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ABSTRACT OF THE DISSERTATION

Mechanics of the Developing Brain:

From Smooth-walled Tube to the Folded Cortex

by

Kara E. Garcia

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, December 2017

Research Advisor: Professor Larry A. Taber

Over the course of human development, the brain undergoes dramatic physical changes to

achieve its final, convoluted shape. However, the forces underlying every cinch, bulge, and

fold remain poorly understood. This doctoral research focuses on the mechanical processes

responsible for early (embryonic) and late (preterm) brain development.

First, we examine early brain development in the chicken embryo, which is similar to human

at these stages. Research has primarily focused on molecular signals to describe morphogen-

esis, but mechanical analysis can also provide important insights. Using a combination of

experiments and finite element modeling, we find that actomyosin contraction is responsible

for initial segmentation of the forebrain. By considering mechanical forces from the internal

and external environment, we propose a role for mechanical feedback in maintaining these

segments during subsequent inflation and bending. Next, we extend our analysis to division

of right and left cerebral hemispheres. In this case, we discover that morphogen signals and

mechanical feedback act synergistically to shape the hemispheres.

xii



In human, cerebral hemispheres go on to form complex folds through a mechanical process

that involves rapid expansion of the cortical surface. However, the spatiotemporal dynamics

of cortical growth remain unknown in human. Here, we develop a novel strain energy min-

imization approach to measure regional growth in complex surfaces. By considering brain

surfaces of preterm subjects, reconstructed from magnetic resonance imaging (MRI), this

analysis reveals distinct patterns of cortical growth that evolve over the third trimester.

This information provides a comprehensive view of cortical growth and folding, connecting

what is known about patterns of development at the cellular and folding scales.

Abnormal brain morphogenesis can lead to serious structural defects and neurological disor-

ders such as epilepsy and autism. By integrating mechanics, biology, and neuroimaging, we

gain a more complete understanding of brain development. By studying physical changes

from the simple, microscopic embryo to the macroscopic, folded cortex, we gain insight into

relevant biological and physical mechanisms across developmental stages.
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Preface

Cell and tissue, shell and bone, leaf and flower, are so many portions of matter,
and it is in obedience to the laws of physics that their particles have been moved,
moulded and conformed. They are no exceptions to the rule that ‘God always
geometrizes.’ Their problems of form are in the first instance mathematical
problems, their problems of growth are essentially physical problems, and the
morphologist is, ipso facto, a student of physical science.
– D’Arcy Thompson, On Growth and Form (1917)

Exactly a century ago, D’Arcy Thompson published his famous book On Growth and Form,

highlighting the role of physical laws, math, and mechanics in the development of living

structures (Thompson et al., 1942). At a time when Darwinian evolution had emerged as

the “explanation” for everything, Thompson called for engineering principles to explain not

just why but how these morphologies came to be.

For the next half century, embryologists focused on physical changes, and mathematicians

offered equations to explain morphogenesis (e.g., Turing patterns). However, with the discov-

ery of DNA, genetics again took the center stage. Genetic and molecular perturbations have

undoubtedly provided valuable insights into development and disease. Still, studies tend to

report “interesting” or “peculiar” changes in morphology without a clear understanding of

how these morphologies occur. In thousands of cases, the question remains: what are the

physical mechanisms underlying morpohogenesis?

xiv



In this dissertation, we will address three of these cases, specific to brain development, by

analyzing the mechanical forces responsible for morphogenesis.
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Chapter 1

Introduction

The human brain is a physically complex organ with structure closely linked to function. The

most primitive brain structures emerge shortly after conception and increase in complexity

through the first years of human life. Malformations at early stages can lead to lethal brain

defects (Lowery and Sive, 2009; Fernandes et al., 2007), while abnormal development at later

stages can lead to serious neurological disorders (Lin et al., 2006; Li et al., 2016; Hardan

et al., 2004). In this thesis, we examine the morphological changes responsible for shaping the

early neural tube into the intricately folded structure we associate with human cognition. By

studying the mechanics of brain development, we gain insight into how brain malformations

occur. Furthermore, lessons from the brain may prove useful for a diverse range of biological

applications, including development of other organs and tissue engineering.

1.1 Brain development, from conception to birth

As shown in Fig. 1.1, development of the embryonic brain begins shortly after conception.

First, the single cell zygote divides to form a multicellular morula, which then becomes a
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Figure 1.1: Developmental timeline from conception to birth in human. In Chapters 2-3,
we model embryonic brain development that occurs during the first trimester (3-5 weeks
gestational age) in human. In Chapter 4, we will examine fetal brain folding that occurs
during the third trimester (28-38 weeks gestational age) and beyond in human. Image credit:
Dragana Gerasimoski, Shutterstock.

blastula with inner and outer layers (Hall, 2012). Finally, gastrulation leads to the three

distinct germ layers: ectoderm, mesoderm, and endoderm. From the flat ectoderm layer,

the neural plate emerges as a thick, pseudostratified neuroepithelium (Fig. 1.2) (Ray and

Niswander, 2012). Even at this early stage, morphogen signals begin to encode which cells

will become brain, eye, or spinal cord (Puelles et al., 2012).

In avian and mammalian species, the neural tube forms through the well-studied physical

process of neurulation (Ray and Niswander, 2012; Nonomura et al., 2013). First, acto-

myosin contraction at the floor plate causes the neural plate to hinge and form a “V” shape

(Fig. 1.2A-B). Next, lateral hinges form on the sides of this “V”, bringing lateral edges to-

gether to fuse at the roof plate (Fig. 1.2C-D), forming a neural tube. Eventually, the anterior

and posterior ends (anterior and posterior neuropores) also seal, and neuroepithelial cells

begin to secrete embryonic cerebrospinal fluid (eCSF) that inflates the lumen (Jelinek and

Pexieder, 1968; Desmond et al., 2005). The anterior portion of the neural tube becomes the

2



A’

B’

C’

D’

Cross-section Anterior  
(front)  viewmedial  

FP
lateral
RP

lateral
RPA

B

C

D

FP

RP

ANR

dorsal

ventral
anterior

posterior

RP

ANR

RP

F

e e

M

e e

Figure 1.2: Neurulation of the forebrain. (A-D) Steps of neurulation in a cross-section of
the neural tube, image modified from Ray and Niswander (2012). (A’-D’) Front view of
neurulation in the mammalian forebrain, modified from Nonomura et al. (2013). FP=floor
plate, RP=roof plate, ANR=anterior neural ridge, F=forebrain, M=midbrain, e=eye field.
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Figure 1.3: Major brain compartments in human and chick. (A) Bright field image of chicken
embryo at latest stage considered. At this time, local constrictions visibly separate the
hindbrain (H) from midbrain (M), midbrain from diencephalon (D), and diencephalon from
secondary prosencephalon (denoted with dotted line). The secondary prosencephalon (SP)
is subdivided into right and left telencephalic hemispheres (T, arrows), hypothalamus (hy),
and prospective eyes (e). (B) The same brain regions and similar brain shape are observed in
human at comparable stages (from embryo.soad.umich.edu). (C) The telencephalic (cerebral)
hemispheres comprise the majority of the adult human brain, shown in yellow. Meanwhile,
the hindbrain (pons, cerebellum) and midbrain make up the brainstem. Image modified
from Pearson Education, Inc. (copyright).

brain (or brain tube), while the posterior portion becomes the spinal cord. Notably, the

anterior neuropore (or anterior neural ridge, ANR, see Fig. 1.2A’-D’), roof plate (RP), and

floor plate (FP) become important signaling centers in later development of the cerebral

hemispheres (Nonomura et al., 2013; Puelles et al., 2012; Fernandes et al., 2007).

In parallel to the processes of neurulation and inflation, the brain tube segments along

its length into three primary vesicles: the forebrain (prosencephalon), midbrain (mesen-

cephalon), and hindbrain (rhombencephalon) (Lowery and Sive, 2009). Several studies have

suggested that the constrictions between these regions are also initiated by a type of acto-

myosin contraction (Filas et al., 2012; Gutzman et al., 2008). The midbrain and hindbrain

go on to make up the brain stem (midbrain, pons, and cerebellum), while the forebrain

segments further into diencephalon and secondary prosencephalon (Fig. 1.3) (Puelles et al.,
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2012). From the secondary prosencephalon, the ventral portion (closest to the floor plate,

Fig. 1.2A’-D’) becomes the hypothalamus, lateral portions evaginate into optic vesicles (fu-

ture eyes), and dorsal portions evaginate into telencephalic hemispheres (Puelles et al., 2012).

These telencephalic hemispheres become the adult cerebral hemispheres (cerebrum), which

comprise the majority of the human brain volume (Fig. 1.3C). As all of these regions be-

come morphologically distinct, they also expand rapidly. This expansion is facilitated by

eCSF, which mechanically inflates each compartment and stimulates growth (Desmond and

Jacobson, 1977; Desmond et al., 2014). Gradually, embryonic CSF transitions to adult CSF,

fluid-filled lumens become brain ventricles, and neuroepithelium differentiates into neurons

and glia (Lowery and Sive, 2009).

During early stages, embryos look nearly identical between many vertebrate species (Fig. 1.3A-

B). Here, we use the chicken embryo (Fig. 1.3A) as an experimental model of early forebrain

morphogenesis. Beyond this embryonic stage, however, brain morphologies diverge drasti-

cally between species (Fig. 1.4). In small animals (such as chicken and mouse), cerebral

hemispheres tend to remain smooth, or lissencephalic, through adulthood (Tallinen et al.,

2014; Chenn and Walsh, 2002). By contrast, the brains of humans and many large mammals

develop cortical folds (Smart and McSherry, 1986; Wang et al., 2017). The first folds to

emerge are fairly consistent across species and individuals, while secondary folds observed in

human are more complex and variable between individuals. In humans, most folding occurs

during the third trimester, with additional growth and deepening of folds through the first

years of life (Dubois et al., 2007; Hill et al., 2010b).

Increasing mechanical evidence suggests that folding results from differential growth: the

outer gray matter of the cortex grows faster than inner white matter, leading to mechanical

buckling or creasing (Toro and Burnod, 2005; Bayly et al., 2013; Xu et al., 2010b; Tallinen
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Figure 1.4: Mechanical models of cortical folding describe trends in brain folding. From
(Tallinen et al., 2014), the degree of cortical folding (gyrification index, GI) can be explained
by mechanical instability and physical scale. Rats (and similarly, chickens) do not have
folded brains, but folding in larger mammals (lemur, wolf, human) generally increases with
brain size. Top insets: Physical gel model of folding, where the outer layer of gel expands
faster than the inner layer to produce mechanical instability. Bottom insets: Computational
model of folding, which predicts folding trends as a function of both size and shape.
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et al., 2014). However, other factors (e.g., brain geometry, regional growth differences, intra-

cortical connections) likely influence these specific folding patterns (Toro and Burnod, 2005;

Weickenmeier et al., 2016; Van Essen, 1997). While computational models have considered

the effects of geometry (Tallinen et al., 2016), much remains unknown regarding the dynamic

and spatial patterns of physical growth in the human brain.

1.2 Mechanics in morphogenesis

To understand the mechanical forces involved in brain morphogenesis, it is useful to first dis-

cuss some simple examples of growth theory, as well as their prior application in other organ

systems. We start with examples of biomechanics, defined here as a biological process that

exerts mechanical force to cause deformation or stress. Then, we move on to mechanobiology,

the influence of mechanical force on a biological process.

1.2.1 Biomechanics of growth

As previously described, the embryonic brain is made up of tightly connected (neuro)epithelial

cells that form a pseudostratified monolayer. Similarly, we consider one-dimensional growth

of a bar with length L0, made up of a single row of connected cells. In Fig. 1.5A, simple

multiplication of these cells (proliferation) results in growth along a single line, such that the

new length of the bar becomes L, and growth can be defined with the ratio G = L/L0. In

the absence of any external forces, the total deformation (stretch ratio) of this bar is equal

to its growth, such that λ = G = L/L0 and no stresses develop.
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Figure 1.5: Mechanics of growth. (A) In the current framework, we model tissue growth
(e.g., proliferation) as change in the unloaded geometry. For a single row of cells (circular
faces, length L0), one round of cell division (doubling the number of cells) could lead to a
new length of L = 2L0. (B) In the presence of physical constraints (black blocks represent
fixed walls), the observed deformation (λ) is a combination of tissue growth (G) and elastic
deformation (λ∗). In the above case where G = L/L0 = 2 and λ = L′/L = 1, an elastic
deformation of λ∗ = L′/L = 1/2 is necessary to represent compression of the tissue. (L′

represents the observed final length, in this case L′ = L.) (C) Extending this example to
2D, we consider the same row of proliferating cells, this time attached to a flexible but non-
growing bar along the bottom edge. In this case, growth can lead to complex deformations:
To accommodate lengthening of the top layer only, but maintain connection between the
growing and nongrowing layers bend, both structures must bend. The resulting shape and
stresses can be predicted using mechanical theory.
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In the real world, however, external constraints often exist that restrict deformation (Taber,

2009). In Fig. 1.5 we imagine the same bar, now constrained between two rigid walls

(Fig. 1.5B). In this case growth has not changed (G = L/L0), but the bar is mechani-

cally compressed to a final length L′ = L0. Accordingly, we define total deformation as

the combination of growth (G = L/L0, due to biological processes) and elastic deformation

(λ∗ = L′/L, due to mechanical forces) such that

λ = λ∗G = L′/L0. (1.1)

In 3D, total deformation can be denoted similarly as

F = F∗ ·G (1.2)

where G represents the 3D growth tensor and F∗ represents the 3D elastic deformation

gradient tensor (Rodriguez et al., 1994).

With this framework, we can begin to consider shape changes due to the mechanical “force”,

or stress, exerted by biological growth. For instance, a bilayer beam in which one layer grows

more can produce bending of a structure (Fig. 1.5C). This effect has been previously studied

in the embryonic heart tube (Shi et al., 2014) and optic cup (Oltean et al., 2016), and it

has been hypothesized to play a role in bending of the brain tube (Takamatsu and Fujita,

1987). Contraction of an inner layer (G < 1) can also produce bending. For example, apical

actomyosin contracts to form hinge points during neurulation (Ray and Niswander, 2012)

(Fig. 1.2), as well as local constriction at the midbrain-hindbrain boundary (Filas et al.,

2012). For the latter case, Filas et al. (2012) demonstrated that a bias in the direction of

actomyosin contraction can lead to specific morphological shapes in 3D.
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The process of cortical folding, in which the outer gray matter is thought to grow faster than

the underlying white matter, offers a complex scenario of constrained growth and bending

(Fig 1.4). In this case, the growing gray matter is constrained in both tangential directions

(Fig. 1.5B) by surrounding tissue, and the underlying white matter represents a deformable

substrate (Bayly et al., 2013; Tallinen et al., 2016). As the gray matter grows, the tissue

becomes compressed, storing mechanical strain energy. Beyond a certain threshold, however,

it becomes more energetically favorable for the gray matter to buckle or crease, resulting in

curvature and bending (Fig. 1.4).

In Fig. 1.5C, note that a neutral axis (neutral surface in 3D) can be defined where strains

due to bending are zero (y = 0). For y > 0 (toward the outer curvature) the bending strain

εb = yk is positive (λ > 1), and for y < 0 (toward the inner curvature) the total bending

strain is negative, where k = 1/R represents curvature of the midthickness surface and R =

radius (Ventsel and Krauthammer, 2001). If the neutral axis undergoes additional growth,

contraction, stretch, or compression, it is convenient to separate total strain into membrane

(εm) and bending (εb) components. Under the assumption of small strain, ε = λ−1 = εm+εb.

In Chapter 4 we consider membrane strain analysis, which omits bending strains and can be

useful for analysis of surface reconstructions in which thickness information is not available.

1.2.2 Mechanobiology in growth

Up to this point, we have considered physical changes that occur due to growth. However,

mechanical feedback is also known to induce biological effects. In adult physiology, stresses

cause remodeling of bone, cardiovascular tissues, and tendons (Wang and Thampatty, 2006).

In early brain development, mechanical feedback has been shown to produce changes in
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actomyosin contractility and, therefore, tissue stiffness (Filas et al., 2011). Evidence also

suggests that mechanical feedback can influence proliferation in a variety of tissues and

developmental processes (Mammoto and Ingber, 2010).

In 1D, we consider the effect of mechanical stress on proliferation, or growth (G), according

to the general law (Taber, 2009)

Ġ = (g0 + gσσ)G (1.3)

where g0 is the baseline growth rate, gσ is the stress-dependent growth constant, and dot

denotes differentiation with respect to time t. Stress, σ, depends on elastic deformation (λ∗)

and material properties, such that σ > 0 represents mechanical tension (λ∗ > 1) and σ < 0

represents compression (λ∗ < 1).

In the absence of mechanical feedback (gσ = 0 or σ = 0), this differential equation can be

solved as the standard equation for exponential growth, G = eg0t. However, by allowing

growth rate to depend on tension and compression, we obtain interesting behaviors in line

with observations in a variety of epithelial tissues. For example, stretch (tension) has been

shown to promote cell proliferation in pulmonary and vascular epithelium (Chaturvedi et al.,

2007; Lehoux et al., 2005). This behavior can be achieved by setting gσ > 0 (Taber, 2009),

such that tension (σ > 0) increases the growth rate and compression (σ < 0) decreases the

growth rate.

In carefully controlled experiments using epithelial monolayers (Wyatt et al., 2015; Streichan

et al., 2014), stretch-induced cell divisions eventually stopped, restoring initial cell shapes

at equilibrium (Wyatt et al., 2015). To understand this effect, we return to our 1D bar,

attaching it to two rigid walls spaced such that L′ > L0 (Fig. 1.6A, top). At the initial time

point, L = L0 and λ∗ = L′/L0 > 1. This stretch leads to σ > 0, such that Eq. 1.3 (gσ > 0)

11
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Figure 1.6: Mechanical feedback in growth (for simple cases of gσ > 0, g0 = 0). (A) For a
predefined elastic stretch (λ∗ > 1), mechanical tension can induce cell proliferation. As cells
are produced to fill the space, tension decreases. This results in less proliferation, and so
forth, until a stable equilibrium is reached. (B) By contrast, consider a ring of connected
cells, with stretch induced by a constant pressure, p (denoted by small arrows). As these
cells proliferate (increasing the ring’s radius but not thickness), tension and proliferation
continue to increase. In this case (a positive feedback loop), the structure will continue to
grow and no equilibrium will be reached.

predicts an increase in proliferation (Fig. 1.6A, bottom). Furthermore, once the cells are

sufficiently compressed (σ0 = −g0/gσ), we expect growth to stop completely. A similar effect

has been observed in Drosophila wing, where surrounding tissue causes compression and

regional growth reduction during morphogenesis (Hufnagel et al., 2007; Aegerter-Wilmsen

et al., 2007).

