141,083 research outputs found

    Reviews Matter: How Distributed Mentoring Predicts Lexical Diversity on Fanfiction.net

    Full text link
    Fanfiction.net provides an informal learning space for young writers through distributed mentoring, networked giving and receiving of feedback. In this paper, we quantify the cumulative effect of feedback on lexical diversity for 1.5 million authors.Comment: Connected Learning Summit 201

    Increasing persistence in undergraduate science majors: a model for institutional support of underrepresented students.

    Get PDF
    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most "gatekeeper" chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap

    Psychological impacts of challenging behaviour and motivational orientation in staff supporting individuals with autistic spectrum conditions

    Get PDF
    Despite increased risk of experiencing challenging behaviour, psychological impacts on community and residential staff supporting adults with autistic spectrum conditions are under-explored. Studies examining related roles indicate protective psychological factors may help maintain staff well-being. This study investigated relationships between motivational orientation (eudaimonic or hedonic), challenging behaviour frequency and type (physical, verbal or self-injurious), and psychological impacts (anxiety, depression and life satisfaction). Participants (N=99) were recruited from six organisations providing autism-specific adult services within Scotland. A series of binary logistic regressions demonstrated weekly challenging behaviour exposure (compared to monthly or daily) significantly increased the likelihood of anxiety caseness. Increased eudaimonic motivation significantly reduced the likelihood of anxiety caseness while also predicting higher life satisfaction. Further, having high levels of eudaimonic motivation appeared to moderate the impact of weekly challenging behaviour exposure on anxiety. No motivational orientation or challenging behaviour factor significantly predicted depression. This sample also demonstrated higher anxiety, lower depression, and equivalent life satisfaction levels compared to general population norms. The results highlight the need for considering staff’s motivational orientations, their frequency of exposure to challenging behaviour, and both positive and negative psychological outcomes, if seeking to accurately quantify or improve well-being in this staff population

    Ecological models at fish community and species level to support effective river restoration

    Full text link
    RESUMEN Los peces nativos son indicadores de la salud de los ecosistemas acuáticos, y se han convertido en un elemento de calidad clave para evaluar el estado ecológico de los ríos. La comprensión de los factores que afectan a las especies nativas de peces es importante para la gestión y conservación de los ecosistemas acuáticos. El objetivo general de esta tesis es analizar las relaciones entre variables biológicas y de hábitat (incluyendo la conectividad) a través de una variedad de escalas espaciales en los ríos Mediterráneos, con el desarrollo de herramientas de modelación para apoyar la toma de decisiones en la restauración de ríos. Esta tesis se compone de cuatro artículos. El primero tiene como objetivos modelar la relación entre un conjunto de variables ambientales y la riqueza de especies nativas (NFSR), y evaluar la eficacia de potenciales acciones de restauración para mejorar la NFSR en la cuenca del río Júcar. Para ello se aplicó un enfoque de modelación de red neuronal artificial (ANN), utilizando en la fase de entrenamiento el algoritmo Levenberg-Marquardt. Se aplicó el método de las derivadas parciales para determinar la importancia relativa de las variables ambientales. Según los resultados, el modelo de ANN combina variables que describen la calidad de ribera, la calidad del agua y el hábitat físico, y ayudó a identificar los principales factores que condicionan el patrón de distribución de la NFSR en los ríos Mediterráneos. En la segunda parte del estudio, el modelo fue utilizado para evaluar la eficacia de dos acciones de restauración en el río Júcar: la eliminación de dos azudes abandonados, con el consiguiente incremento de la proporción de corrientes. Estas simulaciones indican que la riqueza aumenta con el incremento de la longitud libre de barreras artificiales y la proporción del mesohabitat de corriente, y demostró la utilidad de las ANN como una poderosa herramienta para apoyar la toma de decisiones en el manejo y restauración ecológica de los ríos Mediterráneos. El segundo artículo tiene como objetivo determinar la importancia relativa de los dos principales factores que controlan la reducción de la riqueza de peces (NFSR), es decir, las interacciones entre las especies acuáticas, variables del hábitat (incluyendo la conectividad fluvial) y biológicas (incluidas las especies invasoras) en los ríos Júcar, Cabriel y Turia. Con este fin, tres modelos de ANN fueron analizados: el primero fue construido solamente con variables biológicas, el segundo se construyó únicamente con variables de hábitat y el tercero con la combinación de estos dos grupos de variables. Los resultados muestran que las variables de hábitat son los ¿drivers¿ más importantes para la distribución de NFSR, y demuestran la importancia ecológica de los modelos desarrollados. Los resultados de este estudio destacan la necesidad de proponer medidas de mitigación relacionadas con la mejora del hábitat (incluyendo la variabilidad de caudales en el río) como medida para conservar y restaurar los ríos Mediterráneos. El tercer artículo busca comparar la fiabilidad y relevancia ecológica de dos modelos predictivos de NFSR, basados en redes neuronales artificiales (ANN) y random forests (RF). La relevancia de las variables seleccionadas por cada modelo se evaluó a partir del conocimiento ecológico y apoyado por otras investigaciones. Los dos modelos fueron desarrollados utilizando validación cruzada k-fold y su desempeño fue evaluado a través de tres índices: el coeficiente de determinación (R2 ), el error cuadrático medio (MSE) y el coeficiente de determinación ajustado (R2 adj). Según los resultados, RF obtuvo el mejor desempeño en entrenamiento. Pero, el procedimiento de validación cruzada reveló que ambas técnicas generaron resultados similares (R2 = 68% para RF y R2 = 66% para ANN). La comparación de diferentes métodos de machine learning es muy útil para el análisis crítico de los resultados obtenidos a través de los modelos. El cuarto artículo tiene como objetivo evaluar la capacidad de las ANN para identificar los factores que afectan a la densidad y la presencia/ausencia de Luciobarbus guiraonis en la demarcación hidrográfica del Júcar. Se utilizó una red neuronal artificial multicapa de tipo feedforward (ANN) para representar relaciones no lineales entre descriptores de L. guiraonis con variables biológicas y de hábitat. El poder predictivo de los modelos se evaluó con base en el índice Kappa (k), la proporción de casos correctamente clasificados (CCI) y el área bajo la curva (AUC) característica operativa del receptor (ROC). La presencia/ausencia de L. guiraonis fue bien predicha por el modelo ANN (CCI = 87%, AUC = 0.85 y k = 0.66). La predicción de la densidad fue moderada (CCI = 62%, AUC = 0.71 y k = 0.43). Las variables más importantes que describen la presencia/ausencia fueron: radiación solar, área de drenaje y la proporción de especies exóticas de peces con un peso relativo del 27.8%, 24.53% y 13.60% respectivamente. En el modelo de densidad, las variables más importantes fueron el coeficiente de variación de los caudales medios anuales con una importancia relativa del 50.5% y la proporción de especies exóticas de peces con el 24.4%. Los modelos proporcionan información importante acerca de la relación de L. guiraonis con variables bióticas y de hábitat, este nuevo conocimiento podría utilizarse para apoyar futuros estudios y para contribuir en la toma de decisiones para la conservación y manejo de especies en los en los ríos Júcar, Cabriel y Turia.Olaya Marín, EJ. (2013). Ecological models at fish community and species level to support effective river restoration [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/28853TESI

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure
    corecore