due to the urban expansion, the heat island 

patches in the northern industrial park, Dongjin District and the Yujiahu 

industrial park have been expanding continuously, and the downtown 

Xiangzhou District has been transformed from the original sporadic heat 

island to a concentrated heat island. Meanwhile, the heat island intensity of 

the northern industrial park is at the highest in the entire city. The heat island 

patches around Xiangyang airport are expanding due to increased 
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impermeability. After 2013, the heat island effect in Yuliangzhou, which was 

not originally a region with a severe heat island effect, increased gradually. 

 

Figure 5. Time-series clustering results 

4.3 The Sources and Diffusion of Air Pollution 

4.3.1 The HYSPLIT Results 

Figure 6. The HYSPLIT results 

In this study, pollution within 300 km from Xiangyang’s downtown is 

defined as being part of the local air masses for Xiangyang and  is considered 

to have a short-range trajectory; within 600 km, the pollution has a medium-

range trajectory; and beyond 600 km, the pollution has a long-range trajectory. 

In winter, the number of short-range pollution trajectories in Xiangyang 

accounted for 37.6% of the total trajectories, 28.2% of the medium-range 

trajectories and 34.2% of the long-range trajectories, indicating that the 

atmospheric diffusion conditions in Xiangyang are not ideal in winter and  that 

pollution tends to gather during this period, resulting in fog. In winter, sand 

and dust from the southern Xinjiang basin, central and western Inner 

Mongolia, northern Ningxia and other places southward as well as air 

pollution from northern China, the Huang Huai Valley and the Jiang Huai fan-
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shaped plain area also flood into the Nanyang-Xiangyang basin, thus 

superimposing on local pollutants and causing serious air pollution. The main 

sources of pollution are the North China region, the fan-shaped plains of the 

Yellow and Huaihe River basins and the Jiangsu-Huaihe River basin (42%), 

the Guanzhong plain and the loess plateau in northern Shaanxi (19%), while 

the smallest sources are the southern border basin, central and western Inner 

Mongolia and northern Ningxia (7%) (Figure 6). 

4.3.2 The Result of GWR 

In this study, the air pollution site data on February 9, 2018 was selected 

for regression analysis, and the air pollution distribution image, as obtained 

through interpolation using the kriging method, was used as the dependent 

variable. Morphological indicators such as building density (BD), average 

building height (BH), building volume density (BVD) and land cover 

indicators, such as NDBI (Normalized Building Index), NDVI (Normalized 

Vegetation Index), proportion of water body, proportion of industrial land, as 

well as the population density distributions of social and economic indicators, 

were selected as independent variables for geographically weighted 

regression, all of which were resampled to 500 m. According to the results 

obtained from the analysis (Figure 7), the GWR series models are superior to 

OLS models in terms of goodness-of-fit, although the R2 is limited to 0.46. 

The distribution of local R2 values is shown in the figure above, which 

indicates that the south is in better condition than the north. At the same time, 

the selected indicators provide a weak interpretation of the air pollution 

distribution, so more indicators need to be added to the regression to improve 

the goodness-of-fit. On the one hand, the additions may be necessary because 

the optimal research scale of air pollution is actually greater than 500 meters; 

on the other hand, the detection results of stations where air pollution 

distribution is greatly affected by wind direction and wind speed may not truly 

reflect the sources of air pollution. Meanwhile, as mentioned above, 

endogenous air pollution only accounts for part of the total air pollution, and 

most exogenous air pollution cannot be explored and identified via the GWR 

model. 

Figure 7. The GWR results 

The high-level air pollution concentration areas are distributed within the 

Yujiahu industrial park in the south and the Shenzhen industrial park in the 
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northeast. In future studies, the influence of industrial formats on air pollution 

distribution can be further discussed. The coefficients and slopes of various 

indicators for the GWR regression results are shown in Figure 8. Meanwhile, 

representative indicators, such as the industrial land use ratio, water body 

ratio, NDBI and NDVI are selected for detailed analyses in this paper. 

Numerically, at the internal scale of the city, the industrial land contributes 

most to the haze, while the urban green space has a clear role in settling the 

haze. Building indicators contribute to the generation of haze, but the 

relationship is not significant enough, and the mechanism of action is not 

clear. Water bodies have a weaker impact on haze than greenfield vegetation, 

and this impact is dependent on natural river patterns. Spatially, because it is 

located on the main ventilation corridor, the development and construction of 

the Panggong area has had a great impact on air pollution diffusion. Water 

bodies and green spaces play obvious roles in alleviating air pollution, while 

the Xian and Lumen mountains along the Hanjiang river play an obvious role 

in reducing air pollution. In addition, dust from construction sites/bare soil 

contributes significantly to the air pollution. 

Figure 8. The spatial distributions of the indicators 

4.4 Ventilation Corridor Planning Proposal 

In this study, the influence of landscape composition and urban 

morphology on urban ventilation, the urban heat island effect and the urban 

pollution island effect, as well as the spatial heterogeneity of the strength of 

the influences, were discussed using various methods. More detailed 

information can be obtained through a study which considers time and space 

non-stationarity. A discussion of the results, application and limitations of this 

study are presented below. 

