59 research outputs found

    A 2020 view of tension-based cortical morphogenesis

    Get PDF

    Examining the development of brain structure in utero with fetal MRI, acquired as part of the Developing Human Connectome Project

    Get PDF
    The human brain is an incredibly complex organ, and the study of it traverses many scales across space and time. The development of the brain is a protracted process that begins embryonically but continues into adulthood. Although neural circuits have the capacity to adapt and are modulated throughout life, the major structural foundations are laid in utero during the fetal period, through a series of rapid but precisely timed, dynamic processes. These include neuronal proliferation, migration, differentiation, axonal pathfinding, and myelination, to name a few. The fetal origins of disease hypothesis proposed that a variety of non-communicable diseases emerging in childhood and adulthood could be traced back to a series of risk factors effecting neurodevelopment in utero (Barker 1995). Since this publication, many studies have shown that the structural scaffolding of the brain is vulnerable to external environmental influences and the perinatal developmental window is a crucial determinant of neurological health later in life. However, there remain many fundamental gaps in our understanding of it. The study of human brain development is riddled with biophysical, ethical, and technical challenges. The Developing Human Connectome Project (dHCP) was designed to tackle these specific challenges and produce high quality open-access perinatal MRI data, to enable researchers to investigate normal and abnormal neurodevelopment (Edwards et al., 2022). This thesis will focus on investigating the diffusion-weighted and anatomical (T2) imaging data acquired in the fetal period, between the second to third trimester (22 – 37 gestational weeks). The limitations of fetal MR data are ill-defined due to a lack of literature and therefore this thesis aims to explore the data through a series of critical and strategic analysis approaches that are mindful of the biophysical challenges associated with fetal imaging. A variety of analysis approaches are optimised to quantify structural brain development in utero, exploring avenues to relate the changes in MR signal to possible neurobiological correlates. In doing so, the work in this thesis aims to improve mechanistic understanding about how the human brain develops in utero, providing the clinical and medical imaging community with a normative reference point. To this aim, this thesis investigates fetal neurodevelopment with advanced in utero MRI methods, with a particular emphasis on diffusion MRI. Initially, the first chapter outlines a descriptive, average trajectory of diffusion metrics in different white matter fiber bundles across the second to third trimester. This work identified unique polynomial trajectories in diffusion metrics that characterise white matter development (Wilson et al., 2021). Guided by previous literature on the sensitivity of DWI to cellular processes, I formulated a hypothesis about the biophysical correlates of diffusion signal components that might underpin this trend in transitioning microstructure. This hypothesis accounted for the high sensitivity of the diffusion signal to a multitude of simultaneously occurring processes, such as the dissipating radial glial scaffold, commencement of pre-myelination and arborization of dendritic trees. In the next chapter, the methods were adapted to address this hypothesis by introducing another dimension, and charting changes in diffusion properties along developing fiber pathways. With this approach it was possible to identify compartment-specific microstructural maturation, refining the spatial and temporal specificity (Wilson et al., 2023). The results reveal that the dynamic fluctuations in the components of the diffusion signal correlate with observations from previous histological work. Overall, this work allowed me to consolidate my interpretation of the changing diffusion signal from the first chapter. It also serves to improve understanding about how diffusion signal properties are affected by processes in transient compartments of the fetal brain. The third chapter of this thesis addresses the hypothesis that cortical gyrification is influenced by both underlying fiber connectivity and cytoarchitecture. Using the same fetal imaging dataset, I analyse the tissue microstructural change underlying the formation of cortical folds. I investigate correlations between macrostructural surface features (curvature, sulcal depth) and tissue microstructural measures (diffusion tensor metrics, and multi-shell multi-tissue decomposition) in the subplate and cortical plate across gestational age, exploring this relationship both at the population level and within subjects. This study provides empirical evidence to support the hypotheses that microstructural properties in the subplate and cortical plate are altered with the development of sulci. The final chapter explores the data without anatomical priors, using a data-driven method to extract components that represent coordinated structural maturation. This analysis aims to examine if brain regions with coherent patterns of growth over the fetal period converge on neonatal functional networks. I extract spatially independent features from the anatomical imaging data and quantify the spatial overlap with pre-defined neonatal resting state networks. I hypothesised that coherent spatial patterns of anatomical development over the fetal period would map onto the functional networks observed in the neonatal period. Overall, this thesis provides new insight about the developmental contrast over the second to third trimester of human development, and the biophysical correlates affecting T2 and diffusion MR signal. The results highlight the utility of fetal MRI to research critical mechanisms of structural brain maturation in utero, including white matter development and cortical gyrification, bridging scales from neurobiological processes to whole brain macrostructure. their gendered constructions relating to women

