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ABSTRACT 

Introduction. Despite the mounting evidence on heat-related health risks, there is limited 

evidence in suburban and rural areas. The limited spatial resolution of temperature data also 

hinders the evidence of the differential heat effect within cities due to individual and area-

based characteristics.  

Methods. Satellite land surface temperature (LST), observed meteorological and spatial and 

spatio-temporal land use data were combined in mixed-effects regression models to estimate 

daily mean air temperature with a 1x1km resolution for the period 2000-2010. For each day, 

random intercepts and slopes for LST were estimated to capture the day-to-day temporal 

variability of the Ta–LST relationship. The models were also nested by climate zones to better 

capture local climates and daily weather patterns across Italy. The daily exposure data was used 

to estimate the effects and impacts of heat on cause-specific mortality and hospital admissions 

in the Lazio region at municipal level in a time series framework. Furthermore, to address the 

differential effect of heat within an urban area and account for potential effect modifiers a case 

cross-over study was conducted in Rome. Mean temperature was attributed at the individual 

level to the Rome Population Cohort and the urban heat island (UHI) intensity using air 

temperature data was calculated for Rome. 

Results. Exposure model performance was very good: in the stage 1 model (only on grid cells 

with both LST and observed data) a mean R2 value of 0.96 and RMSPE of 1.1°C and R2 of 

0.89 and 0.97 for the spatial and temporal domains respectively. The model was also validated 

with regional weather forecasting model data and gave excellent results (R2=0.95 

RMSPE=1.8°C. The time series study showed significant effects and impacts on cause-specific 

mortality in suburban and rural areas of the Lazio region, with risk estimates comparable to 

those found in urban areas. High temperatures also had an effect on respiratory hospital 

admissions. Age, gender, pre-existing cardiovascular disease, marital status, education and 

occupation were found to be effect modifiers of the temperature-mortality association. No risk 
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gradient was found by socio-economic position (SEP) in Rome. Considering the urban heat 

island (UHI) and SEP combined, differential effects of heat were observed by UHI among same 

SEP groupings. Impervious surfaces and high urban development were also effect modifiers of 

the heat-related mortality risk. Finally, the study found that high resolution gridded data 

provided more accurate effect estimates especially for extreme temperature intervals.  

Conclusions. Results will help improve heat adaptation and response measures and can be used 

predict the future heat-related burden under different climate change scenarios. 
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CHAPTER 1 - INTRODUCTION 

1.1 RATIONALE 

The World Meteorological Organization (WMO) has estimated that heat and extreme weather 

events are among the 10 worst reported natural disasters in terms of human lives lost globally 

1. Europe and the Mediterranean have been identified as one of the areas most at risk in terms 

of temperature increases, precipitation decline and drought considering climate change 

scenarios according to the Vth IPCC Assessment Report2. According to the climate change 

models and different Representative Concentration Pathway (RCP) scenarios, temperatures are 

predicted to rise globally between 1.0°C and 3.7°C and will continue to rise beyond 2100 under 

all scenarios except RCP2.6. RCPs represent greenhouse gas concentration pathways adopted 

by the IPCC in the Vth Report and represent possible climate futures, depending on how much 

greenhouse gases are emitted. They are identified by their total radiative forcing by year 2100 

compared to year 1750, so RCP2.6 will have declining concentrations and the lowest radiative 

forcing  (2.6 W m-2) while RCP8.5 is the high concentrations pathway with emissions rising 

till the end of the century thus having the highest radiative forcing (8.5 W m-2)2. A recent study 

conducted by WHO estimated that the future heat-related burden for Europe is expected to be 

between 30,867 and 45,930 attributable deaths per year by 2030-2060 considering the RCP 4.5 

and RCP 8.5 scenarios respectively3. The heatwave events across Europe in 2003, 2010 and 

more recently 2015 and 2017 have had a significant impact on health, thus making heat-related 

health effects a hot topic on the public health agenda over the past ten years. In Italy alone, the 

estimated excess deaths attributable to future climate change for the same time frame are of 

4454 and 6099 deaths respectively under the RCP 4.5 and RCP 8.5 scenarios3. 

The short-term effects of temperatures and extreme events have been extensively studied 

throughout the literature4–6. In particular heat has been related to an increase in total and cause-
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specific mortality5,7–10 as well as non-fatal outcomes such as hospital admissions, emergency 

room visits and ambulance calls11–15. The vulnerability of human populations to extreme 

weather events is a function of their sensitivity to the exposure, of the character, magnitude and 

rate of the climate extreme, and of the adaptation measures and actions in place16. In healthy 

individuals, an efficient thermoregulatory system enables the body to cope effectively with 

thermal stress. Body thermal comfort can be maintained by appropriate thermoregulatory 

responses, however if these responses are compromised, health status is at risk and may lead 

to death.17 

Times series studies have been carried out to define the shape of the relationship and estimate 

the acute effects of temperatures on health outcomes. The association between temperature and 

mortality has been identified and described as a non-linear U-, J- or V-shaped function, with 

the lowest mortality rates recorded at moderate temperatures, rising progressively as 

temperatures increase or decrease7,8,10,18,19. Effects of heat vary geographically5,20,21 and depend 

on local climatic conditions and population characteristics (demography, socioeconomic 

conditions, health status)6.  

Despite the mounting evidence showing the acute effects of heat on health outcomes, especially 

mortality and morbidity, there is limited evidence of the effects in suburban and rural areas 

primarily due to data limitations. Most research has been carried out in urban areas primarily 

due to data availability in terms of exposure and the number of outcome counts, large enough 

to ensure statistical power in the modelling of the effects. Studies evaluating the effects of air 

temperature on health outcomes have used data from traditional weather stations, located 

outside the urban area, usually in proximity to airports. These stations have standardized WMO 

criteria for weather data collection and have long–time series of data. Epidemiological studies 

thus consider a point source of exposure which is used in an ecological approach to estimate 
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the mean effect at population level for the whole city. Although weather monitoring networks 

are better in terms of temporal data retrieval and quality of the data, as they are retrieved with 

standardized instruments and procedures, they are however, often lacking in terms of the spatial 

scale as they are rarely designed to capture the spatial variability of temperatures and local 

climatic conditions. Inevitably this causes substantial exposure misclassification as well a bias 

in the estimates related to the exposure considered22. Primarily due to the fact that intra-urban 

variations in temperature are ignored, and secondly because the point source may not be 

representative of the exposure for a large part of the population. Exposure from one monitoring 

point is attributed to the population of an entire city or area. In large urban areas, the urban heat 

island (UHI) plays an important role in the intra-urban thermal differences populations are 

exposed to and together with individual socio-economic and health status population status 

characteristics within the urban domain may influence the effects of heat on health outcomes23–

25. 

Moreover, as monitoring networks are expensive and require constant maintenance, they are 

limited across space, with few stations in rural and suburban settings. For epidemiological 

studies this poses a relevant limitation, as studies can only be conducted in areas where data is 

available. However, it is worth noting that suburban and rural areas are exposed to heat and to 

date we have limited evidence as to what the acute health effects may be. 

Satellite data can be a valid alternative to overcome this issue as they offer temperature data 

with a much higher spatial resolution. Since the 1980s the quality and resolution of satellite 

data products has exponentially improved, both in terms of spatial and temporal resolution but 

also in terms of products available, really providing a very interesting source of data for a wide 

range of research fields related to the environment. Satellite derived land surface temperature 

data (LST) have been used to derive air temperature26–29 and identify urban heat islands 23,30.  
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Satellite derived temperature can be a solution to obtain high resolution air temperature data 

even in remote areas currently not covered by traditional monitoring networks as well as 

providing a better resolution within large urban areas that capture the spatial differentials. The 

use of satellite data to derive air temperature, will provide useful information on daily 

temperature distributions across space and time with a high resolution and help identify 

hotspots. More importantly, light can be shed on the short-term effects of heat in urban, 

suburban and rural settings providing a more accurate quantification of the heat risks also 

taking into account individual vulnerability factors and effect modifiers that may influence the 

spatial distribution of heat-related risks.   
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CHAPTER 2- AIMS AND OBJECTIVES 
 

2.1 AIMS AND OBJECTIVES  

The aim of my research was to use satellite-derived air temperature data with a 1x1km spatial 

resolution to estimate the short-term health effects of heat on mortality and hospital admissions 

in Italy.  

In order to achieve my research aim, the following specific objectives were carried out: 

1. define spatio-temporal exposure to air temperature derived from satellite land surface 

temperature (LST) data, meteorological and land use data for Italy with a 1x1km resolution 

over the period 2000-2010.  

2. estimate the acute effect of heat on health outcomes (mortality and morbidity) in the 

Lazio region at municipal level using satellite-derived daily air temperature with a 1x1km 

resolution over the period 2000-2010. 

3. estimate the short-term effect of heat on mortality within urban areas taking into account 

the differential effect of heat due to the urban heat island effect and socio-economic factors in 

Rome using the Rome Longitudinal Study Population Cohort (ROLS).  

 2.2 THESIS OUTLINE 

The first chapter gives a brief overview of the study rationale and what my research entails. 

Chapter 2 defines the aim and objectives of the study. Chapter 3 presents a literature review of 

the two key aspects in my research: the definition of daily air temperature exposure derived 

from satellite data and then using this data to estimate health effects of heat. When reviewing 

the evidence on exposure a focus was given on studies estimating air temperatures using and 
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satellite derived- LST. Studies defining urban heat islands using satellite data were reviewed, 

to identify key factors that influence urban heat island intensities and may modify thermal 

conditions within urban areas. In terms of heat-related health effects, the literature review 

focused on studies conducted on mortality and hospital admissions for total, cardiovascular and 

respiratory causes in adults. Key aspects considered were effect estimates, statistical 

methodologies employed, exposure, and the potential effect modifiers of the dose-response 

relationship. Regarding the latter, this was of particular relevance in urban areas when 

considering socio-economic factors and the urban heat island effect (UHI), defined as urban 

areas being warmer than surrounding rural areas, especially at night due to the greater heat 

absorption by building materials and impervious surfaces in cities compared to natural 

vegetative surfaces.  

Chapter 4 presents the study carried out to estimate daily air temperature with a 1x1km spatial 

resolution using satellite LST data from Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensor on board NASA satellites TERRA and AQUA, observed meteorological data 

and land use variables from a multitude of sources.  

Chapter 5 presents the time series study conducted in the Lazio region to estimate the short-

term health effects of heat, in terms of cause-specific mortality and hospital admissions by 

municipality considering both moderate and extreme heat.  

Chapter 6 describes the case cross-over study conducted in Rome using the Rome Population 

Cohort to estimate the effect of heat exposure on mortality considering individual socio-

demographic and health status characteristics as well as area based socio-economic, land use 

factors and the UHI effect. In this study, each individual in the cohort was geo-coded and 

exposure was attributed at address level using the 1x1km resolution daily mean temperature 

exposure defined in chapter 4.  
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Chapter 7 will briefly summarize main findings and provide an overall discussion of research 

findings and chapter 8 present conclusions.   
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CHAPTER 3 – BACKGROUND AND 

LITERATURE REVIEW  

 

This chapter provides a brief background to the different aspects in study and results of the 

literature review carried out.  The aim of the review was to summarise and critically examine 

the current evidence base on the following key topics:  

1. methodologies for deriving air temperature from land surface temperature (LST) 

satellite data (research query 1 –RQ1). 

2. urban heat island (UHI) phenomenon (research query 2 –RQ2). 

3. association between heat and health outcomes (mortality and hospital admissions) 

(research query 3 –RQ3). 

4. health effects of heat in urban areas and the differential effect considering the UHI, 

with specific focus on UHI defined using satellite data (research query 4 –RQ4). 

The search was conducted in PubMed and Scopus using free text terms and medical subject 

index (MESH) such as “land surface temperature” and “air temperature”, “satellite data”, “land 

surface temperature”, “urban heat island” “mortality”, “morbidity”, “hospital admissions” 

“heat stress”. The full search strategy for PubMed and Scopus can be found in Appendix 1.  All 

papers published in peer-reviewed journals in the period 1990-april 2017 were included and 

only papers written in English language were considered.  Results of the search strategy and 

the number articles selected for each aspect are shown in figure 3.1. Out of the papers screened 

in the first stage of the literature review 870 were excluded as title and/or abstract did not fit 

one of the 4 research questions. Full test papers were read and only those fitting each research 

question were retained for a total of 238 papers.   
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Figure 3.1. PRISMA Flow Diagram of the Literature search. 
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3.1 LITERATURE REVIEW ON METHODOLOGIES FOR DERIVING 

AIR TEMPERATURE FROM LAND SURFACE TEMPERATURE (LST) 

SATELLITE DATA. 

 

3.1.1 Background to satellite data and Land surface temperature (LST) 

Satellite data have been used to monitor different environmental factors and identify areas at 

risk to different health hazards31,32 as well as an alternative source of data to derive 

environmental exposures such are temperatures and air pollution 33–37. 

Land surface temperature (LST) 

The satellite derived parameter considered in my research was land surface temperature (LST). 

The signal acquired by satellite sensors is comprised of energy emitted from the Earth's surface, 

energy absorbed by the atmosphere, mostly by water vapour, or re-emitted from the atmosphere 

26,38,39. LST combines all surface-atmosphere interactions and energy fluxes between the 

atmosphere and the ground. Thus making it one of the key parameters in the physics of land 

surface processes at different spatial scales 40–42. LST is an indicative variable of the net surface 

energy balance driven by long‐wave radiation surface emission. The surface energy balance is 

governed by downward and upward radiation fluxes, and, latent and sensible heat loss fluxes 

(Figure 3.2).  The downward flux is determined by the factors mentioned above and by the 

surface's albedo which determines the fraction of total radiation reflected and absorbed by the 

surface. The upward flux, on the other hand, follows the Stefan–Boltzmann law and is 

determined by the surface's temperature and emissivity. The latent and sensible heat fluxes are 

strongly influenced by surface temperature and the apportionment of energy between them is 

governed by moisture content, surface type, wind velocity and emissivity 26.  
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Figure 3.2. Energy budget of Earth's atmosphere.  

 
Source: Adapted from NASA earth observatory 

 

The quality of LST retrievals is influenced by sensor characteristics, atmospheric conditions, 

variations in spectral emissivity, surface type heterogeneity, soil moisture, visualization 

geometry, and assumptions related to the split‐window method26,39,43.  Many algorithms for 

estimating LST from satellite data are based upon the assumption that the ground surface acts 

as a blackbody, with emissivity equal to one. On the contrary, most Earth’s surfaces emit only 

a fraction of the energy emitted by a blackbody at the same temperature. The emission capacity 

of a land surface, compared to that of a blackbody, is typically referred to as surface 

emissivity44. Radiance emitted by land surfaces is affected by the composition of surface 

constituents, especially spectral emissivity, thus emitting radiance differently across the 

thermal spectrum45.  

Due to the difficulties in correcting for atmospheric absorption, atmospheric emission, and 

surface emissivity, the development of accurate LST algorithms is a far from simple 

process40,46,47. To estimate LST from space two techniques have been developed and refined 

throughout the years. Firstly, the single infrared channel method that requires a good radiative 

transfer model and atmospheric profiles was developed48. Following, split-window methods 
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that correct for atmospheric effects based on the differential absorption in adjacent infrared 

bands were then developed and refined41,48–52. The accuracy of these methods depends on the 

emissivity difference in the two bands, even small differences can cause significant errors in 

the LST retrieval as mentioned by several studies26,41,44. 

Although satellites do not measure air temperature, which is the parameter typically used to 

evaluate the effects on health, land surface temperature (LST) from satellite sensor 

measurements can be used to derive air temperature through complex methodologies27,29.  LST 

data is available at different temporal and spatial scales, in my research LST MODIS -Moderate 

Resolution Imaging Spectrometer data, from NASA TERRA and AQUA satellites, with a daily 

temporal resolution and a spatial resolution of 1km was used, mainly driven by the fact that 

health effect time series studies typically use daily outcome counts. Hence, to have a daily 

temporal resolution, spatial resolution of 1 km was the best compromise considering data 

availability. Details of the methodology developed will be further explained in chapter 4. 

Satellite data  

Moderate Resolution Imaging Spectrometer -MODIS data 

LST data is derived from the Moderate Resolution Imaging Spectrometers (MODIS) on board 

TERRA and AQUA NASA satellites launched in 1999 and 2002 respectively. TERRA and 

AQUA have a near-polar, sun-synchronous orbit at an altitude of around 700km. TERRA's 

orbit is from north to south and is timed to cross the equator in the morning, while AQUA 

orbits in the opposite direction, from south to north, crossing the equator in the afternoon. These 

two satellites cover the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral 

bands. Satellite sensors on board MODIS measure thermal infrared (TIR) signals, or bands, 

that are a combination of the radiant temperature of the land surface and the intervening 

atmosphere. The split-window algorithm used for MODIS data also corrects for emissivity 
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effects and provides more accurate results41,47,51,52. Using both TERRA and AQUA MODIS 

data for LST retrieval improves the quality of the LST product and the diurnal feature in the 

product due to better temporal, spatial and angular coverage of clear-sky observations53.  

Another valuable source of LST data is from the LANDSAT earth observation satellites, 

managed by NASA and the US geological survey (USGS) which were firstly launched in 1972 

and provides land surface images for a wide range of uses from forestry, agriculture, geology, 

regional planning, and education54. Thermal data from LANDSAT sensors (OLI -Operational 

Land Imager; TIRS-Thermal Infrared Sensor; ETM+, Enhanced Thematic Mapper Plus; TM, 

Thematic Mapper) have also been used to retrieve LST data55–58. The most recent satellite, 

LANDSAT 8 was launched in 2013. LANDSAT data has the advantage of having a better 

spatial resolution (up to 30meters) but lacks the daily temporal resolution required for 

epidemiological studies.   

 

Another important source of surface satellite data imagery is provided by Polar Orbiting 

Environmental Satellites (POES) of the US National Oceanic and Atmospheric Administration 

(NOAA) which have been operational since 1981. Data from the Advanced Very High 

Resolution Radiometer (AVHRR) multi-spectral sensor encompasses meteorological, 

climatological, and land use applications. In particular AVHRR data is used to monitor sea 

surface temperature, ice cover and vegetation cover, such as the NDVI product. AVHRR is 

active on two satellites orbiting the Earth in opposite directions, similarly to MODIS, allowing 

for total global coverage twice daily with a global coverage at 4km resolution and high 

resolution over local regions of 1km59. AVHRR is the predecessor of MODIS and used less for 

LST in recent years. Since 1998 Europe and the USA have set up the Joint polar system for the 

collaboration and sharing of instruments and data from polar orbiting satellites.  The European 

based European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 
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has a series of polar orbiting satellites with similar characteristics to NOAA’s which have been 

used mostly for meteorological, climate and land use taking advantage of the lower orbit and 

the possibility of using microwave instruments60 

Geostationary satellites also provide valuable data, especially for weather applications, with 

very high temporal resolutions (15minutes for global coverage and every 5 minutes over 

continents) but lower spatial resolutions. The European-led METEOSAT satellites, managed 

by EUMETSAT have a geostationary orbit, 36,000 km above the equator and cover Europe, 

Africa and the Indian Ocean. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) 

instrument on board METEOSAT provides data with a 3km resolution in 12 spectral bands and 

1 band with a 1km resolution and is mostly used for numerical weather forecasting, nowcasting 

and meteorological applications61.  

The difficulty and limited use of remotely sensed imagery among non-technical users, such as 

the epidemiological and public health community, is the complex methodologies and the time-

consuming processes necessary for atmospheric correction, geo-registering, compositing and 

processing satellite imagery to produce accurate environmental variables. 

 

3.1.2 Definition of air temperature using land surface temperature (LST).  

Out of the 90 articles identified in the literature search only 35 were kept and considered as 

relevant to the first research question (Figure 3.1 and Table 2  Appendix). The derivation of air 

temperature (Ta), from satellite based land surface temperature (LST) is far from simple and 

different methods have been proposed in the literature. Although LST and Ta are correlated, 

they have different physical meanings, magnitudes, methodologies of measurement and 

response to atmospheric conditions and diurnal phases26,42. During the diurnal cycle, the 

temperature lapse rate varies considerably, and these patterns also vary throughout the year due 

to lengths of day and night in the seasons. During the day LST is higher than Ta, while during 
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the night the opposite occurs as land surfaces loose thermal energy at a higher rate. This often 

leads to over and underestimation of Ta respectively38. During the night, as solar radiation does 

not affect the thermal infrared signal, the retrieval of minimum temperature is easier. 

Conversely, during the day a large fraction of energy is due to re-emitted long-wave radiation 

driven by solar radiation and defining Ta from LST is more complex.  

The lapse rate between LST and Ta is controlled by the surface energy balance which in turn 

depends on a series of factors not necessarily provided by satellite data26,45. Soil emissivity, 

moisture content, cloud cover, vegetation, elevation, topography, surface roughness and wind 

velocity are important factors in defining the land-atmosphere relationship26. Furthermore, 

advection, adiabatic processes, turbulence and thermodynamic phase transformation all 

influence Ta variation. 

The methodologies commonly used to estimate Ta based on LST, are summarized below and 

divided in three distinct groups as described by Zaksek et al. and Benali et al.26,62: 

1) Statistical approaches based on regression models between LST and Ta. These 

techniques can be simple if based solely on LST and Ta 43,63 or more advanced, when a 

series of independent variable are taken into account27,28,38,43,55,56,64–70. The methodologies 

were applied to very different geographical settings, climates and land cover characteristics 

of the terrain. Covariates included in the regression models were very diverse and of 

different complexities. Some were simply spatial and others spatio-temporal. Statistical 

methods generally perform well, within the spatial and time frame they were derived, but 

require large amounts of data to train the algorithms and results are not generalizable71,72. 

2) The temperature–vegetation index (TVX) is typically used in vegetated  rural areas, and 

is based on the assumption that the top-of-canopy temperature is the same as within the 

canopy, assuming an infinitely thick canopy39,72–76 and uses the Normalized Difference 



32 
 
 

Vegetation Index (NDVI) as a key input variable. Wloczyk et al. used a multi-spectral 

approach using LANDSAT data to derive Ta across Germany76. Zhu et al. applied it to 

derive maximum and minimum temperatures around a river basin in the Tibetan Plateau 

incorporating both LANDSAT and MODIS data75. Stisen et al derived temperature maps 

over western Africa to be then used in the development of hydrological models72. However, 

it is worth mentioning that the assumption by which the relationship between LST and 

NDVI is linear and negative is not always applicable and is highly influenced by 

seasonality, ecosystem type and soil moisture variability27,45,77. Furthermore, this method 

is limited to homogeneous vegetated areas thus making it inapplicable to complex terrain 

with different land cover types, urban or built environments that have a key role in my 

research. Nieto et al. investigated the limitations of this method and proposed a new 

methodology that uses observed air temperature to calibrate maximum NDVI specifically 

for each vegetation type71.  

3) Energy-balance models are based on the concept that the sum of incoming net radiation 

and anthropogenic heat fluxes has to be equal to the sum of the surface's sensible and latent 

heat fluxes78,79. The applicability of these methods is limited primarily due to the large 

amount of information required to carry out these approaches, often not provided by remote 

sensing26,80. 

Throughout the literature, different methodologies have been proposed and refined (see table 

2 Appendix). Cresswell et al. used a statistical model to derive Ta in southern Africa taking 

into account the solar zenith angle (SZA) data derived from sensors on board the European 

satellite METEOSAT as proxy of solar energy reaching the ground, METEOSAT data and 

screen temperature deviations38. The TVX method has been used in several studies; such as 

Czajkowski et al. that estimated weekly average Ta in Oklahoma39 while Prihodoko et al. 

estimated Ta in several sites in Kansas using land surface radiation data in the near IR spectral 
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region from Advanced very-high-resolution radiometer (AVHRR) instrument on board NOAA 

satellites73. Zhu et al. also estimated Ta in the Tibetan Plateau using Terra MODIS data75. The 

TVX method, modified by lowering the threshold of the correlation coefficient between NDVI 

and LST was used to estimate both minimum and maximum temperature. This methodology 

again is limited to vegetated surfaces and is valid mainly during the growing season. 

Vancutsem et al. used high-resolution data from the MODIS night time LST over different 

ecosystems in Africa to estimate both minimum and maximum Ta, using both regression 

models and NDVI and SZA to account for seasonality, solar radiation, cloud cover and 

different land covers45. A more complex methodology, firstly to downscale the spatial 

resolution using a regression analysis between LST derived from SEVIRI - Spinning Enhanced 

Visible and Infrared Imager sensor on board Meteosat satellites, LST from MODIS data and 

NDVI also from MODIS and then based on the energy balance model was developed by Zaksek 

et al.62. Neural networks have also been used to estimate near Ta from satellite LST considering 

other land cover characteristics81,82. 

Fu et al. applied linear regression to LST MODIS data to estimate Ta for an alpine meadow in 

the Northern Tibetan Plateau63. Zhang et al. developed regression models between observed 

Ta from over 600 weather stations in China and LST MODIS data to estimate minimum and 

maximum temperatures for 2003. Researchers concluded that night-time LST was the optimum 

predictor and there was no great difference between TERRA and AQUA data67.  Benali et al. 

developed specific models to estimate the minimum, maximum and mean Ta from TERRA 

MODIS LST data through a statistical approach in Portugal26. Both static and dynamic 

variables that influence the LST-Ta relationship were included in the models and then 

calibration and validation using statistical procedures were carried out and gave good results26. 

A study to estimate the daily surface water vapour pressure (e0), air temperature (Ta), and 

relative humidity using different MODIS LST algorithms and NDVI data was developed by 
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Recondo and colleagues in Spain70.  Kloog et al. uses mixed models allowing the regression 

coefficients to define the relation between Ts and Ta to vary on a daily basis in Massachusetts 

and north-eastern USA27,29. These models also incorporate land use regression, meteorological 

observed parameters and spatial smoothing to predict Ta when satellite data was not present29. 

Shi et al. carried out the same approach in the hot humid south eastern states of USA, also 

validating the methodology by comparing it to NASA's Modern-Era Retrospective Analysis 

for Research and Applications (MERRA) model and obtaining very good model fits28. More 

recently, two studies were carried out in Israel applying the same methodology developed by 

Kloog et al.  Rosenfeld et al. estimated maximum, mean and minimum temperatures using 

MODIS data from both TERRA and AQUA satellites for Israel64. The model was extended to 

include IDW (inverse distance weighted) interpolations and thin plate splines in the first stage 

calibration model for the estimation of both day time and night time temperatures with very 

good model performances64.  High resolution LANDSAT brightness temperature data was also 

used to estimate air temperature in Tel Aviv, Israel using the same mixed regression model 

approach previously defined by Kloog et al. and Shi et al. to evaluate changes over time in 

spatial distribution of air temperature during summer27–29,65. This methodology was used as 

basis for my study, a series of other spatial and spatio-temporal parameters in the regression 

models were added to account for the unique geographical characteristics of Italy compared to 

the east coast of the US in which the study was first conducted. The fact that it has been now 

applied to several areas of the world with very diverse climatic zones adds value to the 

methodology and potential model performances.  

A limited number of studies have tried to test the difference between the predictability of their 

models on different land surfaces within urban areas. Nichol et al. estimated Ta using LST data 

derived from the ASTER- Advanced Spaceborne Thermal Emission and Reflection 

Radiometer sensor on board TERRA in Hong Kong using spatial resampling and buffering 
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around air temperature points. Spatial differences observed were attributed to structural factors 

of land cover such as city block size, building density and percent of green areas, and 

secondarily to the climatic conditions83,84. 
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3.2 THE DEFINITION OF THE URBAN HEAT ISLAND USING 

SATELLITE DATA  

 

3.2.1 Urban Heat Island: physical principles  

The heat island effect, is when urban areas have a positive thermal differential compared to 

rural areas78,85. The assumption is that this change in temperature is the result of the 

composition of the land surface and the atmosphere. The larger the urban area and higher the 

density of urban living, the higher the frequency and greater the intensity of the observed urban 

heat island (UHI)78. The introduction of artificial materials, such as concrete and asphalt, the 

complexity of the urban geometry, and the reduction of natural land cover, modify the surface 

energy balance, resulting in an increase in surface temperature that is associated to an increase 

in sensible heat flux and a resultant rise in air temperature86–88. UHI intensity is strongest during 

the night, when winds are weak and artificial surfaces retain heat accumulated throughout the 

day and slowly release it. 

A systematic review conducted by Stewart in 2011 considered 190 papers published between 

1950 and 2007 on the UHI to evaluate the scientific quality of work in the field and provides 

recommendations for better methodological developments23. However, the study selected only 

ground-based observational UHI studies, hence excluding remotely sensed derived UHI. 

Another recent review on UHI studies around the world provides an overview of the 

phenomenon quantitatively and spatially and the potential health effects24,89. Ngie et al. 

reviewed the use of satellite data and LST specifically to define UHI around the world30. The 

UHI phenomenon is a global issue and with the increasing level of urbanization and future 

climate change will become an even greater problem in the next century. Although studies use 

different methodologies to define the intensity of UHI, it is interesting to see how intensities 

differ between continents and cities depending on size of the city, urban geometry and 

characteristics, population density, surrounding land use and local climate.   
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A summary of the literature review on urban heat islands is reported in table 3-Appendix. 

Studies in which the UHI was identified using satellite data, either just in terms of surface UHI 

or studies which then estimate Ta within the urban canopy integrating satellite LST data and 

Ta from ground monitoring stations were retained. Studies on the role of land use and surface 

cover and the characteristics of urban areas in influencing UHI intensities were also included 

and reported. Out of 156 articles identified as eligible in the search strategy only 87 were 

retained. The interest here was to have an overview the methodologies used to define UHI, how 

they differ from those identified in the LST –Ta literature in terms of satellite data used, 

downscaling techniques for obtaining a better spatial resolution and additional factors 

integrated in the models to take into account the peculiarity of the urban setting. Furthermore, 

the review looked into key factors that contribute to the UHI intensity on the basis of land use 

or area characteristics. For example, land use (green areas, types of urban surfaces), building 

type (roof-top colouring), population density and other factors that modify the microclimate 

and heat\cooling conditions in cities. This aspect is crucial not only for measuring UHI 

intensities, but also for the comparison of urban rural gradients and temperature gradients and 

assessment of differential thermal characteristics based on land use structures90. In the review 

carried out by Stewart, he found that over three quarters of the studies on UHI did not provide 

information on land use characteristics of monitoring sites or did not assess the association 

between land cover and temperatures23. Following this, the same authors developed a 

standardized set of local climate zones, to classify urban and rural field sites based on surface 

properties90. In the methodology developed for my thesis this is accounted for as satellite LST 

data captures temperatures at surface level and the relationship with land use and land cover 

were used to derive air temperature as described in chapter 4. Finally, the intensity of the UHI 

in different cities around the world was considered for descriptive purposed.   
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Most studies addressing the UHI effect have used two approaches either numerical modelling 

of the physical processes that simulate urban energy balance fluxes through the 

parameterization of urban surface processes also described in the previous section91–94, or by 

empirical analysis, based on Ta records from weather stations or LST derived from remote 

sensing. These methods attempt to define the association between the UHI intensity and the 

different characteristics of the cities from impervious surfaces to socio-demographic 

characteristics95. Schwarz et al. carried out a comparison of the indicators used for quantifying 

the surface UHI with different urban-rural definitions and reported weak correlations among 

the indicators96.   

High-resolution thermal infrared images, from different satellite platforms are able to match 

the complexity of the urban environment, and are capable of characterizing the urban land 

cover types required for spatial modelling of the UHI effect using a GIS approach. Thus 

providing a very important data source and of great interest also for epidemiological studies. 

MODIS daily data has been extensively used to define UHI around the world97,98, in 

Europe91,96,99–102, Asia 103–109 and North America110–115. Similarly, LANDSAT data has also 

been widely used especially to analyse the spatiotemporal patterns of UHI due to changes in 

land use/land cover change108,116–126. LANDSAT has the advantage of having very high spatial 

resolutions but lacks in the temporal domain, as the satellite overpass is not daily.  

Urban heat islands have been identified in Rome and other Italian cities.91,127,128 Fabrizi et al. 

estimated the UHI in Rome using Advanced Along-Track Scanning Radiometer (AATSR) land 

surface data temperature on board ENVISAT polar-orbiting satellite and observed data for the 

period 2003-2006128. Two studies estimated the UHI in Milan using MODIS data and estimated 

a night time canopy layer UHI intensity during summer of around 3-4°K dat.127,129 Morabito et 
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al. compared LST temperatures in 11 Italian cities, including Rome using MODIS data, to map 

heat vulnerability but did not estimate UHI intensites.91 

Research has been carried out to combine different satellite data or downscale data to improve 

both temporal and spatial resolution for defining UHI. High resolution MODIS data was used 

by Qiao et al. to look at  the change in urbanization and the effects of this on UHI patterns in 

Beijing.130 Strathpolou et al. consider four downscaling techniques in their study in order to 

improve the spatial scale of LST data and better identify the UHI of Athens, Greece 131.  

Kourtidis et al. considered different LST data from satellites with different time passes to 

evaluate the diurnal pattern and change in UHI132. Other downscaling techniques have been 

used to improve the spatial resolution of fine temporal scale satellite products, for example 

Zaksek et al. downscaled SEVIRI data to monitor the diurnal cycle of UHI133. Cheval et al. 

used MODIS TERRA and AQUA data to estimate the UHI in Bucharest, during the day and 

night and considering land cover factors that might influence it 134. Temporal changes in the 

UHI intensity have also been studied in recent years, and variation in the extent and intensity 

have been reported118,135–137. 

Findings on the relationship between land cover and UHI intensity include:  

- increased UHI intensity and temperatures with a reduction of green cover95,122,138–140, 

NDVI being inversely correlated to temperature116,141,142  

- population density positively correlated to UHI intensity116,122,143,144  

- water bodies and vegetation moisture reducing the UHI intensity118,145,146 

-  industrial zones and high constructed areas associated to higher temperatures and UHI 

hot spots118,125,145,147,148  

- low albedo120 

- the presence of impervious surfaces increase UHI intensity and temperatures136,149,150 
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-  anthropogenic heating, as well as pollutant emissions could increase the intensity of 

UHI151 

- roof top materials and surface temperature152 

Zhou et al. 2013 investigate the UHI intensity in European cities using MODIS LST and Corine 

land cover comparing urban area size with surrounding temperatures92. Urban clusters are 

defined considering land cover characteristics and not all areas exhibit increasing UHI 

intensities with increasing boundary temperatures. Generally, UHI intensity is greater in larger 

urban areas and an inter-annual pattern is observed, with the strongest effect in summer.30,92 

Another important issue to take into account when comparing UHI intensities is how the urban 

and rural areas/points are defined as well as which indicators are used. Rural areas have been 

defined as parts of a city region that are not influenced by the urban heat island in empirical 

models78 while in remote sensing studies a priori definitions of “urban” versus “rural” areas 

according to land cover are defined. Researchers have used a variety of methods to identify 

urban and rural areas such as pixels around weather stations153,154, areas with the highest LST 

versus areas with rural land cover, central districts versus rural districts and pixels with high 

and low imperviousness98,100,110. These aspects were taken into account for the selection of the 

rural point to define the urban heat island intensity in Rome.  
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3.3 LITERATURE REVIEW OF HEALTH EFFECTS OF HEAT ON 

HEALTH OUTCOMES  

Introduction 

The literature on temperature related health effects is very vast, with a multitude of aspects 

discussed. In order to better assess the findings in relation to my research, specific aspects were 

considered such as the study type and modelling methods used to estimate heat-related effects, 

biological mechanisms and vulnerable subgroups, characteristics of the temperature mortality-

relationship and geographical differences in the effect. Furthermore, potential effect modifiers 

of the effect, namely individual characteristics as well as spatial and context variables were 

considered in the literature search. 

Of the full text papers considered for eligibility in the literature review, 96 articles were retained 

and considered as relevant to the research question. Studies are summarized in table 4 in the 

Appendix. 

The effect of heat on morbidity and mortality 

The effect of temperature on the health of a specific population can be interpreted as the average 

population vulnerability to heat. Usually it is easier to understand the effect associated to 

extreme events such as heat waves, defined as abnormally high surface temperatures relative 

to those normally expected in a specific location that persist for prolonged periods of time. 

However there is no universal definition or consensus on a definition, especially in terms of 

number of consecutive days, temperature parameter or a threshold among the meteorological 

community. National meteorological services have adopted several different definitions.  

Furthermore, epidemiological studies have used a plethora of definitions, not always based on 

appropriate meteorological characteristics, making comparison between studies complex. 

Nevertheless, the literature has identified dramatic increases in mortality rates during heat wave 
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episodes,  especially among the most vulnerable individuals living in urban areas from the 

1970s155,156  Indeed, there is also a burden related to less-extreme temperatures in summer157.  

Heat may cause death in subjects in poor health but may also exacerbate chronic diseases or 

trigger acute events such as stroke. For the variety of mechanisms and effects related to heat, 

the actual burden of heat-related deaths may be notably greater than it has been reported, since 

no widely accepted systematic criteria currently exist for classifying them and generally only 

a few deaths are directly coded as being caused by heat158. The most stringent definition of 

heat-related death is a core body temperature greater than or equal to 40.6°C at the time of 

death158. This definition precludes certifying any death as heat-related if core body temperature 

is not measured near the time of death, and may therefore underestimate the actual excess heat-

related mortality. On the other hand, a non-specific definition of heat-related deaths may very 

well overestimate the attributed effect. Most excess mortality during high temperatures is 

related to cardiovascular, respiratory and cerebrovascular diseases, as subjects with these pre-

existing conditions have a limited ability to cope with extreme heat155,156,159–161. The effect of 

high temperatures and heat waves on non-fatal outcomes11,12,156,162–165 seems to be 

comparatively smaller suggesting that many heat-related deaths occur before coming to 

medical attention. Moreover, time series studies investigating the short-term effects of heat on 

health outcomes consider different thresholds or temperature ranges.   

Health outcome assessment 

Mortality has been always used in epidemiological studies since it is a well define outcome and 

mortality data are routinely collected. However, both heat- and related mortality are subject to 

misclassification and generally, researchers have used total mortality or cause-specific 

mortality as the outcome measure. Periods of intense heat also produce increases in non-fatal 

illnesses. The spectrum of heat-related illnesses may include milder symptoms like heat 



43 
 
 

cramps, heat syncope, heatstroke166. Consequently, during heat waves an increase in hospital 

admission rates for selected causes may also be detected11,12,162–165,167. The effect of high 

temperatures on non-fatal outcomes seems to be comparatively smaller compared to mortality 

outcomes. For example, a European multicity study showed a 6.71% increase in the risk of 

respiratory deaths for a 1°C increase in maximum apparent temperature8 and only a 2.1% 

increase in respiratory admissions12 among Mediterranean cities.  

While high temperatures have an effect on mortality for both cardiovascular and respiratory 

causes, with comparable estimates, as shown in a recent systematic review on the elderly, (with 

increases in the risk of 3.44% and 3.60% for a 1°C increase in temperature above the threshold 

during summer, respectively for CVD and respiratory deaths). When considering morbidity 

heat had a significant effect on respiratory admissions but no effect on cardiovascular 

admissions (percent change in risk: 0.15% and 1.65% respectively for CVD and respiratory 

admissions)9. Noteworthy that the relationship between heat and non-fatal events (hospital 

admissions, ER visits and ambulance calls) has been less studied and has given contrasting 

evidence in some cases15. Lin et a found an increase in admissions in New York for temperature 

increases for chronic airways obstruction, asthma, IHD and cardiac dysrhythmias but decreased 

for hypertension and heart failure.168 While Green et al. found opposite associations among the 

cerebrovascular disease group for temperature increases in California, specifically a protective 

effect of heat for hemorrhage stroke on one hand and an increase in ischemic stroke admissions 

on the other163.  

Study design  

Several epidemiological methods have been applied to assess heat-related mortality. In the 

descriptive episode analysis of individual heat waves, mortality count or rates during events 

are generally compared with rates several days before or with rates during the same period in 
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the previous year to estimate the number of excess deaths attributable to the episode. In general, 

these studies are based on single episodes and incur in problems related to the definition of 

baseline mortality and the consequent quantification on mortality excess. Moreover, when the 

reference period contains episodes of extreme heat, baseline mortality may be influenced 

leading to an underestimation of the effect.  

The time series approach overcomes these limitations and is well suited for modelling the short-

term association between temperature and mortality. The time series approach considers 

sequences of data indexed by time units, specifically days being the time unit in the present 

analysis. For each day, counts of deaths/hospitalizations are related to average population 

exposure, while accounting for potential time-varying confounders. This kind of study is 

considered a quasi-experimental study design because the contrast (in both exposure and 

outcome) is performed within the same study population over time. Since time trends are 

adjusted for in the modelling phase, it follows that fixed population characteristics, or factors 

that vary slowly over time cannot confound the short-term association between exposure to 

daily temperatures and mortality/morbidity outcomes. The only putative confounders to be 

accounted for, in addition to time trends, are those factors which might co-vary in the short-

term together with both the exposure (temperature) and the outcome (daily count of 

deaths/hospitalizations).  

The time series approach allows to estimate the effect for different temperature ranges. The 

statistical modelling of the temperature-mortality dose-response function has to consider that 

temperature extremes (heat/cold)  may have adverse health effects. Some researchers have dealt 

with this problem by focusing only on heat effects by season while other studies have modelled 

the entire temperature range and its association with health outcomes simultaneously. Different 

statistical approaches such as Poisson regression models,159,169–171 autoregressive models,172,173 
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generalised linear models with parametric splines,174,175 generalised additive models with non-

parametric splines7,10,173,176 have been implemented for estimating the effect of temperature on 

mortality. Distributed lag models have been used to explore the cumulative and prolonged 

effect of temperature on mortality, rather than focussing on the effect associated to a single lag 

of exposure. This method is based on the concept that environmental exposures may produce 

increased risk of death not only on the same day of exposure but also on subsequent days.10,11 

More recently, the distributed lag non-linear models have been developed to take into account 

the non-linearity of the temperature-mortality relationship and the delayed effect of 

temperature simultaneously.19,177,178  

Through time series studies the association between temperature and mortality has been 

identified and described as a non-linear U-, J- or V-shaped function, with the lowest mortality 

rates recorded at moderate temperatures, rising progressively as temperatures increase or 

decrease.7  

On the other hand, the case cross-over approach has been used to explore potential effect 

modifiers of the temperature mortality relationship.20,169,179,180 This approach is a matched case-

control design where each subject is a risk-set and the exposure on the event day (death) is 

compared to the average exposure on control days. It follows that each subject is the control of 

himself, therefore perfect adjustment for all potential confounding factors that do not vary over 

time or are slow-changing (age, smoking, BMI, socio-economic factors) are adjusted for by 

design. Other time-varying factors (e.g. seasonality) can be adjusted for by using multivariate 

conditional logistic regression models. This approach is highly recommended to estimate the 

short–term effects of environmental exposures, such as temperature, estimated at the individual 

level. Furthermore, the case-cross over design has been widely used to identify individual-level 

or address-level effect modifiers. Subgroups most vulnerable to the effects of heat might 
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include the fraction of the population with a greater than average adverse response either 

resulting from intrinsic susceptibility factors (chronic clinical conditions), individual 

characteristic (age, gender, socio-economic status, education, occupation) or factors that 

modify exposure, typically area-level characteristics (urban heat island, green space, proximity 

to water, impervious surfaces, building density.9,181–183  

Seasonal pattern  

In most countries, a strong seasonal pattern in mortality is observed with highest death rates in 

winter primarily and lower values in summer. The seasonal pattern of cardiovascular disease 

and other concomitant factors such as respiratory epidemics, that are more prevalent during 

cold weather when people usually spend more time indoor, make it difficult to disentangle the 

role of temperature and other meteorological variables on mortality and morbidity184. To try 

and account for these factors, most studies on the effect of temperature and weather parameters 

on health outcomes are controlled for season to account for the natural trend in mortality counts 

and other confounding factors such as influenza outbreaks. 

Delayed effect and mortality displacement 

A review carried out by Basu and Samet on forty-nine studies published after 1970 in peer-

reviewed journals, reported that most studies on hot weather had an immediate effect on 

mortality, either on the same day and on the subsequent 2-3 days4. It has also been shown that 

these excess deaths are often compensated for by a fall in mortality in the following weeks, this 

phenomenon is  known as mortality displacement 10,159,160,175,185. A possible explanation is that 

the heat stress depletes the pool of susceptible individuals, anticipating the death event by a 

few weeks/months while the individuals with a less compromised health status are more able 

to cope with extreme temperatures and remain in the pool. 
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Exposure indexes 

To date there is no single temperature or weather variable used to account for heat in 

epidemiological studies due to data availability or researcher interests. It would be useful so 

that results from different studies could be directly compared. In a number of epidemiological 

studies focusing on heat effects on health, air temperature (minimum, maximum or mean) dew 

point temperature or relative humidity measured at weather stations have been used as exposure 

measures. Other authors165,169,186 have adopted various composite indexes of thermal 

discomfort such as apparent temperature and heat index187 or Humidity index (HUMIDEX) 

used by the Canadian Meteorological service that combines air temperature and dew point 

temperature. Human thermal comfort depends on environmental and personal factors. The four 

environmental factors typically included are wind, air temperature, air humidity, and solar 

radiation. Some indicators have also incorporated personal physiology and personal factors 

such as clothing and level of physical activity. For example, an index that includes these factors 

is the Physiologically Equivalent Temperature (PET)188. Throughout the years, different 

equations have been developed to calculate these indexes which differ for complexity, the 

variables included (wind speed, etc) and for temperature range applicability. It is worth 

mentioning that these indexes are not developed explicitly for epidemiological studies and are 

often used inappropriately. Two studies recently conducted have shown that the effect 

estimates do not vary much when using different temperature measures (minimum, maximum 

or mean) or when different indexes are considered189,190. Moreover, local climate defines 

summer temperatures and thus heat definitions are site-specific. Epidemiological studies 

investigating the short-term effects of heat on health outcomes consider different thresholds or 

temperature ranges, based on the temperature-outcome association and by considering 

percentiles rather than absolute temperature values to allow comparisons between locations 

and studies as described in the next section.   
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Most studies on health effects of heat are related to single point exposure that is not entirely 

representative of the individual exposure or spatio-temporal exposure subjects are really 

exposed to as previously described. The use of satellite data and the definition of spatio-

temporal temperature exposure will help bridge this gap and provide more accurate exposures 

not only in areas where studies have not been carried out due to lack of monitoring stations but 

also with a finer resolution in urban areas where temperatures differ across small distances due 

to the complex urban structure. Although there are limited comparative studies, recent research 

conducted comparing spatio-temporal and time series models for estimating the effects on 

mortality showed that although performance of spatio-temporal models for exposure are better 

the effect estimates are comparable21, however it is worth noting that the resolution of the 

spatio-temporal model was far below models using temperatures derived from satellite data. 

Spatial variations in heat-related effects 

Time series studies performed in regions with different climates have consistently provided 

evidence of increased mortality in association with hot weather, showing also a geographical 

variability of heat-related mortality. However, comparisons between countries should be made 

with caution taking into account local population characteristics such as climate, baseline 

mortality rates, age structure of the population and health status.  

Results from multi-city studies7,10,18,191, have provided important insights into the geographical 

heterogeneity of the impact of heat on mortality, showing a greater effect of high temperatures 

in populations residing in colder regions than in those residing in warmer countries. This 

apparent paradox has been ascribed to the more limited adaptive capacity of the populations 

living in colder regions where extremely high temperatures occur infrequently7,10,192. 

Moreover, the same studies have documented that the thresholds above which mortality 

increases are higher in the warmest cities where populations are better acclimatized to high 
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temperatures during summer.  These findings have recently been confirmed in several studies 

conducted in the Multi Country Multi City (MCMC) Consortium.193,194 Italian cities were 

among the cities with the highest heat effects, with a 14% increase risk of death (pooled 

estimate for all Italian cities) for a rise in mean temperatures between the 90th and 99th 

percentile compared to a 9% in Spain and 3% in Australia191.  

In recent years studies have been published on the effect of heat in Asia mostly China,195–198 

but also in Taiwan and Korea 194,199–201 and Australia 13,202–205. To date, there is limited evidence 

of the impact of high temperatures on mortality and morbidity in low or middle income 

countries14,175,206–211. However, populations residing in these countries may be particularly 

vulnerable due to the limited resources such as low socioeconomic status, limited access to 

health care services and poor health care systems212. The recent multi country-multicity 

collaboration has an added value of providing highly representative estimate from a large 

number of communities and countries and it includes some low- or middle-income countries 

(Brazil, Thailand).193  

Studies on the spatial differences within a country are also important. Studies looking at the 

geographical differences in the effect on heat in the US18,213 and European countries8,214,215 , 

China216–218, have been carried out. However, most studies are limited to urban areas where 

both exposure and health data is available. A recent study carried out in the UK using modelled  

temperature data was able to estimate the effects of heat at district level and showed a north-

south gradient with the highest effect estimates in London and the south/southestern districts219. 

Similarly, a study conducted in the Czech republic identified the spatial pattern of heat-related 

risk at district level considering difference socio-economic risk factors220. While studies 

conducted in the US using satellite data with a 1x1km resolution were used to estimate the 

effect of heat on mortality in SE USA221 and on birth outcomes in Massachusetts222. In 



50 
 
 

southeastern US states a 2.05% (95% CI:0.87, 3.24%) increase in mortality for every 1 °C 

increase in temperature above 28 °C was observed221.  