4.4.1 The Influence of the Local Landscape and its Spatial 

Heterogeneity 

The climatic response to this urban landscape had great spatial 

heterogeneity; therefore, it is crucial for climate modelling to take such spatial 

heterogeneity effects into consideration. Built-up areas make large 

contributions to the urban heat island effect, and this effect becomes more and 

more intense with the expansion of cities, while the contribution of land use 
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is significantly different. Low-rise, high-density, built-up areas are urban heat 

island concentration areas, among which residential and industrial areas are 

hot spots for pollution. Industrial zones contribute greatly to the urban heat 

island effect and urban air pollution, and different industrial formats have 

different contributions to the two. Green land and water have strong mitigation 

effects on the urban heat island effect and urban air pollution; meanwhile, the 

cooling and evacuation effects of the surrounding areas are also obvious. 

4.4.2 Integration with Planning Practice 

According to the above results, the operational areas, compensation areas 

and ventilation corridors are defined and corresponding planning measures are 

set up. 

Figure 9. Urban ventilation corridor planning in Xiangyang 

The operational areas are mainly concentrated in the commercial and 

residential areas as well as in the industrial areas to the south and north of the 

main urban area. In particular, the central business district contains most of 

the commercial areas; the low-rise, high-density residential area surrounds it; 

and the industrial areas include an aerospace industrial park to the northwest, 

the Shenzhen industrial park to the northeast and the Yujiahu industrial park 

to the south. The compensation areas are the water bodies and green spaces. 



Zhan et al 83 

 

Several major lakes downtown and several large surrounding reservoirs 

constitute the main water compensation areas. Xian mountain, Lumen 

mountain and other forest parks are the first-level green space compensation 

areas, and the larger urban parks constitute the second-level green space 

compensation areas. Ventilation corridors are also divided into three classes: 

the first class consists of the main water bodies, the second class is made up 

of the major avenues, and the tertiary class consists of the sub-arterial 

highways (Figure 9). 

For major urban built-up downtown areas, the overall idea of planning 

control is to reduce the intensity of development, enrich the green 

infrastructure and emphasize mixed land use. To be specific, low-rise, high-

density areas can be converted into high-rise, low-density areas when the 

development intensity needs to be reduced; however, the plot ratio must be 

maintained at a level that ensures that urban functions are preserved. At the 

same time, replacing swathes of high-rises with high-rise points and 

increasing the water and green areas is also a solution. Furthermore, for the 

industrial zones, in addition to increasing the green spaces and green isolation 

belts for these zones, their locations should be carefully selected to avoid 

situating them in the city's upper air outlet. In addition, the industrial processes 

should be improved to reduce air pollution. For the water bodies and urban 

green infrastructures in the compensation areas, in addition to the strict control 

of the water bodies themselves to ensure that there is no further deterioration, 

high-density construction should also be reduced within a certain range of 

these buffer zones. Ventilation corridor controls should include the corridor 

width, greening ratio and building heights and densities. 

4.5 Limitations 

There are several limitations worthy of further discussion. Firstly, the 

current zoning is too rough to provide more detailed information. The LCZ 

method should be explored with regards to its applicability and feasibility in 

further studies. Secondly, due to the differences in action scales and influence 

factors between urban heat and urban pollution islands, any unified zoning 

attempt would lead to misleading results and make it difficult to solve these 

issues. Urban zoning for dealing with different urban climate problems should 

be done separately, then compared, so the interactions between these methods 

may be discussed further. Thirdly, the time-series clustering method can be 

used to obtain both temporal and spatial characteristics, but the existing 

planning measures are usually only for a single temporal aspect, and it is 

difficult to respond effectively to changes occurring over time. Therefore, the 

gap between time-series cluster analysis and the planning response should be 

closed. Finally, for air pollution, the results obtained via the kriging method 

do not correspond exactly to the real situation, which may lead to local 

overestimations or underestimations. A more appropriate method should be 

found to improve the accuracy of air pollution estimates. 

5. CONCLUSIONS 

In this study, a series of state-of-the-art geospatial techniques, including 

WRF, time-series clustering, HYSPLIT and GWR, have been introduced to 

investigate the spatial-temporal characteristics of, and factors affecting, urban 

ventilation, urban heat islands and urban pollution islands. According to the 
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spatial heterogeneity of the results, different planning zones are created and 

different planning measures are proposed to meet the sustainable development 

goals. The main findings are as follows: (1) the appropriate operational scales 

for examining urban ventilation, urban heat islands and air pollution are not 

necessarily the same, with the scales for ventilation and air pollution being 

relatively large and more suitable for analysis at the regional scale; (2) the 

urban morphology has a great deal of influence on the near-surface ventilation 

potential, but the spatial heterogeneity of its influence on air pollution 

diffusion is not strong; (3) both exogenous pollution and endogenous pollution 

make obvious contributions to urban air pollution; (4) topography plays an 

important role in pollution diffusion, and the closure of a basin allows air 

pollution to collect; (5) urban function has a significant impact on urban 

climate, which needs to be discussed further, especially in term of 

concentrated residential and industrial districts. Generally, it is of great 

significance to put forward planning suggestions from the perspectives of 

urban form, urban land cover and urban landscape composition to alleviate 

urban climate problems. 
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