In Fig. 1.6A, stress serves as a negative feedback factor to ensure equilibrium. (Note that

g0 > 0 will lead to compression at equilibrium, g0 < 0 will lead to tension at equilibrium, and

g0 = 0 will lead to zero stress at equilibrium.) However, the same growth law can produce

positive feedback under different circumstances (Fig. 1.6B).

In a wide range of biological systems, fluid exerts pressure to elastically stretch tissues or

organs. Examples include blood in the vessels or heart, fluid in the developing lung buds, and

eCSF in the brain. For thin-walled vessels, hoop stress due to pressure can be approximated
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by Laplace’s Law,

σ = pr/h (1.4)

where p is the internal pressure, r is the cross-sectional radius, and h is the wall thickness.

For a vessel under pressure, our growth law (assuming gσ > 0) predicts increased proliferation

due to the initial stretch of wall cells. However, growth does not succeed in reducing stress.

Instead, circumferential growth causes an increase in radius and, therefore, a further increase

in wall tension. This scenario leads to positive feedback, driving the structure to grow

dramatically (Fig. 1.6B) until some external force or change in the growth law is applied.

Similarly, altering eCSF pressure can drastically affect size of the early brain (Desmond and

Jacobson, 1977; Alonso et al., 1998) despite extremely low pressures (Jelinek and Pexieder,

1968).

1.2.3 Stress and strain energy minimization

In 3D continuum mechanics, Cauchy stress is defined by the tensor (Taber, 2004)

σ = J∗−1F∗ · ∂W
∂F∗T

(1.5)

where J∗ = det F∗ is the elastic volume ratio, T denotes the transpose, and W = W (F∗) is

the elastic strain energy density function that describes material behavior.

In the simple, 1D analysis above (Fig. 1.6A), the goal of feedback was to minimize a mechan-

ical quantity. Whether that quantity is truly Cauchy stress (σ), strain energy density (W ),

or some other function of elastic deformation (F∗) remains subject to debate. However, all

roughly seek to minimize physical energy, a common concept in nature.
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In Chapter 4, we seek a realistic solution for the deformation between younger (initial) and

older (final) cortical surfaces. However, the elastic and growth components of deforma-

tion cannot be practically separated. For this problem, we take a step back from cellular

mechanisms that may drive stress-dependent growth, instead thinking of growth as another

energetic quantity to be minimized. Since both elastic stretch and tissue growth require

energy, we assume nature will seek to minimize both to efficiently achieve the observed final

structure. (This convoluted structure, which cannot be altered in our analysis, may in turn

represent the most efficient shape for compact wiring (Van Essen, 1997) and/or differential

growth between cortical layers (Toro and Burnod, 2005; Xu et al., 2010b; Tallinen et al.,

2014).) Thus, we minimize the total surface strain energy, now defined as W = W (F).

1.3 Research Significance

By considering both the mechanical effects of biological factors (biomechanics) and the bio-

logical effects of mechanical factors (mechanobiology), this dissertation provides insights into

normal and abnormal brain development. Furthermore, the general approaches and theories

developed here may be applied to future studies of brain development, other organ systems,

or tissue engineering.

Notably, incomplete hemisphere division represents the most common brain malformation in

human, occurring in 1 out of every 250 human pregnancies (Matsunaga and Shiota, 1977).

Though most embryos do not survive to birth, the cases that do (1 in 10,000 live births)

often present with neurological disorders (Leoncini et al., 2008; Barkovich et al., 2012).

Furthermore, too little or too much growth can lead to microcephaly (small brain) or mega-

lencephaly (oversized brain), respectively. Microcephaly is generally rare, but it is more
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commonly observed with holoprosencephaly (Fernandes et al., 2007). By contrast, megalen-

cephaly occurs in 2% of the general adult population and has been linked to neurological

disorders including epilepsy and autism (Barkovich et al., 2012). Using mechanical analysis,

we find that even subtle alterations in mechanical forces (eCSF pressure) may play a role in

these morphologies.

In a broader sense, these embryonic studies explore the response of biological tissue to

mechanical loading. Because the brain is comprised of simple epithelium at the stages

considered, our observations may translate to other biological systems. The mechanisms,

mechanical feedback laws, and modeling techniques described in this research may prove

useful in future studies of organ or tissue development.

Beyond the embryonic phase, abnormal cortical folding has been linked to neural disorders

including autism, epilepsy, and schizophrenia (Lin et al., 2006; Li et al., 2016; Hardan et al.,

2004). In some cases the effect is global: too many small folds (microgyria), too few shallow

folds (pachygyria), or possibly a brain that is too large or small (Fig. 1.4). Locally, abnormal

folding can occur through injury including hydrocephalus (overinflated ventricles press on

the brain), intraventricular hemorrhage, and brain lesions. Preterm infants are at special

risk for these injuries.

For fetal and neonatal brain development, magnetic resonance imaging (MRI) offers a safe,

noninvasive tool to record brain geometry, material properties, and functional activity (Shi-

mony et al., 2016; Ball et al., 2014; Mukherjee et al., 2005; Glasser et al., 2016a). However,

clinical researchers have been unable to obtain accurate, precise measures of physical growth

during this period. By considering the mechanical concept of strain energy minimization,

we develop a novel technique for measuring brain growth from structural MRI data. We

illustrate its clinical application in preterm infants, providing unprecedented detail on the
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dynamics of cortical growth and folding. By incorporating this mechanical theory into a free

analysis tool already used by neuroscientists and clinical researchers (Robinson et al., 2014),

our approach may be applied to a wide range of future clinical and animal studies.

1.4 Synopsis of dissertation

This dissertation can be divided into three distinct phases of brain development (Fig. 1.1),

as outlined below.1

1.4.1 Segmentation, inflation, and bending of the forebrain

In Chapter 2, we describe the physical processes that partition the forebrain into the di-

encephalon, telencephalon, and optic vesicles. Furthermore, we explain how constrictions

between these regions may be maintained (and exaggerated) during subsequent inflation,

growth and bending. In experiments on chicken embryos, chemical perturbations of contrac-

tility and patterns of F-actin indicate a major role for actomyosin contraction in the creation

of initial constrictions. However, the same experiments suggest that this effect is short-lived.

We propose a mechanical feedback mechanism to maintain and deepen these constrictions

at later stages, such that growth is influenced by stresses from actomyosin contraction. This

idea was examined by including stress-dependent growth in a model with eCSF pressure

and bending (cephalic flexure). Model results are in close agreement with morphological

changes observed under normal and reduced eCSF pressure, as well as previously published

1These chapters include co-authored work (first-author Kara E. Garcia). Contributions of co-authors are
denoted at the beginning of each chapter.
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patterns of cell proliferation. Taken together, our results support a biphasic mechanism

for forebrain morphogenesis, initiated by differential contractility and propagated stress-

dependent growth.

1.4.2 Emergence of the right and left hemispheres

In Chapter 3, we extend our mechanical feedback model to the next major change in brain

morphology: division of the telencephalon into right and left cerebral hemispheres. From

previous studies, we acquire a wealth of information regarding morphogen signals involved

in this phenomenon. While it is widely accepted that these signals influence growth, and

that these signals are necessary to cleave the hemispheres, no studies have analyzed whether

differential growth is able to physically shape the cerebral hemispheres.

Unlike the processes in Chapter 2, disruption of embryonic hemisphere morphogenesis re-

lates to several clinically-observed conditions, including holoprosencephaly, microcephaly,

and megalencephaly. Some of these cases, particularly those associated with genetic or ter-

atogenic factors, can be explained by aforementioned signals, but not all. In this study,

we show that even subtle alterations in mechanical feedback (eCSF pressure) provide a

morphogen-independent route to these morphologies.
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1.4.3 Patterns of growth during cortical folding in human

In Chapter 4, we move directly from chicken to human, measuring surface expansion during

the complex process of cortical folding. We consider surface reconstructions from preterm in-

fants, imaged several times over the course of the third trimester, to quantify and understand

the dynamics of brain growth and folding.

In a multidisciplinary, collaborative effort, we developed a new tool called anatomically-

constrained Multimodal Surface Matching (aMSM). This approach merges current brain

mapping techniques with mechanical theory to estimate physical deformation between younger

and older time points. Our results suggest a pattern of cortical expansion consistent with

what is known regarding regional maturation and the timing of new folds. We also detect

injury in individual subjects, suggesting that this technique could be used to explore clinical

conditions associated with abnormal growth due to genetics, injury, or other environmental

variables.
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Chapter 2

Contraction and stress-dependent

growth shape the forebrain of the

early chicken embryo2

Summary During early vertebrate development, local constrictions, or sulci, form to di-

vide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions

are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining

quantitative experiments on chick embryos with computational modeling, we investigated the

biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of

contractility indicated that actomyosin contraction plays a major role in the creation of ini-

tial constrictions (Hamburger-Hamilton stages HH11–12), and fluorescent staining revealed

that F-actin is circumferentially aligned at all constrictions. A finite element model based

on these findings shows that the observed shape changes are consistent with circumferen-

tial contraction in these regions. To explain why sulci continue to deepen as the forebrain

2Based on published manuscript: K. E. Garcia, R. J. Okamoto, P. V. Bayly, and L. A. Taber. Contraction
and stress-dependent growth shape the forebrain of the early chicken embryo. Journal of the mechanical
behavior of biomedical materials, 65:383397, 2017. https://doi.org/10.1016/j.jmbbm.2016.08.010. Larry
Taber, Ruth Okamoto, and Philip Bayly helped design the experiments and edited the manuscript.
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expands (HH12–20), we speculate that growth depends on wall stress. This idea was ex-

amined by including stress-dependent growth in a model with cerebrospinal fluid pressure

and bending (cephalic flexure). The results given by the model agree with observed mor-

phological changes that occur in the brain tube under normal and reduced eCSF pressure,

quantitative measurements of relative sulcal depth versus time, and previously published

patterns of cell proliferation. Taken together, our results support a biphasic mechanism for

forebrain morphogenesis consisting of differential contractility (early) and stress-dependent

growth (late).

2.1 Introduction

The embryonic brain emerges through a series of complex physical processes. Following

neurulation, the anterior end of the neural tube expands to create the primitive brain,

and circumferential constrictions, or sulci, divide the brain tube (BT) into three primary

vesicles called the forebrain, midbrain, and hindbrain (Lowery and Sive, 2009). In the

forebrain, additional constrictions form to separate the telencephalon, diencephalon, and

the optic vesicles (Fig. 2.1). Meanwhile embryonic cerebrospinal fluid (eCSF) accumulates

in the lumen, and the brain undergoes a period of rapid expansion and flexure. During

these stages, insufficient growth of the forebrain can result in microcephaly (small brain)

(Cox et al., 2006), and abnormal shaping has been linked to a range of neurodevelopmental

disorders (Lowery and Sive, 2009).

This paper aims to explain secondary morphogenesis of the forebrain. On the dorsal side of

the embryonic brain tube (Fig. 2.1A,B) the telencephalon and diencephalon are physically

delineated by a constriction called the anterior intraencephalic sulcus, or AIS (Folgueira
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Figure 2.1: Forebrain development in chick embryo. (A–C) Bright-field images of extracted
embryos. (A) At HH11 (dorsal view), the brain tube (BT) is divided into three primary
vesicles: forebrain (F), midbrain (M) and hindbrain (H). Optic vesicles (OVs) protrude bilat-
erally from the forebrain. (B) By HH13, the forebrain has further divided into diencephalon
(D) and the telencephalon-hypothalamus complex (T). On each side the optic stalk (OS)
has also constricted to separate OVs from T. (C) By HH20, a 90 degree rotation at the
level of the spinal cord (not shown) results in a lateral instead of dorsal view of the BT.
All sulci persist as the BT bends and expands. Scale bars: 500 µm. (D) Schematic of fore-
brain development (lateral view). The notochord (nt) and caudal-rostral axis (blue-to-green
gradient) of the BT are relatively straight initially. As the BT grows, the notochord and
BT bend ventrally, maintaining dorsal-ventral signaling (black-to-gray gradient) along the
new curvature. Together the OVs, telencephalon (tel), and hypothalamus (hy) comprise the
secondary prosencephalon (SP). DMB, diencephalon-midbrain boundary sulcus (blue dashed
line); AIS, anterior intraencephalic sulcus (green dashed line).
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et al., 2012). On the ventral side, however, bending and bulging of the forebrain make

subdivisions more difficult to interpret. As shown in Fig. 2.1C,D (right lateral view), the

hypothalamus later appears as a ventral bulge in the curved forebrain. Optic vesicles also

protrude from left and right sides of the forebrain to create the primitive eyes. Based on

signaling patterns and fate-mapping, Puelles et al. (2012) propose that the telencephalon,

hypothalamus, and optic vesicles all emerge from the rostral tip of the brain tube, a region

named the secondary prosencephalon (SP). As shown in Fig. 2.1, the SP is morphologically

distinct from the diencephalon and follows a dorsoventral pattern similar to the other brain

vesicles.

The mechanisms responsible for secondary forebrain division remain poorly understood

(Puelles et al., 2012). In the chick embryo, Filas et al. (2012) showed that actomyosin

contraction likely creates the sulci between primary vesicles. A similar contractile mech-

anism is plausible within the forebrain, where actin is concentrated at the apical surface

(Filas et al., 2012) and actin-binding proteins have been reported at sulci (Nicholson-Flynn

et al., 1996). Yet evidence also suggests alternative or supplementary roles for pressure and

growth (Gutzman and Sive, 2010; Lowery and Sive, 2009). Pressure from the eCSF inflates

the brain tube viscoelastically and increases growth of the neuroepithelium (Desmond and

Jacobson, 1977; Desmond et al., 2014; Alonso et al., 1998; Goodrum and Jacobson, 1981).

Studies have also revealed increased proliferation in vesicles and dorsal regions of the normal

embryonic chick brain (Layer and Sporns, 1987; Weikert et al., 1990; Takamatsu and Fujita,

1987).

This study focuses on the origin of the constrictions that separate the telencephalon-hypothalamus

complex (T), diencephalon (D), and optic vesicles (OVs). Using the chick embryo as an ex-

perimental model, we determined the effects of actomyosin contraction and eCSF pressure on
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brain shape. Computational models incorporating experimentally measured F-actin align-

ment verify that a contractile mechanism is sufficient to initiate forebrain subdivision. How-

ever, our results suggest that an additional mechanism is needed to maintain and deepen

sulci during subsequent brain inflation and bending (cephalic flexure). We propose that

mechanical feedback, through the interaction of wall stress and growth, is instrumental in

forebrain expansion and sulcal maintenance. To evaluate this hypothesis, we compare new

experimental data with a model that includes contraction, eCSF pressure, bending, and

stress-dependent growth. Our results highlight how the interplay of several common mor-

phogenetic mechanisms can generate the complex structure of the early embryonic brain.

2.2 Methods

2.2.1 Embryo culture and perturbation

Fertilized white Leghorn chicken eggs were incubated at 37◦ C (90% humidity), and em-

bryos were extracted using a filter paper carrier as described in Chapman et al. (2001).

Embryos were staged according to the system of Hamburger and Hamilton (1951) (denoted

HHxx) and cultured in Dulbecco’s Modified Eagle’s Medium (Sigma) with 10% chick serum

(Sigma), 1% penicillin/streptomycin/neomycin (Invitrogen). During culture embryos were

submerged under a thin layer of fluid and superfused with a mixture of 95% oxygen and 5%

carbon dioxide (Voronov and Taber, 2002). All embryos were examined over the course of

development under a Leica MZ8 microscope.
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Altering actomyosin contractility To alter contractility during initial forebrain subdi-

vision, embryos were extracted at 40–42 h incubation (HH11) and cultured with blebbistatin

(60 µM, Sigma) or calyculin A (30 nM, Sigma). Blebbistatin decreases contraction by inhibit-

ing myosin II adenosine triphosphatase, while calyculin A enhances contraction by inhibiting

myosin II phosphatase (Filas et al., 2012). As an alternate method of increasing contrac-

tion, several embryos were treated in media containing 5 mM adenosine triphosphate (ATP,

Sigma) and 0.05% Triton-X 100 for 3 h. To rule out the effects of external forces, external

mesenchyme and membranes were removed from several samples, which were then cultured

for 6 h in control media or media containing calyculin A (30 nM). To observe effects at later

stages, calyculin A was also added to culture medium of embryos after 50–60 h incubation

(HH14–17) at concentrations of 30 nM or 100 nM.

Altering eCSF pressure To relieve pressure during later stages of brain expansion, nor-

mal embryos (HH12) were intubated at the anterior neuropore with an open pulled glass

micropipette (inner diameter = 40–60 µm) and cultured in media for 24 h (Desmond and

Jacobson, 1977). Only embryos in which the tube remained intact and unblocked were used

for subsequent analysis. In control embryos, pressure was similarly relieved at the equivalent

end stage (HH17) using a glass capillary tube (inner diameter = 150 µm).

2.2.2 Morphological imaging and analysis

For quantitative analysis, optical coherence tomography (OCT) was used to record three-

dimensional (3D) geometries in living embryos at multiple time points. With Fiji/ImageJ

software, image stacks were oriented to yield cross sections along the axis of the BT (see

Fig. A.1 for details) (Schindelin et al., 2012). The perimeter δ of the lumen was traced and
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recorded for each cross section, and the average inner radius was computed as R = δ/2π.

The average circumferential stretch ratio is given by λΘ = r/R, where R and r are the

average radii in the initial and final configurations, respectively.

Relative constriction is defined as the ratio of vesicle radius to adjacent sulcus radius. Ratios

are denoted by T/AIS (rT/rAIS), D/DMB (rD/rDMB), and M/DMB (rM/rDMB). According

to this notation, a sulcus forms when the corresponding ratio is greater than unity, and the

sulcus deepens as the ratio increases.

2.2.3 Actin imaging and analysis

To visualize F-actin on the apical surfaces, embryos were fixed with 3.7% formaldehyde,

cut into dorsal and ventral halves, and stained with phalloidin (Filas et al., 2012). Three-

dimensional images of the apical surface were recorded using a Zeiss LSM 710 confocal

microscope with a 20x objective lens.

