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Abstract. The challenges of energy consumption and environmental sustainability are 

pronounced in the dynamic landscape of contemporary industries driven by Industry 4.0 

technologies. Indonesia, heavily reliant on fossil fuels, charts a course toward a clean energy 

future with a National Energy Transition Roadmap for Net Zero Emission by 2060. This 

transition involves innovative strategies such as biomass co-firing and waste utilization in Solid 

Recovered Fuel (SRF) plants, known as Bahan Bakar Jumputan Padat (BBJP) plants. To 

optimize these BBJP plants, this study employs Multi-Criteria Decision Making (MCDM) 

methodologies, specifically the Analytical Hierarchy Process (AHP) and Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS), to evaluate and select pre-treatment 

technologies. Criteria include capacity, conversion process, waste type, electricity consumption, 

operational ease, land requirement, and investment cost. Comparing bio-drying, thermal drying, 

and mechanical drying, AHP ensures consistent criterion weights, with TOPSIS ranking bio-

drying as the most favorable, followed by thermal and mechanical drying. The study 

acknowledges global waste management challenges and introduces a mobile-modular 

containerized BBJP/SRF plant model, addressing installation, maintenance, scalability, and 

adaptability issues. While recognizing challenges, especially in pre-treatment processes, the 

research emphasizes the need for efficient and cost-effective solutions. Practical implications 

include enhanced decision-making in biomass drying, identification of technology advantages 

and disadvantages, and a commitment to address challenges for sustainable implementation. The 

study contributes to Indonesia's energy transition discourse, advocating the pivotal role of BBJP 

plants in balancing Industry 4.0 demands and environmental protection, providing insights for 

stakeholders and decision-makers in advancing sustainable waste-to-energy initiatives. 
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1.  Introduction  

In the era of Industry 4.0, characterized by the integration of intelligent sensors, Internet of Things (IoT), 

artificial intelligence (AI)/machine learning (ML), cloud computing, big data and analytics, virtual 

reality (VR)/augmented reality (AR), intelligent robotics, 5G communications, and 3D printing, the 

industrial sector has witnessed a significant evolution. While these technological advances have 

substantially improved production processes, addressing challenges in energy consumption and 

environmental sustainability has become paramount [1]. The escalating demand for electrical energy, 

driven by the reliance on data centers, cloud computing, and web servers, poses a critical issue globally. 

This demand is further intensified by the simultaneous growth in the global population and shifts in 

lifestyle. Nations, including Indonesia, are thus forced to reassess their energy landscapes to balance 

Industry 4.0 demands with environmental preservation. Indonesia, like many other parts of the world, 

relies heavily on fossil fuels coal, gas, and oil for electrical energy production. Coal dominates the 

energy mix, constituting 50-65% of Indonesia's power plant performance [2]. This reliance contributes 

significantly to greenhouse gas emissions and environmental challenges. In response to global 

commitments, Indonesia aligns itself with the principles of the 2015 Paris Agreement. The challenge 

lies in achieving a global temperature reduction of no more than 2°C while balancing national energy 

sources, budget constraints, and the Trilemma Energy index (security, equity, and sustainability) [3]. To 

realize clean and sustainable energy, Indonesia crafted the National Energy Transition Roadmap 

targeting Net Zero Emission (NZE) by 2060. This roadmap emphasizes renewable energy-based power 

plants and innovative approaches, including biomass co-firing in existing coal-fired power plants. This 

co-firing method faced initial opposition due to environmental concerns but gained support through 

proposals like the energy plantation forest (EPF) program[4]. 

Waste management emerges as a global challenge, leading to the deployment of Bahan Bakar 

Jumputan Padat (BBJP) for sustainable waste-to-energy conversion. Operational BBJP plants, located 

strategically, are modest in number but demonstrate potential for expansion. A paradigm shift is 

underway with the introduction of a mobile-modular containerized BBJP/SRF plant model. This 

innovation streamlines waste-to-energy conversion, offering advantages like ease of installation, 

maintenance flexibility, scalability, and adaptability to diverse land configurations. The modular BBJP 

plant comes in scalable capacities (10, 20, 50, and 100 Tons Per Day), offering a dynamic solution. 