Time trends in temperature-mortality relationship 

Considering climate change scenarios and possible temporal changes in the individual and 

community factors that determine vulnerability to extreme weather events, it is important to 

monitor the temporal variation of the temperature-mortality relationship to better understand a 

population’s capacity to adapt to new climate conditions. Moreover, studies addressing inter-

annual variations are to date limited. With regards to the long-term variations, some authors 

have observed a long-term decline in summer mortality and attributed it to changes in 

adaptation strategies such as the increased use of air conditioning and public health 

interventions.193,213,223–225 Similar conclusions were reached in studies comparing heat wave 

episodes in different years, showing a decline in heat-related mortality potentially attributable 

to adaptation measures introduced and changes in individual behaviour and response 

mechanisms.226–228  Gasparrini and colleagues showed a decrease in the effect of heat over time 

in several countries, namely the US, Japan, Spain and non-significantly in Canada, potentially 

attributable to adaptation measures such as the introduction of heat prevention programs, as 

also suggested. in a European city comparison between two periods.193,215,229 On the other hand 

where exposures have increased and populations vulnerability might also have risen, an 

increment in the heat related mortality was observed.193 

Biological mechanisms 

Humans are normally capable of maintaining a constant body temperature despite wide 

variations in atmospheric temperature. Core body temperature usually varies between 36°C to 

37.5°C and it is maintained by balancing heat gain and heat loss by physiologic and behavioural 
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mechanisms230. Under mild heat stress, acclimatization can increase the body’s tolerance to 

heat stress, but under extreme heat the body can lose its ability to maintain temperature balance 

and death may occur.166.Adverse health effects associated with an intense and prolonged 

exposure to high temperatures include minor illnesses such as heat cramps, heat syncope, heat 

exhaustion, and heatstroke166,230,231. Heat cramps are the mildest form of heat-related illness 

and occur in persons, who produce a large amount of sweat but replace it only with hypotonic 

fluids, probably secondary to sodium depletion. Heat syncope is caused by reduced cerebral 

blood flow resulting from the combination of peripheral blood pooling, reduced cardiac output 

and orthostatic hypotension. Heat exhaustion is the most common heat-related illness, and may 

develop after several days exposure to high ambient temperatures and inadequate or 

unbalanced replacement of fluids and electrolytes. It is characterized by fatigue, malaise, 

anorexia, nausea, vomiting, anxiety and confusion; potentially harmful clinical manifestations 

include circulatory collapse and excessive body core temperature and may be severe enough to 

require hospitalisation. Heatstroke is a medical emergency resulting from a failure of the 

thermoregulatory mechanisms that causes an accumulation of heat in the body and can be 

fatal166,232. Heat related effects on the cardiovascular system are partly mediated by the 

thermoregulatory responses which pose stress to the heart and circulatory system. Heat stress 

causes physiological changes such as increase in red blood cell counts, platelet counts and 

blood viscosity, or rhythm alterations via the autonomic system and blood lipid levels.233–236 

Furthermore, temperatures have also been shown to affect blood pressure237–239, cause myocyte 

injury240 or modify cholesterol levels236. Zanobetti et al. found that subjects with atrial 

fibrillation were more susceptible to extreme heat, suggestive of a greater risk of stroke 

events20. More recently, Bind et al. found that high temperatures and relative humidity were 

associated with DNA methylation in blood cells241. Mechanisms associated with heat are less 

clear for respiratory events, on hot days the respiratory system is under greater stress and causes 
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exacerbation of chronic respiratory disease among those with pre-existing respiratory 

conditions.5,10,12,242 Furthermore, studies on the role of temperatures on DNA methylation 

suggest a plausible role in inflammatory responses due to heat241. Epigenetic studies will be of 

great use in the future to help shed light on the biological mechanisms and health risks  

associated to extreme heat and susceptibility factors.  

Vulnerable Subgroups to Heat  

Specific vulnerability factors can confer a greater risk of dying with exposure to extreme heat. 

These factors may be individual (gender, age, genetic factors, health status), socio-economic 

and environmental characteristics (living in urban areas, presence of air conditioning, building 

types, presence of green areas). Temperature-related effects are particularly apparent among 

the elderly. As age progresses, thermoregulatory responses are reduced and less sensitive 

thermal perception may affect the behavioural response to heat stress, facilitating the onset of 

heat-related illnesses and deaths. The increase in life expectancy and the ageing of populations, 

especially in developed countries, has mean that the pool of old (over 75 years) and very old 

(over 85+ year) has become larger and a greater proportion of the population is at risk4–6,243. 

However some recent studies have identified a larger risk in the “younger” elderly 244, possibly 

due to the fact that the greatest part of public health preventive measures are targeted to the 

very old subjects rather than younger ones. Other age group at risk for heat-related health 

effects are children but will be not addressed in the present study164,202,245. Compared to adults, 

children have a smaller body mass that warms more quickly, a smaller blood volume that limits 

heat transfer through peripheral blood flow and vasodilation, and a lower sweating rate. 

Diarrhoea or febrile illness, particularly in neonates and young infant, may increase the risk of 

heat-related illness because these may be associated with excessive fluid loss and 

dehydration245,246. 
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There is still contrasting evidence on the differences in heat-related effects by gender. Several 

studies have documented a greater vulnerability to heat among women both in terms of 

mortality and morbidity 247–251 while there is limited evidence for a higher susceptibility among 

men162,165. A recent meta-analysis showed a pooled ratio relative risk for high temperatures of 

0.99 (CI95% = 0.97, 1.01) for males compared to women6. The higher vulnerability of women 

is partly explained by the higher number of elderly females in the population and by 

physiological differences, i.e. a reduced capacity to sweat in females.5,249  

Several studies have documented that most deaths during heat waves or high temperatures 

occurred in subjects with pre-existing chronic diseases like ischemic heart disease, stroke and 

respiratory illnesses12,155,156,159,160,252–254 due to their limited cardiovascular adjustment needed 

during exposure to heat stress. Subjects with metabolic/endocrine gland disorders161,179 or 

diabetes were also found to be at greater risk of heat-related deaths179,255, probably since they 

have poor autonomic control and endothelial function that, in addition to the increased demand 

on the circulatory system, may lead to an increased risk of fatal events. Central nervous system 

disease and psychological illnesses have also been shown to increase the risk of death during 

heat waves since subjects are unable to care for themselves.20,179,252  

Potential effect modifiers  

Some studies have pointed out that vulnerability to heat is influenced by socio-economic 

factors. Having a low socio-economic status,169,179,218,256 or living in low-income census tracts 

income or living alone and being socially isolated were found to be associated to increased 

mortality during high temperatures or heat episodes.156,218,256–259 A recent study from Paris 

found a strong effect modification by social deprivation and this was greatest among the 

individuals chronically exposed to high levels of air pollution.260   
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Studies from the United States have found a differential effect of heat among different ethnic 

groups20,156,169,212,256,257, probably explainable by the socio-economic differences among these 

groups and different access to health care services in the US.  However, results are not always 

consistent among studies. A recent systematic review and meta-analysis showed relative risks 

for high temperature of 1.03 (95% CI = 1.01, 1.05) among low individual socioeconomic status 

(SES), and 1.01 (95% CI = 0.99, 1.02) for low area based SEP.6 Ethnicity and different genetic 

factors may also modify the adaptive capacity to heat, however specific studies on this aspect 

are lacking. Epigenetic studies will help address this aspect.  

Hot weather predominantly affects people living in urban environments, where maximum 

temperatures are higher and the daily thermal pattern is altered (less variable), with respect to 

the surrounding rural areas. This phenomenon known as the UHI and has been described in 

section above and a focus on the differential health effects due to urban heat is described in the 

next section. In metropolitan areas the effect of heat on health may be exacerbated by greater 

socioeconomic disparities212,261 and by the concurrent exposure to air pollution that may 

interact with temperature in determining health effects.262 Physical urban factors, such as 

impervious surfaces, building type and housing features, may also contribute to differences in 

heat-related health risk.256,263–267 It is noteworthy that studies in rural areas are limited and 

further work is needed.  

Finally, the role of air pollutants as effect modifiers is an important aspect.  The synergistic 

effect of air pollutants, in particular PM10 and ozone, and temperatures on mortality outcomes 

during summer has been identified.179,268–272 A recent review looking at the role of temperature 

as effect modifier of the pollutant-mortality association found that on days with higher 

temperatures the effects of ozone and particulate matter were stronger.273 A study conducted 

in Italy showed a synergistic effect of heat with both ozone and PM10 during summer in Italian 
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cities, with higher effect estimates of temperature on days with high levels of ozone and PM10 

in particular among cities in the north where air pollution levels are higher274.  
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3.4 LITERATURE REVIEW OF THE HEALTH EFFECTS OF HEAT 

WITHIN URBAN AREAS AND THE DIFFERENTIAL EFFECT DUE TO 

THE URBAN HEAT ISLAND.  

Very few studies have accounted for the differential effect of heat within urban areas when 

studying the impact of heat or heat waves; out of the 64 papers examined only 20 fit the research 

question (Table 5 Appendix).  As shown in the previous section (section 3.3), much effort has 

been addressed towards modelling the relationship with complex statistical techniques or 

identifying vulnerable subgroups,178,275–277 while few studies have dealt with the limitations 

linked to the exposure modelling.21,189 Due to the limited spatial coverage of temperature 

monitoring networks, most studies consider exposure by area, from a single point measurement 

typically located at airports or within the city. However, temperatures are heterogeneous within 

cities, thus this may lead to a misclassification of individual exposure and/or bias in the 

estimates. Although few recent studies have accounted for the UHI as a spatial effect modifier 

of the temperature-mortality association, high resolution temperature data is rarely used as 

exposure to estimate the effects of heat in a more precise way while simultaneously dealing 

with the differential effect of temperatures within cities.  

In the literature, the differential impact of heat on mortality within urban areas has been 

assessed using specific monitoring campaigns, spatio-temporal modelling of meteorological 

variables and socio economic factors and land use variables278–286. Case-cross over studies have 

been used in particular to identify effect modifiers of the temperature-mortality relationship 

within urban areas especially for socio-economic characteristics, land use factors and very few 

for micro-climatic conditions due to the UHI.20,169,179,279,287,288 

The literature review identified very few studies using satellite data to assess the effects of heat 

on mortality and estimating the differential effects.181,183,289–292 These studies use LST data to 

identify the UHI as potential modifier of the temperature mortality association181,289,292 or 
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NDVI and Vegetation continuous fields (VCF) to spatially identify green areas which might 

mitigate the heat effect within a city.182,183,290,291 Smargassi et al found that subjects living in 

postcode areas of Montreal with higher surface temperatures (greater UHI intensity) gave a 

higher risk of dying during hot days.181 The analysis was also stratified by dwellings of high or 

low values, and an association with high LST was found in areas with dwellings of high values. 

This finding suggests that the health of those living in areas of lower socioeconomic status may 

be influenced by other risk factors more strongly than by the surface temperature at their place 

of death, even if a non-statistically significant trend was seen also among the latter group181. 

Laaidi et al. used NOAA AVHHR data to define land surface UHI and identify areas at higher 

risk to heat effects within a case-control study during the 2003 heat wave episode in Paris, 

France.289 A study conducted in Hong Kong used land-use and building geometry data, NDVI 

and sky view factor (SVF) values to define UHI for each tertiary planning unit and then map 

results.182 As for the Canadian study, when considering the potential role of socio-economic 

conditions differences there seemed to be an indication of a greater difference in the effect of 

heat among people of high SEP when stratifying by UHI.181–183 

A study conducted in Barcelona, considered socio–demographics, green areas (VCF and 

perception of greenness) as factors that might modify the temperature-mortality association 

during summer.183 The analysis showed the census tracts with a high percentage of old 

buildings, manual workers or residents perceiving little surrounding greenness had higher heat-

related mortality risks. No real difference was observed for VCF defined green areas, 

suggesting the potential mitigating role of green areas within densely built cities remains 

unclear. When considering both blue and green spaces and the potential role in modifying the 

temperature-mortality association within the coastal city of Lisbon, Burkart et al. showed that 

the effects of heat were higher in areas with limited green space (NDVI  lower than 0.27) and 

at further distances from the sea (more than 4km).292 
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Another limited number of studies have been conducted accounting for the differential effect 

of heat on mortality as a result of land use/land cover characteristics. A study on heat wave 

related mortality in Berlin, Germany, found that mortality increases during heat waves were 

greater in districts with a higher proportion of land area covered by sealed surfaces or inner 

city districts.281 

A number of studies focused on the potential association and links between UHI and 

socioeconomic factors. Huang et al. used satellite LST data to define how temperature varies 

within urban areas and found that LST was higher in areas characterized by low income, high 

poverty, less education, more ethnic minorities, more elderly people and greater risk of 

crime.293 These parameters need to be accounted for when studying the differential effect of 

heat within urban areas. A study carried out in Philadelphia, considered the role of socio-

economic factors and the UHI, as well as the combination of these two aspects to identify heat 

vulnerability294, thus identifying areas for each factor and a common set of at risk areas.295 Ho 

et al. carried out a similar analysis considering different thermal indicators (LST, HUMIDEX, 

air temperature) and social vulnerability factors (deprivation index, unemployment rate, rented 

housing, education) as well as a combined vulnerability indicator that might cause spatial 

differences in heat-related mortality risk during heat waves in Vancouver. Indicators which 

showed the greatest spatial differences in the temperature–mortality relationship were 

HUMIDEX and high % unemployment\not looking for work.291  

None of the studies actually derive air temperature from LST to use as high resolution spatio-

temporal exposure in the epidemiological research carried out. These studies simply highlight 

differences in the effect of heat attributable to the area of residence, UHI and socio-economic 

factors. A recent study looked at the potential adaptation of heat within urban areas considering 

UHI , suggesting that for heat exposure, the areas with higher UHI were more acclimatized to 
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heat compared to cooler areas in the out zones296. This is suggestive of the need to use high 

resolution temperature data as exposure within case cross-over or time series models.   

Finally, several studies defined heat vulnerability maps incorporating satellite data or observed 

meteorological data to represent the urban heat island154,297–299, land use factors and socio 

economic factors, thus identifying areas most at risk within cities. Buscail et al. developed a 

land-use regression model to predict the LST and derive a hazard index in Rennes, France300. 

Vulnerability was assessed through census data (socio-economic status, extreme age, 

population density and building age) and a health risk index was derived combining land use 

(NDVI, vegetation and water land cover) and socioeconomic parameters. Taylor and 

colleagues incorporated indoor temperatures, using dynamic thermal models, and housing 

types as other potential factors affecting mortality risk during hot weather in London301. Results 

suggest that dwelling type caused the larger temperature anomalies across London, and had a 

greater influence on exposure risk, compared to the UHI. However, socio-economic factors 

were not taken into direct consideration in the temperature-mortality risk estimates. 

Considering climate change and future projections, Heaviside and co-authors estimated the 

future impacts of heat waves in the West Midlands considering UKCP09 climate change 

simulation data also taking into account the UHI, projected population changes and a 

population weighted mean temperature.  Findings suggest that by 2080, a heatwave could be 

responsible for an increase in mortality of around 3 times the rate observed in 2003 with 278 

deaths compared to the 90 of 2003302. This aspect is very important not only for the promotion 

of mitigation measures to reduce GHG emissions within cities but also to raise awareness on 

the future heat risks and promote adaptation measures.   

Overall, these studies are important for public health as they identify hot spots within cities 

most at risk during heat episodes to which heat prevention measures should be targeted. 
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Identifying the impact in terms of attributable deaths currently and under future climate change 

scenarios is of great importance.  

The literature review helped identify main methodologies to derive air temperature from 

satellite data, in particular defining the source of satellite data used (satellite platform, sensors, 

temporal and spatial resolution) and covariate data availability required. Evidence of the urban 

heat island and differential effects within urban areas were specifically looked into to critically 

evaluate potential effect modifiers within the urban area of Rome. An overview of the evidence 

on the health effects of heat on mortality and morbidity and effect modifiers of the association 

was provided. The magnitude of the effect estimates from different geographical areas were 

also considered. Furthermore, the review looked at the statistical methods adopted in particular 

series data and case crossover studies, which will be the methodologies, used in my thesis. 

Finally, the literature review helped provide a broader outlook on the topic and critical 

perspective when discussing main findings.  
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CHAPTER 4 – ESTIMATION OF AIR 

TEMPERATURE EXPOSURE USING 

SATELLITE DATA.  

 

4.1 INTRODUCTION 

This chapter reports data collection, methods and results of the analysis carried out to define 

high spatial resolution daily air temperature over Italy for the period 2000-2010 using MODIS 

satellite data, meteorological and land use information.  

Although meteorological stations provide accurate air temperature observations, their spatial 

coverage is limited and often insufficient for epidemiological studies. Satellite products have 

the advantage of providing better characterization across space, in terms of spatial resolution, 

compared to ground monitoring networks. In recent years, satellite data have become a valuable 

tool in epidemiology as an alternative source of temperature exposure data and specifically for 

the identification of at-risk areas to heat and high temperatures128,154,303,304.  

Different methodologies have been developed to estimate air temperature (Ta) using satellite 

derived LST26–28,68,305. Among these, statistical approaches based on regression models 

between LST and Ta and a series of independent variables (land use characteristics) have been 

defined26,38,55,68,75,305. Kloog and colleagues used mixed models allowing the regression 

coefficients to define the relation between LST and Ta to vary on a daily basis27,29. These 

models also included meteorological observed parameters, land use spatial covariates and 

spatial smoothing for the prediction of Ta when satellite data was not present27,29. The use of 

mixed models takes into account the relationship between air temperature and LST derived 

from satellite data and those factors that influence both the spatial and temporal differences 
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between the two. Temperatures derived with these methods have been used in epidemiological 

studies with very good results. Kloog et al. used satellite derived air temperature data to study 

the association between birth outcomes and temperatures in Massachusetts, USA222, Lee et al. 

estimated the effect of  heat and cold on mortality in three states of south-eastern USA221, while 

Mehta et al. studied the association between temperatures (means and standard deviations) and 

QT intervals to look into the underlying mechanisms of temperature-related cardiovascular 

disease306.  

The aim of the study was to use MODIS land surface temperature (LST) satellite data, observed 

meteorological data and land use characteristics to estimate daily air temperature with a 

resolution of 1x1km in Italy for the period 2000-2010. The area in study is the Italian peninsula 

and islands of Sardinia and Sicily which overall cover an area of 301.338 km².  Thanks to its 

unique geographical location in the Mediterranean and complex orography, comprised of the 

Alps in the north and Apennines stretching from north to south along the peninsula, Italy has a 

unique and complex climate within a relatively small spatial domain. Italy’s climate ranges 

from Mediterranean along the coast and in central and southern regions, to a more humid 

subtropical climate in the inland northern areas up to the colder continental and tundra climates 

of the Alps.  

Data derived from this methodology will be of great use not only providing exposure with a 

resolution of 1x1km and better spatial coverage of temperature gradients than traditional 

monitoring networks but will allow to make estimates of the health effects of temperature 

extremes in rural, suburban and urban areas with more complex and common methodologies. 
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4.2 METHODS - ESTIMATION OF HIGH RESOLUTION DAILY 

MEAN TEMPERATURE 

4.2.1 Dataset 

The following variables were collected for the period 2000-2010. The spatial unit is the 1x1km 

grid for which LST data is available. Extensive geoprocessing was carried out to attribute all 

spatial and spatio-temporal parameters to the fixed spatial gridded domain starting with the 

LST 1x1km grid for Italy. 

Meteorological data 

Air temperature (Ta) 

Ground-level measurements of Ta were obtained from several sources. Airport standardized 

WMO data was retrieved for 140 monitoring stations from the National Air Force network 

(CNMCA – Centro Nazionale meteorologia e Climatologia Aeronautica Militare) and ENAV 

(Ente Nazionale Assistenti al Volo). Meteorological data for specific Italian regions was 

retrieved from the hydro-meteorological network of the Regional Agencies for Environmental 

Protection (ARPA) in Lombardia, Lazio, Emilia Romagna and Toscana (a total of 457 stations: 

200 in Lombardia, 200 in Emilia Romagna, 33 in Lazio, 24 in Toscana). Additional data, 

mostly from 2006 onwards, from 33 personal stations included in the Weather underground 

network, were also included. The time period in study (2000-2010) was the overlap of all 

weather station data available in the time frame of the data collection phase during the first 12-

18 months of my PhD. The homogenization of data collection from different sources and the 

definition of common parameters to define standardized dataset was a very time consuming 

procedure and it was the first time this was done for Italy. In future, it will allow regular updates 

and homogeneous data processing. The map in figure 4.1 shows the geographical distribution 

of the monitoring stations considered in the study. The distribution of monitors is 
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heterogeneous with more stations in the regions which provided data from the regional 

monitoring networks as well as airport stations. Better data coverage can be observed in the 

north of Italy compared to the south. Furthermore, there is a year-to-year difference in data 

availability with better coverage in the most recent years. It is by no means complete in terms 

of data availability, but it comprises those either available online or made available throughout 

the study period. Again, future updates will potentially allow the inclusion of other regional 

datasets if made available (online or through direct contacts).  
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Figure 4.1. Map of weather stations included in the study. 
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Land surface temperature (LST) and emissivity satellite data 

Daily LST data was retrieved for Italy for the period 2000-2010 at a spatial resolution of 1x1 

km from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board the 

TERRA satellite. TERRA LST and Emissivity (MOD11_L1) products41,52 were used. The 

MODIS LST was derived from two thermal infrared band channels, 31 (10.78–11.28μm) and 

32 (11.77–12.27μm) using the split-window algorithm (Wan, 2008) which corrects for 

atmospheric effects and emissivity using a look-up table based on global land surface 

emissivity in the Thermal Infra-Red (MODIS channels 31–32 or 10,000–12,500 nm) 

region35,47. 

Emissivity also influences LST measurements by causing a reduction of surface-emitted 

radiance. In addition, the anisotropy of reflectivity and emissivity may reduce or increase the 

total radiance from the surface307. Emissivity is a function of wavelength, and is not only 

controlled by water content, chemical composition, structure, and roughness47, but it can also 

vary significantly with plant species, areal density, and growth47. Surface emissivity values are 

available in MOD11_L2 product in MODIS bands 31 and 32 and they are assigned based on 

land cover types52. The MODIS derived radiometric surface temperature corrected for 

atmospheric transmission has been further corrected with spectral emissivity to account for the 

kinetic temperature of the object based on the following equation, as suggested by Kloog et 

al27:   

Tkin = Trad/Emissivity(λ)1/4 

where Tkin is related to the true kinetic surface temperature (and considered LST variable) and 

Trad is the radiant temperature of an object recorded by the sensor. 
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Four tiles of the MOD11_A1 product were downloaded from the NASA Level 1 Atmosphere 

Archive & Distribution System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/search/) 

and clipped to retain the area of Italy, thus comprising a domain of 356,432 1x1km grid cells. 

For each year, daily LST data files were produced. It was decided to use night time LST as the 

reference satellite temperature predictor as it is more stable45 and because solar radiation does 

not influence the thermal infra-red signal and the dataset was more complete. Furthermore, 

preliminary results and previous studies showed that differences in model performance using 

both night time and daytime LST were minimal 29. 

Land use\Land cover data 

A series of spatial indicators, retrieved from different sources, were collected to account for 

the different land use and land cover features which might affect the thermal properties of the 

land surface and air temperatures. This could contribute to improve the performance of the 

prediction model relating Ta to LST at the national level. The indicators are briefly described 

below. 

Normalized difference vegetation index (NDVI): the MODIS NDVI product (MOD13A3) for 

every month and year in the study period was collected with a spatial resolution of 1x1 km. 

Data was downloaded from the NASA LP DAAC website (https://lpdaac.usgs.gov/ ). Monthly 

values were selected as NDVI values are relatively constant within a month. NDVI enables to 

identify vegetated areas and provides a dynamic quantification of the conditions or wellbeing 

of the vegetation as well as an indication of vegetation growth rate. The pigment in plant leaves, 

chlorophyll, strongly absorbs visible light (from 0.4 to 0.7 µm) for use in photosynthesis. The 

cell structure of the leaves, on the other hand, strongly reflects near-infrared light (from 0.7 to 

1.1 µm). The more the foliage, the more IR and red light wavelengths are affected, respectively. 

NDVI is calculated considering two wavelengths: Near infra-red (NIR) due to high reflectance 

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://lpdaac.usgs.gov/
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of leaf structure at NIR, and red wavelengths due to the high sensitivity of leaf pigments to red 

light (Figure 4.2). NDVI varies between -1 and +1; densely vegetated areas will have values 

comprised between +0.3 and +0.8 , bare ground with values closer to zero (0.1-0.2). NDVI is 

important here as although it does not identify type of vegetation it accounts for the radiative 

properties of the vegetative cover observed by the satellite and this influences LST. The model 

includes both NDVI and land cover types giving a more holistic association of the LST and Ta 

based on land cover and radiative properties.  

Elevation: data on elevation was retrieved from the European digital elevation model 

(EuroDEM), a pan-European height dataset in a scale of approximately 1:100 000 (Figure 4.3).   

Corine Land cover data. Static land cover and land use features were retrieved from Corine 

land cover (CLC) database 308 and attributed to the Italian domain. CLC is a map of the 

European environmental landscape based on interpretation of satellite images. It provides 

comparable digital maps of land cover for each country for large parts of Europe, with spatial 

resolution of 250 × 250m. Features were selected to represent both the built environment (% 

low and high development) and vegetation cover (percent of crop, shrub, deciduous, evergreen, 

arable). For each cell the percentage of the area covered by each CLC type was considered in 

the study (Figure 4.4). Land use covariates in terms of vegetative land cover have never been 

included in these models before and data provides a valuable opportunity to test the relationship 

between temperatures and land cover features.  

Impervious surface data was retrieved from NOAA-NGDC global inventory of the spatial 

distribution and density of constructed impervious surface area (ISA)309. Brightness of satellite 

observed night-time lights and population count data are included in the indicator. The 

reference data used in the calibration were derived from 30-meter resolution ISA estimates of 
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the USA from the U.S. Geological Survey. For each 1x1km grid cell the average percent of 

impervious surface was derived (Figure 4.5).  

Population density: the number of inhabitants for each 1x1km grid cell of the Italy domain 

were based on the Italian census 2001 data and considered as measure of population density. 

Census blocks were superimposed on the 1 × 1-km Italy grid and the resident population was 

distributed to each cell based on cell-block intersections, under the assumption of homogeneous 

distribution of the population within census blocks (Figure 4.6).  

Climatic zones: two classification schemes were used: 1) the Köppen climate zones310, and 2) 

a local bio-climatic classification for Italy developed by ISPRA- Istituto Superiore per la 

Protezione e la Ricerca Ambientale. These classifications were attributed to each 1km grid 

(Figure 4.7a-b). The Köppen climatic zones classification is widely used and is based on 

seasonal precipitation and temperature patterns. Italy is characterized mainly by a temperate 

Mediterranean climate especially along the coasts and southern regions. Summers are hot and 

dry, due to the domination of the subtropical high pressure systems and variable rainy weather 

in winter due to the passing of frontal systems. Northern and Apennine regions have a more 

humid continental climate with less seasonal differences in precipitation and cooler winters 

and alpine climates at high altitudes in the Alps.  

Proximity to features: the Country layers (Regions / Provinces / Municipalities, lakes, sea etc) 

were identified in terms of geometry and basic attributes.  

A flag variable for grid cells on the coast and all major lakes was created. These cells were 

excluded from the analyses because satellite retrievals on water bodies are considered to be 

unreliable. 
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Dataset creation was carried out in ArcGIS 10 (ESRI. ArcGIS Desktop: Release 10. Redlands, 

CA: Environmental Systems Research Institute) and SAS (version 9.2). For each of the 

predictor variable, ArcGIS was used to attribute the features to our base grid of 1x1km MODIS 

LST grid.  
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Figure 4.2 Example map of NDVI, may 2010 Italy. 

 
 

Figure 4.3 Map of elevation in meters, in Italy. 
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Figure 4.4. Corine land cover – vegetation in Italy. 

 

Figure 4.5. Map of impervious surfaces in Italy. 
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Figure 4.6. Map of population density in Italy. 

 

Figure 4.7a. Map of climatic zones for Italy. 
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Figure 4.7b. Map of bioclimatic classification of Italy.  
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4.2.3 Statistical modelling 

The mixed model 3-step approach developed by Kloog et al.27,29 was applied to each year in 

the study period to estimate mean daily temperatures across the study domain.  

In the first stage, only cells and days with data available for both Ta and LST were considered. 

Calibration between Ta measurements and satellite LST data was defined by fitting a mixed-

effects regression model with Ta as the dependent variable and LST, spatial and temporal 

parameters as predictors. Furthermore, for each day, random intercepts and slopes for LST 

were estimated to capture the day-to-day temporal variability of the Ta–LST relationship. The 

model was nested by bio-climatic zones to account for the potential heterogeneities in the Ta-

LST calibration across geographical areas.   

The stage 1 model is the following: 

{Taij= (α+µj) + (β1+vj)ntkinij + βDNVIij + βISAi + βElevi + βeveri + βdeci + βcropi + βpasti + 

βshrubi + βarabi + βpop + βpercurban+Ɛij(µj,vj)}k 

(µj,vj)  [(0,0), Σ] 

Where: 

 Taij is the air temperature at site i on day j  

 α+µj are the fixed and random intercepts, respectively 

 Ntkinij is the LST nighttime value in the grid cell corresponding to site i on a day j; 

 β1 and vj are the fixed and day-specific random slopes, respectively 

 NDVIij is the monthly NDVI value in the grid cell corresponding to site i for the month in which 

day j falls 

 ISAi is the mean impervious surface in the grid cell corresponding to site i 

 Elevi is the mean elevation in the grid cell corresponding to site i 

 ever is the percent of evergreen vegetation land cover in the grid cell corresponding to site i 

 dec is the percent of deciduous vegetation land cover in the grid cell corresponding to site i 

 crop is the percent of land cover for crops in the grid cell corresponding to site i 

 past is the percent of land cover for pasture in the grid cell corresponding to site i 

 arab is the percent of arable land cover in the grid cell corresponding to site i 

 shrub is the percent of shrub land cover in the grid cell corresponding to site i 

 pop is the population density  

 percurban is the urban fabric development 

 Σ is an unstructured variance–covariance matrix for the random effects 

 εij is the error term at site i on a day j 

 k is the k-th climatic zone 
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To validate the stage 1 model, a ten-fold out of sample cross validation (CV) was performed. 

Specifically, the dataset was randomly divided into 90% and 10% splits. The model was then 

fitted on the 90% split (training), and predictions were obtained for the remaining 10% split 

(testing). The procedure was iterated 10 times. The 10 testing datasets were finally pooled 

together and the CV-R2 was obtained by regressing observed versus predicted Ta values. 

Finally, the model prediction precision was estimated by taking the root of the mean squared 

prediction errors (RMSPE). 

In order to account for the possible geographical differences in the Ta-LST relationship due to 

differences in monitor characteristics and spatial coverage, the ten-fold out of sample cross 

validation (CV) procedure was also performed by random sampling the monitors (instead of 

the individual records) into 90% and 10% splits.  

For each model, prediction errors were also estimated separately for the temporal and spatial 

components. The temporal R2 was calculated by regressing the difference between observed 

Ta at site i and at time j and the annual mean Ta at the location against the predicted difference 

in daily site Ta and annual predicted Ta at the location. Spatial R2 was calculated by regressing 

the annual overall mean Ta against the mean predicted Ta at site i for each monitoring location. 

Once the stage 1 model was defined, it was used to predict Ta in grid cells without monitors 

but with available LST measurements, this was denoted as the stage 2 model. Since LST values 

are often missing due to cloud cover or retrieval errors, the stage 2 model fails to provide 

predictions for many grid cell-day combinations. The final stage (Stage 3) filled in the 

remaining missing values and produced a full map of Ta predictions, for each day and across 

the spatio-temporal domain. The final stage (Stage 3) fills in the remaining missing values and 

produces a full map of Ta predictions, for each day and 1x1km grid of the spatio-temporal 

domain. Specifically, the third model takes advantage of the association between grid cells LST 
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values with Ta measurements located elsewhere, and the association with available LST values 

in neighboring grid cells was carried out (stage 3). Specifically, for each grid cell, Ta 

predictions obtained from stage 2 were regressed on the daily mean measured Ta (from the 

stations within different sized buffers of that grid cell), land use terms and a smooth 

nonparametric function of latitude and longitude of the grid cell centroid, with random cell-

specific intercepts and slopes. Buffers of (5, 10, 30, 50, 100km) were calculated and the 

procedure was re-iterated for each distance buffer. This is similar to universal kriging, by using 

Ta measurements from nearby grid cells to help fill in the missing. However,  it provides 

additional information about the Ta in the missing grid cells that simple kriging would not. 

Considering the spatial patterns of Ta vary temporally, a separate spatial surface was fit for 

each two- month period. In contrast to stage 2, the stage 3 model includes cell-specific random 

intercepts and slopes, which allows for temporal and spatial interpolation for each grid cell. 

That is, we could use the random effects for a grid cell to help impute Ta data of this cell for 

days when Ts measurements were unavailable. At the end of the process, daily Ta predictions 

will be available for all squared kilometers which provided data from stage 1, 2, and 3 in Italy 

and for each day and year included in the period 2000-2010. 

Descriptive statistics and the performance of the model (R2, RMSPE, spatial and temporal 

statistics) for each year and each stage are reported in the following section. Geographical and 

temporal differences were also explored. 

Dataset creation was carried out in ArcGIS 10 (ESRI. ArcGIS Desktop: Release 10. Redlands, 

CA: Environmental Systems Research Institute) and SAS (version 9.2). Statistical modelling 

was performed in R (version 3.1.2) (R Development Core Team; http://R-project. org). 
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4.2.4 Model validation 

To further validate results, weather forecast mean temperature data from the RAMS - Regional 

Atmospheric Modelling System model 311, with a spatial resolution of 4x4km, for central Italy 

for 2005 only were considered. One day RAMS air temperature forecast is shown as example 

in figure 4.8. This model is typically used by regional environment agencies for both numerical 

weather prediction and air pollutant dispersion modelling. Average daily RAMS Ta data was 

compared to Ta predicted from the 3 stage model.  Each 1x1km grid was matched to the nearest 

4x4km RAMS grid cell, all the cells falling within the RAMS grid cell were averaged and 

temperature values were compared with the RAMS forecast temperature.  
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Figure 4.8. Map of RAMS mean Temperature forecast spatial coverage, example of one 

day air temperature forecast, 5/7/2005 

 

  



80 
 
 

4.3 RESULTS 

For each year and each stage of the analyses, datasets comprised of satellite data, observed 

temperature data from weather stations and land use/land cover spatial predictors. Stage 1 files 

include only grid cells with temperature monitors and days with available Ta and LST 

retrievals. Approximately, each year the file consisted of 60,000 records. Stage 2 and 3 files 

encompass the entire Italian domain, for a total of 356,432 grid cells. Stage 2 only included 

days with available LST data, for a total of around 60,000,000 records. In contrast, Stage 3 was 

the full spatio-temporal dataset, consisting of 356,342 x 365 (130,000,000) records.  

Considering the entire spatial domain for Italy (356,342 grid 1x1km squares) each year around 

50% of the LST data was missing due to retrieval error or cloud cover (Table 4 Appendix). 

This varied by season and by year. Winter months had the highest number of missing values 

(around 60%) mainly due to cloud cover, while summer had the lowest number of missing 

values with around 34% (Table 4.7). No specific geographical pattern of missing data were 

observed.  

Firstly, Pearson correlations between air temperature and the land surface data were calculated 

for the entire series annually and by season (Table 4.1). The correlation between air 

temperature and land surface temperature was very high, with values above 0.9 for the entire 

year. Slightly stronger correlations were observed between night-time LST and mean Ta 

(0.948) compared to daytime values (0.917). Correlations by season showed slightly lower 

values, with night time LST and air temperature correlations remaining more stable by season 

(winter=0.83, summer=0.81).  
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Table 4.1. Correlation coefficients between air temperature (Ta), Land surface 

temperature (LST) and Kinetic surface temperature (Tkinetic) period 2000-2010. 

    Air Temperature (Ta) 

    Annual Summer  Winter 

DAY 
LST 0.9172 0.7207 0.8068 

Tkinetic 0.9170 0.7206 0.8067 

NIGHT 
LST 0.9487 0.8207 0.8332 

Tkinetic 0.9487 0.8203 0.8332 

 

A scatter plot of the daily recorded air temperature and night-time Kinetic temperature (LST 

night) for 2010 is shown in figure 4.9, in which a very good correlation between pairs is 

observed, especially in the higher range of temperatures. 

Correlations between air temperature and spatial predictors\covariates are shown in table 4.2. 

Elevation and vegetated land surfaces (deciduous forest, pasture, shrub, arable and crop) were 

all inversely correlated with temperature, thus meaning that with altitude and in presence of 

more vegetated surfaces temperatures are lower. This is consistent by season as well. The only 

vegetation land cover covariate that gives an inverse correlation with temperature is evergreen 

trees, this could be associated with elevation in Alpine areas (higher temperatures below tree 

line compared to mountain peaks or bare ground) specifically. Studies on forest coverage and 

LST have observed similar patterns of warming in presence of forests with tall trees for 

latitudes similar to ours or cooler areas with climates comparable to the Alpine regions of 

Italy312,313. In contrast, temperatures increased in highly populated areas, over impervious 

surfaces and with high urban development. These spatial predictors should aid in capturing 

both the urban and rural thermal characteristics, as well as the differences in the Ta-LST 

relationship over different surfaces and land use surfaces. NDVI had a seasonal pattern with a 

positive association with Ta in winter and a negative association in summer. This is consistent 

with previous studies where the relationship between NDVI and temperature was shown to be 
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not linear, varied seasonally and was dependant on the type of vegetative cover, ecosystem 

type and soil moisture 26,27,45. NDVI measures the health of vegetation and this has per se a 

seasonal pattern, in the growing season values will be higher while in winter NDVI values will 

be lower.  

Table 4.2. Correlation between air temperature and spatial predictors, 2010.  

 

 

The final stage 1 model was nested by climatic zones and included LST, NDVI, elevation, 

impervious surfaces and population density, different land cover vegetation types (crop, arable, 

shrub, deciduous, evergreen coniferous forests) as predictors. These groupings (urban 

development features (pop. density, impervious surfaces, high/low development), vegetation 

cover), were all selected a priori and model fit criteria evaluated including\excluding groupings 

and not single variables. This was done under the assumption that vegetation land cover across 

space could influence thermal properties and daily patterns hence could all give a specific 

contribution.  The model also contained random intercepts by day and random slopes for LST 

each day. NDVI and elevation were included as natural spline variables with 3 degrees of 

freedom.  

Annual Summer Winter

Elevation -0.3607 -0.6701 -0.5718
Impervious surface 0.1288 0.2460 0.2499
Population density 0.1050 0.1972 0.2006
% high development 0.0566 0.1818 0.067
%low development 0.0596 0.1242 0.0514
NDVI 0.1276 -0.4401 0.1745
% deciduous -0.1271 -0.2915 -0.2111
% evergreen 0.1173 0.1731 0.2684
% pasture -0.3599 -0.392 -0.6484
% shrub -0.1017 -0.1314 -0.1517
% crop -0.0078 -0.0659 0.0494
A2 and A3 roads 0.0610 0.1246 0.1617
minor roads 0.0979 0.195 0.1872

Air Temperature (Ta)
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Figure 4.9b shows the scatterplot of the observed and predicted air temperature data from the 

final stage 1 model for 2010. As expected, the association between air temperature and the 

main explanatory variable (surface temperature) was highly significant. Predicted Ta from the 

calibration model was more similar to observed Ta compared to the original LST data (Figure 

4.9a). Calibration model performances are summarized in table 3 with out-of-sample fits 

confirming the very good performance, with an average R2 of 0.962 and 0.959 respectively in 

the 10-split Cross validation (CV) and 10-split by monitor CV. The spatial and temporal cross-

validated results also showed an excellent performance, with average spatial R2 of 0.88 and 

temporal R2 of 0.97 (Table 4.3). Prediction errors were very small, with a RMSPE of 1.6°C for 

both CV methods (by individual records and by monitors), while the spatial RMSPE was 

between 1-1.2°C for both CV approaches.  Prediction errors were smaller than those found in 

previous studies 29,45,75.  
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Figure 4.9a-b. Scatter plot of (a) mean air temperature and night time kinetic surface temperature and (b) observed and predicted air 

temperature data for all grid cells where monitors are located, Stage 1 model, 2010 

a)  b) 

 

 



76 
 
 

Table 4.3 Stage 1 prediction accuracy. Ten fold cross-validated (CV) results with random and by-monitor cross validation. 

 

  CV  random splits CV monitor splits 

 YEAR R2 RMSPE   spatial 
R2 

spatial 
RMSPE 

temporal 
R2 

R2 RMSPE   
spatial 

R2 
spatial 
RMSPE 

temporal 
R2 

2000 0.949 1.544   0.934 1.035 0.964 0.942 1.660   0.913 1.275 0.963 
2001 0.963 1.552  0.897 1.029 0.976 0.961 1.611  0.846 1.125 0.976 
2002 0.956 1.622  0.903 1.105 0.971 0.956 1.641  0.885 1.263 0.971 
2003 0.969 1.634  0.876 1.218 0.981 0.962 1.788  0.873 1.256 0.979 
2004 0.958 1.676  0.901 1.048 0.969 0.951 1.802  0.849 1.156 0.967 
2005 0.970 1.518  0.898 1.109 0.981 0.965 1.631  0.869 1.283 0.981 
2006 0.966 1.563  0.898 0.990 0.977 0.966 1.569  0.886 1.035 0.978 
2007 0.958 1.565  0.882 1.010 0.971 0.958 1.603  0.873 1.002 0.970 
2008 0.964 1.507  0.896 0.963 0.975 0.964 1.522  0.867 1.066 0.978 
2009 0.954 1.851  0.842 1.597 0.964 0.954 1.852  0.800 1.893 0.967 
2010 0.972 1.416   0.908 0.945 0.981 0.972 1.388   0.910 0.947 0.981 

AVERAGE 0.962 1.586   0.894 1.095 0.974 0.959 1.642   0.870 1.209 0.974 
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Table 4.4. Stage 3 model predictive accuracy and mean annual temperatures. Comparison between observed and predicted air temperature 

expressed as R2 coefficient, RMSPE, spatial and temporal components.   

 

      Spatial Temporal Temperature 

Year R2 RMSE R2 RMSE R2 RMSE Mean SD 

2000 0.978 1.012 0.952 1.030 0.996 0.410 14.7* 7.2* 
2001 0.984 1.031 0.905 0.970 0.997 0.415 12.8 8.3 
2002 0.980 1.106 0.918 1.017 0.995 0.490 12.8 8.3 
2003 0.984 1.155 0.862 1.296 0.997 0.508 13.2 9.1 
2004 0.980 1.167 0.908 0.996 0.993 0.646 12.4 8.0 
2005 0.985 1.065 0.917 0.985 0.996 0.511 11.9 8.5 
2006 0.984 1.073 0.904 0.946 0.996 0.499 12.6 8.2 
2007 0.981 1.056 0.898 0.932 0.995 0.525 13.0 7.7 
2008 0.984 1.012 0.907 0.906 0.996 0.479 12.7 8.0 
2009 0.978 1.292 0.910 1.194 0.988 0.882 13.0 8.4 
2010 0.988 0.908 0.926 0.843 0.998 0.373 12.1 8.4 

Average  0.982 1.080 0.910 1.010 0.995 0.522 12.6 8.3 
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The stage 1 model was then used to predict air temperature in all the grid cells where satellite 

data was available for each year. Stage 2 model datasets are by no means complete, but a good 

indication of the spatial distribution of temperatures across Italy was achieved. The stage 3 

model filled the missing values to have a complete dataset.  Overall the final model 

performance (non-cross validated) was very good, with an average R2 of 0.982 and an average 

RMSPE of around 1°C, with equally good spatial and temporal model performances (table 4.4). 

Annual average mean temperatures were comprised between 11.9 and 13.2°C with a standard 

deviation (SD) of 7.7-9.1°C in the years 2001-2010. The first year in study (2000) had slightly 

higher values as it only comprises only data from April to December.  

Maps of the average annual temperature over Italy (2000-2010) are shown in Figures 4.11-4.21 

at the end of the section. Temperature varied considerably over the Italian peninsula, even 

across small spatial scales due to its unique location in the Mediterranean Sea and its complex 

orography, which influences both daily weather patterns and local climate. Considering the 

different climatic zones (Figure 4.8a-b), the model performance was also very good and small 

differences can be observed with greater model performance variation in the spatial domain 

compared to the temporal component (table 4.5-4.6). Average mean temperature distributions 

for each climatic zone were coherent with climatic characteristics; with cooler temperatures in 

Alpine and Apennine regions and hotter temperatures in Mediterranean climate regions (data 

not shown), however to evaluate climate in a coherent manner other meteorological parameters, 

in particular rainfall are necessary.  

Major cities and urban areas can be detected, especially in the Po valley (Turin, Milan, 

Bologna, Florence), Rome and Naples (Figures 4.11-4.21). Considering urban-rural 

differences, the model had a slightly better predictive capacity in urban areas, with lower 

RMSPE compared to suburban and rural areas (R2 urban = 0.971, RMSPE=1.336°C vs R2 
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rural=0.961, RMSPE=1.643°C). Noteworthy that the spatial component of the model also had 

a better fit in urban areas (R2 urban=0.696, RMSPE=0.839°C vs R2 rural=0.883, 

RMSPE=1.064°C), reflecting the more homogeneous terrain in terms of thermal characteristics 

compared to rural or suburban areas. The temporal component was similar in urban and rural 

areas.  

Temporal variation by year can also be observed in terms of model performance possibly 

reflecting annual climatic conditions.  Model fit by season also showed slight variations with 

higher R2 and smaller RMSPE in autumn (September-November) and spring (March-May), for 

both spatial and temporal components (Table 4.7). Figure 4.10 shows as example year of 

summer (June-August) and winter (December-February) mean temperatures across Italy. 

Figure 4.10. Final model predicted air temperature. Summer (June-August) 2003 and winter 

(December-February) 2010 in Italy. 
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Table 4.5. Stage 3 model fit by bio-climatic zone in Italy 2001-2010.  

 

 

 

 

 

 

 

Table 4.6. Stage 3 model fit by Köppen climatic zones in Italy 2001-2010.  

  R2 Slope Intercept RMSPE 
spatial 

R2 
spatial 
RMSPE 

temporal 
R2 

temporal 
RMSPE 

Cfa - Humid subtropical climate 0.957 1.005 -0.113 1.754 0.609 0.963 0.968 1.467 
Cfb - Temperate oceanic climate 0.968 0.997 0.093 1.466 0.831 0.913 0.979 1.144 
Csa - Mediterranean climate hot summer 0.935 0.989 0.418 1.809 0.735 1.173 0.962 1.340 
Csb -  Mediterranean climate warm summer 0.944 1.004 -0.087 1.850 0.818 1.319 0.961 1.431 
Dfb -  Humid continental climate warm summer 0.944 1.005 -1.390 2.358 1.000 0.073 0.931 2.235 
Dfc - Subartic climate 0.929 0.938 0.287 2.811 0.990 0.714 0.882 2.685 
ET - Tundra climate – Alpine 0.936 0.964 -0.467 2.307 0.895 1.036 0.937 2.094 

 

Climate zones R2 Slope Intercept RMSPE 
Spatial 

R2 
Spatial 
RMSPE 

Temporal 
R2 

Temporal 
RMSPE 

Alpine Ridge 0.917 0.982 0.079 2.934 0.900 1.715 0.927 2.262 
Po Valley 0.962 1.001 0.088 1.675 0.698 0.722 0.970 1.489 
High Adriaticum 0.977 1.001 -0.003 1.225 0.556 0.620 0.983 1.054 
Appennine 0.964 0.997 0.024 1.504 0.818 0.968 0.977 1.174 
N. Tyrrenian 0.966 1.010 -0.231 1.395 0.868 1.059 0.975 1.132 
S . Tyrrenian 0.905 0.988 0.200 2.224 0.663 1.622 0.970 1.218 
Low Adriaticum 0.920 0.999 0.285 2.088 0.647 1.392 0.957 1.477 
S. Italy and Sicily 0.926 0.980 0.752 1.800 0.787 0.935 0.936 1.606 
Sardinia 0.945 0.993 0.434 1.623 0.887 0.957 0.953 1.415 
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Table 4.7. Stage 3 model predictive accuracy by season, 2001-2010.  

 

 
*Winter (December-February), Spring (March-May, Summer (June-August), Autumn (September-November) 

 

Season R2 RMSPE
Spatial

R2

Spatial

RMSPE

Temporal

R2

Temporal

RMSPE

missing 

LST*

Winter 0.840 1.792 0.853 1.109 0.822 1.402 63%
Spring 0.921 1.623 0.865 1.024 0.939 1.250 53%
Summer 0.832 1.693 0.839 1.147 0.822 1.257 34%
Autumn 0.925 1.576 0.861 1.042 0.943 1.186 52%
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Figure 4.11. Annual mean predicted air temperature, 2000 Italy.  

 

Figure 4.12. Annual mean predicted air temperature, 2001 Italy.  
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Figure 4.13. Annual mean predicted air temperature, 2002 Italy.  