Fiji/ImageJ was used to divide image stacks into 50 µm by 50 µm squares, with the view

angle reoriented manually to ensure images tangent to the apical surface. This method was

designed to minimize tissue distortion associated with previous flat-mount techniques (Filas

et al., 2012). For each square, the angular distribution of actin was calculated from its

Fourier power spectrum using the directionality function in Fiji/ImageJ (Liu, 1991). The

resulting histogram of actin directionality (N=90 bins spanning 0◦ to 180◦) was converted

into circumferential (0◦) and longitudinal (90◦) components, SΘ and SZ , respectively, as
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defined by the relations

SΘ =

∫ π

0

| ξ(γ) cos γ | dγ ≈
N∑
n=1

| ξn cos γn |

SZ =

∫ π

0

| ξ(γ) sin γ | dγ ≈
N∑
n=1

| ξn sin γn | . (2.1)

Here γ is the fiber angle relative to the circumferential direction, and ξ is the angular

distribution normalized to
∫ π

0
ξ(γ)dγ =

∑N
n=1 ξn = 1 (Marquez, 2006). The total area

fraction of actin was estimated by the number of bright pixels divided by total number of

pixels in the image. Since actin generally outlines apical cell borders, cell density was also

estimated as the number of cells in an image divided by the total image area.

2.2.4 Statistics

Statistical significance was evaluated between groups using SigmaPlot (Systat Software, San

Jose, CA). Analysis of Variance (ANOVA) with post-hoc Tukey test was used to compare

data between multiple groups. Student t-test was used to compare data between two groups

where applicable. For all tests, P<0.05 was considered to be significant. All error bars

denote standard deviation unless otherwise indicated.

2.2.5 Computational modeling

Geometry and boundary conditions To simulate forebrain morphogenesis, finite el-

ement models were created using ABAQUS Standard (v6.10, SIMULIA, Providence, RI).
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Initial three-dimensional geometries were based on dimensions from OCT images at HH11,

before forebrain constriction.

We considered two idealized models for development from HH11 to HH12. The first model

considers the main BT as a cylinder of length L = 0.5 mm, wall thickness h = 50 µm, and

inner radius R = 0.1 mm, including a hemispherical cap for the forebrain but omitting optic

vesicles (Fig. 2.4A, top). The second model considers only the SP (Fig. 2.4A, bottom), con-

sisting of a middle spherical shell (telencephalon-hypothalamus complex) with inner radius

RT = 0.15 mm, optic vesicles with inner radius ROV = 0.08 mm, wall thickness h = 50

µm, and total distance W = 0.6 mm between tips of the optic vesicles. In both models

only the left half of the brain was simulated, using symmetry conditions at the cutting plane

to reduce computation time. The open (midbrain) end of the BT model is constrained by

roller boundary conditions, and the SP model assumes rostral-caudal symmetry. Walls are

five elements thick and composed of C3D20R elements (20-node hexagonal elements with

reduced integration). To capture full model behavior, 7115 elements are used in the BT

model, and 3810 elements are used in the SP model.

A third, modified BT model was used to simulate morphogenesis beyond HH12 (omitting

OVs), as the BT undergoes significant bending and growth. Flexure has been attributed

in part to the notochord, which is a relatively stiff, rod-like structure attached along the

ventral side of the BT (Fig. 2.1D) (Adams et al., 1990; Zhou et al., 2009; Agero et al.,

2010). As the brain grows longer, the length of the notochord changes relatively little,

which could cause the tube to bend (Takamatsu and Fujita, 1987; Fujita, 1986). Here the

notochord is represented by a stiff, non-growing region on the ventral side of the BT with

a shear modulus that decays from 100µ at the ventral midline to µ at its dorsal and lateral

edges (Fig. 2.6A). This continuous representation, as opposed to a separate notochord, was
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implemented to minimize stress concentrations and improve convergence for models that

include stress-dependent growth. Notably, bending requires a fully 3D analysis.

To simulate the one-cell-thick neuroepithelium, the walls of all models consist of an outer

layer of passive, growing tissue and a relatively thin inner layer of contractile tissue (20% of

the initial wall thickness) to represent the network of actomyosin fibers located at cell apices.

In addition, a uniform pressure p = 30 Pa (Jelinek and Pexieder, 1968) is applied to the

inner surface of each model. Pressure is ramped to its final value after contraction (HH12− to

HH12+), then held constant for all subsequent development up to HH20, in agreement with

data of Desmond et al. (2005), who measured relative changes in eCSF pressure from HH12–

26. For simplicity, stress-dependent growth is applied only after contraction and pressure

have reached their final, maintained values (HH12+).

Kinematics Contraction and growth were simulated in ABAQUS using a custom user

subroutine based on the UMAT-generator of Young et al. (2010) for large deformations.

Modifying the theory for volumetric growth (Rodriguez et al., 1994), we decompose the

total deformation gradient tensor in the form

F = F∗ ·C ·G, (2.2)

where G, C, and F∗ are growth, contraction, and elastic deformation gradient tensors,

respectively. With rigid-body rotation absorbed into F∗, G = I corresponds to no net

growth and C = I corresponds to passive tissue, where I is the identity tensor. Relative to

the zero-stress configuration, the Lagrangian strain tensor is E∗ = 1
2
(F∗T · F∗ − I).

28



Since the wall thickness of the early BT remains relatively unchanged throughout the stages

considered here (Fig. A.1D), we do not include contraction or growth in the radial (transverse

normal) direction. We also assume that growth is transversely isotropic relative to the radial

direction. For cylindrical geometry, these stipulations lead to the relations

C = eReR + CΘ eΘeΘ + CZ eZeZ

G = eReR +G eΘeΘ +G eZeZ . (2.3)

Contraction is simulated by taking 0 < CΘ < 1 and 0 < CZ < 1 (CΘ = CZ = 1 for passive

tissue), and G > 1 gives positive growth. For spherical and toroidal geometries, the Z

direction is replaced by the more general meridional direction Φ.

Constitutive relations In all models, the passive outer layer is taken as isotropic (Xu

et al., 2010a), while the contractile inner layer is represented by an active orthotropic material

consisting of aligned fibers within an isotropic meshwork (cell membrane and disordered

actomyosin fibers) (Murrell et al., 2015). To account for the relatively small volumes of water

that enter or exit the tissue during deformation, both layers are assumed to be composed of

nearly incompressible pseudoelastic materials (Xu et al., 2010a).

The Cauchy stress tensor is given by (Taber and Perucchio, 2000)

σ = J∗−1F∗ · S · F∗T (2.4)
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where Eq. (2.2) gives F∗ = F ·G−1 ·C−1, and

S = ϕiso
∂Wiso

∂E∗
+ ϕΘ

∂Wf

∂E∗ΘΘ

eΘeΘ + ϕZ
∂Wf

∂E∗ZZ
eZeZ (2.5)

is the second Piola-Kirchhoff stress tensor. Here, Wiso(E
∗) and Wf (E

∗
ΘΘ, E

∗
ZZ) represent

strain-energy density functions for isotropic constituents and aligned contractile fibers, re-

spectively. In addition, J∗ = det F∗ is the elastic volume ratio, the ei are unit base vectors

in the initial configuration, and T denotes the transpose. The ϕk are volume fractions that

satisfy the condition

ϕiso + ϕΘ + ϕZ = 1. (2.6)

In the passive outer layer, C = I, ϕiso = 1, and ϕΘ = ϕZ = 0.

For these early stages in the chick embryo, neuroepithelial tissue is relatively linear and can

be treated as a modified neo-Hookean material (Xu et al., 2010a). Here, we take

Wiso = µ
2
(Ī∗1 − 3) + κ

[
1
2
(J∗2 − 1)− ln J∗

]
Wf = 1

2

(
µΘE

∗2
ΘΘ + µZE

∗2
ZZ

)
, (2.7)

where Ī∗1 = J∗−2/3 tr(I + 2E∗) is the first strain invariant; µ, µΘ, and µZ are shear moduli;

and κ is the bulk modulus. Using the measurements of Xu et al. (2010a) for the embryonic

chick brain (HH11–13), we set µ = 200 Pa and κ = 100µ for both layers. Values for the

other moduli and volume fractions are discussed below.

Contraction parameters To estimate the values of CΘ and CZ (or CΦ), we modified the

method of Filas et al. (2012), who modeled morphogenesis of the midbrain and hindbrain

vesicles. Accordingly, contractile strength C is characterized by the relative change in apical
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surface area of the cells as given by

C = CΘCZ = CΘCΦ. (2.8)

As C decreases from unity, strength of contraction increases. For normal development, we let

C = 0.5 at peak contraction, consistent with measurements of Nakajima and Tanoue (2010)

for mammalian epithelial cells. To check for consistency, model results were compared to

the experimentally measured stretch ratio λΘ in the diencephalon. To calibrate contraction

for the hypercontracted brain, C was decreased until λΘ reached the average value measured

for embryos cultured in 30 nM calyculin A, corresponding to C = 0.3 for our case. In other

systems undergoing apical constriction, such as during Drosophila gastrulation and avian

lung budding, the relative change in area has been reported as low as 0.25 (Martin et al.,

2009; Kim et al., 2013). We assume uniform C throughout the inner layer of our models,

where colocalization of F-actin and phosphorylated myosin light chain (pMLC) has been

reported previously (Filas et al., 2012).

Filas et al. (2012) assumed that contractile anisotropy is related to changes in cell shape.

Here, however, we estimate anisotropy from our actin alignment data through the relations

CΘ =
SZ
SΘ

√
C, CZ =

SΘ

SZ

√
C, (2.9)

which satisfy Eq. (2.8). As defined by Eqs. (2.1), SΘ and SZ represent the net fiber com-

ponents oriented in the circumferential and longitudinal directions, respectively. According

to these relationships, greater circumferential fiber content (increased SΘ) corresponds to

increased circumferential contractility (decreased CΘ), and vice versa. This relationship is
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consistent with published findings that contractile force increases with fiber alignment in

vascular smooth muscle cells and cardiomyocytes (Alford et al., 2011; Feinberg et al., 2012).

Actomyosin fibers also stiffen as they contract, due in part to the addition of myosin crosslinks

(Stricker et al., 2010; Salbreux et al., 2012). To include this effect we assume that the fiber

shear modulus increases with contraction (decreased CΘ, CZ) through the relations

µΘ = µC−αΘ , µZ = µC−αZ (2.10)

where α > 0. Here we consider α = 4. For control embryos this relationship gives µΘ = µZ ≈

4µ in isotropic regions but µΘ ≈ 13µ and µZ ≈ 1.2µ in aligned regions (for SΘ/SZ ≈ 1.3).

For hypercontracted brains these relations yield µΘ = µZ ≈ 11µ in isotropic regions. Such

increases are consistent with previously reported stiffening of the BT under contraction (Filas

et al., 2011), as well as direct measurement of actin fiber stiffening in living endothelial cells

(Lu et al., 2008). All values fall within the range of previously reported actin-fiber stiffness

data (Stricker et al., 2010; Salbreux et al., 2012).

Since SΘ and SZ also represent fractional sums of all fiber components oriented in the Θ

and Z directions, we use these quantities to estimate volume fractions in the relatively thin

contractile layer. Actin image analysis indicates that fibers comprise about 50% of the apical

surface area. To satisfy Eq. (2.6), we take ϕiso = 0.5 and

ϕΘ =
0.5SΘ

SΘ + SZ
, ϕZ =

0.5SZ
SΘ + SZ

. (2.11)
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Growth law In the BT model for HH12–20, growth is included in the outer, passive layer

through a rate equation of the form

Ġ = (g0 + gσσ̄)G (2.12)

where g0 ≥ 0 is the baseline growth rate and gσ ≥ 0 is a coefficient for stress-dependent

growth (Taber, 2009). In this equation, the nondimensionalized average stress is defined as

σ̄ =
1

2µ
(σΘΘ + σZZ). (2.13)

Here we assume stress-dependent growth is triggered by tension only (gσ = 0 for σ̄ ≤ 0).

As described in the Results section, values of the growth parameters were determined by

fitting model results to experimental measurements of embryos cultured under control and

zero-pressure conditions.

2.3 Results

Stage-dependent results are based on the system of Hamburger and Hamilton (1951), who

divided the 21-day incubation period of the chick embryo into 46 stages based on morpho-

logical characteristics. Stage is a nonlinear function of time that depends on environmental

and other factors. Thus, developmental stage in the following models is related to average

midbrain radius (rM) measured in chick embryos.
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Figure 2.2: Effects of actomyosin contraction on early forebrain morphogenesis (HH11–12).
Stage HH11 embryos were cultured 6 h in media containing blebbistatin or calyculin A to
inhibit or enhance contractility, respectively (control n=9, blebbistatin n=15, calyculin A
n=12). (A–C) Bright-field images reveal altered BT morphology under each condition (dor-
sal view). White arrowheads indicate AIS, black arrowheads indicate the optic stalk (OS),
and white arrows highlight previously formed DMB. Dashed lines indicate locations used to
compute average radii for T (red), D (green) and M (blue). Scale bars: 200 µm. (A’–C’)
Representative OCT cross sections of SP for each case. Dashed white lines indicate locations
used to compute average radii for the OS, and the average radius of T was calculated con-
sidering lumen area between the optic stalks. Scale bars: 100 µm. (A”–C”) Representative
AIS cross sections for each case. Scale bars: 100µm. (D) Relative constrictions based on
average radii at locations indicated in (A–C), as well as relative OS stretch ratio λOS based
on locations indicated in (A’–C’). *P<0.05, **P<0.001 (E) Representative sagittal cross
sections before and after 6 h in blebbistatin, followed by washout (n=6). White arrowheads
indicate AIS. Scale bars: 200 µm.
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2.3.1 Contraction is necessary for AIS and OS formation

In the early chick embryo, the apical (inner) surface of the BT is lined with actin and

myosin, which have been implicated in shaping the primary vesicles (Filas et al., 2012).

To determine whether actomyosin contraction also partitions the forebrain (AIS and OS

formation), embryos were cultured from HH11 to HH12 in control media (n=9), blebbistatin

to reduce contractility (n=15), or calyculin A to increase contractility (n=12) (Fig. 2.2A–C).

Morphological changes were measured from OCT cross sections (Fig. 2.2A’–C’, A”–C”). To

rule out the influences of external factors, additional experiments were also conducted as

outlined in Supplementary Data (Fig. A.2). These include exposure to ATP (n=5), culture

of isolated brain tubes in control media (n=3) or calyculin A (n=5), reduced eCSF pressure

during boundary formation (n=3), and staining for cell death (n=21).

Exposure to blebbistatin significantly reduced relative AIS constriction (T/AIS) (P=0.001,

Fig. 2.2D), which resumed after subsequent washout (n=6, Fig. 2.2E). Blebbistatin had

relatively little effect on the DMB, which formed prior to HH11, suggesting that constriction

may be at least partially irreversible (Filas et al., 2012). Due to the complex shape of the

optic vesicle (see Fig. 2.1C), OS constriction could not be measured relative to the primitive

eye. However, comparison of circumferential stretch, λOS, revealed that the optic stalk

expanded when cultured in blebbistatin (Fig. 2.2A’–B’).

Exposure to calyculin A increased relative constriction of the DMB (M/DMB, P<0.001)

and AIS (T/AIS, P=0.058) and caused significant shrinkage of the OS (λOS, P<0.001). The

effect of calyculin A on T/AIS showed largest variability, with the AIS sometimes appearing

similar to controls and other times almost entirely closing off the boundary. Because even

embryos of the same stage show slight differences, we speculate that the embryos most
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affected by calyculin A were at an optimal point in development to allow hypercontraction.

”Hinge-points” were also observed at the dorsal, ventral, and lateral corners of the AIS

in hypercontracted embryos (Fig. 2.2C”), similar to those described in other regions by

Filas et al. (2011). For simplicity our measures reflect only the change in total boundary

circumference.

Embryos cultured with ATP showed hyperconstriction that was qualitatively similar to those

cultured in calyculin A (Fig. A.2A). Isolated BTs constricted slightly more than those of

intact embryos in control media (Fig. A.2B), but isolated BTs constricted drastically in

calyculin A (Fig. A.2C). Constrictions were observed even for embryos in which the neural

tube failed to close, ruling out a need for eCSF pressure in sulcus initiation (Fig. A.2D).

Furthermore, no cell death was observed during early or late sulcus formation (Fig. A.2E).

These results suggest that the observed changes in morphology are likely caused by altered

contractility within the neuroepithelium; external forces are not necessary for initial forebrain

subdivision.

2.3.2 Actin is circumferentially aligned at forebrain constrictions

The importance of myosin II in forebrain subdivision motivated a closer look at its structural

counterpart, F-actin. Staining for F-actin at the time of AIS formation (HH12, n=15)

revealed localization at the apical surface throughout the forebrain (Fig. 2.3A–C). This

appears similar to the midbrain and hindbrain, where colocalized F-actin and phosphorylated

myosin light chain (pMLC) were found along the apical surface (Filas et al., 2012). Confocal

imaging of the apical surface (Fig. 2.3A’–C’) revealed distinct patterns of actin alignment and

three statistically significant groups (ANOVA P<0.001, n=5–6 per group). Actin fibers were
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Figure 2.3: Actin patterns in HH12 brain tube. (A–C) Phalloidin staining revealed F-actin
concentrated along the entire apical surface of the forebrain vesicles and sulci. Representa-
tive images are shown for the wall of the AIS, D, and DMB, respectively. (A’–C’) The inner,
apical surface of the forebrain was recorded and divided into 50 µm x 50 µm squares for anal-
ysis. Representative squares are shown for the AIS, D, and DMB, respectively. Arrowheads
indicate actin cables that span multiple cells. (A”–C”) Histograms of fiber orientation for
squares in (A’–C’). (D) Each histogram was decomposed into circumferential and longitu-
dinal components, SΘ and SZ , relative to the BT. Fiber orientation, defined by SΘ/SZ , is
compared across major regions (log scale). SΘ/SZ = 1 indicates isotropic fiber organization,
SΘ/SZ > 1 indicates circumferentially aligned fibers, and SΘ/SZ < 1 indicates longitudi-
nally aligned fibers. One-way ANOVA (P<0.001) with post-hoc Tukey test revealed three
statistically different groups denoted by a, b and c (n≥5 per region, P<0.05). (E) Schematic
summarizing observed fiber orientations. Isotropic fiber organization for the midbrain (M)
has been previously described (Filas et al., 2012). Scale bars: 20 µm.
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circumferentially oriented (SΘ/SZ > 1) in circumferentially constricted regions (DMB and

AIS), longitudinally oriented (SΘ/SZ < 1) on the dorsal side of the OS, and isotropically

oriented (SΘ/SZ ≈ 1) elsewhere (D, T, and ventral OS). With the exception of the OS,

no significant differences were observed between dorsal, ventral, and lateral sides of the

BT. These patterns are summarized in Fig. 2.3E, and detailed distributions are shown in

Fig. 2.4C.