    Registration of 3D Fetal Brain US and MRI

    Full text link
    We propose a novel method for registration of 3D fetal brain ultrasound and a reconstructed magnetic resonance fetal brain volumes. The reconstructed MR volume is first segmented using a probabilistic atlas and an ultrasound-like image volume is simulated from the segmentation of the MR image. This ultrasound-like image volume is then affinely aligned with real ultrasound volumes of 27 fetal brains using a robust block-matching approach which can deal with intensity artefacts and missing features in ultrasound images. We show that this approach results in good overlap of four small structures. The average of the co-aligned US images shows good correlation with anatomy of the fetal brain as seen in the MR reconstruction

    A four-dimensional probabilistic atlas of the human brain

    Get PDF
    The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype-phenotype-behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders

    Doctor of Philosophy in Computing

    Get PDF
    dissertationStatistical shape analysis has emerged as an important tool for the quantitative analysis of anatomy in many medical imaging applications. The correspondence based approach to evaluate shape variability is a popular method, based on comparing configurations of carefully placed landmarks on each shape. In recent years, methods for automatic placement of landmarks have enhanced the ability of this approach to capture statistical properties of shape populations. However, biomedical shapes continue to present considerable difficulties in automatic correspondence optimization due to inherent geometric complexity and the need to correlate shape change with underlying biological parameters. This dissertation addresses these technical difficulties and presents improved shape correspondence models. In particular, this dissertation builds on the particle-based modeling (PBM) framework described by Joshua Cates' 2010 Ph.D. dissertation. In the PBM framework, correspondences are modeled as a set of dynamic points or a particle system, positioned automatically on shape surfaces by optimizing entropy contained in the model, with the idea of balancing model simplicity against accuracy of the particle system representation of shapes. This dissertation is a collection of four papers that extend the PBM framework to include shape regression and longitudinal analysis and also adds new methods to improve modeling of complex shapes. It also includes a summary of two applications from the field of orthopaedics. Technical details of the PBM framework are provided in Chapter 2, after which the first topic related to the study of shape change over time is addressed (Chapters 3 and 4). In analyses of normative growth or disease progression, shape regression models allow characterization of the underlying biological process while also facilitating comparison of a sample against a normative model. The first paper introduces a shape regression model into the PBM framework to characterize shape variability due to an underlying biological parameter. It further confirms the statistical significance of this relationship via systematic permutation testing. Simple regression models are, however, not sufficient to leverage information provided by longitudinal studies. Longitudinal studies collect data at multiple time points for each participant and have the potential to provide a rich picture of the anatomical changes occurring during development, disease progression, or recovery. The second paper presents a linear-mixed-effects (LME) shape model in order to fully leverage the high-dimensional, complex features provided by longitudinal data. The parameters of the LME shape model are estimated in a hierarchical manner within the PBM framework. The topic of geometric complexity present in certain biological shapes is addressed next (Chapters 5 and 6). Certain biological shapes are inherently complex and highly variable, inhibiting correspondence based methods from producing a faithful representation of the average shape. In the PBM framework, use of Euclidean distances leads to incorrect particle system interactions while a position-only representation leads to incorrect correspondences around sharp features across shapes. The third paper extends the PBM framework to use efficiently computed geodesic distances and also adds an entropy term based on the surface normal. The fourth paper further replaces the position-only representation with a more robust distance-from-landmark feature in the PBM framework to obtain isometry invariant correspondences. Finally, the above methods are applied to two applications from the field of orthopaedics. The first application uses correspondences across an ensemble of human femurs to characterize morphological shape differences due to femoroacetabular impingement. The second application involves an investigation of the short bone phenotype apparent in mouse models of multiple osteochondromas. Metaphyseal volume deviations are correlated with deviations in length to quantify the effect of cancer toward the apparent shortening of long bones (femur, tibia-fibula) in mouse models