 

Figure 4.14. Annual mean predicted air temperature, 2003 Italy.  
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Figure 4.15. Annual mean predicted air temperature, 2004 Italy.  

 

Figure 4.16. Annual mean predicted air temperature, 2005 Italy. 
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Figure 4.17. Annual mean predicted air temperature, 2006 Italy. 

 

Figure 4.18. Annual mean predicted air temperature, 2007 Italy. 
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Figure 4.19. Annual mean predicted air temperature, 2008 Italy. 

 

Figure 4.20. Annual mean predicted air temperature, 2009 Italy. 
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Figure 4.21. Annual mean predicted air temperature, 2010 Italy. 
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4.3.1 Model Validation 

External model validation with RAMS forecast data for 2005 confirmed the very good model 

fitting with an overall R2 of 0.95 and RMPSE 1.8°C. Figure 4.22 shows the correlation between 

RAMS forecast temperature data and satellite modelled temperature. The seasonal 

performance was also tested and better prediction results where observed in autumn and spring 

(R2=0.92) and least in winter R2=0.74) with RMSPE between 1.6-1.9°C. This is not surprising 

as winter variability and local atmospheric dynamics like thermal inversions could not be 

depicted by satellite data which does not take into account atmospheric dynamics. Overall, the 

temperature daily distribution showed an excellent fit between the two datasets (Figure 4.23). 

Figure 4.22 Scatter plot of mean air temperature predicted by RAMS and stage 3 model 

predicted air temperature for 2005 in central Italy. 
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Figure 4.23. Temperature distribution for a single 1x1km grid cell, 2005.  

 

  

°C 
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4.4 DISCUSSION  

The methodology developed provides estimates of daily temperature across the whole of Italy 

for an 11 year period (2000-2010) with excellent model performance (mean R2 =0.982 and 

mean RMSPE= 1.08°C). The model was able to estimate temperatures in the different climatic 

zones of Italy taking into account the complex orography and local climates as well as 

distinguishing between urban, suburban and rural areas and their thermal conditions. This is 

the first dataset with such a high spatial and temporal resolution for the whole Italian domain 

and will be of great importance for both environmental and epidemiological studies. The 

satellite derived temperature data was used to estimate the health effects of heat in the Lazio 

region in both urban, suburban and rural areas presented in the next section. These new 

estimates are very important in Italy as every year heat has a significant impact in terms of 

attributable deaths.229,314  High resolution air temperature maps can provide policy makers with 

a more detailed spatial distribution of heat risk for both rural and suburban areas where 

evidence and data has been limited to date. Furthermore, within urban areas, thermal 

distribution maps and the UHI phenomenon can also be observed. The methodology is 

transferable to other regions and contexts, and conversely to previous applications it shows it 

can capture different climates even when land-use characteristics vary across over relatively 

small distances.  

Furthermore, the spatio-temporal satellite temperature exposure derived from this approach can 

be used as a covariate in other studies in which temperature is a confounder or effect modifier 

of the exposure, such as air pollution 315.  

However, it is worth mentioning some limitations. The methodology is far from simple and 

requires a great amount of input data with a good spatial and temporal resolution to derive air 

temperature. Satellite data availability can be an issue in some areas of the world due to missing 
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data (primarily due to cloud cover) or limited spatial or temporal coverage of specific satellite 

data products. However, considering model performance the potential benefits compared to 

currently available air temperatures from monitoring sites is considerable and the methodology 

is transferable to other contexts,  accounting for local climatic and land use characteristics.  

This methodology is strongly dependent on observed data from monitoring networks especially 

to capture daily temperature differences28,64, without meteorological data the model 

performance would undoubtedly be lower. The uneven distribution of monitoring sites 

available in this study could have influenced the goodness of fit of the models in some zones 

which are under-represented (such as in the south or at high altitudes). This can be partially 

solved by the extension of non-conventional monitoring stations in recent years which provide 

a useful source of information. However, the quality of monitoring data in this case may 

potentially be lower compared to standard WMO or regional monitoring networks. In the 

future, the retrieval of additional data from regional monitoring networks might help improve 

model accuracy in these areas.  The study shows that even using different sources of data with 

a heterogeneous spatial coverage estimates had a high accuracy, suggestive of an additional 

value of the method and use of different meteorological data. 

Further analysis using finer spatial resolution satellite data can be carried out to capture the 

thermal differences within medium and small sized areas to better capture thermal gradients 

across space. The data can be fused with finer scale satellite data in order to study the complex 

spatial land use patterns within urban areas137,316–318.  

In conclusion, the study shows that LST satellite data can be used reliably to predict high 

resolution daily air temperature over complex terrain even in days with missing satellite data. 

Spatio–temporally resolved Ta data for an 11-year period can be used for a variety of 

environmental epidemiological studies in Italy. The data provide an important contribution also 



92 
 
 

for future climate change, not only for the monitoring of changes in temperature at the national 

level but also for the estimation of high resolution temperature-related future impacts on health. 
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CHAPTER 5 – SHORT-TERM EFFECTS OF 

HEAT ON MORTALITY AND HOSPITAL 

ADMISSIONS IN THE LAZIO REGION.  
 

This chapter presents the time series analysis carried out to estimate the effects of heat on 

mortality and hospital admissions in the Lazio region in rural, suburban and urban areas with 

high resolution Ta defined in chapter 4. Datasets, methods and results are presented, followed 

by a brief discussion on research findings.  

5.1 INTRODUCTION 

The acute effects of heat and extreme temperatures on health outcomes (mortality and hospital 

admissions) have been studied in detail in Italian cities8,191,193,319,320. Multi-city national studies 

and international studies have shown the heterogeneous effect of heat within Italian cities due 

to the local climate and population characteristics161,179,208.  A case crossover study carried out 

in 4 major Italian cities (Rome, Milan, Turin and Bologna) found overall OR of 1.34 (95%CI: 

1.27–1.42) for a 10°C temperature increase.179 Furthermore, a multi-country study showed that 

Italian cities had the highest risks , with increase in mortality ranging between 10% and 28% 

for increase in mean temperature between the 90th and 99th percentile191. However, research 

has been limited to urban areas and little is known on the effects of heat in suburban and rural 

communities. This is primarily due to the limited or non-existent monitoring stations in rural 

and suburban areas and the limited number of daily deaths that would be a caveat for statistical 

power in traditional time series analysis. Satellite derived high-resolution Ta defined in chapter 

4 provided exposure data for the entire Lazio region at municipal level. The study aimed to 

estimate the heat effects in urban, suburban and rural settings of the Lazio region and to 

compare effect estimates of municipalities by size, in terms of both population, and urban 
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characteristics.   

 

5.2 METHODS 

5.2.1 Dataset 

The study area comprises the Lazio Region located in central Italy, with an area of 17,242 km2; 

it has borders with Tuscany, Umbria, and Marche to the north, Abruzzo and Molise to the east, 

Campania to the south, and the Tyrrhenian Sea to the west. The region is mainly flat and hilly, 

with small mountainous areas in the east and south east going towards the Apennines. 

It’s population is of almost 5.9 million inhabitants – making it the second most populated 

region of Italy. The capital city is Rome, which is also the capital of Italy and the largest city 

in the country with over 2.8 million residents. The population of Rome makes up around half 

of the regional population.  

Study units are the 376 municipalities of the Lazio region, population (reference year 2006) of 

the municipalities is comprised between 117 and just over 120,000 inhabitants (Figure 5.1). 

Rome was considered separately due to its population size and geographical extent. It was 

subdivided considering the 155 urbanistic zones, reference population data for the urbanistic 

zones was not available (Figure 5.2).  

Daily mortality data and hospital admissions data were selected as health outcomes as the 

evidence in the literature on the association between these outcomes and temperatures was 

more consistent.5,6,12,157,243  Furthermore, the choice was driven by data availability for the 

entire period under study. The emergency room visit registry is comprehensive for the Lazio 

region from 2004 onwards, while ambulance calls are not in a standardized format at regional 

level and only have partial coverage.  

https://en.wikipedia.org/wiki/Tuscany
https://en.wikipedia.org/wiki/Umbria
https://en.wikipedia.org/wiki/Marche
https://en.wikipedia.org/wiki/Abruzzo
https://en.wikipedia.org/wiki/Molise
https://en.wikipedia.org/wiki/Campania
https://en.wikipedia.org/wiki/Tyrrhenian_Sea
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Figure 5.1 Map of Municipalities in the Lazio region.  

 
 

 

Figure 5.2 Map of urbanistic zones of Rome.  
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5.2.2 Exposure 

From the 1x1km gridded daily mean Ta predicted for the entire Italian domain, the average 

temperature for each municipality in the Lazio region was calculated. Using ArcGIS the 

intersection of all 1x1km gridded squares were attributed to a municipality and areas in each 

municipality calculated. In this way, it was then possible to calculate an average temperature 

for each municipality weighted by the proportion of area of each grid cell. For the Municipality 

of Rome which occupies an area of 1287.4 km2, a weighted average temperature would have 

greatly compressed the distribution of mean temperature, hence the average temperature was 

estimated for each of the 155 urbanistic zones of the city. The process carried out for the other 

municipalities in Lazio was re-iterated to calculate the average mean temperature for each of 

the 155 zones in Rome. 

5.2.3 Mortality Dataset 

Daily death counts for each municipality were extracted from the Lazio regional mortality 

registry (SIM) for the period 2001-2010. Total natural (International Classification of Diseases, 

9th– ICD 9: 1-799), cardiovascular (ICD9 : 390-459) and respiratory causes (ICD9 : 460-519) of death 

for the resident population dying within the municipality were calculated for each unit in the 

period 2001-2010. 

For Rome, daily deaths were extracted from the Rome mortality registry (RENCAM), and daily 

mortality counts were calculated by urbanistic zone. Again causes of death were grouped by 

natural (International Classification of Diseases, 9th– ICD 9: 1-799), cardiovascular (ICD9: 390-459) 

and respiratory causes (ICD9: 460-519) of death. Only events occurring among the resident 

population and dying in Rome in the period 2001-2010 were considered.  
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5.2.4 Hospital Admissions Dataset 

Similarly, to mortality data, hospital admission data for the Lazio region was retrieved from 

the regional hospital admissions registry (SIO) for the period 2001-2010. Daily hospital 

discharge data for natural (International Classification of Diseases, 9th– ICD 9: 1-799), 

cardiovascular (ICD9: 390-459) and respiratory causes (ICD9: 460-519) were extracted and daily 

counts for each municipality in Lazio and for the urbanistic zones in Rome were computed. The 

hospital admissions dataset was restricted to subjects aged 35 years and over.  

5.2.5 Dataset construction by spatial units  

The unit of aggregation for both exposure and health outcomes are the 376 municipalities in 

the Lazio region and the 155 urbanistic zones in Rome. The Pontine islands were excluded as 

Ta was not defined. To carry out the time series analysis, municipalities were aggregated based 

on population size using the national institute of statistics (ISTAT) (www.demoistat.it) 

population data for year 2006. This year was chosen as it is the central year in the study period. 

The following aggregations were made based on the distribution of the population in 

municipalities of the Lazio Region accordingly:  

 small municipalities with a population smaller than 15,000 inhabitants,  

 medium size municipalities with a population between 15,000 – 40,000 inhabitants, 

 large municipalities with a population size greater than 40,000 -120,000 inhabitants 

 Lazio capital : Rome (2.7 million residents) 

With this subdivision 326 municipalities were classed as small, 35 as medium and 14 as large. 

The spatial distribution is shown in figure 5.3. The Rome municipality was treated separately.  

http://www.demoistat.it/
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Figure 5.3. Spatial distribution of population in classes among the municipalities of the 

Lazio Region.   

 
 

Secondly, to account for the extent of high and low development within each municipality and 

their role in modifying the thermal characteristics of the spatial units, Corine land cover 

artificial surfaces, urban fabric classes were considered. Specifically: “continuous urban 

fabric” (code 111) where up to 80% of the land surface is covered by impermeable features 

such as buildings, roads and artificially surfaced areas and “discontinuous urban fabric” (code 

112), which account for continuous and discontinuous urban development, were considered in 

each municipality (described in section 4.2.1). These categories exclude large industrial sites, 

airports and ports. For each municipality the areas covered by high and low development were 

calculated and the sum of the area for each municipality was defined as urban and then 

percentage of urbanization was calculated dividing by the total area of the municipality.  All 
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the municipalities in the Lazio region (excluding Rome) were then grouped into the following 

3 classes based on the variable distribution: 

 Low percent urban (below the median): % urban <1.5% 

 Medium percent urban (between median and 75th percentile): >=1.5% to 3.5% 

 High percent urban (above 75th percentile): >3.5% 

Spatial distribution is shown in figure 5.4 

For Rome the same classification, using Corine land cover continuous and discontinuous 

urban fabric high and low development was calculated for the 155 urbanization zones. 

Specifically defining the area covered by low and high development, then summing the two 

and finally dividing by the total area of each municipality to obtain the percentage of 

urbanization in each of the 155 zones of Rome. The zones were then grouped into the 

following 3 classes based on the variable distribution: 

 Low percent urban (below the median): % urban <57% 

 Medium percent urban (between median and 75th percentile) : >=57 to 82% 

 High percent urban (above 75th percentile): >82% 

Spatial distribution is shown in figure 5.5. The difference in distribution in urbanization in 

Rome and in the other municipalities justifies the choice of separating the two (table 5.1). It 

can be observed that the 99th percentile of the Lazio distribution corresponds to the 5th 

percentile for Rome.  

Thirdly, to consider all anthropogenic surfaces, and not just urban development, ISA indicator 

of impervious surfaces (described in section 4.2.1) was also considered for each municipality, 

again treating Rome separately from the other municipal units in the Lazio Region. From the 
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original raster file, ISA was attributed as the mean of all the 1x1km grid cells included for 

each areal unit.  

For the Lazio municipalities the zones were then grouped into the following 3 classes based 

on the ISA distribution: 

 Low ISA (below the median): ISA <1.3 

 Medium ISA (between median and 75th percentile) : >=1.3 to 2.4 

 High ISA (above 75th percentile): >2.4 

For Rome the same classification, using ISA was developed for the 155 urbanization zones. 

The zones were then grouped into the following 3 classes based on the ISA distribution for 

Rome municipality: 

 Low ISA (below the median): ISA <50 

 Medium ISA (between median and 75th percentile) : >=49.5 to 76.6 

 High ISA (above 75th percentile): >76.6 

Spatial distribution of impervious surface for Rome and municipalities in the Lazio region are 

shown in Figures 5.6 and 5.7. For ISA the median value for Lazio corresponds to the 1st 

percentile in Rome (table 5.1).  

The table also highlights that the two variables are somewhat different and represent different 

land cover anthropogenic characteristics. 
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Table 5.1 Distribution of percentage of urbanization and impervious surfaces in the 

Municipalities of the Lazio Region and for the urbanistic zones in Rome. 

  Percentile distribution 

  1 5 10 25 50 75 90 95 99 

Percent Urban          

Lazio  0 0 0 0 1.5 3.5 8.1 12.6 22.5 
Rome 0 22.5 4.1 17.3 57.4 82.6 94.3 97.0 100 

Impervious surface (ISA)          

Lazio  0.4 0.5 0.7 0.9 1.3 2.4 4.8 7.2 14.4 
Rome 1.3 5.8 8.9 25.5 49.5 76.6 99.6 100 100 
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Figure 5.4 Spatial distribution of urban development in the Lazio region.  

 

Figure 5.5 Spatial distribution of urban development in Rome.  
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Figure 5.6 Spatial distribution of impervious surfaces in the Lazio region.  

 

Figure 5.7 Spatial distribution of impervious surfaces in Rome.  
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5.2.6 Statistical modelling.  

Time series analysis of the short-term effect of heat  

The association between cause-specific mortality/hospitalizations and daily Ta was evaluated 

considering a pooled time-series analysis at regional level (entire Lazio region), by combining 

the time series of 375 municipalities of Lazio (excluding Ponza and Ventotene) and the 155 

urbanistic zones of Rome.  

Study design 

Time series are sequences of data indexed by time units (days in the present analysis). For each 

day, counts of deaths/hospitalizations were related to average population exposure, while 

accounting for potential time-varying confounders, first of all long-term and seasonal time 

trends. This kind of study is considered a quasi-experimental study design because the contrast 

(in both exposure and outcome) is performed within the same study population over time. Since 

time trends are adjusted for in the modelling phase, it follows that fixed population 

characteristics, or factors that vary slowly, over time (such as smoking rates, prevalence of 

cardiovascular diseases, age distribution structure, BMI, SEP etc.) cannot confound the 

association between (short-term) exposure to daily temperatures and mortality/morbidity 

outcomes. The only putative confounders to be accounted for, in addition to time trends, are 

those factors which might co-vary in the short-term together with both the exposure 

(temperature) and the outcome (daily count of deaths/hospitalizations). These will be described 

later under the paragraph “confounding adjustment”. 

In the present study, for each spatial unit (municipality, urbanistic zone), daily Ta predictions, 

derived in section 4, at 1x1 km resolution, were averaged to obtain daily mean Ta exposures. 

Furthermore, as the focus of this study was on the effects of summer temperatures, only events 
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occurring between May and September were included in the analysis. An over-dispersed 

Poisson conditional regression model was defined 321 in which the dependent variable was the 

daily count of (cause-specific) deaths or hospital admissions, the exposure was the (lagged) 

daily mean Ta, and the model was adjusted for other time-varying confounders described later. 

This study will be one of the first studies to provide effect estimates of heat on health outcomes 

in rural, suburban and urban settings considering a high resolution Ta exposure. 

Exposure modelling 

In order to account for the lagged non-linear association between high temperatures and health 

outcomes a distributed-lag non-linear model (package dlnm in R) was used276,322. This model 

defines a two-dimensional function, the cross-basis, which incorporates both non-linear curves 

for the exposure-outcome relationship and lagged effects of the exposure on the outcome.323 

On the basis of the literature, a maximum lag of three days was set a priori and then allowed 

for non-linearity by fitting b-splines of the (lagged) temperature-outcome relationship with 3 

degrees of freedom. After exploratory analyses, I chose to report results for mortality and 

hospital admissions outcomes at cumulative lag 0-3. Results are reported as rate ratios (RR) 

and 95% confidence interval, for temperature increases between the 50th to the 75th, 50th to the 

99th and 50th to the 99.9th percentiles of temperature distribution by spatial aggregation to 

account for the response to area-specific temperatures under the assumption that local 

populations are acclimatized to their own specific climate. For simplicity in commenting results 

risks were described as relative risks.  

Confounding adjustment 

Confounders included in the multivariate regression model were: a) long-term and seasonal 

time trends specific for each spatial unit, b) holidays, and c) summer population decrease. 
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Specific time trends for each municipality (Lazio) and urbanistic zone (Rome) were added to 

the model to account for potential time-trends in the baseline rates within each spatial unit. In 

the conditional Poisson analysis, time trend was adjusted for by conditioning a four-way 

interaction term among spatial unit, year, month and day of the week 324. This approach is 

analogous to a case-crossover “time-stratified” study design, nested within each area level 324. 

Holidays were identified with a dummy variable assuming value 1 during national/local 

holidays and 0 otherwise. Summer population decrease was accounted for by use of a three-

level variable assuming value 2 in the 2-week period from 1-15th August; value 1 from 16th 

July to 31st of August, except for the aforementioned two-week period, and 0 for all other 

summer days. Both terms were modelled using indicator variables. 

Statistical model 

The following formula, as reported in Armstrong et al. 321 summarizes the statistical model: 

𝑌𝑖,𝑠|𝑌.,𝑠~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙({π𝑖}),     π𝑖 =
𝑒𝑥𝑝{∑ 𝑓 ∗ 𝑤(𝑥𝑡−𝑙,

𝐿
𝑙=0 𝑙) + 𝛃𝑇𝑥𝑖}

∑ 𝑒𝑥𝑝{∑ 𝑓 ∗ 𝑤(𝑥𝑡−𝑙
𝐿
𝑙=0 , 𝑙) + 𝛃𝑇𝑥𝑖}𝑗∈𝑆

   

where: 

 Yi,s, the count of events (cause occurring on day i belonging to stratum s, is assumed to follow 

a multinomial distribution with expected value i; 

 The (lagged) exposure variable is modelled with a cross-basis defined on a number of lags equal 

to l, and a non-linear relationship by f; 

 The strata defined by individual spatial units, years, months and days of the week are 

conditioned out of the likelihood; 

 Other confounders (e.g. holidays and summer population decrease) are included in xi, with their 

estimated regression coefficients reported in the vector . 

 

As previously described, all the analyses were repeated for the whole Lazio Region, by 

municipality population size and by degree of urbanization (using alternatively percentage of 

urban areas and ISA) grouped in classes according to the distribution of the level of 

urbanization and ISA in the Lazio region and Rome zones. For each subset, I will report both 
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the non-linear curves of the temperature-outcome association (cumulative lag 0-3 for mortality 

and admissions), and summary estimates of relative risks of mortality from the 50th to the 75th, 

then from 50th to the 99th percentiles and from 50th to the 99.9th percentiles.  

Sensitivity Analysis – fixed temperature effects 

To compare exposure considering a set of fixed temperature values and see the response in 

different settings, the overall Lazio percentile distribution was considered for each spatial 

aggregation and estimates re-calculated.   

Sensitivity Analysis – exclusion of extreme year, 2003 

Sensitivity analysis was carried out excluding 2003, an extremely hot year from the analysis. 

Total mortality and total admissions for overall Lazio, small, medium and large municipalities 

and Rome (considering the urbanistic zones) effects were estimated excluding 2003 data from 

the analysis. Furthermore, the model was re-run considering the same temperature percentiles 

as the main analysis (all years) and secondly percentiles were recalculated excluding 2003 from 

the temperature distribution and models re-run.  

Attributable deaths 

Furthermore, to quantify the impact of heat on mortality and have a better idea in numerical 

terms of the magnitude of the issue, the attributable number of deaths for the same temperature 

intervals were calculated applying the methodology described by Gasparrini et al.325. The 

attributable fraction here is the fraction of deaths that would not have occurred in the absence 

of exposure interval considered in the exposed population of the period in study. This 

attributable fraction is then multiplied by the total number of deaths in the period of study 

considered to obtain the number of deaths due to heat. In other words the number of deaths 
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avoidable if the heat exposure had not have occurred. These estimates are important in terms 

of public health as it provides a quantification of the burden associated to heat risks. 

Attributable risks were calculated within the framework of distributed lag non-linear models 

325 to take into account the temporal association between exposure to heat and risk. This 

methodology was also implemented in a multi city study by the author and colleagues 157. 

Starting from the previous model to define effect estimates centred at the same value (50th 

percentile) the attributable risk was calculated for the intervals in study (75th vs 50th and 99th 

vs 75th) as the sum of attributable deaths on days across the temperature range and included in 

the time series interval. Empirical CIs (eCIs) were calculated using Monte Carlo simulations, 

assuming a multivariate normal distribution of the best linear unbiased predictions of the 

reduced coefficients. 
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Years of Life Lost 

Another measure used to measure and evaluate the impact of heat on a local population are 

Years of Life Lost (YLL) which quantify the burden of premature mortality as a result of heat 

exposure326. YLL take into account the age at which deaths occur by giving greater weight to 

deaths at younger age and smaller weight to deaths at older age327. The number of attributable 

deaths estimated for the Lazio region were related to the average life expectancy obtained from 

population life tables. As effect estimates were not available by age group, a simplified 

calculation of YLL related to heat exposure was carried out. Specifically the number of AD 

estimates were distributed by age on the basis of the proportion of mortality by age in the Lazio 

reference population (year 2006). YLL were calculated by multiplying the number of 

attributable deaths in the hth age class (ADh) by the average life expectancy within that class 

(Lh) for a reference year 2006 (central year in the study): 

𝑌𝐿𝐿 = ∑ 𝐴𝐷ℎ 𝐿ℎ

𝐻

ℎ=1

 

As for attributable deaths, YLL for estimated for temperature increases between the 50th and 

the 75th percentile and from the 75th to the 99th percentile and an overall sum estimate was 

given. 

All the statistical analyses in the study were conducted using R (version 3.1.3; Institute for 

Statistics and Mathematics, WU Wien, Vienna, Austria), SAS (version 9.2) and STATA 

(version 13; StataCorp. 2013. Stata Statistical Software: Release 13. College Station, TX: 

StataCorp LP).  
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5.3 RESULTS 

 

5.3.1 Health data 

Table 5.2 reports the mean, standard deviation, minimum and maximum number of daily total, 

cardiovascular and respiratory deaths for each spatial grouping in the Lazio region and in 

Rome. Descriptive statistics by urban development and ISA are also shown to give an idea of 

the numbers considered in each spatial class. Considering all the 375 municipalities of the 

Lazio region, the total average number of daily deaths in summer was 56.3, of these, slightly 

less than half were ascribable to cardiovascular causes (24.8 deaths) and only 8 to respiratory 

causes. Most of the municipalities in the Lazio region have a population below 15,000 

inhabitants and these registered an average of 18 daily deaths during the summer months, the 

same number of daily deaths was observed for the 35 medium sized municipalities. Large 

municipalities have an average number of 19.4 daily deaths during the summer season. In terms 

of mortality rates, values were more homogeneous compared to counts as expected. The highest 

rates were observed in large municipalities for all causes of death included in the study (natural, 

cardiovascular and respiratory) (Table 5.3b). Mortality rates ranged from 7.92 x1000 for 

natural deaths to 0.46 x1000 for respiratory deaths overall in the Lazio region (excluding 

Rome). While for Rome, rates ranged between 9.11 to 0.53 respectively for natural and 

respiratory deaths (table 5.3b).  

Daily deaths by ISA and urban development categories were similar with slight differences due 

to the attribution of individual municipalities in one or another category (Table 5.2). Generally, 

total daily deaths in rural areas with low development or ISA had between 6-8 events, while 

13 deaths were registered in the medium category and between 36-38 daily deaths occurred in 

the high ISA\urban areas. In Rome, an average of 46 deaths were recorded each day in summer, 

with a standard deviation of 8.2, ranging between a minimum of 29 and a maximum of 73 
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deaths. Cardiovascular deaths comprised around 38% of total deaths and respiratory deaths 

comprised around 4%. ISA and urban development categories were similar in terms of average 

deaths in Rome compared to the Lazio region. Interesting to note that the highest number of 

urbanistic spatial units was classified as low ISA\development category, with 77 units (Table 

5.2). Mortality rates by percent urban and ISA in the Lazio region (excluding Rome) show 

slightly different patterns compared to municipality population distributions, with highest 

mortality rates in the middle category for all causes of death rather than high percent urban or 

ISA. Comparing municipalities classified by population size, ISA and percent urban, mortality 

rates were lower for high level percent urban and ISA compared to large population 

municipalities (table 5.3b).  

Table 5.3a provides descriptive statistics for total, cardiovascular and respiratory hospital 

admissions in the Lazio region and in Rome. Considering total admissions, an average of 441 

admissions were observed among Lazio municipalities and 590 for Rome. Cardiovascular and 

respiratory admissions for Lazio and Rome were respectively 106 and 101 for the former and 

39 and 27 for the latter. The proportion of cardiovascular and respiratory admissions on total 

admissions were greater in the Lazio region. A greater variability in daily admissions was 

observed in Rome with larger standard deviations for all causes.  

Admission rates on the other hand, showed more variability for all natural causes (ranging from 

58.95 x1000 in small municipalities to 63.67 x 1000 in large ones, while cardiovascular and 

respiratory admission rates were comparable by municipality size classes (15 x1000 and 6 

x1000 respectively) (Table 5.3b).  

Municipality categorization by ISA and urban development showed different patterns for daily 

hospital admissions; in the Lazio region the greatest proportion of admissions was in the more 

urban municipalities (high ISA, high development) ranging between 57 and 284 for total 
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admissions. In Rome, the number of admissions by category of ISA or urban development were 

similar. The only exception was between the two highest classes; for ISA the lowest number 

of admissions was recorded (161, SD=79) while for high urban development zones the average 

daily number of admissions  was 227 (SD=95) suggesting very different members in each class 

(Table5.3a).  

Mortality rates by ISA and percent urban for municipalities in the Lazio region are quite 

similar. Percent urban shows slightly higher values for both natural and respiratory deaths and 

admissions in the intermediate class of percent urban. Total (natural) death rates range between 

8.74 x 1000 and 7.30 x 1000 while respiratory death rates range between 0.38 x 1000 and 0.55 

x 1000. Conversely, cardiovascular death rates are highest in municipalities with the lowest 

percent urban (3.74 x 1000). Similar trends were observed for hospital admission rates by 

percent urban for all causes in study, with total admissions comprised between 59 and 63 

x1000; CVD admissions rates between 14 and 16 x 1000 and respiratory admission rates 

between 5.98 and 6.51 x 1000 (Table 5.3b).  

Mortality rates show a rising trend by ISA class, with lower death rates in the municipalities 

with less impervious surfaces. Respiratory and CVD admissions on the other hand, have 

highest rates in the low ISA category (Table 5.3b). 
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Table 5.2. Descriptive statistics of daily mortality counts by spatial aggregation types (municipalities by population size,  

% urbanization and impervious surface.  

 

 
 

  

Mean SD Min Max Mean SD Min Max Mean SD Min Max

375 56.3 9.5 31 94 24.8 5.5 11 42 3.2 1.9 0 11

 < 15,000 326 18.2 4.6 3 37 8.1 3.0 1 18 0.9 1.0 0 5

15,000 - 40,000 35 18.8 5.1 10 28 9.1 3.4 3 14 0.9 1.1 0 4

40,000 - 150,000 14 19.4 4.3 13 26 7.9 3.1 4 16 1.1 1.3 0 5

Low 184 8.7 3.3 2 18 4.3 2.1 0 10 0.3 0.6 0 3

Medium 97 13.2 4.1 5 25 5.4 2.4 1 13 0.7 0.9 0 3

High 94 36.2 8.1 20 63 16.3 5.0 5 33 2.3 1.6 0 7

Low 177 6.3 2.9 0 15 2.6 1.7 0 9 0.3 0.6 0 2

Medium 104 12.8 4.2 4 22 5.9 2.8 1 14 0.7 0.9 0 3

High 94 38.6 7.4 24 57 17.3 4.3 9 27 2.4 1.6 0 7

155 46.1 8.2 29 73 17.7 4.8 6 27 2.5 1.7 0 10

Low 77 11.5 3.5 4 21 4.2 2.0 0 10 0.6 0.8 0 3

Medium 38 17.1 3.8 9 25 7.1 3.1 3 17 0.9 1.1 0 3

High 40 18.8 3.8 13 28 7.5 2.7 3 13 1.1 1.0 0 4

Low 77 13.0 4.4 3 26 4.8 2.4 0 12 0.7 0.9 0 4

Medium 39 17.3 3.8 12 28 6.5 2.7 2 15 0.9 0.9 0 3

High 39 15.9 4.9 8 27 6.5 2.6 2 12 1.1 1.0 0 4
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Table 5.3a. Descriptive statistics of daily hospital admissions counts by spatial aggregation types (municipalities by population size,  

% urbanization and impervious surface.  

 

 

 

Mean SD Min Max Mean SD Min Max Mean SD Min Max

375 441 56 278 598 106 18 59 154 39 9 16 70

 < 15,000 326 172 24 106 227 43 9 23 66 15 5 5 32

15,000 - 40,000 35 139 19 105 169 31 8 17 48 13 4 6 23

40,000 - 150,000 14 127 16 99 154 30 9 16 48 9 4 3 16

Low 184 72 12 38 102 19 5 8 33 6 3 1 15

Medium 97 91 13 61 122 23 6 7 37 9 4 1 19

High 94 279 32 208 366 63 11 36 89 23 6 10 38

Low 177 57 10 32 85 15 5 6 29 5 3 0 12

Medium 104 101 16 59 133 24 6 6 37 8 3 2 19

High 94 284 37 198 362 64 13 33 100 25 7 9 43

155 590 280 88 1169 101 40 16 185 27 14 2 62

Low 77 198 93 53 355 33 13 8 55 10 5 1 24

Medium 38 236 85 67 373 40 15 10 67 10 6 2 23

High 40 227 95 49 387 38 16 10 65 10 5 2 21

Low 77 204 95 54 395 35 14 9 74 9 5 1 23

Medium 39 208 98 47 386 39 16 9 67 10 5 1 24

High 39 161 79 52 351 29 11 11 54 8 5 2 23

Respiratory (35+)
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Table 5.3b. Mortality and hospital admission rates by spatial aggregation types (municipalities by population size,  

% urbanization and impervious surface).  

 
 
Percent urban and ISA rates are only for the Lazio region (excluding Rome as population data by urbanistic zones of Rome was not available) 

 

Natural Cardiovascular Respiratory Natural Cardiovascular Respiratory

Lazio Region 
(excluding Rome) 2757101 7.92 3.55 0.46 61.96 15.51 6.33

small <15000 1082347 6.46 2.92 0.33 58.95 15.64 6.11
medium>15000-40000 873455 8.04 3.84 0.48 64.13 15.09 6.67
large >40000-150000 801299 9.75 4.10 0.62 63.67 15.79 6.27

Rome 2547677 9.11 3.72 0.53 61.86 14.46 6.38

Percent urban
low 470783 7.30 3.74 0.38 59.04 16.82 5.98

medium 555742 8.74 3.71 0.55 63.10 16.06 6.51
high 1730576 7.82 3.45 0.46 62.39 14.97 6.37

ISA
low 360544 7.09 3.02 0.37 59.94 17.46 6.17

medium 628432 7.89 3.66 0.49 60.00 15.35 5.91
high 1768125 8.10 3.62 0.47 63.07 15.17 6.52

Mortality rate (x1000) Hospital admissions rate age35+  (x1000)

Population 
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5.3.2 Air Temperature Exposure  

Figure 5.8 and 5.9 shows the average summer temperature in the study period in the Lazio 

region and in Rome by spatial unit.  

The distribution of mean summer temperatures varied with municipality classes, with lower 

temperatures in small towns and an increasing trend in temperatures for each percentile as 

municipalities got larger (Table 5.4). The 50th percentile, stating point for the calculated effect 

estimates, raged between 20°C and 22.9°C while the 75th percentile of the mean temperature 

distribution ranged between 22.9°C and 25.5°C. Temperatures were highest in Rome 

throughout the distribution as expected due to the high level of urbanization and percent of 

impervious surfaces. Interesting to note that the small towns have more extreme maximum and 

minimum temperatures, with a minimum of 2.1°C and a maximum of 32.1°C, probably related 

to their specific geographical location in coastal areas (warmer) or in more inland high elevated 

zones (cooler) and being generally more rural and surrounded by vegetated areas (figure 5.8 

and 5.9).  
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Figure 5.8 Average summer mean temperature by municipality in the Lazio region. 
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Figure 5.9 Average summer mean temperature by zone in Rome. 
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If we consider temperature distributions by percent urban and ISA, again differences between 

municipalities in the Lazio region and zones of Rome can be observed (table 5.5). For both 

ISA and percent urban an increasing trend, with higher temperature values, in municipalities 

with a greater percentage of area covered by anthropogenic features can be observed. 

Considering the two indicators by level (low, medium and high) in both Rome and Lazio the 

temperature distributions are similar. Interesting to note, that for Rome when comparing the 

two indicators the maximum temperature values are higher for the ISA classification in the 

more rural settings (low ISA and low percent urban), while for the medium and high 

development levels maximum temperature values are observed with the percent urban 

classification. Again Rome, was generally warmer with the temperature distribution slightly 

shifted to the right. Minimum values in Rome were comprised between 11.4°C and 12.6°C 

considering both classifications of built-up environment, while in the Lazio region minimum 

values were comprised between 2.1°C and 6.0°C. Among the Lazio municipalities, the median 

temperature value was respectively 19.5°C, 20.5°C and 21.3°C in the low, medium and high 

levels of the percent urban classification. While for Rome the median temperature values were 

higher than in the Lazio region and were respectively 22.6°C, 23.1°C and 23.3°C. Considering 

ISA, the median temperature value was respectively of 19.3°C, 20.7°C and 21.4°C in the low, 

medium and high levels of the Lazio Region. While in Rome, median values were 22.5°C, 

23.1°C and 23.4°C and again higher for each level. The 75th percentile ranged between 22.5°C 

and 24.0°C in the Lazio municipalities and between 25.3°C and 25.9°C in Rome for percent 

urban development. For ISA, values were similar compared to percent urban with slightly 

lower values for the low ISA classification and the same for medium and high ISA level.   

 



120 
 
 

Table 5.4 Mean summer air temperature distribution in the study period for small, medium, large municipalities of the Lazio region and 

in Rome.  

Municipality by population size Min p1 p5 p10 p25 p50 mean p75 p90 p95 p99 Max 

              

small <15.000 2.1 9.7 12.6 14.2 16.9 20.0 19.7 22.9 25.0 26.0 27.8 32.1 
medium 15.000-40.000 7.1 12.8 15.0 16.2 18.8 21.6 21.4 24.3 26.0 27.0 28.5 31.9 
large 40.000-150.000 7.0 12.8 15.2 16.4 19.0 21.9 21.6 24.6 26.3 27.2 28.6 30.8 
Rome 2.700.000 11.4 14.5 16.4 17.5 20.0 22.9 22.6 25.5 27.2 28.1 29.5 33.8 

Overall Lazio   2.1 10.5 13.5 15.1 17.9 21.0 20.7 23.9 26.0 27.1 28.7 33.8 
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Table 5.5 Mean summer air temperature distribution in the study period by percent urban and impervious surface (ISA) classes in 

municipalities of the Lazio region and in Rome.  

  Mean Temperature distribution 

  min 1 5 10 25 50 mean 75 90 95 99 max 

Percent Urban             

Lazio              

low 2.1 8.9 11.9 13.6 16.3 19.5 19.3 22.5 24.7 25.8 27.6 31.5 
med 4.6 11.0 13.5 14.9 17.5 20.5 20.3 23.3 25.3 26.2 28.0 32.1 
high 5.4 12.2 14.6 15.8 18.4 21.3 21.1 24.0 25.8 26.8 28.4 31.9 

Roma             

low 11.4 14.3 16.1 17.3 19.7 22.6 22.4 25.3 26.9 27.8 29.2 33.0 
med 12.3 14.8 16.6 17.7 20.2 23.1 22.8 25.7 27.4 28.2 29.7 33.8 
high 12.5 15.0 16.8 17.9 20.4 23.3 23.0 25.9 27.5 28.4 29.8 33.3 

Impervious surface (ISA)                         
Lazio              

low 2.1 8.9 11.8 13.4 16.1 19.3 19.1 22.3 24.5 25.6 27.5 31.5 
med 3.4 11.1 13.6 15.0 17.6 20.6 20.4 23.4 25.3 26.3 28.0 32.1 
high 6.0 12.3 14.6 15.9 18.5 21.4 21.1 24.1 25.9 26.8 28.4 31.9 

Roma             

low 11.4 14.2 16.1 17.2 19.7 22.5 22.3 25.2 26.8 27.7 29.1 33.8 
med 12.3 14.8 16.6 17.7 20.2 23.1 22.8 25.8 27.4 28.3 29.7 32.4 
high 12.6 15.1 16.9 18.0 20.4 23.4 23.1 26.0 27.6 28.5 29.8 32.4 
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5.3.3 Heat-related effects on mortality in Lazio  

A non-linear association between mean temperature and mortality was identified for 

municipalities in the Lazio region with a steep rise in daily deaths as temperatures increased 

during summer. Figures 5.10-5.12 show the dose-response relationship between mean 

temperature and natural, cardiovascular and respiratory mortality, grouped by population size. 

Heat effects are shown for Rome (pink curve), for large municipalities with populations 

ranging from 40.000 to 150.000 inhabitants (red line), for medium sized (15.000-40.000) 

municipalities (blue line), for small towns with populations below 15.000 inhabitants (green 

line) and the overall curve for the entire region (black line) with 95% confidence interval bands 

in grey.  Figure 5.10 shows that the effect of heat on total (natural) mortality in small and 

medium sized municipalities starts to increase at lower temperatures compared to Rome and 

large municipalities. Furthermore, the temperature distribution in Rome was slightly shifted to 

the right, reaching higher values and the slope in the curve seems less steep, suggesting a minor 

effect.  

During summer, for increases in mean temperatures above the median value a statistically 

significant effect on mortality was observed in all groupings of municipalities in the Lazio 

region (Table 5.6 and figure 5.12). The effect on mortality of an increase in temperature 

between the 50th and 75th percentile for the entire Lazio region corresponded to a risk (RR) of 

1.08 (95%CI: 1.07-1.08). The effect was lower for small rural municipalities (RR=1.06, 

95%CI: 1.05-1.07) and slightly higher for medium and large municipalities (RR=1.10, 95%CI: 

1.08-1.13; RR=1.13, 95%CI: 1.11-1.15). When considering more extreme temperatures, in 

terms of an increase between the 50th and 99th percentile, the greatest effects on mortality were 

observed for medium population sized municipalities with a rate ratio (RR) of 1.74 (95%CI: 

1.60-1.90). Interesting to note that the effect in the extreme temperature range was the same 
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for the entire region, Rome and small municipalities with an increase in the risk of dying of 

around +50% (Table 5.6).  

Furthermore, when we consider temperature increases from the 50th percentile to the maximum 

exposure selected (99.9th percentile) the risks were highest in small and medium sized 

municipalities. Estimates for very extreme values had wider confidence intervals due to the 

limited number of days (Figure 5.12). Finally, for natural mortality it is worth noting that 

compared to the entire Lazio region, higher effect-estimates were recorded in Rome for all the 

intervals studied. While stratifying by population size in the Lazio region, effects were greatest 

for small and medium sized municipalities, potentially representing rural areas. 

The statistical test showed total mortality effect estimates were heterogeneous among 

municipality strata only for the 50th vs 75th percentile temperature intervals (Table 5.12). 

Figure 5.10 Mean Temperature – all natural mortality association in the Lazio region and 

in Rome, summer (2001-2010).  
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Heat-related effects on cardiovascular mortality 

The dose-response relationship of cardiovascular deaths in the municipalities of the Lazio 

region, were very similar in shape to the overall curves, with an increase in the risk of mortality 

as temperatures increased but with a steeper curve, reaching higher relative risk estimates for 

very extreme exposures. Contrasting with total mortality, cardiovascular curves for the 

different sized municipality grouping were homogeneous in terms of shape thus much closer 

together (figure 5.11). Table 5.6 shows the risk of cardiovascular death for temperature 

increases during summer. The overall effect on cardiovascular mortality for an increase in 

temperature between the 50th and 75th percentile for the entire Lazio region corresponded to 

the total mortality effect, with a risk of 1.08 (95%CI: 1.07-1.08). When more extreme 

percentiles were considered the effect was greater for cardiovascular deaths (RR) 1.63 (95%CI: 

1.58-1.67). In Rome, the heat effects were greater for cardiovascular deaths for all temperature 

intervals. Among the municipalities of the Lazio region, for temperatures between the 50th to 

75th percentile, effects were smaller or equal to total mortality effects, while for more extreme 

temperature increases (50th to 99.9th) the risk of cardiovascular mortality were slightly higher 

(Figure 5.14). This was especially true for small and large municipalities (Table 5.6). The 

statistical test confirmed that effect estimates for cardiovascular mortality were heterogeneous 

by municipality size for all temperature intervals (Table 5.12). 
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Figure 5.11 Mean temperature – cardiovascular mortality association in the Lazio region 

and in Rome, summer (2001-2010).  
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Heat-related effects on respiratory mortality 

Although daily respiratory death counts were smaller in number, as mentioned before (Table 

5.2) but still a significant effect of heat can be observed for respiratory causes of death (Figure 

5.12 and Figure 5.15). The temperature-mortality curve for respiratory causes were somewhat 

diverse by municipality size, small effects were observed for municipalities with a population 

below 15.000 inhabitants, with very similar effects throughout the temperature distribution 

(Figure 5.8). While for temperature increases between the 50th and 75th percentile the greatest 

risk of death for respiratory causes was shown for medium and large municipalities (Figure 

5.15). In Rome, the greatest risk of mortality was observed for respiratory deaths with a RR of 

1.10 (95%CI: 1.09-1.11) for the 50th and 75th percentile temperature interval (table 5.6). The 

statistical test confirmed that effect estimates for respiratory mortality were heterogeneous by 

municipality size for all temperature intervals (Table 5.12).  

Figure 5.12 Mean temperature – respiratory mortality association in the Lazio region and 

in Rome, summer (2001-2010).  
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Temperature mortality effects considering a fixed temperature interval. 

Considering fixed percentiles for all spatial aggregations allows for comparison municipalities 

and helps evaluate whether populations in urban, suburban and rural settings respond 

differently to a fixed set of temperatures. In some contexts, the temperature range will be higher 

than their own distribution and in others the same or lower. Results with fixed temperature 

intervals are reported in Table 5.7. The assumption here is that local populations are 

acclimatized to their local climate and different absolute temperatures might correspond to 

more or less extreme conditions. Considering the first temperature interval (p50 to 

p75=21.0°C-23.9°C) the effect on mortality was greater in medium sized municipalities as for 

the main analysis. Compared to the overall Lazio estimate (RR=1.08,95%CI: 1.07-1.08) all 

regional municipalities had a greater effect while Rome was below the regional overall heat  

risk estimate.  Interesting to note that for small municipalities, the effect estimates were higher 

than the main analysis, as percentiles corresponded to higher temperatures (RR=1.10, 95%CI: 

1.09-1.11), while for all other spatial aggregations the risks were slightly smaller (Table 5.7).  

Considering more extreme temperatures (p50 to p99=21°C-28.8°C) all effects estimates were 

higher than the regional overall estimate, except for Rome. In general, fixed interval estimates 

were larger for small municipalities and more contained in Rome suggesting that rural 

populations are less acclimatized to high temperatures as also shown by the spatial unit specific 

temperature distributions (Table 5.7).  

Cardiovascular mortality estimates considering fixed temperature intervals again showed 

highest effects in the small municipalities and more contained effects in Rome.  While heat 

continued to have a limited effect on respiratory deaths in small municipalities, also 

considering a fixed temperature range, while similarly to cardiovascular mortality, effects in 

Rome were below the Lazio overall estimate (Table 5.7).   
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Table 5.6 Relative risk of natural, cardiovascular and respiratory mortality for increases in mean temperature above the 50th percentile of 

area specific distributions. 

        75th percentile 99th percentile 99.9th percentile 

    50th 75th RR 95%CI RR 95%CI RR 95%CI 

 Total Mortality               

M
un

ic
ip

al
iti

es
 small <15000 20.0 22.9 1.06 1.05 - 1.07 1.53 1.47 - 1.59 1.88 1.77 - 2.01 

medium>15000-40000 21.6 24.3 1.13 1.11 - 1.15 1.74 1.60 - 1.90 2.15 1.88 - 2.45 
large >40000-150000 21.9 24.6 1.10 1.08 - 1.13 1.46 1.34 - 1.60 1.66 1.45 - 1.91 
Rome  22.9 25.1 1.09 1.08 - 1.10 1.54 1.47 - 1.60 1.85 1.73 - 1.98 
Overall Lazio 21.0 23.9 1.08 1.07 - 1.08 1.52 1.48 - 1.55 1.79 1.73 - 1.85 

                

 Cardiovascular Mortality               

M
un

ic
ip

al
iti

es
 small <15000 20.0 22.9 1.07 1.06 - 1.08 1.55 1.48 - 1.62 1.91 1.79 - 2.05 

medium>15000-40000 21.6 24.3 1.09 1.06 - 1.12 1.52 1.36 - 1.69 1.79 1.51 - 2.11 
large >40000-150000 21.9 24.6 1.10 1.07 - 1.14 1.62 1.43 - 1.85 1.97 1.62 - 2.39 
Rome 22.9 25.1 1.12 1.10 - 1.13 1.78 1.69 - 1.87 2.28 2.10 - 2.48 
Overall Lazio 21.0 23.9 1.08 1.07 - 1.08 1.63 1.58 - 1.67 2.01 1.93 - 2.09 

                

 Respiratory Mortality               

M
un

ic
ip

al
iti

es
 small <15000 20.0 22.9 1.08 1.07 - 1.09 1.14 1.09 - 1.20 1.11 1.03 - 1.20 

medium>15000-40000 21.6 24.3 1.14 1.10 - 1.17 2.47 2.16 - 2.81 3.86 3.14 - 4.74 
large >40000-150000 21.9 24.6 1.19 1.14 - 1.25 2.32 1.89 - 2.84 3.21 2.37 - 4.35 
Rome 22.9 25.1 1.15 1.14 - 1.17 1.94 1.82 - 2.06 2.53 2.29 - 2.78 
Overall Lazio 21.0 23.9 1.10 1.09 - 1.11 1.87 1.82 - 1.93 2.46 2.35 - 2.58 
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Figure 5.13 Heat-related effects on total natural mortality. Relative risk for increases in mean temperature between the 50th and 75th, 50th to 

99th and 50th to extreme percentile of the area specific distributions. Estimates for small, medium, large municipalities in Lazio and Rome.  
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Figure 5.14 Heat-related effects on cardiovascular mortality. Relative risk for increases in mean temperature between the 50th and 75th, 50th 

to 99th and 50th to extreme percentile of the area specific distributions. Estimates for small, medium, large municipalities in Lazio and Rome.  
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Figure 5.15 Heat-related effects on respiratory mortality. Relative risk for increases in mean temperature between the 50th and 75th, 50th to 

99th and 50th to extreme percentile of the area specific distributions. Estimates for small, medium, large municipalities in Lazio and Rome.  
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Table 5.7 Relative risk in natural, cardiovascular and respiratory mortality for increases in mean temperature above the 50th percentile of the 

Lazio regional distribution (fixed temperatures intervals for all municipalities). 