Since the OS is essentially a small cylinder protruding perpendicularly from the BT, the

longitudinal direction relative to the BT is circumferential relative to the OS. As such, actin

fibers are consistently oriented in the direction of maximum curvature at all constrictions.

With this interpretation, the estimated alignment in the local circumferential direction is

similar for the DMB, AIS and OS (Fig. 2.3D). As in Filas et al. (2012), actin is circumferen-

tially aligned at persistent brain constrictions (MHB, DMB, AIS, OS), while it is relatively

isotropic in brain vesicles (H, M, D, T).

2.3.3 Contraction initiates forebrain segmentation

To examine whether measured actin patterns could produce observed morphology, we sim-

ulated contraction in finite element models for the HH11–12 BT (without OVs) and SP

(including OVs). Initial model geometries are based on OCT measurements (Fig. 2.4A,

see Table 2.1 for parameter values). Material properties, eCSF pressure p, and contractile

strength C were taken from published data (Xu et al., 2010a; Jelinek and Pexieder, 1968;

Nakajima and Tanoue, 2010), and directional contractilities were calculated from actin orien-

tation using Eq. (2.9) (Fig. 2.4C,D). The resulting model contained only one free parameter,

α, which determines how fiber shear modulus varies with C (see Eq. (2.10), calibration
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Figure 2.4: (Continued on the following page.)
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Figure 2.4: Finite element models of initial forebrain subdivision (HH11–12). (A) Initial
geometries approximate HH11 BT (omitting OVs, top) and SP (bottom). A thin contractile
layer covers the inner surface (red in B, right) (B) Deformed geometry with normalized
circumferential stress distributions for the cases of no contraction (blebbistatin), normal
contraction (control), and hypercontraction (calyculin A). Representative cross section is
shown at right. (C) Experimental actin alignment patterns were used as model input. Top:
Patterns along the Z-axis of the BT indicate circumferential alignment at DMB (Z ≈ 0.13
mm) and AIS (Z ≈ 0.37 mm). Experimental data are shown for the dorsal midline, but
no significant differences were observed between dorsal and ventral sides. Bottom: Patterns
along the X-axis of the SP indicate circumferential alignment at dorsal but not ventral OS
(X ≈ 0.2 mm). Bars represent standard error of the mean. (D) Resulting circumferential
(CΘ) and longitudinal (CΦ) contraction tensor components plotted along the Z and X-axes
for normal (C = 0.5) and hypercontracted (C = 0.3) cases. (E) Relative AIS depth (T/AIS)
and OS stretch (λΘ,OS) plotted for model and experimentally measured values.

in Fig. 2.9). Since the size of the BT changes relatively little from HH11–12, growth was

neglected during this step.

For α = 4, our BT model produced a shape resembling morphology of the HH12 BT (com-

pare Fig. 2.4B to Fig. 2.2A–C). Relative constriction of the AIS agrees well with quantitative

measurements under reduced, normal, and enhanced contraction (Fig. 2.4E, top). Using the

same contraction parameters, the SP model gives similarly accurate results for OS constric-

tion (Fig. 2.4E, bottom).

At these stages, wall stress is determined by a combination of lumen pressure, which pro-

duces tension, and apical contraction, which produces tension in the inner, contractile layer

and compression in the outer, passive layer. Under normal contraction, the passive layer

experiences circumferential compression at the sulci but minimal wall stress in the vesi-

cles (Fig. 2.4B). As contraction increases, compression of the passive layer increases. Note

that, while both model geometries are initially axisymmetric, differences between ventral

and dorsal actin orientation at the OS produce slight asymmetry in final shape and stresses
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of the SP. (As shown in Fig. 2.1C, the OVs becomes quite asymmetric at later stages of SP

development.)

For a pressurized tube, compliance generally increases with the ratio of radius to wall thick-

ness. This ratio is relatively small at HH12; eCSF pressure causes elastic deformation of

only λ∗Θ = 1.1 ± 0.1 in control embryos (vesicle radii measured from OCT before and after

deflation, n=7). In embryos exposed to blebbistatin, however, the walls of the BT and SP

are abnormally compliant. Similarly, in BT and SP models with no contraction, the active

layer fails to stiffen and we see overexpansion. Our SP model reveals that the OS is partic-

ularly susceptible to overexpansion (Fig. 2.4B), consistent with experimental observations

(Fig. 2.2A’).

2.3.4 Lumen pressure drives forebrain expansion via inflation and

growth

The BT undergoes significant expansion in subsequent stages of normal development, with

vesicle radii more than doubling from HH12–17. To separate the relative contributions of

eCSF pressure and growth, we measured lumen radii across the BT for three cases: (1)

embryos cultured from HH12 to HH17 with no pressure (n=6 intubated; Fig. 2.5B–C); (2)

embryos cultured from HH12 to HH17 with normal pressure (n=8 control; Fig. 2.5E); and

(3) control embryos immediately after deflation at HH17 (n=8; Fig. 2.5D). The relationships

between each case are depicted schematically in Fig. 2.5A.

As shown in Fig. 2.5F, vesicle radii increased slightly during culture of intubated BTs, in-

dicating low baseline growth in the absence of pressure (P=0.25, 0.02, and 0.13 for M, D,
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Figure 2.5: Effects of eCSF pressure on forebrain development (HH12–17). (A) Schematic
depicting analysis of growth and elastic deformation. Radius for each cross section was
determined from images of brains shown below each section. These radii were used to
compute baseline growth (G0 = rc/R), pressure-dependent growth (Gσ = ra/rc), and elastic
stretch ratio (λ∗Θ = r/ra). (B–C) To determine baseline growth, embryos were intubated
at HH12 (B) and cultured to HH17 (C, n=6). (D–E) To determine elastic stretch due to
pressure, HH17 control embryos were imaged immediately before (E) and after intubation
(D, n=8). Representative OCT cross sections shown for midbrain are shown (B’–E’). Bright
field images (lateral view) for sections shown in B–E. Dotted lines indicate locations used
to compute average radii for M (black), D and T (white); asterisks indicate location of
tube insertion. (F) Measured radii for each case, where colors of each bar correspond to
radii shown in (A). For each vesicle, one-way ANOVA (P<0.001) with post-hoc Tukey test
revealed 3–4 statistically different groups denoted by a, b, c and d (P<0.05). (G) Estimated
contributions of baseline growth G0, stress-dependent growth Gσ, and elastic stretch (λ∗Θ)
to total expansion from HH12 to HH17. No statistically significant differences were detected
between regions. Scale bars: 0.1 mm for (B–E) and 0.5 mm for (B’–E’).
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and T). However, these radii were significantly less than equivalent controls, indicating addi-

tional growth driven by eCSF pressure (P<0.001 for all vesicles). Circumferential stretch and

growth ratios were estimated from these radius measurements. As illustrated in Fig. 2.5A,

we assume that the total stretch ratio λΘ = r/R can be decomposed into the following

components: baseline growth G0 = rc/R for p = 0; pressure- or stress-dependent growth

Gσ = ra/rc for p > 0; and elastic deformation λ∗Θ = r/ra due to pressure. These quantities

are related by λΘ = Gλ∗Θ, where the total growth is G = G0Gσ. As shown in Fig. 2.5G,

elastic inflation (λ∗Θ ≈ 1.1) contributed considerably less than total growth (G ≈ 2.1) to

BT expansion. Pressure-dependent growth (Gσ ≈ 1.6) contributed considerably more to the

total growth than baseline growth (G0 ≈ 1.3), suggesting that pressure-dependent growth

accounts for most brain expansion during stages HH12–17.

2.3.5 Stress-dependent growth can generate realistic brain tube

morphology at later stages

To determine whether the observed effects can be explained by mechanical feedback, we

extended the BT model for HH12–20 to include stress-dependent growth, as well as a stiff

notochord to account for bending (Fig. 2.6A). Intubated and control conditions were simu-

lated by running the model with p = 0 Pa and p = 30 Pa, respectively.

The growth parameters in Eq. (2.12) were determined by approximately matching model

predictions to the data in Fig. 2.5. To produce the growth ratio observed under intubated

conditions (G0), the baseline growth rate was calculated as g0 = 0.02 hr−1. To produce

growth and inflation observed under normal conditions (λΘ), the stress-dependent rate con-

stant was gσ = 5g0 (Fig. 2.6B–C). With these values, circumferential deformations in our
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Figure 2.6: Finite element model of brain tube morphogenesis including flexure and stress-
dependent growth (HH12–17). (A) Model geometry at HH12. A relatively stiff notochord
(nt, modulus µN ≥ 10µ) is added to the model shown in Fig. 2.4A. The BT subsequently
undergoes stress-dependent growth, but the notochord (black) does not grow or contract.
(B) As the BT grows, both structures bend ventrally. For p=0, the passive outer layer
remains compressed (σ̄ < 0) due to contraction of the actin layer, resulting in negligible
stress-dependent growth throughout the brain. When pressure is included (p = 30 Pa),
tension induces stress-dependent growth, particularly in the vesicles. Colors represent nor-
malized average tangential stress (σ̄). Insets: Bright field images of intubated and control
HH17 embryos shown for comparison (scale bar = 0.5 mm). (C) Model and experimentally
measured circumferential stretch ratio (λΘ) in five regions of intubated (p = 0) and control
(p = 30 Pa) BTs cultured from HH12 to HH17. As discussed in the text, these data were
used to determine the growth-rate coefficients g0 and gσ, respectively.
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model fall within experimentally measured ranges, except for a slight overestimation for the

intubated telencephalon.

For both zero and normal eCSF pressure, the calibrated model yields morphology similar to

experimental observations, including realistic differences in flexure (Fig. 2.6B). From OCT

measurements of control embryos, we found that the dorsal length of the BT (measured

from M to T) was approximately 1.8 times the ventral length at HH17 (n=8), slightly more

than the value given by our model (≈ 1.5). As notochord stiffness is increased in our model,

this flexure increases but model convergence suffers (Fig. 2.9). In the absence of pressure,

our model predicts a decrease in bending (13%) comparable to that observed in intubated

embryos (16%, n=6).

Since wall stresses in a pressurized vessel increase with radius, circumferential and longitu-

dinal stresses increase as the BT grows. Wall stress is also higher in the vesicles than in the

sulci, and cephalic flexure adds tension on the dorsal side of the BT while subtracting tension

on the ventral side (Fig. 2.6B). Patterns of growth follow these stress distributions, leading

to more growth and greater vesicle bulging on the dorsal side (Fig. 2.7A), in agreement with

previous measurements of proliferation in chick embryos (Layer and Sporns, 1987; Weikert

et al., 1990; Takamatsu and Fujita, 1987; Gutzman and Sive, 2010). Confocal imaging of

late-stage embryos (HH17–18) also revealed increased cell density in dorsal vesicles (n=14)

compared to sulci (n=10, P=0.02) (Fig. 2.7C), consistent with increased proliferation.

In our model, an important consequence of differential growth is that the AIS and DMB

become more defined after HH16, similar to experimental measurements. Prior to this time,

wall stress remains low as a result of initial contraction, and stress-dependent growth is inhib-

ited. After HH16, pressure-induced tension starts to dominate and vesicle growth accelerates.
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This growth increases the ratios T/AIS and M/DMB, but D/DMB remains relatively con-

stant (Fig. 2.7D). In our model, the closely spaced DMB and AIS constrain diencephalon

expansion, keeping tension low and inhibiting growth.

For comparison we also ran our model without stress-dependent growth (gσ = 0) and in-

creased the baseline growth rate (g0 = 0.03 hr−1). In contrast to the deepening sulci produced

by stress-dependent growth, relative sulcal depth remains low in the uniform growth model,

contrary to our data (Fig. 2.7B,D). These results suggest that stress-dependent growth con-

tributes to both size and shape of the early embryonic brain.
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Figure 2.7: Comparison of stress-dependent and uniform growth models. (A) Growth pat-
tern from stress-dependent growth model at HH20 (gσ > 0) (B) Growth pattern from uniform
growth model at HH20 (gσ = 0, g0 chosen so midbrain radius is same as in (A)). (C) Based on
F-actin staining (HH17–18), apical cell density was significantly higher in vesicles compared
to sulci. (D) Relative constrictions, plotted as functions of midbrain radius with correspond-
ing stages shown. Stress-dependent growth (red) predicts experimentally observed increases
in relative constriction, or sulcal depth. Conversely, sulcal depths change relatively little for
uniform growth (gray).

47



2.4 Discussion

Much is now known concerning the biophysical mechanisms that create the neural tube (Co-

las and Schoenwolf, 2001; Brodland and Clausi, 1995; Davidson and Keller, 1999) and those

that drive cortical folding (Richman et al., 1975; Tallinen et al., 2016). However, processes

that shape the brain between these two phases of neural development have received relatively

little attention. The present study focuses on development of the early embryonic forebrain,

finding that: (1) differential patterns of actomyosin contraction initiate constrictions between

the telencephalon-hypothalamus complex, diencephalon, and optic vesicles (HH11–12); (2)

stress-dependent growth can maintain and deepen sulci during subsequent expansion and

flexure of the BT (HH12–20); and (3) regionally constrained growth likely produces cephalic

flexure and contributes to dorsoventral growth patterns (HH12–20).

2.4.1 Organized actomyosin as initiator of brain constrictions

This study extends an earlier investigation of boundary formation, which found that differ-

ential contraction of apical actomyosin creates the constriction dividing the midbrain and

hindbrain of the chick embryo (Filas et al., 2012). Results here suggest that similar pat-

terns initiate segmentation of the forebrain. Together these studies support the notion that

regional circumferential contraction forms sulci in the early BT, with the exception of the

transient rhombomere boundaries of the hindbrain that have relatively smaller radii and may

require a different contractile mechanism (Filas et al., 2012).

Our findings are backed by three main pieces of evidence. First, chemical perturbations

that inhibit myosin-II activity (blebbistatin) prevent the formation of constrictions, whereas
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exposure to chemicals that enhance contractility (calyculin A, ATP) lead to deeper con-

strictions (Fig. 2.2). Second, apical actin exhibits predominately circumferential alignment

in constricted regions, consistent with circumferential contraction, and relatively isotropic

orientation elsewhere (Fig. 2.3). Third, computational models based on realistic parameters

agree with quantitative measurements of both normal and hypercontracted BTs (Fig. 2.4).

Our results for F-actin orientation are similar to previous observations in the MHB (Filas

et al., 2012), where both F-actin and cell shape were circumferentially oriented. Strik-

ingly, all regions of aligned actin (MHB, DMB, AIS, OS) match regions of high molecular

weight tropomyosin expression reported in the embryonic rat (Nicholson-Flynn et al., 1996).

Tropomyosin stabilizes actin to form long, straight filaments (Gunning et al., 2005) similar

to the long, circumferential filaments we observed at forebrain constrictions (Fig. 2.3A’, C’).

Reports also suggest that binding of tropomyosin can increase actin bundle stiffness (Fujime

and Ishiwata, 1971). This behavior is captured by Eqs. (2.9) and (2.10) in our models. In

cultured epithelial cells, actin fibers have been shown to align in the direction of maximum

curvature (Yevick et al., 2015; Svitkina et al., 1995), suggesting that circumferential align-

ment may occur naturally in situations where long, stable filaments of actin are allowed to

form.

As shown in Fig. 2.4, circumferential contraction effectively minimizes circumferential tension

in the BT and SP. Indeed, similar contractile mechanisms have been observed in embryonic

wound healing (Bement et al., 1993) and gut morphogenesis (Burgess, 1982). In the zebrafish,

Gutzman et al. (2008) found that basal constriction helps to form the MHB. However,

important morphological differences between zebrafish and chick (or mammal) suggest that

mechanisms may be species dependent (Filas et al., 2012).
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2.4.2 Stress-dependent growth as a mechanism of vesicle mainte-

nance during brain expansion

In cultured embryos, forebrain sulci continue to deepen after HH12 as the BT expands

(Fig. 2.1B,C). This behavior contradicts our computational model with prescribed uniform

growth, in which lumen pressure causes the DMB and AIS to become more shallow as the

brain grows (Fig. 2.7B). The result may seem counterintuitive, since Laplace’s law predicts

greater circumferential expansion in regions of larger radius, i.e., in the vesicles between

constrictions. On the other hand, Laplace’s law also predicts longitudinal tension for a

capped vessel such as the BT. This force tends to unbend the sulcal folds and dominate

the relatively small difference in circumferential stretch. Cephalic flexure of the BT only

exacerbates this behavior, further increasing longitudinal tension on the dorsal side of the

brain tube.

One potential mechanism to counteract unfolding would be to increase contraction in sulci.

However, our experiments do not support this possibility since exposure to calyculin A had

no noticeable effect beyond stage HH14 (n=6 at 30 nM, n=5 at 100 nM; Fig. A.2). We also

note that uniform growth is not consistent with previously documented proliferation patterns

(Layer and Sporns, 1987; Weikert et al., 1990; Takamatsu and Fujita, 1987; Gutzman and

Sive, 2010), and predefined growth (uniform or patterned) does not predict documented

increases in cell proliferation due to pressure (Desmond et al., 2005; Desmond and Jacobson,

1977; Desmond et al., 2014).

Accordingly, we speculate that mechanical feedback, in the form of stress-dependent growth,

is required to deepen sulci as the BT expands during HH12–20 and beyond. Elevated tension

in vesicles relative to sulci (due to initial contraction, see Fig. 2.4B) would induce relatively
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higher growth rates in vesicles, deepening the sulci. As vesicles expand, increased wall stress

(via Laplace’s law) would further accelerate their growth, causing sulci to deepen further.

This idea is supported by multiple studies showing growth of the BT depends on eCSF

pressure: Eliminating lumen pressure via intubation slows growth considerably (Desmond

and Jacobson, 1977) (Fig. 2.5), and abnormally high pressure increases proliferation (Alonso

et al., 1998; Desmond et al., 2014). Cell proliferation has been shown to increase with the

degree of mechanical tension in tissues such as blood vessels and epithelia (Lehoux et al.,

2005; Wyatt et al., 2015).