    A model-based cortical parcellation scheme for high-resolution 7 Tesla MRI data

    No full text

    Craneología funcional y evolución humana: relaciones estructurales y organización espacial en la evolución de las áreas fronto-parietales

    Get PDF
    Los humanos modernos se caracterizan por la forma globular del neurocráneo y retracción de la cara, atribuidos generalmente a la encefalización. La proximidad entre cara y cerebro podría implicar un conflicto espacial entre órbitas y lóbulos frontal y temporal. El abultamiento parietal puede deberse a cambios en la corteza parietal, por ejemplo, el precúneo. Esta tesis investiga la relación estructural cerebro-orbital y la anatomía del lóbulo parietal utilizando morfometría geométrica aplicada a imágenes biomedicas de humanos modernos y fósiles y de primates no humanos. Los resultados apuntan hacia un mayor conflicto estructural de las órbitas con los lóbulos temporales. Los lóbulos parietales son longitudinal y verticalmente más grandes en humanos modernos que en neandertales. La variación de la proporción longitudinal del precúneo se debe sobre todo a la región superior y es específica de humanos modernos. La dimensión vertical del precúneo está relacionada con la morfología del contorno parietal exterior.Modern humans are characterized by a globular braincase and a reduced face, two features that are generally attributed to encephalization. The anatomical proximity between the face and the brain involves nonetheless spatial conflicts between the orbits and the frontal and temporal lobes. Parietal bulging is likely due to changes in parietal cortical elements, like the precuneus. This thesis investigates the orbit-brain structural relationships and parietal lobe anatomy through geometric morphometrics and biomedical imaging, in modern and fossil humans, as well as in non-human primates. Results point to a greater structural conflict between orbits and temporal lobes. The parietal lobes are longitudinally and vertically larger in modern humans, when compared to those of Neanderthals. The variation in the longitudinal proportions of the precuneus is mostly due to the superior regions, and it is specific to modern humans. Precuneus vertical dimension is related to the morphology of the outer parietal contour

    Mechanics of the Developing Brain: From Smooth-walled Tube to the Folded Cortex

    Get PDF
    Over the course of human development, the brain undergoes dramatic physical changes to achieve its final, convoluted shape. However, the forces underlying every cinch, bulge, and fold remain poorly understood. This doctoral research focuses on the mechanical processes responsible for early (embryonic) and late (preterm) brain development. First, we examine early brain development in the chicken embryo, which is similar to human at these stages. Research has primarily focused on molecular signals to describe morphogenesis, but mechanical analysis can also provide important insights. Using a combination of experiments and finite element modeling, we find that actomyosin contraction is responsible for initial segmentation of the forebrain. By considering mechanical forces from the internal and external environment, we propose a role for mechanical feedback in maintaining these segments during subsequent inflation and bending. Next, we extend our analysis to division of right and left cerebral hemispheres. In this case, we discover that morphogen signals and mechanical feedback act synergistically to shape the hemispheres. In human, cerebral hemispheres go on to form complex folds through a mechanical process that involves rapid expansion of the cortical surface. However, the spatiotemporal dynamics of cortical growth remain unknown in human. Here, we develop a novel strain energy minimization approach to measure regional growth in complex surfaces. By considering brain surfaces of preterm subjects, reconstructed from magnetic resonance imaging (MRI), this analysis reveals distinct patterns of cortical growth that evolve over the third trimester. This information provides a comprehensive view of cortical growth and folding, connecting what is known about patterns of development at the cellular and folding scales. Abnormal brain morphogenesis can lead to serious structural defects and neurological disorders such as epilepsy and autism. By integrating mechanics, biology, and neuroimaging, we gain a more complete understanding of brain development. By studying physical changes from the simple, microscopic embryo to the macroscopic, folded cortex, we gain insight into relevant biological and physical mechanisms across developmental stages

    Orbitofrontal sulcogyral morphology: its distribution, structural and functional associations, and predictive value in different diagnostic groups