        75th percentile 99th percentile 99.9th percentile 

    50th 75th RR 95%CI RR 95%CI RR 95%CI 

 Total Mortality               

M
un

ic
ip

al
iti

es
 small <15000 21.0 23.9 1.10 1.09 - 1.11 1.71 1.62 - 1.80 2.11 1.95 - 2.28 

medium>15000-40000 21.0 23.9 1.12 1.09 - 1.14 1.85 1.68 - 2.03 2.34 2.02 - 2.72 
large >40000-150000 21.0 23.9 1.09 1.07 - 1.11 1.52 1.38 - 1.68 1.78 1.52 - 2.07 
Rome  21.0 23.9 1.04 1.03 - 1.06 1.44 1.40 - 1.49 1.72 1.63 - 1.81 
Overall Lazio 21.0 23.9 1.08 1.07 - 1.08 1.52 1.48 - 1.55 1.79 1.73 - 1.85 

                

 Cardiovascular Mortality               

M
un

ic
ip

al
iti

es
 small <15000 21.0 23.9 1.11 1.09 - 1.12 1.73 1.63 - 1.83 2.14 1.96 - 2.33 

medium>15000-40000 21.0 23.9 1.08 1.05 - 1.11 1.59 1.41 - 1.79 1.91 1.58 - 2.31 
large >40000-150000 21.0 23.9 1.08 1.05 - 1.11 1.69 1.47 - 1.94 2.15 1.73 - 2.67 
Rome 21.0 23.9 1.05 1.03 - 1.07 1.62 1.55 - 1.68 2.06 1.93 - 2.20 
Overall Lazio 21.0 23.9 1.08 1.07 - 1.08 1.63 1.58 - 1.67 2.01 1.93 - 2.09 

                

 Respiratory Mortality               

M
un

ic
ip

al
iti

es
 small <15000 21.0 23.9 1.08 1.06 - 1.09 1.09 1.02 - 1.17 1.06 0.96 - 1.16 

medium>15000-40000 21.0 23.9 1.11 1.07 - 1.15 2.72 2.35 - 3.15 4.56 3.62 - 5.76 
large >40000-150000 21.0 23.9 1.15 1.09 - 1.20 2.50 2.01 - 3.10 3.73 2.65 - 5.24 
Rome 21.0 23.9 1.08 1.06 - 1.10 1.78 1.69 - 1.86 2.30 2.13 - 2.48 
Overall Lazio 21.0 23.9 1.10 1.09 - 1.11 1.87 1.82 - 1.93 2.46 2.35 - 2.58 
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Attributable Deaths 

Table 5.8 shows the number of heat-attributable deaths by municipality classes in Lazio and in 

Rome by zones for temperature increases between the 50th and 75th percentile and for extreme 

temperatures (75th-99th percentile). Although estimates comprise 10 summers, the burden 

associated to heat was quite considerable. In Rome, the total number of heat attributable deaths 

for increases between 50-75th percentile accounted for 987 deaths (on average 98 per summer) 

in the period 2001-2010. While for the same temperature interval, 629 deaths were related to 

heat in the Lazio region. The highest burden was for more extreme temperatures in all 

municipality type groupings in Lazio and in Rome, with 4434 deaths in Rome and 3127 deaths 

in the Lazio region for temperatures between the 75th and 99th percentile. Interesting to note 

that in Rome and small municipalities, cardiovascular heat attributable deaths made up around 

50% of the total heat-related deaths while for medium and large municipalities only around 

35%. Overall, respiratory heat attributable deaths were a minor proportion, around 8% for 

Rome and Lazio (ranging between 5% and 15%). Cardiovascular heat-attributable deaths, for 

the two temperature intervals, were 500 and 2286 deaths respectively in Rome, and 234 and 

1256 deaths in Lazio. Moreover, respiratory heat-attributable deaths for the two temperature 

intervals were respectively 81 and 377 in Rome, and 53 and 255 deaths in Lazio.   

Years of life Lost (YLL) 

From the simple calculations carried out for the whole Lazio region (Rome and Lazio 

municipalities combined) in the study period, the YLL were 16523 (on average 1652 

YLL/year) associated to moderate summer temperatures (increases between 50th and 75th 

percentile). For extreme temperatures (75th to 99th percentile), the number of YLL was even 

greater; with 77271 over the study period (average of 7727 YLL).  
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Table 5.8 Heat Attributable Deaths. Attributable deaths for natural, cardiovascular and respiratory causes for mean temperature increases 

between the 50th – 75th and 75th- 99th percentile of area specific distributions. Summers (2000-2010).  

      50-75th percentile 75-99th percentile 

    50th AD 95%eCI AD 95%eCI 

 Total Mortality          

M
un

ic
ip

al
iti

es
 

small <15000 20.0 84.5 55.3 - 113.6 831.2 733.2 - 931.7 
medium>15000-40000 21.6 315.7 266.7 - 364.6 1393.7 1200.5 - 1567.8 
large >40000-150000 21.9 229.0 172.3 - 282.6 902.5 741.6 - 1064.7 

Rome  22.9 987.8 896.1 - 1080.1 4434.4 4013.7 - 4868.4 

           

 Cardiovascular Mortality          

M
un

ic
ip

al
iti

es
 

small <15000 20.0 45.1 31.4 - 59.5 390.4 344.5 - 438.2 
medium>15000-40000 21.6 104.1 76.5 - 132.0 476.7 367.6 - 571.8 
large >40000-150000 21.9 84.8 50.1 - 117.3 388.8 294.0 - 481.2 

Rome 22.9 500.9 461.1 - 544.8 2285.5 2106.5 - 2478.3 

           

 Respiratory Mortality          

M
un

ic
ip

al
iti

es
 

small <15000 20.0 13.8 12.0 - 15.6 45.4 39.6 - 51.1 
medium>15000-40000 21.6 18.1 13.9 - 22.1 114.1 99.7 - 128.4 
large >40000-150000 21.9 21.3 13.6 - 28.6 95.1 73.0 - 114.8 

Rome 22.9 80.8 74.0 - 87.9 377.4 345.3 - 410.7 
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5.3.4. Heat-related effects on hospital admissions 

Conversely to what was observed for mortality, the increase in temperatures didn’t seem to 

have an effect on hospital admissions, in particular for total natural and cardiovascular disease 

where curve were flat (Figures 5.16-5.18). An effect of heat was seen, to some extent, for 

respiratory hospital admissions with an increase in admissions with rising temperatures 

especially in small and medium sized municipalities.  

The effect of heat on hospital admissions was limited, with non-significant estimates for all 

cause specific hospital admissions considered (Table 5.9 and Figures 5.19-5.21). Generally, 

there was no or a slight protective effect of moderate heat (50th to 75th) or extreme heat (50th-

99th) on total natural admissions overall, except for small municipalities which had a 

statistically significant risk for increases in temperatures in the first temperature range 

(RR50thvs75th=1.010, 95%CI: 1.004-1.016). For cardiovascular hospital admissions no effect 

or a slight protective effect of heat was observed in Rome and small municipalities.   

The association between respiratory admissions and heat was observed (figure 5.17 and figure 

5.21), with a rising trend of risk in all municipalities. Statistically significant risks for 

temperature increases between the 50th and 99th percentile was observed only for the entire 

Lazio region and in small and medium municipalities (RR=1.065, 95%CI: 1.004-1.016; 

RR50thvs75th=1.173, 95%CI: 1.054-1.306, respectively). In the warm period considered, 

extremely low temperatures (Figure 5.18) between 5-12°C, seem to have a slight protective 

effect, noteworthy that the section of the curve only represents less than 1% of the values.  

Heterogeneity in effect estimates by municipality population size was observed for natural 

admissions (for all temperature intervals) and for cardiovascular admissions only for 

temperature increases between the 50th vs 75th percentile (Table 5.12).  
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Figure 5.16 Mean temperature – hospital admissions association in the Lazio region and 

in Rome, summer (2001-2010).  

 

Figure 5.17 Mean temperature – cardiovascular admissions association in the Lazio 

region and in Rome, summer (2001-2010).  

 



137 
 
 

 

Figure 5.18 Mean temperature – respiratory admissions association in the Lazio region 

and in Rome, summer (2001-2010).  
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Table 5.9 Relative risk in natural, cardiovascular and respiratory hospital admissions for increases in mean temperature above the 50th 

percentile of area specific distributions. 

  
Hospital admissions 

    75th percentile 99th percentile 99.9th percentile 

  50th 75th RR 95%CI RR 95%CI RR 95%CI 

 Natural                

M
un

ic
ip

al
iti

es
 small <15000 20.0 22.9 1.010 1.004 - 1.016 1.031 1.005 - 1.058 1.039 0.997 - 1.083 

medium>15000-40000 21.6 24.3 1.007 0.999 - 1.015 1.016 0.981 - 1.053 1.018 0.963 - 1.077 
large >40000-150000 21.9 24.6 1.006 0.998 - 1.015 1.035 0.997 - 1.074 1.051 0.994 - 1.111 
Rome  22.9 25.1 0.966 0.963 - 0.970 0.968 0.951 - 0.985 0.992 0.964 - 1.021 
Overall Lazio 21.0 23.9 0.983 0.981 - 0.986 0.951 0.941 - 0.961 0.943 0.928 - 0.959 

                

 Cardiovascular                

M
un

ic
ip

al
iti

es
 small <15000 20.0 22.9 0.993 0.984 - 1.002 0.953 0.917 - 0.989 0.928 0.873 - 0.986 

medium>15000-40000 21.6 24.3 0.992 0.975 - 1.008 0.948 0.880 - 1.022 0.924 0.823 - 1.039 
large >40000-150000 21.9 24.6 0.974 0.957 - 0.991 0.972 0.899 - 1.050 0.985 0.877 - 1.106 
Rome 22.9 25.1 0.959 0.951 - 0.966 0.918 0.886 - 0.953 0.918 0.866 - 0.974 
Overall Lazio 21.0 23.9 0.975 0.970 - 0.980 0.907 0.889 - 0.925 0.881 0.855 - 0.908 

                

 Respiratory               

M
un

ic
ip

al
iti

es
 small <15000 20.0 22.9 1.006 0.996 - 1.016 1.065 1.020 - 1.112 1.216 1.060 - 1.396 

medium>15000-40000 21.6 24.3 1.002 0.980 - 1.025 1.173 1.054 - 1.306 1.299 1.101 - 1.533 
large >40000-150000 21.9 24.6 0.996 0.968 - 1.024 1.090 0.960 - 1.237 1.160 0.959 - 1.403 
Rome 22.9 25.1 0.981 0.970 - 0.993 1.029 0.973 - 1.087 1.078 0.987 - 1.178 
Overall Lazio 21.0 23.9 0.998 0.995 - 1.000 1.041 1.014 - 1.069 1.079 1.035 - 1.126 
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Figure 5.19 Heat-related effects on total hospital admissions. Risks for increases in mean temperature between the 50th and 75th, 50th to 99th 

and 50th to extreme percentile of the area specific distributions. Estimates for small, medium, large municipalities in Lazio and Rome.  
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Figure 5.20 Heat-related effects on cardiovascular hospital admissions. Risks for increases in mean temperature between the 50th and 75th, 

50th to 99th and 50th to extreme percentile of the area specific distributions. Estimates for small, medium, large municipalities in Lazio and 

Rome.  
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Figure 5.21 Heat-related effects on respiratory hospital admissions. Risk for increases in mean temperature between the 50th and 75th, 50th to 

99th and 50th to extreme percentile of the area specific distributions. Estimates for small, medium, large municipalities in Lazio and Rome.  
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Sensitivity analysis without 2003 

The summer of 2003 was an exceptional year across Europe, including Italy. To ensure the 

robustness of estimates and the role of such an extreme year the main analysis was re-run 

excluding 2003.  

In table 5.10A the effect estimates were calculated on the overall temperature distribution 

(including 2003) as in the main analysis but excluding daily temperature and outcome data 

(mortality/admissions) for 2003 from the analysis. Results were pretty much comparable to 

main results for both mortality and hospital admissions.  

Table 5.10B shows the effect estimates recalculated on the temperature distribution excluding 

2003. Mortality effect estimates for mean temperature increases between the 50th and 75th 

percentile were comparable to the main analysis for the Lazio region, but not for Rome. Effect 

estimates were slightly lower when extreme temperature intervals were considered (50th to 99th 

percentile) compared to the main analysis. The risk in mortality for increases in mean 

temperature between the 50th and 99th percentile for the entire Lazio region went from an RR 

of 1.52 (CI95% 1.48-1.55) to a RR of 1.41 (CI95% 1.38-1.43). As expected, when extreme 

values were included (99.9th percentile), risk estimates were more contained in magnitude when 

excluding 2003. 

Hospital admission risk estimates excluding 2003 on the other hand remained unvaried even 

when considering extreme values, confirming the weak association between hospital 

admissions and heat.  Only for Rome, a slight decline was observed when considering changes 

in temperature between the 50th and 99.9th percentile.   
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Table 5.10A Analysis excluding 2003. Relative risk in natural mortality and hospital admissions for increases in mean temperature between 

the  50th – 75th , 50th – 90th and 50th-99th percentile of the Lazio regional distribution (mean temperature distribution with 2003). 

 

 

 

 

  

50th 75th 99th 99.9th RR RR RR

Total Mortality

small <15000 20.0 22.9 27.8 29.4 1.07 1.06 1.08 1.54 1.47 1.61 1.92 1.79 2.07

medium>15000-40000 21.6 24.3 28.5 29.8 1.13 1.10 1.15 1.72 1.55 1.91 2.12 1.80 2.49

large >40000-150000 21.9 24.6 28.6 29.8 1.10 1.08 1.13 1.49 1.34 1.66 1.71 1.45 2.02

Rome 22.9 25.5 29.5 30.8 1.09 1.08 1.10 1.57 1.49 1.65 1.90 1.75 2.07

Overall Lazio 21.0 23.9 28.8 30.2 1.07 1.07 1.08 1.52 1.49 1.56 1.81 1.74 1.88

Natural admissions

small <15000 20.0 22.9 27.8 29.4 1.01 1.00 1.02 1.03 1.00 1.06 1.04 0.99 1.09

medium>15000-40000 21.6 24.3 28.5 29.8 1.01 1.00 1.02 1.03 0.99 1.08 1.04 0.97 1.11

large >40000-150000 21.9 24.6 28.6 29.8 1.01 1.00 1.01 1.04 1.00 1.09 1.06 0.99 1.14

Rome 22.9 25.5 29.5 30.8 0.97 0.97 0.97 0.99 0.97 1.02 1.03 1.00 1.07

Overall Lazio 21.0 23.9 28.8 30.2 0.98 0.98 0.98 0.96 0.95 0.97 0.96 0.94 0.98

95%CI 95%CI 95%CI
75th percentile 99th percentile 99.9th percentile

A
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Table 5.10A Analysis excluding 2003. Relative risk in natural mortality and hospital admissions for increases in mean temperature between 

the  50th – 75th , 50th – 90th and 50th-99th percentile of the Lazio regional distribution (mean temperature distribution without 2003). 

 

 

 

50th 75th 99th 99.9th RR RR RR

Total Mortality

small <15000 19.8 22.6 27.1 28.5 1.06 1.05 1.07 1.43 1.38 1.48 1.69 1.60 1.79

medium>15000-40000 21.5 24.0 27.6 28.9 1.11 1.09 1.13 1.53 1.42 1.65 1.83 1.63 2.07

large >40000-150000 21.8 24.3 27.7 28.8 1.09 1.07 1.11 1.37 1.27 1.48 1.53 1.36 1.72

Rome 22.7 25.2 28.7 30.1 1.05 1.04 1.06 1.30 1.26 1.33 1.46 1.40 1.51

Overall Lazio 20.8 23.6 28.0 29.5 1.06 1.06 1.07 1.41 1.38 1.43 1.66 1.61 1.71

Natural admissions

small <15000 19.8 22.6 27.1 28.5 1.009 1.00 1.02 1.03 1.01 1.05 1.04 1.00 1.08

medium>15000-40000 21.5 24.0 27.6 28.9 1.007 1.00 1.02 1.03 0.99 1.06 1.03 0.98 1.09

large >40000-150000 21.8 24.3 27.7 28.8 1.004 1.00 1.01 1.03 1.00 1.06 1.05 1.00 1.10

Rome 22.7 25.2 28.7 30.1 0.965 0.96 0.97 0.95 0.94 0.96 0.96 0.95 0.98

Overall Lazio 20.8 23.6 28.0 29.5 0.982 0.98 0.98 0.96 0.95 0.97 0.96 0.94 0.97

B
75th percentile 99th percentile 99.9th percentile

95%CI 95%CI 95%CI
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5.3.5 Effect of heat on mortality by urban development (%pct urban) and impervious 

surface (ISA) 

The analysis of heat on mortality stratifying municipalities in the Lazio region and the 

urbanistic zones in Rome by indexes of urban development and impervious surfaces showed a 

trend in the heat-related effects (Figure 5.22-5.25). In Rome, the increase in temperature 

between the 50th percentile to extreme values (99th) was comprised between 48% and 60% for 

classes of urban development (Table 5.11).  In the Lazio region, the risk increased from 

RR=1.05 (95%CI: 1.04-1.07) in the municipalities with  percent urban below the 50th percentile 

to RR=1.10 (95%CI: 1.08-1.11) in those with percent urban above the 75th percentile. While 

for a rise in mean temperature between the 50th and 99th percentile, the greatest effect on 

mortality was observed for municipalities with a low urban development in the Lazio region 

(RR=1.87;95%CI: 1.79-1.95). The statistical test for heterogeneity showed that effects 

estimates (for all temperature intervals) were different by urban development strata only in the 

Lazio region (Table 5.12).  

Overall, for ISA groupings heat effects were similar in Rome and Lazio, with slightly greater 

effects for medium level ISA. When considering results for ISA distribution in Lazio similar 

results were observed for temperature increases in the moderate range (50th to 75th percentile) 

compared to urban development; while when including more extreme temperatures (50th vs 

99th percentile) greater effect estimates were estimated for medium and high ISA compared to 

urban development, while for low ISA a smaller risk was found compared to low urban 

development (Table 5.11). Estimates among ISA strata were different only for temperature 

increases between the 50th and 75th percentile (Table 5.12).  

In Rome, classification by ISA gave slightly lower effect estimates (Figure 5.24 and 5.25).  In 

zones which had a level of impervious surface encompassed between the 50th and 75th 

percentile (ISA= 49.5-76.6) a +12% increase in the risk of mortality was observed (Table 5.11). 
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Estimates for extreme temperatures had lower values compared to those found for urban 

development (Table 5.11). Overall, an increasing trend in effects by levels of exposure was 

observed but estimates by both ISA and percent urban strata were not statistically different in 

Rome (Table 5.12). 
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Figure 5.22 Mean temperature – mortality association in the Lazio region by urban 

development, summer (2001-2010). 

 

 

Figure 5.23 Mean temperature – mortality association in the Lazio region by ISA, 

summer (2001-2010). 
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Figure 5.24 Mean temperature – mortality association in Rome region by urban 

development, summer (2001-2010). 

 

 

 

 

Figure 5.25 Mean temperature – mortality association in Rome by ISA, 

summer (2001-2010). 
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Table 5.11. Relative risk of natural, cardiovascular and respiratory mortality for increases in mean temperature considering distribution of 

percent urban and impervious surfaces in Rome and municipalities of the Lazio region. 

    75th percentile 99th percentile 99.9th percentile 

    RR 95%CI RR 95%CI RR 95%CI 

%
 u

rb
an

 

Lazio             

low  1.05 1.04 - 1.07 1.87 1.79 - 1.95 2.67 2.48 - 2.87 
medium 1.08 1.06 - 1.09 1.43 1.35 - 1.51 1.66 1.52 - 1.82 

high 1.10 1.08 - 1.11 1.53 1.46 - 1.61 1.79 1.66 - 1.92 
Rome             

low  1.08 1.07 - 1.10 1.48 1.38 - 1.59 1.74 1.56 - 1.95 
medium 1.09 1.07 - 1.12 1.60 1.47 - 1.75 1.93 1.69 - 2.21 

high 1.11 1.09 - 1.13 1.57 1.45 - 1.70 1.91 1.67 - 2.18 

IS
A 

Lazio             

low  1.04 1.03 - 1.05 1.49 1.42 - 1.56 1.83 1.69 - 1.98 
medium 1.08 1.07 - 1.10 1.59 1.50 - 1.68 2.01 1.83 - 2.21 

high 1.10 1.09 - 1.12 1.56 1.49 - 1.64 1.84 1.71 - 1.98 
Rome             

low  1.08 1.06 - 1.10 1.40 1.31 - 1.50 1.61 1.43 - 1.80 
medium 1.12 1.09 - 1.14 1.65 1.53 - 1.79 1.84 1.66 - 2.05 

high 1.10 1.08 - 1.12 1.55 1.43 - 1.68 1.90 1.66 - 2.17 
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Table 5.12. Statistical testing of heterogeneity among strata specific mortality and hospital admission estimates for municipality size, ISA 

and percent urban levels. 

 

Q_res: statistics of residual heterogeneity (among strata-specific estimates), based on Cochran-Q. 

p-value: corresponding p-value. Null hypothesis: perfect homogeneity among strata-specific estimates. Alternative hypothesis: presence of heterogeneity

Q_res P-value Q_res P-value Q_res P-value
Municipality size

     Total Mortality 28.45 0.000 9.09 0.028 7.23 0.065

     Cardiovascular Mortality 22.03 0.000 18.00 0.000 12.89 0.005

     Respiratory Mortality 53.75 0.000 286.72 0.000 279.71 0.000

     Natural admissions 172.11 0.000 31.29 0.000 24.33 0.000

     Cardiovascular admissions 28.81 0.000 0.09 0.384 1.13 0.770

     Respiratory admissions 4.95 0.017 0.14 0.356 4.77 0.190

Lazio

ISA levels 45.25 0.000 3.29 0.193 2.73 0.256

% urban levels 23.23 0.000 63.77 0.000 86.50 0.000

Roma

ISA levels 6.31 0.043 9.52 0.009 4.20 0.123

% urban levels 3.06 0.216 2.29 0.318 1.66 0.436

75th percentile 99th percentile 99.9th percentile
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5.4 DISCUSSION  

Results from the tome series study show that heat has a non-linear effect on mortality in rural, 

suburban and urban municipalities of the Lazio region as well as in Rome. Effects were 

observed for total, cardiovascular and respiratory causes of death. Risks for total mortality were 

similar for Rome and small municipalities, with the greatest effects in medium and large sized 

municipalities of the Lazio region. This pattern was true for both medium range temperatures 

(50th-75th percentile) and when including extreme temperature values. Medium and large 

municipalities were less in numerical terms, and possibly more diverse within the categories 

both in terms of population size, urbanistic characteristics, climatic and geographical 

conditions. Confidence intervals were wider in rural municipalities, notwithstanding estimates 

were still significant and did not overlap. A similar pattern was observed for cardiovascular 

mortality, with slightly higher effects when extreme temperatures were considered. Conversely 

for respiratory deaths, a different pattern was observed; with a very steep increase in the risk 

for extreme temperatures in all municipalities, except for the small ones in which effect 

estimates did not change much for the three temperature intervals. Overall for the entire region, 

a risk of 1.10 (95%CI: 1.09-1.11) for respiratory deaths was observed for temperature increases 

between the 50th and 75th percentile, which increased to (RR= 1.87 95%CI: 1.82-1.93) when 

extreme temperatures were included.  In Rome, the mortality risk in the first temperature 

interval was 1.15 (95%CI: 1.14-1.17) and when extreme values were included estimates rose 

to 1.94 (95%CI: 1.82-2.06).   

Conversely to mortality, hospital admissions effects were small or non-significant. For total 

admissions a suggestive effect of heat (lower CI limit was on the margin of statistical 

significance) was found only for small and large municipalities across the entire temperature 

range. No effect of heat was observed for cardiovascular admissions , or even protective in 

some municipality groupings of the Lazio region. These results are consistent with findings 
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from a project conducted in 15 European cities which found no effect in Mediterranean cities 

for cardiovascular admissions in summer.12 Effects of heat, across the entire temperature range 

were observed for respiratory admissions in small and medium municipalities and overall in 

the Lazio Region. A suggestive rising trend in the effects of extreme heat on respiratory 

admissions was observed in all municipalities of the Lazio region including Rome. Respiratory 

admissions have been associated with heat in several studies conducted in Europe and findings 

here confirm results found in the literature11,12,163,164.  Similarly Kovats and co-authors also 

found contrasting patterns of mortality and emergency hospital admissions in London, with an 

effect of heat only for respiratory admissions164. A study conducted in California on the other 

hand found a 2% excess risk in respiratory admissions for 10°F increases in apparent 

temperatures, while no effect was observed for cardiovascular disease, but only for ischemic 

stroke among the elderly was significant163. Williams et al. found an increase in emergency 

room visits for a 10°C increase in temperature but a decline hospital admissions in Perth, 

Australia.13 In a similar study conducted in Adelaide heat effects on ambulance calls and ER 

visits were observed, while for hospital admissions only a weak association between 

temperature and respiratory admissions was observed, while no effects on cardiovascular 

admissions were shown328 More detailed studies on specific sub-causes of admissions and ER 

visits rather than entire groupings could help disentangle this aspect. 

One of the added values of the study it that it permitted to estimate the effects of heat for areas 

which had never been studied before, specifically rural and sub urban areas, finding a 

significant heat-related effect in the Lazio region. Moreover, rural (small municipalities) had 

comparable effect estimates to Rome for total and cardiovascular mortality. This finding was 

in accordance with the few previous studies conducted in rural small communities that found 

similar or a higher heat-related mortality for heat compared to urban areas 221,257,329,330.  A study 

carried out in Ohio, U.S., considered a synoptic approach to classify weather conditions on 
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each day and estimated excess deaths on days with oppressive conditions and other days in 

summer at county level329. A comparable effect of heat on mortality in urban and rural counties 

was found. Furthermore, Lee et al. found a slightly higher risk of death associated with 

temperature increases above 28°C for people living in rural areas compared to those living in 

urban areas of three States in SE USA221. Similar results were shown in a study on emergency 

room visits conducted in North Carolina, where higher rates of visits were observed in rural 

locations331. 

The novelty of the study is the use of 1x1km satellite-derived daily temperature data, which 

gave more accurate exposure measurements compared to traditional studies using ground 

monitoring networks. Guo et al. and Lee et al. found that spatio-temporal models gave slightly 

better model fits, possibly due to a reduced exposure error21,221. High-resolution temperatures 

enabled a better characterization of the spatial variation in the exposure compared to traditional 

monitoring stations which were limited in number and at considerable distances apart from one 

another. Furthermore, Lee and colleagues showed how the temperature distribution using high 

resolution data enabled to better estimate the effects of extremely hot temperatures in the US221. 

By using a more accurate measure of exposure the potential bias in effect estimates should be 

considerably reduced21,22. Important to note that spatial aggregations are still rather coarse, as 

death counts were at municipality level. It is recognized that the categorization of one 

municipality as entirely ‘urban’, ‘suburban’, or ‘rural’ might be an overgeneralization. If data 

by census tract or geo-located, attribution of exposure could have been more refined taking 

advantage of the fine scale exposure and land use attributes. Bennet et al. used a Bayesian 

spatial model to better capture the spatial differences in vulnerability to heat across the UK at 

district level219.This approach could be a further step of the analysis carried out here, to better 

represent neighbouring municipalities and the spatial pattern of heat-related effects. It is 

however worth mentioning that in my thesis the dlnm approach was used, and the association 
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was considered non-linear to better capture the short-term effects of heat rather than the spatial 

pattern and this methodology is not integrated in the Bayesian framework as also reported by 

Bennet219.  

The different temperature distribution and the temperature-mortality curves depicted 

geographical differences in heat effects. Geographical differences in the effects of heat on 

mortality as have been widely documented around the world 7,8,191 and are dependent on local 

climates and population characteristics. In this study thresholds above which heat increases 

varied by municipality size as shown in the main analysis. This is suggestive of local population 

adaptation to local climates and having a different physiological response to heat to some 

extent. This was also confirmed in the sensitivity analysis using fixed temperature intervals on 

all municipalities. In fact results from this section showed that effects with the fixed intervals 

were larger for small municipalities and more contained in Rome suggesting that urban 

populations are exposed to higher temperatures, as shown by the temperature distribution, and 

might be more acclimatized 219,266,329,330,332.  Moreover, Lee et al. suggested that the warmer 

temperatures found in larger urban areas may lead to higher thresholds 221. 

To try and account for the differences within each municipality with respect to the level of 

urbanization or built up environment, ISA and % urban development from CLC were 

considered in relation to heat-effects. Results showed a slight effect modification in the effects, 

with greater risks in heat-related mortality in municipalities with a higher level of ISA or % 

urban development. The differences were greater for the Lazio regional compared to Rome. 

Urban et al. found similar results among districts of the Czech Republic, areas with a higher 

population density and impervious surfaces had higher heat-related excess deaths 220. Land use 

influences the thermal characteristics of an area and has been associated with vulnerability to 

heat-related mortality 183,297,300. Greater heat vulnerability has been observed in areas with a 
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higher proportion of impervious surfaces, built-up environments and higher population density. 

On the contrary, the presence of green space and water bodies seems to reduce temperatures 

and areas with a greater presence of these factors are associated with lower risk estimates183,292. 

However, it should be noted that most of these latter studies only assess differential effects 

within urban areas and do not account for differences between urban and rural settings.  

Socio-economic factors might also modify the temperature mortality association among 

populations in urban and rural areas6,182,183,212,220. Unfortunately, socio-economic factors were 

not available at the same spatial scale in this study but will be considered in the Rome study 

described in the next chapter. It is presumable that there are socio-economic differences 

between Rome and the rural and suburban areas in Lazio. A study conducted in Massachusetts 

showed that socio-economic factors had a dominant role in defining differential effects of heat 

rather than the level of urbanization characterized by population density and proportion of the 

impervious surface.333 Noteworthy that socio-economic factors have been identified as risk 

factors mostly in the US169,334, while in Europe the association is less clear.  

The burden of heat-related deaths was also estimated and a considerable number of deaths was 

found for all municipalities in the Lazio Region and in Rome. Attributable deaths were found 

for both mild summer temperatures and for extreme values, with a greater total number of 

deaths in Rome, as expected due to the greater population exposed numerically.  

Important to note that summer 2003 was included in the study period, when an exceptional heat 

wave occurred across Europe and Italy with a considerable number of excess deaths, potentially 

inflating the total number of deaths observed here for extreme heat. However, the sensitivity 

analysis excluding summer 2003 showed very similar patterns and results, with slightly lower 

estimates for the more extreme events, especially in Rome. A study conducted on the 2003 heat 

wave in Europe showed the difference in estimates excluding 2003, and in Rome the difference 
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was marginal compared to other cities such as Paris, London or Barcelona320.  A further study 

on heat waves could help identify the effects and impacts of extreme events especially 

prolonged heatwaves and potential “added effect”. However, this was not the primary interest 

here as the differences by size of population and municipality type was the main concern. A 

recent multi-country study found that Italian cites had one of the highest attributed risk 

fractions, and showed similar estimates for Rome.157  

Berko et al., estimated the burden of extreme weather events in the US during 2006–2010 and 

found that nearly one-third of the deaths were attributed to extreme heat257. Heat-related impact 

estimates are important when considering future impacts of climate change and the potential 

role of adaptation measures. Two studies including Italian cities suggest that the introduction 

of heat plans and adaptation measures can reduce the burden of heat-related deaths.229,335  

The burden considering YLL for the entire region provided additional information on the 

impacts of heat on the population in terms of premature death due to heat. An average of 9.300 

YLL were estimated for each summer in the Lazio region for temperature increase between the 

50th and 99th percentile. A recent study suggested that the impact of heat in terms of YLL is 

correlated to the presence of frail subjects in a population that might have a reduced life 

expectancy compared to the general population due to pre-existing medical conditions that 

make them more susceptible to heat.326 YLL would be more contained if mortality 

displacement had been taken into account here. Notwithstanding, both impact estimates denote 

a significant burden in terms of exposure to heat, which will potentially rise in the future 

considering climate change and ageing of the Italian population.  

Findings are suggestive of a key public health issue that needs to addressed with adequate 

resources now and in the future to improve response and reduce the impact. The estimates for 

sub-urban and rural areas can also be integrated into the regional heat warning systems and 
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heat plans to improve awareness and resilience among the local population and emergency 

response health services. In conclusion, findings from this study will be helpful for regional 

warning systems and public health heat prevention policies.  
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CHAPTER 6 – URBAN HEAT EFFECTS IN 

ROME 

6.1 INTRODUCTION  

People living in cities worldwide face a variety of health risks, among these, environmental 

factors like air pollution, noise, water contamination, proximity to industrial sites, waste and 

higher temperatures due to the UHI phenomenon play a key role. The acute effects of heat and 

extreme temperatures on health outcomes (mortality and hospital admissions) are well known 

in Italian cities.12,157,161,179,208,320,336,337 However, most research in urban areas has been carried 

out with very coarse temperature exposure, typically using data from a single airport 

monitoring site thus not taking into account the spatial variation in temperatures within the 

urban context due to land use characteristics, urban micro meteorology and the UHI effect. 

This approximation is associated with a misclassification of the individual exposure, as all the 

subjects residing in an urban area are is given the same average exposure, thus potentially 

leading to an underestimation in the true heat-related effects. 

Urban heat islands have been identified in Rome and other Italian cities.91,127,128 Fabrizi et al. 

found a magnitude of +3-4°C in core urban areas of Rome at night compared to sub-rural zones, 

considering AATSR land surface data temperature and observed data128. A study comparing 

rural and urban monitoring stations, in three Italian cities found a UHI gradient of +1.9°C for 

Rome278. Morabito et al. compared LST temperatures in the different cities with building 

density and found the highest absolute LST difference (+3.8 °C) in Rome at night.91 

Few studies have addressed variations in the effect of heat within cities. An important potential 

modifier of the heat effects is the presence of the urban heat island (UHI) effect due to the 

thermal capacity of buildings and impervious surfaces to retain heat. Within cities, zones with 
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densely packed buildings, narrow streets and limited green space are warmer that rural and 

suburban areas which have a higher proportion of green areas and less compact urban 

structures. Hence when considering the differential thermal properties and the 

micrometeorology within urban areas, land use and land cover are important. Stewart and Oke 

developed a standardized set of local climate zones, to classify urban and rural field sites based 

on surface properties90. This was accounted for in my thesis as satellite LST data captures 

temperatures at surface level and the relationship with land use and land cover were used to 

derive air temperature as described in chapter 4. Hence when characterizing the UHI intensity 

and thermal gradient for Rome, land use and the association with the micro climate is 

considered to some extent. Furthermore, vulnerability to heat among urban residents also 

depend on socio-economic factors, demographic characteristics and health status and these can 

vary greatly within urban areas thus also affecting response to heat 256,279,301.  

This chapter presents the study conducted using the Rome Population Cohort to estimate the 

effect of heat on mortality by total, cardiovascular and respiratory causes using the case cross-

over approach. The analysis considers potential individual and urban context factors that may 

modify vulnerability to heat. The novelty of the study is that it attributes the high resolution 

1x1 km gridded air temperature, to each individual in the cohort at residential address who died 

between 2002-2010.  
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6.2 DATASET 

6.2.1 The Rome Longitudinal Cohort  

The Rome Longitudinal Study (RoLS)338 is a population cohort where subjects were enrolled 

using the Rome Population Register at the 2001 Census (October 21st, 2001). The cohort has 

been used in numerous studies , especially regarding the long-term effects of air pollution on 

health outcomes339–343. Using record-linkage procedures Cesaroni and colleagues, attributed a 

series of socio-demographic characteristics to subjects included in the cohort using data from 

the Rome Population Register and national Census data.338,344 

In particular, the following personal data were available from the population register:  

- sex  

- birth date 

- place of birth  

- residential history 

and the following from the census:  

- marital status (married, single, separated or divorced and widow/widowed) 

- educational level (none, primary school, secondary school, high school and university) 

- employment status (manual worker, non-manual workers, unemployed, housewife, 

retired, and other). 

An area-based index of socioeconomic position, where the unit of observation was the census 

block was also taken into account. This is a composite indicator, obtained from a factor analysis 

performed on various socioeconomic census parameters (occupation, education, housing 

tenure, family composition, and foreign status (yes or no)). The four factors explained 84% of 

the variance: the first represented education, occupation and crowding in dwellings (49.5% of 

variance), the second immigration (14% of variance), the third family composition (11.3% of 
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variance), and the fourth home ownership (9.1% of variance).345 The indicator was divided into 

5 classes (very high, high, medium, low, very low), according to the quintiles of its distribution. 

At census 2001, there were about 2.5 million inhabitants residing in Rome.346 RoLS comprises 

2,118,670 (84%) individuals, for which complete information was available. Researchers who 

built this cohort verified that differences for age and gender between subjects included and 

excluded from the analysis and these were not statistically significant.338 

Pre-existing chronic conditions of diabetes (ICD-9-CM: 250), chronic obstructive pulmonary 

disease (ICD-9-CM: 490-492, 494, 496) (COPD) and cardiovascular diseases (ICD-9- CM: 

390-459) were also accounted for by considering hospitalizations in the 5-year period before 

enrolment in the cohort338. Hospital admissions data were retrieved from the Lazio Regional 

Health Information System that collects individual discharge records from all hospitals in the 

region including Rome. Al subjects in the cohort were geocoded based on residential address 

in 2001 defined at census.  

RoLS characteristics 

RoLS population is made up of 1,119,878 (52.9%) females and 998,792 (47.1%) males, 

distributed as shown in the following population pyramid of age (Figure ). The 35-39 age group 

represent the largest age class in the population, as a consequence of the period of strong birth 

growth that occurred in Italy in the 1960s, the so-called “baby boom”. After this period the 

number of birth severely decreased.  Table 6.1 describes the principal socio-demographic 

characteristics of total population. Over 1.3 million (62%) subjects were born in Rome, while 

806,517 (38%) were born elsewhere. Around 39% of the population was single and 48% were 

married, 34% of the subjects had a high school education and 44% were employed.  
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Figure 6.1. Age-sex population pyramid of Rome Longitudinal Study 2001
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Table 6.1. Characteristics of the study population. Rome census 2001. 

Characteristics 
Population 

N % 

Total  2,118,670   
Gender     

   Men 998,792 47.1 
   Women 1,119,878 52.9 

Mean age (SD) 49.4 (22.2) 

Place of Birth      
   Rome 1,312,153 61.9 
   Other 806,517 38.1 

Marital Status      
   Married 1,012,816 47.8 

   Single 831,998 39.3 
   Separated 108,890 5.1 

  Widowed 164,966 7.8 
Education      

None 146,305 7.3 
   Primary School  363,806 18.0 

   Secondary School 530,881 26.3 
   High School 685,104 34.0 

   University 290,543 14.4 
Employment status     

Employed 820,873 44.4 
Looking for first employment 58,698 3.2 

Unemployed 86,140 4.7 
Student 158,879 8.6 

Housewife 314,770 17.0 
Retired 336,530 18.2 

Military or civil service 2,941 0.2 
Unable to work 19,877 1.1 

other 46,771 2.8 
Area-based Socioeconomic Position   

   Very High 397,835 18.8 
   High 420,005 19.8 

   Medium 422,943 20.0 
   Low 439,947 20.8 

   Very Low 437,930 20.7 
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6.2.2 Individual Temperature Exposure  

Starting from the geo-coded individual addresses of subjects included in the cohort using GIS 

spatial joining techniques, the daily 1x1km gridded air temperature was attributed to each 

individual. Thus creating a time series of mean daily temperature data for each individual for 

the study period 2002-2010. Mean temperature (lag0-3) was considered as exposure.  

6.2.3 Urban Heat Island Definition 

The UHI intensity, measures the thermal difference between temperature at a given reference 

suburban point (Tref) and temperatures in the single grid points (i) within the urban area (Tu). 

 

𝐔𝐇𝐈 𝐢𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲 𝒊𝒅 = 𝑻𝒖𝒊𝒅 −  𝑻𝒓𝒆𝒇𝒅 

The suburban reference point was identified as the grid cell in which mean temperatures were 

lowest in the overall average mean summer temperature map for Rome for the entire study 

period. Once the point was identified, the difference between daily temperatures in each grid 

cell and the daily reference point was computed and the UHI intensity defined. The average 

UHI intensity for each grid cell was computed. This was then mapped for visual inspection. In 

the analysis UHI intensity was considered as a potential effect modifier of the temperature-

mortality association. The variable was categorized into 2 classes, above and below the 50th 

percentile of the UHI intensity distribution only for the grid cells in which case events occurred. 

The grid cells in which residents live and die are the predominantly the areas with higher built 

environment, population density and impervious surfaces, the subset was made up of warmer 

grid cells. Considering the distribution for the entire UHI intensity would have given lower 

thresholds and most events would be allocated to the higher category. Two classes might be 

restrictive, but as UHI was evaluated with SEP it seemed reasonable not to have too many 
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categories. Ideally as UHI intensities are highest at night, minimum temperature values would 

have been the optimum to identify thermal gradients between urban and rural areas, but as 

mean temperature derived in chapter 4 was the temperature parameter available with a 1x1km 

resolution, the methodology employed here was the only feasible option. To a certain extent 

we can speculate the UHI intensity magnitude might be underestimated, but there should be no 

differences in the spatial pattern which is of greater interest here.   

6.3 METHODS 

Statistical modelling: Case-crossover design for the analysis of the short-term effect of 

heat on cause-specific mortality in the Rome Longitudinal Study.  

All deaths occurring in the summer periods between 2002 and 2010 among subjects of the 

Rome Longitudinal Study were selected. Only fatal events occurring in the warm period (April 

to September) among subjects aged 35+ years at the time of death were considered. All 

residential addresses were geo-located, and the daily (lag0-3) exposure was attributed as the 

estimated mean temperature of the 1x1-km grid cell where the individual address was located.  

In order to estimate the short-term association between daily mean (summer) temperature and 

mortality the case-crossover (CC) design347 was used. This approach is a matched case-control 

design where each subject is a risk-set and the exposure on the event day (death) is compared 

to the average exposure on control days. It follows that each subject is the control of himself, 

therefore perfect adjustment for all time-invariant (e.g. sex, genetic factors, etc.) and slow-

changing (age, smoking, BMI, socio-economic factors) confounders is achieved by design. 

Other time-varying factors (e.g. seasonality) can be adjusted for by modelling in the 

multivariate conditional logistic regression model. CC is the only possible approach when 

environmental exposures are estimated at the individual level and short-term effects are of 

interest. In contrast, conventional time-series studies are not applicable because they assume a 

homogeneous distribution of the exposure across the entire study area, and only focus on day-
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to-day variability. Furthermore, CC allows evaluation of individual-level or address-level 

characteristics as potential effect modifiers of the relationship between Ta and the health 

outcome(s) of interest, under the hypothesis that some subgroups are more vulnerable to 

summer high temperatures, either because of individual characteristics (elderly, those living 

alone, people with chronic conditions, etc.), or because of contextual ones (socio-economic 

deprivation, degree of urbanization of the residential area, green space, presence of urban heat 

islands, etc.). 

In the present study, control periods for each “case” were chosen as the same days of the week 

within the same time window (month and year)324. This strategy of controls selection, referred 

to as the “time-stratified” approach, has been shown to introduce negligible bias from long-

term and seasonal time trends in either exposure or outcome, while at the same time minimizing 

the serial autocorrelation of the case and control time windows, as they are separated by seven 

days348. 

As in the time-series approach described in Chapter 5, the lagged non-linear association 

between high temperatures and mortality was accounted for by fitting a distributed-lag non-

linear model (package dlnm in R)322. This model defines a two-dimensional function, the cross-

basis, which incorporates both non-linear curves for the exposure-outcome relationship and 

lagged effects of the exposure on the outcome323. On the basis of the literature, a maximum lag 

of three days was set a priori and then allowed for non-linearity by fitting b-splines of the 

(lagged) temperature-mortality relationship with 3 degrees of freedom. Results are reported as 

odds ratios (and 95% CI) of mortality for temperature increases between the 50th to the 75th , 

50th to 95th and 50th to 99th percentiles of the temperature distribution. For ease of description 

risks are denoted as relative risks.   
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As previously described, several individual-level and area-level characteristics were evaluated 

as potential effect modifiers. Each effect modifier was analysed singularly by conducting 

separate analyses for each level of the modifier. The individual-level variables included age 

(35-64, 65-74, 75-84 and 85+ years), gender, marital status (married, single, divorced, 

widowed), education level (primary, middle school, high school, university), occupational 

status (non-manual workers, manual/other workers, housewives, unemployed, retired and 

others), and a series of previous co-morbidities - past hospital admissions for cardiovascular 

diseases, diabetes or chronic-obstructive pulmonary diseases (COPD).  

The area-level effect modifiers evaluated were: socio-economic position (at the census-block 

level), percent of urban development, impervious surfaces and UHI (defined at the 1x1-km grid 

level). 

A sensitivity analysis was carried out to compare temperature effect estimates using traditional 

measured data from Ciampino airport monitoring station, temperature by urbanistic zone, used 

in the previous section and time series analysis and the individual temperature exposure 

considered here. The CC analysis was carried for each of the three exposures and effect 

estimates calculated. Attributable deaths using the three exposures were calculated using the 

same methodology described in the previous chapter325 for increases in mean temperature 

between the 50th and 75th percentile and from the 50th to the 99th percentile. Results were 

compared to account for the misclassification in exposure might influence estimates.  

The analyses were conducted using R (version 3.1.3; Institute for Statistics and Mathematics, 

WU Wien, Vienna, Austria) and STATA (version 13; StataCorp. 2013. Stata Statistical 

Software: Release 13. College Station, TX: StataCorp LP). 

 

 



168 
 
 

6.4 RESULTS 

6.4.1. Mortality in the RoLS Cohort 

Table 6.2 shows the descriptive statistics of deaths in the cohort by age, gender, comorbidity 

and individual factors. Over 57,000 deaths occurred during the summers in the period 2002-

2010, of these around 40% were for CVD while only 3200 (5.6%) were for respiratory deaths. 

Deaths were mostly in the old (75-84=36.2%) and very old (85+=32.4%). Although the gender 

distribution was roughly even, around 40% of deaths among females were in the 85+ group, 

while among males the majority of deaths occurred in the 75-84 age group. It seems reasonable 

to have a higher proportion of widows/widowers and fewer single or divorced individuals when 

considering mortality as outcome in the cohort. Married individuals made up over 50% of the 

cohort. Regarding education, 48.7% of the cohort had a primary school education and only 

11% had a university degree, this again reflects age distribution of the population in study. In 

the cohort, 53% were retired and 24% were housewives, only a limited proportion were still in 

the active workforce. Table 6.3 illustrates mortality distribution by SEP, urban development 

and impervious surface categories. Deaths by socio-economic position were evenly distributed 

with a slight skewness towards the richer subgroups. Regarding ISA and urban development 

around 50% of the deaths occurred in grid cells with a high ISA or urban development as 

expected considering the spatial domain in study.    
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Table 6.2. Number of deaths in the cohort during summer (May- September) by age, 

gender, cause , marital status, education , employment and co-morbidities in the study 

period (2002-2010).  

  N %     N % 

Total 57,509 100.0     

Cause    Education   

Cardiovascular 23,302 40.5  University 6,424 11.2 
Respiratory 3,201 5.6  High school 10,389 18.1 

Age group    Middle school 12,668 22.0 
35-64 6,972 12.1  Primary school 28,028 48.7 
65-74 11,087 19.3  Occupation   

75-84 20,821 36.2  Non manual workers 3,461 6.0 
85+ 18,629 32.4  Manual and other 2,240 3.9 

Gender    Housewives 13,907 24.2 
Males 28,216 49.1  Unemployed 828 1.4 

Females 29,293 50.9  Retired 31,016 53.9 
Marital status    Other 6,057 10.5 

Married 31,290 54.4  Co-morbidities   

Single 5,027 8.7  CVD 19,545 34.0 
Divorced 2,269 3.9  COPD 4,995 8.7 

Widowed 18,923 32.9   Diabetes 4,885 8.5 
 

Table 6.3. Number of deaths in the cohort during summer (May- September) by socio-

economic position, impervious surface, percent urban development and urban heat island 

intensity in the study period (2002-2010).  

  N % 

Total 57,509 100.0 

Socio Economic position   

High 11,734 20.4 
Mid-high 12,240 21.3 
Medium 11,489 20.0 
Mid-low 11,277 19.6 

Low 10,769 18.7 
ISA   

Low 15,374 26.7 
Medium 13,378 23.3 

High 28,757 50.0 
Urban development   

Low 14,376 25.0 
Medium 14,391 25.0 

High 28,742 50.0 
UHI   

Low 25,110 43.7 
High 32,399 56.3 
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6.4.2 Temperature Exposure 

Figure 6.2 shows the average summer mean temperature distribution over the study period for 

Rome and the spatial distribution of deaths that occurred in the study period.  