With a growth rate that depends linearly on average in-plane stress (Eq. (2.12)), our model

yields morphology similar to that of experimental BTs for both p = 0 Pa and p = 30 Pa

(Fig. 2.6B). In contrast to the uniform growth model, our stress-dependent growth model

predicts temporal increases in relative AIS and DMB depth that are in remarkable agreement

with experimental measurements for control embryos during stages HH12–20 (Fig. 2.7D).

This model predicts differential growth patterns consistent with observations in both chick

and zebrafish, which found higher proliferation in vesicles than sulci (Layer and Sporns,

1987; Weikert et al., 1990; Gutzman and Sive, 2010) and reduced proliferation in the ventral

neuroepithelium during stages of flexure (Takamatsu and Fujita, 1987; Layer and Sporns,

1987).

At the molecular level, mechanical feedback may be regulated by focal adhesion kinases

(FAKs), which act as mechanotransducers in vascular and epithelial systems (Lehoux et al.,

2005; Chaturvedi et al., 2007). In Xenopus, Hens and DeSimone (1995) found FAK tran-

scripts localized in the forebrain, midbrain, hindbrain, and optic vesicle. In the chick embryo,

Desmond et al. (2014) showed that FAK and cell proliferation were upregulated and activated
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by eCSF pressure. The stress and growth patterns predicted by our model are consistent

with these data (Figs. 2.6B and 2.7A).

2.4.3 Mechanical constraint by the notochord predicts bending

and realistic growth patterns

For decades, researchers have speculated that differential growth drives flexure of the BT

(Goodrum and Jacobson, 1981). Others have suggested that an external structure on the

ventral side of the BT, e.g., the notochord or foregut, may constrain longitudinal growth and

cause the tube to bend (Takamatsu and Fujita, 1987; Pikalow et al., 1994). None, however,

have offered conclusive physical evidence for their theories.

Our model for stages HH12–20 includes a relatively stiff, non-growing notochord along the

ventral side of the BT extending from midbrain to the telencephalon-hypothalamus complex

(Fig. 2.6A). With a stiffness in the range of published data (Adams et al., 1990; Zhou et al.,

2009), this structure provides sufficient constraint to force realistic bending of the BT as it

grows (Fig. 2.6B). Since growth depends on stress, bending is slightly reduced in our model

without lumen pressure (Fig. 2.6), similar to experimental observations. The notochord also

springs apart when cut experimentally, indicating that it is under tension as predicted by

our model (Fig. A.3). In this model, stress and growth near the notochord decrease due to

bending, which could explain previous reports of decreased proliferation on the ventral side

of the BT (Takamatsu and Fujita, 1987; Layer and Sporns, 1987).
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2.4.4 Limitations

While our stress-dependent growth model yields realistic trends, we cannot rule out other

forms for the growth law (2.12). For example, we assume that growth is triggered by ten-

sion but reduced to baseline levels under compression. The first part of this assumption

is supported by studies showing that proliferation in the BT increases with eCSF pressure

(Desmond and Jacobson, 1977; Desmond et al., 2014; Alonso et al., 1998; Goodrum and

Jacobson, 1981). We did not observe any indications of cell death (G < 1) in compressed

regions (Fig. A.2), but it is possible that cells in compression could proliferate at a further

reduced rate. Future studies are warranted to address this issue. It is also plausible that

growth depends on a different mechanical quantity, such as strain or strain rate (Cowin,

1996).

For simplicity, our model assumes that growth is transversely isotropic (isotropic tangent

to the surface) and depends on the average in-plane stress. Future studies could determine

whether differences exist in the circumferential and longitudinal directions, similar to previ-

ous studies of proliferation in epithelial tissue (Wyatt et al., 2015; Kim et al., 2013). Our

model also assumes no changes in wall thickness due to growth or contraction. For growth,

this choice is supported by minimal change in tissue thickness over time (Fig. A.1D). For

contraction, this implies no change in actin layer thickness as fibers are pulled toward and

between each other, such that fluid which once occupied space between fibers is pushed out

of the actin layer and into the cell body. While a multiscale model would ultimately be

necessary to describe the interactions of actin, myosin, and fluid in the cell, here we have

proposed a continuum approximation to describe critical aspects of the system.
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Finally, our model does not consider additional subdivisions of the diencephalon and sec-

ondary prosencephalon that begin to emerge during the final stages of our analysis (HH18–

20), and our model is limited to the physical mechanisms responsible for morphogenesis.

While countless reports have revealed regionalizing effects of molecular signals such as Sonic

hedgehog (SHH) and fibroblast growth factors (FGF8) (Puelles et al., 2012), their influences

are outside the scope of the present study. Future work may consider how such signals apply

to these or subsequent subdivisions.

2.4.5 A mechanistic model informs accurate patterning of the

forebrain

Historically, researchers have described the forebrain using columnar subdivisons first pro-

posed by Herrick (1910) (Fig. 2.8A), which attributed the hypothalamus and optic vesicles

to the diencephalon region. However, recent advances in fate-mapping have modified our

understanding of brain organization (Puelles and Rubenstein, 2015; Folgueira et al., 2012),

leading Puelles et al. (2012) to propose updated functional prosomeric subdivisions in the

forebrain (or prosencephalon), as shown in Fig. 2.8B (Puelles et al., 2012; Puelles and Ruben-

stein, 2015). Comparing our model to the prosomeric subdivisions, regional morphogenesis

emerges naturally from stress-dependent growth and bending (Fig. 2.8C), with prosomeres

(p1–3, hp1–2) corresponding neatly to equally spaced regions in the HH11 BT.

While discrepancies between anatomical subdivisions may seem trivial, they can become crit-

ical when attempting to understand physical morphogenesis. For example, if we assume all

brain vesicles are roughly partitioned by a contractile ring, the outdated columnar subdivi-

sions would lead us to expect circumferentially aligned actin between the telencephalon and
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Figure 2.8: Forebrain regionalization in terms of columnar, prosomeric, and mechanis-
tic subdivisions. (A–B) Proposed functional regions drawn onto forebrain tracings at
HH11 and HH20. Black-to-gray gradient represents approximate ventral-to-dorsal signal-
ing (Puelles et al., 2012), regions are denoted by color. Solid lines denote proposed func-
tional boundaries between the diencephalon (middle) and adjacent vesicles, while dotted
lines separate regions within each vesicle. Historically accepted columnar subdivisions are
shown in (A) (Herrick, 1910), and prosomeric subdivisions (based on signaling patterns
and fate mapping) are shown in (B) (Puelles and Rubenstein, 2015). Arrowheads repre-
sent expected bounds of physical sulci (black = AIS, white = DMB) for each. (C) Fi-
nite element model based on physical observations. Colors represent equally-spaced sec-
tions along the rostral-caudal axis at HH11. In this mechanistic model, physical sulci
form in regions of circumferentially aligned actin, matching prosomeric regions p1 and
p3. Bending of the BT and bulging of the hypothalamus result from constrained growth
(constrained by the notochord). Vesicle inflation results from eCSF pressure and stress-
dependent growth. M=midbrain, p1=Pt=pretectum, tel=telencephalon, hy=hypothalamus,
Th=thalamus, PTh=prethalamus, hy=hypothalamus, p1–p3=diencephalon (prosomeric),
hp1–hp2=secondary prosencephalon (SP, prosmeric). Circles represent location of optic
stalk.
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hypothalamus. Alternatively, researchers might conclude that complicated, region-specific

mechanisms are necessary to obtain the secondary forebrain shape (Goodrum and Jacob-

son, 1981). Instead, our analysis finds actin is circumferentially aligned along prosomere

p3 to form the AIS, consistent with alignment along p1 to form the DMB. By considering

the updated definitions of secondary prosencephalon, diencephalon, and their subdivisions

(Puelles et al., 2012), we obtain a physical understanding of development that complements

functional anatomic regions.

In this study, we have proposed a mechanistic model for early forebrain morphogenesis

that is consistent with both structural and functional partitioning. In conjunction with

experiments, our model provides new insight into how complex morphology can arise from

simple mechanisms.
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2.5 Addendum

Dimension Source Measured Value Model Value Figure

R OCT (RM) 0.11± 0.02 mm 0.1 mm 2.4A (top)
L OCT 0.46± 0.02 mm 0.5 mm 2.4A (top)
RT OCT 0.14± 0.02 mm 0.15 mm 2.4A (bottom)
ROV OCT 0.06± 0.01 mm 0.08 mm 2.4A (bottom)
W OCT 0.56± 0.07 mm 0.06 mm 2.4A (bottom)
h OCT 54± 5 µm 50 µm 2.4A

*XOS Confocal 0.20 mm 0.20 mm 2.4C, 2.6
*ZDMB Confocal 0.13 mm 0.13 mm 2.4C, 2.6
*ZAIS Confocal 0.38 mm 0.38 mm 2.4C, 2.6

Table 2.1: Model dimensions and sources. All OCT dimensions were measured at HH11.
Items marked with * denote peaks of SΘ/SZ , which were not measured until HH12. For the
BT model, the spacing between constrictions was adjusted to a total length L to account for
longitudinal growth from HH11 to HH12. For the SP model, W did not change substantially
from HH11 to HH12.

Parameter Source Model Value Equation

ψiso Confocal (Fig. 2.3A”-C”) 0.5 Eq. 2.5, 2.6
ψΘ, ψZ SΘ, SZ (Eq. 2.1, Fig. 2.3, 2.4C) Eq. 2.11 Eq. 2.5, 2.6
µ Xu et al. (2010a) 200 Pa Eq. 2.7
κ Xu et al. (2010a) 20,000 Pa Eq. 2.7

µΘ, µZ SΘ, SZ (Eq. 2.1, Fig. 2.3, 2.4C) Eq. 2.10 Eq. 2.7
C (normal) Nakajima and Tanoue (2010) 0.5 Eq. 2.8
C (hyper) λΘ,D 0.3 Eq. 2.8

α free parameter 4 Eq. 2.10
g0 G0 0.02 h−1 Eq. 2.12
gσ G/G0 5g0 Eq. 2.12

(µN
µ

)max Adams et al. (1990); Agero et al. (2010) 100 µN
µ

= 100e
−10(Y +R+h)

(R+h)

Table 2.2: Model parameters and sources. With the exception of one free parameter, α, all
parameters were taken from literature or calculated/calibrated from experimental measure-
ments.
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Figure 2.9: Effects of free parameter (α), notochord, and stress-dependent growth on final
BT shape. (A) As contraction parameter α increases (see Eq. 10), actin stiffness and relative
sulcal depth increase. Red box represents the range of T/AIS and blue box represents range
of M/DMB measured experimentally at HH12 (mean ± standard deviation). For the control
case (C=0.5), α = 4 (arrow) produces T/AIS and M/DMB within the correct ranges. (B)
Bending increases as notochord (nt) modulus µN increases. (C) As the stress-dependent
growth rate parameter (gσ) increases relative to the constant growth rate parameter (g0), sulci
become more distinct. Final model values for (B–C), based on measurement or calibration,
are shown in bold.
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Chapter 3

Molecular and mechanical signals are

required to shape cerebral

hemispheres in the chicken embryo3

3.1 Introduction

In humans, the cerebral hemispheres account for the majority of adult brain volume, and

incomplete hemisphere division, or holoprosencephaly, represents the most common brain

malformation (1 in 250 human pregnancies; 1 in 10,000 live births) (Matsunaga and Shiota,

1977; Leoncini et al., 2008). Furthermore, abnormally small (microcephalic) or large (mega-

lencephalic) cerebral hemispheres have been associated with disorders including epilepsy,

cerebral palsy, and autism (Barkovich et al., 2012). Still, the physical and cellular mecha-

nisms responsible for hemisphere morphogenesis remain unclear from a mechanical perspec-

tive (Gupta and Sen, 2016).

3Experiments to measure pressure were conducted by Wade Stewart and Jason Gleghorn, and section
3.4.5 was drafted by Wade Stewart. Cryostat sectioning was conducted by M. Gabriela Espinosa. Larry
Taber helped design the experiments and edited the manuscript.
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Figure 3.1: Normal development of the telencephalic hemispheres in the chicken embryo.
(A-C) Bright field images at Hamburger and Hamilton (HH) stages 13, 17, and 21, all im-
ages shown to same scale. (A’) Magnified view of boxed region in (A), with white dotted
line to denote embryonic brain tube. Local constrictions visibly separate the secondary pros-
encephalon (SP), diencephalon (D), midbrain (M), and hindbrain (H). (D) OCT images of
cross sections through the SP containing telencephalon (tel) and hypothalamus (hy). Loca-
tion of cross section is denoted by black line in (C), where arrowhead indicates the dorsal end
of the SP. During days 2-3, all brain structures can be imaged clearly; at 3.5 days only the
topmost (right) hemisphere can be imaged clearly. Space between surface ectoderm (white
line) and neuroepithelial wall (multicolored line) is filled with loose mesenchymal tissue (mes)
and external structures such as the prospective eyes (e). (E) Three-dimensional reconstruc-
tion from OCT images (HH21), illustrating molecular signals in hemisphere morphogenesis.
BMP4 produced at the roof plate (RP, blue) inhibits FGF8 production, and vice versa, while
SHH produced at the floor plate (FP, orange) promotes FGF8, which is also produced at the
anterior neural ridge (ANR). Scale bars are 500 microns; all images in (D) shown to same
scale. Asterisks (*) denote telencephalic hemispheres.

After neurulation, local constrictions produce distinct vesicles along the length of the early

brain tube (Lowery and Sive, 2009; Filas et al., 2012). These primary vesicles are the

forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon)

(Lowery and Sive, 2009). The forebrain further segments into the diencephalon and sec-

ondary prosencephalon, and all vesicles undergo dramatic, pressurized expansion during

subsequent development (Puelles et al., 2012; Garcia et al., 2017) (Fig. 3.1A-C). In this

study, we focus on the rostral-most vesicle, the secondary prosencephalon (SP), from which

right and left cerebral hemispheres emerge (Fig. 3.1D-E) Puelles et al. (2012). As shown

in Fig. 3.1D, hemispheres grow from the dorsal portion (telencephalon), while the ventral

portion (hypothalamus) remains relatively small and conical.

Throughout the early neural tube, Sonic hedgehog (SHH) is secreted by the ventral floor

plate, and bone morphogenetic proteins (BMP4) are secreted by the dorsal roof plate

(Monuki, 2007) (Fig. 3.1D). At the rostral end of the early brain tube, the anterior neu-

ral ridge also secretes fibroblast growth factors (FGF8) (Monuki, 2007; Toyoda et al., 2010),
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which form a positive feedback loop with SHH (Fig. 3.1E). This combination is thought

to promote proliferation and cell survival of ventral and lateral neuroepithelium (Monuki,

2007). In contrast, BMP4 reduces proliferation at the roof plate and forms a generally

negative feedback loop with FGF8 (Ohkubo et al., 2002).

Studies in mouse and chicken have shown that hemisphere division may be impeded by alter-

ing these chemical morphogens. Reducing SHH, reducing FGF8, or increasing BMP4 leads to

underdeveloped ventral and lateral structures, similar to cases of classic holoprosencephaly

in human (Fernandes et al., 2007; Furuta et al., 1997; Storm et al., 2006; Ohkubo et al.,

2002; Huang et al., 2007b). By contrast, midline interhemispheric (MIH) holoprosencephaly,

a phenotype in which the dorsal midline fails to develop, can be induced by decreasing BMP4

or increasing SHH (Fernandes et al., 2007; Huang et al., 2007a). While such studies suggest

a morphogen-dependent gradient of growth, a more quantitative, mechanical approach is

needed to understand these structural alterations.

Mechanical loads and mechanical feedback have also emerged as important factors in early

brain morphogenesis (Jelinek and Pexieder, 1968; Lowery and Sive, 2009; Garcia et al., 2017).

After the brain tube seals (Fig. 3.1A), it fills with embryonic cerebrospinal fluid (eCSF) that

exerts pressure on the walls of the early brain (Jelinek and Pexieder, 1968; Desmond et al.,

2005; Garcia et al., 2017). This pressure stretches the neuroepithelium mechanically and

stimulates growth (Alonso et al., 1998; Desmond et al., 2014; Jelinek and Pexieder, 1968;

Desmond and Jacobson, 1977), suggesting a role for mechanical feedback, similar to other

systems: In pulmonary and vascular epithelia, tissue stretch has been shown to induce

cell proliferation (Chaturvedi et al., 2007; Lehoux et al., 2005). In epithelial monolayers

derived from canine kidney, stretch-induced cell divisions tend to dissipate stress and restore

isotropic cell shape (Wyatt et al., 2015). By including mechanical feedback in models of
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growth, previous studies have accurately predicted morphogenesis of the wing in Drosophila

(Hufnagel et al., 2007; Aegerter-Wilmsen et al., 2007).

In this study, we examine the role of mechanics in hemisphere morphogenesis in chicken

embryos (Gallus gallus). We hypothesize that hemisphere division depends on differential

cell proliferation, regulated by a combination of morphogen gradients and mechanical feed-

back. We confirm regional differences in growth by quantifying cell proliferation during

normal hemisphere division. To determine the role of mechanical signals on growth, we

use live optical coherence tomography (OCT) to measure morphological changes over time

under different mechanical loads. Finally, we create a computational model to test whether

proposed mechanisms (morphogen gradients, external loads, and mechanical feedback) are

sufficient to explain observed hemisphere morphologies. By elucidating the role of mechani-

cal forces and chemomechanical feedback in hemisphere morphogenesis, our results offer new

insights into clinically-observed malformations such as microcephaly, megalencephaly, and

holoprosencephaly.

3.2 Results

To understand the mechanics of initial hemisphere cleavage and growth, we focused on three

specific stages in chicken embryo development according to the Hamburger and Hamilton

staging system (denoted HHx) (Hamburger and Hamilton, 1951). At HH13, after 2 days

of development in ovo (Fig. 3.1A-A’), the neural tube has sealed, and eCSF begins to ac-

cumulate in the lumen. At this stage, the brain is also visibly segmented into secondary

prosencephalon (SP), diencephalon (D), midbrain (M), and hindbrain (H) (Puelles et al.,

2012). By HH17, (2.5 days, Fig. 3.1B), all brain regions have expanded, and the prospective
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eyes are connected to the rostral hypothalamus via narrow optic stalks. Meanwhile, the brain

has bent and rotated 90◦ at the level of the presumptive spinal cord. By HH21 (3.5 days,

Fig. 3.1C), all vesicles have further expanded, and telencephalic hemispheres are clearly sep-

arated. Throughout these stages, the ventral hypothalamus is surrounded by mesenchyme

and external structures, including large prospective eyes on each side (Fig. 3.1D).

