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Literally, human settlements are the place where people live. Human settlements are 

often divided into urban settlements and rural settlements, although there is no consensus 

on how to exactly differentiate the two. The share of the world population living in 

cities has increased rapidly in recent years, surpassing the 50% threshold only recently. 

Cities are expected to accommodate 2.5 billion additional people by 2050, leading to 

an urbanization rate reaching 68%. Meanwhile, micro-urbanization and land 

abandonment are also happening worldwide in small settlements. Cities play a vital 

role in global economic development and they are hubs for innovation. Consequently, 

cities are also the place where human resources and capital concentrate, further 

amplifying their importance. Yet, as a consequence of the concentration of people 

and their activities, human settlements also take up an increasing amount of land. As 

such, human settlements play an increasingly important role in the global competition 

for land.  

Due to the importance for a range of sustainability challenges, it is important to 

understand the spatial dynamics of human settlements. The rapid expansion of built-

up land is among the most extensive global land changes, even though built-up land 

occupies only a small fraction of the terrestrial biosphere. Moreover, the different 

ways in which human settlements are manifested are crucially important for their 

environmental and socioeconomic impacts. For example, the enormous 

concentration of population in urban slums can be interpreted as highly intensive land 

use, thus minimizing the amount of land used for residential activities. Yet, it also 

represents low-quality living conditions, which suggest unsustainable socioeconomic 

outcomes. Urban sprawl, in contrast, requires a relatively large amount of land per 

person, thus threatening food production and biodiversity habitat, while the quality 

of life is generally much higher therein. Yet, current analysis of human settlements 

heavily relies on land cover datasets, which typically have only one single class to 

represent human settlements, i.e., built-up land, impervious surface, or urban land. 

Consequently, the analysis of human settlements does often not account for the 

heterogeneity within urban environment or their subtle changes over time. This 

simplistic representation severely limits our understanding of change processes in 

human settlements, as well as our capacity to assess socioeconomic and 

environmental impacts. 

Land systems, which represent the outcome of human interactions with natural 

environment, are widely acknowledged as the key to overcoming the simplicity of 
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land cover-based analysis. Therefore, mapping land systems could underpin the 

representation of nature-environment interactions in the integrated social-ecological 

systems. However, existing classification schemes of land systems are predominantly 

applied to characterize natural and/or agricultural landscapes. Although a few studies 

have incorporated multiple classes representing human settlements, these did not 

include urban land systems. Yet, this approach offers ample opportunities to explore 

the heterogeneity within human settlements.  

This thesis aims to advance large-scale analysis of human settlements and their 

dynamics through the lens of land systems, with a specific focus on the role of land-

use intensity. To achieve this objective, this dissertation addresses the following three 

research questions (RQs): 

RQ1: How can we represent the diversity of settlement systems? 

RQ2: What can we learn from Earth Observation to better characterize 

urban land-use intensity? 

RQ3: How do urban land-use intensity and settlement systems change 

over time? 

Chapter 2 explores the use of human settlement systems as an approach to 

understanding their variation in space and changes over time. To do so, three 

properties derived from built-up land (the density of built-up land, the density of 

built-up clusters, and the size of the largest cluster) are used to characterize settlement 

systems in China. Results show that settlement systems exist along a density gradient, 

and their change trajectories are typically gradual and incremental. Moreover, this 

chapter shows that the vast majority of all built-up land is included in a number of 

village systems, despite a focus of many studies on large urban areas. In addition, 

results indicate that the total increase in built-up land in village landscapes outweighs 

that of dense urban regions. This chapter suggests that we should characterize human 

settlements more comprehensively to advance the analysis of human settlements, 

going beyond the emergence of new built-up land in a few mega-cities only. 

In Chapter 3, urban land-use intensity is operationalized by the horizontal and 

vertical spatial patterns of buildings. Particularly, I trained three random forest models 

to estimate building footprint, height, and volume, respectively, at a 1-km resolution 

for Europe, the US, and China. Random forest models were trained based on 

reference data from a few available 3D city models. Compared to 3D building 

information for individual buildings, which is crucial for urban analytics, the gridded 

3D building datasets exist at a coarser resolution which is directly supportive of 
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representing urban land-use conditions at larger scales. The random forest models are 

fed with optical remote sensing imagery, SAR imagery, remote sensing derived indices, 

and other spatial data. Subsequently, these trained models are used to estimate the 

same variables for all the other locations in Europe, China, and the US. The models 

yield R2 values of 0.90, 0.81, and 0.88 for building footprint, height, and volume, 

respectively, for all three continents combined. The correlation between building 

footprint and building height at a pixel level was 0.66, illustrating the relevance of 

mapping these properties independently. 

Chapter 4 builds on the methodological approach presented in chapter 3. Specifically, 

it presents an improved approach to mapping 3D built-up patterns (i.e., 3D building 

structure), and applies this to map building footprint, height, and volume at a global 

scale. The methodological improvement includes an optimized model structure, 

additional explanatory variables, and updated input data. The latter includes reference 

data from all world continents. Subsequently, I analysed 3D built-up patterns along 

the urban–rural gradient in selected cities, as well as in more rural areas across ten 

world regions, to illustrate the variation in urban morphology. These results show a 

large variation in the built-up volume per person across major world regions, with the 

volume in South Asia almost an order of magnitude smaller than the volume in 

Oceania. Moreover, I find distance decay functions from the centre of the city to its 

outskirts for all three properties for major cities in all continents. Yet, again, the height, 

footprint (density), and volume differ drastically across these cities. The generated 

data offers new opportunities for the assessments of urban environmental impacts at 

a global scale. 

Chapter 5 uses built-up land per person as an operationalization for urban land-use 

intensity, in order to investigate its temporal dynamics at a global scale. Results 

suggest that the decrease of urban land-use intensity relates to 38.3%, 49.6%, and 

37.5% of the built-up land expansion in the three periods during 1975-2015 (i.e., 

1975-1990, 1990-2000, and 2000-2015), but with large local variations. Chapter 5 also 

finds that centers of large cities intensify in all three periods, while their rural 

counterparts show an opposite direction. In the Global South, densification often 

happens in regions where human settlements are already used intensively, suggesting 

potential trade-offs with other living standards. 

These chapters represent the recent advancements in large-scale analysis of human 

settlements by revealing a large variation in urban fabric. Urban densification is widely 

acknowledged as one of the tangible solutions to satisfy the increased land demand 

for human settlement while conserving other land, suggesting the relevance of these 

findings to inform sustainable development. Nevertheless, local settlement 
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trajectories towards intensive forms should also be guided in a large-scale context 

with broad considerations, including the quality of life for inhabitants, because these 

trade-offs and synergies remain largely unexplored in this analysis. I argue that the 

representation of urban land-use change should incorporate such variation in 

integrated assessment models to inform decision-making. 
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Letterlijk zijn menselijke nederzettingen de plaats waar mensen wonen. Menselijke 

nederzettingen worden vaak verdeeld in stedelijke nederzettingen en landelijke 

nederzettingen, hoewel er geen consensus bestaat over hoe de twee precies kunnen 

worden onderscheiden. Het aandeel van de wereldbevolking dat in steden woont, is 

de afgelopen jaren snel toegenomen en heeft pas onlangs de drempel van 50% 

overschreden. Steden zullen naar verwachting tegen 2050 2,5 miljard extra mensen 

huisvesten, wat leidt tot een verstedelijkingspercentage van 68%. Ondertussen vinden 

ook wereldwijd micro-urbanisatie en landverlating plaats in kleine nederzettingen. 

Steden spelen een vitale rol in de wereldwijde economische ontwikkeling en zijn hubs 

voor innovatie. Bijgevolg zijn steden ook de plaats waar menselijke hulpbronnen en 

kapitaal zich concentreren, waardoor hun belang nog groter wordt. Maar als gevolg 

van de concentratie van mensen en hun activiteiten nemen ook menselijke 

nederzettingen steeds meer land in beslag. Als zodanig spelen menselijke 

nederzettingen een steeds belangrijkere rol in de wereldwijde concurrentie om land. 

Vanwege het belang voor een reeks duurzaamheidsuitdagingen, is het belangrijk om 

de ruimtelijke dynamiek van menselijke nederzettingen te begrijpen. De snelle 

uitbreiding van bebouwd land is een van de meest uitgebreide wereldwijde 

landveranderingen, ook al beslaat bebouwd land slechts een klein deel van de 

terrestrische biosfeer. Bovendien zijn de verschillende manieren waarop menselijke 

nederzettingen zich manifesteren van cruciaal belang voor hun milieu- en 

sociaaleconomische effecten. Zo kan de enorme concentratie van de bevolking in 

stedelijke sloppenwijken worden geïnterpreteerd als zeer intensief landgebruik, 

waardoor de hoeveelheid land die wordt gebruikt voor woonactiviteiten wordt 

geminimaliseerd. Toch vertegenwoordigt het ook levensomstandigheden van lage 

kwaliteit, die wijzen op onhoudbare sociaaleconomische resultaten. Stedelijke 

wildgroei vereist daarentegen een relatief grote hoeveelheid land per persoon, 

waardoor de voedselproductie en de biodiversiteit in de leefomgeving worden 

bedreigd, terwijl de kwaliteit van leven daar over het algemeen veel hoger is. Toch 

leunt de huidige analyse van menselijke nederzettingen sterk op datasets over 

landbedekking, die doorgaans slechts één enkele klasse hebben om menselijke 

nederzettingen weer te geven, d.w.z. bebouwd land, ondoordringbaar oppervlak of 

stedelijk land. Bijgevolg houdt de analyse van menselijke nederzettingen vaak geen 

rekening met de heterogeniteit binnen de stedelijke omgeving of hun subtiele 

veranderingen in de loop van de tijd. Deze simplistische weergave beperkt ons begrip 
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van veranderingsprocessen in menselijke nederzettingen ernstig, evenals ons 

vermogen om sociaaleconomische en milieueffecten te beoordelen. 

Landsystemen, die het resultaat zijn van menselijke interacties met de natuurlijke 

omgeving, worden algemeen erkend als de sleutel tot het overwinnen van de eenvoud 

van op landbedekking gebaseerde analyses. Daarom zou het in kaart brengen van 

landsystemen de representatie van natuur-milieu-interacties in de geïntegreerde 

sociaal-ecologische systemen kunnen ondersteunen. Bestaande classificatieschema's 

van landsystemen worden echter voornamelijk toegepast om natuurlijke en/of 

agrarische landschappen te karakteriseren. Hoewel in enkele studies meerdere klassen 

zijn opgenomen die menselijke nederzettingen vertegenwoordigen, omvatten deze 

geen stedelijke landsystemen. Toch biedt deze benadering volop mogelijkheden om 

de heterogeniteit binnen menselijke nederzettingen te onderzoeken. 

Dit proefschrift beoogt grootschalige analyse van menselijke nederzettingen en hun 

dynamiek te bevorderen door de lens van landsystemen, met een specifieke focus op 

de rol van landgebruiksintensiteit. Om dit doel te bereiken, behandelt dit proefschrift 

de volgende drie onderzoeksvragen: 

OV1: Hoe kunnen we de diversiteit van afwikkelingssystemen weergeven? 

OV2: Wat kunnen we leren van aardobservatie om de intensiteit van 

stedelijk landgebruik beter te karakteriseren? 

OV3: Hoe veranderen de intensiteit van stedelijk landgebruik en 

vestigingssystemen in de loop van de tijd? 

Hoofdstuk 2 onderzoekt het gebruik van menselijke vestigingssystemen als een 

benadering om hun variatie in de ruimte en veranderingen in de tijd te begrijpen. Om 

dit te doen, worden drie eigenschappen die zijn afgeleid van bebouwd land (de 

dichtheid van bebouwd land, de dichtheid van bebouwde clusters en de grootte van 

het grootste cluster) gebruikt om vestigingssystemen in China te karakteriseren. De 

resultaten tonen aan dat vestigingssystemen langs een dichtheidsgradiënt bestaan en 

dat hun veranderingstrajecten typisch geleidelijk en incrementeel zijn. Bovendien laat 

dit hoofdstuk zien dat het overgrote deel van alle bebouwde grond deel uitmaakt van 

een aantal dorpssystemen, ondanks de focus van veel studies op grote stedelijke 

gebieden. Bovendien geven de resultaten aan dat de totale toename van bebouwd land 

in dorpslandschappen groter is dan die van dichtbevolkte stedelijke gebieden. Dit 

hoofdstuk suggereert dat we menselijke nederzettingen uitgebreider moeten 

karakteriseren om de analyse van menselijke nederzettingen vooruit te helpen, waarbij 
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we verder gaan dan de opkomst van nieuw bebouwd land in slechts enkele 

megasteden. 

In hoofdstuk 3 wordt de stedelijke landgebruiksintensiteit geoperationaliseerd door 

de horizontale en verticale ruimtelijke patronen van gebouwen. Ik heb met name drie 

willekeurige bosmodellen getraind om respectievelijk de voetafdruk, hoogte en het 

volume van gebouwen te schatten met een resolutie van 1 km voor Europa, de VS en 

China. Willekeurige bosmodellen werden getraind op basis van referentiegegevens 

van enkele beschikbare 3D-stadsmodellen. Vergeleken met 3D-bouwinformatie voor 

individuele gebouwen, wat cruciaal is voor stedelijke analyses, bestaan de gerasterde 

3D-bouwdatasets met een grovere resolutie die direct ondersteuning biedt voor het 

weergeven van stedelijke landgebruiksomstandigheden op grotere schaal. De 

willekeurige bosmodellen worden gevoed met optische teledetectiebeelden, SAR-

beelden, van teledetectie afgeleide indices en andere ruimtelijke gegevens. Vervolgens 

worden deze getrainde modellen gebruikt om dezelfde variabelen te schatten voor 

alle andere locaties in Europa, China en de VS. De modellen leveren R2-waarden op 

van 0,90, 0,81 en 0,88 voor respectievelijk de voetafdruk, de hoogte en het volume 

van het gebouw voor alle drie de continenten samen. De correlatie tussen de 

voetafdruk van het gebouw en de hoogte van het gebouw op pixelniveau was 0,66, 

wat de relevantie illustreert van het onafhankelijk in kaart brengen van deze 

eigenschappen. 

Hoofdstuk 4 bouwt voort op de methodologische benadering die in hoofdstuk 3 

wordt gepresenteerd. Het presenteert met name een verbeterde benadering voor het 

in kaart brengen van 3D-bebouwde patronen (d.w.z. 3D-bouwstructuur), en past deze 

toe om de voetafdruk, hoogte en het volume van gebouwen op wereldschaal in kaart 

te brengen. De methodologische verbetering omvat een geoptimaliseerde 

modelstructuur, aanvullende verklarende variabelen en bijgewerkte invoergegevens. 

Deze laatste omvat referentiegegevens van alle wereldcontinenten. Vervolgens 

analyseerde ik 3D-bebouwde patronen langs de stad-landelijke gradiënt in 

geselecteerde steden, evenals in meer landelijke gebieden in tien wereldregio's, om de 

variatie in stedelijke morfologie te illustreren. Deze resultaten laten een grote variatie 

zien in het opgebouwde volume per persoon in de belangrijkste wereldregio's, waarbij 

het volume in Zuid-Azië bijna een orde van grootte kleiner is dan het volume in 

Oceanië. Bovendien vind ik afstandsvervalfuncties van het centrum van de stad naar 

de buitenwijken voor alle drie de eigendommen voor grote steden in alle continenten. 

Maar nogmaals, de hoogte, voetafdruk (dichtheid) en volume verschillen drastisch 

tussen deze steden. De gegenereerde gegevens bieden nieuwe mogelijkheden voor de 

beoordeling van stedelijke milieueffecten op wereldschaal. 
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Hoofdstuk 5 gebruikt bebouwd land per persoon als operationalisering voor de 

intensiteit van stedelijk landgebruik, om de temporele dynamiek ervan op 

wereldschaal te onderzoeken. De resultaten suggereren dat de afname van de 

intensiteit van stedelijk landgebruik betrekking heeft op 38,3%, 49,6% en 37,5% van 

de bebouwde landuitbreiding in de drie perioden van 1975-2015 (d.w.z. 1975-1990, 

1990-2000 en 2000-2015), maar met grote lokale variaties. Hoofdstuk 5 constateert 

ook dat centra van grote steden in alle drie de perioden intensiveren, terwijl hun 

tegenhangers op het platteland een tegengestelde richting laten zien. In het Globale 

Zuiden vindt verdichting vaak plaats in regio's waar menselijke nederzettingen al 

intensief worden gebruikt, wat wijst op mogelijke afwegingen met andere 

levensstandaarden. 

Deze hoofdstukken vertegenwoordigen de recente vorderingen in grootschalige 

analyse van menselijke nederzettingen door een grote variatie in stedelijk weefsel aan 

het licht te brengen. Stedelijke verdichting wordt algemeen erkend als een van de 

tastbare oplossingen om te voldoen aan de toegenomen vraag naar land voor 

menselijke vestiging en tegelijkertijd ander land te behouden, wat de relevantie van 

deze bevindingen suggereert voor duurzame ontwikkeling. Desalniettemin moeten 

lokale vestigingstrajecten naar intensieve vormen ook worden begeleid in een 

grootschalige context met brede overwegingen, inclusief de levenskwaliteit van de 

bewoners, omdat deze afwegingen en synergieën grotendeels onontgonnen blijven in 

deze analyse. Ik betoog dat de representatie van verandering in stedelijk landgebruik 

dergelijke variatie in geïntegreerde beoordelingsmodellen moet opnemen om de 

besluitvorming te informeren. 
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Human settlements are literally the place where people live. To this end, people may 

construct shelter and associated infrastructure, and most importantly, acquire extra 

territory for resource exploitation to sustain their livelihoods (Ellis et al., 2013), which 

altogether prompt the archaeological debate on the causality of human settlements 

that emerged to facilitate anthropogenic activities such as hunter-gathering and 

farming (Cumming et al., 2014; Weissbrod et al., 2017). In other words, human 

settlements are the entity that integrates and assimilates human beings living there, 

physical elements such as shelter and infrastructure, as well as functions and services 

to which their physical components could provide support. Accordingly, human 

geographers acknowledge that human settlements can be further distinguished by 

their population size, spatial pattern, dominant production activity, regional centrality 

and functionality, among others. 

Since the Industrial Revolution, the development of human settlements, particularly 

the urbanization process featured by rural-urban migration, has profoundly reshaped 

the Earth’s environment as well as our socioeconomic system (Eitelberg et al., 2016; 

Seto and Ramankutty, 2016). Global assessments suggest that more than 75% of 

Earth’s terrestrial surface has been modified by human activities (Ellis and 

Ramankutty, 2008), despite of a relatively small fraction of territory directly used for 

human residency (Liu et al., 2014c). In comparison, agricultural production has long 

been acknowledged as one of the most prominent human alterations of our planet 

(Foley et al., 2011; Lambin and Meyfroidt, 2011). In recent decades, however, the 

expansion speed of human settlements is approaching the magnitude of agricultural 

expansion (van Vliet, 2019), which underpins a growing demand for in-depth analysis 

of human settlement trajectories, in order to better consolidate existing human 

settlements and develop new land elsewhere for human settlements. 

Given that human settlements are often surrounded by valuable land such as fertile 

cropland and natural habitat, the projected expansion of human settlements in the 

near future due to population increase and rural-urban migration challenges our 

pathways toward global sustainability (Forman and Wu, 2016; Liu and Li, 2017). For 

instance, van Vliet et al. (2017) projected that global built-up land will double between 

2000 and 2040, leading to a spatial displacement of up to 35 Mha cropland to fulfill 

the demand for food. With the incorporation of different trajectories of human 

settlements, however, Wang et al. (2021a) find that rural-urban migration in China 
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could release a large amount of cropland from rural built-up land between 2015 and 

2050. Therefore, crop production in 2050 would be higher than that in 2015 even 

considering the relatively low productivity in reclaimed cropland elsewhere. These 

inconsistent or even contradictory findings imply that steering human settlements 

toward an appropriate trajectory could be the leverage point for addressing food 

insecurity. 

Often, human settlements are dichotomously divided into urban settlements and rural 

settlements, there is no consensus yet on how to exactly differentiate the two. In reality, 

human settlements exist along a continuum of land uses that ranges from deep rural 

to dense urban (Seto et al., 2012b; van Vliet et al., 2020), and awareness of this 

gradient is essential in local practices for global and regional sustainability. So far, 

cities play a vital role in global development of human settlements as they serve as the 

engine for economic growth and are the hubs for innovation. Cities are expected to 

house 2.5 billion additional people by 2050, with an urbanization rate reaching 68% 

(United Nations, 2018). On the one hand, cities are the place where human resources 

and capital concentrate and are therefore viewed as the horsepower for development 

(Liu and Li, 2017). On the other hand, countryside communities in many parts of the 

world are suffering from land abandonment and/or land use dis-intensification (van 

der Zanden et al., 2016). 

In the context of globalization, especially the flow of population and commodity-

driven agricultural expansion in a tele-coupled world, human settlements play an 

increasingly central role in planetary sustainability. Sustainable Development Goal 11 

(SDG11), which explicitly targets a sustainable future of human settlements, requires 

systematic solutions to challenges emerging with the development of human 

settlements. In particular, we need to consider how the use of our territory can be 

arranged to support sustainable development. 

Early documentations on human settlement studies, as many other geographic studies 

in the same period, are rather theoretical and descriptive. The classic theories on 

human settlements developed in the past centuries, which serve as backbones for 

human settlement studies nowadays, are dominated by theoretical descriptions of 

their spatial pattern and/or interaction with human activities. For example, von 

Thünen (1826) laid the foundation of land use theory by introducing a model to 

explain the spatial interaction of human activities that determines the location for 
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facilities, in a sense that public goods and services are optimally accessed to the 

population. Over one hundred years later, Christaller (1933) built a mathematical 

geometry model to explain the distribution of market services in a commercial system, 

or human settlements in a residential system. Later on, Fujita and Krugman (1995) 

developed a monopolistic competition model and examined conditions under which 

all manufactured goods will be produced in a single town. The distance-decay 

function along urban-rural gradients or between paired cities for one or more spatial 

interactions is integral to these models (Van der Horst, 2006). 

Since the wide application of remote sensing techniques after 1980s, land cover has 

prevailed in large-scale analyses of human settlements (Shaw et al., 2020). Land cover, 

representing biophysical attributes of the Earth's surface (Turner et al., 1994), often 

illustrates how a specific region is spatially covered by physical land types such as 

forests and wetlands, among others. Land cover can be derived from satellite and/or 

aerial imagery, while land use that reflects human purpose applied to land cover 

cannot be directly interpreted (Lambin et al., 2001). Land cover in the context of 

human settlements mostly refers to built-up land, impervious surface, or artificial land, 

assuming it reflects and/or relates to the place where most human residential activities 

take place. Binary land cover products that differentiate human settlements from the 

others stem from the classification of remote sensing images, of which pixels are 

typically determined by their dominant land cover (Bontemps et al., 2013; Schneider 

et al., 2009; van Vliet et al., 2019). For the past decades, researchers have attempted 

to quantify how human settlements has developed over time (Weng, 2012). Yet, their 

approaches are mostly confined to the analysis of locations where new human 

settlements have taken place, and/or where they are likely to emerge in the future. 

Land use is associated with the economic and cultural activities through which people 

interact with land and terrestrial ecosystems (Meyfroidt et al., 2018), and it is the 

accumulation of spatial arrangements, activities, and inputs that people undertake in 

a certain land cover type (Watson et al., 2000). Land use is an advanced representation 

of land cover by incorporating subtle discrepancies in human activities. For example, 

land used for aesthetics in urban forestry parks but is less accessible to people and 

primary forest designated as protected areas are both forest-covered in appearance, 

but they have different functions to people and to nature. Land use in the context of 

human settlements relates to the biophysical land cover (typically, built-up land or 

impervious surface) used for human activities such as residency, business, and 

recreation, which can be further elaborated, for example by its spatial pattern, density, 

and mix. 
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More recently, the focus of land use studies shifted from traditional land use/land 

cover (LULC) to land system science. According to Verburg et al. (2013), land systems 

“represent the terrestrial component of the Earth system and encompass all processes and activities 

related to the human use of land, including socioeconomic, technological and organizational 

investments and arrangements, as well as the benefits gained from land and the unintended social and 

ecological outcomes of societal activities”. Beyond the concept of mosaic landscapes in land 

classification (Messerli et al., 2009), land system science also addresses the nuanced 

differences with which a specific land type is used. For instance, with the recognition 

of human alternation on our planet, Ellis and Ramankutty (2008) identified eighteen 

anthropogenic biomes (also known as “anthromes”) through a synthetic analysis of 

population, land use, and land cover. Moreover, van Asselen and Verburg (2012) 

identified thirty land systems globally by synthesizing land cover, livestock, and 

agricultural intensity data with a hierarchical classification method. Similarly, Václavík 

et al. (2013) identified twelve land system archetypes based on a wide range of 

environmental and socioeconomic indicators. At a regional scale, Malek and Verburg 

(2017) mapped land systems in the Mediterranean region by integrating data on land 

cover and socioeconomics, which eventually outlines multifunctional agro-silvo-

pastoral mosaic landscapes that host various human alterations that are normally not 

well represented by land cover products. Similarly, Ornetsmüller et al. (2018) mapped 

land systems for Laos by synthesizing multisource datasets, which enables the 

delineation of land uses such as shifting cultivation that is otherwise underrepresented 

in land cover products. These land system representations underpin the nature-

environment interactions in the integrated social-ecological systems (McGinnis and 

Ostrom, 2014). However, these classification schemes of land systems are 

predominantly designated to characterize natural and/or agricultural landscapes, 

despite of many classes representing human settlements, in particular, the urban and 

dense settlements as well as a number of village classes in Ellis and Ramankutty (2008), 

which are used to analyse changes in natural and agricultural land, but they do not 

serve well to investigate the development of human settlements themselves. 

A nuanced representation of human settlements in land system science could help 

address global sustainability challenges. On the one hand, a considerable share of the 

global sustainability crisis can be attributed to inappropriate uses of land, among 

which human settlements are one of the most intensive forms of land used by human 

(Foley et al., 2005). On the other hand, the manifestation of human settlements that 

across individual sites, neighbourhoods, blocks, urban areas, and regions is the 

prerequisite for developing practical solutions for sustainability crisis (Seto and 

Pandey, 2019), as there is an increasing consensus that there are no one-size-fits-all 

solutions for the challenges such as greenhouse gas emission and food insecurity, but 
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instead to apply appropriate and specific mitigating measures for different types of 

social groups that characterize the distinction of human settlements (Baiocchi et al., 

2015; Hemerijckx et al., 2022). 

Given the solution-oriented nature of land system science (Verburg et al., 2013), there 

is a growing demand for a better representation of human settlements in order to 

formulate and implement practical solutions for global sustainability crisis. For 

example, Tierolf et al. (2021) recently developed a land system classification for 

human settlements in the Southeast Asia to explore future preferable development 

pathways (i.e., expansion or intensification) in the context of exposure to river flood 

risk, and further analyses suggest that preferable options are context dependent. 

Specifically, for some countries, flood risk was largest in the expansion scenario, while 

for other countries in the Southeast Asia, flood risk was largest in the intensification 

scenario (Tierolf et al., 2021). These different outcomes of human settlement 

trajectories cannot be differentiated without the nuanced land system classification 

for human settlements. 

The development of global human settlement products from Earth Observation and 

ancillary data is more or less temporally synchronized with the progress in other 

thematic products such as cropland (Ramankutty et al., 2008), forest (Hansen et al., 

2013), and water bodies (Pekel et al., 2016), which all adheres to the development of 

remote sensing platforms. Table. 1.1 gives an overview of global studies in mapping 

human settlement, where MODIS, Landsat, and DMSP/OLS are mostly utilized 

sources of satellite imagery. In general, human settlement mapping studies are 

developing towards higher frequency, higher resolution, and higher accuracy, 

particularly, particularly after the release of public computational platforms such as 

Google Earth Engine (Gorelick et al., 2017). 

Human settlements in these remote sensing products are primarily represented by 

their land cover, e.g., built-up land, or impervious surfaces. The characterization of 

land cover in these products can be dichotomously divided into human settlements 

and non-human settlements. As a consequence, many change analyses are limited to 

the mere conversion of non-human settlements to human settlements. 
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Table 1.1. Representative studies illustrating the development of mapping human 

settlements at a global scale based on Earth Observation techniques. An extended 

summary of studies can be found in, for example, Potere et al. (2009), Schneider et al. 

(2010), and Sabo et al. (2018). Note that the selected studies below are conducted 

exclusively for mapping human settlements with two exceptions: Bartholomé and 

Belward (2007) and Gong et al. (2013), in which human settlements are depicted as 

cities and impervious surfaces, respectively, among many other LULC classes. 

Publication Platform/data source Resolution Period 

Elvidge et al. (2007) DMSP/OLS NTL 1000 m 2000 

Bartholomé and Belward (2007) SPOT 1000 m 2000 

Schneider et al. (2009) MODIS 500 m ~2002 

Schneider et al. (2010) MODIS 500 m ~2002 

Gong et al. (2013) Landsat 30 m ~2005 

Zhou et al. (2015) DMSP/OLS NTL 1000 m 2000 

Esch et al. (2017) TanDEM-X and TerraSAR-X ~12 m ~2012 

Liu et al. (2018) Landsat 30 m 1990-2010 

Florczyk et al. (2019a) Landsat 30 m 1975-2015 

Marconcini et al. (2020) Landsat, and Sentinel-1 SAR 10 m 2015 

Only recently, a small number of studies have characterized human settlements 

beyond the presence and/or absence of built-up areas, including both numerical and 

categorical representations. Here, the numerical aspect primarily refers to the 

quantitative methods developed to characterize the 3D urban morphology. While the 

categorical aspect is associated with the description of urban environment by 

categorical classification (e.g., climate-relevant classes, and urban land-use types). 

Whilst monitoring urban extent from local to global scales has been prominent in 

Earth Observation studies, there is an increasing need to characterize urban 

development beyond two-dimensional spatial patterns to comprehensively assess 

urban sustainability. Earth Observation researchers recently characterized urban 

environment by the vertical dimension of buildings. For example, Frantz et al. (2021) 

mapped building heights across Germany by combining dual-polarized Sentinel-

1A/B and multispectral Sentinel-2A/B. Cao and Huang (2021) estimated building 

height based on multi-view imagery in 42 Chinese cities. More recently, Esch et al. 

(2022) present the World Settlement Footprint 3D product that characterizes urban 

3D morphology within all human settlements. 
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Large-scale mapping of Local Climate Zones (LCZs) and urban land-use types 

became possible only a few years ago. LCZ is a classification scheme that accounts 

for vegetation and the vertical configuration of buildings has been widely adopted by 

urban climate scientists to investigate the association between urban morphology and 

thermal environment (Stewart and Oke, 2012). In recent years, the LCZ typology is 

also used to explicitly illustrate how human settlements grow vertically. For example, 

Chen et al. (2020a) mapped the LCZs from 1985 to 2018 in Denmark, and results 

highlight the divergent trajectories of urban development between Copenhagen and 

Aarhus of Denmark. As of the year 2022, there are two globally available datasets on 

LCZs, produced by Zhu et al. (2022) and Demuzere et al. (2022), respectively. The 

former dataset covers all cities across the globe with a population greater than 300 

thousand (Zhu et al., 2022), while the latter dataset illustrates not only human 

settlements, but also natural and agricultural landscapes that are far away from human 

settlements (Demuzere et al., 2022). Both datasets facilitate urban morphology 

analysis at a global scale. In addition, mapping land-use types is recently implemented 

at large scales. For example, Gong et al. (2020a) produced the first map of land-use 

types in major Chinese cities, which provides opportunities to analyze the spatial 

pattern and configuration of different land-use types. By fusing Earth Observation 

data and socioeconomic data, Rosier et al. (2022) mapped urban land use in the 

Netherlands with high overall accuracy. 

