2,851 research outputs found

    Decision-Making for Automated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme

    Full text link
    Behavior planning and decision-making are some of the biggest challenges for highly automated systems. A fully automated vehicle (AV) is confronted with numerous tactical and strategical choices. Most state-of-the-art AV platforms implement tactical and strategical behavior generation using finite state machines. However, these usually result in poor explainability, maintainability and scalability. Research in robotics has raised many architectures to mitigate these problems, most interestingly behavior-based systems and hybrid derivatives. Inspired by these approaches, we propose a hierarchical behavior-based architecture for tactical and strategical behavior generation in automated driving. It is a generalizing and scalable decision-making framework, utilizing modular behavior blocks to compose more complex behaviors in a bottom-up approach. The system is capable of combining a variety of scenario- and methodology-specific solutions, like POMDPs, RRT* or learning-based behavior, into one understandable and traceable architecture. We extend the hierarchical behavior-based arbitration concept to address scenarios where multiple behavior options are applicable but have no clear priority against each other. Then, we formulate the behavior generation stack for automated driving in urban and highway environments, incorporating parking and emergency behaviors as well. Finally, we illustrate our design in an explanatory evaluation

    Thoughts about a General Theory of Influence in a DIME/PMESII/ASCOP/IRC2 Model

    Get PDF
    The leading question of this paper is: “How would influence warfare (“iWar”) work and how can we simulate it?” The paper discusses foundational aspects of a theory and model of influence warfare by discussing a framework built along the DIME/PMESII/ASCOP dimension forming a prism with three axes. The DIME concept groups the many instruments of power a nation state can muster into four categories: Diplomacy, Information, Military and Economy. PMESII describes the operational environment in six domains: Political, Military, Economic, Social, Information and Infrastructure. ASCOPE is used in counter insurgency (COIN) environments to analyze the cultural and human environment (aka the “human terrain”) and encompasses Areas, Structures, Capabilities, Organization, People and Events. In addition, the model reflects about aspects of information collection requirements (ICR) and information capabilities requirements (ICR) - hence DIME/PMESII/ASCOP/ICR2. This model was developed from an influence wargame that was conducted in October 2018. This paper introduces basic methodical questions around model building in general and puts a special focus on building a framework for the problem space of influence/information/hybrid warfare takes its shape in. The article tries to describe mechanisms and principles in the information/influence space using cross discipline terminology (e.g. physics, chemistry and literature). On a more advanced level this article contributes to the Human, Social, Culture, Behavior (HSCB) models and community. One goal is to establish an academic, multinational and whole of government influence wargamer community. This paper introduces the idea of the perception field understood as a molecule of a story or narrative that influences an observer. This molecule can be drawn as a selection of vectors that can be built inside the DIME/PMESII/ASCOP prism. Each vector can be influenced by a shielding or shaping action. These ideas were explored in this influence wargame

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    Get PDF
    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described

    Modular architecting for effects based operations

    Get PDF
    Effects Based Operations (EBO) is a way of thinking for planning, executing and assessing any operations for the effects they produce, rather than dealing with actions, targets or even objectives. The literature on EBO has been growing day by day; however, there is still a need for modeling techniques and tools that provide more efficient and effective effects based assessment, planning and analysis in order to further develop the capabilities of the operations. In this context, this thesis presents an introduction to EBO by focusing on its methodology, its challenges and also its applicability in different systems. Moreover, this thesis illustrates the importance of modular architecting in effects based planning stage --Abstract, page iii

    Theory of Mind in Chimpanzees: A Rationalist Approach

    Get PDF
    The question of whether or not chimpanzees possess the ability to mentally represent others\u27 mental states has been a popular question since Premack and Woodruff (1978) originally asked the question. It is well established that humans have a theory of mind (ToM), but extending this psychological faculty to our evolutionary cousins has created a massive amount of literature and research attempting to resolve this issue. Such a resolution is arguably not possible given the nature of the debate. An Either/Or approach to chimpanzee theory of mind both ignores the essential components of ToM as well as foreclosing on the possibility that there is variability of the informational encapsulation at the modular level between closely related species
    • …
    corecore