In the results below, embryos were grouped by incubation time (2 days, 2.5 days, 3.5 days),

resulting in subtle stage variation. For simplicity, we refer to these ranges as HH13 (HH12-

14), HH17 (HH16-18), and HH21 (HH20-22), respectively.

3.2.1 Hemisphere division coincides with decreased proliferation

at the roof plate.

To observe proliferation patterns before and after hemisphere division, cells undergoing DNA

synthesis were labeled with EdU (5-ethynyl-2-deoxyuridine) (Warren et al., 2009). At HH17

(before hemisphere division), proliferation was visible throughout the secondary prosen-

cephalon. At HH21 (after hemisphere division), proliferation had dissipated at the roof plate

by HH21 (Fig. 3.2A-B). To quantify this effect regionally, we defined proliferation fraction

as the number of EdU-labeled nuclei divided by the total number of (Hoescht 33342-labeled)

nuclei for roof plate and hemisphere regions. No regional differences were detected at HH17,

but roof plate proliferation was significantly lower at HH21 (Fig. 3.2C, n=5 per group). The

latter results are consistent with previous reports of BMP4 and reduced proliferation at the

hemisphere midline (Furuta et al., 1997; Gupta and Sen, 2015). Furthermore, the dynamic

shift in proliferation is consistent with molecular signaling dynamics in chicken, where the

territory of Bmp4 expression remains fairly small until HH18 (Crossley et al., 2001).
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Figure 3.2: Cell proliferation in the SP. (A-B) Cross-sections through the secondary prosen-
cephalon showing EdU-labeled nuclei (red) and all nuclei (blue). At HH17, proliferating cells
(red nuclei) are visible throughout the neuroepithelial wall (outer surface denoted with white
dotted line). At HH21, proliferation appears to be reduced in the roof plate (RP, white ar-
rowheads). (C) Proliferation fraction (number of EdU-labeled nuclei divided by total number
of nuclei) is significantly decreased in the RP of HH21 embryos relative to the RP at HH17,
and relative to hemispheres (Hem) at either stage (n=5 in each group, **p<0.01). Scale
bars are 500 microns. Asterisks (*) in (B) denote right and left hemispheres, e=prospective
eye.
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To obtain a comprehensive view of proliferation throughout the forebrain, a subset of embryos

were cryosectioned and analyzed at 4 levels in the forebrain: rostral SP, middle SP, caudal

SP, and diencephalon (Supplemental Fig. 3.11). Proliferation appeared relatively uniform

throughout the forebrain of HH17 embryos (n=3) at all levels. By contrast, proliferation

fraction dropped sharply to zero at the SP roof plate of HH21 embryos (n=2) but not the

diencephalon roof plate, consistent with reported patterns of BMP4 (Shimogori et al., 2004;

Furuta et al., 1997).

Taken together, these results confirm that neuroepithelial proliferation is inhibited at the

roof plate during hemisphere division but not earlier stages. Furthermore, this inhibition

is limited to the roof plate between telencephalic hemispheres, not the roof plate of more

caudal regions (i.e., diencephalon) where cleavage does not occur.

3.2.2 Hemisphere size and division depend on eCSF pressure.

We hypothesized that neuroepithelial growth depends not only on morphogen patterning,

but also on mechanical stress. Numerous studies have noted the effect of eCSF pressure

on tissue volume (Jelinek and Pexieder, 1968; Desmond and Jacobson, 1977; Alonso et al.,

1998) and proliferation (Desmond et al., 2005; Desmond and Jacobson, 1977; Desmond et al.,

2014) in the developing brain, but none have considered the telencephalic hemispheres in

detail.

To address this issue, we quantified the effects of eCSF pressure on hemisphere size, measured

with live OCT imaging during the period of telencephalic hemisphere division (Fig. 3.3).

To reduce pressure in HH17 embryos, an open glass tube was inserted into the midbrain

(intubated), similar to past studies (Desmond and Jacobson, 1977). This alleviated existing
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eCSF pressure and prevented the accumulation of additional eCSF over a 24h culture period

(Fig. 3.3A,A’). To control for wounding effects (Jelinek and Pexieder, 1968; Desmond and

Jacobson, 1977), closed glass tubes were also inserted into the midbrain of sham embryos

(Fig. 3.3B,B’). This caused initial deflation but was followed by rapid reinflation and total

growth similar to the control group (Fig. 3.3C,C). Lastly, to determine the effect of increased

pressure on hemisphere size, pressure was osmotically increased during culture with β-D-

xyloside (BDX, Fig. 3.3D,D’) (Alonso et al., 1998; Desmond et al., 2014).

Figure 3.3A’-D’ shows representative OCT cross-sections of the telencephalic hemispheres

under each experimental case. For each embryo, normalized hemisphere arclength was mea-

sured, defined as end hemisphere arclength (HH21) divided by initial arclength (HH17). As

shown in Fig. 3.3E, hemispheres under increased eCSF pressure were significantly larger than

controls (BDX n=9; control n=13), and hemispheres under zero pressure were significantly

smaller than those of sham and control embryos (intubated n=13; sham n=10). Furthermore,

hemispheres failed to divide in intubated embryos (n=13) despite normal reductions in roof

plate proliferation (n=4, Fig. 3.11). Since no significant differences were detected between

sham and control embryos, these results are grouped as “normal pressure” in subsequent

analysis.

Past measurements of eCSF pressure in chicken embryos have spanned several orders of

magnitude: 25± 9 Pa (Jelinek and Pexieder, 1968), 350± 40 Pa (Desmond et al., 2005), and

3700 ± 150 Pa (Alonso et al., 1998). To obtain an accurate, definitive value, we measured

pressure in control embryos as described in Materials and Methods. We found an average

eCSF pressure of 15.4±3.8 Pa (n=7) at HH17 and 15.4±2.5 Pa (n=5) at HH21. These results

are closest to those reported by Jelinek and Pexieder (1968), though slightly lower and more

precise. The constant pressure observed between HH17 and HH21 matches dynamic trends
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Figure 3.3: Altering eCSF pressure in the embryonic brain. (A-D) Bright field images of
HH21 embryos cultured for 24h from HH17 under one of four conditions: (A) To reduce eCSF
pressure, an open glass tube (black arrowhead) was inserted into the midbrain (n=15 intu-
bated). (B) To control for injury but allow approximately normal eCSF pressure, a closed
glass rod (white arrowhead) was inserted into the midbrain (n=10 sham). (C) Control em-
bryos were cultured without perturbation (n=13). (D) To osmotically increase pressure,
embryos were cultured in media containing beta-D-xyloside (BDX, n=14). (A’-D’) Rep-
resentative OCT cross-sections through telencephalon (white lines in A-D). Colored lines
represent hemisphere arclength, traced on right hemisphere and flipped to left for visual-
ization. (E) Normalized hemisphere arclength (HH21/HH17) was significantly higher under
increased pressure (BDX) and significantly lower under decreased pressure (intubated), with
no significant differences between sham and control groups. Scale bars are 500 microns.
***p<0.0001, **p<0.01.
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reported by Jelinek and Pexieder (1968) and Desmond et al. (2005), who considered a range

from HH13 to HH26.

Together, these results suggest that eCSF pressure remains fairly constant during the period

of hemisphere division, but the magnitude of eCSF pressure serves as a key regulator of

cerebral hemisphere size. Reducing pressure (via surgical manipulation) produced small

hemispheres without clear separation, while increasing pressure (via osmotic manipulation)

produced significantly larger hemispheres.

3.2.3 Neuroepithelial growth is modulated by mechanical feed-

back.

Change in hemisphere size, as reported in Fig. 3.3E, involves a combination of both growth

and elastic stretch due to eCSF pressure. Therefore, to quantify tissue growth under normal

and high pressure cases, we cannot simply consider the initial and final geometries. (Although

eCSF pressure remains constant from HH17 to HH21, wall stress and elastic stretch due to

pressure may change with geometry according to Laplace’s Law.) To address this issue,

we estimated tissue growth as the difference between initial and final deflated geometries

(Fig. 3.4A).

To quantify elastic deformation and growth, we consider the diencephalon-midbrain bound-

ary (DMB) as a representative region for the entire brain tube (Fig. 3.4). This landmark is

easily distinguished across all stages considered and is free of large structures (i.e., prospec-

tive eyes) that can partially obscure the secondary prosencephalon and diencephalon in OCT

images (Fig. 3.1D). As described below, the simple, roughly cylindrical geometry of the DMB
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Figure 3.4: Effect of eCSF pressure on growth. (A) Expansion of the embryonic brain
depends on elastic inflation due to eCSF pressure and tissue growth. To determine circum-
ferential elastic stretch ratio, λ∗Θ, change in cross-sectional geometry was measured before
and after deflation at HH17 and HH21. (λ∗Θ = R′/R at HH17 and λ∗Θ = r′/r at HH21.)
Circumferential and radial growth from HH17 to HH21 were estimated from deflated brains
(GΘ = r/R, GR = h/H). (B) Measurements were made at the diencephalon-midbrain
boundary (DMB, white line on bright field image). (C) Elastic stretch ratio was relatively
small (≈ 10%) at both HH17 (blue) and HH21 (orange). (D) Deflated radius and thickness
increased significantly from HH17 (R,H) to HH21 (r, h). Deflated radius at HH21 was sig-
nificantly larger after culture under high pressure (p) and significantly smaller after culture
under zero pressure, suggesting that circumferential growth depends on wall stress. (Left to
right: n=19,15,17,14; statistically different groups denoted by a-d.) (E) Circumferentail and
radial growth were estimated for each group. Black lines denote results given by theoretical
model (see text for details). Scale bars are 500 microns.
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also allows for a relatively simple mathematical analysis to determine growth parameters for

a stress-based feedback law.

Measurements in deflated brains revealed a significant increase in radius between HH17

(R) and HH21 (r) (Fig. 3.4D). Furthermore, the deflated radius r was significantly higher

in embryos cultured with high eCSF pressure (n=14) and lower in embryos cultured with

zero eCSF pressure (n=15) compared to controls (n=17). Wall thickness also increased

between HH17 (H) and HH21 (h) but was not significantly affected by pressure (Fig 3.4D).

Note that R and H represent measures from intubated and sham embryos (n=19), since

only these experimental groups could undergo initial deflation without affecting subsequent

measurements. However, since no significant differences existed in inflated geometries at

HH17 (R′ and H ′), we assume the same R and H across all groups.

The total (observed) circumferential stretch ratio is defined as λΘ = r′/R′, where R′ and

r′ are the inflated radii at initial (HH17) and final (HH21) time points, respectively (Fig.

3.4A). This quantity can be decomposed as λΘ = λ∗ΘGΘ, where λ∗Θ represents the elastic

stretch ratio and GΘ = r/R is the circumferential growth ratio (GΘ > 1 indicates positive

growth, see Taber (2009)). With measurements of radius giving λΘ and GΘ (Fig. 3.4E), we

compute λ∗Θ = λΘ/GΘ (Fig. 3.4C). As a fraction of total brain expansion, the contribution

of elastic stretch (λΘ ≈ 1.1, or 10% strain) to total expansion is considerably smaller than

that due to growth during these stages.

Furthermore, our results indicate that circumferential growth (GΘ = r/R) depends on pres-

sure but radial growth (GR = h/H) does not (Fig. 3.4E). This finding supports the idea

that neuroepithelial lengthening and thickening represent different biological mechanisms,

i.e., proliferation leads to primarily tangential growth (GΘ), while differentiation causes

thickening (Fish et al., 2008).
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In summary, these results suggest that expansion of the brain tube during stages HH17 to

HH21 is driven mainly by growth modulated by eCSF pressure. Elastic inflation contributes

relatively little to the total expansion, in agreement with previous studies (Garcia et al.,

2017).

3.2.4 A chemomechanical feedback law describes growth in the

embryonic brain.

Using the above results, we developed a mathematical growth law that depends on both

morphogen concentration and mechanical feedback. Here, Θ and Φ denote the circumferen-

tial and longitudinal coordinates, respectively, in the brain tube. As in Garcia et al. (2017),

we assume that growth is transversely isotropic (isotropic parallel to the wall) such that

G ≡ GΘ = GΦ is the tangential growth ratio. This assumption is based on the observation

that, in simple epithelial monolayers, large strains (30% or greater) are required to bias cell

divisions in the direction of maximum stretch (Wyatt et al., 2015) (approximately 10% in

this study, Fig. 3.4).

We consider a growth law of the form

Ġ = α(g0 + gσσ̄)G, ĠR = αg0rGR, (3.1)

where

σ̄ =
1

2µ
(σΘ + σΦ) (3.2)

is the nondimensional average tangential stress with µ = 300 Pa being the shear modulus

of neuroepithelium in chick (Xu et al., 2010a). In addition, g0 and g0r represent baseline
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growth rates for zero eCSF pressure (σ̄ = 0), α and gσ are non-negative growth coefficients,

and dot denotes differentiation with respect to time t. Notably, Eqs. (3.1) are consistent

with our findings that tangential growth increases with pressure-induced wall stress, while

radial growth is independent of stress.

Concentrations of BMP4 and FGF8 are normalized by their maximum values such that

0 ≤ CBMP , CFGF ≤ 1. Consistent with evidence that BMP4 inhibits growth of the forebrain

wall (Ohkubo et al., 2002), we take

α = 1− CBMP . (3.3)

We also assume that mechanical stress is a prerequisite for growth factor-dependent effects,

as previously described for certain FAK-dependent pathways to cell proliferation (Walker

et al., 2005). Since the presence of the growth factor FGF8 increases growth, we set

gσ = a+ bCFGF , (3.4)

where a and b are constants.

To summarize, growth rates are assumed to depend locally on wall stress and morphogen

concentration. With α and gσ given by Eqs. (3.3) and (3.4), the proposed growth law (3.1)

contains four unknown growth parameters (g0, g0r, a, b) to be found using experimental data

from the DMB.

Since the DMB is far from the territories of high BMP4 and FGF8, we set CFGF = CBMP = 0,

and Eqs. (3.1) become

Ġ = (g0 + aσ̄)G, ĠR = g0rGR. (3.5)
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To compute σ̄, the DMB region is approximated by a thin-walled cylindrical tube with

closed ends to maintain an internal pressure p. According to Laplace’s law, the tangential

wall stresses are σΘ = pr/h and σΦ = pr/2h. If we neglect the relatively small elastic

deformation, growth alone defines the evolving geometry, giving r = GΘR = GR and h =

GRH. Substitution of these relations into Eq. (3.2) yields

σ̄ = σ̄0G/GR (3.6)

in which

σ̄0 =
3pR

4µH
(3.7)

is the average tangential stress at the initial time (HH17), i.e., before growth when G =

GR = 1. Inserting this relation into Eq. (3.5)1 gives the nonlinear differential equation

Ġ− g0G = aσ̄0G
2/GR. (3.8)

Equations (3.5)2 and (3.8) can be solved for GR(t) and G(t) with initial conditions GR(0) =

G(0) = 1. In the absence of mechanical feedback (a = 0), the solution is

G = eg0t, GR = eg0rt, (3.9)

which are the usual relations for exponential growth. When mechanical feedback is included

(a 6= 0), the radial growth does not change, and, after substituting GR(t) from (3.9)2 into

(3.8), we obtain the closed-form solution

G(t) = eg0t
[
1 +

aσ̄0

g0 − g0r

(
1− e(g0−g0r)t

)]−1

. (3.10)
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The growth parameters were determined as follows:

1. With the measured values G = GΘ = 1.48±0.17 and GR = 1.38±0.02 at HH21 (t = 1

d) at zero pressure (Fig. 3.4), Eqs. (3.9) give g0 = 0.39 d−1 and g0r = 0.32 d−1. These

values characterize baseline growth in intubated brains.

2. For normal pressure of p = 15 Pa, shear modulus µ = 300 Pa (Xu et al., 2010a), initial

radius R = 235 µm and initial wall thickness H = 88 µm (Fig. 3.4D), Eq. (3.7) gives

σ̄0 = 0.10. Then, with G = GΘ = 1.87± 0.08 over t = 1 d in control brains (Fig. 3.4),

Eq. (3.10) yields a = 2.0 d−1.

3. Set b = 6a = 12 d−1 based on FGF8 immunofluorescence gradients (arbitrary units)

reported in citetoyoda2010fgf8.

These parameter values were determined for normal brains. To test the predictive ability

of the proposed growth law, we simulated BDX experiments by increasing pressure without

changing the parameters. For an estimated 40% increase in p during culture with BDX

(Alonso et al., 1998), Eq. (3.10) yields GΘ = 2.09, in close agreement with experimentally

measured values for BDX-treated brains (GΘ = 2.07± 0.10, Fig. 3.4E).

3.2.5 Growth model based on morphogens and mechanical feed-

back predicts normal hemisphere morphogenesis.

Next, we considered the more complex scenario of hemisphere morphogenesis. To determine

whether our assumptions are sufficient to predict realistic hemisphere shapes, we created a

three-dimensional computational model of the SP including realistic morphogen gradients

and mechanical loads.
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(Bardet et al., 2010) illustrates qualitative comparison between model and commonly ob-
served morphology. Thin lines divide functional areas of the SP, following contours sim-
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tic foundation constraint. (C) Comparison of model-predicted growth fraction (black line,
∆G/∆Gmax = (G−1)/(Gmax−1)) and measured proliferation fraction (dots) along the neu-
roepithalial wall. Each dot represents the average for a 60µm-long region of wall at HH21
(n=2 samples, denoted by pink and blue color). Location along the wall (x) is normalized
so that x = 0 at the roof plate (RP), x = ±1 at the floor plate (FP). Scale bar represents
500 microns.

The initial, unloaded geometry is based on dimensions of the deflated SP at HH17, and a

constant eCSF pressure was applied on the inner wall (Fig. 3.5A). Since the hypothalamus

is surrounded by external tissues (including prospective eyes and mesenchyme) that may

reinforce or constrain this region, a relatively soft elastic foundation is applied on the outer

conical surface, as denoted by springs (Fig. 3.5A, right). Normalized morphogen gradients

were generated such that BMP4 concentration (CBMP ) is highest at the roof plate and FGF8

concentration (CFGF ) is highest at the anterior neural ridge (Fig. 3.5B). Stress-dependent

growth at all points is governed by Eqs. (3.1)-(3.4) with the parameter values provided in

Sec. 3.4. (See Methods for material properties and additional details.)
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Figure 3.6A shows progression of the model over 24 hours. The resulting growth produces

two distinct hemispheres of reasonable morphology. Figure 3.6B depicts normal SP geometry

and functional subdivisions reported by (Bardet et al., 2010). In the initial configuration

(t = 0), our model can be divided along the dorsal-ventral axis (Θ-direction, horizontal lines

in Fig. 3.6A) and medial-lateral axis (Φ-direction, vertical lines). As shape evolves over time,

these horizontal lines (representing different dorsal-ventral levels at t = 0) reorient to mirror

contours between functional subdivisions of the cortex (black lines in Fig. 3.6B).