In some cases, the heterogeneity of human settlements is represented in a broader 

context. For example, Stokes and Seto (2019) characterized the divergence of 

urbanization process by comparing urban infrastructural transitions in India and the 

US, concluding that the mere analysis of horizontal built-up land expansion could 

under-represent important nuances such as rural electrification and informal 

settlement growth. By employing spectral-temporal metrics and regression-based un-

mixing, Schug et al. (2020) explored how to map the fractions of built-up land and 

vegetation at nation-wide scales, and their new product in which human settlements 

are represented by continuous built-up land fractions allows for better 

characterization of human settlements and identification of subtle change trajectories 

(e.g., densification). The concept of mapping land cover fractions coincides with 

earlier fragmented studies applied at various scales (Dai et al., 2010; Huang et al., 2016; 

Michishita et al., 2012; Wetherley et al., 2017). 

The heterogeneity of human settlements also involves many other aspects, for 

example, land size and land tenure (Cao et al., 2020), which may not be accessible 

merely from remote sensing imaginaries. Emerging information acquisition 

techniques such as social sensing that based on individual-centered data may provide 

unprecedented tools for addressing these issues (Liu et al., 2015). However, as human 
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settlements act as the linkage of physical, ecological, and socioeconomic systems 

across spatial scales, Zhu et al. (2019) point out that efforts to separate them into 

various components or categories will always be limited, and absolute delineations of 

purely social or biophysical are not possible. The other key but earlier review on urban 

remote sensing by Weng (2012) highlights the application of hyperspectral imaging in 

mapping building material in urban environment. 

Whilst the dynamics of human settlements have been investigated from local to global 

scales, two key issues are particularly under-presented, which may affect the 

conclusions drawn from these studies. Specifically, the analysis of human settlements 

heavily relies on land cover datasets, which typically have only one single class 

representing human settlements, and the analysis of human settlements, therefore, 

does often not account for heterogeneity within the urban environment and its subtle 

changes over time. 

These land-cover-based characterizations of human settlements are insufficient to 

portray the conditions under which human settlements could be steered to more 

sustainable trajectories. Despite that LCZ scheme provides a potential solution for 

addressing such issue, LCZ classes are more climate-driven and are less capable to 

represent land-use pattern in a broader context. In land system science, land systems 

that account for more than land cover have been classified at various scales (Dou et 

al., 2021; Levers et al., 2015; van Asselen and Verburg, 2012; van der Zanden et al., 

2016). These land-system products are generated primarily for agricultural or natural 

land, and human settlements are not well presented. Therefore, change trajectories of 

land systems are not well applied in the context of human settlements. 

The other omission in most work on human settlements is the absence of attention 

for land use intensity, despite that management intensity has been widely investigated 

in land system science, which is, however, addressed primarily in agricultural systems 

(Erb et al., 2013; van Asselen and Verburg, 2012). In light of this, human settlements 

can also be characterized by their land-use intensity. Yet, we do not have much data 

and knowledge on the characterization and analysis of urban land-use intensity. 

In light of the aforementioned knowledge gap, the objective of this thesis is: 
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To advance large-scale analysis of human settlements and their dynamics 

through the lens of land system with a specific focus on the role of land-use 

intensity. 

To achieve this objective, this dissertation will address the following three research 

questions (RQs): 

RQ1: How can we represent the diversity of settlement systems? 

RQ2: What can we learn from Earth Observation to better characterize 

urban land-use intensity? 

RQ3: How do urban land-use intensity and settlement systems change 

over time? 

These three RQs are addressed in the consecutive four chapters (see Figure 1.1). In 

Chapter 2, human settlements are mainly characterized by land cover component, and 

analyze their change trajectories. In Chapters 3-5, human settlements are represented 

with the incorporation of urban land-use intensity, which allows for a more nuanced 

analysis of human settlements and their dynamics. 

Figure 1.1: Schematic display of the four research chapters in this thesis. 

Chapter 2 is associated with RQ1 and RQ3. As pointed out in Section 1.4, spatial 

analysis of human settlements is often limited to the mere presence and/or absence 

of built-up land and the changes therein, while subtler differences between various 

settlement systems are ignored. In Chapter 2, an experimental test is conducted to 

classify settlement systems in China. Specifically, built-up density, cluster density and 

cluster size are used to delineate settlement system, and analyze the observed change 

trajectories. On the one hand, the classification of settlement system could help us 

better understand the status and evolution of human settlement by accounting for 

land cover and land use pattern, rather than merely illustrating the locations of new 
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built-up land that emerged. On the other hand, the wide range of settlement system 

allows for further quantification of built-up land and its trajectories along urban-rural 

gradient, which could test the incompleteness of studies focusing on large cities only. 

RQ2 is addressed in Chapters 3, 4 & 5 by accounting for 3D building structure, and 

built-up land per capita as the operationalization of urban land-use intensity. In 

Chapter 3, a new approach is developed to mapping 3D building structure, i.e., 

building footprint, height, and volume at a continental scale. Chapter 4 basically 

further improves the new approach proposed developed in Chapter 3 and applies it 

at a global scale. Different from the former chapter, this chapter emphasizes the 

analysis of heterogeneity in 3D building structure across space. In Chapter 5, built-up 

land per person is used to measure urban land-use intensity at multiple points of time. 

In addition to RQ2, Chapter 5 is also associated with RQ3. Given the limitation in 

mapping 3D building structure at two points of time, built-up land per person is used 

alternatively as the operationalization for measuring urban land-use intensity in 

Chapter 5. Specifically, the long-term discussion on decreasing land-use intensity in 

cities worldwide is revisited. Apart from the changes in urban land-use intensity, built-

up land change is decomposed into growth related to population dynamics and 

growth related to changes in land take per person, for more than 75000 administrative 

regions, typically representing municipalities or counties. By incorporating human 

settlements of different size and their peripheries, this chapter builds on the 

knowledge in scientific community that urban land-use intensity has been decreasing 

for centuries, to illustrate how existing concentrated studies in large cities only may 

hamper knowledge generalization. 

The final Chapter 6 synthesizes the most important results and concludes the main 

findings of previous chapters as well as knowledge gaps this thesis has filled. 

Furthermore, perspectives for future study and policy implications are discussed. 
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Chapter 2 
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This chapter is published as: 

Li, M., van Vliet, J., Ke, X., & Verburg, P. H. (2019). Mapping settlement systems in 

China and their change trajectories between 1990 and 2010. Habitat International, 94, 

102069. DOI: 10.1016/j.habitatint.2019.102069  

A wide variety of settlement systems exist, ranging from small villages to large 

metropolises. However, spatial analyses are typically confined to the mere 

presence or absence of built-up land, and the changes therein, while subtler 

differences between various settlement systems are ignored. In this paper we 

study the spatial distribution of Chinese settlements in terms of their built-up 

land, cluster density and cluster size, as well as the changes therein between 

1990 and 2010. Subsequently, we use these three properties to delineate 

settlement systems, and analyze the observed change trajectories between 1990 

and 2010. We find that roughly 70% of all built-up land and more than 50% of 

all new built-up land added between 1990 and 2010 is included in village 

landscapes, which challenges the current focus on studying mega-cities. We 

also find that settlement changes mostly follow small and incremental steps 

towards denser urban systems, following multiple different development 

trajectories. Specifically, rural villages seldom convert into urban systems 

directly, but typically increase gradually to towns and sub-urban landscapes. 

The conception of settlement systems provides a first step towards a more 

comprehensive understanding of human settlements and their trajectories, 

which can inform targeted land use planning and the development of policies 

that more explicitly accounts for diversity in settlement types. 

https://doi.org/10.1016/j.habitatint.2019.102069
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The vast majority of the global alterations in land cover relate to the conversion of 

natural ecosystems into agricultural land. Human settlements initially emerged as an 

integral part of these agricultural systems. However, as settlements developed, they 

became increasingly disconnected from their resource base (Cumming et al., 2014). 

Due to population growth, migration, and economic development, settlements have 

been growing across the globe, especially in recent decades (Angel et al., 2011), to the 

point that built-up land is now competing for land with food production and other 

land demands (Bren d'Amour et al., 2017; Lambin and Meyfroidt, 2011; van Vliet, 

2019). As the world population is expected to continue growing for at least the next 

few decades, there is a need for a nuanced understanding of the different forms of 

human settlements and their change processes over time, in order to inform land use 

policies and allow landscape planning to fully account for the diversity in forms of 

human settlement. 

Urban growth has been studied extensively in recent years, mostly in terms of the 

expansion of built-up land and its spatial patterns. In these studies, the 

characterization of land is typically divided into urban and non-urban land, and as a 

result many studies are based on the conversion of non-built-up land to built-up land 

(Long et al., 2014; Mozumder et al., 2016; Yue et al., 2013), and the environmental 

impacts of these conversions (Angel et al., 2011; Poelmans et al., 2011; Seto et al., 

2012a). In particular, the spectacular growth of large metropolises has received a 

considerable amount of attention (Ianoș and Jones, 2019; Schneider and Mertes, 2014; 

Xu et al., 2018b). Furthermore, several studies also use derivatives of built-up land, 

especially landscape metrics, to further characterize the environmental impacts of 

human settlements (Alberti et al., 2007; Ramachandra et al., 2015). Yet, the analysis 

of changes between built-up and non-built-up land only ignores the spatial pattern of 

built-up land and as a result, we do not know how changes in built-up land affect 

these patterns. Moreover, the focus on large urban areas obscures our view on other 

changes in built-up land affecting smaller settlements. 

Increasingly land use typologies are used to characterize typical combinations or land 

uses or land covers and to study the changes therein, aiming to provide actionable 

solutions to sustainability challenges (Baiocchi et al., 2015; Loures and Vaz, 2018; 

Rounsevell et al., 2012). Notably, Václavík et al. (2013) identified 12 land system 

archetypes globally, based on a variety of variables, pointing out that land systems 

resemble across the globe but spatial pattern differs at subnational scales. At a national 

scale Ornetsmüller et al. (2018) identified land systems in Lao PDR based amongst 
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others on the typical combination of agricultural land and forested land, in order to 

analyse gradual shifts from swidden-forest mosaics to permanently managed 

agricultural land. However, settlement systems are not normally represented in these 

studies, as they are mostly focused on agricultural landscapes. Although different 

urban types have been identified (Dadashpoor and Ahani, 2019; Schwarz, 2010; Wu 

et al., 2018), there are only a few investigations on spatial patterns in urban land. For 

example, focusing on vacant land within urban landscape, Kim et al. (2018) developed 

a vacant land typology for Roanoke in Virginia, which can be potentially used for 

optimizing vacant parcel configurations at city scale. Krehl and Siedentop (2018) 

theoretically developed a classification scheme for urban land based on land use, built 

environment and others, which was subsequently applied in four German urban 

regions. However, characterizing settlement typologies at landscape and national 

scales is also crucial, as these scales are predominantly targeted by land use policies 

(Cullum et al., 2016; Levers et al., 2015). 

The objective of this study is to identify settlement systems at a national scale, 

specifically for China, and analyse their recent change trajectories. To that effect we 

first analyse the distribution of built-up land, but also the size and density of clusters 

of built-up land, in order to provide a comprehensive picture of settlement changes. 

Subsequently, we use these characteristics to develop a characterization of settlement 

systems, and analyse the different change trajectories between 1990 and 2010. China 

is currently the most populated country in the world and it has developed quickly 

from a relatively rural to a relatively urban society in recent decades. As a result of 

this societal transition, it has experienced unprecedented urban growth, fuelled by a 

large-scale migration from rural to urban areas (Kourtit et al., 2014; Shi et al., 2017). 

This urbanization has led to large-scale expansion of built-up land, which has been 

well-studied for some of the larger metropolitan areas, including Beijing-Tianjin-

Hebei region, Yangtze River Delta, Pearl River Delta, and some other areas (Li et al., 

2018b; Schneider et al., 2015; Tian et al., 2011; Wu et al., 2015). Yet, there is much 

less understanding of the dynamics of smaller towns and villages in China. With the 

characterization of settlement systems, this study analyses multiple different change 

trajectories, and thus provides a more comprehensive view of settlement changes in 

China by also explicitly addressing the dynamics outside the main urban areas. 
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We use three properties to characterize settlement systems: the density of built-up 

land, the density of built-up clusters, and the size of the largest cluster (Figure 2.1a). 

These three properties are selected because they represent different characteristics of 

settlement systems. In particular, the density of built-up land resembles the traditional 

focus on the distribution of built-up and non-built-up land, the density of built-up 

clusters characterizes the extent to which built-up land is dispersed or concentrated 

within a landscape, and the size of the largest cluster is important to identify the 

hierarchy in human settlements as determined by their size and their influence on 

neighbouring settlements. All three properties are calculated at ~ 2-km resolution 

based on China’s Land-Use/Cover Datasets (CLUDs) for 1990, 2000 and 2010 (see 

Table 2.1) in an Albers equal area projection, with standard parallels of 25°N and 

47°N. The exact spatial resolution of output data is 2010 meters, as this is an exact 

multiple of the 30-meter input data, to which we refer as 2-km cells hereafter. This 

resolution is chosen because it reflects the landscape level at which settlement systems 

exist, rather than the local land cover at a location. While CLUD is also available for 

2015, this data is not used in this study, since exploratory data analysis reveals that it 

is not consistent with data from other years. The CLUDs include six land use classes 

with 25 subclasses. We characterize and analyse settlement systems primarily based 

on urban land (subclass-51) and rural residential land (subclass-52) only. These two 

subclasses mainly differ in administrative properties, but since we are interested in 

land cover rather than administrative classifications, they are combined in this study 

and henceforth referred to as built-up area. Both classes represent built-up area 

following the classification of Liu et al. (2014c), as they predominantly consist of 

impervious surface, complemented with vegetated area, barren land, and water. These 

classes exclude lands used for industrial purposes such as quarries, factories, mining, 

as well as transportation outside cities (Kuang et al., 2016), which might otherwise 

obfuscate the delineation of human settlements. All analyses are conducted for 

contiguous China, i.e., excluding Taiwan, the islands in South China Sea and some 

other small islands around the continent, but including Hong Kong and Macau. 
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Figure 2.1: (a) Flowchart of generating the three properties to characterize settlement 

systems; (b) Expert-based classification scheme used to categorize settlement systems 

in China. “City” refers to the combination of large cities and urban landscapes. BDI 

is the ratio of built-up area to the total area of a 2×2 km cell, as such, BDI > 0 excludes 

cells that no built-up land exists within. To enhance visual interpretation of settlement 

systems distribution in the resulted maps, deep rural and water bodies are also 

presented as two separated categories. 

To calculate built-up density, we define the Adjusted Built-up Density Index (ABDI) 

as the built-up area within a 3×3 moving window around a 2-km cell, divided by the 

total area that is suitable for built-up land therein. Suitable land here refers to all areas 

that are not water or permanent snow, and that have a slope that does not exceed 

25%. The 25% threshold is based on the Code for Vertical Planning on Urban and Rural 

Development Land of China (CJJ 83-2016), which indicates that areas with a slope greater 

than 25% are not suitable for construction. A moving window approach is applied 

because settlement systems relate to the scale at which the system or process exists 

or responds (McGarigal and Cushman, 2005), which we interpret to be larger than 

the 2-km cells on which we define settlement systems. 

Cluster density indicates the number of clusters of built-up area within a 3×3 moving 

window around each 2-km cell. To compute cluster density, we firstly convert original 

30-meter CLUDs data into simplified polygons, effectively generating patches of 

built-up area, and subsequently generate feature points within these polygons that 

represent these patches. Patches are defined by direct as well as diagonal neighbours 

in this procedure. Then, we calculate the number of points within each 2-km cell and 

sum these results using a moving window method. The representation of clusters as 

points avoids double-counting patches that are spread over multiple 2-km cells.
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Table 2.1: Datasets used in this study. 

Dataset Selection/process Resolution Period Source Reference 

Built-up area (from China’s land-
use/Cover datasets (CLUDs)) 

Classes 51 (urban 
land) and 52 (rural 
residential land) 

30 meters 1990, 2000, 
2010 

Institute of Geographical 
Sciences and Natural 
Resources Research 

Liu et al. (2003) 

Water/permanent snow cover 
(from China’s land-use/Cover 
datasets (CLUDs)) 

Classes 41-46 30 meters 1990, 2000, 
2010 

Institute of Geographical 
Sciences and Natural 
Resources Research 

Liu et al. (2003) 

DEM Derive slope 30 meters / Aster GDEM v2, USGS 
Earth Explorer 

Tachikawa et al. 
(2011) 

Administrative boundaries / Vector / Resource and 
Environment Data Cloud 
Platform 

http://www.resdc.cn/ 

http://www.resdc.cn/
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Cluster size is calculated as the size of the largest patch of built-up area that has at 

least some area in a 2-km cell. Similar to the analysis of cluster density, patches are 

identified based on direct as well as diagonal neighbours, using the algorithm settings 

of Map Comparison Kit (Visser and de Nijs, 2006). 

We calculate ABDI, cluster density, and cluster size for the years 1990, 2000, and 

2010, and analyse changes in each of the three properties, as well as the relation 

between different types of changes. First, we analyse how changes in ABDI, cluster 

density, and cluster size relate to the starting situation, e.g. in order to analyse whether 

new built-up area appears in already built-up areas, or instead in sparser areas. Then, 

we compare results for different years to explore changes in these properties over 

time. To explore the relation between changes in these properties, we categorize 

changes in each of the properties on a 2-km cell level as decrease, stable or increase. 

Subsequently, for each pair of properties, we analyse how changes in one property 

relate to changes in another property, in order to characterize spatial patterns of 

change. The thresholds for ABDI, cluster density, and cluster size are selected using 

a histogram-based method (see for example Yu et al. (2018)). Specifically, we create 

histograms showing the distribution of changes, and identify the boundary between 

change and no change based on the absolute amount of change, so that at least 2% 

of all cells were identified as changes. This value of 2% is chosen for all classes to 

make their changes comparable, while at the same time accounting for the relatively 

static nature of built-up area. Associated threshold values for each change category 

are presented in Table 2.2. 

Table 2.2: Thresholds for classifying changes in ABDI, cluster density and cluster size. 

Property Threshold 
Proportion of the study area that is stable 

1990-2000 2000-2010 

ABDI ± 0.02 97.59% 97.91% 

Cluster density ± 1 97.78% 97.72% 

Cluster size ± 0.09 km2 97.53% 97.78% 

The accuracy of spatial analyses is highly dependent on the accuracy of the input data. 

The CLUDs maps have been validated, yielding an overall accuracy of more than 90% 

(Liu et al., 2014a). Yet, due to our aggregation into tiles of 2-km, we expect that the 

accuracy at this resolution is effectively higher, and hence sufficient for the purpose 

of this study. 
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We use a decision tree (Figure 2.1b) to map settlement systems based on the three 

characteristics that are also used for the analysis of settlement patterns: ABDI, cluster 

density and cluster size. In addition, we use the relation between clusters in the 

neighbourhood (i.e., proximity). Decision trees are expert-systems, which are 

preferred over statistical clustering methods as the latter are found sensitive to the 

selected distance metric and criteria for determining the order of clustering (van der 

Zanden et al., 2016). We identify archetypical settlement systems in cells with a 2-km 

resolution, similar to the analysis of settlement patterns described above. For all cells 

that are not water, we first identify those that contain large cities, i.e. clusters of built-

up area larger than 50 km2. Subsequently, urban landscapes are defined as cells with an 

ABDI above 0.35, indicating landscapes with a predominantly urban character. Large 

cities and urban landscapes together, are used to generate a proximity layer for 

detecting sub-urban landscapes. The remaining areas where categorized as clustered 

towns and clustered villages, based on their ABDI and cluster density. Isolated villages 

are characterized by their small fraction (< 0.05) of built-up area as indicated by lower 

threshold of ABDI, while cells with no built-up area at the 2-km resolution are 

represented as deep rural. We tested a range of threshold values for identifying 

settlement systems and found that minor changes in threshold values did not yield 

considerably different patterns, but only marginal displacement of the class 

boundaries, suggesting a robust classification method. 

To analyse changes between settlement systems, we calculated two change matrices, 

for the periods 1990-2000 and 2000-2010, respectively, and identified the major 

conversions relative to each settlement system. These change matrices are 

subsequently used to identify settlement change trajectories, based on the relative 

occurrence of changes from one settlement system to another. 

ABDI, cluster density and cluster size for year 2010 are presented in Figure 2.2 (see 

supplementary Figure A1 for years 1990 and 2000). High values for ABDI are, not 

unexpectedly, concentrated around the larger urban areas, such as Beijing, Shanghai, 

Guangzhou, and Hong Kong. Yet, Figure 2.2a also shows that there is a very large 

part of China that has at least some built-up area outside these large urban areas, albeit 

mostly with an ABDI lower than 0.20. Cluster density, on the other hand, shows the 



Mapping settlement systems and their change trajectories 

41 

highest values not in the urban areas, but in the intensive agricultural areas, such as 

the North China Plain, Northeast China Plain, and the Chengdu Plain (Figure 2.2b). 

The distribution of cluster sizes reflects the location of large urban areas, as these are 

reflected in the largest cluster sizes, while the cluster size quickly reduces farther away 

from these large urban areas (Figure 2.2c). 

 

Figure 2.2: ABDI, cluster density and cluster size for year 2010 (a-c). Comparable 

figures for 1990 and 2000 are provided in the supplementary material. Only the study 

area of contiguous China is shown. 

The combined changes in ABDI, cluster density and cluster size reflect a spatial 

restructuring process of settlement systems. As is illustrated in Figure 2.3, most non-

stable areas show an increase in both ABDI and cluster size, while patterns in terms 

of cluster density are spatially heterogeneous. Two typical combinations of ABDI and 

cluster density changes were found (Figure 2.3a). The combination of increased 

ABDI and decreased cluster density reflects urban areas growing connected, while a 

higher cluster density in combination with a higher ABDI indicates the appearance 

of new urban clusters (with or without edge-growth). Figure 2.3b indicates that an 
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increase in ABDI mostly coincides with an increase in cluster size, which is typically 

the result of edge growth of existing urban areas, which affects both in the same 

direction. The relation between cluster density and cluster size varies mostly between 

two typical combinations. The combination of lower cluster density and larger cluster 

size typically reflects consolidation, i.e. formerly isolated clusters growing together. 

The opposite, a higher cluster density in combination with a larger cluster size, 

indicates a combination of different processes, such as edge growth and the 

appearance of new scattered clusters. There is little difference between the changes 

in the both periods. 

 

Figure 2.3: Relations between changes in ABDI, cluster density, and cluster size 

during 2000-2010. Comparable figures for changes between 1990 and 200 are provided 

in Figure A2. Only the study area of contiguous China is shown. 

Analyses of changes in ABDI, cluster density, and cluster size as a function of their 

original values for these indicators reveal some typical patterns. The average increase 

in ABDI is largest for cells that are already have an ABDI between 0.5 and 0.8, while 
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the average increases in cells with a lower ABDI is much smaller (Figure 2.4a). It 

should be noted however that the number of cells with a low ABDI at the start of the 

period is much larger, and that therefore these cells still accommodate the majority of 

new built-up area (see supplementary Figure A3). Cluster density can increase over 

time due to the appearance of new clusters but also decrease as a result of clusters 

growing together. The net effect is that for most cluster densities, the average change 

is near zero, except for cells that start without any built-up area, as the cluster density 

can only increase here (Figure 2.4b). Changes in cluster size show that large clusters 

often also experience large changes in size, while small clusters typically experience 

only smaller changes (Figure 2.4c, also see supplementary Figure A4). Additionally, 

some other small clusters witness a considerable increase in size, especially between 

2000 and 2010, which indicates the consolidation process as mentioned that small 

clusters in close proximity to large ones get connected to each other, resulting in a 

large increase in the size of the largest clusters as well as a decrease in cluster density.  

 

Figure 2.4: Changes in ABDI, cluster density and cluster size as a function of their 

initial value during 2000-2010. The horizontal bars in each boxplot correspond to the 

25th, 50th, and 75th percentiles. The whiskers extend to 1.5 times the interquartile ranges. 

Supplementary Figure A4 provides results for the period 1990-2000, and a more 

detailed view on changes in cluster size is shown in Supplementary Figure A5.  

Combining the characteristics of built-up area allows the categorization of different 

settlement systems in China. About 20% of all land in China can be characterized as 

a settlement system, mostly concentrated in the eastern part of the country (Figure 

2.5). Conversely, deep rural, including both wild land and agricultural areas without any 

built-up land, accounts for almost 80% of the total area, which is mostly located in 

western part of the country. The distribution of settlement systems as well as built-

up area within each system is presented in Figure 2.6. In 1990, 8.50% of all land in 

China is characterized as isolated villages, comprising 17.58% of all built-up surfaces. 

Sparse villages take up only 6.89% of all land, yet incorporate 35.38% of built-up area, 
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Figure 2.5: Settlement systems in 2010. Comparable settlement system maps for 1990 

and 2000 are provided in supplementary Figure A6. As a holistic map, deep rural and 

water bodies are also presented to enhance visual interpretation of settlement systems 

distribution. Only the study area of contiguous China is shown. 

Large cities

Very large in size, 
with a large number 
of high-rise 
buildings.

Urban landscapes

High in ABDI, not so 
large in size.  With 
some high-rise and 
middle-rise 
apartments.

Sub-urban 
landscapes

Close to cities, and
middle high in ABDI. 
With high-rise 
building and low-rise 
buildings.

Densely clustered 
towns

Not very close to 
city, middle-high in 
ABDI, and high 
cluster density.

Sparsely clustered 
towns

Not very close to 
city, middle high in 
ABDI, and low in 
cluster density.

Dense villages

Moderate ABDI, very 
high in cluster 
density. Usually in 
agricultural plains.

Sparse villages

Moderate ABDI, low 
in cluster density. 
With low-rise single 
houses surrounded 
by cropland.

Isolated villages

Low ABDI. Typically 
with informal low-
rise buildings 
surrounded by 
wildland or cropland.

Deep rural

Mostly dominated by 
wild land or large-
scale cropland 
without any type of 
settlements.

Water bodies

Dominated by 
surface water or 
permanent snow.

ab

d
c

a
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Figure 2.6: a) Percentage of all land occupied by each settlement system. b) 

Percentage of built-up area included in each settlement system. No built-up area is 

found in deep rural area which is consistent with its definition. 

Figure 2.7: Settlement trajectory matrices for 1990-2000 and 2000-2010, with values in 

1000 km2 of land area. The shades of red correspond with the size of the observed 

changes. A darker pane highlights a larger area that is transformed. Legend: LC = 

large cities, UL = urban landscapes, SU = sub-urban landscapes, DT = densely 

clustered towns, ST = sparsely clustered towns, DV = dense villages, SV = sparse 

villages, IV = isolated villages, DR = deep rural, WB = water bodies.  

the largest share among all land systems. Dense villages are responsible for 3.46% of all 

land, while its proportion of built-up area reaches to 25.83%. Other settlement 

systems including sparsely clustered towns, densely clustered towns, sub-urban landscapes, urban 

landscapes, and large cities together take up 1.08% of the land area, but account for 21.23% 

of all built-up area. In 2010, village landscapes (isolated villages, sparse villages, and dense 

villages) accounted for 18.46% of the land, which is only slightly less than in 1990. The 

  1990-2000 2000-2010 
 

LC UL SU DT ST DV SV IV DR WB   LC UL SU DT ST DV SV IV DR WB

LC 1 1 . 2 6 0.01 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
 

LC 19.22 0.01 0.01 0.00 0.00 0.00 0.03 0.00 0.01 0.00 

UL 1.98 10.64 0.04 0.00 0.02 0.00 0.01 0.00 0.00 0.10 
 

UL 3.55 16.94 0.06 0.00 0.02 0.00 0.00 0.00 0.00 0.01 

SU 2.54 4.49 18.79 0.01 0.07 0.02 0.13 0.00 0.01 0.11 
 

SU 5.34 8.35 28.33 0.00 0.07 0.04 0.13 0.00 0.00 0.03 

DT 1.26 4.14 24.52 0.59 0.66 0.03 0.00 0.00 0.00 0.08 
 

DT 0.21 1.45 4.08 27.63 0.36 0.12 0.00 0.00 0.00 0.00 

ST 0.21 2.31 3.46 0.21 1 4 . 3 1 1 0.00 0.23 0.02 0.02 0.08 
 

ST 0.29 2.30 4.27 0.43 17.91 0.00 0.27 0.00 0.00 0.01 

DV 0.90 0.29 6.34 8.48 0.90 3 0 2 . 3 2 8.03 1.11 0.32 0.03 
 

DV 2.30 1.31 10.29 5.10 0.56 2 8 9 . 2 8 5.56 0.28 0.01 0.03 

SV 2.07 1.30 9.03 0.55 9.41 6.36 6 1 5 . 8 9 4.30 3.13 1.07 
 

SV 3.69 1.68 12.11 0.11 6.00 8.65 6 2 5 . 7 0 3.58 1.47 0.46 

IV 0.08 0.04 0.15 0.05 0.03 4.65 23.37 768.92 8.81 0.19 
 

IV 0.22 0.13 0.36 0.00 0.11 2.51 21.74 7 6 4 . 5 2 5.08 0.18 

DR 0.14 0.07 0.26 0.03 0.10 0.71 15.36 20.35 7 4 4 6 . 4 7 10.39 
 

DR 0.32 0.17 0.43 0.00 0.11 0.19 15.75 12.30 7 4 3 1 . 3 4 3.35 

WB 0.03 0.08 0.02 0.00 0.01 0.01 0.29 0.13 4.38 96.91 
 

WB 0.13 0.35 0.13 0.00 0.08 0.02 0.86 0.10 6.52 1 0 0 . 6 3 
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proportion of built-up area included in these three settlement systems has decreased 

from 78.80% in 1990 to 63.75% in 2010. Sparsely clustered towns and densely clustered towns 

combined account for 0.62% of the land in 2010, which is slightly more than that 

proportion of 0.55% in 1990. Conversely, proportion of built-up area in these two 

types of towns show a slight drop from 8.83% to 8.27%. The proportion of China’s 

built-up area that is found in in large cities, urban landscapes, and sub-urban landscapes more 

than doubled, from 12.29% in 1990 to 27.91% in 2010. 

Changes in settlement systems between 1990 and 2000, as well as between 2000 and 

2010 show a development towards denser settlement systems, although this 

development mostly comes in small incremental steps, rather than sudden large-scale 

changes. Figure 2.7 shows the transformation matrices of settlement systems. 

Between 1990 and 2000, nearly all densely clustered towns developed into sub-urban 

landscapes which is mainly a result of the fast increase of large cities and urban landscapes 

in the surroundings. Another prominent change trajectory is from village landscapes 

into sub-urban landscapes, also reflecting a process of urban sprawl in which the former 

villages are embedded in the urban landscape of growing cities nearby. At the same 

time, a large share of the sub-urban landscapes developed into large cities or urban landscapes, 

especially in the period 2000-2010. Consistently, large cities and urban landscapes basically 

gain from sub-urban landscapes, indicating a continuous process of urban expansion. In 

addition to this typical pattern of urban growth, this transition matrix reveals the 

important dynamics in the more rural parts of the spectrum. Large portions of deep 

rural change into village landscapes as well as the conversion of isolated villages to sparse 

villages, and sparse villages into dense villages, all indicating the appearance of new village 

clusters over time in these areas. This indicates that not only large settlement change 

is taking place near the cities, but even in the more remote areas which initially only 

had marginal fractions of build-up area. 