Containerized modules, transportable via trailer trucks, enhancing mobility, enabling deployment in 

remote waste source locations and minimizing the need for extensive waste mobilization to centralized 

facilities. However, challenges, such as the pre-treatment process, must be addressed to optimize BBJP. 

Transitioning from fixed-conventional BBJP plants to the mobile-modular containerized model signifies 

a significant leap in sustainable waste-to-energy efforts [5]. .  

The study highlights challenges in BBJP plant pre-treatment, emphasizing the urgent need for a cost-

effective solution. Current conditions lack efficiency, prompting a search for an affordable and efficient 

treatment model. This acknowledgment underscores the commitment to enhancing waste-to-energy 

sustainability. The optimization process for co-firing programs involves meticulous selection of pre-

treatment technology, considering factors like capacity, conversion processes, waste types, electricity 

consumption, operational ease, land requirements, and investment costs. Implementing the Multi-

Criteria Decision Making (MCDM) method is crucial for determining the optimal alternative based on 

predefined criteria weights. 

2.  Methods 

In this comprehensive section, we expound upon the meticulous methodology employed to 

determine the optimal pre-treatment technology for BBJP (Solid Recovered Fuel) plants, utilizing the 

sophisticated Multi-Criteria Decision Making (MCDM) approach. The criteria guiding this decision-

making process are thoughtfully curated from pertinent literature studies, ensuring relevance to the case 

at hand. 

2.1.  Identification of Criteria 

The criteria enlisted in the decision-making process encompass a diverse set of parameters crucial 

for evaluating pre-treatment technologies. These criteria, along with their detailed descriptions, provide 
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a holistic framework for assessing the technologies. The table below encapsulates this identification 

process: 

Table 1. Identification of Criteria for Determining Pre-Treatment Technology for BBJP Plants [6] 
No. Criteria Description 

1 Capacity Describes the production capacity of the considered pre-treatment technology, with 

options: small, large, or very large. 

2 Conversion 

Process 

Describes the type of solid recovered fuel (RDF/SRF) conversion process used by the 

pre-treatment technology, with options: biological (slow), thermal (fast), or mechanical 

(fast). 

3 Type of Waste Describes the type of waste that can be processed by the pre-treatment technology, with 

options: organic, organic and non-organic, or organic only. 

4 Electricity 

Consumption 

Describes the level of electricity consumption required by the pre-treatment 

technology, with options: small, large, or medium. 

5 Operational 

Ease 

Describes the level of operational ease of the pre-treatment technology, with options: 

easy, easy with specialized expertise, or easy but requires specialized expertise. 

6 Land 

Requirement 

Describes the type of land utilization needed by the pre-treatment technology, with 

options: distributed, centralized, or centralized with a larger size. 

7 Investment 

Cost 

Describes the level of investment cost required by the pre-treatment technology, with 

options: low, high, or very high.  

 

The criteria for selecting pre-treatment technology for BBJP Plants (Solid Recovered Fuel from 

waste biomass) are strategically chosen to facilitate a thorough and effective evaluation process. 

Capacity is crucial, directly influencing production scale and aligning with energy efficiency goals.  

Conversion Process choice—biological, thermal, or mechanical—affects fuel quality and overall energy 

conversion efficiency. The Type of Waste criterion recognizes diverse waste compositions, ensuring 

technology optimization for specific types and maximizing efficiency. Electricity Consumption 

considerations aim for sustainability, favoring lower consumption to reduce operational costs and 

support sustainable energy goals. Operational Ease's impact on practical implementation and long-term 

success emphasizes user-friendliness and adoption feasibility. Land Requirement addresses spatial 

needs, aiding in system planning and adaptation to diverse settings. Lastly, Investment Cost balances 

economic viability, ensuring technology aligns with financial parameters and BBJP Plants' long-term 

objectives. This comprehensive evaluation framework, encompassing technical, economic, and 

operational aspects, guarantees the selected pre-treatment technology effectively meets the specific 

needs and goals of BBJP Plants in utilizing waste biomass for energy production. 