Normal growth and proliferation. To compare proliferation between model and experi-

ment, proliferation fraction was calculated along the circumference of the wall in EdU-stained

cross-sections (Fig. 3.2B) and equivalent model cross-sections (see Fig. 3.9A). Total circum-

ference was normalized so that x = 0 at the roof plate and x = ±1 at the floor plate (x > 0

for right hemisphere, x < 0 for left hemisphere). As shown in Fig. 3.6C, proliferation drops

sharply to zero at the roof plate of HH21 embryos (n=2, pink and blue dots). Furthermore,

a subtle decrease in proliferation is visible from the hemispheres (0.1 < |x| < 0.5) to the

hypothalamus (|x| > 0.5; see Fig. 3.6C). Tangential growth from the stress-dependent model

(black line) predicts spatial trends similar to those observed experimentally, but with a more

exaggerated decrease at the hypothalamus.

Apical stresses and cell shape Using a computational model that includes mechanical

feedback, Wyatt et al. (2015) showed that cell divisions tend to reduce stress and encourage

isotropic cell shapes in epithelial monolayers. If the same is true in the neuroepithelium,

we should also see reduced stress and isotropic cell shapes in regions where stress-dependent

growth is significant. By contrast, areas where stress-dependent growth is inhibited (high

BMP4 as defined in Fig. 3.5B) may be subject to high stresses and anisotropic cell stretch.
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Figure 3.7: Comparison of model and experimental patterns of wall stress. (A) HH21 model
reveals high in-plane tension, σ̄ = (σΘ +σΦ)/(2µ), along the apical (inner) RP, where stress-
dependent growth is turned off. (A’) Magnified view of white box region in (A), where lines
represent the direction of maximum stress and color represents magnitude. (B) Staining for
F-actin in the same RP region (enclosed by black dashed lines, midline denoted with white
dashed line) reveals cells that are dramatically stretched in the direction of maximum stress
(n=5, red arrows). Conversely, regions of stress-dependent growth (hemispheres, shown on
right and left edges) maintain relatively small, round cells (isotropic cell shape, n=5 for
hemisphere and hypothalamus regions). Scale bar represents 40 microns.

As shown in Fig. 3.7A, our model predicts low stress in areas of stress-dependent growth

(outside of RP, green where σ̄ ≈ 0) but high stress in the roof plate where growth is inhibited

by BMP4 (region denoted by black dashed line). Experimentally, we note isotropic (round)

cells in the same regions of low stress (Fig. 3.7B), as illustrated by apical F-actin that outlines

each cell. By contrast, the non-proliferative roof plate contains drastically stretched cells

(Fig. 3.7B), and the direction of maximum stretch matches that predicted by our model

(Fig. 3.7A’).
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Effects of external forces. As described above, the observed drop in roof plate prolifer-

ation depends on a predefined morphogen gradient, CBMP , such that even high stresses may

not induce significant growth. However, for growth outside the roof plate, stress gradients

should result in proliferation gradients. This idea is supported by our model, where tissues

surrounding the hypothalamus (represented by an elastic foundation) prevent the develop-

ment of high stresses (Fig. 3.8C, left), resulting in slightly lower growth (G) in this region

(Fig. 3.6C). Conversely, a model without this support predicts maximal σ̄ in the conical

hypothalamus (Fig. 3.8C, right), leading to overexpansion of this region. To test this pre-

diction, we dissected the surrounding tissues from five HH13 embryos and allowed them to

develop to HH21 (Fig. 3.8A-A”). In agreement with our model, the absence of prospective

eyes (no elastic foundation) produced a wider hypothalamus compared to controls (n=5 per

group, Fig. 3.8B-C).

Taken together, these results support our 3D model based on morphogen gradients, external

loads, and mechanical feedback. For the case of normal hemisphere development, our model is

able to link and explain several experimental observations: (1) In the hypothalamus, reduced

proliferation is caused by reduced mechanical stresses due to constraints from external tissues;

(2) In the roof plate, elongated apical cell shapes are caused by very high stress due to

inhibited proliferation in this region.

3.2.6 Mechanical feedback explains hemisphere morphologies un-

der altered eCSF pressure.

After testing our model against normal development (Figs. 3.6 and 3.7), we examined its

ability to predict abnormal hemisphere morphologies observed under altered eCSF pressure.
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Figure 3.8: Effects of external tissues. (A-A”) Prospective eyes (e) and lateral mesenchyme
(mes) were dissected from the rostral brain at HH13, and embryos were cultured to HH21.
Scale bar is 500 microns, all bright field images shown to same scale. (B) OCT images of
the secondary prosencephalon in control (n=5) and dissected embryos (n=5). In dissected
embryos, loose mesenchyme repopulated the dissected area, but prospective eyes did not
regenerate. Ratio of hypothalamus width (w) to secondary prosencephalon length (l) was
higher (hypothalamus was wider) in dissected embryos. (C) Model results with and without
external constraint of elastic foundation (normal and negligible stiffness, k). Consistent with
experimental trends, the conical hypothalamus experienced high stresses and expanded more
without external constraint. *p<0.05.
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We also considered a model without feedback, in which a set growth pattern (growth pro-

duced under normal pressure, Fig. 3.6) was subjected to no pressure (p = 0), normal pressure

(p = 15 Pa), and high pressure (p = 21 Pa).

Reduced eCSF pressure (HH17-21) produces classic holoprosencephalic mor-

phology. In the experimental case of embryos cultured without eCSF pressure (HH17-21),

hemispheres failed to grow or separate (Fig. 3.9A). To quantify this effect, hemisphere growth

was estimated from OCT images as previously described in Figs. 3.3 and 3.4, and analy-

sis revealed significant differences under growth for each pressure case (ANOVA p<0.0001,

n=10 zero pressure, n=15 normal pressure, n=7 high pressure). With mechanical feedback,

our model results agree reasonably well with our experimental measurements in intubated

and control brains (Fig. 3.9B).

For each pressure case, we also measured relative RP invagination depth, defined as the

vertical distance from hemisphere peak to roof plate valley (Fig. 3.9B), normalized by the

total hemisphere arclength (Fig. 3.3A’-D’). In our feedback model, reduced growth was

insufficient to produce hemisphere separation at HH21, as illustrated by a significant (70%)

reduction in relative RP depth (p<0.0001, Fig. 3.9). This microcephalic, holoprosencephalic

morphology (classic holoprosencephaly) has been previously reported due to FGF8 reduction

(Storm et al., 2006; Ohkubo et al., 2002) or BMP4 increase (Fernandes et al., 2007; Furuta

et al., 1997), roughly equivalent to g0 → 0 or α → 1 in our model. By contrast, reducing

pressure for the “no feedback” model increases RP depth (Fig. 3.9B).

Increased eCSF pressure (HH17-21) produces megalencephalic but not holopros-

encephalic morphology. Under high pressure (HH17-21), no decreases in RP depth were
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Figure 3.9: Comparison of numerical and experimental results for perturbed eCSF pres-
sure. (A) Comparable HH21 cross-sections through model (left) and representative embryos
(right, OCT images) after 24h culture under zero, normal, and high pressure. (B) Growth
of the telencephalic hemispheres (green arclength) was estimated as described in Fig. 3.4.
Hemisphere division was quantified by measuring depth of the RP relative to maximum hemi-
sphere height (red arrows). To normalize this depth with respect to size, it was divided by
the final, inflated hemisphere arclength. Experimentally measured hemisphere growth and
RP depth (bars) are accurately predicted by the stress-dependent growth model (feedback
model, black lines). For comparison, results from a model without mechanical feedback are
also shown (dashed gray lines). Mechanical feedback is necessary to produce the measured
differences. (Left to right: n=10,15,7 for GΘ; n=13,23,9 for relative RP depth; statistically
different groups denoted by a-c.) Scale bars are 500 microns.
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observed experimentally or in the feedback model (Fig. 3.9B). However, hemisphere growth

did increase significantly under high pressure relative to the normal pressure case (Fig. 3.9A),

corresponding to a megalencephalic (abnormally large) hemisphere morphology.

As illustrated by the “no feedback” model, eCSF pressure produces elastic deformations that

tend to push the RP outward (decreasing RP depth, Fig. 3.9B). For this reason, one might

also expect a holoprosencephalic morphology under the condition of increased pressure, espe-

cially as wall stresses increase with growth, G (see Eq. 3.6). However, since RP proliferation

is inhibited during this period (Fig. 3.2), hemisphere growth also serves to increase differ-

ential growth, the driving force for hemisphere division. In this way, mechanical feedback

counteracts the outward push of higher pressures to maintain relatively normal RP depth.

Increased eCSF pressure (HH13-17) produces MIH holoprosencephalic morphol-

ogy. Interestingly, we also observed one scenario where high pressure led to significantly

reduced RP depth. As previously reported via perturbation of molecular signaling (Fernan-

des et al., 2007; Huang et al., 2007a), overproliferation in the roof plate has been shown to

produce holoprosencephalic morphologies. Since the onset of eCSF pressure occurs at HH13

in chick, at least 12 hours before roof plate proliferation is inhibited by BMP4 (≥HH18)

(Crossley et al., 2001), we hypothesized that increased pressure may also increase growth of

the roof plate at earlier stages, reducing the ability of the RP to descend.

To test this hypothesis, we cultured HH13 embryos with BDX or control media for 36h

(Fig. 3.10A-B). Measuring RP width relative to hemisphere arclength, we found that the

roof plate was significantly wider after culture under high eCSF pressure compared to con-

trols (p=0.026, n=6 per group). By contrast, high pressure at later stages (HH17-21) only

increased growth in the hemispheres, such that relative RP width was unchanged (n=7 high
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HH13. Since embryos in vitro developed slightly slower than in ovo, they were slightly
smaller than embryos cultured for 24h from HH17, reaching an average stage of HH20. (A’-
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(n=3). (C) Relative RP width (RP arclength divided by total SP circumference at HH17)
revealed a significant increase for embryos cultured with BDX from HH13. Bottom: A model
of growth from HH13 to HH17, with adjusted initial geometry (HH13) and stress-dependent
growth at the RP, accurately predicts RP widening effect. (D) Model of growth between
HH17 and HH21, considering the effect of RP width (region of no growth). Dark colored
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(E) For the model in (D), increasing RP width led to reduced RP depth, as observed with
early application of BDX. Scale bars are 500 microns. *p<0.05.
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pressure, n=15 normal pressure; p=0.95). To consider stress-dependent growth of the roof

plate during early stages (prior to growth inhibition by BMP4), we created a new model

with initial geometry based on HH13, CFGF similar to Fig. 3.5, and CBMP = 0 everywhere.

We also defined the RP to be thinner, as observed experimentally (Fig. 3.2A). Without in-

hibition of growth at the roof plate, and with development of high tension at the roof plate,

our mechanical feedback model predicts similar increases in RP width under high pressure

(Fig. 3.10C).

As in other cases of roof plate overproliferation (Fernandes et al., 2007; Huang et al., 2007a),

embryos subjected to high eCSF pressure also displayed reduced RP depth compared to

controls (n=6 per group), sometimes with a roof plate that bulges outward (Fig. 3.10B’).

To determine whether a relatively wide roof plate could produce this effect mechanically, we

also considered a model of hemisphere division (HH17-21) with expanded roof plate region

(geometry, loads, and CFGF from Fig. 3.5, region of CBMP = 1 expanded 50% based on

results in Fig. 3.10C). In this model, a widened roof plate does reduce RP depth (Fig. 3.10E).

In fact, a widened roof plate was sufficient to reduce invagination under normal pressure,

suggesting that even a short period of increased pressure, during the specific window of RP

proliferation, is capable of producing mild holoprosencephalic morphologies.

Taken together, these results support a role for mechanical feedback in hemisphere devel-

opment. In our model, feedback is necessary to predict not only hemisphere size, but also

whether or not hemisphere division will occur under specific eCSF pressures. Moreover,

we note that short periods of both decreased and increased pressure impaired hemisphere

division, suggesting new mechanisms by which holoprosencephalic morphologies may occur.
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3.3 Discussion

In this study, we hypothesized that hemisphere morphogenesis is driven by differential

growth, controlled by both chemical and mechanical signals. To test this hypothesis, we

used a combination of experimental and computational approaches. First, we quantified

cell proliferation and morphology under normal and altered loading conditions. Next, we

proposed a novel chemomechanical growth law to reconcile the effects of morphogens and

mechanical stress on growth, with mathematical form and parameters determined by experi-

mental measures. Through computational modeling, we confirmed that differential growth is

sufficient to induce hemisphere division, and we propose that measured proliferation patterns

may be explained in part by mechanical feedback. For the first time, this study demonstrates

how a range of abnormal hemisphere morphologies – typically attributed to morphogen sig-

naling – can be produced by alterations in eCSF pressure and predicted by models with

mechanical feedback.

3.3.1 Mechanical feedback as a key regulator of hemisphere mor-

phogenesis

Mechanical feedback has been largely overlooked in the context of hemisphere development.

For decades, researchers have known that eCSF pressure influences growth in the early brain

tube (Desmond and Jacobson, 1977; Alonso et al., 1998; Desmond et al., 2005). However,

the mechanism by which eCSF pressure affects morphogenesis is not understood. Though

mechanical tension has been hypothesized as a driver of cerebral growth (Van Essen, 1997),

no prior studies have reported effects in this region.
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The results of the present study show that pressure-induced wall stresses influence both the

size and shape of the cerebral hemispheres in the early chick embryo. Compared to controls,

hemispheres grew more under osmotically increased pressure and less under mechanically

reduced pressure (Fig. 3.3 and 3.9). These trends are consistent with growth modulation

observed at the DMB (Fig. 3.4) and at the SP during earlier stages (Garcia et al., 2017).

At a more global level, similar effects had been reported in terms of total brain tissue

volume and proliferation rate in chick (Alonso et al., 1998; Desmond and Jacobson, 1977;

Desmond et al., 2005, 2014). Regionally, we found that proliferation rates were higher in the

hemispheres than the ventral hypothalamus (Fig. 3.6). While this gradient is not predicted

by chemical morphogen gradients (ventral FGF8 is as high if not higher than in dorsal

regions, Fig. 3.1E), it can be explained by mechanical feedback. Through experiments and

computational modeling, we confirmed that ventral tissues, particularly the prospective eyes,

constrain deformation of the hypothalamus, leading to lower tension and less growth (Fig.

3.8).

Notably, we found that tangential growth, but not radial growth, varied with pressure (Fig.

3.4), supporting the notion that tangential and radial growth are caused by different biolog-

ical processes (Fish et al., 2008). At early stages of development, the wall of the brain is

a (pseudostratified) monolayer, and tangential growth may represent planar, or symmetric,

cell divisions. In neural development, these symmetric divisions (in which each new cell

acquires both apical and basal cell processes) increase the pool of apical progenitor cells that

can continue to proliferate, ultimately determining brain size (Fish et al., 2008; Konno et al.,

2008). For epithelial monolayers, symmetric cell divisions have been shown to increase with

planar stretch (Wyatt et al., 2015; Streichan et al., 2014), in agreement with our observation

of mechanically-induced tangential growth. Conversely, asymmetric cell divisions are linked

to differentiation and radial growth (thickening) of the neuroepithelium (Fish et al., 2008).
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The details of mechanical feedback in growth are just beginning to be uncovered. Desmond

et al. (2014) recently reported focal adhesion kinase (FAK) as a mechanotransducer in the

embryonic brain, finding that its expression was upregulated with increasing eCSF pressure.

This mechanotransducer may be present throughout the early brain tube (Hens and DeSi-

mone, 1995; Desmond et al., 2014) and has been implicated in stretch-induced proliferation

of other systems (Chaturvedi et al., 2007; Lehoux et al., 2005; Walker et al., 2005). In

determining the form of our proposed stress-dependent growth law, we therefore turned to

existing studies of other, similar systems. For example, it remains unclear whether cells

respond to mechanical feedback at a specific stage of the cell cycle, or if mechanical feed-

back is accumulated over one or more cell cycles. In monolayers derived from canine kidney

epithelium, Streichan et al. (2014) found that proliferation depends on mechanical feedback

specifically between G1- and S-phases of the cell cycle and has no memory of stretch from

past phases. In our model, we therefore consider the current, instantaneous stress rather

than stress accumulated over a set period. We also assume transversely isotropic growth,

based on the additional observation that in-plane stretch direction did not bias the direction

cell division at low levels (< 30% strain) (Streichan et al., 2014).

3.3.2 Clinical relevance: holoprosencephaly, microcephaly, and

megalencephaly

Here we considered a novel mechanism – dysregulation of eCSF pressure – to account for a

range of abnormal hemisphere morphologies without altered molecular signaling. Holopros-

encephaly represents a diverse group of conditions, many of which have been attributed to

altered morphogen signaling (Fernandes et al., 2007). While some cases have been directly
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linked to genetic markers, external factors including alcohol, retinoic acid, and maternal

diabetes have also been implicated in animal models (Petryk et al., 2015).

In Fig. 3.9, we found that decreasing eCSF pressure during the period of normal hemi-

sphere division (HH17-21) produces hemispheres that are both holoprosencephalic and mi-

crocephalic. Though microcephaly had been reported for chicken embryos intubated at

earlier stages (Desmond and Jacobson, 1977; Garcia et al., 2017), as well as chicken and

rat embryos cultured under osmotically decreased eCSF pressure (Ramasubramanian et al.,

2013; Morriss-Kay et al., 1986; Alonso et al., 2000), the report of holoprosencephaly is novel

to this paper. By incorporating chemomechanical feedback into a realistic model of hemi-

sphere morphogenesis, we show that division fails as a result of insufficient growth of ventral

and lateral structures (classic holoprosencephaly). In this respect, holoprosencephaly in-

duced by low pressure is similar to cases produced by low FGF8, low SHH, or high BMP4

(Furuta et al., 1997; Storm et al., 2006; Ohkubo et al., 2002; Huang et al., 2007b).