Selecting from the transformation matrices the most important changes per 

settlement system reveals typical change trajectories. Figure 2.8 shows these change 

trajectories for the period 2000-2010. Settlement changes mainly follow small 

incremental changes between increasingly urban landscapes rather than sudden 

transformation from rural to urban landscapes. Moreover, this figure also shows that 

multiple settlement change trajectories occur at the same time. For example, sparse 

villages changed into sparsely clustered towns, dense villages and sub-urban landscapes, reflecting 

respectively an increase in ABDI, an increase in cluster density, and an increase in 

large urban areas in the neighbourhood.  
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Figure 2.8: Main transitions between settlement systems observed in China between 

2000 and 2010. Depicted transitions are selected to show at least 70% of all observed 

changes from any particular land system starting from the largest transition category, 

and to have at least one arrow feed into each class. The width of the arrows is 

proportionally related to the land area of the corresponding settlement system change.  

The map of settlement systems in China shows a distribution ranging from 

completely built-up to completely non-built-up, with the vast majority of built-up area 

distributed as small fractions in otherwise rural landscapes. Overall, more than 20% 

of all land in China is classified as one of the settlement systems in 2010. Changes in 

built-up area are found throughout this area, but the majority of new built-up area is 

added to areas with an initial low urban fraction (i.e., village growth). For instance, 

between 1990 and 2000 more than 65% of all new built-up area emerged in village 

landscapes and deep rural areas. This percentage drops for the period 2000-2010, but 

still remains above 50% of all new built-up land. Hence, while locally the changes in 

metropolises can be dramatic, the aggregated effect of increases in smaller settlements 

is at least as large. These findings resemble those found for Europe (van Vliet et al., 

2019). This result suggests that analyses of urban growth in large metropolitan areas 

that have received much attention in recent years (Gong et al., 2018; Xu et al., 2007; 

You and Yang, 2017) are not necessarily representative for built-up area expansion in 

China. Instead, it suggests that there is a need to analyse settlement systems more 

comprehensively by also including subtler change processes in village landscapes, 

towns, and peri-urban areas. 
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Large metropolitan areas, particularly Beijing-Tianjin-Hebei region, Yangtze River 

Delta, and Pearl River Delta, are identified as large cities, urban landscapes, and sub-urban 

landscapes. Between 1990 and 2010 each of these three regions is characterized by 

typical urban growth processes, as reflected through an increase in built-up area, and 

an increase in cluster size in many cells (also see Xu et al. (2007), You and Yang (2017) 

and Gong et al. (2018)). As a result of their rapid growth, many large cities in these 

areas are facing a scarcity in land and a pressure on existing infrastructure. In order 

to deal with these constraints, the Beijing municipal government is gradually moved 

to Tongzhou district, which is quite distant from central Beijing (CGTN, 2017). At 

the same time, Tongzhou is now connected to downtown Beijing, leading to a 

continuous area characterized as large cities. The development in the more densely 

populated areas elsewhere in China are also fuelled by national level policies. For 

example in Xiong’an New District in northern China, which was initiated by the 

Central Committee of the Communist Party of China and the State Council in 2017 

with a long-term control area of about 2000 km2 (Kuang et al., 2017; Xu et al., 2018a).  

The most productive agricultural areas of China, notably the North China Plain, 

Northeast China Plain, and Guanzhong Plain, are characterized by sparse and dense 

village landscapes. These settlement systems reflect the patterns that emerged exactly 

because of the agricultural character of the region, as they are relatively densely 

clustered, but the clusters themselves are smaller. However, due to the economic 

development in all of eastern China, as well as population growth and migration from 

more remote parts of the country (Cao et al., 2018; Kuang et al., 2014; Li et al., 2018a), 

there is an increase in urban and sub-urban landscapes in these prime agricultural 

regions. For example, Jiangsu, a typical developed coastal province, experienced a 

dramatic development towards the more urban settlement systems, especially for 

regions closer to the economic hub of Shanghai. The growth of urban areas is often 

attributed to migration from rural areas (Henderson et al., 2009). At the same time, 

our results show that there is no decrease in built-up land in the agricultural areas in 

between, nor in the more remote areas elsewhere in China. The south-eastern part of 

China, for example, is characterized by a rugged landscape, providing a natural 

constraint for both agricultural activities underlying the development of villages 

elsewhere as well as the emergence of large metropolitan areas. These mountain 

valleys are mainly filled with isolated villages, but these villages did not change much 

in recent decades or even showed small increases in ABDI. 

The development of settlements in rural areas mostly consists of low-density 

developments, thus leading to relatively large amounts of land take and soil sealing 

for the benefit of few people. As these developments often come at a cost of 
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agricultural lands, it further contributes to competition for land, thus affecting food 

security and biodiversity habitat (van Vliet et al., 2017). This problem is not unique 

to China, as similar challenges have been observed elsewhere (Gardi et al., 2015; Tóth, 

2012). There is an opportunity for land use planning and national policies to reduce 

such conflicts by restricting built-up expansion and fostering more compact 

settlement types. In China, there is a long history through compensation policies and 

densification incentives (Liu et al., 2014b; Long et al., 2012). For example, the lost 

villages in Shandong Province are likely a policy effect (Li et al., 2018b), to cater for 

the national policy termed “increasing vs. decreasing balance of urban-rural 

construction land”, which aims to balance the total construction land and hence 

compensate for urban development elsewhere. Yet, our results show that these 

initiatives have not effectively controlled the process of increasing built-up area in 

these regions. On top of that, such policies can have trade-offs on social conditions 

(Howley, 2009; Schindler and Caruso, 2014) and may challenge rural cultural heritage 

(Yu et al., 2016), indicating that plans need to carefully consider local conditions and 

impacts. 

The need for a more nuanced understanding of settlements and settlement changes 

is relevant beyond Chinese territory. As in China, analyses of settlement changes 

elsewhere have focused mainly on few large urban areas (Bagan and Yamagata, 2012; 

Georg et al., 2018; Taubenböck et al., 2012). Meanwhile, a large part of the built-up 

land in the USA was found outside urban and sub-urban areas (Theobald, 2001), 

suggesting the necessity of land use analysis through the whole urban-to-rural 

continuum. Consistently, most built-up expansion in South America occurs in small 

cities and rural areas, not only concentrated around major cities (Andrade-Núñez and 

Aide, 2018). A study on selected European countries has also shown that most built-

up land is embedded in predominantly rural landscapes (van Vliet et al., 2019). As a 

result of the typical mosaics of settlements and other land uses, large parts of Europe 

have been characterized as peri-urban, or “territories-in-between” (Alexander Wandl 

et al., 2014). Global simulations of future land use show that such peri-urban and 

densified village landscapes will cover increasingly large parts of the earth and 

therefore need more attention (van Vliet et al., 2017; Wolff et al., 2018b).  

Urban growth is often analysed or simulated based on the conversion of non-built-

up to built-up land, without further consideration of the structure of the landscape 

within which this conversion takes place (Yue et al., 2013). Otherwise, human 

settlements in China are usually indicated as cities, towns, and villages (Tian et al., 
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2007). However, these classes reflect an administrative classification, rather than a 

landscape description. In addition, a breath of spatial indices have been used to study 

patterns of urban land cover (Liu and Yang, 2015). This study, in contrast, uses spatial 

pattern indices for the characterization of settlement systems, a typology within which 

specific settlement change trajectories can be studied in their specific contexts. These 

processes include processes such as village growth, urban expansion, and sub-

urbanization. Such in-depth understanding of settlement change trajectories is an 

essential prerequisite for designing policies dedicated to a more efficient land use 

(Hersperger et al., 2018; Mustafa et al., 2018). 

The identification of settlement systems resembles recent developments in land use 

science leading to the identification of anthromes (Ellis and Ramankutty, 2008), land 

systems (van Asselen and Verburg, 2012) and land system archetypes (Václavík et al., 

2013). These classification approaches move beyond the characterization of the 

terrestrial biosphere based on the predominant land cover or its related land use, and 

instead acknowledge the spatial distribution and spatial patterns that characterize 

landscapes. While urban areas are included in these approaches, their focus is 

essentially on the agricultural and natural parts of the landscape, leading to relatively 

little differentiation in settlement systems (Ornetsmüller et al., 2018; van Vliet et al., 

2019). Settlement systems, therefore, complement these approaches and allow for a 

more in-depth investigation of settlement change processes and a more nuanced view 

on urban systems for land use policies and planning.  

Settlement systems could also provide a starting point for a more nuanced 

representation of settlement change processes in land-use models. As of yet, many 

land-use models are limited to the simulation of land cover conversions including a 

conversion from non-urban to urban land (van Vliet et al., 2019). For a large number 

of urban growth models, this is even the only type of change that is simulated 

(Kamusoko and Gamba, 2015; Mahiny and Clarke, 2012). The results of this study 

show the wide variety in settlement systems, as well as the different change trajectories 

that take place in parallel. Hence the representation of built-up land constrains the 

extent to which we can learn from such models or use them to explore solutions for 

sustainability challenges. To facilitate further research in this direction, we make the 

datasets generated in this study freely available (https://cscproject.github.io). 

Settlement systems exist in a wide variety ranging from isolated villages to larger 

metropolitan areas. This study analyses changes in settlements beyond merely 

https://cscproject.github.io/
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assessing the conversion of non-built-up land into built-up land. Results show that 

settlement systems typically change gradually and incrementally, from villages to 

towns to peri-urban and urban areas. Moreover, results of this study also show that 

the combined increase in built-up land in smaller cities, towns and villages exceeds 

that of large urban areas. This suggests that there is a need to analyse settlement 

systems more comprehensively, and beyond the increase of a few mega-cities only. 
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Urban land use is often characterized based on the presence of built-up land, 

while the land use intensity of different locations is often ignored. This narrow 

focus is at least partially due to a lack of data on the vertical dimension of urban 

development. The potential of Earth observation data filling this gap has 

already been shown in literature, while large scale applications are still absent. 

This study aims to map urban land use intensity (expressed as 3D building 

structure, i.e. footprint, height, and volume) using multiple datasets such as 

satellite imagery and socioeconomic data for Europe, the US, and China. Our 

models perform well, as indicated by median R2 values of 0.90 for building 

footprint, 0.82 for building height, and 0.88 for building volume, for all three 

case regions combined. In our multidimensional input variables, we find the 

built-up density derived from Global Urban Footprint (GUF) is the most 

important variable for estimating building footprint, while backscatter intensity 

of Synthetic Aperture Radar (SAR) is the most important variable for 

estimating building height. A combination of the two is essential to predict 

building volume. Our analysis further highlights the heterogeneity of 3D 

building structure across space. Specifically, buildings in China tend to be taller 

on average (10.35 m) compared to Europe (7.37 m) and the US (6.69 m). At 

the same time, the building volume per capita in China is lowest, with 302.3 m3 

per capita, while Europe and the US show estimates of 404.6 m3 and 565.4 m3, 

respectively. The results of this study (3D building structure datasets for 

Europe, the US, and China) can be used for further analysis of the urban 

environment, spatial planning and land use projections. 

https://doi.org/10.1016/j.rse.2020.111859
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Monitoring urban extent has been prominent in earth-observation studies for decades, 

resulting in various products available from local to global scales (Carlson and 

Sanchez-Azofeifa, 1999; Gong et al., 2020b; Mertes et al., 2015; Schneider et al., 2009; 

Taubenböck et al., 2012). These urban extent products are crucial for environmental 

assessments to further address sustainability challenges such as food insecurity, 

biodiversity loss, and risk exposure (Angel et al., 2011; Du et al., 2018; van Vliet, 2019). 

Moreover, urban area has also been used for better characterization of the terrestrial 

biosphere, for instance using landscape mosaics, anthromes, and land systems (Ellis and 

Ramankutty, 2008; Messerli et al., 2009; van Asselen and Verburg, 2012). 

Urban land use intensity can be considered as the equivalent of agricultural land use 

intensity, as it expresses the density or intensity of the use of agricultural land in a 

location. Consistently, urban land use intensity can be characterized in different ways, 

and it is not clear a priori what measure is preferable (see e.g. Kuemmerle et al. (2013) 

for a discussion on quantifying agricultural land use intensity, and Dovey and Pafka 

(2013) for a discussion on measuring urban density). Recent studies for example 

include population density (van Vliet et al., 2019), or a spatial characterization of 

urban structure (Susaki et al., 2014; Xia et al., 2020). 

Urban structure involves both the horizontal and vertical configurations of urban 

land and infrastructure (Wentz et al., 2018), which influence both biophysical and 

socioeconomic conditions such as urban climate, carbon emissions, travel behaviour, 

and public expenditure (Connors et al., 2012; Engelfriet and Koomen, 2017; Hudeček 

et al., 2019). Urban structure has been extensively analysed in the literature, but based 

primarily on two-dimensional spatial metrics (Huang et al., 2007; Lowry and Lowry, 

2014; Taubenböck et al., 2018b), apart from a few exceptions that incorporate vertical 

dimension for small-scale case studies (He et al., 2016; Kedron et al., 2019). Yet, 3D 

urban structure has important implications for sustainable urbanization. For example, 

compact urban structure contributes to reducing greenhouse gas (GHG) emissions 

on the one hand, but it could also worsen urban environment through the urban heat 

island effect on the other hand (Berger et al., 2017). An analysis of countries in Europe 

shows that built-up land is relatively concentrated in the Netherlands, while it is much 

more dispersed in, for example, Romania (van Vliet et al., 2019). In cities, the spatial 

distribution of human activity from a centre to its outskirt often follows a negatively 

sloped exponential curve (Bertaud, 2001). However, this pattern differs across the 

globe with Shanghai showing a much steeper gradient in human activity when 

compared to other megacities such as New York, London, and Paris (Bertaud, 2001). 
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Urban development across the globe follows different development trajectories, both 

horizontally and vertically. Singapore, for example, has built numerous high-rise and 

compact apartments to accommodate its growing population (Grace Wong, 2004). 

On the other hand, urban expansion in the global south is often characterized by the 

proliferation of low-rise slums (Badmos et al., 2018; Kusno, 2019; Wang et al., 2019a). 

A recent study on selected cities finds that urban development in the United States is 

dominated by decentralized-sprawl patterns, while central-compact patterns are 

typically found in Europe and China (Dong et al., 2019). Because the impacts of 

different types of urban development vary, there is a need to characterize urban 

development beyond two-dimensional spatial patterns, in order to assess urban 

sustainability. However, thus far these analyses have not included the vertical 

dimension of urban development, except for a number of studies analysing selected 

(mega)cities across the globe (e.g., Frolking et al. (2013), Straka and Sodoudi (2019), 

and Zhang et al. (2018)). 

The significance and urgency of mapping 3D urban structure (Hereafter, we refer to 

as 3D building structure) are further highlighted in a recent review on urban remote 

sensing (Zhu et al., 2019), while compared to the identification of building extent, 

retrieval of an building vertical profile based on remote sensing is a more complex 

process. Yet, several investigations attempted to extract building height (Bagheri et 

al., 2018; Liasis and Stavrou, 2016; Weissgerber et al., 2017). A large number of 

remote sensing based data sources are available to retrieve building height, which can 

generally be categorized in four categories: conventional optical images, stereo optical 

images, Light Detection And Ranging (LiDAR), and Radar. LiDAR is widely 

acknowledged as the most robust source. However, applications of LiDAR-derived 

data are highly constrained by their coverage, as data is scarce, expensive, and 

scattered. Natural vegetation shows relatively little vertical variation over distance due 

to similar biophysical conditions in its ambience, and therefore it can be estimated 

based on sparse LiDAR points globally (Lefsky, 2010; Simard et al., 2011). However, 

buildings often vary considerably within the built-up environment. Recently, hydrid 

data have been used to characterize 3D building structure, for example, Geiß et al. 

(2019) present a multistep approach to estimate 3D building structure based on 

TanDEM-X and Sentinel-2 data. Evaluations of building volume estimates derived 

from LiDAR and Radar (both scatterometer and SAR) respectively reveal that these 

two source datasets are highly consistent (Bagheri et al., 2018; Mathews et al., 2019), 

suggesting that current fine-resolution Radar data can contribute to the estimation of 

3D building structure at a larger scale. 
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As shown in a growing body of literature, 3D building structure is the basis for many 

analyses, such as landscape aesthetics, urban climate, and energy consumption 

(Güneralp et al., 2017b; Lin et al., 2018; Stewart and Oke, 2012), while such data are 

still scarce, especially at a large scale. This study aims to fill in this gap by mapping 

the 3D building structure, i.e. building footprint, height, and volume, for Europe, the 

conterminous United States (the US), and mainland China. On condition of the 

reference data collected from various sources, we use a large number of explanatory 

variables to map the 3D building structure using random forest models. To the best 

of our knowledge, this is the first study on such a large scale mapping of 3D building 

structure, especially from a land use perspective. Section 3.2 describes the spatial 

datasets and random forest model used for mapping 3D building structure in more 

details. Section 3.3 presents the results of this model, as well as an analysis of how 

building structure differs between our study regions. In Section 3.4 we further discuss 

these results, and reflect on the contribution of these data for sustainable settlement 

development. 

In this study, we estimate building footprint, building height, and building volume at 

a 1-km2 resolution for Europe, the US, and China. The US and China refer to the 

conterminous United States and mainland China (including Hong Kong and Macao), 

respectively. We choose a 1-km2 resolution because the aim of this study is to 

characterize urban areas as a land use type, which can be used for further analysis of 

land use changes as well as their impacts. For these analysis individual buildings are 

of little interest as the related phenomena act at a coarser scale (e.g. van Vliet et al. 

(2019), Stewart and Oke (2012), and Wang et al. (2019b)). Building footprint denotes 

the share of each 1 km2 pixel that is occupied by buildings (therefore expressed as m2 

per m2). Building height denotes the average height of all buildings in a pixel, weighted 

by the area of each building. Building volume is the total volume within each pixel 

taken by buildings. Conceptually, building volume is the building footprint multiplied 

by the average building height in a pixel, although all three are predicted 

independently in our study. 

We train random forest models to estimate building footprint, height, and volume 

using reference data for different locations of the study areas, and subsequently use 

these trained models to estimate the same variables for all the other locations within 

our study areas. These study areas are mainland Europe, the US, and mainland China 
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(including Hong Kong and Macao, hereafter referred to as China). Figure 3.1 

illustrates the overall approach of our study. This approach consists of four parts: 1) 

the collection and pre-processing of spatially explanatory variable to produce ready-to-

use inputs for the model using the Google Earth Engine (GEE). GEE is a cloud-

based platform for geospatial analysis at a planetary scale, which also consists of 

various ready-to-use datasets, co-located within a high-performance, intrinsically 

parallel computation service (Gorelick et al., 2017); 2) collection and pre-processing 

of the reference data, including both readily available 3D building data and manual 

interpretation of 3D building structure based on Very High Resolution (VHR) 

satellite/aerial imagery and street view; 3) training, optimizing and validating the 

random forest models to produce 3D building structure maps; 4) spatial analysis of building 

properties in the three study regions and the differences between these regions. 

 

Figure 3.1: Methodological approach for the estimation of 3D building structure at a 

continental scale. The abbreviations for spatially explanatory variable are referred to 

in Table 3.1. 
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Table 3.1: Spatially explanatory variables used in this study. 

Datasets Original resolution Time Source Abbreviation 

Optical RS Landsat Band 1 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B01 

Landsat Band 2 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B02 

Landsat Band 3 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B03 

Landsat Band 4 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B04 

Landsat Band 5 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B05 

Landsat Band 6 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B06 

Landsat Band 7 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B07 

Landsat Band 10 100 m 2015 https://landsat.gsfc.nasa.gov/ LS-B10 

Landsat Band 11 100 m 2015 https://landsat.gsfc.nasa.gov/ LS-B11 

SAR Sentinel-1 VH 10 m 2015 https://sentinel.esa.int/ VH 

Sentinel-1 VV 10 m 2015 https://sentinel.esa.int/ VV 

RS-derived EVI max 1 km 2015 MODIS/006/MYD13A2 EVI-MAX 

EVI mean 1 km 2015 MODIS/006/MYD13A2 EVI-MN 

EVI min 1 km 2015 MODIS/006/MYD13A2 EVI-MIN 

LST day 1 km 2015 MOD11A2 LST-D 

LST night 1 km 2015 MOD11A2 LST-N 

NBLI 30 m 2015 Landsat NBLI 

NDBI 30 m 2015 Landsat NDBI 

NDVI 30 m 2015 Landsat NDVI 

UI 30 m 2015 Landsat UI 

Night time light 1 km 2015 VIIRS VIIRS-NL 

https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://sentinel.esa.int/
https://sentinel.esa.int/
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Others Accessibility 1 km 2015 Weiss et al. (2018) ACCESS 

Aspect ~250 m 2010 GMTED2010 ASPECT 

DEM ~250 m 2010 GMTED2010 DEM 

GUF ~12 m ~2012 German Aerospace Center (DLR) GUF 

Highways Vector ~2015 Meijer et al. (2018) RD-1 

Primary roads Vector ~2015 Meijer et al. (2018) RD-2 

Secondary roads Vector ~2015 Meijer et al. (2018) RD-3 

Tertiary roads Vector ~2015 Meijer et al. (2018) RD-4 

Local roads Vector ~2015 Meijer et al. (2018) RD-5 

All (+ unclassified) Vector ~2015 Meijer et al. (2018) RD-ALL 

Slope ~250 m 2010 GMTED2010 SLOPE 
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We estimate 3D building structure using spatial data of various types and spatial 

resolutions. For the selection of these explanatory dataset, we use three different 

criteria: First, the data should be close to the year 2015, to keep temporal consistency. 

Second, each dataset for the three regions should be of the same source, thus allowing 

cross-region comparison. In practice, this means we used datasets with a global 

coverage. Finally, the data should be based on direct measurements rather than 

downscaled, to ensure independence. We further group explanatory data into four 

classes: optical RS, SAR (Synthetic Aperture Radar), RS-derived and others. 

Optical RS data are represented by all available bands from Landsat 8 for the year 2015, 

covering Europe and the US under cloud-free conditions. For China, the whole 

territory is not fully covered, thus we extend our data to the period 2014-2016. As 

explained in Figure 3.2, for each Landsat band we first computed the median of all 

cloud-free and shadow-free images for each pixel at the original resolution, to 

generate the representative values for this period and to exclude extreme values. 

Consequently, we made a spatial aggregation of corresponding representative values 

into 1-km cells using a mean function. 

 

Figure 3.2: Reduction and aggregation of time-series Landsat and Sentinel-1 SAR data. 

Note: SAR data provided in GEE is log-scaled, we transform the scaled SAR into 

backscatter coefficient before further operations are applied. Algorithms used to 

reduce time-series Landsat and SAR collections are suggested by GEE officials 

(https://developers.google.com/earth-engine/), but in further aggregation operation 

we additionally filter SAR cell values based on the expanded GUF. 

We use 10-meter resolution Sentinel-1 SAR images, which have a global coverage for 

every 12 days (Malenovský et al., 2012). Besides buildings, other objects such as trees 

are also sensitive to backscatter coefficients (xbc) of SAR. Therefore, we selected SAR 

https://developers.google.com/earth-engine/
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images during two winter seasons around the year 2015, i.e. 1st December, 2014 -31st 

March, 2015, and 1st December, 2015 -31st March, 2016. However, we added 

information from adjacent years in areas that were not fully covered by the data from 

the winters in 2015. Besides, we do not differentiate orbit directions, i.e. ascending or 

descending, as exploratory data analysis reveals that our case study regions are not 

fully covered within one single orbit direction. All available SAR images are processed, 

calibrated, and geo-rectified with the Sentinel-1 Toolbox (ESA, 2019). As illustrated 

also in Figure 3.2, for each 10-m pixel we firstly average all backscatter coefficients 

(xbc) available in the study period for VV (vertical transmission and vertical reception) 

and VH (vertical transmission and horizontal reception) polarization modes 

separately, and then the averaged xbc for each image is aggregated to a 1×1 km 

resolution using the mean of only the values within the built environment. For this 

spatial restriction we use the built environment as mapped by the Global Urban 

Footprint (GUF) (Esch et al., 2017). We use this as a mask to reduce the influence of 

objects such as trees and topographic relief outside the built environment. In addition, 

our exploratory data analysis shows that a large number of buildings (especially the 

higher ones) are displaced due to the side-looking SAR measurement, thus the GUF 

mask is buffered with a distance of 2 pixels, i.e., 20 m. 

RS-derived data consist of Enhanced Vegetation Index (EVI), land surface temperature 

(LST), relevant built-up indexes derived from Landsat, and nighttime light intensity 

(VIIRS). EVI is available for every 16-day period from MODIS product. We process 

all these data throughout the year 2015 into three variables using maximum, mean 

and minimum functions separately. LST data are provided by the MOD11A2 V6 

product, which is a simple average of all the corresponding MOD11A1 LST cells 

collected within every 8-day period, and is independently stored as at daytime and 

nighttime (Wan et al., 2015). We average all LST data throughout the study period for 

daytime and nighttime respectively. Normalized Difference Built-up Index (NDBI), 

Normalized Difference Bare Land index (NBLI), Normalized Difference Vegetation 

Index (NDVI) and Urban Index (UI) are also used as the explanatory variables, which 

are all derived from Landsat images. To have a systematic understanding of these 

indices, readers are referred to Mushore et al. (2017). Nighttime light intensity data 

are derived from stray-light corrected VIIRS nighttime light (Mills et al., 2013), which 

are provided as monthly composites at 500-m scale. We combined all these monthly 

data available in GEE for the year 2015 into annual nighttime light intensity using a 

maximum function, and spatially aggregate them into 1-km data using an average 

function. The maximum function was used to remove cloud shadow effects in night 

light images. Given that other light sources (e.g., wild fire and water bodies) reflecting 
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moonlight or anthropogenic light can appear in non-built-up area, we also applied the 

GUF mask in order to exclude these areas. 

In addition to remote sensing imagery, we use a series of other data including the 

mentioned GUF, accessibility, roads and topography (see Table 3.1). Built-up density 

is calculated based on the GUF, which is a global binary settlement layer created by 

the German Aerospace Centre using satellite images from TerraSAR-X and 

TanDEM-X (Esch et al., 2013). Based on an comparison of estimates for Central 

Europe, GUF comes out as the most reliable map of urban extent datasets in terms 

of resolution and accuracy (Klotz et al., 2016). However, it is generated using images 

during 2011-2013. We assume that other explanatory datasets for the year 2015 and 

short time interval are sufficient to compensate such defect. Accessibility-to-cities 

data by Weiss et al. (2018) represent land-based travel time to the nearest densely-

populated area for the nominal year 2015. Vector road data from Meijer et al. (2018) 

are used to generate five hierarchal road density maps including highways, primary 

roads, secondary roads, tertiary roads, and local roads. In addition, we also add a 

density map for all roads, which embodies unclassified roads. DEM, slope and aspect 

are all derived from Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010). 

Reference data are collected using publicly available datasets from various sources 

(Table 3.2) for the three case study areas. Specifically, for Europe we use gridded 

building height data of 25 cities (data supported by European Copernicus Land 

Monitoring Service), complemented by building footprint layers from 

OpenStreetMap (OSM, access date: 11 January 2019). To reduce the negative effects 

caused by null values in building height data, we only consider areas where the 

proportion of valid buildings exceeds 80% for the footprint area. This threshold is 

set to exclude locations where a large share of buildings has been built after the 

gridded building height data have been produced. For the US, we employ data that is 

publicly available from websites of local governments (including occasional updates 

published in the ArcGIS Hub (http://hub.arcgis.com/). This data includes building 

footprints with vertical properties for 27 urban areas. These datasets include areas 

ranging from megacities like New York and Los Angeles to counties that only include 

small villages in remote areas. Thus, these datasets include the full variability with 

respect to the combination of building footprint and building height. Building height 

data for China, expressed as floor number, are available for 24 selected large cities 

only. In this paper, for all building height expressed as floor numbers, we assume that 

http://hub.arcgis.com/
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each floor is 3-meter high (Leichtle et al., 2019; Zhou et al., 2014). A relative low 

model performance was observed for China in our preliminary evaluation, which was 

ultimately found due to a substantial number of missing buildings in some areas of 

Chinese cities when compared with VHR satellite images from Google Maps. 

Therefore, we removed all the data points (i.e., pixels) that were visually incorrect. 

Table 3.2: Reference datasets collected for model training and validation. 

Datasets Resolution Time Source 

Building height for Europe 10 m 2012 https://land.copernicus.eu 

Building layers for Europe Vector ~2018 https://www.openstreetmap.org 

Building height for the US Vector ~2015 See supplementary Table B2 

Building height for China Vector ~2015 https://www.amap.com 

Available reference data is biased towards large urban regions. We therefore 

complement these data with empirical data for smaller settlements, which are 

classified manually. For this, we use Google APIs to randomly download VHR 

satellite images outside large urban regions (travel time to cities >10 min, built-up 

density > 0). Each imagery represents a 1×1 km landscape at a 0.25 m resolution, 

which we assume is sufficiently detailed for building footprint detection. During the 

visual interpretation process, a fishnet layer with 50×50 regular squared grids is used 

for specifying grid numbers, as well as Google Street View for the estimation of 

building height. These estimations are all based on visual interpretation of VHR 

satellite images and streetscapes provided by Google Maps. Hence, within all 1×1 km 

grid cells where built-up land exists as identified by GUF, we randomly selected 1146 

images from the US, 2573 images from Europe, and 2445 images from China to 

complement our data set. Because of the scarcity of street view maps in mainland 

China, building height is not estimated manually there. We exclude invalid images due 

to high cloud coverage or image inaccessibility. See supplementary Figure B3 for an 

example of valid imageries. The methodology for estimating building height is further 

illustrated in supplementary Figure B4 and Table B2. For locations where no street 

view map exists, we specify building height by interpreting similar adjacent places 

where street view maps are available. Finally, for all three case regions we have 55656, 

47639, and 47553 1×1 km reference cells for the estimations of building footprint, 

height, and volume, respectively (Table 3.3), which correspondingly account for 

1.17%, 1.00%, and 1.00% of the total 1×1 km cells to be estimated. 

https://land.copernicus.eu/
https://www.openstreetmap.org/
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Table 3.3: Number of 1×1 km cells in the reference data as well as in the predicted 

data. Collected data refers to data that was collected from multiple sources except for 

the interpreted results from Google Maps (see Table 3.2), while Interpreted refers to 

data that was manually interpreted from Google Maps.  

 
Predicted 
data 
points 

Reference data points 

Footprint Height Volume 

Collected Interpreted Collected Interpreted Collected Interpreted 

Europe 1681014 13728 2469 13731 2466 13731 2466 

The US 1447489 30350 1091 24551 1091 24465 1091 

China 1632283 5814 2204 5800 0 5800 0 

Total 4760786 49892 5764 44082 3557 43996 3557 

55656 (1.17%) 47639 (1.00%) 47553 (1.00%) 

To examine the reliability of our visual interpretation approach, we digitized building 

footprints based on 100 randomly selected VHR images. Because of the high amount 

of detail in this VHR imagery relative to the information that was coded, and because 

this data was collected independently from the RF model, it was found acceptable for 

generating ground truth data. The comparison shows a very high reliability (see 

supplementary Figure B1). Abandoned buildings and temporary structures are all 

included, due to the fact that we are not able to differentiate building types for specific 

purposes from Google Earth images. As a consequence, the total building footprint 

area provided here could exceed the actual footprint of ‘permanent buildings’ or 

‘under roof’ measurements published elsewhere. As shown in studies testing 

positional accuracy of Google Earth images (Mohammed et al., 2013; Pulighe et al., 

2015), error in the horizontal planimetric accuracy (the correct longitudinal and 

latitudinal placement of a feature on the Earth’s surface) is expected to be less than 

1.6 m, which we consider sufficiently accurate for our 1-km resolution analysis. 

We combine the available reference data with the manually classified data derived 

from Google maps to obtain the full set of reference data for training the model. 