2.2.  Technology Ranking 

By adhering to this rigorous methodology, the article aims to present a nuanced and data-driven 

perspective on the pre-treatment technology selection for BBJP plants. The inclusion of criteria weights, 

normalization processes, and comprehensive ranking ensures a robust foundation for decision-making, 

emphasizing the multi-faceted nature of technology evaluation. It is crucial to acknowledge that while 

these methodologies offer valuable insights, other external factors like environmental considerations, 

sustainability metrics, and regulatory compliance must also be factored into the final decision-making 

process. 
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 Figure 1. Research Methodology 

2.3.  Biomass Pre-Treatment Technologies 

The selection of pre-treatment technology for biomass drying is a nuanced process, contingent upon 

the type of biomass utilized, desired outcomes, and available resources. Each technology presents its 

own set of advantages and drawbacks, necessitating a comprehensive evaluation of these factors to 

determine the most suitable choice. 

1) Bio-drying stands out as a pre-processing technology for biomass drying, leveraging 

microorganisms in a bio-activator to degrade organic matter within the biomass. This process 

unfolds within a closed-box reactor, maintaining controlled temperature and humidity. 

Microorganisms consume organic matter in the biomass, generating heat and water vapor that 

effectively dries the biomass. The resulting product boasts biological stability, requiring 

minimal preparation [7]. 

2) Thermal drying represents another pre-processing technology for biomass drying, relying on 

heat to evaporate moisture within the biomass. Executed in dryers, which can take the form of 

rotary drums, fluidized beds, or belt conveyors, heat sources may include burning fossil fuels, 

biomass, or utilizing residual heat from other processes. This process enhances heating value 

and combustion efficiency of biomass, concurrently reducing required capacity [8]. 

3) Mechanical drying is a pre-processing technology for biomass drying that employs mechanical 

methods such as centrifugation or pressing to eliminate moisture from the biomass. 

Implemented in mechanical dryers, including screw presses, belt presses, or centrifuges, this 

process is particularly suitable for biomass with high moisture content, such as sludge or 

fertilizer [9]. 

In the quest for an optimal pre-treatment technology, the selection among these methods requires 

careful consideration of specific project requirements, resource availability, and the nature of the 

biomass in question. Each technology offers a distinctive approach to biomass drying, and the choice 

should align with the overarching goals of the biomass utilization project. The following sections delve 

deeper into the evaluation and comparison of these technologies based on key criteria, providing insights 

into their respective strengths and areas of application. 

2.4.  Advantages and Disadvantages of Pre-Treatment Technologies 

This section delves into a comprehensive analysis of the strengths and weaknesses inherent in 

various pre-treatment technologies utilized for biomass drying, namely Bio-Drying, Thermal Drying, 

and Mechanical Drying. The detailed breakdown is presented in Table 2.  

 



  

02401021-05 

 

Table 2. Comparative Analysis of Pre-Treatment Technologies for Biomass Waste [6, 7 & 8] 
Pre-Treatment 

Technology 
Advantages Disadvantages 

Bio-Drying 

a. Low energy consumption 

b. Low capital cost 

c. Low operational cost 

d. Produces biologically stable 

products 

a. Prolonged drying time 

b. Limited to specific biomass types 

c. Requires enclosed container with 

controlled temperature and humidity 

Thermal Drying 

a. High drying rate 

b. Suitable for various biomass types 

c. Can recover residual heat 

d. Enhances heating value and 

biomass combustion efficiency 

a. High energy consumption 

b. High capital cost 

c. High operational cost 

d. Greenhouse gas emissions 

Mechanical Drying 

a. High drying rate 

b. Suitable for high moisture content 

biomass 

c. Low energy consumption 

a. High capital cost 

b. High operational cost 

c. Limited to specific biomass types 

 
The table meticulously outlines the advantages and disadvantages associated with each pre-

treatment technology for biomass drying. The positive aspects encompass factors such as low energy 

consumption, low capital and operational costs, high drying rates, suitability for various biomass types, 

and more. Conversely, the drawbacks include prolonged drying times, limitations to specific biomass 

types, the need for enclosed containers with controlled conditions, high energy consumption, high 

capital and operational costs, and greenhouse gas emissions. The selection of the most suitable pre-

treatment technology necessitates a thorough consideration of the merits and demerits associated with 

each technology. It also requires a nuanced understanding of specific processing conditions and needs 

in biomass treatment. This comprehensive evaluation ensures an informed decision-making process that 

aligns with both efficiency and sustainability goals in biomass processing. 