Tables 6.4a-b shows the temperature distribution in the warm season(May to September) with 

a fine spatial resolution, considering all the 1x1km grid cells for Rome (table 6.4a) and only in 

the grid cells where deaths occurred (cohort grid cells) (table 6.4b) over the entire study period. 

The mean temperature was of 22.2°C, with an interquartile range of 19.6°C to 25.1°C and the 

99th percentile was 28.5°C considering the entire spatial domain. While considering cohort grid 

cells only (which is the exposure in the study domain) the mean was 23.1°C and IQR was 

comprised between 20.4°C and 26.1°C. It can be noted that tails of the temperature distribution 

in the cohort domain are truncated, with less extreme values for both high and low 

temperatures. We can also see an annual variability, with 2003 registering the highest 

temperatures for all percentiles considered, with +3°C on average throughout the distribution. 

In summer 2003, the 99th and maximum values reached 31.0°C and 34.1°C respectively. A 

seasonal trend in temperatures can also be observed with highest values in July and August and 

lower values at the beginning and end of the season. Mean temperatures in July and August 

were around 26°C in the cohort, while in May and September they were around 6°C lower 

(table 6.4a- b). The cohort dataset had slightly higher values. The 75th percentile in the cohort 

temperature distribution was 26°C for all summer and ranged between 20.9 and 27.4 in July, 

while the 99th percentile was of 20°C for all summer and ranged between 25.7°C in May and 

30°C in August.  

Figure 6.3 shows the UHI intensity in Rome and its spatial distribution. Central areas and the 

north eastern section of the city had the highest UHI intensities. Average values over the study 
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period ranged between 0.3°C and 2.9°C, with a mean value of 1.7°C during summer. The range 

in daily values had a greater variability between -0.2°C and 3.4°C (data not shown).  
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Figure 6.2. Map of average mean summer temperature over the study period and spatial location of death events that occurred in the study 

period (2002-2010).  
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Figure 6.3. Map of average UHI intensity over the study period and spatial location of death events that occurred in the study period (2002-

2010).  
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Table 6.4a. Mean Temperature distribution for Rome during summer (May- September), by month and by year in the study period (2002-

2010). 

  Min p1 p5 p10 p25 p50 Mean p75 p90 p95 p99 Max 

2002 10.1 14.5 15.8 17.1 19.1 21.6 21.6 24.1 26.1 26.9 28.4 30.3 
2003 14.3 17.7 18.9 19.6 21.0 25.2 24.6 27.9 29.0 29.5 30.3 36.2 
2004 7.0 12.6 15.0 16.1 18.5 22.3 21.5 24.4 25.8 26.4 27.8 29.9 
2005 13.1 15.2 16.4 17.3 19.3 21.9 21.7 24.0 25.7 26.7 27.8 29.4 
2006 10.6 13.5 15.2 16.5 19.4 22.0 21.9 25.2 26.6 27.2 28.2 30.5 
2007 12.6 14.7 16.0 16.9 19.3 22.1 21.9 24.5 26.6 27.6 29.2 31.8 
2008 11.0 14.5 15.5 16.2 18.4 23.4 22.1 25.4 26.5 26.9 27.6 28.8 
2009 12.7 14.8 17.3 18.8 20.7 22.8 22.9 25.5 26.6 27.3 28.2 30.4 
2010 10.0 13.1 15.1 16.4 18.8 22.2 21.7 24.7 26.4 27.2 28.5 30.6 

Month             

May 7.0 12.7 14.2 15.1 16.4 18.0 18.3 20.0 21.9 22.8 24.6 27.7 
June 10.6 15.0 17.0 18.0 20.2 22.5 22.5 25.3 27.0 27.6 28.5 30.6 
July 16.0 20.5 21.7 22.4 23.6 25.2 25.1 26.6 27.7 28.4 29.4 31.4 
August 15.7 19.1 20.8 21.7 22.9 24.6 24.6 26.2 27.8 28.8 30.1 36.2 
September 10.1 14.5 15.8 16.7 18.9 20.6 20.5 22.0 23.8 24.8 26.1 28.8 

average 11.3 14.5 16.1 17.2 19.4 22.6 22.2 25.1 26.6 27.3 28.5 30.9 
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Table 6.4b. Mean Temperature distribution for cohort grid cells during summer (May- September), by month and by year in the study 

period (2002-2010). 

variable Min p1 p5 p10 p25 p50 Mean p75 p90 p95 p99 Max 

2002 12.8 15.4 16.7 18.1 20.1 22.5 22.6 25.1 27.2 27.9 29.4 30.3 
2003 17.0 18.8 19.9 20.7 22.1 26.6 25.6 28.7 29.7 30.2 31.0 34.1 
2004 11.4 13.5 15.9 17.0 19.2 23.2 22.3 25.2 26.6 27.3 28.7 29.9 
2005 14.8 16.6 17.4 18.2 20.0 22.7 22.6 24.9 26.7 27.6 28.6 29.3 
2006 12.5 14.3 15.9 17.3 20.3 22.9 22.7 26.1 27.4 27.9 28.7 30.2 
2007 14.3 15.5 16.6 17.5 20.0 23.0 22.7 25.4 27.4 28.3 29.9 31.7 
2008 13.6 15.2 16.2 16.9 19.1 24.2 22.7 26.0 27.2 27.5 27.9 28.3 
2009 14.3 15.8 18.0 19.6 21.4 23.8 23.7 26.4 27.5 28.2 29.0 30.4 
2010 12.3 13.8 16.1 17.2 19.8 23.3 22.7 25.6 27.4 28.2 29.5 30.6 

Month             

May 11.4 13.6 15.1 16.0 17.3 18.9 19.1 20.9 22.9 23.7 25.7 27.7 
June 12.5 15.6 17.9 18.8 20.9 23.3 23.3 26.2 27.8 28.4 29.4 30.6 
July 18.9 21.3 22.7 23.2 24.5 26.2 26.0 27.4 28.6 29.2 30.1 31.4 
August 17.3 19.9 21.8 22.7 23.8 25.5 25.5 27.0 28.6 29.6 30.8 34.1 
September 13.3 15.2 16.4 17.2 19.7 21.3 21.1 22.8 24.5 25.5 26.7 28.0 

average 13.7 15.4 17.0 18.1 20.2 23.6 23.1 26.0 27.4 28.1 29.2 30.5 
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6.4.3 Short-term effects of heat on mortality in the Rome Population Cohort.  

Figure 6.4 shows the dose-response curve for air temperature and cause specific mortality in 

Rome, the curve shows that during summer as temperatures progressively rise, around, 20-

23°C, the risk of mortality increases, with statistically significant effects from around 25-26°C.  

Figure 6.4 Mean temperature – mortality association in Rome, summer (2001-2010).  
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Figure 6.5 shows the relative risk in total mortality for increases in temperature from the 50th 

to 75th percentile and from the 50th to 99th percentile, results are reported by age groups, gender, 

and finally gender and age combined.  The overall effect of heat on mortality, for an increase 

in temperature comprised between the 50th and 75th percentile (23.5 vs 26.2°C), in the Rome 

cohort was of 11%. While, when considering more extreme temperatures (50th to 95th) the risk 

rose to 34% for overall mortality (OR=1.34: CI95%: 1.28-1.40) (Table 6.5). Stratification by 

age showed a rising trend in effects; among younger adults the effect was non-significant and 

increased progressively with age from 1.06 (95%CI: 1.02-1.11) in the 65-74 age group to 1.18 

(95%CI: 1.15-1.22) in the 85+ age group for temperature increases between the 50th and 75th 

percentile. For extreme temperatures, the pattern was similar and relative risks were higher, 

with significant increases in the risk of death due to temperature increases from the 50th to the 

95th percentile of +10% in the 65-74 age group to 55% in the 85+ age group. Increases 

considering extreme values were no longer significant in the 65-74 age group, but remained 

significant even considering extreme estimates (50th to 99th percentile) (Table 6.5 and Figure 

6.5).  Statistical testing for heterogeneity confirmed differences by age groups for all 

temperature intervals (Table 6.11). When stratifying by gender an overall higher effect was 

observed for females with an OR of 1.14 (95%CI: 1.11-1.17) compared to OR=1.09 (95%CI: 

1.06-1.11) in males for mean temperature increases between the 50th and 75th percentile. The 

gender difference for the first temperature interval (50thvs75th) was also confirmed by p-

values and the Q statistical test as shown in table 6.11. When considering age and gender 

together, a greater risk was found for women considering moderate temperatures. The risk of 

death among elderly females increased from +7% in the 65-74 age group to +22% in the 85+ 

age group; while among males the increase in risk rose from +6% to +17%, respectively in the 

same age groups. A greater effect of extreme temperatures was observed among males with 
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risks comprised between 46% in the 65-74 age group to 86% in the 85+ age group (Table 6.5 

and Figure 6.5). 

Figure 6.6 shows the risk in total mortality for increases in temperature from the 50th to 75th 

percentile and from the 50th to 99th percentile, results are reported by marital status, occupation 

and level of education. The highest risk, when analysing marital status was for widows and 

widowers (OR=1.17: CI95% 1.13-1.20). For estimates stratified by education no clear trend 

was found, a slightly higher risk was observed for subjects with a primary school education 

(OR=1.13: CI95% 1.11-1.16), the second highest risk estimates were for individuals with a 

university degree. Occupation seemed to be linked to age as the categories with a greater risk 

were housewives (OR=1.13: CI95% 1.09-1.17), retired (OR=1.10: CI95% 1.07-1.13) which 

was also the largest category, and other types of workers (OR=1.20: CI95% 1.14-1.27) which 

is a miscellaneous category. The unemployed were very few and younger. Table 6.11 confirms 

statistically significant differences in estimates by marital status and occupation for 

temperature increases in the first two intervals only. 

Analyses by cause (Table 6.6-6.7) showed similar age and gender patterns with a trend of 

increasing risk by age and greater effects among females for both cardiovascular and 

respiratory mortality. In general, respiratory risks were higher with an overall OR of 1.26 

(CI95%: 1.13-1.31), while cardiovascular deaths had a risk of 1.14 (CI95%: 1.11-1.37) for 

temperature increases from the 50th to 75th percentile. For extreme temperatures, the risk of 

respiratory deaths was higher than other causes, especially for women aged 85+. Table 6.12 

and confirm statistically significant differences in estimates by age, gender and marital status 

for temperature increases in the first two intervals only for cardiovascular disease. While 

respiratory disease show significant heterogeneity in estimates by age, females and ages groups 

and marital status across the entire temperature range (Table 6.13) .  
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Slightly different trends were observed for subjects with pre-existing chronic disease; although 

none were statistically significant (Tables 6.11-6.13). Having diabetes or a pre-existing 

cardiovascular condition were suggestive risk factors for cardiovascular mortality, while when 

considering respiratory disease, subjects with COPD, diabetes or pre-existing cardiovascular 

condition seemed to be slightly less at risk compared to those who didn’t have the chronic 

condition (Tables 6.5-6.7).   
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Table 6.5 Heat-related effects on total mortality. Risk in mortality for increases in mean temperature between the 50th and 75th, 50th and 95th, 

50 to 99th of the summer distribution in Rome by age groups, gender, age and gender combined and co-morbidities. 

  75th percentile  95th percentile  99th percentile 

Total Mortality OR 95%CI OR 95%CI OR 95%CI 
             

All ages  1.11 1.09 - 1.13 1.34 1.29 - 1.40 1.53 1.43 - 1.63 
35-64 1.02 0.97 - 1.07 1.13 0.99 - 1.28 1.22 0.99 - 1.52 
65-74 1.06 1.02 - 1.11 1.10 1.00 - 1.22 1.12 0.94 - 1.32 
75-84 1.11 1.08 - 1.15 1.38 1.29 - 1.49 1.62 1.44 - 1.82 

85+ 1.18 1.15 - 1.22 1.55 1.45 - 1.67 1.87 1.67 - 2.10 
Gender             

Males 1.09 1.06 - 1.11 1.29 1.21 - 1.37 1.46 1.32 - 1.61 
65-74 1.06 1.01 - 1.12 1.16 1.01 - 1.32 1.22 0.98 - 1.52 
75-84 1.09 1.05 - 1.14 1.37 1.24 - 1.51 1.63 1.38 - 1.92 

85+ 1.17 1.01 - 1.37 1.54 1.11 - 2.14 1.86 1.09 - 3.17 
Females 1.14 1.11 - 1.17 1.39 1.31  1.47 1.59 1.44 - 1.74 

65-74 1.07 1.00 - 1.14 1.03 0.88  1.22 0.98 0.75 - 1.28 
75-84 1.14 1.09 - 1.19 1.40 1.26  1.55 1.61 1.36 - 1.91 

85+ 1.22 1.11 - 1.33 1.45 1.17  1.79 1.59 1.12 - 2.25 
Co-morbidity             

CVD             

yes 1.13 1.10 - 1.17 1.40 1.31 - 1.50 1.62 1.45 - 1.82 

no 1.10 1.08 - 1.12 1.31 1.24 - 1.38 1.47 1.35 - 1.60 
COPD             

yes 1.11 1.05 - 1.18 1.33 1.16 - 1.53 1.51 1.21 - 1.89 

no 1.11 1.09 - 1.13 1.34 1.28 - 1.40 1.53 1.42 - 1.64 
DIABETES             

yes 1.14 1.08 - 1.21 1.31 1.14 - 1.51 1.42 1.13 - 1.79 

no 1.11 1.09 - 1.13 1.34 1.28 - 1.40 1.54 1.43 - 1.65 
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Figure 6.5. Heat-related risks of mortality for increases in mean temperature between the 50th and 75th, 50 to 99th of the summer distribution 

in Rome by age groups, gender, age and gender combined. 
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Figure 6.6. Heat-related risks of mortality for increases in mean temperature between the 50th and 75th, 50 to 99th of the summer distribution 

in Rome by marital status, education and occupation. 
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Table 6.6 Heat-related effects on cardiovascular mortality. Risk for increases in mean temperature between the 50th and 75th, 50th and 95th , 

50th to 99th of the summer distribution in Rome by age groups, gender, age and gender combined and co-morbidities. 

  75th percentile 95th percentile 99th percentile 

Cardiovascular Mortality OR 95%CI OR 95%CI OR 95%CI 
             

All ages  1.14 1.11 - 1.17 1.41 1.32 - 1.50 1.63 1.47 - 1.81 
65-74 1.02 0.95 - 1.11 1.05 0.86 - 1.28 1.07 0.77 - 1.48 
75-84 1.13 1.07 - 1.18 1.39 1.24 - 1.56 1.61 1.33 - 1.94 

85+ 1.21 1.16 - 1.26 1.59 1.45 - 1.75 1.91 1.64 - 2.24 
Gender             

Males 1.09 1.05 - 1.13 1.30 1.18 - 1.43 1.48 1.26 - 1.73 
65-74 0.99 0.90 - 1.10 1.07 0.83 - 1.38 1.15 0.76 - 1.74 
75-84 1.06 0.99 - 1.13 1.34 1.13 - 1.58 1.62 1.24 - 2.12 

85+ 1.21 1.13 - 1.30 1.51 1.28 - 1.78 1.72 1.31 - 2.26 
             

Females 1.18 1.14 - 1.23 1.51 1.38  1.64 1.76 1.53 - 2.03 
65-74 1.08 0.95 - 1.24 1.03 0.74  1.43 0.95 0.55 - 1.63 
75-84 1.21 1.13 - 1.29 1.45 1.23  1.70 1.60 1.23 - 2.08 

85+ 1.21 1.15 - 1.27 1.64 1.46  1.84 2.01 1.66 - 2.44 
Co-morbidity             

CVD             

Yes 1.16 1.12 - 1.21 1.45 1.31 - 1.60 1.67 1.42 - 1.97 
No 1.12 1.09 - 1.16 1.38 1.27 - 1.50 1.60 1.39 - 1.84 

COPD             

Yes 1.11 1.01 - 1.21 1.20 0.97 - 1.48 1.25 0.88 - 1.76 
No 1.14 1.11 - 1.18 1.43 1.34 - 1.53 1.68 1.50 - 1.87 

DIABETES             

Yes 1.16 1.06 - 1.27 1.20 0.97 - 1.48 1.17 0.82 - 1.66 
No 1.14 1.11 - 1.17 1.43 1.34 - 1.53 1.69 1.51 - 1.88 



184 
 
 

Table 6.7 Heat-related effects on respiratory mortality. Risk for increases in mean temperature between the 50th and 75th, 50th and 95th, 50th 

to 99th of the summer distribution in Rome by age groups, gender, age and gender combined and co-morbidities. 

  75th percentile 95th percentile 99th percentile 

Respiratory mortality OR 95%CI OR 95%CI OR 95%CI 
             

all ages  1.22 1.13 - 1.31 1.52 1.29 - 1.80 1.73 1.32 - 2.28 
65-74 0.87 0.70 - 1.07 0.75 0.43 - 1.30 0.69 0.29 - 1.68 
75-84 1.23 1.09 - 1.40 1.50 1.13 - 2.00 1.67 1.04 - 2.66 

85+ 1.39 1.24 - 1.57 1.98 1.54 - 2.54 2.42 1.60 - 3.65 
Gender             

Males 1.17 1.06 - 1.29 1.54 1.22 - 1.95 1.88 1.27 - 2.76 
65-74 0.98 0.76 - 1.27 1.20 0.60 - 2.41 1.45 0.48 - 4.41 
75-84 1.25 1.06 - 1.48 1.70 1.16 - 2.47 2.05 1.11 - 3.81 

85+ 1.24 1.04 - 1.49 1.68 1.14 - 2.46 2.03 1.07 - 3.84 

             

Females 1.28 1.15 - 1.42 1.51 1.19 - 1.91 1.61 1.09 - 2.38 
65-74 0.70 0.49 - 1.01 0.35 0.14 - 0.88 0.21 0.05 - 0.93 
75-84 1.20 0.99 - 1.46 1.28 0.82 - 1.99 1.27 0.62 - 2.62 

85+ 1.52 1.29 - 1.78 2.23 1.60 - 3.10 2.72 1.58 - 4.69 
Co-morbidity             

CVD             

yes 1.16 1.03 - 1.30 1.38 1.05 - 1.82 1.54 0.98 - 2.41 
no 1.26 1.14 - 1.38 1.62 1.31 - 2.00 1.87 1.32 - 2.65 

COPD             

yes 1.16 1.00 - 1.35 1.48 1.06 - 2.07 1.75 1.01 - 3.03 
no 1.24 1.14 - 1.35 1.54 1.27 - 1.87 1.74 1.26 - 2.39 

DIABETES             

yes 1.12 0.88 - 1.42 1.52 0.78 - 2.95 1.92 0.65 - 5.64 
no 1.23 1.14 - 1.33 1.53 1.29 - 1.82 1.74 1.31 - 2.31 
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Table 6.8 Heat-related effects on total mortality. Risk for increases in mean temperature between the 50th and 75th, 50th to 95th , 50 to 99th of 

the summer distribution in Rome by SEP, UHI and SEP and UHI combined. 

  75th percentile  95th percentile   99th percentile 

  OR 95%CI OR 95%CI OR 95%CI 

Total Mortality             

SEP             

        1. High 1.12 1.08 - 1.16 1.37 1.25 - 1.50 1.58 1.36 - 1.83 
        2. Mid-high 1.10 1.06 - 1.14 1.31 1.20 - 1.43 1.49 1.29 - 1.72 
        3. Medium 1.15 1.11 - 1.20 1.38 1.26 - 1.51 1.54 1.33 - 1.79 
        4. Mid-low 1.11 1.07 - 1.16 1.35 1.23 - 1.49 1.55 1.33 - 1.81 
        5. Low 1.08 1.04 - 1.12 1.28 1.15 - 1.41 1.45 1.23 - 1.71 
UHI             

        Low 1.11 1.08 - 1.13 1.29 1.20 - 1.38 1.42 1.26 - 1.60 
        High 1.11 1.09 - 1.14 1.36 1.30 - 1.44 1.58 1.45 - 1.71 
SEP-UHI             

        SEP=1-2 / UHI=Low 1.10 1.05 - 1.14 1.22 1.09 - 1.38 1.31 1.08 - 1.59 
        SEP=1-2 / UHI=High 1.11 1.07 - 1.15 1.39 1.29 - 1.49 1.63 1.45 - 1.84 
SEP=3 / UHI=Low 1.19 1.12 - 1.27 1.44 1.21 - 1.71 1.60 1.21 - 2.13 
SEP=3 / UHI=High 1.12 1.06 - 1.18 1.34 1.21 - 1.49 1.52 1.27 - 1.81 
        SEP=4-5 / UHI=Low 1.08 1.05 - 1.12 1.28 1.15 - 1.42 1.44 1.22 - 1.71 
        SEP=4-5 / UHI=High 1.11 1.07 - 1.16 1.35 1.23 - 1.47 1.54 1.33 - 1.78 
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Table 6.9 Heat-related effects on cardiovascular mortality. Risk for increases in mean temperature between the 50th and 75th, 50th to 95th, 50th 

to 99th of the summer distribution in Rome by SEP, UHI and SEP and UHI combined. 

  75th percentile  95th percentile   99th percentile 

  OR 95%CI OR 95%CI OR 95%CI 

Cardiovascular Mortality             

SEP             

        1. High 1.13 1.07 - 1.20 1.42 1.24 - 1.63 1.67 1.33 - 2.08 
        2. Mid-high 1.16 1.10 - 1.23 1.39 1.21 - 1.59 1.54 1.23 - 1.93 
        3. Medium 1.18 1.11 - 1.26 1.43 1.24 - 1.64 1.60 1.28 - 2.01 
        4. Mid-low 1.15 1.08 - 1.22 1.49 1.28 - 1.73 1.80 1.41 - 2.30 
        5. Low 1.08 1.01 - 1.15 1.32 1.12 - 1.55 1.54 1.18 - 2.01 
UHI             

        Low 1.14 1.09 - 1.18 1.35 1.20 - 1.51 1.50 1.25 - 1.81 
        High 1.14 1.10 - 1.18 1.44 1.33 - 1.55 1.69 1.49 - 1.92 
SEP-UHI             

        SEP=1-2 / UHI=Low 1.14 1.06 - 1.21 1.27 1.05 - 1.53 1.34 0.99 - 1.82 
        SEP=1-2 / UHI=High 1.15 1.09 - 1.21 1.45 1.30 - 1.63 1.71 1.42 - 2.05 

SEP=3 / UHI=Low 1.25 1.14 - 1.38 1.68 1.28 - 2.21 2.02 1.29 - 3.15 
SEP=3 / UHI=High 1.14 1.05 - 1.24 1.35 1.15 - 1.58 1.49 1.15 - 1.94 

        SEP=4-5 / UHI=Low 1.10 1.03 - 1.16 1.30 1.09 - 1.54 1.46 1.10 - 1.94 
        SEP=4-5 / UHI=High 1.13 1.05 - 1.20 1.49 1.29 - 1.71 1.84 1.45 - 2.32 
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Table 6.10 Heat-related effects on respiratory mortality. Risk for increases in mean temperature between the 50th and 75th, 50th to 95th, 50th 

to 99th of the summer distribution in Rome by SEP, UHI and SEP and UHI combined. 

  75th percentile  95th percentile   99th percentile 

  OR 95%CI OR 95%CI OR 95%CI 

Respiratory Mortality             

SEP             

        1. High 1.06 0.89 - 1.26 1.02 0.72 - 1.44 0.96 0.54 - 1.72 
        2. Mid-high 1.29 1.09 - 1.53 1.89 1.34 - 2.67 2.43 1.37 - 4.31 
        3. Medium 1.37 1.16 - 1.61 1.60 1.11 - 2.32 1.65 0.90 - 3.03 
        4. Mid-low 1.26 1.07 - 1.49 1.93 1.31 - 2.86 2.61 1.38 - 4.95 
        5. Low 1.16 0.99 - 1.37 1.46 0.93 - 2.29 1.71 0.83 - 3.54 
UHI             

        Low 1.23 1.11 - 1.38 1.59 1.19 - 2.14 1.86 1.14 - 3.03 
        High 1.21 1.09 - 1.33 1.48 1.21 - 1.81 1.67 1.20 - 2.32 
SEP-UHI             

        SEP=1-2 / UHI=Low 1.07 0.88 - 1.30 1.47 0.93 - 2.35 1.92 0.87 - 4.27 
        SEP=1-2 / UHI=High 1.22 1.04 - 1.42 1.34 1.00 - 1.79 1.36 0.85 - 2.18 
SEP=3 / UHI=Low 1.65 1.26 - 2.16 2.25 1.06 - 4.80 2.49 0.74 - 8.41 
SEP=3 / UHI=High 1.20 0.97 - 1.49 1.35 0.88 - 2.08 1.40 0.69 - 2.83 
        SEP=4-5 / UHI=Low 1.21 1.04 - 1.41 1.45 0.93 - 2.27 1.60 0.77 - 3.31 

        SEP=4-5 / UHI=High 1.21 1.01 - 1.44 1.92 1.30 - 2.83 2.72 1.45 - 5.12 
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Table 6.11 Statistical testing of heterogeneity among strata specific total mortality estimates by age groups, gender, age and gender 

combined, marital status, education, occupation, co-morbidities, SEP, UHI, ISA and level of urbanization. 

 

Q_res: statistics of residual heterogeneity (among strata-specific estimates), based on Cochran-Q. p-value: corresponding p-value.  

Null hypothesis: perfect homogeneity among strata-specific estimates. Alternative hypothesis: presence of heterogeneity

Q_res P-value Q_res P-value Q_res P-value

Natural mortality

Age 32.04 0.000 37.59 0.000 29.88 0.000
Sex 7.46 0.006 3.16 0.076 1.44 0.229

Among males: by age 6.24 0.044 6.43 0.040 5.45 0.065
Among females: by age 9.52 0.009 22.99 0.000 21.08 0.000

Marital status 15.98 0.001 16.02 0.001 11.29 0.010
Education 4.38 0.223 3.85 0.278 2.87 0.412
Occupation 20.98 0.001 19.91 0.001 14.69 0.012

Pre-CVD 2.31 0.129 2.45 0.118 1.78 0.183
Pre-COPD 0.00 0.959 0.00 0.944 0.01 0.922
Pre-Diabetes 0.98 0.322 0.04 0.786 0.38 0.535

SEP 6.27 0.180 1.66 0.799 0.71 0.950
UHI 0.17 0.680 1.76 0.185 2.01 0.157

ISA 4.38 0.112 0.92 0.630 0.52 0.771
% urban 1.61 0.447 0.02 0.992 0.07 0.964

Among SEP12: by UHI 0.21 0.644 3.09 0.079 3.59 0.058
Among SEP3: by UHI 2.37 0.124 0.45 0.502 0.11 0.745
Among SEP45: by UHI 0.90 0.344 0.51 0.476 0.29 0.588

75th percentile 95th percentile 99th percentile
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Table 6.12 Statistical testing of heterogeneity among strata specific cardiovascular mortality estimates by levels of age groups, gender, age 

and gender combined, marital status, education, occupation, co-morbidities, SEP, UHI, ISA and level of urbanization.

 

Q_res: statistics of residual heterogeneity (among strata-specific estimates), based on Cochran-Q. 

p-value: corresponding p-value. Null hypothesis: perfect homogeneity among strata-specific estimates. Alternative hypothesis: presence of heterogeneity  

Q_res P-value Q_res P-value Q_res P-value

Cardiovascular mortality

Age 21.44 0.000 15.70 0.001 10.61 0.014
Sex 9.40 0.002 5.03 0.025 2.66 0.103

Among males: age 12.29 0.002 4.85 0.089 2.60 0.272
Among females: age 2.21 0.332 7.30 0.026 7.40 0.025

Marital status 14.53 0.002 8.34 0.039 4.94 0.180
Education 5.66 0.129 1.40 0.706 1.06 0.787
Occupation 20.15 0.001 10.25 0.068 5.93 0.313

Pre-CVD 1.62 0.203 0.50 0.479 0.17 0.678
Pre-COPD 0.42 0.516 2.48 0.116 2.60 0.107
Pre-Diabetes 0.18 0.667 2.51 0.113 3.84 0.050

SEP 4.94 0.293 1.28 0.865 1.10 0.894
UHI 0.02 0.890 0.82 0.364 1.03 0.310

ISA 1.54 0.463 1.31 0.518 0.87 0.646
% urban 0.25 0.884 0.92 0.633 1.29 0.525

Among SEP12: UHI 0.08 0.773 1.50 0.220 1.79 0.181
Among SEP3: UHI 2.19 0.139 1.84 0.175 1.28 0.258
Among SEP45: UHI 0.36 0.546 1.46 0.228 1.49 0.222

75th percentile 95th percentile 99th percentile
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Table 6.13 Statistical testing of heterogeneity among strata specific respiratory mortality estimates by levels of age groups, gender, age and 

gender combined, marital status, education, occupation, co-morbidities, SEP, UHI, ISA and level of urbanization. 

 

Q_res: statistics of residual heterogeneity (among strata-specific estimates), based on Cochran-Q. 

p-value: corresponding p-value. Null hypothesis: perfect homogeneity among strata-specific estimates. Alternative hypothesis: presence of heterogeneiy 

Q_res P-value Q_res P-value Q_res P-value

Respiratory mortality

Age 18.92 0.000 12.12 0.007 7.59 0.055
Sex 1.35 0.245 0.02 0.893 0.30 0.584

Among males: age 2.82 0.244 0.80 0.671 0.31 0.856
Among females: age 15.07 0.000 15.25 0.000 11.02 0.004

Marital status 13.11 0.004 10.63 0.014 8.74 0.033
Education 4.26 0.235 4.00 0.261 5.41 0.144
Occupation 2.76 0.737 1.75 0.883 2.43 0.786

Pre-CVD 1.14 0.285 0.77 0.379 0.44 0.506
Pre-COPD 0.52 0.469 0.04 0.850 0.00 0.977
Pre-Diabetes 0.53 0.467 0.00 0.977 0.03 0.862

SEP 5.41 0.247 8.20 0.085 6.91 0.141
UHI 0.09 0.766 0.16 0.690 0.14 0.713

ISA 1.97 0.374 0.56 0.754 0.39 0.824
% urban 0.02 0.992 0.97 0.617 1.22 0.545

Among SEP12: UHI 1.02 0.312 0.12 0.729 0.54 0.462
Among SEP3: UHI 3.31 0.069 1.33 0.249 0.65 0.421
Among SEP45: UHI 0.00 0.998 0.85 0.356 1.16 0.281

75th percentile 95th percentile 99th percentile
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Urban Heat Island Effect and Socioeconomic position.  

Tables 6.8-6.10 show the risk of mortality for increases in temperatures between the 50th - 75th, 

50th - 95th and 50th - 99th percentile stratified by urban context factors (SEP and UHI). Although 

the heat-related risk of mortality was significant in every SEP class, and effect estimates 

increased as the temperature range included more extreme values, there didn’t seem to be a 

trend relating socio-economic inequality to heat-related deaths. The analyses by cause of death 

gave similar results (Tables 6.9-6.10). Statistical testing confirmed no significant difference in 

estimates by SEP (Tables 6.11-6.13).  

Similarly, the analysis by UHI showed some differential effect only when extreme and very 

extreme temperatures occurred, with a greater risk in warmer areas (high UHI intensity) for 

cardiovascular and total deaths. While for respiratory deaths living in an area of low UHI 

seemed to be associated with a slightly greater mortality risk. However, it is noteworthy that 

confidence intervals of estimates by UHI category overlap and statistical testing showed no 

significant difference (Tables 6.11-6.13) 

When considering the potential synergy between socio-economic conditions and UHI, no clear 

pattern was observed, only some slight no-significant differences in estimates. Among the high 

SEP group, when exposed to extreme temperatures, those living in hotter zones of the city (high 

UHI) had a higher risk of total mortality (SEP12UHIhigh OR=1.63 CI95% 1.45-1.84) 

compared to SEP12UHIlow OR=1.31 CI95% 1.08-1.59). A similar pattern was observed for 

cardiovascular deaths. Moreover, for respiratory and cardiovascular deaths, among individuals 

with a low SEP effect estimates were higher for those living in hotter areas (high UHI (table 

6.9-6.10). Again, confidence intervals overlap and no significant differences were depicted 

(Table 6.11-6.13). 
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Impervious surfaces and urban development 

When considering impervious surfaces and percent urban development by area, slightly 

different patterns emerged between the two variables and heat-effects (Table 6.14). Firstly, as 

for other spatial context attributes, an increasing trend in risk was observed when extreme 

temperatures were considered in the estimate range. For ISA, the risk of mortality was similar 

among subjects living in the different ISA class areas. When considering urban development, 

only among the high urban development (>75%) class, the effect differed between temperature 

intervals (confidence intervals did not overlap). For other temperature intervals, there was no 

difference in effect estimates by level of % urban and no statistical difference was shown (Table 

6.11-6.13). It is plausible that individuals all reside in areas classified as continuous urban 

fabric and capture residential areas tout court explaining limited variability. 

Looking at the correlations between UHI, ISA and percent urban it was interesting to note that 

ISA and UHI had a high correlation (0.76), while UHI and urban development had a lower 

correlation (0.57). Areas with low ISA and low UHI had potentially higher vegetative coverage 

and green space which contributes to mitigating the UHI intensity by producing more latent 

heat flux and less sensible heat flux. 
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Table 6.14 Heat-related effects on respiratory mortality. Risk estimates for increases in mean temperature between the 50th and 75th, 50th to 

95th, 50th to 99th of the summer distribution in Rome by impervious surface and % urban development.  

    75th percentile  95th percentile  99th percentile 

   OR 95%CI OR 95%CI OR 95%CI 

ISA              

low  1.09 1.06  1.13 1.29 1.17  1.42 1.45 1.24  1.69 
med  1.15 1.11  1.19 1.37 1.26  1.49 1.53 1.33  1.76 
high  1.10 1.08  1.13 1.34 1.27  1.42 1.55 1.41  1.69 

              

urban development              

Low    1.10 1.06  1.14 1.33 1.22  1.46 1.54 1.32  1.79 
med  1.10 1.07  1.14 1.34 1.24  1.45 1.54 1.35  1.76 
high   1.13 1.10   1.15 1.34 1.27   1.42 1.51 1.38   1.66 
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Table 6.15 Heat-related effects on total mortality considering 3 temperature exposures. Risk estimates for increases in mean temperature 

between the 50th and 75th, 50th to 95th, 50th to 99th in Rome considering single monitoring site temperature, urbanistic zone average 

temperature and high resolution gridded temperature. 

  75th percentile  95th percentile  99th percentile 

  OR 95%CI OR 95%CI OR 95%CI 
             

Total Mortality             

        T. at 1-km2 grid 1.11 1.09 - 1.13 1.34 1.29 - 1.40 1.53 1.43 - 1.63 

        T. by urbanistic zone 1.11 1.09 - 1.13 1.34 1.28 - 1.40 1.52 1.42 - 1.63 

        T. from airport station 1.11 1.10 - 1.13 1.32 1.26 - 1.38 1.48 1.38 - 1.59 

Cardiovascular Mortality             

        T. at 1-km2 grid 1.14 1.11 - 1.17 1.41 1.32 - 1.50 1.63 1.47 - 1.81 

        T. by urbanistic zone 1.14 1.11 - 1.17 1.41 1.32 - 1.51 1.63 1.46 - 1.81 

        T. from airport station 1.14 1.11 - 1.16 1.40 1.31 - 1.50 1.61 1.45 - 1.80 

Respiratory Mortality             

        T. at 1-km2 grid 1.22 1.13 - 1.31 1.52 1.29 - 1.80 1.73 1.32 - 2.28 

        T. by urbanistic zone 1.21 1.12 - 1.30 1.50 1.27 - 1.78 1.71 1.29 - 2.27 

        T. from airport station 1.20 1.12 - 1.29 1.47 1.23 - 1.74 1.64 1.23 - 2.19 
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6.4.4 Sensitivity analysis – effect estimates with temperature exposure at different 

resolutions.  

In order to evaluate the potential misclassification of exposure and effect estimates a sensitivity 

analysis was carried out. The same case-cross over model on total, cardiovascular and 

respiratory mortality, was carried out with fixed percentiles as for the main analysis, but 

considering three different exposures:  

1. Single point measured mean temperature data (Ciampino airport),  

2. Satellite derived temperature averaged by urbanistic zone (Lazio region time series 

analysis)  

3. individual 1x1km gridded air temperature exposure.  

The temperature distribution was less variable considering a single point of observed data while 

the high resolution gridded data had a wider distribution of daily temperatures. Results showed 

that for moderate increases in temperature (50th to 75th percentile) the effect estimates were 

equivalent, while when including more extreme values higher resolution exposure managed to 

capture the exponential increase in the effect slightly better. Dose-response curves in Figures 

6.7-6.9 show how the monitoring station exposure distribution ended at lower temperatures, 

not even capturing the association with higher temperatures. Effect estimates considering each 

exposure are reported in table 6.15. The OR using weather station data was of 1.48 (CI95% 

1.38-1.59) compared to 1.53 (CI95% 1.43-1.69) of the 1x1km gridded individual exposure for 

increases between the 50th and 99th percentile. Noteworthy that the increase is small and CI of 

estimates overlap. Similar patterns were observed for cardiovascular and respiratory causes. 

Moreover, for respiratory causes the slope of the curves for high resolution gridded data had a 

slightly steeper curve associated to higher effect estimates throughout the distribution above 

the turning point (Table 6.12). 
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Attributable deaths for increases in temperature between the 50th and 75th and 50th to the 99th 

percentile considering the three different exposures are summarized in Table 6.16. No great 

differences are observed when considering moderate heat attributable deaths, while differences 

are more relevant when extreme values are considered. The point source temperature exposure 

underestimates the impact of heat by around 100 deaths in the study period.  

 

Table 6.16 Heat Attributable deaths for mean temperature increases between the 50th – 

75th and 50th- 99th percentile considering three temperature exposures. Summers 2002-

2010. 

 

 

Figure 6.7 Mean temperature – total mortality association in Rome by exposures, summer 

(2001-2010).  

 

AD AD

Total Mortality

        T. at 1-km2 grid 620 489 - 736 2595 2281 - 2889
        T. by urbanistic zone 636 510 - 763 2526 2198 - 2813
        T. from airport station 639 530 - 763 2431 2106 - 2728

75th percentile 99th percentile

95%eCI 95%eCI
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Figure 6.8 Mean temperature – cardiovascular mortality association in Rome by 

exposures, summer (2001-2010).  

 

Figure 6.9 Mean temperature – respiratory mortality association in Rome by exposures, 

summer (2001-2010).  
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6.5 DISCUSSION  

The case cross-over analysis conducted on the Rome cohort, confirms the significant non-linear 

effect of heat on mortality. The risk in total mortality associated to an increase in temperature 

in the moderate range (50th vs 75th) was of 1.11 (95%CI: 1.09-1.13) and when extreme values 

were included risk estimates rose to 1.53 (95%CI: 1.43-1.63).  Overall risks for cause-specific 

mortality were higher; with an OR of 1.14 (95%CI: 1.11-1.17) for cardiovascular deaths and 

1.22 (95%CI: 1.13-1.31) for respiratory deaths with a rising trend when more extreme 

temperature intervals were considered. A previous case cross-over study conducted in four 

Italian cities showed similar results for Rome.179 

The study design and high spatio-temporal resolution exposure data permitted the estimation 

of hat related effects at individual level, and it is the first time such a study is carried out in a 

large city. Lee et al. found that spatiotemporal models gave slightly better model fits, possibly 

due to a reduced exposure error221. Spiegelman suggested that by using a more accurate 

measure of exposure the spatial dynamics of the environmental phenomenon are taken into 

account, thus potentially reducing the bias in effect estimates22. Moreover, the sensitivity 

analysis using different exposures showed how a more refined high-resolution exposure 

attributed to individual subjects provided more accurate effect estimates, especially for extreme 

exposures. This was true for both effect estimates and for impacts (attributable deaths). Dose-

response curves and estimates show how the monitoring station exposure distribution ends at 

lower temperatures, not even capturing the effects of extreme heat, suggesting an 

underestimation in the effect of heat in Rome in previous studies using single point weather 

stations. Attributable deaths for temperature increases between the 50th and 99th percentile 

considering high resolution gridded data gave 100 extra heat-attributable deaths compared with 

single point source exposures.  
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The study also considered individual and spatial vulnerability factors, thus identifying potential 

effect modifiers. A modification in the heat-related risks was observed for several demographic 

factors across the temperature intervals. The risk of heat on mortality was modified by age and 

gender. An increasing trend in the risk of mortality was observed with age. The risk was non-

significant in the 35-64 age group and increased from 1.06 (95%CI: 1.02-1.11) in the 65-74 

age group to 1.18 (95%CI: 1.15-1.22) in the very old (85+ years). Females were at greater risk 

than males. Confidence intervals were somewhat wider among elderly males, as these were 

fewer numerically. Estimates for females were more stable, with greatest effects in old (75-84 

years) and very old (85+). Age has been recognised as a susceptibility factor throughout the 

literature5,8,169,179. While for gender the findings are less clear, several studies have documented 

a greater vulnerability to heat among women both in terms of mortality and 

morbidity218,248,249,349, while results are contrasting regarding susceptibility of males5,221. The 

need for further studies is confirmed also by the meta-analysis recently carried out by 

Benmarhnia6.  

Socio-economic variables such as marital status, education and occupation have been 

previously considered as risk factors to heat-related mortality.169,181–183,256,293,299,350  A 

significant effect modification was observed by marital status and occupation. In this study 

greater heat-related effects were found for widows/widowers, potentially reflecting older age 

and living alone290. These findings confirm results in the literature.179,252,287 Considering 

occupation, no effect was seen for non-manual and manual workers, the only significant effects 

were for housewives and retired again suggesting interaction with age. Non-manual workers 

may be somewhat protected, working in climate controlled indoor environments with air 

conditioning facilities that mitigate the effect of heat during working hours. Xu et al. found a 

greater risk among manual workers in Barcelona suggestive that outdoor and heavy load 

occupations impacted on heat stress.183 Results from the Rome study show no effect 
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modification by education, which corresponds to findings from studies carried out in 

China197,250,351, Latin America and in the USA 5,210,287. However, it is worth mentioning that 

other studies also found a higher heat-related mortality risk among individuals with a lower 

level of education169,319. Zhang et al. found a greater effect among those with a higher education 

in central China198, while Huang found a greater effect among those of low education level and 

SEP218 When considering more comprehensive socio-economic indicators,  there was no clear 

trend or effect modification in the association between heat and mortality by SEP in Rome. 

Studies conducted in the US have shown a clear trend by socio-economic status180,256,352 with 

greater effects in deprived areas. A recent study conducted in Hong Kong gave similar results299 

while a study from Brazil showed no effect modification.261 Milojevic et al. found that 

adjusting by neighbourhood level socio-economic deprivation in London had little effect on 

the association between temperature and mortality across high resolution temperature 

categories.332 

Considering the UHI effect, results for Rome reported a suggestive (non-significantly different) 

modification when extreme temperatures values were estimated. Important to recall that high 

resolution temperatures were attributed at individual level, hence already taking into account 

the differential heat effects within the urban area. Smargassi et al181 found that subjects living 

in postcode areas of Montreal with higher surface temperatures had a higher risk of dying 

during hot days, while Xu et al, Goggins et al. and Burkart et al. found that census blocks or 

areas with less vegetation or green space were associated with higher heat related 

effects.182,183,290,292 The interaction between UHI and socioeconomic level gave a better 

characterization of these two phenomena in the urban area. Estimates were slightly different 

by UHI levels for high level SEP when extreme temperatures were considered, although not 

significantly different. This can be linked to the fact that in Rome most central areas are also 

the ones with high SEP, and are characterised by tight knit building structures, narrow streets 
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and reduced ventilation, making these areas potentially more exposed to nocturnal high UHI 

intensity. Furthermore, compared to cities in the US, air-conditioning in housing has become 

more common in the latest 10-15 years and this might also influence response to climate change 

and hotter summers.  

A limit worth mentioning is that SEP was defined at census tract level and might not be very 

accurate, furthermore it was calculated using data from the 2001 census, hence somewhat 

dated. Further analysis will be conducted using the new socio-economic indicator derived for 

Rome from the 2010 census data and a more refined census block classification for peripheral 

new residential areas. Another limitation regarding vulnerability is the interaction with or 

confounding effect of air pollution during summer. The potential confounding effect is 

presumably very small considering heat estimates are greater in magnitude compared to air 

pollution estimates, while the synergistic effect of pollutants during heat waves and hot days 

might be relevant and requires investigation. However, attention should be posed on this aspect 

taking into account the causal pathways between the two exposures, namely air pollution and 

temperature, and health outcomes. As recently denoted by Buckley and colleagues353 while the 

rationale for adjusting for temperature when estimating the effects of air pollution, is justifiable, 

as temperatures and meteorology alters air pollution concentrations (eg. Ozone) the inverse is 

not necessarily valid. Several studies have been carried out on the synergistic effect of 

temperature and air pollutants in particular for PM10 and ozone.270,272,274,354  These aspects are 

important when considering public policy and prevention measures related to environmental 

exposures, as exposures especially in urban areas are concurrent as are subgroups most at risk, 

hence policy measures, or warning systems and surveillance could have an dual beneficial 

effect.  
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The study showed that urban populations are exposed to higher temperatures and might be 

more acclimatized220,329,332 as also where Rome had slightly lower risk estimates for extreme 

heat intervals. However, the heat-related effects and impacts on mortality were still significant 

and need to be dealt with by improving population adaptation and public health response. These 

findings will be of great importance for the development of high resolution warning systems 

and public health response plans which in Rome entails the identification of frail elderly 

subjects who are then included in the GP active surveillance program during summer.337 

Identifying areas most at risk during heat waves, where susceptible subjects reside will ensure 

a more efficient management of the limited public health resources available.   
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CHAPTER 7 –  OVERALL SUMMARY 

AND DISCUSSION 

 

7.1 SUMMARY AND DISCUSSION  

The research carried out had the scope of improving knowledge on the short-term effects of 

heat on mortality and hospital admissions. In reference to this, the aims of the thesis can be 

summarized as follows: 

1. to define fine scale spatio-temporal air temperature data derived from LST using 

MODIS data, meteorological data and land use data for Italy with a 1x1km resolution 

over the period 2000-2010.  

2. to estimate the effects and impacts of heat on mortality and morbidity in the Lazio 

region at municipal level using 1x1km satellite-derived mean air temperature during 

summer. 

3. estimate the effects of heat on mortality within a large urban area taking into account 

the differential effect of heat due to individual factors (socio-demographics, pre-

existing chronic disease), and area level factors (UHI intensity, socio-economic 

indicator, land use) using the Rome Longitudinal Population Cohort (ROLS). Exposure 

was attributed at individual level using the 1x1km predicted mean air temperature.  

The thesis presents mixed-regression models to predict air temperature data using 1x1km 

satellite derived LST, land use and land cover variables and meteorological data from ground 

monitoring networks. The performance of these complex models, using random out-of-sample 

cross validation, was extremely good in the stage 1 model (only on grid cells with both LST 

and observed data) with a mean R2 value of 0.96 and RMSPE of 1.1°C and R2 of 0.89 and 0.97 
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for the spatial and temporal domains respectively. The model was also validated with regional 

weather forecasting model data and gave excellent results (R2=0.95 RMSPE=1.8°C). The 

models for each year were able to capture spatial temperature gradients across Italy as well as 

temporal differences at the annual, seasonal and daily interval. The advantages of the data are 

that they cover the entire Italian domain, thus providing fine scale resolution daily time series, 

for areas in which meteorological data are usually unavailable, enabling the evaluation of 

temperature variations and health risks across space in a more detailed manner. The monitoring 

of temperature fluctuations over time at national, regional or city level can be carried out. This 

is important when considering climate change; to identify areas at risk where greatest 

temperature increases have occurred, or where the change in temperatures may have secondary 

effects on the environment, ecosystems or on biodiversity. Climate change models or re-

analysis modelled data of current and past weather and climate can also be compared with this 

data to look at temporal trends across Italy. Furthermore, the exposure data was used to define 

the UHI in Rome, in terms of air temperature rather than simply surface temperature data as 

done in most studies181,182. The intensity of the UHI was calculated for each day comparing 

urban 1x1 km grid squares with a fixed sub-urban point. The mean daily intensity of the UHI 

was of +1.7°C, reaching maximum values of +3.4°C. The study carried out shows the spatio-

temporal distribution of the UHI intensity and its variation in terms of association to land use 

and land cover changes, urban sprawl and other factors106,355–357. Wang et al. used LST data to 

evaluate changes in the UHI in Phoenix, Arizona over a 14 year period and found that the areas 

that had changed the most were the outskirts of the city, as urban, residential and impervious 

surfaces expanded reducing the natural vegetation in the peripheral areas358. A study conducted 

in the US on UHI spatial distribution and intensity among US cities and their change over time, 

also found that surface UHI depended on the size of the urban area, the level of urbanization 

and land use characteristics359. An increase in UHI intensity and total area of UHI, during 
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summer and winter, was observed in a study conducted in 35 Chinese cities between 2000-

2015360. The derived data can be used to evaluate changes in the UHI intensity in Italian cities 

over time.  

The high resolution air temperature dataset provides a very attractive alternative source of data 

to be used in environmental epidemiological studies in Italy. It provides a temperature index, 

namely mean temperature, which has been widely used in time series studies4,6,18,361 and with 

a daily temporal resolution which is the time interval traditionally considered in these studies.  