Figure 3.3 shows the distribution of reference data as a function of footprint and 

height, in which only reference data where both footprint and height are valid are 

shown. Reference data points (i.e., 1×1 km cells) are unevenly distributed within one 

region, but show complementarity across the three case regions. Specifically, the US 

has more reference data in medium-footprint and low-height compared to Europe 

and China, while China has more reference data in medium-footprint and medium-

height than the other regions. 
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Figure 3.3: Distribution of reference data points (1×1 km cells) for mapping 3D 

building structure. For China, we manually removed uncertain data points from the 

reference data. These removals include all locations in the reference data where 

“footprint < 0.1 & height > 5m” or “footprint > 0.1 & height < 5 m” because our 

preliminary evaluation of these data showed large inaccuracies. 

We predict three parameters for each pixel: 1) building footprint (m2/m2), 2) building 

height (m), and 3) building volume (m3/km2). A 1×1 km mask of settlement is firstly 

developed based on the absence of built-up land as provided in the GUF. 

Subsequently, we exclude non-settlement from further operations to save 

computation resources. Therefore, valid reference data described in Section 3.2.3 

account for 1.17%, 1.00%, and 1.00% of the total masked areas for building footprint, 

building height, and building volume, respectively (also see Table 3.3). 

The ensemble regression random forest (RF) approach is used for predicting building 

footprint, building height, and building volume. This is an efficient prediction method, 

especially when observations are much scarcer compared to the predictors (Svetnik 

et al., 2003). The RF model is trained and applied for each of the three variables and 

for each case region separately, as well as for all regions combined. RF combines 

several decision trees, built on different combinations of input explanatory variables, 

and produces the mean prediction of the individual trees. This strategy is beneficial 

to alleviate the overfitting problem of simple decision trees (Pelletier et al., 2016; 

Tramontana et al., 2015). The primary property of tree-models is a partitioning of 

space into smaller regions to manage phenomena characterized by very complex 
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interactions among variables. In particular, in tree models, partitioning is recursive. 

The phenomena occur when the subdivisions are divided again until the partitioning 

reduces the appropriate cost function. Recursive partitioning is terminated when the 

cost function cannot be further minimized. Hence, a simple model, usable only for 

the partitioned sub-region, can be estimated. For each observation, the output of a 

RF model is the average of the outputs of the trees. Therefore, RF models typically 

yield a reduced bias in the estimations and in general good accuracies (Tramontana et 

al., 2015). More technical details on the applied RF algorithm can be found in Breiman 

(2001). 

We perform the RF using scikit-learn, a machine-learning package in Python 

(Pedregosa et al., 2011). To some extent, more trees yield better results. However, the 

improvement decreases as the number of trees increases, and at a certain point the 

benefit in prediction performance from including more trees will not be worth the 

extra computation resources. Therefore, after initial tuning experiments we maximize 

the number of trees to 150, whereas the minimum number of samples required at a 

leaf node is fixed to 5. The importance of predictor variables is measured by the Gini 

decrease in node impurity measure, which is computed by permuting the predictor 

variables with the out-of-bag data in the RF validation approach (Breiman, 2001). 

For each of the three building properties, the reliability of our model is evaluated by 

a 10-fold cross-validation method as well as an uncertainty analysis. The validation 

dataset is built by a random selection of 10% of the reference data in these three 

regions, while the other reference data (90%) are used as training data. This process 

is repeated 100 times, and for each run we calculate the Pearson's correlation 

coefficients (R2), followed by the prediction of corresponding building property based 

on the explanatory data. Uncertainty can be propagated from the multiple data 

sources (Heuvelink et al., 1989), while in this study we interpret uncertainty as the 

stability of our model itself given a certain number of random implementations. 

Specifically, for the 100 predicted values in each cell, we calculate its coefficient of 

variation (CV) as the indicator for uncertainty, see Eq. (3.1): 

CV =
𝜎

𝜇
     (3.1)  

Where 𝜎  and 𝜇  respectively refer to the standard deviation and mean value of a 

corresponding cell for these 100 runs, of which 𝜇 is also the predicted value as defined 

here. 
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Furthermore, we calculate Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE) to assess model performance. We do not merely use the whole reference 

collection and 𝜇 to calculate RMSE, since errors will be under-reported due to the 

overlap of training and test collections throughout the whole process. For each run, 

the division of collections for training and validation is random in nature, we therefore 

calculate RMSE and MAE based on the 100 test collections, see Eq. (3.2), Eq. (3.3), 

and Eq. (3.4).  

B𝑝𝑟𝑒𝑑,𝑗 =
∑ 𝐵𝑝𝑟𝑒𝑑,𝑗,𝑖

𝑡
𝑖=1

𝑡
                        (3.2) 

RMSE =  √
∑ (𝐵𝑝𝑟𝑒𝑑,𝑗−𝐵𝑡𝑒𝑠𝑡,𝑗)2𝑠

𝑗=1

𝑠
         (3.3) 

MAE =
∑ |𝐵𝑝𝑟𝑒𝑑,𝑗−𝐵𝑡𝑒𝑠𝑡,𝑗|𝑠

𝑗=1

𝑠
                 (3.4) 

Where 𝐵𝑝𝑟𝑒𝑑,𝑗,𝑖 refers to the predicted value of endmember 𝑗 in the 𝑖th model, and 

𝑡 refers to the total number of test collections that the endmember 𝑗 is included. 

𝐵𝑡𝑒𝑠𝑡,𝑗 is the reference value of endmember 𝑗, and 𝑠 is the total number of unique 

endmembers in the 100 test collections. 

Finally, we examine variable importance of the best-fitted runs as identified by the R2 

values. The core principle of variable importance is to calculate the degradation of 

model performance if such variable is permuted randomly while keeping other input 

variables constant, which allows for evaluating the relevance of one variable for model 

output (Zhao et al., 2019). 

We characterize the 3D building structure for three case study regions, and compare 

the results to analyse structural differences. To do so, we first calculate the average as 

well as the distribution of all three variables in all three regions. Subsequently, for 

each region we randomly selected 100,000 1×1 km grid cells for which results are 

estimated, and make histograms to present the distribution of the building footprint, 

height, and volume per case region. These distributions are subsequently compared 

across regions. Moreover, we analyse the correlation coefficients between the building 

properties in the case regions as well as the combined region. Finally, we analyse 

regional and sub-regional differences in building structure. Specifically, we calculate 

building footprint per capita, average building height, and building volume per capita 
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for each region. In addition, we calculate these variables for each European country, 

American state, and Chinese province using population data from multiple sources 

(Table 3.4).  

Table 3.4: Population data collected for the analysis of building occupation per capita 

across case study regions. 

Region Time  Source 

Europe 2015 https://population.un.org/ 

The US 2015 https://www.census.gov/ 

Mainland China 2015 http://www.stats.gov.cn/ 

Hong Kong and Macao 2015 https://www.worldbank.org/ 

The distribution of building footprint, height and volume is presented in Figure 3.4. 

In general, the spatial patterns correspond to each other: high values for all three 

variables are, as expected, concentrated around the larger urban areas of the three 

regions, such as Paris, New York and Shanghai. Yet, there are notable differences 

across the three study regions, which are visible from the distribution of all values per 

continent on the right graphs in Figure 3.4. For example, China has more pixels with 

a relatively large building footprint as well as a high building height, while the US has 

more pixels with a low building height, typical for suburban sprawl. Specifically, China 

has the highest average building height at 10.35 m. In Europe, the average building 

height is 7.37 m, and in the US this is 6.69 m. Consistently, China has more areas that 

have a very high building volume, while the opposite is true for the US. 

https://population.un.org/
http://www.stats.gov.cn/
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Figure 3.4: Distribution of building footprint, height and volume in three study regions. 

(a) building footprint; (b) building height; (c) building volume. For each of the three 

building properties, error statistics are shown in the upper-middle. The graphs on the 

right, i.e. the kernel density estimations, are plotted based on 100,000 randomly 

selected points for each region, of which the x-axis is scaled using a logarithmic 

function. The area under the curves is normalized to 1 to facilitate the comparison of 

distributions across continents if using the logarithm transformed value of x-axis. 

A more detailed inspection of 3D building structure highlights the different spatial 

configurations of buildings in different regions (Figure 3.5). For example, building 

footprints in the Chinese agricultural plain (Figure 3.5c) are rather dense, as compared 

to Europe and the US. A large urban footprint is often associated with high-rise 

buildings, especially for China. Yet, this seems not appropriate for many locations in 

the US, as is illustrated in the area encircled in Figure 3.5b. Conversely, we also find 

some areas with a relatively sparse footprint value and a large height value (e.g., in 

Europe in the encircled area in Figure 3.5a). The detailed results in Figure 3.5c also 

highlight a particular phenomenon in China, where buildings tend to be taller along 

main roads that connect large cities, much more than these in Europe and the US. 
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Figure 3.5: Settlement pattern in three densely populated areas embodied in large 

agricultural plains. (a) around Berlin; (b) around Chicago; (c) around Zhengzhou of 

the Henan province. Encircles areas indicate regions with smaller footprints but 

higher buildings (around Hannover), and higher footprint but lower buildings (around 

Chicago). These three snapshots of densely populated agricultural areas are shown, 

because they reflect typical settlement patterns that are dominantly shaped by human 

activities, rather than natural or biophysical constraints such as topography. 

Further quantitive analysis shows that building footprint, height, and volume are 

correlated, but that this correlation is well below 1 (Figure 3.6). This indicates the 

need to analyse the three different properties independently. The correlation 

coefficient between footprint and height ranges from from 0.55 in the US to 0.74 in 

Europe. The correlation coefficients between volume and height as well as volume 

and footprint are higher ranging from 0.69 in the US to 0.93 in Europe. It is not 

unexpected that the correlation between footprint and height is lower than the other 

two correlation coefficients, as volume is by definition the product of footprint and 

height, and thus at least partially related. Nonetheless, all three properties are 

estimated independently in this study, and therefore this is not trivial from the setup 

of the study.  
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Figure 3.6: Correlation coefficients for building footprint, height and volume, which 

are referred to as FP, HT and VL, respectively.  

The average building footprint per capita is only 29.2 m2 in China, which is about one 

third of that in the US (84.5 m2), and about a half of that in Europe (54.9 m2). Building 

volume per capita in China is 302.3 m3, which is 565.4 m3 for the US, and 404.6 m3 

for Europe. These results indicate that settlements in the US have a higher land take 

per person as well as a higher space consumption per person, in comparison to the 

other regions. 

The spatial distribution of 3D building structure also differs between sub-regions 

(Figure 3.7). For example, the values for building footprint per capita vary much more 

across US states than across European countries and Chinese provinces, and 

especially high values are observed in several predominantly rural states such as 

North/South Dakota, Wyoming, Iowa, and Montana (Figure 3.7a). The high values 

in these areas could be related to the abundance of agricultural buildings such as barns 

for livestock (Harun and Ogneva-Himmelberger, 2013), officially termed as 

‘concentrated animal feeding operation’ in the US. At the same time, in Sichuan and Guizhou, 

two rural sub-regions of China, building footprint per capita is lower than most other 

equally-developed sub-regions (Figure 3.7a). Building height, on the other hand, 

varies most across Chinese provinces and much less across EU countries and US 

states (Figure 3.7b). Buildings tend to be lower in the inland rural states of the US. 

Conversely, buildings are much higher in developed sub-regions of China, most of 

which are coastal sub-regions. The distribution of building volume per person is 

mostly consistent with the distribution of building footprint per person, with 

relatively high variation in the US and relatively low variation in Europe and China 
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(Figure 3.7c). In the US, sub-regions of which have large building volume per capita 

are mostly located in rural inland states with high values in building footprint per 

capita, despite their moderate height. In China, regions of which have large building 

volume per capita are mostly located in urbanized coastal sub-regions such as Jiangsu 

and Zhejiang, characterized by high buildings but not necessarily by a large building 

footprint per capita. 

 

Figure 3.7: Analysis of 3D building structure at sub-regional scale. The boxplots on 

the right are plotted based on all sub-regions for each study area, of which y-axes are 

capped to enhance interpretation. The boxes represent the interquartile ranges (25%–

75%) and the lines the ensemble-median values. 

The RF models yield high accuracies for building footprint, height, and volume, as 

indicated by R2 values for the three regions combined all larger than 0.80, either for 

the separated models or the combined models (Figure 3.8). When models are run for 

each case region separately, building footprint is most accurately predicted for the US. 

As for the building volume, results for Europe and the US are more accurate than for 

China. When models are run for all case regions combined, there is no significant 
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improvement compared with the separated models. Among the three properties, 

building footprint is most accurately predicted, especially for the US. As for the 

building volume, results for Europe and the US are more accurate than for China. 

 

Figure 3.8: Scatterplots of the observed values and predicted values for 

building footprint, height, and volume. Predicted values represent the mean 

of all independently predicted values for each location in the reference data. 

To further characterize the accuracy of our estimates, we assessed the RMSE, MAE, 

and SE, based on the independent validation data for each model. It should be noted 

that the training data have on average higher values of building footprint, height, and 

volume, thus also leading to higher values for RMSE, MAE, and SE than can be 

expected for the complete estimated data set. For the combined models, the RMSE 

values of building footprint, height, and volume for the three regions combined is 

0.03 m2/m2, 2.69 m, and 6.03 × 105 m3/km2, respectively. Correspondingly, MAE 

values of the three building properties are only 0.02 m2/m2, 1.36 m, and 2.55 × 105 

m3/km2. While SE values for the three building properties are all close to 0, suggesting 

that there is no lateral overestimation or underestimation in general. 
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Figure 3.9: Uncertainty, as expressed in the CV values of three predicted 

properties as a function of their values for these corresponding building 

properties. Upper row: model ran separately in each of the three regions; 

bottom row: model ran for all three regions combined. All these figures are 

plotted based on 100,000 randomly selected points within each region. The 

shaded areas represent the interquartile ranges (25%–75%) and the lines the 

ensemble-median values. 

The accuracy of separate models and one combined model for all regions is somehow 

comparable, but combining reference data for all case regions into one model yields 

a decrease in uncertainty, relative to models trained on one region only (Figure 3.9). 

Therefore, analyses in the above section are based on the results generated by the 

“combined” model. Specifically, when trained with data from all regions together, the 

model for building footprint shows a large decrease in uncertainty in areas with a low 

building footprint (<0.1 m2/m2), which accounts for a large proportion of the study 

area. Uncertainty of predicted building height shows a decreasing trend over a wider 

range of values compared to building footprint, especially for the US and China. 

Moreover, uncertainty is distributed unevenly over different combinations of building 

footprint and building height (Figure 3.10). Notably, the uncertainty in building 

footprint was found mostly in areas with either a rather sparse footprint (around 0.04–

0.1 m2/m2), or at a rather dense building footprint (around 0.3 m2/m2). Overall, 

uncertainty of building height is largest in areas with small values for building 

footprint and high values for building height. In particular, we find some scattered 

pixels with large uncertainty in some mountainous areas of southern China, which 
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can potentially be explained by interference from other landscape elements, such as 

trees and rocks. We also find that building height is prone to large uncertainty in areas 

that are not covered by SAR data, for example, a diamond-shaped area in Sichuan 

province of China, and a small square area in Milwaukee city of the US. The largest 

uncertainty in building volume is found in areas with a low building footprint and a 

medium-high building height, as well as in some locations with a high building 

footprint. Possibly, this uncertainty is also explained by disturbance of other objects, 

especially in places with a low building footprint. 

 

Figure 3.10: Coefficient of variation (CV) plotted as a function of the 

combination of building footprint and building height, for the combined 

reference data set of all three study regions, based on results in a sample of 

300,000 pixels in the three regions combined. 

Zooming in on individual cities further demonstrates the superior performance of the 

combined model over the models for separate regions (Figure 3.11). For building 

footprint there is no visible difference between the separate models and the combined 

model. However, the separate models generally overestimate building height for Paris, 

Los Angeles, and Shanghai. 

The best performing models for each of the three characteristics of building structure 

are selected for further analysis of the variable importance. This analysis reveals that 

built-up density derived from GUF, in general, is most valuable for estimating 

building footprint, while backscatter intensity of SAR has little influence (Figure 3.12). 

The opposite is true for building height estimation, as backscatter intensity has the 

largest importance, while built-up density is of course of little influence. Compared 

to other variables, both built-up density and backscatter intensity are important to 

predict building volume. In addition, we find a trend shift of VH/VV variable 

importance when reference data in the three regions are combined. A further analysis 
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Figure 3.11: Comparison of observed and predicted results for building 

structure in Paris, Los Angeles, and Shanghai. Each map is 30 × 50 km in size. 

 

Figure 3.12: Normalized variable importance based on the best-fitted run as 

identified by their R2. We run the model separately for Europe, the US, and 

China, as well as for all regions combined. For each property in one model, the 

summed variable importance equals 1. 
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indicates that VH and VV are complements when explaining height and volume (see 

supplementary Figures B4 and B5). 

This study shows that the combination of various remote sensing data sets and other 

spatial data allows deriving the 3D building structure at a continental scale with a high 

accuracy. The proposed RF models perform better than other models for estimating 

3D building structure at large spatial scales, such as the Bayesian Network-based 

model developed by Paprotny et al. (2020). Hence our models make it possible to 

map the built landscape in three dimensions and to analyse its geographical 

characteristics. 

We find that buildings in China are the highest on average (10.35 m), compared with 

the other regions (7.37 m for Europe, and 6.69 m for the US). At the same time both 

building footprint per capita and building volume per capita are the smallest for China. 

These data open up a range of new thematic applications. For example, some studies 

have indicated that urban land per capita is driven by biophysical and socioeconomic 

conditions such as terrain characteristics, wealth, price of gasoline, and planning 

strictness (Angel et al., 2011; Taubenböck et al., 2018a). Yet, these analyses have 

mainly focused on the two-dimensional urban footprint, while the drivers of 3D 

building structure remain to be explored in more detail. Similarly, differences in 

building structure could also lead to different energy consumption typologies 

(Kennedy et al., 2015; Zambon et al., 2019), for which this dataset provides a 

continental-scale source for further analysis.  

Our 3D building structure datasets can facilitate the classification of different 

settlement types (e.g. suburbs, slums, and business districts) based on a priori 

knowledge of these settlement types (Taubenböck et al., 2018a), to further investigate 

social or environmental impacts of urban areas. By accounting for urban vertical 

dimension, such data could also for example improve the risk analysis of urban 

infrastructure to natural hazards, as this risk depends directly in the building stock, 

which is increasingly important in the context of climate change (Du et al., 2018; Koks 

et al., 2019). Another application area is the impact of urban form on environmental 

conditions (Seto and Shepherd, 2009). To what extent urban climate is affected by 

building form and their mechanisms remain unclear, as conclusions vary across cases 

(Manoli et al., 2019; Yue et al., 2019; Zhou et al., 2017). However, most of these 
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studies still focus on urban configuration in 2D dimensions such as city size and urban 

centricity. Stewart and Oke (2012) proposed a framework for urban climate research 

and standardized the worldwide exchange of urban temperature observations. In their 

framework, settlement systems are generically classified based on configurations of 

3D buildings and related land cover types. Yet, large scale analyses based on this 

framework are constrained to the scarcity of 3D building information. The 3D 

building structure data set produced in this study could fill in this gap. 

Mapping 3D building structure at large spatial scales could also benefit from the 

accelerated developments of Artificial Intelligence (AI), which increasingly serves as 

a powerful tool for addressing complex problems (LeCun et al., 2015; Reichstein et 

al., 2019). However, one of the most essential and challenging parts of AI is that it 

needs to be trained through large amounts of precisely labelled benchmark data. 

Currently, there are several databases available for universal objects such as the well-

known ImageNet (Deng et al., 2009). Increasingly, there are some urban thematic 

benchmark databases such as DeepGlobe (Demir et al., 2018), BigEarthNet (Sumbul 

et al., 2019), and SEN12MS (Schmitt et al., 2019). Yet, these datasets focus mostly on 

the identification of objects, whereas they do not provide sufficient information on 

building height and volume. Therefore, we additionally developed a large amount of 

new reference data for this study specifically. In parallel, computer vision research has 

made great progress in detecting changes based on digital imagery (Kuehne et al., 

2011; Soomro et al., 2012). These developments could greatly benefit urban scientists 

in characterizing changes in building structure based on time-series satellite data. Yet, 

as several of the data that feed into our analyses are only available for recent years, 

notable Sentinel-1 SAR data, change analysis of 3D building structure remains to be 

challenging. 

Urban land plays an increasingly important role in the global competition for land, 

and impacts of urban expansion have been widely reported in scientific literature. For 

example, urban expansion on a global scale leads to the displacement of cropland and 

subsequent losses in natural areas (van Vliet, 2019). Consequently, increasing urban 

land use intensity could be a way to reduce urban expansion and thus alleviate the 

global competition for land. 

Population density has been used frequently for analysing urban land use intensity. 

However, population density maps are mostly produced by using a downscaling 

approach, based on a combination of census data and spatial data, such as nighttime 
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light and built-up area (Florczyk et al., 2019a; Wang et al., 2018). Therefore, while 

population data is typically rather accurate at the census level, they remain rather 

uncertain at the local/pixel level. Moreover, population density reflects residential 

activities only, while other urban activities remain unaddressed (Dovey and Pafka, 

2013). A few studies have investigated population distribution based on building 

volume, but at a local scale (Dong et al., 2010; Tomás et al., 2015; Zhao et al., 2017), 

the large-scale building structure data produced in this study can therefore move 

population estimation forward. 

Building characteristics as presented in this paper offer an alternative for 

characterizing urban land use intensity. Previously, such information has already been 

presented for selected global megacities (e.g. Bagan and Yamagata (2012), Mertes et 

al. (2015), and Taubenböck et al. (2012)). Yet, a large proportion of the built-up area, 

and thus of urban activities, is located outsides these megacities (Li et al., 2019). The 

approach presented in this paper therefore complements population density as a 

measure for urban land use intensity, and covers all types of human settlements 

regardless of their size. 

The comparison between building footprint and height shows that they are only partly 

correlated (0.55 for all three case regions combined). In other words, there is a 

considerable amount of variation in building height within locations with a 

comparable building footprint, thus justifying the mapping of these properties 

separately. This also implies that the analysis of 2D urban density as a proxy for urban 

intensity hides a significant part of the variation in actual building structure. Local 

patterns in the relations between building footprint and building height also differ 

across the three regions. The particular phenomenon in China, i.e. buildings along 

main roads tend to be higher, suggests that local conditions largely affect building 

structure. However, evidence for these differences as well as explanations for their 

causes are still sparse in literature. For example, this particular phenomenon in China 

could be attributed to the mobility requirements of population (Wang et al., 2016), 

which facilitates the development of retail and service industries, resulting in higher 

buildings for mixed uses along main roads. Yet, this push-pull theory behind the 

spatial differences in 3D building structure is rather anecdotal. 

Our study also reveals the potential to guide settlement development towards 

sustainable land use patterns for the benefit of human well-being. In the sustainability 

community, consensus has not been reached on whether urbanization is part of the 

problem or a solution to sustainability challenges (McFarlane, 2019; Seto et al., 2010). 

Either way, urban densification, both horizontally and vertically, is acknowledged as 
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one of the tangible solutions to satisfy the increased urban land demand while 

conserve other land (Wang et al., 2019b). However, we also notice that local 

settlement trajectories should be guided in a large-scale context with broad 

considerations, including quality of live for inhabitants of human settlements, while 

these trade-offs and synergies remain largely unexplored. 

This study presents the first consistent continental-scale dataset on 3D building 

structure for Europe, the US and China. The presented data was generated using 

random forest (RF) models fed with optical remote sensing imagery, SAR imagery, 

remote sensing derived indices, and spatial socio-economic data. The RF models yield 

R2 values of 0.90, 0.82, and 0.88 for building footprint, height, and volume, 

respectively, for all three continents combined. Our results show that building height 

is to a large extent independent from building footprint, emphasizing the importance 

of mapping these properties independently. The average building footprint per capita 

is only 29.2 m2 in China, which is about one third of that in the US (84.5 m2), and 

about a half of that in Europe (54.9 m2). Building volume per capita in China is 302.3 

m3, which is 565.4 m3 for the US, and 404.6 m3 for Europe. 

The 3D building structure data produced in this study provide a nuanced 

representation of settlement pattern, which can be used for urban environment 

analysis, spatial planning and land use modelling that aim to guide settlement 

development towards sustainability. At the same time, it already now reveals 

geographic peculiarities across different regions in the globe.  

 

Data availability 

All datasets used in our analysis, as well as the codes for model algorithm and 

statistical visualization are also available (https://cscproject.github.io). 
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This chapter is published as: 

Li, M., Wang, Y, Roiser, J.F., Verburg, P. H., & van Vliet, J (2022). Global maps of 

3D built-up patterns for urban morphological analysis. International Journal of Applied 

Earth Observation and Geoinformation. 114, 103048. DOI: 10.1016/j.jag.2022.103048 

Horizontal and vertical patterns of built-up land are essential to analyze a range 

of environmental change impacts, such as exposure to natural hazards, urban 

heat islands, and trapping air pollution, as well as for decision making in this 

context. However, while data on horizontal patterns are abundant, they are 

relatively rare for vertical patterns. Here, we present global maps of 3D built-

up patterns at a 1-km2 resolution for the nominal year 2015. These data are 

estimated using random forest models, fed with a wide range of spatial data 

and trained on reference data from all continents except Antarctica. 

Independent testing indicates that R2 values of the global models for built-up 

footprint, height, and volume equal 0.89, 0.73, and 0.84, respectively. Our 

results show that buildings worldwide are 6.16-m high on average, and total 

building volume is 1645 km3, which is the equivalent of a solid cube of 12 km 

on each side. Yet, we find large variations in 3D built-up patterns, both within 

and across world regions. In particular, floor space per person exceeds 200 m2 

in both Oceania and North America, while it is only 29 m2 in South Asia and 

38 m2 in Sub-Saharan Africa. Our results provide novel insights into the global 

distribution of 3D built-up patterns and offer new opportunities for the 

assessments of urban environmental impacts. 

https://doi.org/10.1016/j.jag.2022.103048
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Solutions to sustainability challenges such as climate change and biodiversity loss 

critically depend on the development of human settlements (McDonald et al., 2019; 

Seto et al., 2012a). Human settlements provide shelters to the vast majority of the 

global population and are the location of economic development. Yet, they are also 

an important source of greenhouse gas emissions (Ramaswami et al., 2016), and 

contribute to the loss of biodiversity habitat (He et al., 2014; Ren et al., 2022). At the 

same time, human settlements are also increasingly affected by environmental change, 

such as river flooding (Winsemius et al., 2015) and urban heat island effects (Chapman 

et al., 2017; Guo et al., 2022). The impacts of human settlements on environmental 

change as well as the impacts of environmental change on human settlements depend 

on their extent and location, but also on their 3D patterns (Seto and Pandey, 2019). 

For example, compact tall buildings may deteriorate the urban thermal environment 

(Manoli et al., 2020) and enforce the concentration of air pollutants (Llaguno-Munitxa 

and Bou-Zeid, 2020). In contrast, low-density urban development generally increases 

travel kilometres (Ewing and Cervero, 2010) and may also affect food production and 

biodiversity conservation through additional land take (van Vliet, 2019). Ongoing 

uncertainty on environmental impacts of built-up area and its change could partly be 

attributed to a lack of representation of urban vertical pattern (Middel et al., 2014). 

To represent the spatial heterogeneity of 3D built-up patterns, urban climatologists, 

for example, often characterize urban morphology using a few discrete landscape 

classes, mostly known as Local Climate Zones (Demuzere et al., 2022; Stewart and 

Oke, 2012). However, it is increasingly acknowledged that continuous 

characterization of 3D built-up patterns is essential to gauge the subtle variations in 

urban morphology (Lipson et al., 2022). Compared to 3D building information for 

individual buildings which are crucial for urban analytics (Biljecki and Chow, 2022; 

Labetski et al., 2022), gridded 3D building datasets at a coarser resolution are directly 

supportive for representing urban land-use conditions. In particular, 3D built-up 

patterns are linked with urban density or land-use intensity (Angel et al., 2021a), which 

has been studied extensively in the fields of urban planning and land use science 

(Angel et al., 2021b; Dovey and Pafka, 2013; Li et al., 2022).  

Large-scale gridded datasets of 3D built-up patterns are derived using both indirect 

measurements and estimation approaches (Esch et al., 2022; Frantz et al., 2021; 

Huang et al., 2022; Lao et al., 2021; Liasis and Stavrou, 2016; Yang and Zhao, 2022). 

Indirect measurements relate satellite imagery, specifically SAR data, directly to the 

height of buildings. Recently, the first global map of 3D building height was produced 

using this approach, indicating building height for the year ~2013 (Esch et al., 2022). 
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The advantage of this approach is that it does not require any reference data for the 

generation of results, although reference data remains essential for accuracy 

assessment. However, the disadvantage is the large computational requirements, 

making it near impossible to reproduce or repeat. Estimation approaches relate to 

supervised classification approaches that relate explanatory variables to observed 

horizontal and vertical spatial patterns (Cao and Huang, 2021; Frantz et al., 2021; Li 

et al., 2020). The advantage of this approach is the relatively small computation 

requirements. Yet, such estimations require reference data for training validating and 

testing a model. While such data are available for a few regions, it is relatively scarce 

or absent elsewhere, hampering global mapping thus far (Li et al., 2020). 

In this study, we present global maps of 3D building structure at a 1-km2 resolution 

for the nominal year 2015. These data are estimated using a random forest model that 

is trained with a unique set of reference data across the world, and including both 

urban and rural areas. These reference data combine readily available data on these 

properties, mainly from North America, Europe and China, with 3D data derived 

from 3D city models developed for urban planning. To increase the 

representativeness, we complemented our reference data with manually classified 

ground truth for more than 10,000 tiles of 1-km2 Google satellite imagery where 

street-view images are also available, covering smaller towns and villages. Together 

our sample contained 79186, 71163, and 71079 locations for building footprint, 

height, and volume, respectively. These reference samples are distributed across all 

continents except Antarctica. We estimated the three properties of 3D built-up 

patterns using three separate ensembles of random forest models. In order to account 

for large differences between world regions, we included socioeconomic indicators, 

such as the Gini index and GDP at a country level, in addition to these data at a pixel 

level. We first split our reference data to independently train, validate, and test our 

models. After the assessment of model accuracy, we trained our models with all 

available reference data to predict building footprint, height, and volume globally. 

These processes are elaborated in the following Materials and methods section. 

We estimated the footprint, average height, and volume for buildings, respectively, at 

a 1-km2 resolution across the globe. For each property, we developed a separate 

ensemble of random forest models, trained on a set of between 71079 and 79186 

points of reference data, depending on the respective property. We fed the models 

with a wide range of geospatial data, and satellite imagery. As illustrated in 

supplementary Figure S1, our method is an improved version of the approach 
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presented in Li et al. (2020), including optimized model structure, additional 

explanatory variables, and updated input data. 

To ensure computational efficiency and to reduce noise, we masked all input data to 

cover only areas that have at least some impervious surface. For this mask, we used 

the World Settlement Footprint (WSF-2015, see Marconcini et al. (2020)), which 

outlines 10.41 million 1-km2 grids that include at least some built-up land in the year 

2015. Our results were estimated in a Mollweide equal area projection, and all input 

data were first re-projected into that coordinate reference system before any further 

analysis. We used the WSF-2015 because it has a high accuracy and robustness that 

outperforms other comparable datasets (Marconcini et al., 2020). We also applied this 

mask for collecting ground truth data and in the processing of explanatory variables. 

 

 

Figure 4.1: An overview of the methodology applied and data sources included in this 

study. Please refer to supplementary Table C1 for the abbreviation of spatial data. 

To select explanatory variables, we used three criteria: First, we include only variables 

that are expected to provide information on 3D built-up patterns. Second, we selected 

dataset that was available for the year 2015, or at least close to that year, to ensure 

temporal consistency. Third, we only wanted to include data that was directly 
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observed rather than being downscaled, in order to ensure independency of these 

variables. These three criteria yielded 35 datasets (see supplementary Table C1), which 

can be further grouped into four categories according to their imaging modes or 

sources: Optical remote sensing data, radar data (SAR), remote sensing-derived 

indices (RS-derived), and other data. 

