967 research outputs found

    Selection of Tunnel Support System by Using Multi Criteria Decision-Making Tools

    Get PDF
    Selection of the optimum support system for underground openings such as tunnels is a complex process. In this paper, a new approach, based on a combination of the Analytical Hierarchy Process (AHP), the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) is introduced. For this purpose, the selection process is assumed to be a multi criteria decision-making problem. First, different support systems by using FLAC3D numerical code, based on technical, safety and stability parameters of the tunnel are specified. Then, taking economic and performance parameters as the decision criteria, by using the combination of AHP, TOPSIS, and PROMETHEE, the optimum support system is selected. As a real mine case study, this approach is used in the main access entry to C1 coal seam of Tabas collieries. Results clearly demonstrate that the proposed support system selection method is advantageous to other alternatives

    Application of the AHP-TOPSIS Method to Determine the Feasibility of Fund Loans

    Get PDF
    This study aims to produce a decision support system (DSS) for the feasibility of providing loan funds as a tool and recommendation for cooperatives with several criteria as the basis for decision making, namely: business ownership status, ability, character, collateral, income, and salary. The system implementation uses the Visual Studio 2010 and Microsoft Access 2010 programming languages. This application is designed for effective and efficient decision-making. This program uses two methods, namely AHP, to determine the weight of the criteria and TOPSIS for determining to rank. This combination is designed for high-accuracy applications. The results of the pairwise comparison matrix calculation show that the weights obtained are acceptable and consistent. This application generates alternative customer data from the highest preference value (feasible to get a loan) to the lowest (not feasible)

    ODABIR NAJPRIKLADNIJEGA NAČINA BUŠENJA I MINIRANJA UPOTREBOM MADM METODA (STUDIJA SLUČAJA: RUDNIK ŽELJEZA SANGAN, IRAN)

    Get PDF
    Drilling is the first stage of open pit mining that has a considerable effect on the other stages of mining, including blasting, loading, hauling and crushing. An unsuitable drilling pattern may lead to undesirable results such as poor fragmentation, back break and fly rock that not only results in technical and safety issues but also increases the operating cost of the mine. Multi-Attribute Decision-Making (MADM) methods can be useful approaches to select the appropriate drilling pattern among various alternatives, performed previously. This paper aims to select the most proper drilling and blasting pattern for Sangan Iron Mine, Iran. To achieve this, in the first step, rock fragmentation, back break, fly rock, specific charge and specific drilling were considered as the decision criteria and their degree of importance was calculated using the AHP method under a fuzzy environment. Then, TOPSIS and PROMETHEE methods were used to select the most proper alternative. The results of this study show that the drilling pattern with a spacing of 5 m, burden 4 m, hole depth 10 m, and hole diameter 15 cm is the most suitable one. The stemming length and powder factor of the suggested pattern are 2.3 m and 2.6 gr/cm3, respectively.Bušenje je prva faza površinske eksploatacije koja ima znatan utjecaj na ostale faze rudarenja, uključujući miniranje, utovar, transport i drobljenje. Neprimjeren način bušenja može dovesti do nepoželjnih rezultata poput loše fragmentacije, povratnoga loma i odbacivanja stijena, što ne samo da rezultira tehničkim i sigurnosnim problemima, već i povećava operativne troškove rudnika. Metode donošenja odluka s više atributa (MADM) mogu biti korisne za odabir odgovarajućega načina bušenja među raznim prethodno izvedenim alternativama. Cilj je ovoga rada odabrati najpogodniji način bušenja i miniranja za rudnik željeza Sangan, Iran. Da bi se to postiglo, u prvome koraku kao kriteriji za odlučivanje razmatrani su fragmentacija stijena, povratno lomljenje, odbacivanje stijena, specifično punjenje i specifično bušenje, a njihova važnost izračunana je korištenjem AHP metode u neizrazitome okruženju. Zatim su korištene metode TOPSIS i PROMETHEE za odabir najprikladnije alternative. Rezultati ove studije pokazuju da je najprikladniji način bušenja s razmakom od 5 m, opterećenjem od 4 m, dubinom rupe od 10 m i promjerom rupe od 15 cm. Duljina čepa bušotine i specifična potrošnja eksploziva predloženoga uzorka iznose 2,3 m, odnosno 2,6 g/cm3

