259 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    INFORMATION TECHNOLOGY FOR NEXT-GENERATION OF SURGICAL ENVIRONMENTS

    Get PDF
    Minimally invasive surgeries (MIS) are fundamentally constrained by image quality,access to the operative field, and the visualization environment on which thesurgeon relies for real-time information. Although invasive access benefits the patient,it also leads to more challenging procedures, which require better skills andtraining. Endoscopic surgeries rely heavily on 2D interfaces, introducing additionalchallenges due to the loss of depth perception, the lack of 3-Dimensional imaging,and the reduction of degrees of freedom.By using state-of-the-art technology within a distributed computational architecture,it is possible to incorporate multiple sensors, hybrid display devices, and3D visualization algorithms within a exible surgical environment. Such environmentscan assist the surgeon with valuable information that goes far beyond what iscurrently available. In this thesis, we will discuss how 3D visualization and reconstruction,stereo displays, high-resolution display devices, and tracking techniques arekey elements in the next-generation of surgical environments

    Artificial intelligence and automation in endoscopy and surgery

    Get PDF
    Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient’s anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    A comprehensive survey on recent deep learning-based methods applied to surgical data

    Full text link
    Minimally invasive surgery is highly operator dependant with a lengthy procedural time causing fatigue to surgeon and risks to patients such as injury to organs, infection, bleeding, and complications of anesthesia. To mitigate such risks, real-time systems are desired to be developed that can provide intra-operative guidance to surgeons. For example, an automated system for tool localization, tool (or tissue) tracking, and depth estimation can enable a clear understanding of surgical scenes preventing miscalculations during surgical procedures. In this work, we present a systematic review of recent machine learning-based approaches including surgical tool localization, segmentation, tracking, and 3D scene perception. Furthermore, we provide a detailed overview of publicly available benchmark datasets widely used for surgical navigation tasks. While recent deep learning architectures have shown promising results, there are still several open research problems such as a lack of annotated datasets, the presence of artifacts in surgical scenes, and non-textured surfaces that hinder 3D reconstruction of the anatomical structures. Based on our comprehensive review, we present a discussion on current gaps and needed steps to improve the adaptation of technology in surgery.Comment: This paper is to be submitted to International journal of computer visio

    Deep Causal Learning for Robotic Intelligence

    Full text link
    This invited review discusses causal learning in the context of robotic intelligence. The paper introduced the psychological findings on causal learning in human cognition, then it introduced the traditional statistical solutions on causal discovery and causal inference. The paper reviewed recent deep causal learning algorithms with a focus on their architectures and the benefits of using deep nets and discussed the gap between deep causal learning and the needs of robotic intelligence

    Aligning 3D Curve with Surface Using Tangent and Normal Vectors for Computer-Assisted Orthopedic Surgery

    Get PDF
    Registration that aligns different views of one interested organ together is an essential technique and outstanding problem in medical robotics and image-guided surgery (IGS). This work introduces a novel rigid point set registration (PSR) approach that aims to accurately map the pre-operative space with the intra-operative space to enable successful image guidance for computer-assisted orthopaedic surgery (CAOS). The normal vectors and tangent vectors are first extracted from the pre-operative and intra-operative point sets (PSs) respectively, and are further utilized to enhance the registration accuracy and robustness. The contributions of this article are three-folds. First, we propose and formulate a novel distribution that describes the error between one normal vector and the corresponding tangent vector based on the von-Mises Fisher (vMF) distribution. Second, by modelling the anisotropic position localization error with the multi-variate Gaussian distribution, we formulate the PSR considering anisotropic localization error as a maximum likelihood estimation (MLE) problem and then solve it under the expectation maximization (EM) framework. Third, to facilitate the optimization process, the gradients of the objective function with respect to the desired parameters are computed and presented. Extensive experimental results on the human femur and pelvis models verify that the proposed approach outperforms the state-of-the-art methods, and demonstrate potential clinical values for relevant surgical navigation applications
    • …
    corecore