Optical Remote Sensing data includes cloud-free Landsat-8 imagery for all available 

spectral bands for the year 2015. We included optical data because reflectance values 

of various bandwidths are associated with the extent and intra environment of 

impervious areas (Yuan and Bauer, 2007). We did not use the WSF-2015 as a mask 

for optical remote sensing data, since Landsat-8 imagery is not only responsive to 

buildings, but also to vegetation and water, which might include valuable information 

for this analysis. Thus, we expect that reflectance values at a larger scale provide 

valuable information on building structure at a smaller scale. For each Landsat band, 

the median value for each pixel is computed in cloud-free and shadow-free 

conditions, to produce the representative values for the timespan of a year while 

excluding outliers, followed by the aggregation of these median values into a 1-km2 

resolution using a mean function (see supplementary Figure C1). 

Radar (SAR) data was used from Sentinel-1 imagery. We expect that radar data are 

relevant for the estimations of building height building volume, because radar 

backscatter signal has been found responsive to surface roughness (Zhu and Bamler, 

2010). We used imagery from the winter seasons (December-February for the 

Northern hemisphere, and June-August for the Southern hemisphere) around the 

years 2015 and 2016, in order to limit the influence of vegetation on SAR backscatter 

(Chen et al., 2020b). Apart from buildings, other objects could also yield backscatter, 

such as topographic relief and vegetation outside the built environment. Therefore, 

we only accounted for backscatter coefficients of within the WSF-2015 derived mask. 

Exploratory data analysis showed that higher buildings are often displaced because of 

the side-looking SAR configuration. Therefore, we applied a 20-m buffer to the WSF-

2015 mask (i.e., 2 pixels in Sentinel-1 images), see supplementary Figure C1 for more 

detail. Polarization modes VV and VH were calculated for all pixels. When SAR data 

was missing in a location for the target date, we used data from one month earlier or 

later. For each 10-m pixel i in an individual tile, we firstly averaged time-series 

backscatter coefficients available in the study period for SAR-VV(i), SAR-VH(i), and 

the maximum of the two, i.e., SAR-MAX(i). Then, we aggregated the mean 

backscatter coefficients for 10-m SAR-VV(i), SAR-VH(i), and SAR-MAX(i) into the 

1-km2 grids using the mean of values within the built and buffered areas, yielding 

three explanatory variable layers, i.e., SAR-VV, SAR-VH, and SAR-MAX. 
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RS-derived variables include the vegetation index (EVI), land surface temperature 

(LST), night-time light (NTL), and several Landsat-derived indices including 

Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Bare Land index (NBLI), and Urban Index 

(UI). Here, the MODIS EVI product, which is available for every 16 days, is use to 

represent vegetation conditions. All EVI layers available for the year 2015 are then 

aggregated into three variables using maximum, mean, and minimum functions, 

separately. LST is derived from the MOD11A2 product, in which daytime and night-

time are independently stored. We averaged all LST layers for daytime and night-time 

in 2015, respectively. For the Landsat-derived indices, we used NDBI, NBLI, NDVI, 

and UI as explanatory variables. The variable NTL was derived from VIIRS night-

time light, which was available as monthly layers in the form of 500 m × 500 m grids. 

We synthesized all these monthly layers in 2015 into largest night-time light intensity 

for each grid, and then aggregated them into 1-km2 grids using a mean function (also 

see supplementary Figure C1 for details). 

In addition to satellite imagery and derived products, we also used other data as 

explanatory variables, which include impervious area, accessibility, road networks, 

topography, GDP per capita, and Gini coefficient. We expect that impervious surface 

density, road density, and accessibility are correlated with 3D built-up patterns thus 

providing information indirectly, while we expect that topography could be used to 

correct the signal from SAR backscatter (van der Wal et al., 2005). We expect that the 

WSF-2015 (impervious surface) correlates strongly with building footprint, and thus 

provide valuable information for building volume. Moreover, we used accessibility-

to-cities to represent travel time to the nearest populated settlements in 2015 (Weiss 

et al., 2018). Vector road data were used to produce five road-density maps that 

ranged from highways to local roads (Meijer et al., 2018). A density map for all roads 

combined was also included in building the model. We used the Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) as the source for DEM, 

which was further used to derive slope and aspect.  

We used data on Gross Domestic Product (GDP) per capita and Gini index values 

for (sub)national administrative units (World Bank, Gennaioli et al. (2013), and (Solt, 

2020)) was included. These variables were not included in Li et al (2020) in which this 

analysis built. Yet, Specifically, we expect that GDP per capita is able to capture the 

heterogeneity of buildings across countries from an economic perspective, and this 

heterogeneity is much large on a global scale than for the countries included in Li et 

al (2020). We did not use the downscaled version (Kummu et al., 2018), as 

downscaling is based on other datasets similar to those used here, which would create 

redundancy and possibly circularity. Gini coefficients reflect economic inequality 
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within a country, and we expect this to provide information about the probability of 

findings in specific types of urban structure. 

To train our models, we collected reference data from multiple sources worldwide. 

These reference data include publicly available data, commercially available data, and 

a large number of data points that were generated manually for this study. 

Building heights for Europe for the year 2012 (BuildingHeight-2012) were taken from 

Copernicus Global Land Service (https://land.copernicus.eu), and were further 

integrated with building footprints collected from OpenStreetMap (OSM). We only 

consider 1-km2 grids where the proportion of OSM building footprints with valid 

height values reported in BuildingHeight-2012 exceeds 80% of all the building 

footprint area. We expected that this threshold could exclude grids where a large 

proportion of new buildings were constructed after the production of the building 

height dataset, given that BuildingHeight-2012 was produced often earlier than the 

updated OSM buildings. For the U.S., we collected publicly available datasets from 

local governmental websites for the year 2015 (http://hub.arcgis.com). These 

datasets include vector data of building footprints with vertical properties for 27 

urban areas that ranged from megacities like New York and Los Angeles to counties 

that only include small villages in remote areas. Building height data for China was 

available for large cities for the year 2015, expressed as the number of floors 

(https://www.amap.com). Here, we assume that each floor is 3 meter high (Leichtle 

et al., 2019). Our preliminary evaluation suggests a relatively low model performance 

for China. We manually overlaid these data with the building footprints derived from 

Google Maps’ VHR satellite imagery, and found that the low model performance was 

most likely caused by the under-represented buildings on the periphery of cities. 

Therefore, we manually removed the 1-km2 grids that contain such large omissions. 

For other World regions, little or no reference data was publicly available. Therefore, 

we acquired 3D building data from Visicom (https://visicomdata.com/), for selected 

areas across the world. These building data exist in vector format with Level of Detail-

2 quality (LoD-2, i.e., multiple heights per building, see Biljecki et al. (2016) for more 

detailed descriptions), and were originally developed to assist urban planning in 

respective regions. From this source we acquired data of 43 cities distributed over all 

regions outside Europe, the United States, and China, and predominantly in less-

developed regions such as Latin America, Southeast Asia, and Africa. 

Publicly accessible reference data for 3D building structure are predominantly 

available for larger cities. Therefore, we complemented these reference grids with 

empirical 1-km2 grids that represent smaller settlements. For this, we used Google 

https://land.copernicus.eu/
http://hub.arcgis.com/
https://www.amap.com/
https://visicomdata.com/
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API to randomly download over 10000 Very High Resolution (VHR) satellite images 

far from large cities (travel time to populated settlements > 10 min, and impervious 

surface density > 0). For the visual interpretation process, we used a 50 × 50 fishnet 

to manually specify building footprint, as well as Google Street View to estimate 

building height. Together, we collected a large number of training sites ranging from 

71079 to 79186 for building footprint, building height, and building volume, 

distributed over all continents except Antarctica (Figure 4.2, and supplementary Table 

C2). 

 

We built three Random Forest (RF) model ensembles to predict building footprint, 

height, and volume, respectively. Each model ensemble consists of 100 independent 

RF models. These models together yielded 100 predictions for each of the 10.41 

million grids in unknown areas. We use the mean values as their final predictions, and 

quantify our model uncertainty as the Coefficient of Variation (CV) of the 100 

predictions. 

 

Figure 4.2: Distribution of reference data over 10° × 10° tiles. Numbers refer to the 

number of 1-km2 pixels for which reference data was included in our model. (a) 

building footprint; (b) building height; and (c) building volume. 
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In general, tree number in the RF model is positively associated with model 

performance. Yet, the improvement becomes less prominent as the tree number 

increases. Therefore, after primarily experiments, we set the tree number as 150, and 

set the minimum samples number at each leaf node as 5. 

For each model ensemble, we first set apart 20% of our reference data for 

independent testing, and used the remaining 80% for training and validation. For each 

RF model, the 80% training and validation sample was randomly divided into two 

subsets of 70% and 10% for training and validation, respectively. Mean values of the 

100 predictions were assigned to the final predictions of 20% test samples, of which 

observed values were compared with their predictions to independently assess model 

robustness. 

We calculated the importance of input variables for each of the 100 models in the 

three model ensembles. The mean of all 100 importance values of a specific variable 

was assigned to its final importance value. Variable importance ranges from 0 to 1, 

and the sum of importance values for all variables equals 1. To reduce overfitting, we 

iteratively removed the least important variable until all variable importance values 

were ≥ 0.5%. 

Consequently, we compared the mean value of the 100 predictions with observed 

values from the 20% test collection to assess the overall accuracy of our model 

ensembles. We assessed model performance at a global scale, as well as for ten World 

regions separately.  

The world regions (Canada and United States, China, Europe, South Asia, Latin 

America, Middle-East and North America, Oceania, Russia and Central Asia, 

Southeast Asia, and Sub-Saharan Africa) were taken from the World Bank, with 

further subdivision of (i) East Asia and Pacific and (ii) Europe and Central Asia to 

reflect the variations in both urban development and socioeconomic dynamics (see 

Figure S4). Specifically, the East Asia and Pacific region was further subdivided into 

China, Southeast Asia, and Oceania, which follows the observation of rapid 

development of urban areas in China, accounting for 23% of global built-up area 

expansion between 1992 and 2015 (van Vliet, 2019). At the same time, the differences 

in wealth and lifestyle between Oceania and Southeast Asia merit a further subdivision 

of these areas in our analyses. Moreover, Europe was separated from Russia and 

Central Asia given that Europe has experienced rapid urban growth in recent years, 

but this development was relatively marginal in Russia and Central Asia. Therefore, 

our division represents coherent groups of countries from a socioeconomic point of 

view. It should be noted that the world regions were only used for presenting and 
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discussing the results in an aggregate way, while we used one global model for our 

pixel-level estimates. 

Following the Eq. (4.1) – (4.3), we calculate the global sum of building footprint 

(Fsum), average of building height (Have), and global sum of building volume (Vsum), 

respectively. 

Fsum = ∑ f𝑖
N
𝑖=1                  (4.1) 

Have =
∑ (f𝑖×h𝑖)N

𝑖=1

∑ f𝑖
N
𝑖=1

          (4.2) 

Vsum = ∑ v𝑖
N
𝑖=1              (4.3) 

Where fi, hi, and vi are building footprint, height, and volume of the pixel i, 

respectively. N is the total number of pixels with impervious surface presents 

according to the WSF-2015. 

Consequently, we analysed 3D built-up patterns along urban-rural gradient in selected 

larger cities, as well as in more rural areas across the ten world regions, to illustrate 

the variation in urban morphology. Specifically, average building footprint per pixel, 

average building height and average building volume per pixel are used to delineate 

changes in 3D urban structure along urban-rural gradient, in which water surface was 

excluded based on the permanent water layer from Pekel et al. (2016) to facilitate 

comparison between inland cities and coastal cities. We analyse the three properties 

per 1-km buffer ring with a total distance of 50 km, where urban centres are 

represented by the centroid points derived from the polygon geometries in GHS 

Urban Centre Database 2015 (Florczyk et al., 2019b). Moreover, to delineate 3D built-

up patterns in more rural areas, we analyse frequency of the 1-km pixels with a relative 

small footprint and low buildings for ten world regions. 

Finally, we assessed the occupation buildings per person for the ten world regions 

(Figure C2). For this, we summarize total population, total building footprint, average 

building height, and total building volume for the ten world regions, followed by 

building footprint per person, building volume per person, and consequently floor 

area per capita (assuming that each floor is 3-meter-high on average). Population in 

the year 2015 for each country was obtained from the United Nations Population 

Division (https://population.un.org/wpp/), and was then aggregated into the ten 

world regions. 

https://population.un.org/wpp/
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Our results show a total building footprint area of 264 thousand km2, a total building 

volume of 1645 km3, and an average building height of 6.16 m, globally. This total 

building footprint is about the size of New Zealand, while the total building volume 

is equivalent to a solid cube of almost 12 km on each side, which is enough to fill 

Lake Ontario. Globally, the correlation between building height and building 

footprint at a pixel level is 0.57, indicating the relevance of mapping these properties 

separately. 

 

Figure 4.3: Maps of built-up structure at a 1-km2 resolution for selected areas. Maps 

show the differences in building height and building footprint across the globe, with 

dense and high buildings in New York (a) and Paris (b), mixed patterns in Beijing (c), 

and relatively dense but low urban in Lagos (d) and Java (e). 

The distribution of building footprint and height further suggests that sparse and low-

rise buildings dominate the globe, and it varies substantially across space, both 

between world regions, and along the rural-urban gradient. The variation in building 
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height and footprint is illustrated in Figure 4.3, showing areas in New York and Paris 

with a dense footprint and high-rise buildings, mixed patterns in Beijing, and relatively 

dense but low urban in Lagos and Java. Generally, in low and medium income regions 

such as Southern Asia, Latin America, Southeast Asia, and Sub-Saharan Africa, there 

are proportionally more pixels characterized by dense building footprint but low 

height, including for example informal settlement development therein. Whereas in 

well-developed regions, particularly West Europe and East China, pixels with dense 

building footprint tend to have higher buildings. In Canada and USA and Oceania, 

however, urban vertical growth is less prominent, which could partly attribute to the 

sufficient land for development. 

Along the urban-rural gradient in larger cities, urban centres generally have denser 

and higher buildings, and both decrease with increasing distance from the centre 

(Figure 4.4). Yet, exceptions exist, such as Kano City in Nigeria, where buildings in 

the centre are low as compared to other cities and this height barely decreases with 

the distance from the centre (Figure 4.4b). At the other extreme, in the centre of New 

York, buildings are very high, and their height drops dramatically between 5 and 8 km 

from the centre. Distance decay patterns are also visible in the distribution of building 

footprints. This pattern is clearest in the centre of Jakarta, where buildings are 

moderately high but their footprint is up to half of the land surface. Mumbai, on the 

other hand, shows the lowest peak in building footprint, and this peak is not around 

its centroid, but in a ring between 3 and 12 km from the urban centroid, largely 

owning to the mismatch between urban centroid and downtown area as a result of 

the disorderly urban expansion and land fragmentation around coastal area. 
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Figure 4.4: Distance decay curves of (a) building footprint, (b) building height, and (c) 

building volume as a function of the distance from the city centre for 10 large cities 

across the world. 

Of the ten world regions, building footprint per person is the highest in Oceania, 

followed by Canada and USA (Table 4.1). In contrast, the building footprint per 

person in Sub-Saharan Africa is only 23 m2, and in Southern Asia it is only 18 m2. 

Buildings in Sub-Saharan Africa are the lowest on average (4.77 m), whereas buildings 

in Middle-East and Northern Africa are the highest (7.36 m). Building volume per 

person ranges from 86 m3 in Southern Asia to 682 m3 in Oceania, which is the 

equivalent to a floor area of 29 m2 and 227 m2, respectively, when assuming an average 

floor height of 3 m.
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Table 4.1: Total, average, and per person building footprint, volume, and height for ten major world regions. World regions are shown 

in supplementary Figure C2. 

World region Total population 

(billion) 

Total footprint 

(×103 km2) 

Average 

height (m) 

Total volume 

(km3) 

Footprint per 

person (m2) 

Volume per 

person (m3) 

Floor area per 

person (m2) 
Canada and USA 0.36 36 5.97 217 100 605 202 

China 1.41 46 6.61 330 33 234 78 

Europe 0.68 39 7.05 264 58 390 130 

South Asia 1.74 31 5.08 151 18 86 29 

Latin America 0.63 24 6.28 145 38 229 76 

Middle-East and Northern 

Africa 

0.42 13 7.36 93 31 220 73 

Oceania 0.03 37 5.12 20 122 682 227 

Russia and Central Asia 0.23 13 6.30 87 58 384 128 

Southeast Asia 0.84 35 6.15 221 41 262 87 

Sub-Saharan Africa 1.00 23 4.77 116 23 115 38 

World 7.35 264 6.16 1645 36 224 75 
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Although sparse and low-rise buildings dominate rural areas globally, we see different 

patterns across the ten world regions (Figure 4.5). In Sub-Saharan Africa, for example, 

there are many locations with dense low-rise buildings, represented by a high density 

of pixels with low building height. Conversely, in Europe there are more areas with 

sparser but higher buildings, typically with 2 floors. We also see mixed patterns in 

Southern Asia and Southeast Asia, whereas the phenomena in Sub-Saharan Africa 

and Europe co-exist. 

 

Figure 4.5: Relative frequency of the 1-km2 pixels as the joint occurrence of footprint 

and height for ten world regions as well as for the globe. The delineation of world 

regions is shown in supplementary Figure C2. 

 

The exclusion of variables variable importance values ≤ 0.5% process led to 22, 31, 

and 25 variables for estimating building footprint, height, and volume, respectively 

(supplementary Table C3). Results of the variable importance analysis mostly confirm 

our prior hypotheses of the relevance of the selected input data, as 31 out of 35 

variables have a variable importance > 0.5% for at least one of the three models. The 
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exclusion of less important variables has minimal effect on model performance 

(supplementary Figure C3). 

Independent testing indicates that R2 values of the global models for building 

footprint, height, and volume equal 0.89, 0.73, and 0.84, respectively, but with 

variations across world regions (Figure 4.6, and supplementary Figures C4 and C5). 

 

Figure 4.6: Scatterplots the predicted values v.s. observed values for building height in 

the independent 20% test subset. Predicted values represent the mean of 100 predicted 

values for each location in the test subset. 

Overall, model uncertainty reflected by CV values for footprint shows an inverse U-

shape, whereas model uncertainties for height and volume constantly increase (Figure 

4.7). The variations of model uncertainty between different world regions are not 

identical, yet uncertainties are roughly 50% lower than a previous study of building 

height, footprint and volume (Li et al., 2020), indicating the robustness of our models, 

which is likely a consequence of the large and more heterogeneous sample of 

reference data. 
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Figure 4.7: Distribution of model uncertainty, expressed in the CV values of three 

predicted properties, as a function of their values for these corresponding building 

properties. (a) Building footprint; (b) Building height; and (c) Building volume. Each 

of the three graphs is generated using a random subset of one million points across 

the world. 

The global maps of 3D built-up patterns provide an image of the heterogeneity within 

built-up areas, thereby complementing global datasets of built-up land (Gong et al., 

2020b; Schneider et al., 2010; Zhang et al., 2022) and gridded population density (Leyk 

et al., 2019). We find that building footprint per person and building volume per 

person in low and medium income countries (LMIC) is generally much lower than in 

the U.S., Europe, and Oceania, which likely reflects the difference in wealth between 

these regions. Consequently, these differences also show the different per person 

contribution to the global competition for land (van Vliet, 2019). In response, high-

rise buildings and compact urban development have been proposed as pathways for 

more sustainable urban development (Cortinovis et al., 2019). Our results reveal 
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hotspots of dense and high buildings in urban centres, predominantly in Europe, the 

U.S., China, and the Middle-East. However, our results also reveal much larger areas 

that are sparsely covered with buildings and that are on average only one or two 

stories high. In the U.S., for example, these results suggest urban sprawl, while in 

LMIC these often reveal patterns of mixed urban and agricultural use (Agergaard et 

al., 2019). 

The global maps presented in this paper have a higher accuracy, show a smaller 

systematic error, and are more accurate (supplementary Table C4) than the recent 

WSF-3D dataset (Esch et al., 2022), currently the only available global data of building 

height, footprint and volume. The lower Root Mean Square Error (RMSE) and lower 

Mean Absolute Error (MAE) of the data presented here can likely be explained by 

the coarser resolution of these maps, as errors within a single pixel cancel out. 

However, this is not the case for systematic errors (SE). The SE of -0.00 km2/km2, -

0.05 m, and -0.03×105 m3/km2 for building footprint, height, and volume, 

respectively, indicate very little bias in our estimations, which is in contrast with the 

WSF-3D for 2013. In addition to the WSF-3D data, two global datasets of Local 

Climate Zones have been presented recently (Demuzere et al., 2022; Zhu et al., 2022). 

Local Climate Zones are defined as discrete classes rather than continuous values, 

which hampers a direct comparison between accuracy metrics. 

Both night-time light and Landsat band 5 have a larger variable importance than the 

different SAR bands included, despite SAR being widely recognized as responding to 

surface roughness and thus building height (Frolking et al., 2013). Also, interestingly, 

the Gini index and the GDP have a large explanatory power at the pixel level, despite 

these values being provided at the national or subnational level only. Both 

observations show the relevance of supervised classification algorithms over direct 

measurements, as they allow to incorporate a wider range of input data that potentially 

explain 3D built-up patterns. At the same time, Random Forests are relatively simple 

machine learning algorithms, and our approach only used average values of the 

various input data at a 1-km2 resolution, ignoring the variation and patterns that might 

exist in the input data within this 1-km2 pixel. Consistently, we expect that Deep 

Learning approaches, such as Convolutional Neural Networks, might provide more 

accurate results, due to their capacity to detect spatial patterns in satellite imagery. 

Yet, such approaches are computationally demanding thus reducing the simplicity of 

our approach. 

To train and validate our models, we manually collected a large number of reference 

grids in rural regions, which are highly labour-intensive. In recent years, 

crowdsourcing platforms such as Geo-Wiki have been available for collecting 

reference data from the visual interpretation of satellite and aerial imagery (See et al., 
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2022a). Moreover, the distribution of 3D built-up patterns is highly dependent on the 

WSF-2015 dataset. Whilst WSF-2015 is proved to be one of the most reliable global 

built-up layer (Marconcini et al., 2020), it still can be improved through extensive 

engagement of more volunteers and stakeholders using the crowdsourcing platforms 

as a tool (See et al., 2022b). 

The global maps of building height, footprint and volume are publicly available and 

can serve as an critical input for future studies on urban sustainability, including 

analyses of urban form (Taubenböck et al., 2020), exposure to natural hazards 

(Paprotny et al., 2020), urban climate impacts (Cao et al., 2022; Gago et al., 2013), and 

energy consumption within the built-environment (Creutzig et al., 2015). Moreover, 

information on 3D built-up patterns will also benefit population density mapping 

(Leyk et al., 2019) and identification of local climate zones (Demuzere et al., 2019). 

Finally, these data could provide valuable input for more informed policies and 

assessments at regional to global scales, thus avoiding the misinterpretation that all 

built-up land is similar. 

Data and code availability 

The generated maps, as well as the input data and algorithms used for training and 

classification are publicly available at https://landbigdata.github.io. Original data can 

be accessed using links provided in the methods and data section of this article. 
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Globally, urban areas are growing at a faster rate than their population, 

potentially reducing environmental sustainability due to undesirable land take 

in (semi)natural and agricultural lands. However, it is unclear to what extent 

this trend varies locally, which may hamper the formulation and 

implementation of local-scale policies in the context of global competition for 

land. Here, we attribute built-up land change to population dynamics and 

changes in land take per person, for more than 75,000 administrative regions 

worldwide, typically representing municipalities or counties. Results show that 

changes in land take per person, expressed as the area of built-up land per 

capita, relate to 38.3%, 49.6%, and 37.5% of the total increase in built-up land 

during the periods 1975-1990, 1990-2000, and 2000-2015, respectively, but 

with large local variations. Interestingly, we find that centers of large cities 

intensify in all three periods, while their rural areas show an opposite 

development, suggesting an urban polarization effect. We also find 

densification in many regions in the Global South that already have a high 

population density, leading to potential trade-offs in terms of human wellbeing. 

Therefore, our work provides novel insights into the debate on sustainable 

urban development at a global scale. 

https://doi.org/10.1016/j.landurbplan.2021.104308
https://doi.org/10.1016/j.landurbplan.2021.104308


Chapter 5 

110 

Built-up land covers only a small fraction of the global land area (Klotz et al., 2016; 

Liu et al., 2014c), and it has thus far received little attention in the context of the 

global competition for land (Lambin and Meyfroidt, 2011). However, in recent years, 

built-up land is expanding about as fast as agricultural land, suggesting the need to 

consider this process in more detail at a global level (van Vliet, 2019). Since human 

settlements are often surrounded by fertile cropland, built-up land expansion has 

taken place predominantly at the expense of croplands, and this process is expected 

to continue in the near future (Bren d'Amour et al., 2017; van Vliet et al., 2017). 

Studies also show that unless we change our lifestyle drastically, increases in human 

population and especially increases in wealth will stimulate the demand for both food 

and housing over the next decades (Gao and O'Neill, 2020; Laroche et al., 2020). 

However, in contrast with agricultural land (Foley et al., 2011; Zabel et al., 2019), the 

intensity with which built-up land is used, measured by the amount of people per area 

of built-up land, has decreased continuously in recent decades, and this trend is 

expected to continue in the coming decades (Angel et al., 2011; Gao and O'Neill, 

2020). 

The observed increase in land take per person is exhibited in multiple ways, including 

urban sprawl in the United States (Barrington-Leigh and Millard-Ball, 2015), peri-

urbanization in Europe (Shaw et al., 2020), and rural hollowing fuelled by 

industrialization in China (Fan et al., 2020; Liu et al., 2010; Long et al., 2009). These 

processes have led to rapid built-up land expansion in recent decades, globally, despite 

a decrease in population growth (Angel et al., 2011; Seto et al., 2011). Conversely, at 

smaller scales, there are also some reports on densification in urban centres (Broitman 

and Koomen, 2020; Chen et al., 2020a). The development of higher density in urban 

centres and lower density in their surrounding regions can be partially explained by 

the classic land-rent theories (Alonso, 1964; Park, 2014). These theories explain how 

areas close to the city centre, assumed to contain the central business district, are 

more attractive. As a result, population increases will lead to densification in the city 

centre. Consistently, the same increase in population makes the locations at the edge 

of a city also sufficiently attractive for built-up land expansion. As land prices are 

relatively low here, these can be constructed with a low density. This expansion 

process is further amplified by the decrease in transportation costs, which has been 

associated with urban sprawl and suburbanization in different locations across the 

worlds (Anas et al., 1998; Colsaet et al., 2018). 
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Dynamics in land take per person are represented in SDG target 11.3, which aims at 

achieving a rate of increase in built-up land that does not exceed the rate of increase 

in population. To restrict land take, i.e., the conversion of agricultural, forest, and 

other (semi-)natural lands into built-up area, many local and regional policies are 

introduced and implemented to promote high-density urban development, often 

indicated with terms like compact cities and smart cities (Batty et al., 2012; Tappert et 

al., 2018). Plan Melbourne 2017-2050, for instance, highlights the priority to facilitate 

high-density residential development in the coming decades (Nethercote, 2019). 

Similarly, a recent review identified six EU-level spatial strategies, which are 

designated to guide urban development towards compact cities, and ultimately 

promoting urban sustainability (Cortinovis et al., 2019). 

In the context of the global trend that built-up land increases faster than the 

population, there is a need to better understand built-up land change trajectories, in 

order to identify leverage points to reduce the global competition for land (Abson et 

al., 2017). Urban expansion has been investigated for a few large cities and 

metropolitan areas (e.g. Schneider and Mertes (2014), Seto and Fragkias (2005), and 

Xu et al. (2019)), as well as on a global scale (e.g. Angel et al. (2011), Gao and O'Neill 

(2020), Hu et al. (2021), and Xu et al. (2020)). Yet, it is not clear to what extent 

countries and major world regions follow this global trend, or whether there is any 

difference between different cities, their peripheries, and relatively rural regions, 

which could potentially be related to land-rent theories. Moreover, the importance of 

small and medium-sized settlements are increasingly apparent in the context of global 

built-up land expansion (Chai and Seto, 2019; Li et al., 2019), suggesting the need for 

a comprehensive analysis of built-up land dynamics covering the full range of human 

settlements, i.e., from hinterlands to metropolises. 

In this study, we analyse for the first time to what extent built-up land change is 

related to population change and to what extent it is related to changes in the area of 

built-up land per capita, for 75102 populated regions worldwide, typically reflecting 

municipalities or counties. Subsequently, we analyse whether large city centres, small 

and medium city centres, their affiliated peripheral regions, and other regions follow 

different trends. Finally, we discuss the implications of these trajectories for 

sustainable urbanization from a global perspective. 
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In this study we attribute the expansion of built-up land to changes in population and 

changes in land take per person for 75102 regions, globally, similar to the 

conceptualization applied previously at a regional scale (van Vliet et al., 2019). Land 

take per person can be interpreted as a measure for land-use intensity. Land-use 

intensity of built-up land, sometimes also referred to as density (we use both terms 

interchangeably in this paper), has been operationalized in different ways (Dovey and 

Pafka, 2013; McFarlane, 2016). In this study, we operationalize land-use intensity as 

population per unit built-up land, which is similar to the interpretation of agricultural 

land-use intensity expressed as production per unit agricultural land area (Kuemmerle 

et al., 2013). The inverse of population per unit built-up land, i.e., built-up land area 

per capita (BPC), is used in our calculations. An increase in BPC thus indicates a 

decrease in the intensity with which built-up land is used, and vice-versa. 

For this study we attribute changes in built-up land to changes in population and 

changes in BPC, following Eq. (5.1) and (5.2), respectively. These equations ensure 

that the products of the change in population and the change in BPC are equal to the 

change in built-up land. For example, an increase in built up land of 10% and an 

increase in BPC of 20% will lead to an increase in built-up land of 32%, as 110% × 

120% = 132%. 

APOP = (A1 − A0) × (ln
POP1

POP0
) (ln

A1

A0
)⁄          (5.1) 

ABPC = (A1 − A0) × (ln
BPC1

BPC0
) (ln

A1

A0
)⁄          (5.2) 

Where APOP is the change of built-up land attributed to population change, and ABPC 

is the change of built-up land attributed to BPC change. A, POP, and BPC with 

numerical subscripts 0 and 1 indicate the built-up area, population, and the area of 

built-up land per capita, at the beginning and end of a period, respectively. For APOP 

and ABPC, negative values denote the area of built-up land that can be potentially 

saved as a result of population decrease or BPC decrease (i.e., urban densification or 

urban intensification). Changes in built-up land can also be attributed to changes in 

population in different ways. Therefore, we test sensitivity of different attributions 

choices by using three alternatives for Eq. (5.1) and (5.2), as explained in the 

supplementary method of Appendix D. 
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Built-up land changes owning to changes in either population or BPC are allocated 

for each of the 75102 administrative units, and these results are further aggregated for 

larger-scale representations, in which only net changes in their affiliated regions are 

accounted when we report percentage of built-up land change due to either 

population change or BPC change. 

We use the Global Human Settlement Layer (GHSL, https://ghsl.jrc.ec.europa.eu/) 

as the source for built-up land as well as population, and combine these to calculate 

BPC. GHSL is a suite of global gridded data sets of the human presence from 1975 

to 2015, which is originally derived from 30-m Landsat satellite image collections. It 

provides consistent data on both built-up land and population, i.e., GHS-BUILT and 

GHS-POP (Ehrlich et al., 2018; Schiavina et al., 2019). These GHSL layers are 

available at various spatial resolutions: approximately 38 m (GHS-BUILT), 250 m 

(GHS-BUILT and GHS-POP), and 1 km (all the layers in the package), for the years 

1975, 1990, 2000, and 2015. In this study, we use the GHS-BUILT and GHS-POP at 

the 1-km resolution for the three epochs between 1975 and 2015, where the built-up 

land for the year 2014 is combined with the population data for the year 2015 and 

used together to represent the situation in 2015. 