2.5.  Multi-Criteria Decision Making (MCDM) 

Michael Scoot Morton initially introduced the concept of Multi-Criteria Decision Making (MCDM) 

or Decision Support Systems (DSS) in 1971. MCDM is an information system designed to assist 

management in deciding semi-structured issues. The goal of MCDM is to generate various alternatives 

that users can interactively use in the decision-making process [8]. MCDM is a procedure used to find 

the best alternative from a set of feasible options [9]. MCDM with an optimization approach is highly 

useful in ranking, especially when complex criteria need to be considered simultaneously [10]. Decision 

Support Systems consist of building global preference relationships for a group of evaluated alternatives. 

The evaluation uses several selection criteria, where each option is assessed against these criteria, 

including measures that may conflict. Using MCDM or DSS, management can optimize decision-

making by considering various relevant factors and criteria. This approach helps in complex situations 

where many alternatives and measures must be evaluated holistically. Thus, MCDM or DSS can be an 

effective tool in making better and data-driven decisions[11]. Some characteristics of MCDM that need 

to be considered include: 

1. Consists of several criteria or attributes used as a selection basis. 

2. These criteria often have conflicts with each other. 

3. There is uncertainty in the decision-making process, such as subjective assessments, uncertain 

data, and incomplete information. 

4. Sometimes, the final result of the MCDM process does not provide a clear conclusion or a single 

alternative as the best. 

5. The considered alternatives are different objects with equal opportunities to be chosen by 

decision-makers. 
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6. Decision matrices are often used to visualize the relationship between alternatives and criteria 

in MCDM. The decision matrix M is m x n, where m represents the number of other options, 

and n represents the number of evaluated criteria. 

In Multi-Criteria Decision Making (MCDM) for Bahan Bakar Jumputan Padat (BBJP) or Solid 

Recovered Fuel (SRF) plants, criteria identification and evaluation are meticulous processes. Factors 

like production capacity and investment costs are curated based on literature studies, with weights 

assigned through methodologies such as the Analytical Hierarchy Process (AHP) or stakeholder 

consensus [12]. Data normalization maintains parameter consistency, and weight calculation leads to 

comprehensive evaluations. The Technique for Order of Preference by Similarity to the Ideal Solution 

(TOPSIS) refines decision-making, evaluating alternatives based on proximity to the ideal solution [13]. 

TOPSIS involves matrix normalization, weighted normalization, identifying perfect and non-ideal 

solutions, calculating separation measures, and determining scores. The integrated AHP and TOPSIS 

methodology quantitatively ranks pre-treatment technologies for BBJP or SRF plants, emphasizing the 

multi-faceted nature of technology evaluation and ensuring a robust foundation for sustainable energy 

decision-making [14]. This approach acknowledges external factors like environmental considerations 

and regulatory compliance, providing a comprehensive and data-driven perspective on technology 

selection. The final ranking based on TOPSIS scores determines the most favorable and preferred pre-

treatment technology for the envisioned project. 

3.  Results and Discussion 

This chapter provides detailed guidelines for composing the full text, encompassing the article 

section, the systematic chapter, and their respective contents. These explicit instructions serve as a 

comprehensive framework, directing the entirety of the editorial process for the article, as illustrated in 

Figure 1. Authors are expected to adhere closely to these guidelines to ensure the coherence and quality 

of the written content throughout the publication process. 

3.1.  Analytical Hierarchy Process (AHP) 

This research utilizes the Analytical Hierarchy Process (AHP) method to prioritize criteria in 

selecting RDF/SRF waste treatment technologies [16]. The pairwise criteria matrix weights are 

determined based on a questionnaire provided to experts and practitioners directly involved in the BBJP 

Plant execution at TPSA Begedung. 