    A NOVEL RISK EVALUATION APPROACH FOR FREQUENTLY ENCOUNTERED RISKS IN SHIP ENGINE ROOMS

    Get PDF
    The purpose of this study is to evaluate risks which are frequently encountered in the engine room on-board. In this context, twenty common risks are assessed using the neutrosophic analytic hierarchy process (N-AHP) and trapezoidal fuzzy technique for order preference by similarity to ideal solution (TrF-TOPSIS). In maritime risk evaluation, since it is frequently required the linguistic assessment of decision-makers to achieve a robust risk assessment tool, neutrosophic sets and fuzzy sets are used together in this study. Neutrosophic sets represent real-world problems effectively by considering all aspects of decision-making situations, (i.e. truthiness, indeterminacy, and falsity). Therefore, AHP is integrated with neutrosophic sets to assign weights of risk parameters initially. Then, the encountered risks are prioritized by TrF-TOPSIS. Finally, preventative actions for the risks have been discussed. In conclusion of the study, it is shown that skin exposure to the fuels/oils, exposure to chemicals and exposure to high pressure and temperature liquids are the most important risks through the engine room on-board. This study both emphasizes the importance of preventing damage to crew in the risk assessment of ship engine rooms and aims to increase the level of safety control and minimize the potential environmental impacts of a ship\u27s damage

    Comparison of decision-making approaches to prioritization of clean air action plans for sustainable development

    Get PDF
    Background: Clean air action plans have been prepared and are still being implemented in Turkey to control and prevent air pollution, and improve the air quality. The plans reveal a picture of the current situation and available inventory information. However, in order to implement the identified plans in real life, they need to be prioritized. This study aimed to identify and prioritize clean air action plans for Turkey using a framework of both fuzzy and crisp evaluations. Methods: In this study, priorities of the plans were identified and analyzed with a decision-making model. A three-step research methodology was provided. First, literature was reviewed regarding sustainable development and action plans. Second, in order to narrow and specify action plans, the nominal group technique (NGT) was implemented. Finally, fuzzy analytic hierarchy process (AHP) and best-worst method (BWM) surveys were applied to environmental engineers and experts working on sustainable development to prioritize the action plans. Results: It was revealed that heating dimension is considered as the most important criterion with the weight of 0.7469 in fuzzy AHP and 0.758 in BWM. AP1 with a weight of 0.3356 in fuzzy AHP and AP3 with a weight of 0.3289 in BWM were the most important sub-criteria, which are the plans for reducing coal use ranked at the forefront in reducing air pollution. Conclusion: According to the results, there is no significant difference in the priority ranking results. The results of fuzzy AHP and BWM are very similar. For example, traffic criterion has the best performance in both methods in the evaluation of decision makers. In addition, the main and sub-criteria with the lowest priority are the same in these two methods. Keywords: Air pollution, Cities, Decision making, Surveys and questionnaire

    An integrated fuzzy multi criteria group decision making model for handling equipment selection

    Get PDF
    The problem of handling equipment selection plays a significant role in the total cost of a mining project; so that it can affect the activity and continuity of the project and is a strategic problem. In this study, an integrated model based on two fuzzy multi-criteria decision making techniques for handling equipment selection is proposed. The proposed evaluation model is derived from group decision making, fuzzy set theory, analytical hierarchy process (AHP), and Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) methods. The fuzzy AHP (FAHP) method is utilized to calculate the relative importance of the evaluation criteria, then, fuzzy TOPSIS (FTOPSIS) is applied for evaluating the feasible handling equipment in order to select the best handling system among a pool of the possible alternatives. The model is applied for a real world case study to demonstrate the capability and effectiveness of the proposed model. To investigate the result sensitiveness to the changes of the criteria weights, a sensitivity analysis is finally conducted