We included 75102 regions in this analysis, together covering all populated land, 

globally. The regions represent administrative regions and are taken from the 

subnational divisions provided in GADM-3.6 (https://gadm.org/). GADM contains 

multiple levels of subdivision, ranging from level 0 (country) to level 5 (smallest unit). 

Not all levels are available for all countries, and similar levels in different countries do 

not always represent comparable spatial units in terms of area or population. We 

selected subdivisions that typically represent municipalities or counties, because these 

are the regions at which spatial plans and policies are often implemented and because 

these regions often correspond with what is perceived a city or a town. Specifically, 

we used level-2 units as our unit for analysis, unless the average population of level-2 

regions in a country exceeded 200000 inhabitants in the year 2015, in which case we 

used level-3 subdivisions instead. In all cases, when subdivisions at specific levels were 

not available, we used the smallest available subdivision. We excluded 

countries/regions of which subdivisions are only available at level-0, because they are 

predominantly remote islands with little or no population (see supplementary Table 

D1). Regions where no built-up land/population exists in the year 2015 were also 

excluded, as these are of little relevance for this study. 

https://ghsl.jrc.ec.europa.eu/
https://gadm.org/
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For each period, we categorize regions into one of nine trajectories of built-up land 

change, shown in Figure 5.1. To that effect, we first calculate the built-up land and 

population for all regions included, and subsequently calculate annual changes for 

both for the periods 1975-1990, 1990-2000, and 2000-2015. Changes are calculated 

on an annual basis, to facilitate comparison between periods of different length, and 

are expressed as a percentage of the start year of each period (see Eq. (5.3) and Eq. 

(5.4)). Second, the thresholds between change and no change categories for both 

variables are determined using a histogram-based approach. Specifically, we calculate 

Annual Growth Rates (AGRs) of population and BPC during the three periods and 

identify one-third of the total samples for all the three time periods combined, centred 

on the no-change value. Additionally, to facilitate interpretation, we applied the same 

threshold for both variables to identify the nine change trajectories. Following this 

process, we identified this threshold as ±1.00% per year changes in population and 

changes in BPC. In other words, only increases of more than 1% or less than -1% in 

these variables are indicated as growth and decline, respectively. 

AGRPOP = ((
POPend

POPstart
)

1

n
− 1) × 100%         (5.3) 

AGRBPC = ((
BPCend

BPCstart
)

1

n
− 1) × 100%          (5.4)  

In these equations, POPstart  and BPCstart  are the population and BPC in the 

beginning of the time period, POPend and BPCend are the population and BPC in 

the end of the time period, and n is the number of years in between. 

For each of the nine trajectories, we summarize population and built-up land area in 

the starting year, as well as population change and built-up land area change in the 

corresponding period, as the sum and mean of all regions characterized by that 

trajectory. Subsequently, we analyse whether each of these classes is statistically 

different from the complete set of all classes combined in terms of their population 

and built-up land in the starting year and the changes in both for each study period. 

These differences were assessed using the two-tailed student’s t-test. 
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Figure 5.1: Graphical representation of different built-up land change trajectories as a 

function of changes in population and changes in built-up land area per capita (BPC). 

(a) Population decline: a decrease in population in combination with an increase in

BPC; (b) Expansion: a stable population in combination with an increase in BPC,

leading to an increase in total built-up land; (c) Sprawl growth: an increase in

population in combination with an increase in BPC, thus representing a decrease in

land-use intensity; (d) Proportional decline: a decrease in population in combination

with a stable BPC; (e) Persistence: no substantial change in either population or BPC;

(f) Proportional growth: an increase in population in combination with a stable BPC;

(g) Shrinkage: a decrease in population in combination with a decrease in BPC; (h)

Stable densification: a stable population in combination with a decrease in BPC; (i)

Growth densification: an increase in population in combination with a decrease in

BPC, denoting densification.

For the analysis of change trajectories, we further subdivided all regions into five 

classes based on their population size and their vicinity to populated places. This 

subdivision yielded five groups: 1) large city centres, 2) large city peripheries, 3) small and 
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medium city centres, 4) small and medium city peripheries, and 5) other regions. To categorize 

regions accordingly, we obtained data on population numbers from Natural Earth 

(https://www.naturalearthdata.com/). These data are point data representing the 

inhabitants of the metropolitan areas of cities (see supplementary Figure D1 for their 

geographical distribution), and are independent from the regions and population data 

used in the rest of our analysis. We use these point data because we are interested in 

the structure of cities, and this allows to differentiate between urban centres and their 

peripheries. In addition, the variation in size of administrative regions used in this 

study constrains the identification of cities by population based on these regions 

strictly. 

All regions that include a point (city) of more than 2M inhabitants were classified as 

large city centres, all regions that include a point (city) of less than 2M but more than 

0.3M were classified as small and medium city centres. Accordingly, their affiliated 

peripheral regions identified by GADM cross-level relationship are classified as large 

city peripheries, and small and medium city peripheries (see Figure 5.2). The remaining regions, 

typically representing more rural counterparts, are classified as other regions. We select 

these threshold values to identify cities that are of global importance due to their size 

(> 2M) and regional to national importance (> 0.3M). We used population thresholds 

rather than other classifications of urban areas such as governmental functions 

(national and provincial capitals) or economic importance (“world cities”), because 

urbanization, one of the important processes underlying the expansion of built-up 

land, is primarily a demographic process and thus depending on population numbers. 

Hence city sizes are directly relevant for studying the land-use impacts of urbanization. 

The same thresholds have been used previously in other global studies of urban 

development (see, for example, Güneralp et al. (2020)). It is argued that previous 

studies have overwhelmingly focused on cities, but a large amount of (new) built-up 

land is found in smaller towns and villages (Li et al., 2019), we therefore used a 

subdivision that allows contrasting developments in cities of different sizes versus 

developments in less populated places. Previous studies have relied on the 

(demographic) indication of urban versus rural regions (Ehrlich et al., 2021; Wang et 

al., 2015). However, this subdivision is rather arbitrary and not consistently applied 

between countries (Easterlin et al., 2011; Lattes et al., 2017). Moreover, indications 

have changed over time as a result of new classification. Therefore, we rely on the 

number of inhabitants instead. In addition, recent literature has highlighted the 

importance of land-use dynamics in peripheral regions versus core cities (Broitman 

and Koomen, 2020; Shaw et al., 2020). These regions, including commuter towns and 

peri-urban areas for example, increasingly act as overflow areas of city centres that 

https://www.naturalearthdata.com/
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cannot grow themselves, and are therefore included them as separate categories 

together with other regions (Chi and Marcouiller, 2013; Salem et al., 2020). 

Figure 5.2: An example of the five region types in three metropolitan areas. (a) large 

city centre, and large city periphery: Beijing in China; (b) small and medium city 

centre, and small and medium city periphery: Seville in Spain; (c) Other region: 

Linares in Chile. The background built-up land data is from the multi-temporal layer 

of GHSL data at its original resolution (~38 m), boundary vector is from GADM. 

For different types of regions, we summarize population and built-up land area in the 

starting year, as well as population change and built-up land area change in the 

corresponding period, as the sum and mean of all regions of that specific type. 

Subsequently, we analyse whether each of these classes is statistically different from 

the complete set of all classes combined in terms of their population and built-up land 

in the starting year and the changes in both for each study period. These differences 

were assessed using the two-tailed student’s t-test. In addition, we also analyse the 

distribution of different urban development trajectories per type of region. 

To analyse the variation in built-up land change trajectories, we analyse the 

heterogeneity or homogeneity in population changes and changes in built-up land 

consumption for ten major world regions, as well as for all countries separately. 

Heterogeneity here refers to population or BPC changes in different directions, while 

homogeneity refers to changes in the same direction. For example, if all regions in, 

say, Europe increase in population, this is interpreted as a homogenous development, 

while if some regions increase and others decrease in population, this is interpreted 

as a heterogeneous development. We conduct this analysis for ten major world 

regions: Canada and United States, China, Europe, India, Latin America, Middle-East 

and Northern Africa, Oceania, Russia and Central Asia, Southeast Asia, and Sub-

Saharan Africa (see Supplementary Figure D2). These regions represent more or less 
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coherent socio-economic world regions, which have also been used in other studies 

of land use and land cover change (Eitelberg et al., 2016; van Asselen and Verburg, 

2013). 

For each major world region, we calculate the gross and net change in built-up land 

area as result of either population change or BPC change. For each unit of analysis 

(world and major world regions), we calculate gross increase ( APOP,inc ), gross 

decrease (APOP,dec), and net change (APOP,net) in built-up land related to population 

dynamics and the gross increase (ABPC,inc), gross decrease (ABPC,dec), and net change 

(ABPC,net) in built-up land related to changes in BPC. Gross increase in built-up land 

according to population change is thus simply the sum of all the built-up land change 

related to population change for all sub-regions in which the population increases (i.e., 

APOP,inc). Conversely, gross decrease is the sum of the built-up land change related 

to population change for all sub-regions in which the population decreases (i.e., 

APOP,dec). Therefore, the net change in built-up land attributed to population change 

(i.e., APOP,net) is the sum of both (i.e., APOP,inc and APOP,dec). The same for the 

analysis of built-up changes related to changes in built-up land consumption (ABPC,inc 

and ABPC,dec, respectively). We compare the difference between the gross change and 

the net change globally, as well as for major world regions, to assess the heterogeneity 

in urban development. 

At a national level, we build on these calculations to quantify heterogeneity or 

homogeneity in a single index. We propose a Homogenous Urban Development 

index (HUDI) to indicate to what extent a country has homogeneous or 

heterogeneous developments in either population dynamics or BPC changes. HUDI 

is calculated based on the changes of all study regions within one country following: 

HUDIPOP =
APOP,net

MAX(APOP,inc, |APOP,dec|)
          (5.5) 

HUDIBPC =
ABPC,net

MAX(ABPC,inc, |ABPC,dec|)
          (5.6) 

Where HUDIPOP and HUDIBPC are the HUDI index for built-up land change due to 

the changes in population and BPC, respectively. By definition, HUDI values range 

from -1 to 1, where a positive value indicates an increase in built-up land due to 

changes in population and BPC, respectively, and a negative value indicates the 

opposite. The absolute values indicate the homogeneity or heterogeneity of the 

changes in a country. For example, a value of 1 for HUDIPOP means that all regions 
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within a country have an increase in population leading to an increase in built-up land. 

Conversely, a value for HUDIBPC close to 0 would mean that BPC increases in some 

regions, while it decreases in other regions in the same country, with a very small net 

change relative to the gross increase and gross decrease, thus indicating heterogeneity 

in BPC-related changes in this country. 

At a global level, built-up land increased by 143, 132, and 133 thousand km2 during 

the periods 1975-1990, 1990-2000, and 2000-2015 respectively, of which 38.3%, 

49.6%, and 37.5% can be attributed to an increase in built-up land area per capita 

(BPC), suggesting a decreasing density worldwide. Different methods for attributing 

built-up changes to changes in population and changes in BPC yield ranges of 29.1%-

38.3% for 1975-1990, 48.0%-49.9% for 1990-2000, and 29.5%-43.6% for 2000-2015 

(see supplementary Table D2, and Figures D5-D7). 

Across the globe, built-up land development at a local level follows different 

trajectories in terms of changes in population and in land take per person (see Figure 

5.3a-c and Table 5.1). Because no region saw a decline in built-up land area in any of 

the three periods analysed, three of the nine built-up land change trajectories (i.e., 

proportional decline, shrinkage, and stable densification) were not observed. 

Globally, only 2870 out of the 75102 regions in the period 1975-1990 follow the 

population decline trajectory, which is characterized by a decrease in population and an 

increase in BPC. This number increased to 6474 and 8893 regions in 1990-2000 and 

2000-2015, respectively. Regions following this trajectory are located mostly in 

Europe, Russia, and Central Asia, but in recent periods some, mostly rural, regions 

elsewhere also followed this trajectory. For example, population decreased across 

inland regions of Portugal between 2000 and 2015 (Figure 5.3e). Because no built-up 

land was lost, land-use intensity decreased in these regions. Regions following this 

trajectory represent a relatively small increase in built-up land, totalling 2.3, 4.5, and 

5.5 thousand km2, in the three different periods, respectively (Table 5.1). 

The expansion trajectory, characterized by a stable population and an increase in BPC, 

represents the largest total increase in built-up land in all periods combined and also 

in the periods 1990-2000 and 2000-2015. In the latter two periods, this trajectory 

added 43.8 thousand km2 and 45.7 thousand km2 built-up land, respectively (Table 
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5.1). Throughout all three periods this trajectory is mostly observed in North-America, 

Europe, Russia, and China (Figure 5.3a-c). 

Regions following the sprawl growth trajectory are mostly located in the Global South, 

including Latin America and India, but also scattered across developed regions like 

Europe and North America. This trajectory is characterized by an increase in both 

population and BPC. Regions that follow this trajectory include a large proportion of 

the increase in population, especially during 1975-1990 and 1990-2000 (Table 5.1). 

 

Figure 5.3: Built-up land change trajectories across the world in the periods 1975-1990, 

1990-2000, and 2000-2015. BPC refers to built-up land area per capita, which is an 

expression of land-use intensity. Figures (a), (b), and (c) present the different change 

trajectories in the periods 1975-1990, 1990-2000, and 2000-2015, respectively, for 75102 

regions across the world. Figures (d) and (e) show changes in eastern China and 

Europe in more detail, respectively, and both of them are 2000 × 2000 km in size. Note 

that trajectories 4, 7, and 8 are not observed and that they are only included in the 

legend for the sake of completeness. 
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Table 5.1: Built-up land and population for different change trajectories as well as their changes over time. For each trajectory, ‘Sum’ 

refers to the total built-up land area or population in the starting year, and their total changes in that period. Similarly, ‘Mean’ 

represents the average built-up land area or population per subdivision in the starting year, and their average changes per region in 

the corresponding trajectories. As indicated, mean values for nearly all major world regions are significantly different from the mean 

of the entire regions combined (two-tailed t-test, **p<0.01, *p<0.05). 

Period Trajectory (# regions) 

Built-up land in the 
starting year [km2] 

New built-up land 
[km2] 

Population in the starting 
year [million] 

Population change 
[million] 

Sum Mean Sum Mean Sum Mean Sum Mean 

1
9
7
5
-1

9
9
0
 

Population decline (2870) 4946 1.72** 2255 0.79** 161 0.06 -60 -0.02**

Expansion (15309) 80168 5.24 38656 2.53** 793 0.05 34 0.00**

Sprawl growth (21056) 39531 1.88** 52292 2.48** 1123 0.05 482 0.02**

Persistence (7936) 87580 11.04** 9749 1.23** 518 0.07** 35 0.00**

Proportional growth (10517) 91732 8.72** 30144 2.87** 844 0.08** 334 0.03**

Growth densification (17414) 71109 4.08** 9892 0.57** 641 0.04** 386 0.02**

1
9
9
0
-2

0
0
0
 

Population decline (6474) 16849 2.60** 4452 0.69** 218 0.03** -53 -0.01**

Expansion (22415) 155369 6.93 43821 1.95** 1356 0.06** 17 0.00** 

Sprawl growth (22739) 70156 3.09** 40322 1.77 1519 0.07* 378 0.02** 

Persistence (5528) 93351 16.89** 8070 1.46** 596 0.11** 25 0.00** 

Proportional growth (10993) 128573 11.70** 27840 2.53** 1049 0.10** 251 0.02** 

Growth densification (6953) 53755 7.73* 7091 1.02** 554 0.08** 214 0.03** 

2
0
1
5
 

Population decline (8893) 28301 3.15** 5451 0.61** 291 0.03** -74 -0.01**

Expansion (17744) 150307 8.47 45661 2.57** 1360 0.08* -3 0.00** 

Sprawl growth (9102) 18333 2.01** 15124 1.66 627 0.07** 221 0.02** 

Persistence (15276) 238499 15.61** 24962 1.63* 1529 0.10** 101 0.01** 

Proportional growth (13523) 127716 9.44* 30110 2.23** 1335 0.10** 409 0.03** 

Growth densification (10464) 86492 8.27 11550 1.10** 982 0.09** 532 0.05** 
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The persistence trajectory, by definition, has the smallest changes in population and in 

BPC. These regions are not abundant and mostly found in Europe, the United States, 

Russia and Central Asia. Nonetheless, these regions have the largest mean built-up 

land area in the starting year. Because we included a 1% margin around the no change, 

some changes in built-up land took place in these regions. In fact, this trajectory 

included an increase of 9.7, 8.1, and 25.0 thousand km2 in the periods 1975-1990, 

1990-2000, and 2000-2015, respectively (Table 5.1). 

The proportional growth trajectory, characterized by an increase in population and a 

stable BPC, is mostly found in Africa, Latin America, India, and Southeast Asia, but 

also scattered in developed regions like Europe, the United States, and Oceania. The 

contribution of this trajectory to built-up land change was rather constant over time, 

ranging from an extra 27.8 thousand km2 between 1990 and 2000 to 30.1 thousand 

km2 in the other two periods, for all regions in this trajectory together (Table 5.1). On 

average, these regions see the largest increase in built-up land area per region in the 

periods 1975-1990 and 1990-2000, and the second largest in 2000-2015. 

The growth densification trajectory can be found in rural areas in the Global South, as 

well as a few large cities in developed regions. It is characterized by an increase in 

population in combination with a decrease in BPC. The well-developed coastal region 

of China shown in Figure 5.3d provides an example of the latter. This trajectory is 

the only trajectory that is characterized by a decrease in BPC, but this decrease does 

not lead to any decrease in built-up land. Instead, it is more than compensated by the 

generally large increase in population in these regions. As a result, regions following 

this trajectory add a total of 9.9, 7.1, and 11.6 thousand km2 of built-up land in the 

periods 1975-1990, 1990-2000, and 2000-2015, respectively (Table 5.1). The number 

of regions following this trajectory decreased from 17414 in the period 1975-1990 to 

6935 in the period 1990-2000 and 10464 in the period 2000-2015. 

We analyse to what extent built-up land change trajectories differ between different 

types of regions. Not unexpectedly, large city centres (> 2M inhabitants) and small and 

medium city centres (between 0.3M and 2M inhabitants) have a much larger mean area 

of built-up land, and a much larger mean increase in built-up land per region over 

time than their peripheries (Table 5.2). While the mean area of built-up land and the 

mean increase in built-up land is by far the lowest for other regions, the sum of all new 

built-up land in these regions is about as large as that of all large city centres, small and 

medium city centres, and their peripheries combined (see Table 5.2). In the year 1975, BPC 
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in small and medium city centres is higher than the BPC in large city centres, which is again 

larger than the BPC in other regions (Table 5.3). Yet, over time, large city centres intensify, 

and in the final year of our analysis their BPC is smallest, on average. Conversely, 

land-use intensity in other regions decreases over time as expressed in an increase in 

BPC. The BPC in small and medium city centres remains more or less the same, and 

remains the highest of all five region types (Table 5.3). The BPC in peripheries is 

lower than that of the large city centres and small and medium city centres in all three time 

periods. 

Consistent with the average changes in population and BPC, regions indicated as large 

city centres and small and medium city centres more often follow the growth densification and 

proportional growth trajectories, while other regions follow the population decline and expansion 

trajectories more often between 2000 and 2015 (Figure 5.4). Urban peripheries fall in 

between these two extremes, both for large city peripheries and small and medium city 

peripheries. This patterns holds for all three periods analysed (see supplementary Figure 

D3 for 1975-1990 and 1990-2000). 

To investigate whether the observed densification in large city centres could be related 

to land scarcity, we analysed the proportion of built-up land in the five region classes 

at the four epochs. Large city centres have on average the largest ratio of built-up land 

to available land, as compared to other types of regions. Yet, built-up land in large city 

centres accounts for about 50% on average of all available land in 2015, where available 

land denotes total land area in the specific region but excluding water body. In 

contrast, built-up land in other regions account for a very small fraction on average to 

its total available land in 2015 (see supplementary Figure D4 for detailed results of 

this analysis). 
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Table 5.2: Built-up land and population for regions in different urbanization classes as well as their changes over time. For each region 

type, ‘Sum’ refers to the total built-up land area or population in the starting year, or their total changes. Similarly, ‘Mean’ represents 

the average built-up land area or population per subdivision in the starting year, or their average changes per subdivision for 

corresponding region types. As indicated, mean values for nearly all major world regions are significantly different from the mean of 

the entire regions combined (two-tailed t-test, **p<0.01, *p< 0.05). 

Period Region type (# of regions) 

Built-up land in the 
starting year [km2] 

New built-up 
land [km2] 

Population in the 
starting year [million] 

Population change 
[million] 

Sum Mean Sum Mean Sum Mean Sum Mean 

1
9
7
5
-1

9
9
0
 

Large city centres (105) 17134 163** 4608 44** 192 1.83** 59 0.56** 

Large city peripheries (1307) 25719 20** 13031 10** 378 0.29** 126 0.10** 

Small and medium city centres (911) 52693 58** 16265 18** 454 0.50** 142 0.16** 

Small and medium city peripheries (8128) 77226 10** 41254 5** 1081 0.13** 327 0.04** 

Other regions (64651) 202292 3** 67830 1** 1976 0.03** 559 0.01** 

1
9
9
0
-2

0
0
0
 

Large city centres (105) 21742 207** 3760 36** 250 2.38** 51 0.48** 

Large city peripheries (1307) 38750 30** 11765 9** 504 0.39** 85 0.06** 

Small and medium city centres (911) 68958 76** 14104 15** 595 0.65** 100 0.11** 

Small and medium city peripheries (8128) 118481 15** 35164 4** 1408 0.17** 203 0.03** 

Other regions (64651) 270122 4** 66803 1** 2534 0.04** 392 0.01** 

2
0
0
0
-2

0
1
5
 

Large city centres (105) 25502 243** 2384 23** 301 2.87** 66 0.63** 

Large city peripheries (1307) 50515 39** 14412 11** 589 0.45** 117 0.09** 

Small and medium city centres (911) 83063 91** 11451 13** 696 0.76** 132 0.15** 

Small and medium city peripheries (8128) 153644 19** 41204 5** 1611 0.20** 260 0.03** 

Other regions (64651) 336924 5** 63408 1** 2927 0.05** 610 0.01** 
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Table 5.3: BPC in the starting years and relative annual changes in built-up land, population, and BPC for five region types. For nearly 

all periods changes in built-up land, population and BPC for each of the five region classes were significantly different from these for 

all settlements combined (two-tailed t-test, **p<0.01, *p<0.05). 

Period Region type (# of regions) BPC in the starting year [m2/person] Δ Built-up land Δ Population Δ BPC 

1
9
7
5
-1

9
9
0
 

Large city centres (105) 89 1.60%** 1.79% -0.19%**

Large city peripheries (1307) 68 2.77%** 1.94%** 0.82% 

Small and medium city centres (911) 116 1.81%** 1.83% -0.02%**

Small and medium city peripheries (8128) 71 2.89%** 1.78%** 1.10%** 

Other regions (64651) 102 1.95%* 1.67% 0.27% 

1
9
9
0
-2

0
0
0
 

Large city centres (105) 87* 1.61%** 1.87% -0.25%**

Large city peripheries (1307) 77* 2.69% 1.57%** 1.10%** 

Small and medium city centres (911) 116 1.88%** 1.57% 0.30%** 

Small and medium city peripheries (8128) 84 2.63%** 1.36% 1.26%** 

Other regions (64651) 107 2.23%* 1.45% 0.77%** 

2
0
0
0
-2

0
1
5
 

Large city centres (105) 85 0.60%** 1.33% -0.72%**

Large city peripheries (1307) 86** 1.69% 1.22%** 0.47%** 

Small and medium city centres (911) 119 0.86%** 1.17% -0.30%**

Small and medium city peripheries (8128) 95** 1.60% 1.00%* 0.59%** 

Other regions (64651) 115 1.16% 1.27% -0.11%**
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Figure 5.4: Distribution of built-up land change trajectories over the different types of 

regions for the period 2000-2015. Colour coding is consistent with Figure 5.3. 

Globally, changes both in population and in BPC play an important role in the 

increase in built-up land, especially in the period 1990-2000. We find that built-up 

land changes due to population changes are relatively homogenous within major 

world regions, as almost all regions in the world increase in population (Figure 5.5k). 

Conversely, built-up land changes due to BPC changes are more heterogeneous, 

indicating that BPC increases in some regions while it decreases in others (Figure 

5.5k). At the level of major world regions, some differences become visible (Figure 

5.5a-j). 

Canada and USA, China, and Europe experienced the largest increase in built-up land. 

In Europe, this is mainly driven by increases in BPC, while in China and Canada and 

USA this increase is driven more or less equally by population change and BPC 

change. However, BPC in Canada and USA was already much higher at the start of 

each of the periods analysed (see supplementary Tables D3 and D4). In Europe, there 

is only a small net increase of built-up land related to population change during 2000-

2015, but gross changes are relatively large, illustrating the heterogeneity in population 

dynamics here. Specifically, the net increase of 0.46 × 104 km2 built-up land due to 

population change in this period is the result of 1.09 × 104 km2 gross increase and 

0.63 × 104 km2 gross decrease related to contrasting population dynamics across 

different regions within Europe (also see Figure 5.3). In the Global South, including 

Latin America, Middle-East and Northern Africa, and Sub-Saharan Africa, built-up 

land increase is mostly driven by population growth, whereas urban densification, i.e., 

a net decrease in BPC, reduced the increase in built-up land. For example, we find a 

net decrease of 0.48 × 104 km2 built-up land in Sub-Saharan Africa during 2000-2015, 

which is due to the intensified use of built-up land (Figure 5.5j). Moreover, these 

regions show much less heterogeneity, especially in their built-up land changes due to 
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population dynamics, indicating that nearly all regions increase in population or at 

least stay constant. 

Figure 5.5: Heterogeneity in built-up land changes due to population change and BPC 

change in major world regions. Red and blue bars represent changes in built-up land 

due to changes in population and changes in BPC, respectively. The charts show gross 

changes in both directions, with the light-coloured bars indicating the equivalent 

change in opposite direction, highlighting the relationship between gross changes and 

net changes. Net changes that are equal or almost equal to the gross changes are 

interpreted as homogenous change trajectories in that major world region, while net 

changes that are much larger than their corresponding net change are interpreted as 

heterogeneous change trajectories in that major world region. See supplementary 

Table D5-D7 for results from the other three approaches to allocating built-up land 

change. 

At a national level, changes in built-up land due to population dynamics are rather 

homogeneous for almost all countries, while changes in BPC per country are much 

more heterogeneous (see supplementary Figure D8). This indicates that in most 

countries, population either increases or decreases in almost all regions within one 

period. For example, population in Latvia grows in nearly all regions during 1975-
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1990, while the two consecutive periods show a population decrease in all regions. 

Urban development in the most recent period in the Global North is a notable 

exception to this trend, mostly as a result of rural depopulation and related rural-

urban migration. Changes in built-up land due to changes in BPC are much more 

heterogeneous in many countries (see supplementary Figure D8). For most European 

countries, the majority of all regions show an increase in BPC, indicating a decrease 

in land-use intensity. Yet, in recent decades, more heterogeneous developments were 

observed in some European countries, notably Spain, United Kingdom, and Italy, 

combining mostly densification of urban areas with decreasing density in rural areas 

(i.e., rural depopulation). Conversely, many countries mostly in Africa, but also a few 

in Latin America in the first and the last periods, show a homogenous pattern of 

densification in nearly all regions within those countries, mostly because the 

population increased faster than built-up land (see supplementary Figure D8). 

Globally, 38.3% (29.1%-38.3%) of all new built-up land during 1975-1990 can be 

attributed to BPC change, whereas this share increased to 49.6% (48.0%-49.9%) 

during 1990-2000, and was 37.5% (29.5-43.6%) during 2000-2015. This suggests that 

the decrease in land-use intensity plays a very important role in global built-up land 

expansion, approaching population growth in terms of their relative importance. 

These findings confirm earlier studies, which found that residential density has been 

decreasing almost everywhere for decades (Angel et al., 2010; Mahtta et al., 2019; Seto 

et al., 2011). 

While built-up land increases faster than the population, globally, we find a large 

number of regions that do not follow this trend. This observation is consistent with 

earlier findings for specific regions in Europe (Wolff et al., 2018a) and the United 

States (Richter, 2020). Most notably, we find that large city centres of > 2M inhabitants 

are densifying, on average, while the opposite is true for other regions characterized by 

the absence of cities with > 0.3M inhabitants and their peripheries. These findings 

suggest that urbanization, and specifically the influx of people in large cities, could 

partially contribute to SDG target 11.3 by reducing land take per person. Conversely, 

we predominantly find a decrease in density in their peripheries. This also holds true 

for other regions characterized by depopulation, sometimes leaving empty buildings 

behind (Tietjen and Jørgensen, 2016), but also in some regions with population 

increase.  
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Densification in large city centres and small and medium city centres contrasts with the 

pattern of decreasing density in large city peripheries, small and medium city peripheries, and 

other regions in all three periods. Initially, large city centres and small and medium city 

centres had a BPC that was higher than other regions, but this pattern turned around 

over time due to an increasing concentration of people in both types of city centres. 

An example of this can be seen in Spain and Portugal in Figure 5.3a-c, where coastal 

city centres (such as Barcelona and Valencia) are characterized by urban densification, 

while the opposite is true for most of the adjacent inland areas. The decrease in 

density of other regions is at least partly related to a decrease in population, rather than 

an increase in built-up land strictly. These processes have been described elsewhere 

as rural land abandonment (Vannier et al., 2019; Weissteiner et al., 2011) and urban 

densification (Broitman and Koomen, 2015; Kyttä et al., 2013). Our study links these 

two processes, which could partly explain the heterogeneity in built-up land changes 

due to population changes within a country or major world region. 

Our finding that large city centres densify seems to contradict earlier studies reporting a 

decrease in density for cities, including prior analyses of urban sprawl (Güneralp et 

al., 2020; Seto et al., 2011). One possible explanation could be the delineation of these 

cities. In this study, we characterized regions that include cities > 2M as large city centres, 

but their surrounding regions (i.e., large city peripheries) that are often part of their 

metropolitan areas are analyzed separately. For these narrowly defined large city centers, 

we found urban densification on average, which reflects the findings by Angel et al. 

(2021b) that in most cities investigated, there were net increases in population in the 

areas built before the starting year, and thus densified significantly. However, much 

of the sprawl related to urbanization takes place in the outskirts, rather than the city 

proper (Angel et al., 2021b; Salem et al., 2020). Hence, we suggest that these results 

do not contradict earlier findings, but that they add an important nuance: large city 

centres themselves are on average intensifying, while their surrounding areas often 

become less dense, for example as part of a process of peri-urbanization and urban 

sprawl fueled by increased accessibility and decreased costs of transport (Anas et al., 

1998). This process of density changes also potentially explains the heterogeneity in 

built-up land changes due to BPC changes which was observed for multiple regions. 