    Get PDF
    Bipolar affective disorder and schizophrenia are highly heritable psychiatric illnesses and the leading causes of worldwide disability. The orbitofrontal cortex (OFC) is a region of the frontal lobe with wide spread connectivity with other brain areas involved in reward, motivation and emotion. Evidence from various neuroimaging, genetic, post-mortem and brain lesion studies suggest that orbitofrontal cortex may play a role in pathophysiology of mental illnesses. This thesis sought to investigate the pathogenesis of major psychiatric illnesses through the investigation of orbitofrontal morphology in schizophrenia and bipolar disorder and through its associations with brain structure and function. Orbitofrontal morphology and its structural and functional associations were examined in healthy controls, patients with schizophrenia or bipolar affective disorder, and those at high genetic risk using functional and structural MRI. In the first study we found that the orbitofrontal type III is more frequent and the orbitofrontal type I is less common in the right hemisphere in patients with schizophrenia while in patients with bipolar disorder type III appears more often in both left and right hemispheres. We then sought to examine the relationship of orbitofrontal morphology to disease risk in a study of 146 people at high risk of developing schizophrenia and 110 people at high risk of developing bipolar disorder. We discovered that in the unaffected high risk groups the orbitofrontal type III predicted the development of later psychiatric illnesses, when combined with anterior cingulate morphology. Finally we showed, in a further study, that OFC morphology was associated with measures of schizotypy, brain structure, brain function and cognition. In conclusion, orbitofrontal morphology is linked to major psychiatric disorder and has significant structural and functional associations. As orbitofrontal sulcogyral patterns are formed in early life a fuller awareness of their relevance to brain function holds out the prospect that we could use such measures as an indicator of vulnerability to the development of illness later in life. This work points to the potential for the foundation of a theory of predictive associations between morphological patterns and the development of psychosis

    GENERATION OF AUTHENTIC HUMAN NEOCORTICAL NEURONS FROM INDUCED PLURIPOTENT STEM CELLS TO INVESTIGATE 7Q11.23 GENE DOSAGE IMBALANCES