    Risk Mitigation Strategy for Coal Transshipment

    Get PDF
    Coal transshipment necessitates efficient and prompt execution, devoid of any delays or work-related accidents. Numerous events during the transshipment process have the potential to disrupt operations and pose substantial risks. This research aims to examine the risks associated with coal transshipment by leveraging ISO 31000:2018 as the risk analysis framework. Additionally, it seeks to prioritize risk mitigation strategies employing the Techniques for Other Preferences by Similarity to Ideal Solutions (TOPSIS) methodology. Data collection for this study involved surveys and expert discussions to comprehensively analyze all risks by ISO 31000:2018 guidelines. The findings were then visualized through the use of a fishbone diagram, which facilitated the identification and understanding of the generated risks. The analysis revealed several threats that could impact the coal transshipment process. These major threats include natural disasters, equipment failures, shipping accidents, health risks for workers, fire hazards, operational delays, inefficient loading and unloading processes, and transportation accidents. The proposed mitigation strategies such as designing SOPs, developing emergency response plans, implementing safety measures, providing training, conducting risk assessments, and ensuring equipment maintenance, are academically supported and practical in their application. However, challenges such as financial constraints, resistance to change, and the dynamic nature of the process need to be overcome for effective implementation. Organizations can enhance safety and operational efficiency in coal transshipment by carefully managing resources, engaging stakeholders, and continuously evaluating and improving strategies. Overall, the proposed strategies offer a feasible and proactive means to mitigate threats and promote a safer and more efficient transshipment process

    Optimizing Biomass Pre-Treatment Technologies for BBJP Plants in Indonesia: A Multi-Criteria Decision Making Approach

    Get PDF
    The challenges of energy consumption and environmental sustainability are pronounced in the dynamic landscape of contemporary industries driven by Industry 4.0 technologies. Indonesia, heavily reliant on fossil fuels, charts a course toward a clean energy future with a National Energy Transition Roadmap for Net Zero Emission by 2060. This transition involves innovative strategies such as biomass co-firing and waste utilization in Solid Recovered Fuel (SRF) plants, known as Bahan Bakar Jumputan Padat (BBJP) plants. To optimize these BBJP plants, this study employs Multi-Criteria Decision Making (MCDM) methodologies, specifically the Analytical Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), to evaluate and select pre-treatment technologies. Criteria include capacity, conversion process, waste type, electricity consumption, operational ease, land requirement, and investment cost. Comparing bio-drying, thermal drying, and mechanical drying, AHP ensures consistent criterion weights, with TOPSIS ranking bio-drying as the most favorable, followed by thermal and mechanical drying. The study acknowledges global waste management challenges and introduces a mobile-modular containerized BBJP/SRF plant model, addressing installation, maintenance, scalability, and adaptability issues. While recognizing challenges, especially in pre-treatment processes, the research emphasizes the need for efficient and cost-effective solutions. Practical implications include enhanced decision-making in biomass drying, identification of technology advantages and disadvantages, and a commitment to address challenges for sustainable implementation. The study contributes to Indonesia's energy transition discourse, advocating the pivotal role of BBJP plants in balancing Industry 4.0 demands and environmental protection, providing insights for stakeholders and decision-makers in advancing sustainable waste-to-energy initiatives

    Hydrothermal processing of biogenic residues in Germany: A technology assessment considering development paths by 2030