A possible explanation for urban densification is the lack of available land in large city 

centers. We found that on average built-up land in large city centers is approaching half 

the land area of these regions (see supplementary Figure D4). Given that 100% is not 

a realistic upper boundary, as there is always a need for green space, the lack of land 

might explain at least part of the observed densification. Their variation in region 

sizes is also reflected in the variation in the range of built-up land percentages per 
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region, as some of the regions with a low percentage of built-up land are in fact 

relatively larger regions. Therefore, the impact of land availability in large city centers 

might be stronger than reported in this study. Nonetheless, the observation that 

residential density on average increased in these regions is still remarkable as a step 

towards SDG target 11.3, as it is not inevitable. After all, a lack of land in large city 

centers could also lead to population increases in their neighboring regions. Yet, 

average population increases for large city centers were larger than these for large city 

peripheries in all three study periods. Moreover, large city centers also showed an annual 

increase in built-up land of 1.61% in the first period and 0.60% in the last period, 

suggesting that at least some expansion was still possible. While small and medium city 

centers also have a higher average share of built-up land than their peripheries or other 

regions, these shares remain much lower than for large city centers. Therefore, we expect 

that densification due to a lack of available land plays no important role in these 

categories strictly. Yet, consistent with economic theories of land-rent (Anas et al., 

1998; Manganelli and Murgante, 2017), locations closer to city centers are more 

attractive and thus more expensive, which might trigger densification for both large 

city centers and small and medium city centers. 

As any other data-driven analysis, our study results depend on data accuracy. 

Currently, GHSL is the only accessible dataset providing consistent time-series of 

both built-up land and population density at a global scale (Balk et al., 2018; Leyk et 

al., 2019; Melchiorri et al., 2018), allowing for the long-term analysis presented in this 

study. Globally, GHSL has an overall accuracy of >70% (Blei et al., 2018; Marconcini 

et al., 2020), but with a relative low accuracy in some sparsely urbanized areas (Leyk 

et al., 2018) and some parts of Africa and South America (Gómez et al., 2019; Sliuzas 

et al., 2017). Because the GHSL data is produced as a time-series, built-up land is 

mapped consistently for different time periods (Pesaresi et al., 2016). Hence our 

results are potentially affected by the data accuracies, but this is unlikely to yield 

dramatically different outcomes (e.g., increases in built-up land where in reality there 

are decreases). 

Population data in GHSL is only lightly modelled. More specifically, population 

estimates in a region are downscaled within that region based on the presence and 

absence of built-up land only (Leyk et al., 2019). This potentially yields large 

inaccuracies at a pixel level, but it will not have a large impact on the average 

population density in a region, as long as the region for which this average is calculated 

is equal to or larger than the regions within which population is downscaled. 
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Consistent with findings in Tellman et al. (2021), our exploratory analyses of GHSL 

dataset show that in rare cases, regions exhibit suspicious and dramatic population 

changes, which potentially affect our results. For example, we found a few regions 

with sudden drops in one-time period and sudden rises in the next period, which 

could not be confirmed using other sources. Changes in these regions are 

consequently categorized into population decline and growth densification, since BPC is 

derived from the population numbers in a particular year. For a few regions with 

suspected unrealistic fluctuations, we checked secondary sources to see if we could 

explain such changes. As a result, for a few regions we adjust population size manually. 

Yet, an assessment of these outliers suggests that these regions only account for a 

small fraction of the total change in built-up land, and therefore these irregularities 

will not affect main findings of this study. GHSL population estimates for target years 

1975, 1990, 2000 and 2015 are modelled on the basis of GPWv4 (Doxsey-Whitfield 

et al., 2015), which is based on more than 12.5M input units. This number is much 

higher than the number of regions analysed in this study, thus making the influence 

of pixel-level inaccuracies on our results due to the light modelling likely very small. 

Moreover, downscaled population grids in GHSL are consistent with, and adjusted 

to, United Nations World Population Prospects (Melchiorri et al., 2019), making them 

suitable for the analysis of long term process of human settlement changes possible. 

As a result, we believe that our outcomes remain valid despite the known pixel-level 

inaccuracies in the GHSL. Yet, we expect that some areas with relatively large input 

units for population data, such as in Africa and Central Asia might have a lower 

accuracy (Freire et al., 2016). 

Built-up land change trajectories can vary within our study regions, and consequently, 

our findings depend on the delineation of our study region. We selected 

administrative units because population data was also downscaled from 

administrative units, although typically at a higher level (i.e., from smaller units). As 

administrative units are normally nested, this choice avoids large inaccuracies because 

of boundaries that are not coinciding. In addition, the selected regions typically 

represent municipalities or counties, which allow for a meaningful classification in the 

context of urbanization and rural-urban migration, leading to the five types of regions 

reported in Section 5.3.1. Taubenböck et al. (2019) show that morphological urban 

areas are potentially better delineations of cities. While this holds for the delineation 

of larger cities, regions created by this method do not coincide with the administrative 

regions underlying the population data in GHSL. Moreover, urban morphological 

zones do not provide a regional subdivision the land that does not belong to these 

urban morphological zones, thus constraining their application for a study with global 

coverage. Regular delineations such as pixels or hexagons (e.g., Boudet et al. (2020)) 
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also suffer from this limitation. One disadvantage of our units of analysis is their range 

in sizes (e.g., regions in Saudi Arabia are much larger than in Western Europe). These 

differences might hamper comparability between regions. Yet, larger units generally 

represent more remote regions, where there is very little built-up land and which do 

not contribute much to the overall process of urban development. Therefore, it is 

likely that the variation in size of the regions analysed only has minimal impacts on 

our results. 

Built-up land change trajectories analysed in this study provides the basis for a better 

understanding of urbanization processes across the globe, and thus inform policies 

towards sustainable urban development. Specifically, our findings provide important 

nuances to the widely acknowledged narrative that residential density has been 

declining almost everywhere for decades (Angel et al., 2011), and suggests that 

progress towards SDG target 11.3 (indicator 11.3.1) requires a consideration at 

smaller spatial scales, including both major world regions and subnational units. On 

a global level, our results suggest that the process of urbanization, i.e., the increasing 

share of the population living in urban areas, in itself is not necessarily unsustainable 

from a land take point of view, as built-up land in large city centres as well as small and 

medium city centres is used more intensively over time. Despite other findings that such 

planning initiatives have not been very successful this far (Cortinovis et al., 2019), we 

observe many larger cities that have intensified over the last few decades, and 

especially since the year 2000. 

Urban densification can reduce demand for future land take, but might also adversely 

affect other dimensions of sustainability. For instance, dense urban areas are often 

associated with a higher environmental quality in some parts of Greater Helsinki, but 

dense areas are also found harmful elsewhere, potentially leading to social inequality 

(Kyttä et al., 2013). In some densely populated areas like Hong Kong, Japan, and 

Singapore, policies aiming to promote high-density development may hamper 

liveability, for instance, due to a loss in urban green space (Richards et al., 2017), 

decrease in air quality (Grêt-Regamey et al., 2020), and an increased urban heat island 

effect (Seto and Christensen, 2013). Apart from large city centres, most land-use 

densification related to built-up land in the past decades is located in Latin America, 

Middle-East and Northern Africa, and Sub-Saharan Africa, where BPC was already 

much smaller than in developed regions such as Europe (see supplementary Tables 

D3 and D4). Urban densification in the Global South, and especially in Sub-Saharan 

Africa is often adversely associated with human well-being (Güneralp et al., 2017a; 
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Sclar et al., 2005). Many of these regions had a low built-up land area per person at 

the start of our analysis period, while they also score lower on other aspects of 

sustainability, such as urban infrastructure and energy consumption (Bakker et al., 

2021; Nagendra et al., 2018). Therefore, urban densification in these regions might 

reduce land take, but it inevitably comes with socio-economic trade-offs. For example, 

in Sub-Saharan Africa, about 200 million people (United Nations, 2016) were living 

in slums in 2014. Although the share of population inhabited in urban slums has been 

declining since 1990, the development of new slums could be interpreted as urban 

densification (Thorn et al., 2015; Vermeiren et al., 2012). Such developments 

deteriorate one situation for SDG target 11.1, i.e., urban population living in slums, 

and therefore suggests a clear trade-off between both targets. 

To operationalize sustainability practices, policies towards urban sustainability need 

to account for the spatial inequality of population, social conditions, environmental 

resources, etc., and implement interventions that are efficient, requiring less 

undesirable transformational change (Abson et al., 2017). In developed countries, 

where residential density is relatively low, policy-makers and urban planners could 

take actions to increase land-use intensity in the context of global environmental 

change, for instance, by optimizing land configuration (Angel et al., 2020). Yet, in 

densely populated regions that are socially vulnerable, local policies towards further 

urban densification are likely to have adverse effects, and policies to limit the 

development of over-populated communities and prioritize the development of 

public infrastructure in terms of transportation and sanitation networks would be 

preferable. Local context further matters in terms of available infrastructure. To avoid 

the hysteresis of infrastructure, newly developed built-up land could prioritize areas 

with available infrastructure (Espindola et al., 2017), or plan for orderly expansion of 

built-up land by organizing the territory on the periphery of existing cities in advance 

of their development. In addition, to alleviate the global competition for land, urban 

planning should consider for the wider contextual conditions and urban densification 

should be favoured at those locations that can support such development. 

Data and code availability 

Tabular data and python scripts for the analyses are freely available 

(https://cscproject.github.io). Original spatial data can be openly accessed using links 

provided in the materials and methods section of this article. 

https://cscproject.github.io/
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The objective of this thesis is to advance large-scale analysis of human settlements 

and their dynamics through the lens of land system with a specific focus on the role 

of land-use intensity. The preceding Chapters 2-5 answered the following specific 

research questions (RQs): 

RQ1: How can we represent the diversity of settlement systems? 

RQ2: What can we learn from Earth Observation to better characterize 

urban land-use intensity? 

RQ3: How do urban land-use intensity and settlement systems change 

over time? 

This final chapter gives an overview of the main findings and their scientific relevance, 

followed by a discussion on future research directions. Section 6.1 presents the main 

findings of this thesis, which are placed in the context of recent developments in the 

field. Sections 6.2 and 6.3 point out implications for future research and sustainable 

development, respectively. In the final section 6.3, concluding remarks are presented. 

Chapter 2 illustrates how human settlements distribute across space and change over 

time. To do so, three properties derived from built-up land (the density of built-up 

land, the density of built-up clusters, and the size of the largest cluster) are used to 

characterize settlement systems in China. Results show that settlement systems are 

widely distributed, ranging from large cities to deep rural, and their change trajectories 

are typically gradual and incremental. Moreover, this chapter suggests that the total 

increase of built-up land in village landscapes far outweighs that of dense urban 

regions. This chapter concludes that to advance large-scale analysis of human 

settlements, we should characterize human settlements more comprehensively. 

The conception of settlement systems in Chapter 2 builds on land systems that 

represent land-use patterns with regard to prevailing land cover, which contribute to 

global environmental assessments in the era of Anthropocene (Václavík et al., 2013; 
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van Asselen and Verburg, 2012; Verburg et al., 2015). Chapter 2 only identified 

settlement systems for China. Nevertheless, this approach can be easily applied 

elsewhere to address specific research questions. For example, de Lange (2022) 

recently used this approach to compare spatial difference of settlement systems 

between Europe and East Africa. Results exhibit a substantial difference in the spatial 

distribution of settlement systems and settlement patterns between Europe and 

Eastern Africa (de Lange, 2022). Given that the development of human settlements 

is often driven by distinctive social-environmental processes of urbanization across 

the world, with different implications for addressing sustainability issues (Müller et al., 

2014; Zhou et al., 2021), the differences within a country (China) and across regions 

(China, Europe, Eastern Africa), show the necessity to study human settlements as 

systems along a gradient, as well the geographic context within which these patterns 

emerge and change. 

Settlement systems, as coupled human-environment systems, are not confined to the 

three properties used in this thesis, but can also include other potentially relevant 

dimensions. For example, to better represent human interactions with the 

environment, Ellis and Ramankutty (2008) mapped global anthropogenic biomes that 

range from dense settlements (e.g., urban) to sparse inhabited systems (e.g., populated 

forests) using datasets on population density, land use, and land cover. To explore the 

trajectories of human settlements after peak population in China, Wang et al. (2021b) 

characterize human settlements by their cluster number and population density. In 

both studies, population density could be interpreted as the proxy for urban land-use 

intensity, which is, however, not considered in Chapter 2. The consecutive chapters 

characterize urban land-use intensity at a large spatial scale, and present its dynamics 

over time. 

Moreover, spatial resolution matters for the characterization of settlement systems. 

The anthropogenic biomes (i.e., anthromes) are recently identified at ~9 km resolution 

at the equator (Ellis et al., 2021). These anthromes are dominated by the combination 

of multiple land uses and land covers that constitute the heterogeneous mosaic 

landscapes, particularly, a large proportion of human settlements are enclosed by 

agricultural land (Ellis et al., 2021). The settlement systems in China presented by 

Wang et al. (2021b) are characterized at a 2-km resolution, consistent with the 

resolution adopted in Chapter 2 of this dissertation. In comparison, Dou et al. (2021) 

characterized land systems in Europe at a 1-km resolution, given that European 

landscapes are relatively small in spatial scale. Compared with agricultural and natural 

landscapes, human settlements are often characterized by much more detailed scale 

variations and heterogeneity, and hence justifying a more detailed land system 
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classification. To this point, LCZs are characterized at a much detailed scale, typically, 

at 100 m resolution. Yet, LCZ classes are more climate-driven and are less capable to 

represent land-use pattern in a broader context. Uncertainties in the input datasets 

that characterize settlement systems are supposed to have only marginal effects on 

outcome with the relative coarse resolution in terms of accuracy (Ornetsmüller et al., 

2018). Yet, spatial resolution has a substantial effect for rural regions with sparse 

settlements, as human settlements therein often exist with a smaller coverage relative 

to agricultural and natural areas, and a smaller size to characterize land systems could 

lead to a growing proportion of completely agricultural land and completely natural 

land given the limitation of current datasets on land use and land cover (Verburg et 

al., 2011), which contradicts the basis of land systems as mosaic landscapes that 

represent human and nature interactions (Malek and Verburg, 2017; van Asselen and 

Verburg, 2012). 

One important dimension of settlement land systems is urban land-use intensity. Here, 

urban land-use intensity describes to what extent urban land is used by humans. 

Intensive use of urban land can reduce extra land development elsewhere with mixed 

consequences to nature and human society. Therefore, urban land-use intensity is 

inherently associated with total land take, and is one of the central topics on the 

interactions between nature and human activities. Prior to mapping urban land-use 

intensity, we need to clarify the connotation of urban land-use intensity. Similarly to 

Erb et al. (2013), urban land-use intensity can be interpreted on the basis of inputs, 

outputs, and changes in system properties. The input dimension can be represented 

by resource consumption or infrastructure investments such as electricity 

consumption, road network, buildings, and other urban facilities (Lariviere and 

Lafrance, 1999; Xia et al., 2020). The output dimension refers to, but is not limited 

to, economic and demographic outcomes, depending on specific research contexts 

(Yan et al., 2017; Zhong et al., 2018). The dimension of changes in system properties 

could be, for example, the intensity of artificial light at night that reflects the degree 

to which natural environment is disturbed due to human activities (Levin and Zhang, 

2017). These three aspects for measuring urban land-use intensity are often 

intertwined, for instance, high economic outcomes are often at the cost of high 

electricity consumption, which consequently leading to brighter artificial light at night. 

In Chapters 3-5, urban land-use intensity is represented by 3D building structure and 

population density. The latter was operationalized more or less equivalent to the 

conceptualization of urban density by Dovey and Pafka (2013). According to Dovey 
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and Pafka (2013), urban density consists of three different but intertwined factors: 

buildings-population-open space. Consistently, Angel et al. (2021a) propose a more 

systematic framework for the decomposition of urban density (more precisely, 

population density herein) into constituent factors that, when multiplied, reconstitute 

urban density. As illustrated in Figure 6.1, urban density is decomposed into two, three, 

four, and seven factors, respectively. Urban land per capita as investigated in Chapter 

5 is the inverse of population density (i.e., urban density in this context), namely built-

up land per capita, while 3D building structure derived from Earth Observation and 

auxiliary data in Chapters 3 and 4 is indispensable for the majority of factors that 

determine the urban density (Figure. 6.1). 

 

Figure 6.1: The decomposition of urban density. Modified from Angel et al. (2021a). 

To portray urban land-use intensity, Chapters 3 and 4 explored the potential of 

mapping 3D building structure based on Earth Observation. Specifically, an advanced 

approach is proposed in Chapter 3 to map 3D building structure across China, 

Europe, and the US. This method is further optimized in Chapter 4, which allowed 

mapping 3D building structure at a global scale. Chapter 4 also analysed the spatial 

heterogeneity in 3D building structure across space. The 3D building structure data 

produced in both chapters provide a nuanced characterization of urban heterogeneity 

that is useful for the exploration of solutions to addressing urban sustainability issues, 

such as urban thermal environment and transportation-related carbon emission. In 

addition, the correlation between building height and building footprint at a pixel level 
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is only 0.57 worldwide, indicating the relevance of mapping these properties 

separately. 

In light of the decomposition of urban land-use intensity, illustrated in Figure 6.1, 

global-scale mapping of urban land-use intensity could gain benefits from relevant 

projects such as WorldPop and OpenStreetMap (OSM). Worldpop project was 

initiated in 2013, aiming to provide publicly accessible demographic datasets for the 

Global South to support socioeconomic development therein. The crowdsourced 

OSM layers include highway, railway, water bodies, building, boundary and others, 

which are essential elements for measuring urban land-use intensity. Yet, heights are 

absent for the vast majority of buildings in OSM (Biljecki, 2020; Over et al., 2010), 

particularly in regions far away from urban centres, hampering the potential 

applications at a global scale. Moreover, global building footprints have been well 

mapped individually based on state-of-the-art technique. For instance, Bing Maps is 

releasing a global dataset of building footprints (Microsoft, 2022). Until now, nearly 

800 million building footprints have been from detected from Bing Maps imagery 

between 2014 and 2021. 

In recent years, there are increasing efforts in mapping heterogeneity within built-up 

areas using Earth Observation data (Demuzere et al., 2022; Esch et al., 2022; Frantz 

et al., 2021; Zhu et al., 2022). Yet, large-scale mapping of urban land-use intensity 

remains one of the most challenging open questions. 

Chapter 5 suggests that, at a global scale, the decrease of urban land-use intensity 

relates to 38.3%, 49.6%, and 37.5% of the built-up land expansion in the three periods 

during 1975-2015, but with large local variations. These variations in urban land-use 

intensity dynamics also correspond to the distinctive trajectories of settlement 

systems presented in Chapter 2. Nevertheless, Chapter 2 illustrates an overall change 

towards increasingly denser urban patterns. In fact, the decrease in urban land-use 

intensity could explain why so many areas are characterized by the conversions of deep 

rural to isolated villages, and isolated villages to sparse villages. Chapter 5 suggests that centers 

of large cities intensify in all the three periods (i.e., 1975-1990, 1990-2000, and 2000-

2015), while their rural counterparts show an opposite direction. In the Global South, 

densification often happens in regions where human settlements are already used 

intensively, suggesting potential trade-offs with other living standards. 

Given that analyses of urban land-use intensity represented by 3D building structure 

in Chapters 3 and 4 are confined to one point of time, Chapter 5 therefore uses built-
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up land per person as an operationalization for urban land-use intensity in order to 

investigate its temporal dynamics at a global scale. The multiple pathways in urban 

land-use intensity observed in Chapter 5 imply the different trajectories of settlement 

systems. For example, the growth intensification trajectory and population decline trajectory 

observed in Chapter 5 are often associated with densification and abandonment, 

respectively. These changes in land-use activities have profound environmental and 

socioeconomic impacts. In particular, compared to horizontal urban expansion, 

urban densification often has multiple environmental merits such as reduced carbon 

emission due to the decreases in energy consumption for transportation, but it is not 

always without adverse impacts (Næss et al., 2019). For instance, high density has long 

been equated to congestion, overcrowding, and high crime rates (Khan and Carville, 

2017). The distinctive impacts of settlement change trajectories suggest that 

environmental assessments should integrate these nuanced settlement changes that 

goes beyond the mere presence and/or absence of built-up land. 

Chapter 5 finds densification processes both in developing and developed regions, 

which are often associated with changes in 3D building structure. For example, the 

densification processes represented by the decreasing built-up land per capita usually 

correspond to changes in building footprints and/or heights. Specifically, the 

decreased built-up land per capita in deprived regions of Nairobi City could be 

attributed to the dense building footprints (Abascal et al., 2022). In regions such as 

Hong Kong and Singapore, however, the decreased built-up land per capita could be 

attributed to both dense building footprints and growing building heights (Lau et al., 

2005; Xue et al., 2017). For the mountainous regions in Hong Kong, there is very 

little space for new buildings due to the topographical constraint, leading to higher 

buildings alternatively to host the growing population. Considering the rugged terrain 

as well as water bodies, rugged areas and water bodies are therefore excluded in 

Chapter 2 to calculate built-up land density that constitutes the properties used for 

the classification of settlement systems. 

Characterization of human settlements could benefit from and contribute to the 

developments in other fields to address global environmental and socioeconomic 

challenges. In the field of industrial ecology, for example, material stocks are 

considered as one of the major drivers of environmental crisis (Haberl et al., 2021). 

An assessment suggest that concrete, aggregates, and bricks, which are used for 
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buildings and infrastructure that characterize human settlements, constitute the vast 

majority of human-made mass (Elhacham et al., 2020). Spatially explicit 

characterization of human settlements by their building material have profound 

implications for sustainability, e.g., energy use (Samuel et al., 2013), human health 

(Latha et al., 2015), and risk assessment (Tierolf et al., 2021). As of today, however, 

there is no publicly available dataset on building material at a global or even local scale, 

hampering the more nuanced characterization of human settlements and the 

assessment of their environmental and socioeconomic impacts. 

Technically, large-scale characterization of human settlements highly relies on the 

development of Earth Observation. Over the past few decades, Earth Observation 

technology has substantially help monitor the extent of human settlements, from local 

to global scales (Liu et al., 2018; Mundia and Aniya, 2005; Schneider et al., 2009; Van 

de Voorde et al., 2011). Yet, large-scale mapping of heterogeneity within human 

settlements is inherently different (Schug, 2021), and the usage of Earth Observation 

data alone could sometimes be improper (Rosier et al., 2022). In our case, mapping 

urban land-use intensity is dependent on the specific contexts (3D building structure 

and land take per capita). Moreover, Gross Domestic Product (GDP) can be used to 

quantify urban land-use intensity in the view of output dimension in measuring land-

use intensity (Erb et al., 2013). GDP could be less relevant to 3D building structure, 

one of the other proxies for urban land-use intensity, which is mapped globally in 

Chapter 4 with Earth Observation and socioeconomic data, among others. In the era 

of big data, Earth Observation researchers are increasingly required to map human 

settlements using an integrated approach due to the multidimensionality of urban land 

use. Therefore, Earth Observation researchers could do more to collaborate with 

urban planners and practitioners to gain deeper insights into what forms urban 

heterogeneity (Wentz et al., 2018; Zhu et al., 2019). As a community, we need to think 

about how to derive the information (e.g., algorithms development), and also about 

what it will be used for (Zhu et al., 2019). 

In the past decades, analysis of the drivers of urban expansion was at the core of 

urban land change science (Colsaet et al., 2018; Li et al., 2018a). This contributed to 

theory development, promoted the causal analysis of change, and gained insights into 

how human settlement development could be steered into societally more desirable 

pathways (Bürgi et al., 2022). However, this evidence is confined to the analysis of 

built-up land cover, without the nuanced representation of human settlements and 

their trajectories. To this point, this dissertation could be an addition in this field by 
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including settlement systems as well as urban land-use intensity, and a large question 

pertains to the drivers of changes in settlement systems and urban land-use intensity. 

Human settlement dynamics and their drivers are in most cases investigated at a local 

or regional scale, and our understanding of forms and drivers of human settlement 

dynamics is therefore limited, as the evidence is often fragmented (Broitman and 

Koomen, 2020; Xiong et al., 2021; Yue et al., 2013). Systematic reviews, which 

synthesize results of case studies, have been widely conducted in land use science (van 

Vliet et al., 2016b). For example, van Vliet et al. (2015) conducted a systematic review 

on the manifestations and underlying drivers in terms of agricultural land change, 

which provided us with insight into mechanism in agricultural land change. Human 

settlements, as the most intense landscape altered by human beings, have been well 

discussed in case studies (Alig et al., 2004; Fang et al., 2016; Schneider et al., 2005). 

Yet, there is still no clear knowledge gains from the evidence-based synthesis. 

Therefore, there is an urgent need for a systematic review on drivers of changes in 

urban land-use intensity and settlement systems based on existing case studies. 

Land use scientists can utilize hypothesis and theory from other fields and disciplines 

to better explain the conditions under which urban expansion and urban densification 

occur. For example, frontier development has been widely used in land science 

community, particularly in the field of agricultural expansion and deforestation 

(Meyfroidt et al., 2018). This concept was recently applied on the progress in 

biodiversity conservation, as the term “conservation frontier” which allows assessing the 

patterns, actors, and drivers of conservation effort (Buchadas et al., 2022). As found 

in Chapter 5, urban land-use intensity in the urban peripheries decreases over time, 

which I speculate that this decrease in urban land-use intensity can at least be partly 

attributed the abundance of land resource available for urban development, and local 

dwellers prefer to develop new land elsewhere for residency (expansion) rather than 

reduce built-up land per person (densification), given the low cost of developing new 

land therein. 

Land use models are crucial tools for the integration of empirical knowledge with the 

practice of decision making (van Asselen and Verburg, 2013; Verburg et al., 2002). 

In-depth understanding the casual mechanism of human settlement dynamics enables 

land use models to better analyze land use change processes as well as to simulate 

trajectories of human settlements. However, previous studies have focused on 

improving the allocation mechanisms and calibration procedures (Li and Yeh, 2005; 



Synthesis 

145 

van Vliet et al., 2016a; Wang et al., 2022), but progress in the nuanced representation 

of human settlements is rather limited. Technically, these models typically represent 

human settlements as one single land cover class, typically represented by built-up 

area. Therefore, the simulation of human settlements is limited to the unilateral 

conversion of non-built-up to built-up land. Chapter 2 characterized human 

settlements into several classes, ranging from sparse villages to large cities. With such a 

representation of diverse human settlements, historical trajectories are further 

explored. In contrast, these trajectories can also be integrated with land change 

models to simulate the gradual and incremental development of human settlements, 

rather than a sudden presence of built-up area. 

Recently, land change studies have acknowledged the significance of nuanced changes 

in land-use intensity, and therefore the assessments of environmental and 

socioeconomic outcomes of different land change trajectories increasingly 

accumulated (Stürck et al., 2015; Tierolf et al., 2021; Wang et al., 2019b). For example, 

van Asselen and Verburg (2013) developed a CLUMondo model that is able to 

simulate agricultural intensification versus agricultural expansion, and urban versus 

rural settlement expansion based on land availability in the neighborhood of the 

location. Wang et al (2019) applied the CLUMondo model to present the nuanced 

interactions between human settlements and agricultural systems under multiple 

population scenarios and agricultural regulations. Recently, Chen (2022) developed a 

land change model that is capable to simulate the process of urban densification, 

thereby advancing conventional land change models that simply predict where the 

next urban pixels are likely to appear. Therefore, settlement systems and urban land-

use intensity identified by this thesis provide the conceptual basis and technical 

supports for nuanced representation and trajectory analysis of human settlements in 

these land change models. 

Human society is confronted with many sustainability challenges including food 

insecurity, and flood risks. To address these issues, policy tools are widely 

implemented by governments and local authorities. Particularly, cropland protection 

policies are adopted worldwide to preserve cropland on the periphery of human 

settlements by restricting built-up land expansion (Liu et al., 2014b; Perrin et al., 2018). 

Still, Zhou et al. (2021) found that only ~25% of cropland loss in China is due to the 

development of cities, while cropland is increasingly lost to rural settlements and 

other lands used for industry, mining, and transportation. The most prevailing land-

cover-based products with a general classification of built-up land or impervious surface 
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cannot capture such variations in human uses, thus hindering the implementation of 

targeted policies in practices. Chapter 2 also found that most built-up land as well as 

newly added built-up land is not located in cities, suggesting that current policies 

focusing on the restriction of built-up land expansion in cities may fall short without 

consideration of land development in rural settlements, mining, and transportation, 

among others. 

In addition, Chapters 3-5 found that urban land-use intensity, expressed as building 

structure or land take per person, varies substantially worldwide. Therefore, policies 

towards sustainable development in human settlements are supposed to account for 

specific contexts with regard to environmental and socioeconomic heterogeneity. In 

countries like the US, where residential density is relatively low, local authorities 

should constrain urban sprawl in a practical manner. Yet, in densely populated regions 

of the Global South like India and African cities, compact development is likely to 

have undesirable outcomes. 

This thesis aims to advance large-scale analysis of human settlements and their 

dynamics through the lens of land system with a specific focus on the role of land-

use intensity. The four preceding research Chapters 2-5 provide an exploration to 

answering the three research questions proposed according to the objective of this 

dissertation.  

Mega-cities have attracted wide attention from urban land-use scientists. However, a 

large proportion of built-up as well as new added built-up land is found in more rural 

regions (Chapter 2), which is further supported by the disproportional conversions 

from deep rural to towns, and from towns to peri-urban and to large cities. Other 

than the difference in horizontal pattern, 3D building structure exhibits a large 

variation globally, and the global maps of 3D building structure produced here 

provide an image of the heterogeneity within built-up areas (Chapters 3 and 4), 

thereby complementing global datasets on urban heterogeneity (for example, built-up 

land extent, and gridded population). Finally, temporal changes of urban land-use 

intensity are put in a global context and found that urban land expands faster than 

population growth (Chapter 5). Results show that while built-up land increases faster 

than the population at a global scale, specifically, most densification is found in large 

cities as well as in many regions in the Global South, where urban land is already in 

intensive use. 
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In short, this thesis reveals a large variation in urban land-use intensity, which allows 

for more nuanced analyses of human settlement dynamics. For integrated assessment 

models, the representation of urban land-use change can incorporate such variation 

to inform decision-making. 
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Figure A1: ABDI, cluster density and cluster size for 1990 and 2000 (a-c, and d-f 

respectively). 

Figure A2: Relations between changes in ABDI, cluster density, and cluster size 
between 1990 and 2000. 
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Figure A3: Distribution of built-up area in 1990, 2000, and 2010 (a) and its change 

during 1990-2000 and 2000-2010 (b).  

 

 

 

Figure A4: Changes in ABDI, cluster density and cluster size as a function of their 

initial value during 1990-2000. The horizontal bars in each boxplot correspond to the 

25th, 50th, and 75th percentiles. The whiskers extend to 1.5 times the interquartile ranges 

(IQR). 
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Figure A5: Boxplots of cluster size changes in relation to initial value. Y axis is capped 

at -30 and 50, to allow comparison and to increase visibility.  

Figure A6: Settlement systems for 1990, 2000 and 2010. 
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In order to reduce the bias of reference data for the Random Forest (RF) model, we 

manually generated reference data for 6163 sample points across all three continents. 

For this we used a visual interpretation of aerial images, in combination with a visual 

interpretation of Google street view images for quantifying building height. First, we 

vectored building footprint in 100 randomly selected images manually using ArcGIS 

10.4.1, in order to assess the reliability of a simpler mapping based on a grid of 20×20 

meters. Results, as shown in Figure B1 show a very good match justifying the use of 

the simpler method for classifying built-up area footprint. Subsequently, we used the 

values in Table B1 for the interpretation of building height based on street view 

imagery of buildings included. Figures B2 and B3 provide an example sample location 

included in the reference data. 

Figure B1: Reliability analysis of building footprint by visual interpretation compared 

to manual digitalization. 
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Table B1: Guidelines for building height assignment based on google street view. 