1) Step 1: Pairwise Criteria Matrix 

In this step, researchers embark on the formation of a pairwise comparison matrix as a method 

to evaluate the relative significance among criteria. The essence of this comparison is 

encapsulated by the term 𝑎𝑖𝑗, signifying the degree of importance attributed to criterion 𝑖 in 

relation to criterion 𝑗. This matrix serves as a fundamental tool, providing a structured approach 

for researchers to systematically analyze and quantify the hierarchical relationships existing 

among the diverse set of criteria under consideration. 

Table 3. Pairwise Comparison Matrix  

Criteria Capacity 
Conversion 

Process 

Type of 

Waste 

Electricity 

Consumptio

n  

Operational 

Convenience 
Land 

Investment 

Cost 

Capacity 1     5     7     3     6     4      1/2 

Conversion 

Process 
 1/5 1     3     1     4     2      1/3 

Type of 

Waste 
 1/7  1/3 1      1/4  1/2  1/3  1/4 

Electricity 

Consumptio

n  

 1/3 1     4     1     3     2      1/2 
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Operational 

Convenienc

e 

 1/6  1/4 2      1/3 1      1/3  1/2 

Land  1/4  1/2 3      1/2 3     1      1/3 

Investment 

Cost 
2     3     4     2     2     3     1     

Total 4     11     24     8     19 1/2 12 2/3 3 2/5 

 

2) Step 2: Normalization of Pairwise Criteria Matrix 

The pairwise comparison matrix (A) undergoes a normalization process to yield the Relative 

Weight Matrix (W), which signifies the relative importance of each criterion on a scale ranging 

from 0 to 1. This normalization is achieved by dividing each element 𝑎𝑖𝑗  by the total of the 

corresponding column. The resulting Relative Weight Matrix provides a nuanced understanding 

of the influence of individual criteria in the decision-making process. This method ensures that 

each criterion's contribution is appropriately scaled, facilitating a more accurate representation 

of their relative significance in the overall evaluation. 

 

Table 4. Normalized Pairwise Comparison Matrix  

Criteria Capacity 
Conversion 

Process 
Type of Waste 

Electricity 

Consumption  

Operational 

Convenience 
Land Investment Cost 

Capacity 0,2443 0,4511 0,2917 0,3711 0,3077 0,3158 0,1463 

Conversion 

Process 
0,0489 0,0902 0,1250 0,1237 0,2051 0,1579 0,0976 

Type of Waste 0,0349 0,0301 0,0417 0,0309 0,0256 0,0263 0,0732 

Electricity 

Consumption  
0,0814 0,0902 0,1667 0,1237 0,1538 0,1579 0,1463 

Operational 

Convenience 
0,0407 0,0226 0,0833 0,0412 0,0513 0,0263 0,1463 

Land 0,0611 0,0451 0,1250 0,0619 0,1538 0,0789 0,0976 

Investment Cost 0,4887 0,2707 0,1667 0,2474 0,1026 0,2368 0,2927 

Total 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

The normalized value 𝑤12 is calculated by dividing the corresponding element 𝑎12 by the 

total of the second column in matrix 𝐴. 

𝑤12 =
𝑎12

∑  𝑛
𝑖=1  𝑎𝑖2

 For the given values in 𝐴 : 

𝑤12 =
1

5 + 1 + 1/3 + 1 + 1/4 + 1/2 + 3

𝑤12 =
1/5

11.75
≈ 0.0902

 

So, the value of 0.0902 in the normalized matrix 𝑊 for 𝑤12 is obtained by normalizing the 

comparison value 𝑎12 in 𝐴 based on the total of the second column. This process is repeated for 

each element in the matrix to obtain the complete normalized matrix 𝑊. 

3) Step 3: Consistency Analysis of Weighting 

After obtaining the Relative Weight Matrix (W), a consistency analysis of the weighting is 

performed to ensure the reliability of these weights. In this step, the Weight Vector (W*) and 

Consistency Index (CI) are calculated to evaluate the consistency among criterion preferences. 