    Get PDF
    The mining, processing, and use of finite natural resources is associated with significant interventions in the natural environment. Thus, these and other negative consequences make it necessary to reduce resource consumption. An important field of action is the more efficient use of biogenic residues as secondary raw materials. However, high water containing biomasses are still a problem since they need an energy- and cost-intensive pre-treatment for many conversion processes, which can make their use uneconomical. Hydrothermal processes (HTP) seem to be promising, since they require an aqueous environment for optimal processing anyway. Although technological progress within the industry is recognisable, however, to date HTP have not been established in industrial continuous operation in Germany. The core of this work is identifying reasons for this sluggish development and deriving appropriate recommendations for action. Based on the hypothesis that HTP can contribute to the efficient utilisation of biogenic residues in the future, potentials and obstacles for the development of HTP in Germany are identified using a literature review, expert survey, expert workshop, and SWOT analysis. To estimate the future potential of HTP in a systematic and structured way, a multi-criteria technology assessment approach is developed based on the results. To this end, assessment criteria for HTP are derived, weighted by expert judgment, and integrated into a transparent and structured procedure. In addition, mainly based on a Delphi-survey key factors of HTP development by 2030 in Germany are identified and three development alternatives for HTP in Germany by 2030 are derived. Using a system analysis and a comparative multi-criteria analysis at plant level, these scenarios are analysed for their possible future impact. Based on this methodology, the work shows that the production costs for the end products, the energy efficiency of the process, and the proportion of recycled phosphorus are of high relevance to the techno-economic success of HTP compared to reference systems, and they are therefore of high importance for its future development on the plant level. In addition, further key factors for the future development of HTP in Germany on the system level are found to be mainly in the political-legal (e.g. legal waste status of products from HTP) and techno-economic (e.g. cost-effective process water treatment) areas. According to this, important fields of action are the identification and use of cost reduction potentials (e.g. heat waste use), the development of system integrated decentralised plant concepts with integrated nutrient recycling (e.g. phosphorus), and the development of cost-effective ways to treat process water. System integration, cost-effective process water treatment, and nutrient recycling are all closely linked to production costs, investment costs, and potential revenues, and can contribute to improved process economics. For these areas, there is promising future potential to achieve higher competitiveness with reference technologies that are currently more economical.:Bibliographic description Curriculum Vitae Selbstständigkeitserklärung Danksagung List of Publications Contribution to the Publications Contents List of Acronyms List of Tables List of Figures Part I Introductory Chapters 1 Introduction and Background Hydrothermal processes: Introduction and status quo State of the art in the research field and knowledge gaps Objective and research framework Expected value added of this work 2 Materials and methods Derivation of HTP evaluation metrics and technology assessment tool Derivation of key HTP development factors and scenarios Performing the system-level scenario analysis Plant-level scenario analysis and test application of the assessment tool Derivation of core recommendations 3 Results and discussion Key development factors for HTP in Germany and scenarios System-level scenario analysis Test application of the assessment tool on plant level scenarios Recommendations Discussion 4 Conclusion and outlook Future research Further fields for the application of the developed methods 5 References Part II Appended Articles Paper I Paper II Paper III Paper IV Paper V Paper VIDer Abbau, die Verarbeitung und die Nutzung endlicher natürlicher Ressourcen sind mit erheblichen Eingriffen in die natürliche Umwelt verbunden. Diese