Description Height (m) 

all 1-floor 3 

dominantly 1-floor, with a few 2-floor buildings 4 

dominantly 2-floor, with a few 1-floor buildings 5 

all 2-floor 6 

dominantly 2-floor, with a few 3-floor buildings 7 

dominantly 3-floor, with a few 2-floor buildings 8 

all 3-floor 9 

dominantly 3-floor, with a few 4-floor buildings 10 

dominantly 4-floor, with a few 3-floor buildings 11 

… … 

 

 

Figure B2: An example of the valid VHR satellite imageries in France (47°47'55.8"N, 

0°00'25.4"W). Each small square is 20×20m, and in this imagery we can observe 3 

building clusters (encircled A, B and C), while the numbers in white indicate the 

estimation of square numbers occupied by building footprint for corresponding 

cluster. 
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Figure B3: Google street view in sites A, B and C, as signed in Figure B2. In this case, 

buildings are dominantly one-floor high. Besides, we can see triangular roofs on top 

of these buildings, thereby we assume there is additional space for living and a value 

of 4 m is assigned as the averaged building height as suggested in Table B1. 

Figure B4 showed that for the RF models trained to map building volume and height 

differ between individual case region applications and all case regions combined, in 

terms of the relative importance of VV and VH polarized SAR data. Therefore, we 

further tested our analysis by running all RF models with either VV polarized SAR 

data or VH polarized SAR data. Results from Figure B4 show that VV and VH SAR 

data are highly complementary, as, both achieve highly similar R2 values. Moreover, 

results of the RF models with only one of the SAR polarization modes included are 

almost as accurate as the RF model with both bands included. This complementarity 

shows why the relative importance of VV and VH in classifying building height and 

volume could change very much while still achieving a higher overall R2 for all data 

combined, as compared to the RF models for each region specifically. Figure B5 

further illustrates this by showing the variable importance corresponding to the 

results shown in Figure B4 based on the data for all regions combined.  

Mapping Urban Density

A

B

C
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Figure B4: Model performance comparison in cases that one of the SAR polarization 

modes is absent. (a) all variables included; (b) no-VH; and (c) no-VV. 

 

Figure B5: Normalized variable importance in cases that one of the SAR polarization 

modes is absent. Variable importance is identified based on best-fitted run. All 

reference data for the three case regions are combined in this analysis. “All” indicates 

that both VH and VV are included in the process model training and validation. 

a 

b c 
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Table B2: Collection of 3D building dataset for the US used for model training and validation. 

US City Source 

Southeast Michigan https://maps.semcog.org/BuildingFootprints

Chicago https://data.cityofchicago.org/Buildings/Building-Footprints-current-/hz9b-7nh8

LA https://egis3.lacounty.gov/dataportal/2016/11/03/countywide-building-outlines-2014-update-public-domain-release/

Boulder https://hub.arcgis.com/datasets/0d43652d038a4a0dbca68f0501151bb0_0

Fort Collins http://hub.arcgis.com/datasets/7e577a14c83f4d83a6b58657c48027da_0/data?geometry=-105.502%2C40.489%2C-

104.343%2C40.671Norman http://hub.arcgis.com/datasets/d68b0defa057465db7167d9260c90ad9_0 

Austin https://data.austintexas.gov/browse?q=footprint&sortBy=relevance 

Albuquerque http://data-cabq.opendata.arcgis.com/datasets/e65e375b680345e0b21fa7585d83ce9c_0?uiTab=table 

New York https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh

San Francisco https://data.sfgov.org/Housing-and-Buildings/Building-Footprints-File-Geodatabase-Format-/asx6-3trm 

Miami https://mdc.maps.arcgis.com/home/item.html?id=ab4d3a61e60c441bbfc1098d701fc991

Sarasota http://hub.arcgis.com/datasets/6c679d2949544274aee3bee8182c5611_0?geometry=-84.608%2C29.432%2C-

78.802%2C30.265&page=9Boston http://boston.maps.arcgis.com/home/item.html?id=c423eda7a64b49c98a9ebdf5a6b7e135

Roanoke http://hub.arcgis.com/datasets/198c95ddd5f749ca9fc851dd64ba6ff0_32?geometry=-81.388%2C37.714%2C-

79.475%2C38.094&orderBy=Building_Height&page=37Santa_Clara http://hub.arcgis.com/datasets/ee83a3518a7249fda22866117463de3f_0?page=10 

Reedsburg http://hub.arcgis.com/datasets/dbe64a71897e4982934dbd7637d576d5_0?geometry=-91.204%2C43.336%2C-

87.378%2C44.031Macomb http://hub.arcgis.com/datasets/b5bbaf4fef6e4b59b8214ccaa17b8331_0 

Washtenaw http://hub.arcgis.com/datasets/beefad4ecf334b43b883123a72bf86b7_0

Henderson http://hub.arcgis.com/datasets/23e5f3506f034c3d99b84e54fce51584_11

Lincoln http://hub.arcgis.com/datasets/1b6a5a2ef1b34c28950c4e720e8d7a3d_0 

Monroe http://hub.arcgis.com/datasets/61e3bf9f7da143b3b87e17dabe5b0c52_0 

St._Clair http://hub.arcgis.com/datasets/d00d7cffefd6466086dcfc7202f185f4_0/data?orderBy=MEDIAN_HGT&page=109 

Sioux Falls https://hub.arcgis.com/datasets/065e40f79b784848b403130234d95a1e_5?geometry=-97.326%2C43.445%2C-

96.019%2C43.619&page=8145Bernalillo https://hub.arcgis.com/datasets/e65e375b680345e0b21fa7585d83ce9c_0

Arlington https://hub.arcgis.com/datasets/bac045c94c144838a7e65fbcf7aa939c_0?page=1532

DC http://opendata.dc.gov/datasets?q=3d&sort_by=relevance 

Cambridge https://www.cambridgema.gov/GIS/gisdatadictionary/Basemap/BASEMAP_Buildings.aspx

https://maps.semcog.org/BuildingFootprints
https://data.cityofchicago.org/Buildings/Building-Footprints-current-/hz9b-7nh8
https://egis3.lacounty.gov/dataportal/2016/11/03/countywide-building-outlines-2014-update-public-domain-release/
https://hub.arcgis.com/datasets/0d43652d038a4a0dbca68f0501151bb0_0
https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh
https://mdc.maps.arcgis.com/home/item.html?id=ab4d3a61e60c441bbfc1098d701fc991
http://boston.maps.arcgis.com/home/item.html?id=c423eda7a64b49c98a9ebdf5a6b7e135
http://hub.arcgis.com/datasets/beefad4ecf334b43b883123a72bf86b7_0
http://hub.arcgis.com/datasets/23e5f3506f034c3d99b84e54fce51584_11
https://hub.arcgis.com/datasets/065e40f79b784848b403130234d95a1e_5?geometry=-97.326%2C43.445%2C-96.019%2C43.619&page=8145
https://hub.arcgis.com/datasets/065e40f79b784848b403130234d95a1e_5?geometry=-97.326%2C43.445%2C-96.019%2C43.619&page=8145
https://hub.arcgis.com/datasets/e65e375b680345e0b21fa7585d83ce9c_0
https://hub.arcgis.com/datasets/bac045c94c144838a7e65fbcf7aa939c_0?page=1532
https://www.cambridgema.gov/GIS/gisdatadictionary/Basemap/BASEMAP_Buildings.aspx
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Figure C1: Processing chain of Landsat and SAR data. World Settlement Footprint 

(WSF-2015) data is used as the source to constrain SAR backscatter signals to 

settlement ambience. 

Figure C2: Ten world regions used for presenting aggregated results in this study. The 

world regions are World Bank regions, except for (i) East Asia and Pacific and (ii) 

Europe and Central Asia, which were further subdivided to reflect the differences in 

both urban expansion and socioeconomic development. Specifically, the East Asia 

and Pacific region was further subdivided into China, Southeast Asia, and Oceania, 

while Europe and Central Asia was divided in Europe, and Russia and Central Asia. 

Country boundaries are added for further spatial reference. 
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Figure C3: Model performance before and after removing less important variables. 

This graph compares classification accuracies before and after this procedure, based 

on the 100 individual models in each model ensemble. Each of the 100 R2 values is 

calculated based on the comparison of observations to predictions of the 10% 

validation subset. We removed explanatory variables with less than 0.5% variable 

importance in order to avoid overfitting. The paired boxplots suggest a negligible 

effect of excluding less important variables on model performance. 

 
Figure C4: Scatterplots the predicted values v.s. observed values for building footprint 

in the independent 20% test subset. Predicted values represent the mean of 100 

predicted values for each location in the test subset. 
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Figure C5: Scatterplots the predicted values v.s. observed values for building volume 

in the independent 20% test subset. Predicted values represent the mean of 100 

predicted values for each location in the test subset. 
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Table C1: Data sourced used in this study. 

Dataset Resolution Period Source Abbreviation 

Optical 
RS 

Landsat Band 1 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B01 

Landsat Band 2 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B02 

Landsat Band 3 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B03 

Landsat Band 4 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B04 

Landsat Band 5 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B05 

Landsat Band 6 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B06 

Landsat Band 7 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B07 

Landsat Band 10 100 m 2015 https://landsat.gsfc.nasa.gov/ LS-B10 

Landsat Band 11 30 m 2015 https://landsat.gsfc.nasa.gov/ LS-B11 

SAR Sentinel-1 VH 10 m ~2015 https://sentinel.esa.int/ SAR-VH 

Sentinel-1 VH 10 m ~2015 https://sentinel.esa.int/ SAR-VV 

Sentinel-1 MAX 10 m ~2015 https://sentinel.esa.int/ SAR-MAX 

RS-
derived 

EVI maximum 1 km 2015 https://modis.gsfc.nasa.gov/ EVI-MAX 

EVI mean 1 km 2015 https://modis.gsfc.nasa.gov/ EVI-MN 

EVI minimum 1 km 2015 https://modis.gsfc.nasa.gov/ EVI-MIN 

LST day 1 km 2015 https://lpdaac.usgs.gov/ LST-D 

LST night 1 km 2015 https://lpdaac.usgs.gov/ LST-N 

NBLI 30 m 2015 Landsat NBLI 

NDBI 30 m 2015 Landsat NDBI 

NDVI 30 m 2015 Landsat NDVI 

UI 30 m 2015 Landsat UI 

Nighttime light 500 m 2015 https://earthdata.nasa.gov/ NTL 

Others Accessibility 1 km 2015 Weiss et al. (2018) ACCESS 

Aspect 250 m 2010 https://www.usgs.gov/ ASPECT 

DEM 250 m 2010 https://www.usgs.gov/ DEM 

WSF 10 m 2015 Marconcini et al. (2020) WSF 

Highways Vector 2015 Meijer et al. (2018) RD-1 

Primary roads Vector 2015 Meijer et al. (2018) RD-2 

Secondary roads Vector 2015 Meijer et al. (2018) RD-3 

Tertiary roads Vector 2015 Meijer et al. (2018) RD-4 

Local roads Vector 2015 Meijer et al. (2018) RD-5 

All (+unclassified) Vector 2015 Meijer et al. (2018) RD-ALL 

Slope 250 m 2010 https://www.usgs.gov/ SLOPE 

GDP per capita Vector ~2015 Gennaioli et al. (2013) GDP 

Gini coefficient Vector ~2015 Solt (2020) GINI 

https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://sentinel.esa.int/
https://sentinel.esa.int/
https://sentinel.esa.int/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://earthdata.nasa.gov/
https://www.usgs.gov/
https://www.usgs.gov/
https://www.usgs.gov/
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Table C2: Number of 1-km2 grids in the training samples as well as in the predicted data points for each world regions. Sub-total 
numbers refer to the combination of data collected from multiple sources, and interpreted results refer to manually generated reference 
data for each world region (see Figure 4.2, and Figure C2). The percentages in bottom row indicate the ratios of training samples to 
total grids to be predicted. 

World region 
# of predicted 

data points 

# of training samples 

Footprint Height Volume 

Sub-total Interpreted Sub-total Interpreted Sub-total Interpreted 

Canada and USA 2336135 32035 1685 26236 1685 26152 1685 

China 1690674 8409 2595 6185 385 6185 385 

Europe 2311616 16531 2803 16531 2800 16531 2800 

Southern Asia 786108 2161 70 2161 70 2161 70 

Latin America 427087 3271 1169 3271 1169 3271 1169 

Middle-East and Northern Africa 275288 2701 33 2701 33 2701 33 

Oceania 266232 3234 549 3234 549 3234 549 

Russia and Central Asia 588014 2248 458 2248 458 2248 458 

Southeast Asia 913497 6390 2278 6390 2278 6390 2278 

Sub-Saharan Africa 817985 2206 243 2206 243 2206 243 

Total 10412636 
79186 11883 71163 9670 71079 9670 

0.76% 0.68% 0.68% 
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Table C3: Variable importance values for explanatory variables before and after selecting variables that have an importance value 
larger than 0.5%. Table contents show the mean values of variable importance for the 100 models in a model ensemble, followed by 
their standard deviations. Please refer to Table C1 for variable abbreviations. 

Dataset 
Original importance value (%) Filtered importance value (%) 

Footprint Height Volume Footprint Height Volume 

Optical RS  LS-B01 0.22 ± 0.01 0.63 ± 0.02 0.30 ± 0.01 - 0.66 ± 0.02 - 

LS-B02 0.18 ± 0.00 0.47 ± 0.03 0.25 ± 0.01 - 0.54 ± 0.03 - 

LS-B03 0.20 ± 0.01 0.47 ± 0.04 0.27 ± 0.02 - 0.72 ± 0.06 - 

LS-B04 0.14 ± 0.01 0.37 ± 0.04 0.16 ± 0.01 - - - 

LS-B05 0.97 ± 0.08 12.63 ± 0.16 6.29 ± 0.64 1.14 ± 0.08 12.67 ± 0.16 6.49 ± 0.63 

LS-B06 0.65 ± 0.03 1.59 ± 0.12 0.46 ± 0.03 0.89 ± 0.04 1.63 ± 0.12 0.71 ± 0.04 

LS-B07 0.31 ± 0.01 1.37 ± 0.08 0.38 ± 0.03 - 1.43 ± 0.08 - 

LS-B10 0.38 ± 0.02 1.29 ± 0.09 0.46 ± 0.02 0.70 ± 0.02 1.31 ± 0.09 0.52 ± 0.03 

LS-B11 0.35 ± 0.02 0.97 ± 0.05 0.75 ± 0.06 - 0.99 ± 0.05 0.82 ± 0.06 

SAR SAR-VH 0.97 ± 0.03 5.27 ± 0.39 8.37 ± 0.73 1.08 ± 0.03 5.32 ± 0.39 8.51 ±0.73 

SAR-VV 1.98 ± 0.11 2.75 ± 0.24 5.51 ± 0.51 2.05 ± 0.11 2.77 ± 0.23 5.57 ± 0.51 

SAR-MAX 2.41 ± 0.11 2.88 ± 0.21 6.62 ± 0.54 2.48 ± 0.11 2.90 ± 0.21 6.69 ± 0.53 

RS-derived  EVI-MAX 0.54 ± 0.03 0.80 ± 0.04 1.83 ± 0.31 0.63 ± 0.03 0.83 ± 0.04 1.90 ± 0.32 

EVI-MN 0.77 ± 0.04 1.08 ± 0.09 6.60 ± 0.68 0.85 ±0.04 1.11 ± 0.10 6.68 ± 0.70 

EVI-MIN 0.46 ± 0.02 1.30 ± 0.07 1.04 ± 0.26 0.56 ± 0.02 1.34 ± 0.08 1.13 ± 0.25 

LST-D 2.28 ± 0.14 5.05 ± 0.15 0.72 ± 0.04 2.40 ±0.14 5.09 ± 0.14 0.83 ± 0.04 

LST-N 2.26 ± 0.21 3.66 ± 0.21 1.97 ± 0.07 2.39 ± 0.21 3.71 ± 0.21 2.10 ± 0.07 
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NBLI 0.14 ± 0.01 0.39 ± 0.04 0.16 ± 0.01 - - - 

NDBI 2.80 ± 0.82 0.77 ± 0.03 0.51 ± 0.03 2.91 ± 0.82 0.79 ± 0.03 0.57 ± 0.03 

NDVI 0.53 ± 0.03 0.81 ± 0.05 0.46 ± 0.02 0.70 ± 0.03 0.91 ± 0.05 0.64 ± 0.03 

UI 7.88 ± 0.86 0.86 ± 0.03 1.01 ± 0.07 8.02 ± 0.86 0.88 ± 0.03 1.09 ± 0.07 

NTL 1.00 ± 0.04 29.65 ± 0.18 1.98 ± 0.11 1.15 ± 0.05 29.73 ± 0.18 2.11 ± 0.11 

Others ACCESS 0.72 ± 0.06 2.95 ± 0.09 1.63 ± 0.34 0.73 ± 0.06 2.96 ± 0.09 1.63 ± 0.34 

ASPECT 0.37 ± 0.01 0.79 ± 0.03 0.46 ± 0.02 - 0.81 ± 0.03 0.53 ± 0.02 

DEM 0.64 ± 0.02 3.12 ± 0.16 1.42 ± 0.05 0.79 ± 0.02 3.17 ± 0.16 1.56 ± 0.05 

WSF 61.70 ± 0.15 0.83 ± 0.03 43.30 ± 0.66 61.97 ± 0.15 0.86 ± 0.03 43.45 ± 0.66 

RD-1 0.10 ± 0.01 0.20 ± 0.02 0.07 ± 0.01 - - - 

RD-2 0.15 ± 0.00 0.44 ± 0.02 0.25 ± 0.01 - - - 

RD-3 0.19 ± 0.01 0.79 ± 0.07 0.42 ± 0.02 - 0.80 ± 0.07 - 

RD-4 0.20 ± 0.01 2.69 ± 0.47 0.33 ± 0.01 - 2.71 ± 0.47 - 

RD-5 0.61 ± 0.02 1.43 ± 0.09 1.25 ± 0.14 0.69 ± 0.02 1.46 ± 0.09 1.34 ± 0.14 

RD-ALL 1.29 ± 0.03 1.33 ± 0.09 1.72 ± 0.18 1.43 ± 0.03 1.39 ± 0.09 1.87 ± 0.19 

SLOPE 0.36 ± 0.01 1.05 ± 0.03 0.53 ± 0.03 - 1.09 ± 0.03 0.62 ± 0.03 

GDP 0.71 ± 0.04 5.36 ± 0.75 1.08 ± 0.06 0.79 ± 0.04 5.40 ± 0.75 1.16 ± 0.06 

GINI 5.55 ± 0.22 3.98 ± 0.18 1.41 ± 0.12 5.65 ± 0.22 4.00 ± 0.18 1.48 ± 0.12 
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Table C4: Comparison of WSF-3D dataset with the global results produced this study. Note that accuracy metrics are inherently not 

comparable due to the difference in cell size, according to which we convert metric values of building volume reported in Esch et al. 

(2022), allowing for better comparison.  

Measure 
WSF-3D This study 

Footprint (%) Height (m) Volume (×105 m3/km2) Footprint (km2/km2) Height (m) Volume (×105 m3/km2) 

RMSE 14.09 6.04 15.39 0.04 2.56 6.19 

MAE 10.24 3.56 8.49 0.02 1.39 3.01 

SE 3.06 -2.30  -3.47 0.00 -0.05 -0.03 
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To examine the impact of different ways of attributing new built-up land to changes 

in population and changes in BPC, we tested several options. In the main paper, we 

decompose the total change in built-up land into changes in population and changes 

in BPC, so that the multiplication of both equals the total change in built-up land. 

Here we explain three other methods of attributing changes in built-up land in order 

to assess the sensitivity for these attributions. 

The first alternative is similar to the approach for attributing crop production change 

to either cropland expansion or yield increase, used for example in Eitelberg et al. 

(2016) and Wang et al. (2019b). This approach could be relevant for SDG target 11.3, 

which states that the rate of increase in built-up land should not exceed the rate of 

increase in population, as it effectively takes the BPC in the starting year (BPC0) of 

each analysis period as the baseline. Specifically, the area of built-up land change in a 

given region due to changes in population (APOP) and due to changes in BPC (ABPC), 

respectively, can be calculated as: 

APOP = BPC0 × (POP1 − POP0)         (D1) 

ABPC = POP1 × (BPC1 − BPC0)         (D2) 

Conversely, Eq. (D3) and (D4) use BPC1  as a reference level, thereby effectively 

assuming that increased/decreased population individually consumes the same 

amount of built-up land in end year of this period: 

APOP = BPC1 × (POP1 − POP0)         (D3) 

ABPC = POP0 × (BPC1 − BPC0)        (D4) 

Eq. (D5) and (D6) use a reference level dependent on the direction of population 

change: increased population individually consumes the same amount of built-up land 

in end year of this period. In contrast, decreased population individually consumes 

the same amount of built-up land in starting year of this period. 

APOP = 𝑓(BPC) × (POP1 − POP0)         (D5) 
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ABPC = 𝑓(POP) × (BPC1 − BPC0)        (D6) 

Here, if POP1 − POP0 ≥ 0 , then 𝑓(BPC) =  BPC1 , and 𝑓(POP) =  POP0 ; 

Otherwise, 𝑓(BPC) =  BPC0, and 𝑓(POP) =  POP1. 

 

 

Figure D1: Distribution of cities with a population size large than 0.3 million. 

 

 

Figure D2: Ten world regions used in this article. Country boundaries are added for 

further spatial reference.  
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Figure D3: Distribution of built-up land change trajectories over the different types of 

regions for the periods a) 1975-1990, and b)1990-2000. 

Figure D4: Percentage of built-up land to total available land in each region class. (a) 

large city centres; (b) large city peripheries; (c) small and medium city centres; (d) 

small and medium city peripheries; (e) other regions.  Each boxplot is based on all 

regions that are classified as the specific region class, and average are taken over all 

regions within this class without weighing for their area of amount of built-up land. 

Calculations are based on the ~38 m GHSL dataset, in which water layers are excluded 

already. 
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Figure D5: Heterogeneity in built-up land area changes. 𝐀𝐏𝐎𝐏 and 𝐀𝐁𝐏𝐂 are calculated 

following Eq. (D1) and (D2). 
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Figure D6: Heterogeneity in built-up land area changes. 𝐀𝐏𝐎𝐏 and 𝐀𝐁𝐏𝐂 are calculated 

following Eq. (D3) and (D4). 



Appendix D 

174 

 

Figure D7: Heterogeneity in built-up land area changes. 𝐀𝐏𝐎𝐏 and 𝐀𝐁𝐏𝐂 are calculated 

following Eq. (D5) and (D6). 
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Figure D8: Homogeneity in built-up land change due to changes in population and 

due to changes in BPC within countries. Values closer to 1 or closer to -1 indicate that 

regions within a country all develop homogeneously, in terms of population dynamics 

or BPC changes, while values closer to 0 indicate more heterogeneous developments 

within a country. 
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Table D1: Analysis units for each country. For a full list of this table, please see the 

online version at https://doi.org/10.1016/j.landurbplan.2021.104308 

ID 
Country/Region 

code 

Country/Region 

name 

Most detailed 

unit available 

Mean population 

per Level-2 unit 

Analysis 

unit 

1 ABW Aruba Level-0 - - 

2 AFG Afghanistan Level-2 - Level-2 

3 AGO Angola Level-3 146573 Level-2 

4 AIA Anguilla Level-0 - - 

5 ALA Åland Level-1 - Level-1 

6 ALB Albania Level-3 78002 Level-2 

7 AND Andorra Level-1 - Level-1 

8 ARE 
United Arab 

Emirates 
Level-3 42726 Level-2 

9 ARG Argentina Level-2 - Level-2 

10 ARM Armenia Level-1 - Level-1 

11 ASM American Samoa Level-3 3281 Level-2 

12 ATA Antarctica Level-0 - - 

13 ATF 
French Southern 

Territories 
Level-1 - Level-1 

14 ATG 
Antigua and 

Barbuda 
Level-1 - Level-1 

15 AUS Australia Level-2 - Level-2 

16 AUT Austria Level-3 78228 Level-2 

17 AZE Azerbaijan Level-2 - Level-2 

18 BDI Burundi Level-4 79857 Level-2 

19 BEL Belgium Level-4 1025858 Level-3 

20 BEN Benin Level-2 - Level-2 

27 BIH 
Bosnia and 

Herzegovina 
Level-3 210094 Level-3 

28 BLM Saint-Barthélemy Level-0 - - 

29 BLR Belarus Level-2 - Level-2 

30 BLZ Belize Level-1 - Level-1 

31 BMU Bermuda Level-1 - Level-1 

32 BOL Bolivia Level-3 89685 Level-2 

33 BRA Brazil Level-3 29478 Level-2 

… … … … … … 

256 ZWE Zimbabwe Level-2 - Level-2 

  

https://doi.org/10.1016/j.landurbplan.2021.104308
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Table D2: Comparison of different approaches to allocating built-up land changes (in thousand km2) to changes in population and to 

changes in built-up land area per capita (BPC). 

Period 
Eq. (D1) and (D2) Eq. (D3) and (D4) Eq. (D5) and (D6) Eq. (5.1) and (5.2) Mean S.D.

APOP ABPC APOP ABPC APOP ABPC APOP ABPC APOP ABPC APOP ABPC 

1975-1990 
101.46 

(70.9%) 

41.70 

(29.1%) 

93.43 

(65.3%) 

49.74 

(34.7%) 

95.46 

(66.7%) 

47.71 

(33.3%) 

88.22 

(61.7%) 

54.77 

(38.3%) 

94.64 

(66.1%) 

48.48 

(33.9%) 

5.48 

(3.8%) 

5.41 

(3.8%) 

1990-2000 
67.70 

(51.5%) 

63.87 

(48.5%) 

65.96 

(50.1%) 

65.61 

(49.9%) 

68.43 

(52.0%) 

63.14 

(48.0%) 

66.14 

(50.4%) 

65.21 

(49.6%) 

67.12 

(51.0%) 

64.46 

(49.0%) 

1.15 

(0.9%) 

1.16 

(0.9%) 

2000-2015 
93.71 

(70.5%) 

39.13 

(29.5%) 

74.98 

(46.4%) 

57.86 

(43.6%) 

81.33 

(61.2%) 

51.51 

(38.8%) 

83.05 

(62.5%) 

49.58 

(37.5%) 

83.27 

(62.7%) 

49.58 

(37.3%) 

7.78 

(5.9%) 

7.78 

(5.9%) 
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Table D3: Built-up land and population for major world regions as well as their changes over time. For each world region, ‘Sum’ 

refers to the total built-up land area or population in the starting year, or their total changes. Similarly, ‘Mean’ represents the average 

built-up land area or population per subdivision in the starting year, or their average changes per subdivision for corresponding 

world region. As indicated, mean values for nearly all world regions are significantly different from the mean of the entire regions 

combined (two-tailed t-test, **p<0.01, *p<0.05). 

P
e
ri

o
d

 

World region 

Built-up land in the 

starting year [km2] 

New built-up land 

[km2] 

Population in the 

starting year [million] 

Population change 

[million] 

Sum Mean Sum Mean Sum Mean Sum Mean 

1
9
7
5
-1

9
9
0
 

Canada and USA 86965 25** 28386 8** 242 0.07** 38 0.01** 

China 47651 17** 41050 15** 939 0.34** 252 0.09** 

Europe 95541 5 27187 1** 580 0.03** 44 0.00** 

India 18411 5 8534 2* 801 0.20** 333 0.08** 

Latin America 27067 2** 8030 1* 330 0.03** 114 0.01** 

Middle-East and Northern Africa 12334 3** 5815 2* 168 0.05** 79 0.02** 

Oceania 6252 8** 1553 2 17 0.02** 4 0.00** 

Russia and Central Asia 27055 9** 8330 3** 184 0.06* 30 0.01** 

Southeast Asia 40095 3** 7792 1** 469 0.04** 148 0.01** 

Sub-Saharan Africa 13694 1** 6311 1** 349 0.03** 172 0.01** 

1
9
9
0
-2

0
0
0
 

Canada and USA 115351 33** 32380 9** 280 0.08* 35 0.01 

China 88701 32** 27299 10** 1191 0.43** 117 0.04** 

Europe 122728 6** 20631 1** 624 0.03** 16 0.00** 

India 26945 7 9662 2** 1134 0.29** 253 0.06** 

Latin America 35097 3** 10962 1** 444 0.03** 80 0.01** 
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Middle-East and Northern Africa 18149 5** 5119 1** 247 0.07 71 0.02** 

Oceania 7805 10** 1034 1 21 0.03** 3 0.00** 

Russia and Central Asia 35386 12** 6158 2* 214 0.07 3 0.00** 

Southeast Asia 47887 4** 11534 1** 617 0.05** 95 0.01** 

Sub-Saharan Africa 20005 2** 6816 1** 521 0.04** 159 0.01** 

2
0
0
0
-2

0
1
5
 

Canada and USA 147731 42** 28386 8** 315 0.09 41 0.01** 

China 116000 42** 39120 14** 1308 0.47** 99 0.04** 

Europe 143359 7** 19431 1** 640 0.03** 29 0.00** 

India 36607 9 11672 3** 1386 0.35** 354 0.09** 

Latin America 46060 4** 7985 1** 524 0.04** 107 0.01** 

Middle-East and Northern Africa 23268 6** 4269 1** 318 0.09 103 0.03** 

Oceania 8840 11* 1066 1 24 0.03** 6 0.01** 

Russia and Central Asia 41544 14** 6721 2** 217 0.07* 10 0.00** 

Southeast Asia 59420 4** 8649 1** 712 0.05** 118 0.01** 

Sub-Saharan Africa 26821 2** 5559 0** 680 0.06** 319 0.03** 
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Table D4: BPC and relative changes in built-up land, population, and BPC for ten major world regions. For large parts of the world 

regions, BPC in the starting year, annual built-up land change, annual population change, and annual BPC change are significantly 

different from these for all world regions combined (two-tailed t-test, **p<0.01, *p<0.05). 

Period World region 
BPC in the starting 

year [m2/person] 
Δ Built-up land Δ Population Δ BPC 

1
9
7
5
-1

9
9
0
 

Canada and USA 359** 1.90%** 0.97%** 0.92%** 

China 51** 4.23%** 1.60%** 2.59%** 

Europe 165** 1.68%** 0.49%** 1.19%** 

India 23** 2.57%** 2.34%** 0.22%** 

Latin America 82** 1.75%** 1.99% -0.24%** 

Middle-East and Northern Africa 73* 2.61%** 2.59%** 0.01%** 

Oceania 361** 1.49%** 1.29%** 0.19% 

Russia and Central Asia 147 1.81%** 1.00%** 0.80%* 

Southeast Asia 85** 1.19%** 1.84%** -0.64%** 

Sub-Saharan Africa 39** 2.56%** 2.70%** -0.14% 

1
9
9
0
-2

0
0
0
 

Canada and USA 412** 2.51%** 1.20% 1.29%** 

China 74** 2.72% 0.94%** 1.76%** 

Europe 197** 1.57%** 0.25%** 1.31%** 

India 24** 3.11%** 2.03%** 1.06%** 

Latin America 79** 2.76%** 1.66% 1.07%** 

Middle-East and Northern Africa 73** 2.52%** 2.55%** -0.03%** 
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Oceania 371** 1.25%** 1.16% 0.09%** 

Russia and Central Asia 166** 1.62%** 0.15%** 1.46%** 

Southeast Asia 78** 2.18%** 1.44%** 0.73%** 

Sub-Saharan Africa 38** 2.98%** 2.71%** 0.26%** 

2
0
0
0
-2

0
1
5
 

Canada and USA 469** 1.18%** 0.83%** 0.35%** 

China 89** 1.96%** 0.49%** 1.46%** 

Europe 224** 0.85%** 0.29%** 0.56%** 

India 26** 1.86%** 1.53%** 0.33%** 

Latin America 88** 1.07% 1.24%* -0.17%

Middle-East and Northern Africa 73** 1.13%* 1.89%** -0.75%**

Oceania 375** 0.76% 1.43%** -0.66%**

Russia and Central Asia 192** 1.00%** 0.30%** 0.70%** 

Southeast Asia 83** 0.91% 1.03%** -0.11%**

Sub-Saharan Africa 39** 1.26%** 2.60%** -1.30%**
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