Table 5. Consistency Analysis of Weighting  

Criteria 
Capaci

ty 

Conversi

on 

Process 

Type of 

Waste 

Electricity 

Consumpti

on 

Operation

al 

Convenien

ce 

Land 
Investme

nt Cost 

Weighted 

sum value 

Criteria 

weight 

Consistency 

measure 

Capacity 
0,2443 0,4511 0,2917 0,3711 0,3077 

0,315

8 
0,1463 2,1281 0,2443 8,7099 

Conversion 

Process 
0,0489 0,0902 0,1250 0,1237 0,2051 

0,157

9 
0,0976 0,8484 0,0902 9,4029 

Type of Waste 
0,0349 0,0301 0,0417 0,0309 0,0256 

0,026

3 
0,0732 0,2627 0,0417 6,3048 

Electricity 

Consumption  
0,0814 0,0902 0,1667 0,1237 0,1538 

0,157

9 
0,1463 0,9201 0,1237 7,4377 
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Operational 

Convenience 
0,0407 0,0226 0,0833 0,0412 0,0513 

0,026

3 
0,1463 0,4118 0,0513 8,0299 

Land 
0,0611 0,0451 0,1250 0,0619 0,1538 

0,078

9 
0,0976 0,6234 0,0789 7,8965 

Investment Cost 
0,4887 0,2707 0,1667 0,2474 0,1026 

0,236

8 
0,2927 1,8055 0,2927 6,1688 

λmax 7,7072 

CI 0,1179 

CR 0,0893 

 
Example Consistency Calculation: 

1. Calculation of Weight Vector (𝑊∗) : 𝑤𝑖𝑗 =
𝑎𝑗𝑙

∑𝑖=1
𝑛  𝑎0𝑗

 , For example, 𝑤11 =
1

4
, 𝑤32 =

1/4

3/4
=

1

3
. 

2. Calculation of Weight Vector (𝑊∗) : 𝑊∗ =
1

𝑛
∑𝑗=1

𝑛  𝑤𝑖𝑗 , With 𝑛 = 7, 𝑊∗ represents the 

average of each column in the 𝑊 matrix 

3. Calculation of Consistency Index (𝐶𝐼) : 𝐶𝐼 =
𝜆max−𝑛

𝑛−1
, Where 𝜆max is the maximum 

eigenvalue 

4. Calculation of Consistency Ratio (𝐶𝑅) : 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
, With 𝑅𝐼 being a pre-determined 

consistency index 

5. 𝐶𝐼 =
𝜆max−7

7−1
, 𝜆max is computed from eigenvalue calculations and can be set at 7.7072. 

   𝐶𝐼 =
7.70𝜋2 − 7

6
, 𝐶𝐼 ≈ 0.1179 

6. 𝐶𝐼 =
𝜆max−7

7−1
, 𝐶𝑅 =

𝐶𝐼

𝑅𝐼
 (With 𝑅𝐼 = 1.32) 

𝐶𝑅 ≈
0.1179

1.32
 = 𝐶𝑅 ≈ 0.0893  

In this example, 𝐶𝐼  is approximately 0.1179, and 𝐶𝑅  is 0.0893, which is below the 

consistency threshold (typically 0.1). This indicates that the generated criterion weights can be 

considered consistent. 

3.2.  TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) 
TOPSIS is a decision-making method employed to evaluate and select alternatives based on the 

Euclidean distance between each alternative and the ideal best and worst solutions [17]. In the context 

of the provided decision matrix, here is a detailed description of each step in the TOPSIS process 

1) Step 1: Entering Matrix Values and Calculating Total Column Squares 

In this step, the decision matrix values are entered, and the total sum of squares per column is 

calculated. This process is undertaken to normalize the matrix values in the subsequent step. 