und andere negative Folgen machen es daher erforderlich, den Ressourcenverbrauch zu senken. Ein wichtiges Handlungsfeld ist die effizientere Nutzung biogener Reststoffe als Sekundärrohstoffe. Stark wasserhaltige Biomassen sind jedoch ein Problem, da sie für viele Umwandlungsprozesse eine energie- und kostenintensive Vorbehandlung benötigen, was ihre Verwendung unwirtschaftlich machen kann. Hydrothermale Prozesse (HTP) scheinen für diese Reststoffe allerdings vielversprechend zu sein, da sie ohnehin eine wässrige Umgebung für eine optimale Verarbeitung benötigen. Obwohl der technologische Fortschritt innerhalb der Branche erkennbar ist, wurde HTP in Deutschland bisher nicht im industriellen Dauerbetrieb etabliert. Der Kern dieser Arbeit besteht darin, Gründe für diese schleppende Entwicklung zu ermitteln und geeignete Handlungsempfehlungen abzuleiten. Basierend auf der Hypothese, dass HTP in Zukunft zur effizienten Nutzung biogener Reststoffe beitragen können, werden Potenziale und Hindernisse für deren Entwicklung in Deutschland anhand einer Literaturrecherche, einer Expertenumfrage, eines Expertenworkshops und einer SWOT-Analyse ermittelt. Um das zukünftige Potenzial von HTP systematisch und strukturiert abzuschätzen, wird basierend auf den Ergebnissen ein multi-kriterieller Technologiebewertungsansatz entwickelt. Zu diesem Zweck werden Bewertungskriterien für HTP abgeleitet, nach Expertenmeinung gewichtet und in ein transparentes und strukturiertes Verfahren integriert. Darüber hinaus werden hauptsächlich auf der Grundlage einer Delphi-Umfrage Schlüsselfaktoren für die HTP-Entwicklung bis 2030 in Deutschland identifiziert und drei Entwicklungsalternativen für HTP in Deutschland bis 2030 abgeleitet. Mithilfe einer Systemanalyse und einer vergleichenden multi-kriteriellen Analyse auf Anlagenebene werden diese Szenarien auf ihre möglichen zukünftigen Auswirkungen hin analysiert. Basierend auf dieser Methodik zeigen sich als Ergebnisse, dass die Produktionskosten für die Endprodukte, die Energieeffizienz der Prozesse und der Anteil an recyceltem Phosphor für den techno-ökonomischen Erfolg von HTP im Vergleich zu Referenzsystemen von hoher Relevanz und daher auch von hoher Bedeutung für die zukünftige Entwicklung auf Anlagenebene sind. Darüber hinaus liegen weitere Schlüsselfaktoren für die künftige Entwicklung von HTP in Deutschland auf Systemebene hauptsächlich im politisch-rechtlichen (z. B. legalen Abfallstatus von Produkten aus HTP) und techno-ökonomischen (z. B. kostengünstige Prozesswasseraufbereitung)) Bereichen. Wichtige Handlungsfelder sind demnach die Ermittlung und Nutzung von Kostensenkungspotentialen (zB Abwärmenutzung), die Entwicklung systemintegrierter dezentraler Anlagenkonzepte mit integriertem Nährstoffrecycling (z.B. Phosphor) und die Entwicklung kostengünstiger Wege zur Prozesswasserbehandlung. Systemintegration, kostengünstige Prozesswasseraufbereitung und Nährstoffrecycling hängen eng mit Produktionskosten, Investitionskosten und potenziellen Einnahmen zusammen und können zu einer verbesserten Wirtschaftlichkeit der Prozesse beitragen. Für diese Bereiche besteht ein vielversprechendes Zukunftspotenzial für eine höhere Wettbewerbsfähigkeit zu Referenztechnologien, die derzeit noch wirtschaftlicher sind.:Bibliographic description Curriculum Vitae Selbstständigkeitserklärung Danksagung List of Publications Contribution to the Publications Contents List of Acronyms List of Tables List of Figures Part I Introductory Chapters 1 Introduction and Background Hydrothermal processes: Introduction and status quo State of the art in the research field and knowledge gaps Objective and research framework Expected value added of this work 2 Materials and methods Derivation of HTP evaluation metrics and technology assessment tool Derivation of key HTP development factors and scenarios Performing the system-level scenario analysis Plant-level scenario analysis and test application of the assessment tool Derivation of core recommendations 3 Results and discussion Key development factors for HTP in Germany and scenarios System-level scenario analysis Test application of the assessment tool on plant level scenarios Recommendations Discussion 4 Conclusion and outlook Future research Further fields for the application of the developed methods 5 References Part II Appended Articles Paper I Paper II Paper III Paper IV Paper V Paper V
    corecore