Mean temperature data developed in the first part of research was then was used in two studies 

aimed at estimating the health effects of heat, the first in the Lazio region to account for 

geographical differences in effects and impacts of heat on mortality and hospital admissions 

between urban, sub-urban and rural settings. While the second study specifically addressed 

effect modification in the heat-related risk due to individual level and area level factors in the 

city of Rome. Findings not only confirmed the well-known effects and impacts of heat on 

health outcomes, but gave some additional insights into the heterogeneous effect at 

geographical level and considering individual and urban landscape characteristics. 

The time series study conducted in the Lazio region, found a significant effect of heat on 

mortality in all municipalities, with an overall relative risk of 1.08 (95% CI :1 .07-1.08) for an 

increase in temperature between the 50th and 75th percentile of the summer distribution with 

differences amongst rural, suburban and urban areas. The highest effects on total mortality 

were observed for medium and large sized municipalities. Conversely, when comparing the 

effect on total mortality for increases between the 50th and the 99th percentile, Rome and small 

municipalities had a similar risk (RR=1.53 95% CI: 1.47-1.60 and RR=1.54 95% CI: 1.47-1.59 

respectively). For all areas considered, an increasing trend in the effects of mortality was 

observed when extreme temperatures were included. Studies carried out in Europe, the US and 
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worldwide confirm findings of an increased risk when more extreme temperatures are 

considered.7,8,18,193,214,362,363 

For cardiovascular deaths, effect estimates were similar to those found for total mortality, with 

a rising trend as more extreme temperatures were considered. Furthermore, a spatial pattern 

also emerged for cardiovascular deaths in which the effects increased steadily with population 

size of municipalities. Compared with all total mortality, the risk for increases in mean 

temperature between the 50th and the 99th percentile was slightly higher, ranging between 

RR=1.55 95% CI: 1.48-1.62 in small municipalities to RR=1.78 95% CI: 1.69-1.87 in Rome. 

Greater risks for cardiovascular deaths have been documented around the 

world7,10,234,251,275,330,351,362,364,365, as well as in the Mediterranean8,172. A limited selection of 

studies found a non-significant effect of heat on cardiovascular deaths.169,244,366 The association 

between cardiovascular disease and heat was also studied in greater detail, specifically 

considering ischaemic heart disease, myocardial infarction (MI) and other heart disease. Guo 

et al.367 found an increase in IHD mortality during days with high temperatures in China, while 

a study conducted in Germany found a significant increase in IHD, other heart disease and 

cerebrovascular disease.234 A recent review confirmed the risk of myocardial infarction during 

hot days, with risks comprised between +7% and +40% increase in MI rates.233  

Finally, respiratory deaths had greater effect estimates overall in the Lazio region (RR=1.87 

95%CI: 1.82-1.93) considering extreme temperatures (50th to the 99th percentile). Conversely 

to what was observed for natural and cardiovascular deaths, the effect on respiratory deaths in 

rural areas (small municipalities) was limited and did not increase across the temperature range.  

The greatest effects were found in medium and large municipalities. For all municipalities, 

except small ones, a steep rise in respiratory death effect estimates occurred when extreme 
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values were considered. The literature confirms higher effects on respiratory deaths compared 

to cardiovascular deaths associated to heat exposure.8,179,275,368  

On the contrary, the analyses conducted on hospital admissions, elucidated small or no effects 

of heat. An increase in admissions was observed only for respiratory causes, with a statistically 

significant effect in small and medium sized municipalities and overall estimates when 

considering temperatures between the 50th and 99th percentile. Similar results were found for 

Rome in a European multi-city study12 with a +3.9 (CI95%: 0.5-7.4) percent change in 

hospitalizations for temperature increases above the 90th percentile of maximum apparent 

temperature. The study also showed that the increase was mainly among the very old.12 

Several hypotheses have been put forward as to why hospitalizations are less associated to 

extreme heat events compared to mortality; firstly the timeliness between exposure and health 

event. Deaths occur rapidly, within three days (lag 0-3) and subjects do not receive or seek 

treatment or care in time, as their health status degenerates very rapidly, in fact most deaths 

have been reported to be out-of-hospital.169,179,287 This is mostly true for cardiovascular causes. 

Secondly the underlying mechanisms that may lead to death or hospitalization may play a 

crucial role for both cardiovascular and respiratory events. For cardiovascular events several 

explanations have been put forward. Heat stress causes greater surface blood circulation and 

sweating and leads to an increase in heart rate. It has been suggested that heat stress causes an 

increase in red blood cell counts, platelet counts and blood viscosity, and may lead to heart 

failure, MI or stroke.192,233–235 Conversely, mechanisms associated with heat are less clear for 

respiratory events, on hot days the respiratory system is under greater stress and causes 

exacerbation of chronic respiratory disease among those with pre-existing respiratory 

conditions.5,10,12,242 Several studies have shown an increase in respiratory admissions20,164 and 

more specifically among subjects with COPD.20,179,253,255,287,369  
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A sensitivity analysis was carried out considering fixed temperature values as temperature 

intervals for all municipality groupings rather than their own distributions. Estimates were 

higher for small municipalities and more contained in Rome suggesting that rural populations 

are less acclimatized to high temperature absolute values as suggested by the few studies 

comparing rural and urban areas.221,257,329,330 

Heat attributable deaths were also calculated for each temperature interval for municipalities 

in the Lazio region and in Rome. Impact estimates are important for public health and policy 

makers as they quantify the risks, giving an idea of the entity of the burden in more 

comprehensive terms. Heat attributable deaths for temperatures between the 75th and 99th 

percentile were respectively 4434 deaths in Rome and 3127 deaths in other municipalities of 

the Lazio region over the 10 summer periods considered. In terms of YLL the burden comprised 

of around 7727 YLL each summer in the Lazio region for temperature increase between the 

50th and 99th percentile. These numbers can help raise awareness on the impacts of heat and the 

knowledge base on the heat burden among public health bodies and encourage the uptake of 

policy and prevention measures. Attributable deaths and attributable risk fractions are also 

important when we consider future impacts on health under climate change scenarios. The 

IPCC Vth Assessment Report stated “…warming of the climate system is unequivocal, and 

since the 1950s, many of the observed changes are unprecedented over decades to millennia” 

and that “It is extremely likely that human influence has been the dominant cause of the 

observed warming since the mid-20th century”370.  The rapid increase of greenhouse gases in 

the atmosphere is expected to increase both mean temperatures and temperature variability 

around the world.370 Europe and the Mediterranean are among the areas most at risk in terms 

of temperature increases2. The WHO carried out a risk assessment to quantify the effects of 

climate change on global mortality by 2030s and 2050s, showing a relevant impact of heat 

across Europe1. Another recent publication by the WHO, estimated heat-related deaths in 
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European countries for the mid and late 21st century considering RCP scenarios and found that 

heat impacts will dramatically increase, in particular for countries of the Mediterranean3. Both 

studies however stress the need for higher spatial resolution estimates both in terms of health 

estimates and climate change prediction data, as well as the importance of including adaptation 

scenarios into the models. These aspects are very important in Italy as every year heat waves 

have a significant impact on mortality 229,314. Future climate change predictions have shown 

that the Mediterranean will be one of the areas most affected, with an increase in the frequency 

and intensity of extreme events, especially heat waves2. Results from this research can be used 

to make more accurate predictions of the future heat-related burdens under different climate 

change scenarios at national level. This will provide policy makers with a map of current and 

future risks in order to further promote adequate adaptation and mitigation strategies according 

to local population characteristics and geo-climatic conditions and resources available. 

The case cross-over study conducted in Rome provided more precise estimates of heat on 

cause-specific mortality as temperature exposure was assigned at individual level, with each 

person in the cohort having their specific spatio-temporal daily air temperature time series. 

Comparing temperature exposures with different resolutions, suggest that effect estimates and 

attributable deaths with high resolution gridded data are more accurate, reducing 

misclassification especially for extreme temperature intervals. Furthermore, the study helped 

identify effect modifiers of the temperature-mortality association considering individual and 

area level factors. 

Results for total and cardiovascular mortality were similar to the time series study, with slightly 

higher estimates potentially due to the more accurate exposure attribution at individual level 

compared to zonal estimates of the times series study. The overall risk in mortality for increases 

in mean temperature between the 50th and 99th percentile was 1.53 (95%CI: 1.43-1.63) for total 
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mortality, 1.63 (95%CI: 1.47-1.81) for cardiovascular deaths and 1.73 (95%CI: 1.32-2.28) for 

respiratory deaths.  

Individual vulnerability factors were identified, with age being the primary risk factor and a 

positive trend depicted, with the very old (85+) being at greater risk. Females seemed to be 

more vulnerable to heat when stratifying by gender, however, when considering the interaction 

between gender and age the effects of extreme temperatures were higher among elderly males. 

This suggesting that initial female vulnerability was related to a higher proportion of elderly 

females. Age has been recognised as a susceptibility factor throughout the literature as a result 

of the reduced thermoregulatory capacity in the elderly,5,6 while evidence regarding gender 

susceptibility is still inconsistent.  

Although having a pre-existing disease did not seem to modify estimates in a significant way, 

some suggestive patterns were observed and need to be investigated further.  In particular 

having a pre-existing cardiovascular condition seemed to be a risk factor for total and 

cardiovascular mortality, while subjects with diabetes or COPD didn’t seem to be at greater 

risk during extreme heat. Previous studies conducted in the US20,255 and in Hong Kong.253 

2016) have shown a greater risk of death during extreme heat among persons with diabetes and 

COPD, which contrast with our findings. Stafoggia et al. also found a greater risk for subjects 

with previous hospitalizations for COPD and cardiovascular disease, specifically heart failure 

and stroke.371 A possible explanation for contrasting findings here is that these subjects are 

under medical control and constant surveillance, and are more aware of the risks during heat 

waves. Specifically, since 2006 subjects aged over 65 years with pre-existing chronic disease 

were all identified as susceptible to heat and included in the regional GP active surveillance 

program during summer.228,337 Another possible explanation is that chronic conditions were 

defined considering hospitalizations in the 5 years prior to enrolment in the cohort at baseline 
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2001, so health status might have modified over time among the group as well as in those 

classified as not having the chronic condition, thus giving a potential distorted case mix. In 

light of these findings, pre-existing conditions should have been re-defined for every individual 

considering different temporal intervals within the cohort to account for new insurgence of 

cases as well as more severe subjects with repeated hospitalizations over time.  

Individual level socio-economic variables such as marital status and occupation were also 

found to be effect modifiers of heat-related deaths. The greatest effect modification was found 

for widows/widowers, housewives and retired individuals, potentially reflecting older age or 

living alone as also suggested in other studies.169,179,180,252,256 Education level did not show a 

clear trend either, with the highest effects of heat among subjects with primary education only 

and those with a university degree. Stratification of these variables by age might have helped 

disentangle this difference, and possibly identify two risk groups but limited power due to 

smaller counts by category might be a caveat.  

When considering neighbourhood socioeconomic factors, while the literature suggests a 

greater risk for those living in lower SEP areas possibly due to their limited resources and 

means of response and health status5,6,218,256,299,300 in the present study no risk gradient was 

found by SEP in Rome. Important to note that the index used was an area-based indicator which 

included a series of socio-economic variables and might not be entirely representative of the 

individual characteristics of all subjects in the cohort throughout the time period in study. 

However, it is worth mentioning that when the index was defined validation with individual 

socio-economic variables and an income index had a good correlation.345 Moreover, socio-

economic differentials in terms of the effects on heat might have a diverse role by age group, 

the proportion of very old might be greater in the high and medium high socio-economic groups 

compared to the more disadvantaged groups.  
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Location within the city, in terms of urban development, impervious surface and UHI were 

suggestive effect modifiers of the heat-mortality association among subjects included in the 

Rome cohort. The assumption here was that the urban climate and thermal characteristics 

within a city vary spatially and these differences might modify the response of individuals to 

heat. Typically, hotter zones will have an added heat load while subjects in cooler zones 

(presence of green areas, low building density and impervious surfaces) will have a reduced 

heat load during heat waves or hot days. This is the typical UHI phenomenon whereby urban 

areas have a positive thermal differential compared to rural areas.78 Factors affecting the UHI 

and its intensity are the size of the city, its urban geometry and characteristics, population 

density and surrounding land use and local climate.30,90,106,372–374.Several studies have defined 

spatial vulnerability maps of heat within urban areas considering the UHI and socio-

demographic data.279,301,375–377 In the present study, slightly greater risks of total and 

cardiovascular mortality in warmer areas (high UHI intensity) were found for temperature 

increases between the 50th and 95th and 50th and 99th percentile, although differences were not 

statistically different. When combining UHI and SEP levels, a greater risk was observed among 

those with a high SEP (SEP1UHIhigh RR=1.63 CI95% 1.45-1.84; SEP1UHIlow RR=1.31 

CI95% 1.08-1.59). Furthermore, among those of low SEP in Rome, a greater risk of 

cardiovascular and respiratory mortality was found among those living in hotter areas (high 

UHI) when considering an increase in temperature between the 50th and 99th percentile. 

Noteworthy that differences in temperature effects between UHI and non-UHI areas were non-

significant. These findings confirm results from the literature conducted on total mortality only. 

A study carried out in Montreal, considered UHI using land surface LST and housing value as 

proxy of SEP, found a greater UHI differential for post code areas with a high housing value181. 

Conversely, a study conducted in Hong Kong only found a differential risk by UHI and SEP 

among those of low SEP182. Moreover, Milojevic et al. found that adjusting for neighbourhood 
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level socioeconomic deprivation did not modify the association between temperature and 

mortality when high resolution temperature was considered.332 The latter study is the only one 

similar to the one conducted in Rome, in terms of high resolution air temperature exposure, 

although purely modelled un-validated data, potentially including spatial differences in effects 

by design.  

Other studies indirectly accounted for the differential effect of heat within urban areas by 

looking at green areas and the potential role of cooling.20,183,235,292,378–381 Some studies found 

that vegetation/green space modified the effect of heat within urban areas292,381 but it is worth 

noting that temperature was considered from a single point source and the spatial thermal 

conditions were not taken into account directly. Xu et al. did not find a modification in the 

effect of heat for green areas per se in Barcelona but for perception of little greenness in the 

surrounding areas by local residents.183   

The study carried out for my thesis also considered impervious surfaces (ISA) and urban 

development land cover classes as indicators of the built environment as a proxy of sealed 

surfaces and building materials. These indicators were considered both in the time series study 

and in the Rome case cross-over to identify areas with higher urban development and 

impervious surfaces which can contribute to modifying thermal conditions. Results from the 

study suggest that residing in areas with a high percent of impervious surfaces was a risk factor 

for heat-related mortality. A study conducted in Germany comparing urban and rural areas, 

found a positive correlation between district mortality rates and the proportion of each district 

covered by sealed surfaces during time periods of high heat stress281, which is similar to what 

was found in Rome and the Lazio region. Madrigano et al. found a higher risk of MI during 

heat wave days among those living in high density housing.235 Two studies from the US 

considered population density at post code level as potential effect modifier and found a greater 
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risk in areas with higher population density, poverty and lower level education.20,287 Overall, 

area level socio-economic indicators, the built environment and urban microclimate conditions 

influenced the heat-related risk of mortality in Rome.  
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7.2 STRENGTHS AND LIMITATIONS 

7.2.1 Strengths 

This is the first dataset with such a high spatio-temporal resolution in Italy and will be of great 

importance for both environmental and epidemiological studies on the health effects of climate 

change. The model permits estimation of daily temperature data in grid cells even when satellite 

data is not available taking into account the association with surrounding grid cells. The 

methodology developed is replicable in other contexts and can be updated to include more 

recent years. The high spatial and temporal resolution of exposure data provides a valuable 

dataset which can be used for nationwide studies on temperature and other environmental 

exposures for which temperature might be a confounder or effect modifier, for example air 

pollution studies. Furthermore, the richness of the dataset, also in terms of land use and land 

cover variables from different sources, having not only a good spatial scale but also spatio-

temporal variables (NDVI), is also an added value, offering the possibility of integrating 

additional spatial and spatio-temporal parameters with a standardized geographical framework. 

The estimated UHI intensity was not a measure of the surface temperature, as provided in many 

other studies, but of air temperature which is a direct measure to be used in epidemiological 

studies.  

The analyses carried out, evaluated and compared the effects of heat for different temperature 

intervals in different settings taking into account geographical and population characteristics. 

Considering the Bradford Hill framework382–384 and the issue of causality in the context of an 

environmental exposure, air temperature, to whom the entire population is exposed to some 

considerations can be made. Significant effect estimates were observed for cause-specific 

mortality in urban, rural and suburban contexts for different temperature ranges and a gradient 

was observed for more extreme temperature values. Higher effects and impacts were observed 

when considering extreme temperatures and these were coherent using both the time-series and 
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case-cross over approach. The findings were consistent with previous research conducted 

around the world, and potential biological mechanisms have been discussed in the literature. 

However, better evidence on the causal processes is still needed to specifically address this 

issue. Causal modelling frameworks have recently been proposed such as the propensity 

score385 or instrumental variable approach386 to assess the causal effects of environmental 

exposures387. These approaches can be used to have better insights into the issue of causality 

when studying health effects of temperatures.  The temporal criteria, which is one of the most 

important in epidemiological terms for causality, was fully satisfied as exposure proceeds the 

onset of the health outcome (death) or onset of the disease. Being an environmental exposure 

to which we are all exposure to, limits the specificity of health effects and it is not plausible to 

exclude it completely. Adaptation measures to contrast heat effects can be adopted. The 

difference-in-difference approach or regression discontinuity approach388, have been recently 

proposed as a quasi-experimental technique for evaluating the impact on health of heat 

prevention plans389 or air pollution warning systems390,391 or other public health 

interventions.392 Benmarhnia and collegues evaluated the effectiveness of heat action plan in 

Montreal by applying the difference-in-differences approach. Mortality on days when warnings 

were issued (temperatures above a set threshold) were compared to days below the threshold 

and years before and after the introduction of the heat plan were compared389. This quasi-

experimental approach gives a more appropriate evaluation of public health measures, however 

it is worth noting that as the exposure is not actually reduced or taken out, as in other 

applications of this approach, some limitations in this context remain. The choice of pre and 

post years may modify results and the introduction of heat plan may not necessarily mean his 

is the most appropriate cut-point in the time series.  

Estimates for urban, sub-urban and rural areas were calculated and showed a significant effect 

of heat on cause-specific mortality in all settings in the Lazio region. Effect estimates and 
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impacts for rural and sub-urban settings were provided for the first time. The case cross-over 

study conducted in a large urban area, provided important findings on the differential effect of 

heat by areal and individual characteristics. The case cross-over approach is also very strong 

at it rules out all confounding by factors that do not vary over time or are slow varying, while 

short-term varying confounders that might influence the short-term variation were included in 

the model (season, day of the week, summer reduction in mortality) making findings more 

reliable.  

7.2.2 Limitations 

Some limitations of the several studies carried out are worth mentioning: 

- The complex exposure method requires a copious amount of data to implement the models 

and procedures are time consuming to set up the dataset. Meteorological data from weather 

stations had a heterogeneous coverage across Italy and is still partial in some areas, mainly 

due to the difficulty in retrieving regional data from some of regional environment 

agencies. 

- External validation of the model was conducted only for central Italy on one year. This 

was mainly due to limited data availability and retrieval in the time available to me. The 

choice of a high resolution regional scale forecast model meant that potential models from 

which to choose was limited and often weather forecast data from past periods are not 

stored. This could be overcome by having access to data for all Italy, or in alternative using 

re-analysis data but losing out on spatial resolution, which is already higher than our 

1x1km grid.  

- Mean temperature was used as exposure only, maximum or minimum temperatures could 

not be estimated due to the limited or heterogeneous measurement of the observed data 

for these indices from different sources. The data set for the quantification of maximum 
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or minimum temperature would have been a subset and model performance would have 

been less accurate at national level. The definition of these parameters could be looked 

into considering specific areas where data is available.   

- One limitation of the spatiotemporal exposure estimates provided in my work is the 

potential discrepancy between personal temperature exposures and ambient estimates at 

1km2 resolution. The epidemiological literature has well documented the lack of accurate 

measurements of personal exposures to environmental exposures, such as temperature or 

air pollutants, and that this can lead to health effect estimates that are potentially bias or 

have a reduced statistical power393. Even finely resolved predictions from spatiotemporal 

models such as the ones estimated here, are prone to measurement error: 

classical/classical-like error due to model parameter estimation and Berkson/Berkson-like 

error due to spatial smoothing394. While with classical error health effect estimates tend 

towards null value, both error types might reduce the statistical power395. Unfortunately, 

it is impossible to quantify the amount of bias on health effect estimates induced by the 

exposure modelling strategy, because individual temperature measurements in the study 

subjects (or a random sample of them) are not available. However, as my study was 

focused on day-to-day variability it is plausible to assume that measurement error should 

not be a major concern, as I expect that spatial differentials in daily temperatures are not 

extreme, and should have been adequately captured by the exposure model. 

- When considering urban areas and the UHI intensity, higher spatial resolution satellite 

data would have improved UHI characterization. Noteworthy that gaining in spatial 

resolution would not have given daily temporal data. UHI intensity is highest at night, so 

defining UHI considering nocturnal data only might have given a different magnitude in 

terms of UHI intensity and slightly diverse pattern. Unfortunately, in the time available it 

was not possible to pursue this aspect.  
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- Green space was not directly considered as an effect modifier into the analysis but might 

have been worth including to highlight the role of vegetation in terms of cooling as well 

as general landscape added value and how these might influence heat-related mortality. 

However, the fine resolution temperature exposure and UHI indirectly includes thermal 

cooling by vegetation as satellite LST data was used and models included land use and 

NDVI.  

- Considering the two health effect studies, the area in study was restricted with respect to 

initial idea of carrying out a national study on mortality and hospital admissions. 

Unfortunately, I had to succumb to the curse of Italian bureaucracy and its interminably 

long and time-consuming procedures.  

- The case cross-over models adjust for confounders that do not vary in time or are slow 

changing factors by design, while short-term varying confounders included in the model 

were season, day of the week, summer reduction in mortality. Other factors that vary in 

the short-term and are associated with the outcome were not considered. Air pollution is 

one factor that might have been worth considering and might have caused some residual 

confounding. However, pollution effect estimates in the short-term are extremely small, 

hence can be considered negligible in the context of temperature effects which are much 

greater. Lee et al. did not find a confounding effect of particles in summer in a study on 

temperature effects conducted in the US.221 Moreover, air pollution data with the same 

resolution was not readily available within my time frame. The synergistic effects of 

temperatures and different pollutants (ozone, particles) in summer would have been 

interesting to explore as evidence in the literature is still unclear.   
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7.3 FUTURE WORK 

The following additional work would have been of interest if time and data would have 

permitted.  

First of all, in order to give more robust results and evaluate the geographical differences in 

effect estimates and impacts of heat in rural, suburban and rural areas a national wide study 

should be carried out. This will be pursued as a collaboration has been set up with the Italian 

institute of Statistics (ISTAT) to have access to daily total deaths for all municipalities in Italy. 

Hopefully national hospital admissions data will also be obtained from the Ministry of Health 

to fulfil this research gap and provide estimates on the risk of respiratory admissions associated 

to high temperatures. Furthermore, to better represent the spatial differences of heat-related 

effects at the national scale, the use of appropriate spatial models such as the Bayesian approach 

implemented by Bennett and colleagues in the UK219 is required. This will allow to estimate 

both the magnitude of the risk and the confidence, in terms of posterior probability, that local 

risk estimates are different from regional or national risks providing appropriate representation 

of the spatial pattern.  

Once national estimates are produced, future heat-related death burdens under climate change 

scenarios should be explored, considering high resolution climate change projections from 

regional scale models which would permit to consider high spatial scale differences in impacts 

and climate variations.  

Another important aspect which was not considered in my thesis is the temporal variation in 

heat related effects, or changes over time. This would help improve evidence on the role of 

contributing factors to changes in effect estimates and impacts over time, such as temperature 

changes (increasing temperatures, change in seasonality) or variations in population 
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vulnerability due to population ageing, health status, etc. Furthermore, a study on the temporal 

variations with a specific focus on heat wave events, could improve the evidence on the role of 

adaptation measures put in place since 2004 in Italy, with more detailed quantifications at 

national level, also allowing for comparisons between areas which have heat plans and 

prevention measures and areas which do not.   

Furthermore, recent studies have looked at the longer time frames (annual) in relation to  

extreme temperatures and the short-term effects on health outcomes trying to address whether 

the peaks in mortality during extreme events are just a short-term displacement of deaths or if 

they are life shortnening.396,397 Armstrong et al. found that annual mortality was associated with 

deviations of temperatures from normal, in particular rising in years that experienced extreme 

heat  or cold spells in a multi country study.396 Similarly, Goggins et al. found that mortality 

increases associated with extreme temperature were not solely due to short-term forward 

displacement of deaths in Hong Kong.397 Recent studies have studied the short and long-term 

effects simultaneously thus looking at the daily acute effects of environmental exposures and 

the long term variability315,398. This has been typically done for air pollution but could be also 

applied to temperature effects.  

With regards to urban areas, a greater focus on the differential effects by UHI seems necessary 

considering the results reported in the Rome study. The use of higher spatial resolution satellite 

data from LANDSAT, Quickbird, Rapid Eye or data from the forthcoming Sentinel satellites 

would also help define the UHI more accurately. Data fusion techniques have recently been 

developed and could be used in order to combine the high spatial and temporal resolution of 

different satellite data sources316,399 Moreover, a standardized definition of UHI in other Italian 

cities is desirable. 
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Always with reference to other urban areas, the conduction of case cross-over studies to see 

how both individual and area level vulnerability factors modify heat related deaths is needed. 

The main requirement would be to retrieve mortality data at individual level from cohort 

studies or local registries in order to geocode individuals and maintain the high resolution 

individual exposure. The use of data aggregated by census tract would somewhat loose out the 

added value of the high resolution of the research. Another aspect which was marginally 

studied were the pre-existing health conditions of individuals which might be vulnerability 

factors among the population during heat. By extending the set of pre-existing disease and 

taking into account the number of hospitalizations over longer time periods can help identify 

subgroups at risk to whom prevention should be targeted.   

Finally, data from different sources and effect estimates could be integrated to define 

vulnerability maps to heat combining heat exposure, land use characteristics, socio-

demographics and health effects by area in Italy thus providing public health with a very useful 

tool.  
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CHAPTER 8 – CONCLUSIONS 

In conclusion, the use of high resolution satellite derived air temperature data was of great use 

to evaluate the differential effects of heat at regional level and within urban areas. The time 

series study was able to show that heat has significant effects and impacts on cause-specific 

mortality in suburban and rural areas, with risk estimates comparable to those found in urban 

areas. The heat-related risk in urban areas were also confirmed. High temperatures also had an 

effect on respiratory hospital admissions.  

The study conducted in Rome, using a population cohort and high-resolution temperature data 

attributed at individual level showed the significant effect of heat on mortality. Important 

suggestions of the differential effect of heat within urban settings in terms of individual 

characteristics and factors that influence urban thermal properties (UHI and land use features) 

where elucidated. These aspects need to be taken into consideration when planning prevention 

measures to improve adaptation and response. Heat warning systems for large urban areas 

should also take into account the spatial differences of heat-related effects and the factors that 

influence urban climate. Finally, results from the thesis can be used to predict future heat-

related mortality under different climate change scenarios and provide valuable insights into 

the future burden of heat.  
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APPENDIX  
TABLE 1. LITERATURE REVIEW SEARCH  

Search Query 
 

#1 Environmental Monitoring/methods* [mesh] 

#2 LST [title/abstract] 

#3 “Land surface temperature” 

#4 “satellite data” [title/abstract] OR satellite sensors” [title/abstract] OR  

“satellite surface temperature” 

#5 MODIS [title/abstract] 

#6 “remote sensing”[title/abstract] 

#7 Remote Sensing Technology [mesh] 

#8 #1 or #2 or #3 or #4 or #5 or #6 or #7 

#9 "air temperature" [title/abstract] 

#10 #8 AND #9 
Limit "2013/01/01"[PDat] : "2018/01/04"[PDat]  

#11 “urban heat island” [title/abstract] 

#12 UHI [title/abstract] 

#13 #2 OR satellite[title/abstract] 

#14 #12 OR #13 OR #9 

#15 #13 AND #14 
Limit "2013/01/01"[PDat] : "2018/01/04"[PDat]  

#16 “heat stress” [title/abstract] 

#17 Heat stress disorders [mesh] 

#18 "Hot Temperature/adverse effects"[Mesh]  

#19 Hospitalization[MESH] 

#21 Mortality[title/abstract]  

#22 Death*[title/abstract] 

#23 #16 OR #17  OR #18 OR #19 OR #20 OR #21 OR #22 
Limit "2013/01/01"[PDat] : "2017/12/31"[PDat]  

#24 #23 AND #14 

#25 #23 AND #9 
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Table 2. Summary of studies included in the literature review on methods to derive air temperature from LST.  

 

 

 

 

Authors Title Year Study area Satellite\sensor Description\method Results\notes

Benali et al. Estimating air surface temperature in 
Portugal using MODIS LST data

2012 Portugal TERRA\MODIS Estimate T max, T min and T avg for a 10 year period 
based on LST and auxiliary data using a statistical 
approach. An optimization procedure with a mixed 
bootstrap and jackknife resampling was employed.

MEF (Model Efficiency Index) >0.90 and RMSE <2°C.

Benmecheta et 
al.

A Comparative Study of Land Surface 
Temperature Retrieval Methods From 
Remote Sensing Data

2013 overview different 
algorithms

overview 
different 
algorithms

Overview of the different algorithms used for the 
estimation of land surface temperature as well as a 
comparative list of methods . Mostly single split 
window tecniques.

Compare, and analyze the various extraction methods for 
LST  in terms of their computational algorithms, their 
different input parameters, and their relative accuracy to 
make them more readily usable by a broader cross-section 
of nontechnical practitioners

Cai et al. Estimation of Daily Average 
Temperature Using Multisource Spatial 
Data in Data Sparse Regions of Central 
Asia

2013 Ili river basin, 
central Asia

MODIS TVX Klemen method. Correlation coefficient varies from 0.90 to 0.94 and the 
RMSE is  3°C

Cresswell Estimating Surface Air Temperatures, 
From Meteosat Land Surface 
Temperatures, Using an Empirical Solar 
Zenith Angle Model

1999 Africa METEOSAT Empirical hour-specificmodels to estimate the air 
temperature fromthe
Land Surface Temperature and the sun zenith angle. 

The algorithms achieve an accuracy of within 3 degrees C 
for over 70% of the Meteosat temperatures processed. 

Cristobal et al. Modeling Air Temperature Through a 
Combination of Remote Sensing and Gis 
Data

2008 Spain LANDSAT, 
MODIS AND 
AVHRR

Multiple regression analysis combining  geographical 
variables (altitude, latitude, continentality and solar 
radiation) with LST, NDVI and albedo

best  models are obtained when remote sensing variables 
are combined with geographical variables (R2=0.6; 
RMSE=1.76°C for daily temp). LST and NDVI are the most 
powerful predictors.
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Authors Title Year Study area Satellite\sensor Description\method Results\notes

Czajkowski et al.  Thermal Remote Sensing of Near 
Surface Environmental Variables: 
Application Over the Oklahoma 
Mesonet

2000 Oklahoma, USA AVHRR Surface tempertaure, air tempertaure and humidity 
were derived from TIR AVHRR data and NDV using 
TVX method. estimates were validated using 
Mesonet weather forecasts.

Good performance, but also highlighted differences at the 
state level and by variable in study.

Fu et al. Estimating air temperature of an alpine 
meadow on the Northern Tibetan 
Plateau using MODIS land surface 
temperature

2011 Tibettan plateau TERRA 
AQUA\MODIS

A linear estimation of air temperature of an alpine 
meadow on Northern Tibetan Plateau at heights of 
1.5m–2.1m by using MODIS land surface temperature 

(LST) data was conducted

MODIS LST data were accurate enough to linearly estimate 
daily minimum and nighttime mean air temperatures, but 
not for daytime maximum tempertuares.

Hou et al. Near-Surface Air Temperature Retrieval 
From Satellite Images and Influence by 
Wetlands in Urban Region

2013 Beijing , China LANDSAT TM Near-surface air temperature (NSAT) retreival 
method  that employs Landsat Thematic Mapper 
images using an Energy Balance Bowen Ratio model 
is developed. This model is established based on the 
energy balance over land and the Bowen ratio

Meanprediction error 2.2°C. proximity ot wetlands 
influences temperature . 

Kilibarda et al. Spatio-temporal interpolation of daily 
temperatures for global land areas at 1 
km resolution

2014 Globally 
resolution 1x1km, 
for 2011

MODIS Predictions in space and time were made for the 
mean, maximum and minimum temperature using 
spatio-temporal regression-kriging with a time series 
of MODIS 8 day images, topographic layers (DEM and 
TWI) and a geometric temperature trend as 
covariates.

shows use of MODIS data : creates 1km global daily 
temperatures using interpolation (krigging) of MODIS 
data. 

Kim et al. Evaluation and Sensitivity Testing of a 
Coupled Landsat-Modis Downscaling 
Method for Land Surface Temperature 
and Vegetation Indices in Semi-Arid 
Regions

2012 Korea MODIS and 
LANDSAT , LST 
AND NDVI

Estimating T-a near the land surface based on 
moisture conditions of the atmosphere and surface 
using multiple regression algorithms.

The fused Landsat + MODIS NDVI product also shows good 
correlation to ground-based data and is relatively 
consistent except during the acute (monsoon) growing 
season. downscaling over arid areas landsat modis 

Kloog et al. Temporal and spatial assessments of 
minimum air temperature using 
satellite surface temperature 
measurements in Massachusetts, USA.

2012 Massachussettes 
USA

MODIS Land use regression, meteorological variables and 
spatial smoothing to calibrate between Ts and Ta on 
a daily basis and then predict Ta for days when 
satellite Ts data were not available. Mixed regression 
models with daily random slopes to calibrate  MODIS 
Ts data with monitored Ta measurements. GAMS  
with spatial smoothing to estimate Ta in days with 
missing Ts.

The spatial patterns of Ta within the study domain 
identified  distinguishing between urban and rurral 
settings. Good performance of model also when Ta and 
LST  missing.
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Authors Title Year Study area Satellite\sensor Description\method Results\notes

Kloog et al. Predicting spatiotemporal mean air 
temperature using MODIS satellite 
surface temperature measurements 
across the Northeastern USA

2014 NE USA MODIS mixed model regressions to calibrate Ts and Ta 
measurements, regressing Ta measurements against 
day-specific random intercepts, and fixed and 
random Ts slopes. Then fill in the cells with missing 
Ts values,regress the Ta predicted from the first 
mixed effects model against the mean of the Ta 
measurements on that day, separately for each grid 
cell.

mean out-of-sample R2=0.95. Method shows that Ts can 
be used t estimate Ta.

Lai et al. Comparison of Modis Land Surface 
Temperature and Ground-Based 
Observed Air Temperature in Complex 
Topography

2012 Taiwan TERAA 
AQUA\MODIS

Regression analysis to define monthyl mean Ta using 
LST and observed Ta.

Correlation coef >0.90, STDEV<2. Possible sources of bias 
between T-s and T-a: (1) the significant influences caused 
by soil moisture between wet and dry seasons; (2) the 
difference between ground-based weather station 
elevation and 1 km grid-averaged elevation; and (3) 
interaction among the satellite view, solar zenith angle 
and terrain gradient

Mao et al. Near-Surface Air Temperature 
Estimation From Aster Data Based on 
Neural Network Algorithm

2008 ASTER MODTRAN4 is used to simulate radiance transfer 
from the ground with different combinations of land 
surface temperature, near surface air temperature, 
emissivity and water vapour content. The dynamic 
learning neural network is used to estimate near 
surface air temperature

The mean and the standard deviation of estimation error 
are about 2.0K and 2.3K

Nichol et al. Spatial Variability of Air Temperature 
and Appropriate Resolution for Satellite-
Derived Air Temperature Estimation

2008 Hong Kong ASTER The spatially variable relationship between air and 
surface temperature was evaluated using spatial 
resampling and buffering around air temperature 
points

 Differences in the spatial scales of air temperature in 
these regions are attributed mainly to structural factors of 
land cover such as city block size, building density and % 
green areas, and secondarily to the climatic conditions.

Nieto et al Air temperature estimation with MSG-
SEVIRI data: Calibration and validation 
of the TVX algorithm for the Iberian 
Peninsula

2011 Iberian peninsula SEVERI LST and 
NDVI

Estimate NDVImax using observed air temperature to 
calibrate the NDVImax for each vegetation type.A 
spatio-temporal assessment of residuals has been 
performed to evaluate the accuracy of retrievals in 
terms of daily and seasonal variation, land cover, 
landscape heterogeneity and topography

The effect of vegetation types and climates and the 
potential variation in NDVI of the effective full cover has 
not been subject for investigation.
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Authors Title Year Study area Satellite\sensor Description\method Results\notes

Pelta et al. Spatiotemporal estimation of air 
temperature patterns at the street level 
using high resolution satellite imagery

2016 Tel Aviv LANDSAT BT Mixed regression models with daily random slopes 
to calibrate Landsat BT dat awith mon itored Air 
tempertaure measurements 

Good model performance, authors assess temporal 
changes in spatial distribution of temperature derived 
from TM and compare to modis data

Prihodko Estimation of air temperature from 
remotely sensed surface observations

1997 Kansas NOAA\AVHRR Ta estimated directly from remotely sensed 
observations using the (observed) correlation 
between a spectral vegetation index and surface 
temperature (temperature-vegetation index).

A strong correlation (r=0.93) was found between the 
satellite estimates and measured air temperatures with a 
mean error of 2.92°c. Positive bias satellite estimates.

Recondo et al  Empirical Models for Estimating Daily 
Surface Water Vapour Pressure, Air 
Temperature, and Humidity Using Modis 
and Spatiotemporal Variables

2013 Spain TERRA MODIS Regression models to estimate daily surface water 
vapour pressure, air temperature  and relative 
humidity over cloud-free land areas of Spain using 
MODIS and spatiotemporal variables

Model results compared with previous algorithms 
developed in the same area and MODIS standard 
products. 

Resenfeld et al. Estimating daily minimum, maximum, 
and mean near surface air temperature 
using hybrid satellite models across 
Israel

2017 Israel  TERRA AQUA 
MODIS LST

Regression models and IPW to estimate min, max 
and mean Ta from LST, meteorology and  land use 
data

Model performance was excellent for both days with and 
without available Ts observations for both Aqua and Terra. 
Using both AQUA and TERRA rpovides more Ta parameters 
to use in epi studies. 

Sahin et al. Modelling of air temperature using 
remote sensing and artificial neural 
network in Turkey

2012 Turkey NOAA-AVHRR Estimate mean monthly temperatures using RS and 
artifical neural networks (ANN)

Correlation coefficient (R), and root mean squared error 
(RMSE) were 0.991-1.254 K respectively.

Shi et al. Estimating daily air temperature across 
the Southeastern United States using 
high-resolution satellite data: A 
statistical modeling study

2016 South eastern USA MODIS TERRA Mixed regression models to derive Ta  from LST, land 
use and meteorology. 

Model performance was very good also in a humid climate 
and complex terrin and LU  like SE USA. Model was 
validated with re-forecast model temperatures and had 
good performance.

Singh et al. A New Method to Determine Near 
Surface Air Temperature From Satellite 
Observations

2006 global scale all sea 
surfaces

AVHRR and 
SSM/I

Satellite observed parameters of total precipitable 
water (W), atmospheric boundary layer (similar to 
500 m) water vapour (Wb), and sea surface 
temperature (SST) are used to derive Ta

Global mean root mean square (rms) error for 
instantaneous Ta estimates is 1.4 degrees C 
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Stisen et al. Estimation of Diurnal Air Temperature 
Using Msg Seviri Data in West Africa

2007 West Africa geostationary 
MSG SEVIRI 

 multiple daily air temperature estimates can be 
achieved using the contextual temperature-
vegetation index method using thermal split window 
channels in combination with the red NIR channels.

the model gave good results and  maps of air temperature 
with 15 min intervals and 3 km spatial resolution for 
application in a distributed hydrological model were 
developed.

Sun et al. Air Temperature Retrieval From Remote 
Sensing Data Based on 
Thermodynamics.

2005 North China plain MODIS Crop water stress index and aerodynamic resistance, 
were used to build a quantitative relationship 
between the land surface temperature and the 
ambient air temperature

Derived values have an accuracy of 3°C for more than 80% 
of data processed compared to in situ data.

Vancutsem    et 
al.

Evaluation of MODIS land surface 
temperature data to estimate air 
temperature in different ecosystems 
over Africa

2010 Africa MODIS The main objective of this study was to explore the 
possibility of retrieving high-resolution Ta data from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Ts products over different ecosystems in 
Africa.

Two factors to retrieve maximum Ta from Ts, (NDVI)  
(SZA), were analyzed. MODIS nighttime products provide 
a good estimation of minimum Ta over different 
ecosystem. Maximum Ta varies according to the 
seasonality, the ecosystems, the solar radiation, and cloud-
coverVogt Mapping regional air temperature fields 

using satellite-derived surface skin 
temperatures

1997 Andalusia, Spain NOAA\AVHRR Mapping and monitoring the spatial distribution of 
daily maximum air temperatures with  NOAA-AVHRR 
images. Regression analysis between the daily 
maximum air temperature (T-max) and the mean 
surface skin temperature (T-s) retrieved for 11 km(2) 
image windows centred over each station,

 T-max is strongly linked to LST in the given environment 
(mean R-2 = 0.823) ,  mean error of about  2 to 2.5 K.     

White-Newsome 
et al. 

Validating satellite-derived land surface 
temperature with in situ 
measurements: a public health 
perspective

2013 Detriot LANDSAT TM Compare LST and SI to air temperature 
measurements

Report high correlation between satellite and air 
tempertaures but do not use one to define the other

Wloczyk et al. Estimation of Instantaneous Air 
Temperature Above Vegetation and Soil 
Surfaces From Landsat 7 Etm+ Data in 
Northern Germany

2011 Germany LANDSAT ETM+ The temperature-vegetation index method using 
multispectral band data was used to retrieve Ta

The satellite-derived air temperatures (60 m spatial 
resolution) are compared with in situ measurements, 
showing an average error of about 3 K(RMS). Results are 
good for all seasons.
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Xu et al. Study on the Estimation of Near-Surface 
Air Temperature From Modis Data by 
Statistical Methods

2012 Yangtze River 
Delta 

AQUA MODIS regression models to estimate air temperature from 
satellite-derived land surface temperature and other 
environmental parameters over 4 land surface types.

The estimation error of air temperature tends to be lower 
as spatial window size increases, suggesting that the 
model performances are improved by spatially averaging 
land surface characteristics. 

Yao et al.  Modis-Based Air Temperature 
Estimation in the Southeastern Tibetan 
Plateau and Neighboring Areas.  

2012 Tibet MODIS Regression model to estimate monthly mean air 
temperatures in the southeastern Tibetan Plateau 
and its neighboring areas. Spatio-temporal analysis 
of monthly mean Ts vs. monthly mean Ta are carried 
out.

MODIS Ts data combining with observed data could be 
used to rather accurately estimate air temperature in 
mountain regions.

Zaksek et al. Parameterization of Air Temperature in 
High Temporal and Spatial Resolution 
From a Combination of the Seviri and 
Modis Instruments

2009 Europe MSG, SEVERI and 
MODIS NDVI and 
LST

Downsacaling of SEVERI data using LSt and NDVi 
MODIS. Thenempirical parameterization that 
requires albedo, down-welling surface short-wave 
flux, relief characteristics and NDVI data

Daytime RMSD = 2.0 K with a bias of -0.01 K and a 
correlation coefficient of 0.95. very promising,  
considering the high temporal (30 min) and spatial 
resolution (1000 m) of the results. 

Zhang et al. Empirical Models for Estimating Daily 
Maximum, Minimum and Mean Air 
Temperatures With Modis Land Surface 
Temperatures

2011 China TERRA AQUA 
MODIS\LST

Regression models between day and night LST and Ta 
minimum and maximium from observed Meteo data 
in China. Coupled LST measurement models were 
also developed.

Night-time LST was best predictor for estimating daily T-
min, T-mean and even T-max when considering both the 
performance of the models and the availability of the LST 
data. No significant difference between LSTs of TERRA and 
AQUA for estimating daily air temperatures.

Zheng et al. Monthly Air Temperatures Over 
Northern China Estimated by Integrating 
Modis Data With Gis Techniques

2013 N. China MODIS LST and 
NDVI

A hybrid method combining stepwise regression 
modeling and spatial interpolation techniques. 
Stepwise regression modeling was applied to 
construct the relationship between air temperatures 
(T-mean, T-min, and T-max-the dependent variables) 
, geographical,  (MODIS). Spatial interpolation used 
to correct the residual values

average RMSE values at 0.86 degrees, 1.10 degrees, and 
1.13 degrees C for T-mean, T-min, and T-max.

Zhu et al. Estimation of daily maximum and 
minimum air temperature products 
temperature using MODIS land surface

2013 Xiangride River 
basin in the north 
Tibetan Plateau

MODIS (from 
both TERRA and 
AQUA) , 
LANDSAT

temperature-vegetation index (TVX) method to 
estimate air temperature.  Subtraction method that 
merges the spatial detail of higher-resolution 
imagery (Landsat) with the temporal change 
observed in coarser or moderate-resolution imagery 
(MODIS).

 Applying the temporal difference between MODIS 
images observed at two different dates to a higher-
resolution Landsat image allows prediction of a combined 
or fused image (Landsat + MODIS) at a future date.
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Table 3 Summary of studies included in the literature review on urban heat islands defined using satellite data. 

 

Authors Title Year area study satellite\sensor\other 

data

Aim  METHOD description Results\intensity UHI

Aniello et al. Mapping Micro-Urban Heat Islands 
Using Landsat Tm and a Gis

1996 Dallas, Texas LANDSAT use satell ite data to identify micro UHI 
and woodland areas in Texas

tree cover was merged with thermal data  from 
LANDSAT images.

micro-urban heat islands are resulting from the lack 
of tree cover related to newly developed residential 
neighborhoods, parking lots, business districts, 
apartment complexes, and shopping centers

Anminipouri et al. Spatio-temporal analysis of surface 
urban heat island (SUHI) using 
MODIS land surface temperature 
(LST) for summer 2003-2012, A case 
study of the Netherlands

2014 Netherlands MODIS LST, NDVI define UHI in cities the netherlands mapping UHI and considering role of green 
space and land cover to mitigate UHI

NDVI reduces surface temperature

Aslan et al Analysis of relationship between 
urban heat island effect and Land 
use/cover type using Landsat 7 
ETM+ and Landsat 8 OLI images

2016 Antalya LANDSAT MODIS NDVI Assess factors influencing UHI, 
temporal changes

regression analysis to evaluate which factors 
correlated to LST and influence UHI

Maximum LST values were detected for dry agriculture, 
urban, and bareland classes, while minimum LST 
values were detected for vegetation and irrigated 
agriculture classes. Uhi increased from 5.6 °C to 6.8°C. 

Bektas Balcik Determining the impact of urban 
components on land surface 
temperature of Istanbul by using 
remote sensing indices

2014 Istanbul LANDSAT TM 5 Identify factor influencing the UHI in 
terms of Land cover, land use indicies. 

An Index Based Built-up Index (IBI) Soil-
Adjusted Vegetation Index, Normalized 
Difference Built-up Index, and Modified 
Normalized Difference Water Index) was used 
to derive artificial surfaces in the study area.  
An ecological evaluation index of the region 
was calculated to explore the impact of both 
the vegetated land and the artificial surfaces 
on the UHI. 

the quantitative relationship of urban components 
(artificial surfaces, vegetation, and water) and LST was 
examined using multivariate statistical analysis, and 
the correlation coefficient was 0.829. Areas with a 
high rate of urbanization will  accelerate the rise of LST 
and UHI in Istanbul.

Bokaie et al. Assessment of Urban Heat Island 
based on the relationship between 
land surface temperature and Land 
Use/ Land Cover in Tehran

2016 Tehran LANDSAT - LU/LC, NDVI mapping of UHI and defining factors 
which modify LST in urban area.

Definition of LST from LANDSAT, correlation 
between LST and LU/LC

NDVI, water features  negative correlation with LST

Chen et al. Remote Sensing Image-Based 
Analysis of the Relationship 
Between Urban Heat Island and 
Land Use/Cover Changes

2006 Pearl river delta, 
China

LANDSAT TM+, NDVI Identify land use factors influencing 
UHI using satell ite data and 
vegetation indexes

o retrieve the brightness temperatures from 
LANDSAT and compare to land use/cover types

correlations between NDVI, NDWI, NDBaI and 
temperature are negative when NDVI is l imited in 
range, but positive correlation is shown between NDBI 
and temperature

Chen et al. The Influence of Socioeconomic and 
Topographic Factors on Nocturnal 
Urban Heat Islands: a Case Study in 
Shenzhen, China,  

2012 Shezen , china ASTER, elevation, SES factors affeting UHI relationships between nocturnal UHIs and 
socioeconomic or topographic factors were 
analysed using traditional regression analysis

+5K night. elevation and land use pop density 
influence UHI

Cheval et al. The July Urban Heat Island of 
Bucharest as Derived From Modis 
Images

2009 Bucarest, 
Romania

MODIS Define the extension, geometry, and 
magnitude of UHI using the surface 
thermal data.