Table 6. Matrix Values and Calculating Total Column Squares 
Criteria Capacity 

Conversion 

Process 
Type of Waste 

Electricity 

Consumption  

Operational 

Convenience 
Land 

Investment 

Cost 

Bio-Drying 
Field Report Small Slow Organic  Small                Easy                 Distributed Small 

Score (1-5) 1 1     1     3     3     3     3     

Thermal 

Drying 

Field Report Large Fast 
Organic and Non-

Organic 
Large 

Easy and 
requires 

expertise 

Centralized Large 

Score (1-5) 3     3     3     1     2     3     1     

Mechanical 

Drying 

Field Report Large Fast 
Organic and Non-

Organic 
Moderate             

Easy and 
requires 

expertise 

Centralized Large 

Score (1-5) 3     3     3     2     2     3     1     

Total Squares 19     19     19     14     17     27     1 

 

2) Step 2: Normalizing the Decision Matrix with Total Column Squares 

After calculating the total sum of squares per column, the decision matrix is normalized by 

dividing each matrix element by the corresponding total sum of column squares. This is done to 

standardize the scale of values for each criterion. 
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Table 7. Matrix Values and Calculating Total Column Squares 

Criteria Capacity 
Conversion 

Process 
Type of Waste 

Electricity 

Consumption  

Operational 

Convenience 
Land 

Investment 

Cost 

Bio-Drying 0,229415734 0,22941573 0,229415734 0,801783726 0,727606875 0,577350269 0,904534034 

Thermal Drying 0,688247202 0,6882472 0,688247202 0,267261242 0,48507125 0,577350269 0,301511345 

Mechanical 

Drying 
0,688247202 0,6882472 0,688247202 0,534522484 0,48507125 0,577350269 0,301511345 

 

3) Step 3: Assigning Weights to the Normalized Decision Matrix 

In this step, weights are assigned to the normalized decision matrix. These weights reflect the 

importance of each criterion in the decision-making process. Each value in the normalized decision 

matrix is multiplied by the corresponding weight. 

Table 8. Weighted Decision Matrix  

Criteria Capacity 
Conversion 

Process 

Type of 

Waste 

Electricity 

Consumption  

Operational 

Convenience 
Land 

Investment 

Cost 

Weighted 
0,2443280

98 
0,84838644 0,26270125 0,920128624 0,411787492 

0,6234049

74 
1,805511369 

Bio-Drying 
0,0560527

1 
0,1946332 0,0602678 0,737744156 0,29961941 

0,3599230

3 
1,633146481 

Thermal Drying 
0,1681581

3 
0,58389959 0,1808034 0,245914719 0,199746273 

0,3599230

3 
0,54438216 

Mechanical 

Drying 

0,1681581

3 
0,58389959 0,1808034 0,491829438 0,199746273 

0,3599230

3 
0,54438216 

 

4) Step 4: Determining Ideal Best and Ideal Worst 

Ideal Best (V+) and Ideal Worst (V-) are solutions that have the highest and lowest values for 

each criterion. In this context, V+ and V- values have been identified for each criterion. 

Table 9. Ideal Best (V+) and Ideal Worst (V-) Values 

Criteria Capacity 
Conversion 

Process 

Type of 

Waste 

Electricity 

Consumption  

Operational 

Convenience 
Land 

Investment 

Cost 

V+ 0,16815813 0,58389959 0,1808034 0,737744156 0,29961941 0,35992303 1,633146481 

V- 0,05605271 0,1946332 0,0602678 0,245914719 0,199746273 0,35992303 0,54438216 

 

5) Step 5: Calculating Euclidean Distance and Criterion Scores 

Table 10. Euclidean Distance, Criterion Scores, and Ranking for Biomass Waste Pre-Treatment 

Technologies 

Criteria  Ed+ Ed- Psi Rank 

Bio-Drying 0,4226 1,1989 0,739 1     

Thermal Drying 1,1989 0,4226 0,261 2     

Mechanical Drying 1,1207 0,4890 0,304 3     

 

In the final step, Euclidean Distance (Ed+) and (Ed-) are calculated for each alternative. Euclidean 

Distance represents the distance between each alternative and the ideal best solution (Ed+) and the ideal 

worst solution (Ed-). Criterion scores (Psi) are also computed as the ratio of Ed- to (Ed+ + Ed-). 

Alternatives are ranked based on the criterion scores generated. The rankings are determined based on 

the Criterion Scores (Psi), where a lower score indicates better performance. According to the TOPSIS 

analysis, Bio-Drying emerges as the most favorable pre-treatment technology for biomass drying, 

securing the top rank with a Psi score of 0.739. Thermal Drying follows closely behind with a Psi score 

of 0.261, while Mechanical Drying takes the third position with a Psi score of 0.304. These results offer 

valuable insights into the relative performance of each pre-treatment technology, aiding decision-makers 

in selecting the most suitable alternative for biomass drying applications.  