    Get PDF
    Questo lavoro di tesi ha avuto lo scopo di studiare lo sviluppo della neocorteccia umana ed i meccanisimi alla base della sua compromissione che risultano nell\u2019insorgenza di patologie del neurosviluppo mediante un\u2019analisi dei profili trascrizionali e della morfologia di neuroni neocorticali umani generati a partire da cellule staminali pluripotenti indotte (iPSCs). Data l\u2019importanza di basarsi su un paradigma di neurogenesi in vitro riproducibile e affidabile nel generare neuroni neocoritcali umani autentici, prima di adottare questo sistema modello per lo studio di patologie del neurosviluppo, nella prima fase di questa ricerca abbiamo eseguito un\u2019ampia caratterizzazione trascrizionale, molecolare e funzionale del protocollo di differenziamento. Le dinamiche trascrizionali che regolano il neurosviluppo in vitro sono state studiate effettuando esperimenti di RNA-sequencing sia a livello di popolazione che di singola cellula. In combinazione con diverse analisi bioinformatiche tra cui l\u2019analisi delle componeti principali (PCA), l\u2019analisi dei geni differenzialemtne espressi e l\u2019analisi WGCNA. L\u2019analisi dei profili trascrizionali \ue8 stata accompagnata da un\u2019ampia analisi di d\u2019immunocitochimica che ha permesso di confermare l\u2019identit\ue0 e lo stadio di sviluppo delle cellule in coltura. Inoltre, la maturit\ue0 funzionale dei neuroni derivati da iPSCs \ue8 stata ulteriormente confermata dalla loro capacit\ue0 di generare potenziali d\u2019azione, sostenere pattern di scarica complessi e sviluppare attivit\ue0 sinaptica spontanea eccitatoria ed inibitoria. Complessivamente, i risultati ottenuti da questo ampio e diversificato pannello di analisi hanno permesso di stabilitre la riproducibilit\ue0 del protocollo di differenziamento e la sua competenza nel generare con elevata efficienza principalmente neuroni neocorticali autentici. Successivamente abbiamo applicato questo protocollo di differenziamento neocorticale come sistema modello per studiare due patologie del neurosviluppo dovute alla delezione e duplicazione di una regione comprendente circa 1.5 - 1.8 Mb (megabasi) collacata sul braccio lungo (q) del cormosoma 7 nella banda 11.23. Duplicazioni e delezioni di questa regione sono di particolare interesse in quanto le due sindromi che ne risultano, rispettivamente la sindrome di Willams (WS) e la sindrome da duplicazione 7q11.23 (7q11DUP), presentano fenotipi cognitivi e comportamentali caratterizzati da profili simili e tratti simmetricamente opposti. La frequente comorbidit\ue0 della sindrome da duplicazione 7q11.23 con altre patologie del neurosviluppo come l\u2019autismo e la schizofrenia in contrasto con la sindrome di Williams che \ue8 una sindrome ben caraterizzata non associata ad altre patologie del neurosviluppo, rende lo studio dell\u2019 alterato dosaggio genico del locus 7q11.23 estremamente interessante per identificare con precisione i meccanismi molecolari caratteristici di ciascuna condizione clinica, condivisi da entrabme le sindromi e comuni anche ad altre patologie del neurosviluppo. A questo scopo, abbiamo generato diverse linee di iPS a partire da un ampio gruppo di individui, comprendente individui sani e pazienti affetti dalla sindrome di Williams (WS) e dalla sindrome di duplizazione 7q11.23, che sono poi state differenziate in neuroni neocorticali applicando il protocollo precedentemetne caraterizzato. Confermata l\u2019identit\ue0 e l\u2019autenticit\ue0 dei neuroni neocorticali generati da iPSCs, stiamo attualmente identificando i geni ed i meccanismi molecolari disregolati in specifici sottotipi di neuroni che abbiano la maggior rilvenza clinica. Inoltre, l\u2019analisi morfologica dei neuroni neocorticali umani ottenuti da pazienti WS e soggetti sani ha permesso di confermare nell\u2019uomo molte alterazioni morfologiche dei neuroni neocorticali osservate in un modello murino knockout per Dnajc30, un gene ancora funzionalmente non caraterizzato compreso nel locus 7q11.23.This research project has been aimed to investigate human neocortical development in healthy and diseased subjects by analyzing and comparing the transcriptional profiles and cellular morphologies of human neocortical cells derived from induced pluripotent stem cells (iPSCs). Given the importance to rely on a solid and highly reproducible iPSCs-based differentiation protocol that generates authentic neocortical neurons in vitro with high efficiency before applying it as a model system of human neurodevelopmental disorders, in the first phase of this study we performed a comprehensive transcriptional, cellular and physiological characterization of the in vitro neurodevelopmental paradigm. The transcriptional dynamics regulating in vitro neocortical development have been investigated by performing RNA-sequencing (RNA-seq) at both population and single- cell level in combination with several bioinformatics analyses including principal component analysis (PCA), differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). The transcriptional results were corroborated by the widespread positivity for a selected panel of informative cell-fate and cell-stage specific markers detected through immunocytochemistry and the physiological maturity of our iPSCs-derived neocortical neurons was further confirmed by their ability to generate action potentials, develop complex firing patterns and sustain excitatory and inhibitory spontaneous synaptic activity. Overall, these results fully validated the reproducibility of the differentiation protocol and its efficiency and reliability in generating physiologically mature authentic neocortical neurons. Subsequently, we applied this extensively characterized neocortical differentiation paradigm to model in vitro two human neurodevelopmental disorders caused by symmetrical copy number variations (CNVs) of the Williams-Beuren syndrome chromosome region (WBSCR) located on the long arm (q) of chromosome 7 at position 11.23 (7q.11.23 locus). 7q11.23 CNVs are of special interest as the two disorders resulting from the deletion (Williams syndrome, WS) and duplication (7q.11.23 duplication syndrome, 7q11DUP) of this region exhibit cognitive and behavioral phenotypes marked by both similar features and symmetrically opposite traits. The association of 7q11DUP to complex neurodevelopmental disorders such as autism spectrum disorder and schizophrenia, while WS is a well-characterized syndrome without clear overlap to complex neurodevelopmental disorders make the study of this locus extremely interesting to identify the molecular mechanisms unique to each clinical condition, common to both syndromes and shared with other complex neurodevelopmental disorders. To this aim, we generated several iPSCs lines from a large cohort comprising WS individuals, 7q11DUP patients and healthy subjects and differentiated them into neocortical neurons by applying the previously in-depth characterized protocol. Having assessed the quality of our iPSCs-derived neocortical neurons, we are currently identifying neuronal subtypes specific genes and gene networks having the most statistically significant relationship to these disorders through single cell RNA-sequencing analysis. Furthermore, morphometric analysis of WS and control iPSCs-derived neocortical neurons has confirmed in humans many neuronal morphological abnormalities observed in a mouse knockout for Dnajc30, a previously uncharacterized gene contained in the 7q11.23 locus
    corecore