The magnitude of the heat island was 
calculated by comparing the average 
temperature inside its l imits and the average 
temperature of the 5 km (a) and of the 10 km (b) 
buffers around it

UHI and the surrounding area of Bucharest is higher 
and more variable during the daytime, and is 
noticeably related to the land cover
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Cheval et al. The summer surface urban heat 
island of Bucharest (Romania) 
retrieved from MODIS images

2015 Bucarest, 
Romania

MODIS LST the study proposes a methodology to 
delimit and quantify the average SUHI 
based on the statistical significance 
of the shift between the urban area 
and its surroundings

The thermal difference between the SUHI and 
several surrounding buffers defines the SUHI’s 

intensity

land cover exerts a strong influence on Bucharest’s LST

Connors et al Landscape Configuration and 
Urban Heat Island Effects: 
Assessing the Relationship Between 
Landscape Characteristics and 
Land Surface Temperature in 
Phoenix, Arizona

2013 Pheonix ASTER LSt and land 
cover data

explore the relationship between land 
surface temperature and spatial 
pattern for three different land uses: 
mesic residential, xeric residential, 
and industrial/commercial. 

measure correlation between LSt and land 
covers, ANOVA on land cover types and 
regression model between LST and and cover 
types. 

Da Costa et al. Identification of Urban Heat 
Islands in Ilha Solteira-Sp 
Municipality Using Geotecnologies

2010 Ilha Solteira-SP, 
Brazil

LANDSAT TM aimed to identify the main thermal 
variations in the urban area 

transformation of Landsat TM data into values 
of surface temperature and their comparison 
to distinct urban land use

land cover surfaces classified as guilding and paved 
buildings had highe LST

Deng et al. Estimating Very High Resolution 
Urban Surface Temperature Using a 
Spectral Unmixing and Thermal 
Mixing Approach

2013 LANDSAT physically based method, ( VHR 
spectral unmixing and thermal mixing 
(VHR-SUTM) approach) wa used to 
estimate LST

considering both spectral and thermal 
properties, spectral unmixing was used to 
estimate fractional urban compositions for a 
comprehensive representation of 
heterogeneous urban surfaces. Further, VHR LST 
was modeled as a summation of the thermal 

high estimation accuracy (RMSE of 2.02 K and MAE of 
1.51 K)

Deng et al. Examining the Impacts of Urban 
Biophysical Compositions on 
Surface Urban Heat Island: a 
Spectral Unmixing and Thermal 
Mixing Approach

2013 USA LANDSAT LST NDVI Study the thermal proprties of Land 
cover to determine how they influence 
urban thermal pattern

A two-step physically based method, the 
spectral unmixing and thermal mixing (SUTM) 
model, to examine the impacts of typical land 
cover compositions on urban thermal pattern. 
Compare SUTM model with NDVI, %ISA and 
%GV.

 SUTM outperforms all  regression models both rural 
and urban contexts.   NDVI and %GV have poor 
performance in urban areas. Soil  influenced modeling 
performance

Duan et al. Spatiotemporal variation of urban 
heat island in Zhengzhou City based 
on RS

2011 Zhengzhou City LANDSAT Analyse the causes of Uhi in 
Zhengzhou over time. 

brightness temperature and meteorological 
data were considerd to estimate UHI

UHI of Zhengzhou has increased especially in NE and 
SW of the city probably as a result of reduction of 
vegetation cover. 

Effat et al Change detection of urban heat 
islands and some related 
parameters using multi-temporal 
Landsat images; a case study for 
Cairo city, Egypt

2014 Cairo LANDSAT LST , NDVI map and detect changes in land-cover 
and heat islands over Cairo through 
three decades using multi-temporal 
Landsat TM satell ite data

comparison of images growth in urban area, NDVI seasonal fluctuations

Fabrizi et al. Satell ite and Ground-Based Sensors 
for the Urban Heat Island Analysis 
in the City of Rome

2010 Rome ENVISAT - AATSR Define the Uhi of Rome through LST 
and Ta data

algorithm employing satell ite brightness 
temperatures for the estimation of the air 
temperature belonging to the layer of air 
closest to the surface

3-4K

Feizizadeh et al. Examining Urban Heat Island 
Relations to Land Use and Air 
Pollution: Multiple Endmember 
Spectral Mixture Analysis for 
Thermal Remote Sensing

2013 Tabriz, Irad ASTER + land use/land 
cover (LULC), 

to identify UHI and to investigate their 
relationship to land use/land cover 
(LULC) and air pollution

integration of Spectral Mixture Analysis and 
Endmember Remote Sensing Indices to derive 
LST, to identify UHI and to investigate their 
relationships to land use/land cover (LULC) 
and air pollution

that LST is highly influenced by LULC and that UHIs are 
closely l inked to LST and LULC. As expected, LST is 
sensitive to vegetation and moisture and low 
temperatures are found in water bodies and vegetated 
areas. High temperatures are related to construction 
zones and industrial sites which are not necessarily 
located in the city centre
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Fung et al. Derivation of Nighttime Urban Air 
Temperatures Using a Satell ite 
Thermal Image

2009 Hong Kong ASTER idenitfy UHI in Hong Kong on winter 
nights using satell ite derived surface 
temperature and in situ 
measurements. Derive Ta from LST and 
mobile transverse techniques.

Regression analysis was used to derive Ta from 
LST.

2-3.5 °C ntensity of UHI, maximum 12°C. Good 
correlation between the in situ surface and air 
temperature pair of readings. LST compared with in 
situ sruface measurements, bias 1.1°C.  

Giannaros et al. Numerical Study of the Urban Heat 
Island Over Athens (Greece) With 
the WRF Model

2013 Athens AVHRR Evaluate UHI using WRF model and 
satell ite data.

WRF model coupled with NOAA satell ite data 
was tested against observations to study the 
UHI in Athens.

UHI >4°c at night. The diurnal cycle Canopy-UHI, with 
high nighttime values, decrease following sunrise, and 
an increase after sunset. Inclusion of the LST data into 
WRF model resulted in a small reduction in the 
temperature bias.

Hamadi et al. Estimating Urban Heat Island 
Effects on the Temperature Series of 
Uccle (Brussels, Belgium) Using 
Remote Sensing Data and a Land 
Surface Scheme

2010 Bruxelles, 
Belgium 

estimate the UHI using different 
sources of data, validate finidings of 
satell ite data.

estimate the UHI using ground monitors, 
satell ite data and land use chnarcteristics 
includedin Town energy balance scheme.

UHI rising at a rate +2.5 C per decade for minimum 
temperature

Ho et al. A comparison of urban heat islands 
mapped using skin temperature, air 
temperature, and apparent 
temperature (Humidex), for the 
greater Vancouver area

2016 Vancouver Ta, AppT, LST Map UHI in vancouver using LST data, 
apaprent tmepertuare and air 
temperature form monitors

Forest regression model skin temperature was poorly correlated with both air 
temperature (R2=0.38) and apparent temperature 
(R2=0.39).

Hung et al. Assessment with satell ite data of 
the urban heat island effect in 
Asian mega cities.

2006 Asian cities MODIS TERRA AND 
AQUA

UH1 patterns were analyzed in 
association with urban vegetation 
covers and surface energy fluxes 
derived from high-resolution Landsat 
ETM+ data

A Gaussian approximation was applied in 
order to quantify spatial extents and 
magnitude of individual UHIs for inter-city 
comparison

land-surface temperature (LST) and land use maps 
produced to describe UHI in Mega Asian cities 

Imhoff et al. Remote Sensing of the Urban Heat 
Island Effect Across Biomes in the 
Continental Usa

2010 USA LANDSAT-ISA and 
MODIS - impervious 
srface

Use LST MODIS and ISA Landsat data 
to analyse the UHI and its relationship 
with size, intensity and ecological 
settings in 38 cities. 

Development intensity zones based on %ISA are 
defined for each urban area emanating 
outward from the urban core to the non-urban 
rural areas nearby and used to stratify 
sampling for land surface temperatures and 
NDVI. 

ecological context significantly influences the 
amplitude of summer daytime UHI (urban-rural 
temperature difference) the largest (8 degrees C 
average) observed for cities built in biomes dominated 
by temperate broadleaf and mixed forest. ISA is the 
primary driver for increase in temperature explaining 
70% of the total variance in LST

Jalan et al Spatio-temporal assessment of 
land use/ land cover dynamics and 
urban heat island of Jaipur city 
using satell ite data

2014 Jaipur, India LANDSAT - LULC Spatio-temporal changes in UHI can 
be quantified through Land Surface 
Temperature (LST) derived from 
satell ite imageries.

analyzes the spatial distribution and temporal 
variation of LST in context of changes in LULC

The study concludes that UHI of Jaipur city has 
intensified and extended over new areas.

Jin et al. Developing an Index to Measure 
Urban Heat Island Effect Using 
Satell ite Land Skin Temperature and 
Land Cover Observations

2012 Pheonix MODIS estimate UHI using skin LSt and 
observed Ta

This new index has advantages of high spatial 
resolution and aerial coverage to better record UHI 
intensity than T-2m

Jusuf et al. The Influence of Land Use on the 
Urban Heat Island in Singapore

2007 Singapore LANDSAT identify land use types which have the 
most influence to the increase of 
ambient temperature in Singapore

remote sensing data and geographical 
information system (GIS) to obtain a macro 
view of Singapore

land usage will  influence urban temperature
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Klok et al. The Surface Heat Island of 
Rotterdam and Its Relationship 
With Urban Surface Characteristics

2012 Rotterdam, the 
Netherlands

LANDSAT, NOAA-AVHHR Define surface HI in Rotterdam using 
LST. 

Compare urban and rural LST, explain 
differences by land surface characteristics

12°C during the day, 9°C during the night. the SHI is 
largest in areas with scarce vegetation,  high fraction 
of impervious surface,  low albedo

Kourtidis et al A study of the hourly variability of 
the urban heat island effect in the 
Greater Athens Area during summer

2015 Athens Greece AATSR, ASTER, AVHRR 
and MODIS observed 
data

mapping of the hourly spatiotemporal 
evolution of the urban heat island 
(UHI) effect

Comparison between observed station data, 
modelled data ClimUrb and LST for different 
satell ites

LST can be up to 5K lower than the respective Tair 
during nighttime, while it can be up to 15K higher 
during the rest of the day.

Li et al. Monitoring Patterns of Urban Heat 
Islands of the Fast-Growing 
Shanghai Metropolis, China: Using 
Time-Series of Landsat Tm/Etm+ 
Data

2012 Shanghai LANDSAT TM/ETM+, 
LULC

quantifying the impact of land-
use/land cover (LULC) change on 
patterns of surface urban heat island 

Estimate the relationships between surface UHI 
pattern and pixel-based biophysical features, 
population density, road density.

Change in LULC , reduction vegetation cover for more 
urban cover types, influence spatiotemporal pattern 
UHI

Li et al. Remote sensing of the surface 
urban heat island and land 
architecture in Phoenix, Arizona: 
Combined effects of land 
composition and configuration and 
cadastral-demographic-economic 

2016 Phoenix arizona LANDSAT , LU, census 
data, NDVI

Define factors that influence UHI Multiple ordinary least squares regressions 
(OLS) were used to determine the effects of land 
architecture and demographic-economic 
variables (independent variables)
on the LST (dependent variable)

land configuration has a stronger influence on LST 
than land compositio

Liu et al Urban Surface Heat Fluxes Infrared 
Remote Sensing Inversion and Their 
Relationship With Land Use Types

2012 Kumagaya, Japan ASTER Analyze the influence of different land 
use types on the surface heat fluxes 
and energy balance

PCACA model and theoretical position 
algorithm

Increase of urban impervious surfaces area can 
increase sensible heat flux and the Bowen ratio,  
increasing of urban Ts and Ta

Liu et al Quantifying spatial-temporal 
pattern of urban heat Island in 
Beijing: An improved assessment 
using land surface temperture time 
series observations from landsat, 
modis and Chinese new satell ite 
GaoFen-1

2015 Beijung LANDSAT MODIS quantify the spatial-temporal patterns 
of surface urban heat island (SUHI) by 
investigating the relationship between 
Land surface temperature (LST) and the 
land-cover types

Spatial and Temporal Adaptive Fusion Model 
(STARFM) developed by Gao et al. was 
employed to create the high spatial resolution 
LST time series

No obvious l inear relationships were observed 
between mean subplot LST and impervious surfaces 
LSMs. Green space reduced UHI

Lo and Quattrocchi Land-Use and Land-Cover Change, 
Urban Heat Island Phenomenon, 
and Health Implications: a Remote 
Sensing Approach

2006 Atlanta LANDSAT, MSS and TM 
images

Describe change in land cover and UHI 
Atlanta between 1973-97

Compare LANDSAT images LST and NDVI Land surface change(loss forested land) has increased 
in surface temperature and a decline in NDVI .

Lo et al. Application of High-Resolution 
Thermal Infrared Remote Sensing 
and Gis to Assess the Urban Heat 
Island Effect

1997 Atlanta NDVI+  atlas data study changes in the thermal 
signatures of urban land cover types 
between day and night

A spatial model of warming and cooling 
characteristics of commercial, residential, 
agricultural, vegetation, and water features 
was developed using a GIS approach

There is a strong negative correlation between NDVI 
and irradiance of residential, agricultural and 
vacant/transitional land cover types, indicating that 
the irradiance of a land cover type is greatly 
influenced by the amount of vegetation present

Mallick et al. Land Surface Emissivity Retrieval 
Based on Moisture Index From 
Landsat Tm Satell ite Data Over 
Heterogeneous Surfaces of Delhi 
City,  

2012 Delhi, India LANDSAT7, emissivity, 
LULC

derive emissivity using ND mositure 
index in urban areas, 

estimated emissivity values over few land 
use/land cover (LULC) classes of LANDSAT TM 
have been compared with the literature values 
and field measurement emissivity data using 
infrared thermometer

strong correlation is observed between surface 
temperatures with NDMI over different LULC classes. 
Regression model results show that surface 
temperatures can be predicted if NDMI values are 
known
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Mallick et al. Modeling Urban Heat Islands in 
Heterogeneous Land Surface and Its 
Correlation With Impervious 
Surface Area by Using Night-Time 
Aster Satell ite Data in Highly 
Urbanizing City, Delhi-India,  

2013 Delhi, India LANDSAT + ASTER, LULC, 
ISA

Identification and assessment of UHI 
in Delhi

methodology takes into account spatially-
relative surface temperatures and impervious 
surface fraction (ISA)  value to measure surface 
UHI intensity between the urban land cover and 
rural surroundings, validation through ground 
measurements

CBD and industrial areas +4°C, chnages in surface 
temperature are due to human activity, cange LULC 
pattern and vegetation density

Mathew et l. Spatial and temporal variations of 
urban heat island effect and the 
effect of percentage impervious 

2016 Chandigarh 
city,India

MODIS , LULC compare UHI variation conisdering 
imeprvious surfaces, elevation

Correlation , l inear regression Positive relationship has been found between LST and 
%ISA with a consistent rising trend. Negative 
relationship between LST and Elevation scatterplotsMeng et al Remote-Sensing Image-Based 

Analysis of the Patterns of Urban 
Heat Islands in Rapidly Urbanizing 
Jinan, China

2013 Jinan china LANDSAT, LST LULC The results show that significant 
changes in land use and land cover 
occurred over the study period

geographical information system (GIS) and 
remote sensing (RS) approach, the changes in 
this urban area's LULC were explored, see how 
influence UHI

Spatially, there were significant LST gradients from the 
city centre to surrounding rural areas

Meng et al Remote-Sensing Evaluation of the 
Relationship Between Urban Heat 
Islands and Urban Biophysical 
Descriptors in Jinan, China,  

2014 Jinan china LANDSAT evaluate correlaton between LST and 
impervious surface, water, and 
vegetation to see how the influence 
UHI

impervious surfaces have a positive 
exponential relationship with LST, while the 
water and vegetation are both negatively 
correlated with temperature

increased from 0.42 in 1992 to o.55 in 2011

Mohan et al. Assessment of Urban Heat Island 
Effect for Different Land Use-Land 
Cover From Micrometeorological 
Measurements and Remote Sensing 
Data for Megacity Delhi

2013 Delhi, India MODIS definition of UHI using satell ite data 
and LULC

compare skin observed data to LST satell ite 
data

Dense urban areas and highly commercial areas were 
observed to have highest UHI with maximum hourly 
magnitude peaking up to 10.7 A degrees C and average 
daily maximum UHI reaching 8.3 A degrees C. modis 
overestimated compared to in situ skin measurements

Morabito et al. The impact of built-up surfaces on 
land surface temperatures in 
Italian urban areas

2016 Italy MODIS map heat vulnerability using LSt and 
urban density (built up environment)

Linear regression analysis Statistically significant l inear relationships (p b 
0.001) between built-up surfaces and spatial LST 
variations

Ngie et al. Assessment of urban heat island 
using satell ite remotely sensed 
imagery: A review

2014 Review review of studies use LST to derive UHI overview of the UHI background concepts and 
provides details of satell ite remote sensing 
data and processing techniques to retrieve LST

LSt mostly valid in large urbna reas 

Nichol et al. Remote Sensing of Urban Heat 
Islands by Day and Night

2005 Hong Kong LANDSAT TM+, ASTER Identify UHI daily and nighttime 
pattern

Compare night-time ASTER image, with daytime 
LANDSAT image

Lower temperature gradients between different LC 
types at night time (dominant meso-scale  climatic 
patterns),  suggestive of processes operating in the 
Urban Boundary Layer (UBL), as opposed to the Urban 
Canopy Layer (UCL) which is dominant in the daytime

Nichol et al. Urban Heat Island Diagnosis Using 
Aster Satell ite Images and 'in Situ' 
Air Temperature

2009 Hong Kong ASTER Use Thermal Satell ite data and in situ 
air tempertaures to identify the causes 
of UHI

Use of a cloud free ASTER image and in situ 
data, to define the differences in UHI between 
surface and Ta. Land cover, urban structure are 
considered.

two datasets showing a similar amplitude and general 
trend, but with the surface exhibiting much higher 
local variability than air temperature. Advection 
model seems more probable cause of UHI over large 
urban areas while in smaller ones the physical 
structure model is more plausible.
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data

Aim  METHOD description Results\intensity UHI

Nichol et al. Temporal Characteristics of 
Thermal Satell ite Images for Urban 
Heat Stress and Heat Island 
Mapping

2012 Hong Kong ASTER Map UHI and identify temporal 
patterns of heat stress in Hong Kong 
using LSt and Ta.

Compare LSt and in situ mesurements to 
identify UHI

nightime thermal images more representative of Ta 
due to stable BL wiht lower wind and tempertuare 
inversion. LSt and Ta are highly correlaed at night. 
Images useful for identifiying hot spots.

Qiao e al. Diurnal and Seasonal Impacts of 
Urbanization on the Urban Thermal 
Environment: a Case Study of 
Beijing Using Modis Data

2013 Biejing, china MODIS high 
resolution, LST NDVI

explore the effect of urbanization on 
UHI

Vegetation had a notable cooling effect as the 
normalized vegetation difference index (NDVI) 
increased during summer. However, when the 
NDVI reached a certain value, the nighttime LST 
shifted markedly in other seasons

Urban land was the most important contributor to 
increases in regional LSTs

Rajasekar et al. Urban Heat Island Monitoring and 
Analysis Using a Non-Parametric 
Model: a Case Study of 
Indianapolis

2009 Nine counties in 
central Indiana 

MODIS - ASTER LULC analyze the diurnal varaition of UHI at 
regional level in 9 counties in Indiana.

Three dimensional (3-D) models of the day and 
night images were generated and visually 
explored for patterns through animation. The 
diurnal temperature profiles and UHI intensity 
attributes (minimum, maximum and 
magnitude) of the characterized images were 

 Skin temperature magnitude of UHI LST 1-3°C night. 
The areas with maximum heat signatures were found 
to have a strong correlation with impervious surfaces.

Retalis The Heat Wave of June 2007 in 
Athens, Greece-Part 1: Study of 
Satell ite Derived Land Surface 
Temperature

2010 Athens AQUA MODIS LST and 
land SAF

Estimate the heat wave in Athens 2007 
considering the UHI effect

estimate the temperature anomaly and the 
temporal evolution of the heatwave comparing 
LST and Ta. 

Significant correlation beween satell ite data at 
common overpass times, daytime differences vary 
between 2 5 to 5 8 degrees ma di UHI o tra satell ite 
measurements

Rinner et al. Toronto's Urban Heat Island-
Exploring the Relationship Between 
Land Use and Surface Temperature

2011 Torornto, 
Canada

Explore the relationship between LSt 
and land use in Toronto

analyze whether characteristic land uses 
within an urban area are associated with 
higher or lower surface temperatures suing LST.

statistically significant differences between high 
average temperatures for commercial and 
resource/industrial land use (29.1 degrees C), and low 
average temperatures for parks,  recreational land, 
water bodies (23.1 degrees C). 

Schwarz Exploring indicators for quantifying 
surface urban heat islands of 
European cities with MODIS land 
surface temperatures

2011 263 European 
cities

 MODIS  monthly mean 
Temperature

we compared the eleven different 
indicators for quantifying surface 
urban heat islands

Research should take into account the 
differences and instabil ities of the indicators 
chosen for quantifying surface urban heat 
islands and should use several indicators in 
parallel for describing the surface urban heat 
island of a city

different indicators show only weak correlations

Schwarz et al. Relationship of Land Surface and 
Air Temperatures and Its 
Implications for Quantifying Urban 
Heat Island Indicators-an 
Application for the City of Leipzig 
(Germany)

2012  Leipzig 
(Germany)

Estimate UHI combining Ta and LST define relationship between LST and Ta to 
define UHI

Intensity of UHI depends on the indicator selected

Sharifi  et al. Correlation analysis of surface 
temperature of rooftops, 
streetscapes and urban heat island 
effect: Case study of central Sydney

2015 Sydney LST explore the most heat resil ient urban 
features at precinct scale

Compare the surface temperature of 
streetscapes and buildings’ rooftops 

(dominant urban horizontal surfaces) to LST

higher open space ratio and street network intensity 
correlate significantly to higher sUHI effect at precinct 
scale.

Sidiqui et al. Spatio-temporal mapping and 
monitoring of Urban Heat Island 
patterns over Sydney, Australia 
using MODIS and Landsat-8

2016 Syndey MODIS LST LULC - 
LANDSAT

monitoring, mapping and 
characterizing UHI patterns over time 
and space

The UHI intensities were extracted and a 
Gaussian approximation was then applied in 
order to quantify spatial extent, centre and 
magnitude of UHI intensities

The daytime UHI intensity in Sydney could be as large 
as 7 - 8 °C in summer day.  Increasing trend in daytime 
UHI magnitudes for Sydney.
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Sobrino Evaluation of the Surface Urban 
Heat Island Effect in the City of 
Madrid by Thermal Remote Sensing

2013 Madrid, Spain DESIREX Define the UHI in Madrid The DESIREX imagery was used to retrieve the 
SUHI effect by applying the temperature and 
emissivity separation (TES) algorithm

+5K night, validation with observed Ta are within 1K

Steutker et al. Satell ite measured growth of the 
urban heat island iìof Houston, 
Texas. 

2003 Houston NOAA - AVHRR growth and variation of UHI in 
Houston

Comparison of 82 nighttime scenes taken 
between 1985 and 1987 and  125 nighttime 
scenes taken between 1999 and 2001

mean growth in magnitude of 0.8K 35%, the surface 
UHI intensity ranged from 1.06 to 4.25 °C depending on 
season and weather conditions

Stewart A systematic review and scientific 
critique of methodology in modern 
urban heat island literature

2011 190 studies on 
UHI

ti review quality of methods and 
recommend improvements

not on satell ite data but ground measurements 
of UHI

limits include half of the studies fail  to control the 
confounding effects of weather, relief or time on 
reported 'urban' heat island magnitudes

Strathopoulou et al. Daytime Urban Heat Islands From 
Landsat Etm+ and Corine Land 
Cover Data: an Application to 
Major Cities in Greece

2007 Athens, 
Thessaloniki, 
Patra, Volos and 
Heraklion

LANDSAT ETM+ assessing the thermal urban 
environment as well as for defining 
heat islands in urban areas in Greek 
cities

define the l ink between surface emissivities, 
land surface temperatures and urban surface 
characteristics

Identify hot spots in cities

Strathopoulou et al. Downscaling AVHRR Land Surface 
Temperatures for Improved Surface 
Urban Heat Island Intensity 
Estimation

2009 Athens AVHRR - LCL Corine Downscale AVHRR data to obtain 
better spatial prediction of UHI using 
different methods. LST data and 
Corinne land cover data then used to 
quantify UHI.

Four downscaling techniques using different 
scaling factors were considered to downscale 
1-km LST image data provided by AVHRR to 
obtain data at 120m resolution. Data was 
validated with LANDSAT TM images.

downscaling techniques improved estimation of LST.

Strathpolou et al. Integrating Corine Land Cover data 
and Landsat TM for surface 
emissivity definition: application to 
the urban area of Athens, Greece  

2007 Athens LANDSAT ETM+, CLC 
corine, NDVI

define emissivity from satell ite data in 
urban areas with different land covers

combine use of the land cover/land use 
information provided by CLC database with 
Landsat data for the definition and correlation 
of emissivity with various land covers and 
land uses

statistically significant differences in emissivity 
associated with different land cover types

Strathpolou et al. A surface heat island study of 
Athens using high-resolution 
satell ite imagery and 
measurements of the optical and 
thermal properties of commonly 
used building and paving materials

2009 Athens Analyze the spatial structure of the 
thermal urban environment

Identify hot surfaces within the urban areas 
using ETM+ are identified and related to the 
urban surface characteristics and land use 
from Corinne and Greek land use.

Identify hot spots in cities

Sun et al. An Erdas Image Processing Method 
for Retrieving Lst and Describing 
Urban Heat Evolution: a Case Study 
in the Pearl River Delta Region in 
South China

2010 Pearl river delta, 
china

LST and NDVI estimate UHI using LST Erdas image method to define uhi. The LST is 
classified based on normalized statistical 
method, and the normalized heat images are 
computed between different times.

LST increased areas mainly locate along the major 
roads in the eastern bank of the Pearl River

Tomlinson et al. Derivation of Birmingham's 
Summer Surface Urban Heat Island 
From Modis Satell ite Images,

2012 Birmingham MODIS + observed 
data

map the average variation in heat 
island intensity

5K CBD during stable conditions, cold spots laso 
identified 
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Tomlinson et al. Comparing Night-Time Satell ite 
Land Surface Temperature From 
Modis and Ground Measured Air 
Temperature Across a Conurbation

2012 Birmingham MODIS + observed 
data

compares nighttime LST data to air temp data 
from dataloggers

night-time air temperature is consistently higher than 
the satell ite-measured LST

Unger et al. Modeling of the Urban Heat Island 
Pattern Based on the Relationship 
Between Surface and Air 
Temperatures

2010 develop an easy to use  method for 
early night-time near-surface air 
temperature pattern estimation based 
on surface temperature data

define the relationship between air and sruface 
temperature using measurements collected.

Ta depends on LST surrounding area.

Voogt Effects of urban surface geometry 
on remotely-sensed surface 
temperature.

1998 Vancouver Airborne thermal 
scanner ¯ ights

investigate the magnitude of e€ ective 
anisotropic variations in urban 
surface thermal emissions for select 
land-use areas

strong directional variations in the observed surface 
temperature

Wen et al. Relationship Between Land Cover 
Ratio and Urban Heat Island From 
Remote Sensing and Automatic 
Weather Stations Data

2011 Guangzhou CBERS investigates the relationship between 
land cover ratio and UHI 

the correlation coefficient between hourly 
mean temperature and land cover ratio, ED and 
MFRACT was calculated

UHI higher a t night, stations with higher impervious 
ratio and lower ED had more serious heat island effect

Weng et al. Modeling Urban Heat Islands and 
Their Relationship With Impervious 
Surface and Vegetation Abundance 
by Using Aster Images

2011 Indiannapolis ASTER characterize UHI using LSt , 
impervious surfaces and land cover

kernel convolution modeling method for 2-D 
LST imagery to characterize and model the UHI  
as a Gaussian process. 

UHI intensity possessed a stronger correlation with 
both greenness and imperviousness indexes than with 
GV and IS abundance

White-Newsome et al. Validating satell ite-derived land 
surface temperature with in situ 
measurements:  a public health 
perspective

2013 Detroit LANDSAT TM5 Assess the correlations between LST 
and SI (% surface imperviousness) 
with actual ground temperatures. 

Associations between these ground-based 
temperatures and the average LSTs and SI were 
evaluated. Spearman correlation coefficients 
and p-values were calculated

Satellite-derived LST and SI values were significantly 
correlated with 24-hr average and August monthly 
average ground temperatures at all  but two of the 
radii examined (100 m for LST and 0 m for SI). SI and 
LST useful to lok at spatial variation but less useful for 
estimating tempertaure exposure for PH.Wu et al. Development of a 3-D Urbanization 

Index Using Digital Terrain Models 
for Surface Urban Heat Island 
Effects

2013 Taipei and Yilan, 
Taiwan

MODIS Identify the UHI in Taiwan cities. The 
correlation between 3DUI and surface 
temperatures were also assessed.

To assess SUHI at finer spatial scale,  three-
dimensional Urbanization Index (3DUI) with a 
5-m spatial resolution was developed to 
quantify urbanization from a 3-D perspective 
using Digital Terrain Models (DTMs). 

UHI intensity greater during heat wave days, up to 
+10.2 °C in Taiwan and +7.5°C in Yilan. Correlation  
etween 3Dui and LST was >0.6.

Xie et al. Assessing the Long-Term Urban 
Heat Island in San Antonio, Texas 
Based on Moderate Resolution 
Imaging Spectroradiometer/Aqua 

2010 San Antonio 
Texas

MODIS AQUA LST, NDVI assess the uHI in San Antonio and 
long term change

6-7K higher than rural area. UHI in ccentral and also 
in areas to the north
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Xie et al. A Multi-Temporal Landsat Tm Data 
Analysis of the Impact of Land Use 
and Land Cover Changes on the 
Urban Heat Island Effect

2012 Wuhan LANDSAT 5 TM Define the relationship between UHI 
and LULC

RS techniques were applied to derive 
information on LULC and land surface 
temperature (LST) to describe UHI.

seasonal difference sin vegetation and land cover 
influence UHI intensity.

Xiong et al. The Impacts of Rapid Urbanization 
on the Thermal Environment: a 
Remote Sensing Study of 
Guangzhou, South China

2012 Guangzhou LANDSAT + LULC thermal remote sensing and spatial statistics 
methods, here we analyze four Landsat 
TM/ETM+ images to investigate the 
spatiotemporal variations in the land surface 
temperature (LST) over five land use/land cover 

high temperature anomalies were closely associated 
with built-up land and densely populated and heavily 
industrialized districts. LST is related positively with 
NDBI and negatively with NDVI

Xu et al. Remote Sensing of the Urban Heat 
Island and Its Changes in Xiamen 
City of Se China

2004 Xiamen City, 
China

Landsat TM/ETM+ describe the UHI of Xiamen Satellite thermal infrared images were used to 
determine surface radiant temperatures. Urban-
Heat-Island Ratio Index(URI) defined.

Urban area has expanded and more recent images 
show the UHI has been reduced or disappeared as 
rural areas changed LC and have similar thermal 
properties

Xu et al. Modelling of Urban Sensible Heat 
Flux at Multiple Spatial Scales: a 
Demonstration Using Airborne 
Hyperspectral Imagery of Shanghai 
and a Temperature-Emissivity 

2008 Shanghai Operative Modular 
Imaging Spectrometer 
(OMIS

map spatial variations in turbulent 
sensible heat flux 

the Operative Modular Imaging Spectrometer 
(OMIS), along with a survey map and 
meteorological data, to derive the land cover 
information and surface parameters. Compare 
LUMPS and Ram as input data

At 30m resolution, LUMPS and ARM methods produce 
similar results, less than 15 W m(-2) difference in 
mean Q(H) averaged over the entire study area

Xu et al. Spatial and Temporal Dynamics of 
Urban Heat Island and Their 
Relationship With Land Cover 
Changes in Urbanization Process: a 
Case Study in Suzhou, China,  

2010 Suzhou, China LANDSAT to study the spatial and temporal 
variations of heat island and their 
relationships with land cover changes 
in Suzhou

Land cover classifications were derived to 
quantify urban expansions and brightness 
temperatures was used to express urban 
thermal environment

show good correspondence between heat island 
variations with urban area expansions

Xu et al. Correlation analysis of the urban 
heat island effect and the spatial 
and temporal distribution of 
atmospheric particulates using TM 
images in Beijing

2013 Beijing LANDSAT analyze the correlation between the 
urban heat island effect and the 
spatial and temporal concentration 
distributions of atmospheric 
particulates in Beijing

uses NDVI, NDWI and DVI (difference veg index) (1) a direct correlation between UHI and DVI; (2) 
indirect correlation among UHI, NDWI and DVI; and (3) 
an indirect correlation among UHI, NDVI, and DVI

Xu et al. An approach to analyzing the 
intensity of the daytime surface 
urban heat island effect at a local 
scale

2009 LANDSAT 7 Evaluate the intensity of daytime UHI A landscape index (LI) is proposed to evaluate 
the intensity of the daytime surface urban heat 
island (SUHI) effect. 

LI can be used to compare SUHI daytime intensity in 
different areas.

Yang Spatial and Temporal 
Characteristics of Beijing Urban 
Heat Island Intensity.

2013 Beijing, China oberved Ta data, 56 
monitoring stations 

Define UHI in Beijing using observed 
data

seasonal patterns of UHI are identified and hot spot 
areas

Zaksek et al. Downscaling Land Surface 
Temperature for Urban Heat Island 
Diurnal Cycle Analysis

2012 central Europe geostationanry SEVIRI Downscale SEVIRI data (good temporal 
scale but poor spatial) to monitor the 
diurnal cycle UHI.  (1km spatial and 
15min temporal).

 For each SEVIRI pixel a multiple regression 
was run on the low resolution data. Regression 
equation was then used on the high resolution 
data in order to estimate LST of high spatial 
and temporal resolutions

downscaled pixel data was compared to MODIS, RMSE 
2.5°K
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Zhang et al Spatial-Temporal Patterns of Urban 
Anthropogenic Heat Discharge in 
Fuzhou, China, Observed From 
Sensible Heat Flux Using Landsat 
Tm/Etm Plus Data

2013 Fuzhou, China LANDSAT TM+\ETM+ Estimate the anthropogenic heat 
discharge in the form of sensible heat 
flux in complex urban environments.

Spatial and temporal distributions of 
anthropogenic heat flux were analysed as a 
function of land-cover type, percentage of 
impervious surface area, and FVC

that anthropogenic heat release probably plays a 
significant role in the UHI effect, RS important for 
mapping UHI and can differentiate  anthropogenic 
heat from  solar radiative fluxes.

Zhang et al. Exploring the Influence of 
Impervious Surface Density and 
Shape on Urban Heat Islands in the 
Northeast United States Using 
Modis and Landsat

2012 USA cities MODIS and LANDSAT, 
ISA-impervious surface 
area

assess the surface urban heat island 
(UHI) signature and its relationship to 
settlement size and shape, 
development intensity distribution, 
and land cover composition 

Our study indicates that for cities of similar 
size, the ISA density distribution within the 
urban area and the shape of the urbanized 
area as measured by area to perimeter ratio 
are significant modulators of UHI magnitude. 

Stratification based on ISA allows the definition of 
hierarchically ordered urban zones that are consistent 
across urban settlements and scales. settlement size, 
shape, and development intensity significantly 
influenced the amplitude of summer daytime UHI.

Zhang et al. Characterizing Urban Heat Islands 
of Global Settlements Using Modis 
and Nighttime Lights Products

2010 global cities MODIS LST and 
nighttime light 
products and ISA 
(impervious surface 
area) 

Define UHI in urban areas using 
MODIS and night l ights

spatial analysis to assess the urban heat 
island (UHI) signature on LST amplitude and its 
relationship with development intensity, size, 
and setting.

Ecological context and settlement size significantly 
influence the amplitude of summer daytime UHI. UHI 
3.8°C in cities with biomes dominated by forests; 
+1.9°C  UHI in cities embedded in grass-shrub biomes;  
weak UHI or sometimes an urban heat sink (UHS) in 
cities in arid 

Zhang et al. Analysis of Land Use/Land Cover 
Change, Population Shift, and Their 
Effects on Spatiotemporal Patterns 
of Urban Heat Islands in 
Metropolitan Shanghai, China

2013 Shanghai Landsat ETM+ quantify spatiotemporal changes in 
UHI related to changes in LULC 
change/pop shifts from 1997 to 2008.

Integrated approach of remote sensing, 
geographical information systems (GIS), and 
statistical analysis.

changes in LULC and population shifts resulted in 
significant variation in the spatiotemporal patterns of 
the UHIs due to the loss of water bodies and vegetated 
surfaces

Zhang et al. 2005 The Diurnal and Seasonal 
Characteristics of Urban Heat 
Island Variation in Beijing City and 
Surrounding Areas and Impact 
Factors Based on Remote Sensing 

2005 Biejing, china MODIS EOS Study the urban heat island (UHI) 
spatial distribution of the diurnal and 
seasonal variabil ities and its driving 
forces 

analyze the relationships among UHI 
distribution and landcover categories, 
topographic factor, vegetation greenness, and 
surface evapotranspiration 

+4-6°C LST between Beijing city and suburb areas; 
significant UHI mainly appears in the summer; 
negative correlation between NDVI and LST; high latent 
heat exchange is evident, high evapotraspiration in 
rural areasZhou et al.  Modelling the Diurnal Variations 

of Urban Heat Islands With Multi-
Source Satell ite Data

2013 Biejing, china LST a diurnal temperature cycle genetic algorithm 
(DTC-GA) approach was used to generate the 
hourly 1km land-surface temperature (LST) by 
integrating multi-source satell ite data

all  diurnal cycles, daytime UHIs varied significantly 
but night-time UHIs were stable. Seasonal cycles are 
also variable

Zhou et al. On the statistics of urban heat 
island intensity

2013 EU cities review study UHI in  European cities by 
means of remotely sensed land 
surface temperature data.

Defining cities as spatial clusters of urban 
land cover, we investigate the relationships of 
the UHI intensity, with the cluster size and the 
temperature of the surroundings

Zhou et al. Maximum Nighttime Urban Heat 
Island (Uhi) Intensity Simulation by 
Integrating Remotely Sensed Data 
and Meteorological Observations

2011 Beijing, China MODIS, meteorological 
data

Describe the temporal variation in UHI 
Beijing.

SVM regression models were developed to 
predict the MNUHII from the following 
variables: the normalized difference vegetation 
index (NDVI), surface albedo, atmospheric 
aerosol optical depth (AOD), relative humidity 
(RH), sunshine hour (SH), and precipitation 
(PREP)

RH and AOD were the most important factors that 
influenced the MNUHII, precipitation attenuates UHI. 
Other meteorological factors should be considered 
with sruface characteristics in defining UHI.

Zhou etal. Relationships Between Land Cover 
and the Surface Urban Heat Island: 
Seasonal Variabil ity and Effects of 
Spatial and Thematic Resolution of 
Land Cover Data on Predicting Land 
Surface Temperatures

2014 LANDSAT 7 TM Investigate the relationship between 
land surface temperature (LST) and 
land use/land cover (LULC) and its 
seasonality.

ten models were defined to evaluate effects of 
spatial and thematic resolution of LULC data 
on the observed relationships between LST and 
LULC variables for each season

Percent of iA88:H98mperviousness was the best 
predictor on LST with relatively consistent explanatory 
power across seasons. Vegetation related variables, 
particularly tree canopy, were good predictor of LST 
during summer. 



263 
 
 

Table 4. Summary of studies included in the literature review on heat effects on mortality and hospital admissions by total, cardiovascular 

and respiratory causes.  

STUDY DESIGN: TIME SERIES 
OUTCOME: MORTALITY 

 

Study Country, period Population Outcome measure Exposure Main results 

Kunst et al. 
1993 

The 
Netherlands; 
1979-1987 

all ages Percentage change in daily 
mortality for 1°C increase in 
mean temperature above 
16.5°C (lag 0) 

 

mean temperature All causes 
all ages =+1.76  
CVD 
all ages =+1.75  
RESP  
all ages =+3.31  
External causes 
all ages=+2.46  
Evidence of harvesting effect for 
cardiovascular mortality at lag 7-30 days 

Saez et al. 
1995 

Barcelona 
(Spain); 

1985-1989 

all ages,  
65+ 

Absolute change in daily 
mortality for 1°C in 
maximum/minimum 
temperature 

Percentage change of mortality 
during unusual periods of hot 
temperature 

1. daily minimum and maximum 
temperature.  

2. Unusual periods during summer 
(>3 consecutive days with 
temperature/humidity exceeding its 
85th percentile) 

All causes 
all ages=0.564 deaths;  
65+ =1.293 deaths 
CVD 
All ages=1.111 deaths 
RESP 
all ages=0.144 deaths 
Unusual periods: 
All causes:  
all ages =+1.7% 
65+ =+2% 
CVD 
all ages=+4.2% 
RESP 
all ages=+13.2% 
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Study Country, period Population Outcome measure Exposure Main results 

Ballester et 
al. 1997 

Valencia (Spain); 
1991-1993 

all ages 

+70  

Relative risk (RR) of death for 
1°C increase above 24°C 

mean temperature All causes  
all ages RR=1.037 (lag 3-6) 
70+ RR=1.050 (lag 1-2) 
CVD 
all ages RR =1.037 (lag 3-6) 
RESP 
all ages RR=1.101 (lag 7-14) 
Malignant tumors 
all ages RR=1.037 (lag 0) 

Alberdi et 
al. 1998 

Madrid (Spain); 

1986-1992 

all ages 

65+ 

Absolute change in daily 
mortality for 1°C increase in 
temperature during summer 
(lag 1) 

maximum temperature All causes 
all ages =0.97 
CVD 
65+ significant absolute change (data not 
shown) 

Rossi et al. 
1999 

Milan (Italy), 
1980-1989 

all age Relative risk (RR) of death 
above a cause-specific 
threshold (lag 0) 

mean temperature All causes 
all ages 
RR=1.14 (above 29°C) 
Myocardial infarction  
all ages 
RR= 1.44 (above 27°C) 
Heart failure 
all ages 
RR= 1.47 (above 27°C) 
RESP 
Effect of temperature above 20°C (lag 1) (data 
not shown) 

Hales et al. 
2000 

Christchurch 
(New Zealand), 
1988-1993 

all ages 

65+ 

Percentage change in mortality 
for 1°C increase in maximum 
temperature above 20.5°( lag 0) 

maximum temperature All causes 
all ages  =+1% 
65+ = +0.9% 
No interaction between high temperatures 
and particulate air pollution. 



265 
 
 

Study Country, period Population Outcome measure Exposure Main results 

Michelozzi 
et al. 2000 

Rome (Italy), 
1987-1996, 
summer (15 
May-30 
September) 

65+ Percentage change in mortality 
for 1°C increase in mean 
temperature  

mean, minimum and maximum 
temperature 

All causes 
All ages=+2.3%  
No association between relative humidity and 
mortality. Significant interaction between 
temperature and humidity with a greater effect 
when the dew point was over 15°C. 

Braga et al. 
(2001, 
2002)  

12 cities (U.S.); 
1986-1993 

 

all ages Percentage change in mortality 
for 1°C increase in mean 
temperature above 30°C 

mean temperature All causes 
all ages =+4% 
cold cities: 
MI =+6% 
CVD =+1% 
COPD =+25%  
Hot cities: 
MI =+4% (lag 4-6) 
COPD =+6% (lag 3-4) 
CVD: no effect 
Harvesting effect for heat 

Curriero et 
al. 2002 

 

11 eastern (U.S.) 
cities; 

1973-1994  

age groups: 
0-64 
65-75 
75+ years 

Percentage change in mortality 
for 1°C increase in mean 
temperature above city-specific 
thresholds. 

 

Mean temperature All causes 
Tampa (Florida)= +0.12% above 27.1°C   
Chicago (Illinois)= +0.54% above 18.4°C  
Baltimore (Maryland)= 0.54% above 21.4°C  
Atlanta (Georgia)= +1.22% above 24.6°C 
Greatest heat effects on cardiovascular and 
respiratory causes 
No effect on other causes (maily cancer). 
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Diaz et al. 
2002a 

Seville (Spain); 
1986-1997 
summers (June-
September) 

age 65+ 

age 75+ 

Percentage change in mortality 
for 1°C increase in temperature 
above 41°C. 

maximum temperature All causes 
65+ =+38% 
75+ =+51% 
CVD 
65+ =+49% 
RESP 
65+ =+29% 

Diaz et al. 
2002b 

Madrid (Spain), 
1986-1997 
(June-
September) 

age groups: 
65-74  
>75 

Percentage change  in mortality 
for 1°C increase in temperature 
above 36.5°C 

 

maximum and minimum temperature All causes 
65-74:men=+14.7%; women=+16.2% 
75+: men=+12.6%; women=+28.4% 
CVD:  
65-74: men=+9.4%; women=+11.7% 
75+: men:=+9.3%; women=+34.1% 
RESP: 
65-74 :men =+17.2%; women=+23.0% 
75+ :men =+26.1%; women:=+17.6% 

Hajat et al. 
2002 

London (UK), 
1976-1996 

all ages Percentage change in mortality 
during days with smoothed (3-
days moving average) mean 
temperature >97th percentile 
(21.5°C) (lag 0) 

mean temperature, any day with the 
3 day moving average above the 99th, 
97th, 95th centiles 

All causes 
all ages = +3.34% 
CVD 
all ages=+3.01% 
RESP 
all ages=+5.46% 
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Gouveia et 
al. 2003 

São Paulo 
(Brazil); 

1991-1994 

age groups: 
0-14, 15-64, 
65+  

Percentage change in mortality 
for 1°C increase in mean 
temperature above 20°C (lag 
0-1). 

Mean temperature All causes: 
<15 =+2.6% 
15-64=+1.5% 
65+=+2.5% 
CVD  
65+=+2.0% 
RESP 
15-64 =+2.1% 
65+ =+2.3% 
Other natural causes 
15-64= +2.3% 
65+ =+2.9% 
Heat effect lower in the elderly in the highest 
socioeconomic group 
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O’Neill et al. 

2003 
7 cities (U.S.); 
1986-1993 

Pooled analysis 

age groups: 
0-64 
65+  

Percentage change in mortality 
at 29°C apparent temperature 
relative to 15°C. 

 

mean apparent temperature All causes 
≥65 = +5.6% 
0-64=+4.8% 
 
Black= +8.6% (lag 0) 
White= +4.1% 
high-school education or less= +5.2% 
post-high school education =+0.5% n.s. 
0-64 =+ 4.8% 
65+ =+5.6% 
CVD 
All ages n.s. 
0-64 =n.s. 
65+  n.s 

RESP 

All ages 
n.s  
0-64 =n.s. 
65+  n.s 

  

Pattenden 
et al. 2003 

Sofia,  
1996-1999  
London, 1993-
1996 

All ages Percentage change in mortality 
for 1 C°  above 21°C for London 
and 21.6°C for Sofia (90th 
centile) 

mean temperature All causes 
All ages=+1.9% in London (lag 0-1) 
All ages=+3.5% in Sofia  
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Rainham et 
al. 2003 

Toronto 
(Canada); 

1980-1996 

age groups: 
0-65 and 65+ 

Relative risk (RR) of death for an 
increase in humidex between 
the 50th and 95th percentile 
range. 

Humidex All causes: 
all ages 
RR =1.06 
<65 RR=1.05 
65+ RR=1.06 
Air pollution appears to have a small but 
consistent confounding effect on humidex effect 
estimates.   

El-Zein et al. 
2004 

Beirut 
(Lebanon) 
1997-1999 

All ages,  

65+ 

 

Percentage change in mortality 
for 1°C increase in mean 
temperature above 27.5°C  (lag 
1-2) 

 

mean temperature  All causes 
All age =+19.6% 
65+ =+25.7% 
 

Goodman et 
al. 2004 

Dublin 
(Ireland); 

1980-1996 

age groups: 
0-64, 65-74 and 
75+  

Percentage change in mortality 
for 1°C increase in minimum 
temperature (lag 0). 

Minimum temperature  All causes 
all ages = +0.4% 
65-74= +0.7% 
CVD  
N.S. 
RESP : 
all ages= +0.8% 



270 
 
 

Hajat et al. 
2005 

Delhi, São 
Paulo, London, 
1991-1994 

All ages,  
age groups: 
0-14, 15-64, 65+  

Percentage change in mortality 
for 1°C increase in temperature 
above 20°C. 

Mean temperature All causes 
all ages:  
Delhi=+2.4% (lag 0-28) 
Sao Paulo=+1.6% (lag 0) 
London=+1.4% (lag 0) 
CVD 
all ages = +4.3% (lag 0-7) 
Sao Paulo=+1.2% ( lag 0) 
London=+0.9%  (lag 0) 
RESP 
all ages=+4.5% ( lag 0-7) 
Sao Paulo=+4.0% (lag 0-28) 
London=+5.9% (lag 0-28)  
All other causes: 
all ages=+2.8%  (lag 0-7) 
Sao Paulo=+1.8% (lag 0) 
London=+1.6% (lag 0) 

Kim et al. 
2006 

 

6 cities 
(Korea); 
1994 to 2003  
 
Multicenter 
study 
 

All ages Percentage change in 
mortality for 1°C increase in 
mean temperature and Heat 
Index (Steadman 1979) above 
city specific threshold 

 

mean threshold All causes 
All age 
Seoul=+16.3% 
Daegu=+9.1% 
Incheon =+7.01%  
Gwangju =+6.7%  
Daejeon n.s.  
Busan n.s. 
 