3.3.  Comparative Analysis of Pre-Processing Technologies: Strengths and Weaknesses 
In delving into the specifics of the Analytical Hierarchy Process (AHP) employed for prioritizing criteria 

in the selection of RDF/SRF waste treatment technologies, a nuanced examination of its strengths and 

weaknesses is essential. AHP offers a systematic and structured approach, presenting a comprehensive 
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decision-making framework. The method's incorporation of experts directly involved in the execution of 

the BBJP Plant at TPSA Begedung ensures a realistic and industry-specific viewpoint. The use of paired 

comparisons, however, introduces subjectivity into the process, potentially influencing the final 

weightings assigned to criteria. The complexity of these paired comparisons might also pose challenges, 

requiring careful attention to maintain accuracy in the evaluation process. The normalization step in 

AHP, transforming the pairwise criteria matrix into a Relative Weight Matrix (W), is a pivotal aspect. It 

provides a valuable insight into the relative importance of each criterion, offering a quantitative basis for 

decision-making. Nevertheless, the normalization process may face limitations in capturing dynamic 

changes in the needs and goals of the BBJP Plant over time. The industrial landscape is inherently 

dynamic, and the relevance of criteria may evolve, necessitating periodic reassessment. The consistency 

analysis of weighting, involving the calculation of the Weight Vector (𝑊∗) and Consistency Index (CI), 

contributes to the reliability of the results. It ensures that the generated criterion weights align coherently 

with the decision-making process. However, the effectiveness of this analysis may be influenced by the 

evolving nature of industrial requirements. Regular reassessment and adjustment of weights might be 

crucial to maintaining the consistency and relevance of the decision-making framework. 

3.4.  Contextual Relevance to BBJP Plant in Indonesia: 
In the specific context of the BBJP Plant in Indonesia, the strengths of the AHP approach become more 

apparent. Its systematic nature aligns with the industrial processes of the plant, providing a structured 

methodology for evaluating and prioritizing pre-processing technologies. The involvement of experts 

from the field ensures that the criteria selected, such as capacity, Conversion Process, type of waste, 

electricity consumption, operational convenience, land, and investment cost, are directly relevant to the 

plant's operations. However, the potential limitation of AHP in capturing dynamic changes becomes 

more critical in an industry where technological advancements and operational requirements evolve 

rapidly. The criteria and their respective weights might need periodic adjustments to reflect the evolving 

landscape of the BBJP Plant [18]. 

4.  Conclusion 
In summary, the thorough analysis of biomass drying pre-treatment technologies within BBJP (Solid 

Recovered Fuel) plants offers valuable insights for the transition to sustainable energy. The MCDM 

approach, integrating AHP and TOPSIS, proves robust for evaluating technologies through paired 

comparisons. Criteria, from production capacity to investment costs, are meticulously weighed and 

normalized, ensuring a nuanced assessment. AHP ensures consistent criterion weights, reflecting 

accurate relative importance. TOPSIS ranks technologies, with Bio-Drying as the preferred method, 

followed by Thermal Drying and Mechanical Drying. These rankings guide decision-makers toward 

sustainable energy alternatives. However, external factors like environmental considerations and 

regulatory compliance must also influence decisions. Balancing technical feasibility with environmental 

and societal impacts is crucial for a clean energy future. Integrating innovative technologies like Bio-

Drying in Indonesia's energy transition showcases the nation's commitment to sustainability. This 

research contributes to Indonesia's energy discourse, emphasizing the role of BBJP plants in balancing 

Industry 4.0 demands with environmental protection. Future research should advance biomass drying 

pre-treatment technologies, exploring AI integration and intelligent monitoring for enhanced efficiency 

and sustainability. Real-world application requires systematic testing through pilot projects and large-

scale implementations. Collaboration between academia, industry, and policymakers is essential for 

translating research into practical solutions, shaping Indonesia's evolving sustainable energy landscape. 
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