65+  
Seoul=+17.1%  
Daegu=+5.9% 
Incheon=+4.7% 
Gwangju=+2.6%  
Daejeon n.s. 
Busan n.s. 



271 
 
 

Michelozzi 
et al. 2006 

4 italian cities;  

June-
September 
2003-2004  

All ages Percentage change in 
mortality for  1°C increases in 
maximum apparent 
temperature between 26°C to 
36°C 

maximum apparent temperature  All causes 
All age (2003) 
Torino=+7.8% (26-28°C) 
Milano=+10.7% (26-34°C) 
Roma=+32% (26-36°C) 
Bologna=+27.2% (26-36°C) 
All age (2004) 
Milano= +15.2% (26-36°C) 
Torino=+ 11.7% (26-30°C) 

Hajat et al. 
2007 

England and 
Wales (UK) 

All ages Relative risk (RR)of death for 
1°C increase in temperature 
above the 95th percentile. 

 

Mean temperature All causes: 
All ages: 
Strongest effects for respiratory disease and 
deaths from external causes  
0-64: greatest effect on external causes  
85+: greatest effect on respiratory disease  
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Baccini et al. 
2008 

15 cities 
Mediterranean 
and North-
Continental;  

1990-2000  

Pooled 

analysis 

All ages Percentage change in 
mortality for 1°C increase 
above a city-specific 
threshold in Mediterranean 

(Athens, Rome, Barcelona, 
Valencia, Turin, Milan and 
Ljubljana) and North-

Continental cities (Prague, 
Budapest, Zurich, Paris, 
Helsinki, Stockholm, London 
Dublin). 

Apparent temperature  

(Threshold 29.4°C Mediterranean 
cities and 23.3°C north-continental 
cities) 

All causes: 
Mediterranean cities: 
all ages =+3.12%  
North-Continental cities:  
All ages=+1.84% 
15-64 n.s. 
65-74 n.s. 
75+(Mediterranean cities=+4.22%; North-
Continental cities=+2.07%) 
CVD: 
Mediterranean cities: 
all ages=+3.7% 
North-Continental cities: 
all ages=+2.4% 
15-64 n.s. 
65-74 n.s. 
75+(Mediterranean cities=+4.6%; North-
Continental cities=+2.5%) 
RESP: 
Mediterranean cities: 
all ages=+6.7% 
North-Continental cities:  
all ages=+6.1% 
15-64 n.s. 
65-74 n.s. 
75+( Mediterranean cities=+8.1; North-
Continental cities=+6.6) 

 

 

 

 



273 
 
 

Study Country, period Population Outcome measure Exposure Main results 

Ishigami et 
al.2008 

Budapest;1993-
2001 
London; 1993-
2003 
Milan;1999-
2004 

All ages Relative risk (RR) of 
death for 1°C of 
temperature above the 
95th percentile (lag 0-1) 

mean temperature threshold: 
Budapest>24°C London>20°C 
Milan >26°C 

All causes 
0-14= significant only in females in London 
15-64 and 65-74=significant in both males and 
females in all cities 
Effect greater in 75-84 e 85+. 
<75 (Budapest RR=1.03; London RR=1.03; Milan 
RR=1.12 
75+ (Budapest RR=1.06; London RR=1.06; Milan 
RR=1.17 
CVD 
<75 Budapest RR=1.04; London RR=1.03; Milan 
RR=1.15 
75+ Budapest RR=1.08; London RR=1.06; Milan 
RR=1.20 
RESP 
<75 Budapest RR=1.06; London RR=1.05; Milan 
RR=1.37 
75+ Budapest RR=1.08; London RR=1.08; Milan 
RR=1.22 
External causes: 
<75 Budapest RR=1.04; London RR=1.06; Milan 
RR=1.21 
75+ Budapest RR=1.02; London RR=1.10; Milan 
RR=1.18 

Anderson et al. 
2009 

107 
communities 
(USA) 
1987-2000 
Pooled analysis 
 

All ages Percentage change in 
mortality comparing 
99 percentile vs 90 
percentile  

 

Mean temperature All causes 
All ages= 3% 
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McMichael et al. 
2008 

12 cities from low 
and middle-income 
countries (Delhi, 
Monterrey, Mexico 
City, Chiang Mai, 
Bangkok, Salvador, 
São Paulo, Santiago, 
Cape Town, 
Ljubljana, Bucharest 
and Sofia) 

All ages Percentage change in 
mortality for 1°C above 
a city-specific 
threshold. 

Mean temperature All causes 
all ages  
+0.77% in Mexico City -  +18.8 in 
Monterrey  
Ljubljana=3.12%; Bucharest=3.30%; 
Sofia=2.88%; 
Delhi=3.94%; Monterrey=18.8%; Mexico 
City=0.77%, Chiang Mai n.s.; 
Bangkok=5.78%; 
Salvador=2.48%; São Paulo=3.46%; 
Santiago=1.04%; Cape Town n.s. 
CVD: 
all ages  
+1.05% in Mexico City to +17.6% in 
Monterrey.  
Ljubljana=+3.35%; Bucharest=+3.92%; 
Sofia=+3.43%;Delhi=+3.94%; 
Monterrey=+17.6%; Mexico City=+1.05%, 
Chiang Mai not estimable; Bangkok= not 
estimable;Salvador=+14.7%; São 
Paulo=+3.26%; Santiago=+1.47%;  
Non cardiovascular disease:  
all ages  
+1.68% in São Paulo -  +5.10% in Sofia.  
Ljubljana=+1.77%; Bucharest=+1.87%; 
Sofia=+5-10%; 
Delhi=+4.30%; Monterrey=+49.3%; 
Mexico City=+1.53% n.s., Chiang Mai not 
estimable; Bangkok=+7.52%; 
Salvador=+2.61%; São Paulo=+1.68%; 
Santiago=not estimable; Cape Town=not 
estimable 
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Hashizume et al. 
2009 

 (Bangladesh); 
1994-2002 

All ages Percentage change in 
mortality for 1°C 
increase above a 
threshold 

mean temperature heat threshold 31°C CVD 
All ages = +62.9% 
Elderly= +108.1% 
 

Muggeo et al. 
2009 

Palermo (Italy): 
1997-2001 
Santiago (Chile): 
1989-1991 

All ages Percentage change in 
mortality for 1°C 
increase in 
temperature above 
identified threshold 

mean temperature All causes 
Santiago 
≥65 =+5.48% 
Palermo 
0-64 =+10.2% 
≥65 =+17.6% 
CVD 
All ages=+17.7% 
 

Stafoggia et al. 
2009 

Rome (Italy), 
1997-2004 

Elderly 65+ Relative risk (RR) of 
death at 30°C (lag 0-1) 
relative to 20°C 

  

apparent temperature All causes 
All ages RR=1.39 
CVD 
All ages RR=1.44 
RESP 
All ages RR=1.70 

Iniguez et al. 2010 13 cities (Spain) 

1990-1996 

All ages Percentage change in 
mortality for  1 ºC 
increase in 
temperature from 
MMT 

mean temperature 

MMT 

All causes 
70+= increase from 0.47% to 4.83%. 
Significant effect 9/13 cities   
Cardio-RESP 
All ages: 
increase from 0.87% to 7.72%.  
significant effect: 7/13 cities 
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Rocklov et al. 
2010 

3 regions 
(Sweden),  
June-August, 
1998-2005 

65+ Relative risk (RR) of 
death for 1°C  
increase in 
temperature above 
the threshold of the 
90th percentile (lag 0-
1) 

 

 

mean temperature All cause: 
All ages  
RR=1.051 

Almeida et al. 
2010 

Lisbon and 
Oporto 
(Portugal); 

summer (April 
to September) 

65+ Percentage change in 
mortality per 1°C 
increase in mean daily 
temperature 

Mean apparent temperature All causes 
All ages 
LISBON +2.1% 
OPORTO +1.5% 
>65 
LISBON +2.7% 
OPORTO +1.8% 
CVD: 
All ages 
LISBON +2.4% 
OPORTO +2.1% 
>65 
LISBON +2.8% 
OPORTO +2.2% 
RESP 
LISBON: n.s. for all ages 
>65  
OPORTO +3.0% 
 
 



277 
 
 

Study Country, period Population Outcome measure Exposure and threshold Main results 

Ha et al. 2011 Seoul, Daegu, 
and Incheon 
(South Korea) 
1992-2007 

All ages 
65+ 

Percentage change in 
mortality per 1°C increase in 
temperature above the 
thresholds (lag 0-1) 

mean temperature All causes: 
Seoul 
All ages=+7.97% 
≥65 =+8.51%  
Daegu 
All ages=+6.12% 
≥65=+6.82% 
Incheon  
All ages=+3.85% 
≥65=+3.89% 
CVD 
all ages=+ 10.2% 

Gomez-Acebo et 
al. 2011 

Cantabra 
(Spain); 

June-September 
2003-2006 

All ages Percentage change in 
mortality per 1 degrees C 
increase in temperature  

maximum temperature All causes: 
All ages=+2.0% (1.1, 3.0) 
When stratifying by age, temperatures have no 
effect on mortality in people younger than 65; 
moreover, maximum temperature has no 
effect in people older than 90 

Yu et a. 2011 Brisbane 
(Australia) 

1996-2004 

All ages 
65+ 

Percentage change in 
mortality per 1°C increase in 
temperature above the 
threshold  

Mean temperature CVD  
All ages: 3.5% (0.4 to 6.7) (lag 0-1) 
8.4% (1.1 to 16.2) (lag 0-21) 
65+: 3.7% (0.4 to 7.1) 
65+: 8.0% (0.3 to 13.2) (lag 0-21) 

Gasparrini et al. 
2011 

108 
communities 
(USA), 1987–

2000 

 

All ages Relative risk (RR) between 
the median city-specific 
temperature during heat-
wave days and the 75th p 
annual  distribution 

1 )Tmean (main effect) 

2) heatwave added effect: ≥4 days with 

Tmean ≥99th annual T 
distribution(alternative definitions are 
used 

 

All causes 
Main effect RR=7.7 
Added effect RR=2.8 
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Rocklov et al. 
2011 

Stockholm 
(Sweden); 
June-August 
1990-2002 

All ages Relative risk (RR) of death 
for 1°C of temperature  in 
minimum apparent 
temperature or for day 
number of extreme days 
(lag 0-1) 

1)apparent minimum Temperature 
(main effect) 

2)Extreme heat: n° of days with 
Tappmax >98th pctile  

 

All causes 
All ages 
Main effect  RR=1.006 
Extreme heat RR=1.024 
CVD 
Main effect RR=1.004 n.s. 
Extreme heat RR=1.020 n.s. 
RESP 
Main effect RR=1.014 n.s. 
Extreme heat RR=1.039% n.s. 
 

Goldberg et al. 
2011 

Montreal 
(Canada) 
1984-2007 

All ages Percentage change in 
mortality comparing 99th to 
75th percentile 

maximum temperature All causes 
All ages:  
+28.4% (lag 0-14) 
+11.9% (lag 0) 

Gasparrini et al. 
2012 

10 regions 
England and 
Wales (UK); 
1993-2006 
summers (June-
September)   
 
pooled analysis 

All ages 

Ages groups: 

age groups: 
0-64, 65-74; 
75-84; 85+  

Percentage change in 
mortality for 1°C increase 
above the threshold* (lag 0-
1) 

maximum temperature All causes 
All ages=+2.1% 
Cardiovascular disease 
All ages=+1.8% 
Pulmonary heart diseases 
All ages=+8.3% 
Asthma  
All ages=+5.5% 
Extra-pyramidal disorders 
All ages=5.5% 
Arrhythmias 
All ages=5.0% 
Evidence of a heat-related 
increase in mortality for almost all of the 
cause-of-death and age groups 
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Barnett et al. 2012 107 cities (U.S); 

1987-2000 

 

All ages Percentage change in daily 
mortality for 10°F increase 
in temperature. 

Temperature All causes 
all ages=+4.7% (summer 1987) 
all ages=-0.4% n.s. (summer 2000) 

Tobias et al. 2012 52 cities 
(Spain);  
1995-2004 
(June to 
September) 

All ages  
 

Relative risk (RR) of death  
above a specific thresholds 

 

minimum and maximum temperatures All causes 
All ages RR= 1.24 
Zamora RR= 2.70 
Madrid RR= 1.31 
Seville RR= 1.32; 

Williams et al. 
2012 

Adelaide 
(Australia); 

1993-2009 

All ages Incidence rate ratio (IRR) in 
the mortality for 10 °C 
increases in daily maximum 
temperatures over 
thresholds 
 

maximum and minimum temperature No effect on mortality 

Wu et al. 2013 4 cities 
(China);2006-
2010 

All ages 

0-64; 65+ 

RR for 1. °C increase of 
temperature above the hot 
threshold 

Mean temperature All causes 
All ages: Changsha RR=1.020 Lag 0 higher RR in 
65+ 
Kunming RR=1.017  
Guangzhou RR=1.029 higher RR in 65+ 
Zhuhai  RR=1.023 higher RR in 65+ 
 

Lin et a. 2013 4 cities 
(Taiwan); 1994-
2007 

All ages RR at 31 degrees C 
Comparing to centered 
temperature at 27 degrees C 

Mean temperature Cerebrovascular diseases  
All ages: RR = 1.14 Lag 0-3 
 
Heart diseases  
RR = 1.22 
IHD  
RR = 1.09 n.s. 
 



280 
 
 

Study Country, period Population Outcome measure Exposure and threshold Main results 

Guo 2013 5 cities (China); 
2004-2008 

All ages RR at the 99th percentile of 
temperature (extremely hot 
temperature) compared 
with the 90th percentile 
 

Mean temperature IHD 
All ages: RR=1.17 (lag 0-2) 

Breitner 2014 3 cities 
(Germany); 
1990-2006 

All ages, 75+ RR for temperature from the 
90th (20.0 degrees C) to the 
99th centiles (24.8 degrees 
C) 

Mean temperature cardiovascular causes 
all ages RR=1.10 (lag 0-1) 
75+: 1.12 
IHD  
all ages RR=1.06 
75+: 1.09 
Other heart disease 
All ages: RR=1.14 
75+ 1.15 
Cerebrovascular disease 
All ages RR= 1.12 
75+ 1.14 

Tobias 2014 50 cities 
(Spain);1990-
2004 

All ages % change between the 99th 
and 90th percentiles 

Maximum temperature All causes 
All ages: 14.6% Heterogeneity among cities 

Guo 2014 23 countires 
306 cities 

All ages  % change between 99th 
percentile and MMT 

Mean temperature Heterogeneity among cities , MT changes by 
region, heat effects short lag 
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Wang 2014 Suzhou, 
China;2005-

2008 

All ages RR at 99th percentile of 
temperature, 32.6 degrees 
C) compared with the 
minimum mortality 
temperature (26 degrees C) 
 
 
 
 
 
 
 

 

Mean temperature  All causes 
All ages: RR= 1.43 lag 0-3 
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Li 2014 4 cities (China); 
2004-2012 

All ages, 0-
14,15-29,30-
54,55-64,65-
74,75+ 

RR per 1°C increase Maximum temperature All-cause 
Harbin all ages: RR= 1.045,30-54: 1.061,55-64: 
1.072,65-74: 1.030,75+: 1.061 
0-14,15-29 n.s 
Nanjing all ages: RR=1.032, 55-64: 1.063, 65-
74: 1.053, 75+: 1.056 
0-14,15-29,30-54 n.s. 
Shenzhen all ages: RR=1.040, 0-5: 1.058, 30-54: 
1.072; 75+ 1.074 
15-29, 55-64, 65-74 n.s.  
Chongqing all ages: RR=1.055,30-54: 1.149,55-
64: 1.112, 65-74:1.083,75+: 1.057 
Greater effects in females 
 
CVD causes 
Harbin all ages: 1.046 
Nanjing 1.050 
Shenzhen 1.075 
Chongqing 1.069 
 
Respiratory causes 
Harbin all ages: 1.080 
Nanjing, Shenzhen, Chongqing n.s. 
 
Digestive causes 
Harbin Shenzhen Nanjing n.s. 
Chongqing all ages: 1.236 
 
Endocrine and metabolic causes 
Harbin all ages 1.232 
Nanjing 1.125 
Shenzhen 1.319 
Chongqing 1.236 
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Benmarhnia 2014 Paris, 
France;2004-
2009 

All ages,65+ Mortality rates attributable 
to summer temperatures 
(per 100,000) 

Mean temperature All causes 
All ages: 5.37  
65+: 33.57  
Effect modification by air pollution and social 
deprivation and by deprivation in the high 
polluted group  
 
 

Yi 2015 Hong 
Kong;2002-
2011 

All ages,0-64, 
65-74,75+ 

RR at 31.5 degrees C, 99th 
percentile of temperature) 
relative to 27.8 degrees C 
(75th percentile of 
temperature 

Mean temperature All causes 
All ages: RR= 1.09 lag 0-3 
Higher effects in 65-74 than 75+ years or 0-64 
Cardiopulmonary  
All ages: 1.14 
Cardiovascular n.s. 
Respiratory  
All ages: 1.33 

Yang 2015 26 regions in 
the south and 
west of China; 
2008-2011 

All ages % change for 1°C increment 
above the high temperature 
threshold 90th percentile 

Mean temperature CVD causes 
All ages: % change from 0% to 18.25% 
Effect modifiers: number of hospital beds per 
10,000 population, % residents engaged in 
industrial occupations, % women 
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Huang 2015 66 Chinese 
communities; 
2006-2011 

All ages % change for 1°C increment 
above the MMT 

Mean temperature All causes 
All ages: % change=3.44% 
Effect modifiers: age, sex, place of death, 
cause of death and education level 
 
 

Gasparrini 2015 384 locations in 
Australia, Brazil, 
Canada, China, 
Italy, Japan, 
South Korea, 
Spain, Sweden, 
Taiwan, 
Thailand, UK, 
and USA; 1985 
and 2012 

All ages attributable deaths for heat Mean temperature All causes: 
all ages: 0·42% (Lag 0-21) 

Gasparrini 2015 272 locations in 
Australia, 
Canada, Japan, 
South Korea, 
Spain, UK, and 
USA; 1985-2001 
and 1996-2012 

All ages RR at 99th percentile (or 
90th percentile) compared 
with minimum mortality 
temperature 

Mean temperature All causes 
Australia All ages: RR=1.272 (lag 0-9) 
Canada All ages: RR=1.124 (lag 0-9) 
Japan All ages: RR=1.098 (lag 0-9) 
South Korea All ages: RR= 1.109 (lag 0-9) 
Spain All ages: RR=1.434 (lag 0-9) 
UK All ages: RR=1.167 (lag 0-9) 
USA All ages: RR=1.091 (lag 0-9) 
The analysis suggests a decrease in the 
mortality risk associated with heat in Japan, 
Spain and USA 
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Pearce 2016 Melbourne, 
Australia, 1999-
2006 

65+ years % change above the 90th 
percentile as compared to 
days in the referent 25–75 
percentile 
 
 
 
 
 
 

Mean temperature All causes 
All ages: 6% (lag 0-11) 

Sun 2016 Hong Kong, 
1998-2001 

65+ years % change extreme hot 
temperature (99th 
percentile of temperature, 
30.4 °C) compared to at 75th 
percentile (19.5 °C) 

Mean temperature All causes 
Patients with diabetes, CVD, COPD n.s. (lag 0-
3) 
 

Petitti 2016 Maricopa 

County, 

Arizona; 2000-

2011 

All ages RR at the highest recorded 

temperatures 
minimum, mean, and maximum 

temperature 
CVD 
All ages: RR> 1.05 

Yang 2016 16 large 
Chinese cities; 
2007–2013 

All ages Attributable fraction to 
temperature above the 
97.5th percentiles 

Mean temperature Stroke 
All ages: 1.4% (lag 0-14) 

Seposo 2016 3 cities 

(Philippines) 

All ages RR at 99th temperature 
percentile compared to the 
70th percentile 

Mean temperature All causes 
All ages RR 2.48 (lag 0-2) 
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Zhang 2017 12 counties 
(central China); 
2009-2012 

All ages RR at 99th percentile 
compared to reference 
temperature was 27.7 °C 

Mean temperature All causes 
All ages: 1.097 (lag 0-2) 
Heterogeneity among counties 
Higher effects in 75+, females, those dying 
outside the hospital, those with higher 
education 
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STUDY DESIGN: CASE CROSSOVER 
OUTCOME: MORTALITY 

Study Country, period Population Outcome Exposure Main results 

Stafoggia et al. 
2006 

4 Italian cities  
1997-2003 

35+ OR of dying at 30° C 

relative to 20°C. 

 

mean apparent  temperature  All causes 
35+ OR=1.34; 65+ OR=1.39; 75+ OR=1.43 
 
CVD 
35+ OR=1.46 ; 65+ OR=1.46 ; 75+ OR=1.50 
 
Psychoses: 
35+ OR=1.70; 65+ OR=1.75 ;75+ OR=1.67 
 
Depression : 
35+ OR=1.71 ; 65+ OR=1.82; 75+ OR=1.80 
 
Conduction disorders 
35+ OR=1.77 ; 65+ OR=1.86; 75+ OR=2.12 
 
Marital status 
35+ OR=1.50 

Medina-
Ramon et al. 
2007  

50 cities (U.S); 

1989-2000 

all ages Percentage change in 
mortality in days with 
minimum temperature  99th 
percentile 

minimum temperature All causes 
all ages=+5.74% (lag 0-2) 
CVD 
all ages =+4.68% (lag 1) 

Kolb et al. 
2007 

Canada 

1984-2003 

65+ Percentage change in 
mortality for 5°C increase of  
maximum  temperature (lag 

0-2) 
 

Mean and maximum temperature Congestive heart failure 
65+  

20-25°C: =+1.05 
25-30°C: =+1.26  

30-33.1°C:=+1.20  
No association after 3 days 
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Study Country, period Population Outcome Exposure Main results 

Bell et al. 2008 3 Latin American 
cities (San Paolo, 
Santiago, 
Mexico city); 
1998-2002 

all ages Percentage change in 
mortality in days at the 95th 
percentile of mean apparent 
temperature compared with 
the 75th percentile. 

 

Mean apparent temperature All causes: 
all ages 
Santiago: n.s.;  
Sao Paulo: +4.43%;  
Mexico City: n.s. 
No effect for sex 
CVD 
all ages  
Santiago: n.s. 
Sao Paulo: n.s. 
Mexico City: n.s. 
RESP 
all ages  
Santiago: n.s. 
Sao Paulo: +12.22% 
Mexico City: n.s. 

Basu et al. 
2008 

 

9 California 
counties (U.S); 

1999-2003 

All ages Percentage change in 
mortality for 10°F in mean 
apparent temperature 

 

mean apparent temperature All causes 
all ages 
≤ 1 =+4.9% 
≤ 5 =+4.2%, n.s.  
5-17 n.s. 
18-64 n.s. 
≥ 65 =+2.2% 
≥ 75 =+2.6% 
≥ 85 =+1.7% 
CVD 
all ages=+2.6% 
Ischemic disease: 
all ages=+2.5% 
Myocardial infarction 
all ages=+2.7%, n.s. 
Conduction disorders 
all ages =+5.4%, n.s. 
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Study Country, period Population Outcome Exposure Main results 

Basagana et 
al. 2011 

Catalonia region 
(Spain); 

1983-2006 

All ages 

age group: <1 
year 

Relative risk (RR) of death in 
hot days with maximum  
temperature 
above the 95th percentile 
compared with no hot days 

Maximum temperature and humidity All causes (lag 0-2): 
All ages RR=1.19  
<1 year RR=1.53 
CVD 
All ages RR=1.22  
RESP. 
All ages RR=1.21 
Mental and nervous system disorders 
All ages RR=1.30 
External causes: 
All ages RR=1.23 
Infectious disease: 
All ages RR=1.22 
Effect for all main causes at lags 0–2 

Wichmann et 
al. 2011 

Copenhagen 
(Denmark); 

1999-2006 

All ages Percentage change in 
mortality per IQR increase in 
maximum apparent 
temperature  

Maximum apparent temperature CVD 
All ages =-6.9% 
>80 = - 8.3% 
RESP 
All ages= n.s. 
 

Chen 2016 Ontario province 
(Canada); 1996-
2010 

All ages % change for 5°C increase in 
temperature 

Mean temperature All causes 
2.5% (lag 0) 
 
Respiratory in-hospital deaths  
26.0%   

Willers 2016 Rotterdam 1995-

2009 

All ages % change between the 90 and 
99% of the thermal index 

Maximum temperature, maximum 
UTCI, maximum radiant temperature 

All causes 
All ages: % change= from 4% to 10.6% for the 
three indicators (lag1) 
synergistic effects of high temperatures and air 
pollution 
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STUDY DESIGN: TIME SERIES 
OUTCOME: MORBIDITY 

 

Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Koken et al. 
2003 

Denver 
Colorado 
(U.S.), 1993-
1997 (July 
and August) 

65+  Percentage change in hospital 
admissions for cardiovascular 
disease 

maximum temperature A 25th-75th centile increase (from 28.3°C to 34.2°C) in 
temperature was associated with a 18%, 13%, 28%, 
and 13% increase in hospitalization respectively for 
acute myocardial infarction, coronary atherosclerosis, 
pulmonary heart disease and congestive heart failure, 
but not with cardiac dysrhythmias. During increases in 
both temperature and ozone, males have an 
increased risk of hospitalization compared with 
females. 

Kovats et al. 
2004 

Greater 
London (UK), 
April 1994-
March 2000 

all ages 

age groups 0-5, 
5-14, 15-64, 65-
74, 75+ years 

Percentage change in hospital 
admissions for 1°C above a 
cause- and age-specific 
threshold. 

 

Mean temperature All causes: 
0-4 =0.24% 
Respiratory diseases: 
all ages=5.5% 
65-74=7.7% 
75+= 10.8% 
Renal diseases 
all ages =1.30% 
Slightly increase in total admissions among children 
under 5 years (0.2% increase for each degree above 
12°C).   
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Schwartz et al. 
2004 

12 US cities, 
1986-1994 

65+  Relative risk (RR) of hospital 
admissions at 80°F (32.2°C) 
compared with 0°F (-17.8°C). 

mean temperature CVD 
65+ RR=1.15 (lag 0) 
Effect of hot temperatures immediate (lag 0), with 
evidence of harvesting. The effects of hot 
temperature disappeared within 10 days. No clear 
pattern of humidity on cardiovascular admissions.  
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Ebi 2004 3 US 
California; 
1983-1997 
and January-
June 1998 

All ages Percentage change in hospital 
admission for 3°C increase in 
minimum temperature 

Minimum and maximum 
temperature 

Acute Myocardial infarction  
55-69 
Los Angeles:men=6.7%; women=-11.2%;  
San Francisco men =0.8%; women=1.4%, n.s.;  
Sacramento:men =22.3%; women=24.1% 
 
Angina pectoris  
55-69  
Los Angelesmen=-1.2%, n.s.; women=-2.5%, n.s.;  
San Franciscomen=2.0%; women=10.7% 
Sacramentomen=8.85%, n.s.; women=18.7% 
 
70+ 
Los Angeles:men=-6.5%; women=-5.8%;  
San Francisco:men: 9.9%; women=12.5%;  
Sacramento: men=10.5%; women=11.9%, n.s. 
 
Heart failure 
55-69 
Los Angeles:men =-11.9%; women= -8.1% 
San Franciscomen=5.7%; women=6.5%; 
Sacramentomen=19.8; women=17.2, n.s. 
 
 
70+  
Los Angeles:men =-6.4; women= -2.8, n.s. 
San Franciscomen =9.9; women=8.4. 
Sacramentomen=9.2, n.s.; women=14.9 
 
Ictus 
55-69  
Los Angeles: men=-4.9%; women=-4.0%, n.s. 
San Francisco: men=4.1%; women=10.6%;  
Sacramento: men=16.0%; women=28.3% 
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Morabito et al. 
2005 

Florence 
(Italy), 1998-
2002 

all population, 
age groups 0-64 
and 65+ years 

Percentage change in hospital 
admissions every 2 hours of 
severe discomfort (apparent 
temperature above the 90th 
percentile) per day. 

Mean temperature. 
Severe hot discomfort 
days: with apparent 
temperature >90th centile;  

Myocardial infarction 
all ages =+10% (lag 3) 
<65 effect only in males=+3% (lag 0) 
65+ =no effect (lag 0) 

Linarez et al. 
2007 

Spain 
(Madrid); 

1995-2000 

All ages Absolute and percentage change 
in emergency hospital 
admissions above the daily mean 
for a 1°C increase in temperature 
above 36°C. 

Maximum and minimum 
temperature 

All causes 
All ages=4.6% n.s. 
>75=17.9% 
RESP 
>75=27.5% 
No association with admissions due to 
circulatory diseases, 

Dawson et al. 
2008 

Scotland (UK) 
1990-2005 

All ages Percentage change in emergency 
hospital admissions for  1°C 
increase in mean temperature 
preceding 24h 

Maximum, minimum and 
mean temperature 

Ischemic stroke 
All ages =+2.1% 

Lin et al. 2009 New York, 
(USA);  

1991-2004 

All ages Percentage change in hospital 
admissions for 1°C above the 
threshold of the temperature 

Mean apparent 
temperature, mean 
temperature and 3-day 
moving average of 
apparent temperature   

Respiratory diseases 
All ages=+2.7%-+3.1% 
cardiovascular diseases 
all ages=+1.4%-3.6% 
 
At high temperatures, admission rates increased for 
chronic airway obstruction, asthma, ischemic heart 
disease, and cardiac dysrhythmias, but decreased for 
hypertension and heart failure. 
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Michelozzi  et 
al.2009 

15 europeans 
cities; 

1990-2001 

 

All ages Percentage change in emergency 
hospital admissions for  1°C 
increase in maximum apparent 
temperature above a city-specific 
threshold  

maximum apparent 
temperature 

CDV 
All ages  
all cities=-0.6;  
Mediterranean cities : n.s.;  
North-Continental: n.s.) 
65-74 n.s. 
75+ n.s. 
 
Cerebrovascular diseases: 
65-74 n.s. 
75+  
all cities=-1.5%;  
Mediterranean cities n.s. 
North-Continental: n.s. 

Wang  et al. 
2009 

Brisbane 
(Australia); 

1996-2005 

All ages Relative risk (RR) of hospital 
admissions for 1°C increase in 
minimum and maximum 
temperature  

Maximum, minimum and 
mean temperature 

primary intracerebral 294aemorrhage 
<65 RR=1.12  
≥65 RR=0.99  n.s 
There is not statistical significant relationship 
between maximum temperature and ischemic stroke 
emergency admissions for any age groups. 
 

Bhaskaran et 
al. 2010 

England and 
Wales 

Median age 70 Percentage change of hospital 
admissions for 1°C increase in 
temperature 

Mean temperature No effect 
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Green  et al- 
2010 

9 U.S. 
California 
counties; 
1999-2005 

All ages Percentage change per 10°F 
increases in mean daily apparent 
temperature.  
 

Mean apparent 
temperature 

Respiratory diseases 
All ages 
lag 0 =+2.0 n.s.  
lag 1=+0.8 n.s. 
pneumonia=+3.7% 
< 5  =+5.9% 
19–64 =+4.1% 
Neither asthma nor chronic obstructive pulmonary 
disease (chronic bronchitis or emphysema) was 
associated with apparent temperature 
Ischemic diseases: 
65+=3.5% 
Acute renal failure 
All ages=+7.4% 
65+=10.7% 
Dehydration 
All ages=10.8% 
5–18 = +19.75 

Bayentin et al. 
2010 

Quebec 
(Canada) 

1989-2006 

All ages 

age groups 45-
66, 65+  

 

Percentage change in hospital 
admissions for 1°C increase 
above a threshold  

Mean temperature Ischemic heart diseases 
Women aged 45-65 years were more affected by 
extreme heat in comparison to men of the same age 
(range 1.21-10.7) 
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Pudpong et al. 
2011 

Chiang Mai 
(Thailand); 

2002-2006 

All ages 
Age groups: 
0-14 
≥65 
 

Percentage change in the 
hospital visits/ admissions for 1 
°C increase in temperature above 
the identified 
threshold (if applicable). 

Mean temperature Daily out-patient visits 
All causes 
All ages=+9.4% 
0-14= +6.6% 
≥65 =+10.8% 
CVD 
All ages=+19.2% (lag 0-13) 
Diabetic 
All ages=+26.3% (lag 0-13) 
Hospital admissions 
All causes 
All ages=+5.4%, n.s. (lag 0-13) 
Intestinal diseases 
All ages=+5.8% (lag 0-13) 
0-14= +13.1% (lag 0-13) 

Williams et al. 
2012 

Adelaide 
(Australia)  

1993-2009 

All ages Incidence rate ratio (IRR) in the 
ambulance call-outs, emergency 
department (ED) presentations 
and hospital admissions for 10 °C 
increases in daily maximum 
temperatures over thresholds 
 

maximum and minimum 
temperature 

Daily ambulance call-outs 
all-age IRR=1.049    
65+ IRR= 1.065 
ED 
All causes 
All ages 
65+ IRR= 1.036 
Mental health 
All ages IRR=1.079 
65+ IRR=1.143 
Heat relates 
All ages IRR= 6.511 
Hospital admissions 
All ages IRR=1.034 
No effect on Eds and admissions for renal causes, on 
CVD RESP admissions  
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Chan et al. 
2013 

Hong Kong; 
1998-2009 

All ages 

<15; 15-59; 60-
74; 75+ 

% change for every increase of 1 
degrees C above 29 degrees C 

Mean temperature All causes 
% change=1.9% lag0-10 
Respiratory causes: 
<15 % change 19.5 
15-59 % change 8.2 
60-74 % change 7.1 
75+ % change 4.9 
Infectious diseases 
<15 % change 7  
15-59 % change 0.9 n.s. 
60-74 % change 2.6 n.s. 
75+ % change 9.6 
 

Zhang 2014 Shanghai; 
2006-2011 

All ages, 65+ % change in Hospital admissions 
for 1 degrees C above optimum 
temperature 25°C 

Mean temperature respiratory diseases  
all ages: 2.15% greater in females and 65+ years 

Kwon 2015 South 
Korea;2004-
2012 

All ages RR of risk in hospital admissions 
per 1°C increase above threshold 
temperature (28.5 °C)  

Mean temperature AMI 
All ages: n.s. 
75 years: RR=1.16 20-74 n.s. 
Urban: 1.10 rural n.s. 

Phung 2016a Mekong Delta 
Region 
(Vietnam) 

All ages % change of risk in hospital 
admissions for 1 °C increase 
above 21 °C, which is the 
minimum temperature 

Mean temperature All causes 
All ages: 1.3% (lag 0) 
infectious diseases 
all ages: 2.2%  
respiratory diseases 
all ages: 1.1%  
cardiovascular diseases n.s. 

Phung 2016b Ho Chi Minh 
City 
(Vietnam) 

All ages RR in hospital admissions for 
99th percentile (31.3 °C) in 
comparison with the threshold 
29.6 °C. 

Mean temperature CVD 
All ages Temperature effect lasted from to 0 to 5 days 
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Study 
Country, 

period 
Population Outcome measure Exposure  Main results 

Lam 2016 Hong Kong; 
2004–2011 

All ages, 0-4,5-
14, 15-59, 60+ 
years 

RR in hospital admissions for 
30°C vs 27°C 

Mean temperature Asthma 
RR=1.19 (lag 0-3) 
0-4years n.s 
5-14 1.32 
15-59 1.52 (lag 0-12) 
60+ 1.17 
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STUDY DESIGN: CASE CROSSOVER STUDIES 
OUTCOME: MORBIDITY 

Study Country, period Population Outcome Exposure Main results 

Fletcher et al. 
2012 

New York (USA); 

1991-2004 (July- 
August) 

 

All ages Odds ratio (OR) for hospitalization per 
5°F increase (lag 0-1) 

Mean temperature Renal diseases 
All ages OR=1.09 

Wichmann et al. 
2011 

Copenhagen  

1999-2006 

19+ Percentage change in hospital 
admissions per IQR increase in maximum 
apparent temperature (lag 0-4)  

Maximum apparent 
temperature  

Respiratory diseases 
19+=6.5% 
66-80=9.8% 
Strongest effect for women, lowest and 
second highest SES groups 
No effect for cerebrovascular diseases  
 

Wichmann et al. 
2012 

Copenhagen 
(Denmark) 

1999-2006 

19+ Percentage change in hospital 
admissions per IQR increase in 
temperature (lag 0-4)  

Maximum apparent 
temperature  

Myocardial infarction 
No effect  

Chen 2017 Nanchang 
hospital (China); 
2008-2015 

All ages Odds ratio (ORs) for admissions  Extreme high temperature 
(mean temperature> 34.8° C or 
maximum temperature> 39.9° 
C)  

Ischemic Stroke 
OR = 1.18 (lag 0-3) 
haemorrhagic stroke  
OR = 1.34 

Zanobetti 2013 135 US cities 65+ Odds ratio (ORs) for CVD Dadmissions Minimum and maximum 
temperatures <1st Percentile, 
>99th 

Atrial fibrillation:6%, Alzheimer:8% 
Dementia:6% 
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Table  3.4 Summary of studies included in the literature review on the differential effects of heat on mortality within urban areas 

considering the Urban heat island effect and socio-economic factors.

 

Authors Year Title Study area
Exposure 

data source

Exposure 

indicator/satellite 

sensor

Aim Method Results

Johnson et al. 2009 Socioeconomic indicators of 
heat-related health risk 
supplemented with remotely 
sensed data.

Philadephia LANDSAT 
TM

LST, National Land 
Cover data

to improve spatial delineation of 
risk from extreme heat events in 
urban environments by 
integrating sociodemographic 
risk factors with estimates of 
land surface temperature 
derived from thermal remote 
sensing data.

logistic regression models to 
identify models that better 
predict intra-urban variations in 
risk from extreme heat events.

Model with LST and 
socioeconomic variables 
performed the best in 
predicting heat- related 
mortality.

Smargassi et al. 2009 Variation of daily warm 
season mortality as a function 
of micro-urban heat islands.

Montreal, 
Canada

LANDSAT 7 ETM+ To evaluate whether people 
located in micro-urban heat 
islands are at higher risk of 
mortality during hot summer 
days

Case cross-over analysis on 
tempertaure and casue specific 
mortality, stratified by UHI and 
dwelling value by post code.

Subjects located in hotter 
area of the city were at 
greater risk of dying during 
hot days.

Tan et al. 2010 The urban heat island and its 
impact on heat waves and 
human health in Shanghai.

Shanghai urban 
monitoring 
network

air temperature, 
UHIintensity

To investigate the health effects 
of the urban heat island in 
Shanghai

Examine summer mortality 
rates in Shanghai by UHI area

UHI worsens the adverse 
health effects from exposure 
to extreme thermal 
conditions.

Huang et al. 2011 Is everyone hot in the city? 
Spatial pattern of land surface 
temperatures, land cover and 
neighborhood socioeconomic 
characteristics in Baltimore, 
MD.

Baltimore, MD LANDSAT 7 ETM+, LULC, socio-
economic 
variables by 
census block

To define UHI and explore how 
this temperature variation 
relates to social factors by census-
based block group

Correlate LST to socio-economic 
parameters. Map the spatial 
relationship of land surface 
temperatures to social factors

LST is  higher in areas that are 
characterized by low income, 
high poverty, less education, 
more ethnic minorities, more 
elderly people and greater 
risk of crime

Kestens et al. 2011 Modelling the variation of 
land surface temperature as 
determinant of risk of heat-
related health events.

Quebec 
Province, 
Canada

LANDSAT LST, NDVI, land 
cover, water 
bodies

To estimate exposure to 
temperatures in urban areas 
based on satellite and 
meteorological data

GLM  to estimate surface 
temperatures using 
meteorological, land use, NDVI 
and other parameters

Land cover and NDVI were 
strong predictors of LST

Steeneveld et al. 2011 Quantifying Urban Heat Island 
Effects and Human Comfort 
for Cities of Variable Size and 
Urban Morphology in the 
Netherlands

The 
Netherlands

observed  
data

Ta ad Humidity Identify the UHI intensities in 
Dutch cities , linking UHI to green 
and blue space, population 
density and 

Model relationship between 
UHI and parameters that 
influence thermal conditions in 
urban areas

Mean daily maximum UHI of 
2.3 K in dutch cities

Thomlinson et al. 2011 Including the Urban Heat 
Island in Spatial Heat Health 
Risk Assessment Strategies: a 
Case Study for Birmingham, 
Uk,  

Birmingham MODIS LST To define a hazard index based 
on UHI and urban characteristics

Spatial risk assessment 
methodology in order to 
highlight potential heat health 
risk areas

"very high” risk areas within 

the city centre, and a number 
of pockets of “high risk” 

areas scattered throughout 
the conurbation



301 
 
 

 

Authors Year Title Study area Exposure 

data source

Exposure 

indicator/satellite 

sensor

Aim Method Results

Buscail et al. 2012 Mapping heatwave health 
risk at the community level 
for public health action.

Rennes, France LANDSAT 7 ETM+, LST, NDVI, 
water bodies

To identify  high risk areas at the 
community level considering 
socioeconomic, land use and LST

A land-use regression model 
was performed to predict the 
LST considering land use and 
socioeconomic parameters.

highest risks observed in a 
north–south central

Goggins et al. 2012 Effect modification of the 
association between short-
term meteorological factors 
and mortality by urban heat 
islands in Hong Kong.

Hong Kong MODIS, NDVI, SVF. Land 
use characteristics

evaluate whether people living 
in heat island areas of Hong Kong 
are at greater risk of mortality in 
summer

GAMs were used to estimate 
the association between 
meteorological variables and 
mortality during summer

A 1°C rise above 29°C was 
associated with a 4.1% (95% 
CI: 0.7-7.6%) increase in 
natural mortality in areas 
with high UHI compared to 
0.7% (95% CI: 22.4-3.9%) in 
low UHI areas

Laaidi et al. 2012 The impact of heat islands on 
mortality in Paris during the 
August 2003 heat wave.

Paris AVHHR LST To valuate the health impact of 
heat waves in urban areas, assess 
the daily and cumulative Tmin 
and Tmax exposure to heat, and 
implement indicators of heat 
exposure for elderly people in 
relation to residence.

Conditional logistic regression 
model, adjusted for age and 
other potential confounders by 
area of residence

Urban hot spots were 
associated with higher risk of 
death during the 2003 heat 
wave

Goggins et al. 2013 Effect modification of the 
association between 
meteorological variables and 
mortality by urban climatic 
conditions in the tropical city 
of Kaohsiung, Taiwan

Kaohsiung, 
Taiwan

Urban 
climatic 
mapping

UHI, Ta To stratify districts into 3 urban 
heat risk categories based on 
thermalload and dynamic 
potential

Time series analysis on 
temperature and mortality 
stratified by 3  categories. 

greater risk in level 1 - high 
thermal load and low 
dynamic potential. Ti reduce 
impact heat greater 
mitigation policies need to 
be introduced.

Xu et al. 2013 Differences on the effect of 
heat waves on mortality by 
sociodemographic and urban 
landscape characteristics

Barcelona, Spain MODIS VCF To identify the most heat-
vulnerable areas by mapping 
heat vulnerability

Time-stratified case-crossover
analysis on daily mortality and 
tempertaure, by socioeconomic 
or built environment
characteristics

The effect of heat on 
mortality was higher in the  
census tracts with a large 
percentage of old buildings , 
manual workers, limited 
greeen areas

Heaton et al. 2014 Characterizing urban 
vulnerability to heat stress 
using a spatially varying 
coefficient model

Houston, texas HRLADS , 
UCM

UHI defined with 
HRLDAS, apparent 
Temperature, 
HUMIDEX, land 
cover UCM

To identify heat variable with 
greatest effects on mortality and 
socio-economic characteristics 
with higher risk

Poisson regression models with 
spatially varying coefficients 
within a Bayesian hierarchical 
framework

Census blocks most at risk 
are those with higher 
temperatures and greater 
proportion of elderly 
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Authors Year Title Study area Exposure 

data source

Exposure 

indicator/satellite 

sensor

Aim Method Results

Taylor et al. 2015 Mapping the effects of urban 
heat island, housing, and age 
on excess heat-related 
mortality in London

London, UK obserbed 
and 
modelled 
Ta

Ta, number heat 
days

Vulnerability mapping of heat 
using predefined UHI, land use 
and population characteristics

Characteristics were mapped 
and during the LUCID project 
activity  period results were 
incorporated and heat and 
weather conditions by wards 
were evaluated.

Dwelling type and UHI 
playing an important role in 
the spatial variation of 
relative risk of mortality and 
overall excess in mortality 
due to heat

Burkart et al. 2016 Modification of Heat-Related 
Mortality in an Elderly Urban 
Population by Vegetation 
(Urban Green) and Proximity 
to Water (Urban Blue): 
Evidence from Lisbon, 
Portugal

Lisbon, Portugal MODIS  LST, NDVI To estimate differential effect of 
tempertaure on mortality due to 
green and blue features within 
urban area 

GAM models with stratification 
by quantiles of greeness, UHI 
and distance from ocean ( water 
body)

cooler areas , closer to water 
body and with more green 
had lower risk in excess 
mortality

Heaviside et al. 2016 Attribution of mortality to the 
urban heat island during 
heatwaves in the West 
Midlands, UK

West Midlands 
UK

WRF 
weather 
forecast 
model

modelled Ta + 
observed Ta data

To estimate heat-related 
mortality during the 2003 heat 
wave considering UHI and 
estimate future impacts under 
CC

Considers a population 
weighted mean to evaluate 
impact of 2003 heat wave in 
West Midlands and HIA future 
CC impacts.

UHI contributes to around 
50% excess deaths, under CC 
scenarios heatwaves could 
have 3 times the impact in 
the future.

Ho et al 2016 Delineation of spatial 
variability in the temperature-
mortality relationship on 
extremely hot days in greater 
Vancouver, Canada

Vancouver, 
canada

LANDSAT  5 
and 7

TM & ETM+, 
humidex, 
apparent 
temperature 

To assess the spatial variability of 
heat-related mortality effects 
considering different mapping of 
UHI and social deprivation

Case cross over analysis on 
temperature and cause specific 
mortality, stratified by UHI , 
deprovation index.

Humidex and high 
unemployment rates showed 
the strongest spatial 
differences. Combined 
vulnerability index  gave 
better performance.  

Milojevic et al. 2016 Methods to Estimate 
Acclimatization to Urban Heat 
Island Effects on Heat- and 
Cold-Related Mortality.

London, Uk weather 
forecast 
model, 1km 
resolution

Taused to define 
UHI anomaly 
compared to 
London average

To evaluate local acclimatization 
to the UHI effect in summer and 
winter

Case cross over analysis to 
define whether there was 
acclimatization to UHI in heat 
and cold effect  in London

Summer acclimatization to 
UHI effect of heat-related 
although heat in Lodon 
limited mortality less clear 
for winter.

Wong et al. 2016 Spatially Analyzing the 
Inequity of the Hong Kong 
Urban Heat Island by Socio-
Demographic Characteristics

Hong Kong LANDSAT TM To identify heat vulnerability 
map combining UHI and socio-
demographic characteristics 
identifying hotspots most at risk 

Logistic regression, spatial auto 
correlation

Disadvantaged socio-
demographic groups were  
more exposed to intense 
urban heat island effect
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Table 4. Percent of daily LST missing values by month and year in the Italian domain (356,432 grid cells) over the study period (2000-2010). 

 

 

Year January February March April May June July August September October November December
Annual 

mean

2000 100 100 57.7 64.6 50.9 37.2 34.4 57.4 38.6 63.2 66.0 63.7 61.0

2001 76.8 52.8 64.8 52.4 50.1 69.4 33.1 20.8 42.1 39.5 55.6 50.5 50.6

2002 42.9 60.0 66.9 57.1 50.2 34.8 36.7 43.1 51.7 52.9 68.0 78.7 53.5

2003 60.1 48.9 43.3 54.1 44.4 31.8 24.4 27.0 38.9 64.9 62.5 72.2 47.7

2004 65.3 61.7 60.7 62.9 50.9 40.5 26.0 29.7 35.5 62.1 61.1 62.0 51.5

2005 47.2 58.2 52.8 52.3 45.6 37.3 26.2 41.7 48.8 53.7 58.6 63.6 48.7

2006 58.0 58.5 60.4 53.1 45.8 34.3 31.0 41.9 39.4 41.5 49.0 50.7 46.9

2007 54.3 60.6 57.6 40.2 43.7 43.1 16.7 29.4 34.8 52.8 57.0 57.3 45.5

2008 62.8 42.2 57.0 54.4 53.1 42.0 26.0 23.3 51.1 48.0 58.5 68.3 48.9

2009 65.7 57.7 55.3 62.8 42.2 40.9 22.0 22.7 43.3 44.5 60.1 64.1 48.3

2010 68.8 70.6 59.1 49.1 59.2 43.3 27.7 26.0 46.3 59.6 66.0 63.9 53.2

Monthly 

average 63.8 61.0 57.8 54.8 48.7 41.3 27.7 33.0 42.8 53.0 60.2 63.2