In chicken embryos, we were also able to explore the effect of increased eCSF pressure before

proliferation is inhibited at the roof plate (Fig. 3.2). In this case, mechanical feedback

disproportionately increased growth of the thin, unsupported roof plate (Fig. 3.10). Though

no molecular signals were altered, results were strikingly similar to MIH holoprosencephaly

phenotypes produced by decreasing BMP4 or increasing SHH (Fernandes et al., 2007; Huang

et al., 2007a). While the neural tube closes later in mouse and human compared to chicken,

which could result in a shorter window for pressure-induced overproliferation of the roof

plate, future studies should keep this mechanism in mind.

After roof plate growth had been inhibited (HH17-21), we found that increasing pressure

neither reduced nor increased hemisphere division (Fig. 3.9A). However, it did produce

megalencephaly (Fig. 3.9B), a condition reported in 2% of the general population that has
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been linked to delayed development, epilepsy, and corticospinal dysfunction (Barkovich et al.,

2012).

Because regulation of eCSF pressure represents a complex process in itself, alterations

could occur during natural brain development. In zebrafish, genetic mutations related to

Na+K+ATPase have induced dysregulation of eCSF pressure (Lowery and Sive, 2005; Doğanlı

et al., 2013). In chicken embryos, pressure can be altered by overproduction or break down

of osmotically active components (e.g. chondroitin sulfate) (Alonso et al., 1998; Ramasub-

ramanian et al., 2013; Morriss-Kay et al., 1986; Alonso et al., 2000), or increase in external

osmolarity (Chen et al., 2014). In mammalian systems, hyperglycemia has been proposed to

explain increased incidence of holoprosencephaly in maternal diabetes (Petryk et al., 2015)

– a feasible hypothesis in the context of osmotic changes.

3.3.3 Limitations and future work

Using assumptions and initial conditions based on experimental evidence, our chemome-

chanical feedback model was able to accurately predict complex and abnormal morphologies

during hemisphere division. However, it is worth noting several biological observations not

considered in our model.

For simplicity and convergence, our model of hemisphere division (HH17-21) considered

uniform thickness at t = 0. However, the true roof plate is noticeably thinner than other areas

of the brain wall by HH17. In our model for earlier stages (HH13-17), thinning contributes

significantly to mechanical feedback: a thinner roof plate leads to higher tension and therefore

greater tissue expansion (Fig. 3.10). However, since this effect is inhibited at later stages,
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we assume this variation in thickness has a minimal impact on our model of hemisphere

division.

As an approximation, we also assumed uniform, isotropic material properties across the

brain wall. This assumption contradicts evidence that actomyosin is more concentrated on

the apical surface, which may correspond to tissue stiffening or contraction (Filas et al.,

2012; Garcia et al., 2017; Filas et al., 2011). While actomyosin contraction plays a role in

earlier brain morphogenesis (Filas et al., 2012; Garcia et al., 2017)), no effect was observed

for the stages considered in this paper (Garcia et al., 2017). We did, however, stiffen the

caudal boundary of our model (separating secondary prosencephalon from diencephalon) to

compensate for the increased stiffness and decreased tension that may exist in this region

(Garcia et al., 2017).

In this study, we approximated morphogen gradients based on existing literature. Though

we did not measure morphogen concentrations or effects directly, a wealth of studies have

reported the territories and effects of BMP4, SHH, and FGF8 in the early telencephalon

(Furuta et al., 1997; Monuki, 2007; Bardet et al., 2010; Toyoda et al., 2010). For simplicity,

our model consolidated these positive and negative feedback effects (Fig. 3.1E) into one

BMP4 gradient and one FGF8 gradient defined at t = 0 (Fig. 3.5B) to approximate diffusion

of these signals (Toyoda et al., 2010). Future studies should consider dynamic morphogen

behavior, though additional work is needed to quantify diffusion coefficients and chemical

interaction in this context.

Lastly, our model roughly approximates the effect of ventral tissues using an elastic foun-

dation. This approximation was necessary for computational time, since full incorporation

would require contact between separate structures to represent mesenchyme, prospective
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eyes, and surface ectoderm. While our approach does not capture the details of these struc-

tures, we find it sufficient to capture basic effects on our structure of interest. For the

hypothalamus, we discovered that external tissues, particularly the prospective eyes, play an

important role in restricting growth (Fig. 3.8). This complements a previous study, where

we proposed external tissues as a factor in bending and growth reduction of the ventral brain

tube (Garcia et al., 2017).

At later stages of hemisphere morphogenesis, Choe et al. (2014) reported the necessity of

external mesenchyme, which migrates into the space between cortical hemispheres, for hemi-

sphere division. Authors speculated that mesenchyme may provide a source of critical roof

plate signaling. Alternately, Gupta and Sen (2015) proposed that mesenchyme may exert a

downward force to assist invagination. Notably, our model did not require downward force

from the dorsal mesenchyme to initiate hemisphere division (Fig. 3.5). However, we did ob-

serve dramatic stretch of the roof plate region (Fig. 3.7), which must form delicate choroid

plexus projections at later stages (Choe et al., 2014). Like ventral tissues that reinforce

the hypothalamus, it is possible that mesenchyme serves to reinforce the roof plate at later

stages. Studies of later development should consider the role of mesenchyme in subsequent

roof plate morphogenesis.

3.4 Materials and Methods

3.4.1 Embryo culture, perturbation, and imaging

Fertilized white Leghorn chicken eggs were incubated at 38◦C (90% humidity), and embryos

were extracted at 48 or 60 hours (HH13 or HH17, respectively) using a filter paper carrier
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(Chapman et al., 2001). Embryos were cultured on 0.3% agar-albumen gels in 35mm culture

dishes (Chapman et al., 2001), with a 200µL layer of culture media on top. Unless otherwise

stated, culture media contained Dulbecco’s Modified Eagle’s Medium (Sigma) with 10% chick

serum (Sigma) and 1% penicillin/streptomycin/neomycin (Invitrogen). To ensure adequate

oxygen delivery during culture under media, embryos were superfused with a mixture of 95%

oxygen and 5% carbon dioxide (Voronov and Taber, 2002).

To increase eCSF pressure during development, 100µL of media was replaced with media con-

taining 4mM β-D-xyloside (BDX, Sigma), which increases osmolarity of the eCSF, increasing

the pressure required for osmotic-pressure equilibrium (Alonso et al., 1998; Desmond et al.,

2014). To reduce eCSF pressure during development, an open glass capillary tube (inner

diameter=150µm) was inserted into the midbrain. For sham embryos, a closed glass rod was

used instead. Only embryos in which the tube remained intact for the full 24h culture were

used for subsequent analysis. To reduce the influence of external tissues, prospective eyes

and lateral mesenchyme were dissected from the HH13 forebrain, and embryos were cultured

for 48h (allotting an additional 12 hours for healing and slower culture in vitro). To measure

deflated final geometries, a small incision was made in the midbrain.

All embryos were examined over the course of development using optical coherence tomogra-

phy (Thorlabs) and a Leica MZ8 microscope. To measure changes due to growth, geometries

were recorded before and after culture. To measure geometric changes due to inflation, ge-

ometries were also recorded immediately before and after deflation where applicable.
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3.4.2 Fluorescent labeling and quantification.

To quantify cell proliferation, EdU (5-ethynyl-2’-deoxyuridine) was incorporated into cells

undergoing DNA synthesis using the Click-iT EdU assay (Invitrogen). Based on previous

optimization for chicken embryos (Warren et al., 2009), 400µL of 1 mM EdU was pipetted di-

rectly on top of embryos (HH17 or HH21), which were then cultured 4h and immediately fixed

in 3.7% formaldehyde. Embryos were manually cut through the secondary prosencephalon

(n=2 HH17, n=3 HH21) or cryosectioned (n=3 HH17, n=2 HH21) before permeabilizing

for one hour in 1% bovine serum albumin (Sigma) and 0.1% Triton X-100 (Sigma). The

Click-iT EdU reaction was applied according to the manufacturer protocol. To protect the

integrity of cryosectioned tissues, embryos were soaked in 30% sucrose prior to freezing. To

label all nuclei (DNA stain), samples were then incubated 30 minutes in 5µg/mL Hoechst

33342. To visualize apical F-actin on the inner surface of the brain, additional embryos were

fixed with 3.7% formaldehyde, manually cut through the secondary prosencephalon (HH17

or HH21), permeabilized, and stained with phalloidin as described in (Garcia et al., 2017).

Fixed fluorescent samples were imaged using a Zeiss LSM 710 confocal microscope at 20x

magnification. For large sections, FIJI/ImageJ (Schneider et al., 2012) was used to stitch

multiple 20x z-stacks (Preibisch et al., 2009), then z-stacks were transformed to maximum

intensity z-projections (see Fig. 3.2A-B). To minimize bias when determining proliferation

fraction, nuclei were semi-automatically counted as follows: First, EdU maximum intensity

projections were run through a 3D Gaussian blur filter of 0.5µm x 0.5µm x 0.5µm, followed

by a CLAHE (contrast-limited adaptive histogram equalization) algorithm to optimize local

contrast for each channel. For continuous quantification along the wall of the brain tube

(Figs. 3.6C and 3.11), the neuroepithelium was traced and straightened (Kocsis et al., 1991)
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such that the x-dimension represented distance from the RP. Finally, local maxima (repre-

senting EdU-labeled or Hoechst33342-labeled nuclei) were counted, using a 1-pixel (36µm2)

Gaussian filter to avoid labeling noise as nuclei. Images were checked manually to ensure

accurate capture of nuclei. Due to variability in image quality, some images required an

additional round of Gaussian blur (1 pixel ≈ 36µm2) after z-projection and CLAHE. For

a given region, proliferation fraction was calculated as the number of EdU-labeled nuclei

(undergoing S-phase during the 4-hour labeling window) divided by the total number of

Hoechst 33342-labeled nuclei. For Figs. 3.6C and 3.11, each data point represents a 60

µm-long segment along the circumference of the wall.

3.4.3 Measuring growth and deformation

OCT image stacks were reoriented in ImageJ/FIJI (Schneider et al., 2012) to yield cross sec-

tions through the DMB or SP as shown in Figs. 3.4B and 3.1D, respectively. For measures

at the DMB, the wall perimeter δ was traced for each cross section, and average radius was

computed as δ/(2π). For intubated and sham embryos, initial radius (HH17) was recorded

before deflation (R′) and after deflation (R), while only the initial inflated radius (R′) could

be recorded for control and BDX cases (Fig. 3.3). For all cases, final radius (HH21) was

recorded before deflation (r′) and after deflation (r). Elastic stretch was calculated as the

ratio of inflated to deflated radius at each stage, λ∗Θ,i = R′/R at HH17 and λ∗Θ,f = r′/r at

HH21. Using the average value of λ̄∗Θ,i to represent all experimental groups (before pertur-

bation), circumferential growth was estimated as GΘ = r/R ≈ λ̄Θ,i(r/R
′). (Overbar denotes

group average.) These relationships are further described in Fig. 3.4.
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Deflated wall thickness (H at HH17, h at HH21) was also measured in the lateral DMB (top

of OCT image in Figs. 3.4), where image quality was maintained at late stages. Since elastic

deformation was too small to be detected in the thickness direction, average radial growth was

estimated as ḠR = h̄/H̄. To estimate hemisphere growth, the same technique was applied,

replacing DMB radius with equivalent hemisphere radius, calculated from arclengths shown

in Fig. 3.3.

3.4.4 Computational methods

Finite element models were created in ABAQUS Standard (v6.10, SIMULIA, Providence,

RI) using C3D20R elements (20-node hexagonal elements with reduced integration). For

models of hemisphere division, the initial, unloaded geometry was based on OCT images of

the deflated secondary prosencephalon at HH17. As shown in Fig. 3.5A, this consists of a

spherical telencephalon of inner radius RT = 3H, a conical hypothalamus defined such that

the total dorsal-ventral length L = 4RT , and a caudal portion extending straight (3H long)

to represent the boundary connecting secondary prosencephalon to diencephalon. To reduce

computational time, only the left half of the brain was simulated, with symmetry conditions

applied at the midline, and the caudal end was constrained with a roller boundary condition.

The model contained 4 elements across the thickness, for a total of 12448 elements.

A normal eCSF pressure of p = 15 Pa was applied along the inner wall based on measured

results. BDX cases were modeled by applying a 40% increase in pressure (p = 21 Pa)

according to (Alonso et al., 1998), and intubated cases were modeled without pressure (p = 0

Pa). The conical hypothalamus and its caudal extension are constrained by an external

elastic foundation. Here we assumed a spring stiffness per unit area of k/A = 1.7 Pa/micron
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(for a 300µm-thick layer of external tissue, µext ≈ 0.35µ). This value is reasonable if we

consider surrounding tissues as a composite, with prospective eye neuroepithelium (µ similar

to that of the brain tube (Oltean et al., 2016)) filling approximately one third of the space

(Fig. 3.1D) and mesenchyme (extremely low µ) filling the rest. Shear modulus of other

tissues, such as the myocardium and cardiac jelly of the developing heart, have been reported

as low as 0.34µ and 0.07µ, respectively (Zamir et al., 2003).

To simulate growth in ABAQUS, we implemented a custom user subroutine based on the

UMAT generator developed by Young et al. (2010). Based on the theory for volumetric

growth (Rodriguez et al., 1994), we decompose the 3D deformation gradient tensor into

F = F∗ · G, where G represents the 3D growth tensor and F∗ represents the 3D elastic

deformation gradient tensor. We assume transversely isotropic growth such that

G = GReReR +GeΘeΘ +GeΦeΦ (3.11)

where ei represent unit base vectors in the initial configuration. The Cauchy stress tensor,

σ depends on F∗ according to

σ = J∗−1F∗ · ∂W
∂F∗T

(3.12)

where J∗ = det F∗ is the elastic volume ratio and T denotes the transpose. Morphogen- and

stress-dependent growth was defined according to Eq. 3.1.

Based on past measurements in the chick brain tube (Xu et al., 2010a), we define the neu-

roepithelial wall as a nearly incompressible hyperelastic material with with shear modulus,

µ = 300 Pa, and bulk modulus, κ = 100µ. Here we use a modified neo Hookean strain
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energy density of the form

W = µ
2
(Ī∗1 − 3) + κ

[
1
2
(J∗2 − 1)− ln J∗

]
(3.13)

where Ī∗1 = J∗−2/3 tr(F∗T ·F∗) is the first strain invariant. To approximate observed constric-

tion between secondary prosencephalon and diencephalon and improve model convergence,

the caudal end was stiffened such that µ = 1.8 kPa.

3.4.5 Pressure measurement

Lumen pressure was measured with a micropipette connected to a pressure transducer

adapted from Jelinek and Pexieder (1968). Briefly, borosilicate glass micropipettes were

pulled to an internal diameter greater than 80µm with a 30◦ beveled tip and connected via

polyethylene tubing (BD; 427440) to a differential pressure transducer (Honeywell; CPCL04DFC).

A signal conditioner (Omega; DMD4059-DC) was used to amplify the transducer signal and

a data acquisition module (National Instruments; USB-6009) and a custom LabVIEW pro-

gram was used to record voltage over time. The transducer was calibrated using a water

manometer and all data was processed in MATLAB.

At HH17 or 21, chicken embryos were extracted and transferred to a phosphate buffered

saline (PBS) filled petri dish. Micropipettes and tubing were backfilled with PBS to match

the osmolality of chick cerebrospinal fluid (Alonso et al., 1998). A baseline voltage was

recorded for at least 5 minutes and then the micropipette was inserted into the hindbrain

and data was recorded for at least 5 minutes before being removed. Pressure values were

calculated as the mean pressure over at least the first 3 minutes after insertion.
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3.4.6 Statistics

Analysis of Variance (ANOVA) with post hoc Tukey test was used to compare data between

more than two groups, and student t-test was used to compare data between two groups.

Ratio data was log transformed to ensure normal distributions. For all tests, p<0.05 was

considered to be significant. All error bars denote standard deviation.

3.5 Addendum

Additional computational methods: HH13–HH17 model For models of earlier te-

lencephalon growth (HH13 to HH17), geometry was adjusted to L = 3RT and a caudal

extension 2H long. Furthermore, initial roof plate thickness was decreased by half to better

approximate true roof plate thickness. To account for the relatively large prospective eyes at

this stage, which cover a greater extent of the secondary prosencephalon, elastic foundation

was also applied to the lower portion of the spherical telencephalon in the younger model.

This HH13-17 model contained 5 elements across the thickness, for a total of 10875 elements.
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Figure 3.11: Proliferation is only decreased in the telencephalic roof plate at HH21. (A) At
3.5 days of development (HH21), hemispheres are clearly visible in the chick telencephalon.
(A1-A4) Cross-sections are shown from rostral to caudal end of the telencephalon, corre-
sponding to slices 1-4 in (A). Proliferating nuclei (red) were labeled with EdU (cells un-
dergoing S-phase during a 4-hour pulse), and all nuclei were labeled with Hoechst33342
(blue). White arrowheads denote roof plate (RP) region with decreased proliferation. (B)
For comparison, hemispheres are note yet visible at 2.5 days (HH17). (B1-B4) Cross-sections
corresponding to slices 1-4 at 2.5 days. Note that proliferation remains high throughout the
RP during these stages. (C) Quantitative comparison of proliferation fraction in the RP and
lateral hemisphere at 3.5d for control (n=5) and intubated (n=4) embryos. (D1-D4) At 2.5
days, the fraction of proliferating cells is approximately uniform across the neuroepithelial
wall for all slices analyzed. Each data point represents the fraction of proliferating cells
in a region covering 60 microns along the circumference of the wall. (E1-E4) At 3.5 days,
the fraction of proliferating cells decreases sharply at the RP in caudal (E2), middle (E3)
and rostral (E4) regions. Diamond denotes measurement from sample shown in (A1-B4),
square denotes measurement from second sample, and ‘+’ denotes measurement from third
sample if applicable. Total circumference is normalized for each sample such that the RP
corresponds to x=0, moving clockwise to the right hemisphere corresponds to x¿0, moving
counter-clockwise to the left hemisphere corresponds to x<0, and x=1 or x=-1 corresponds
to the floor plate (FP). All images to scale, scale bar is 500 microns.
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Chapter 4

Dynamic patterns of cortical

expansion during folding of the

preterm human brain4

Summary During the third trimester of human brain development, the cerebral cortex

undergoes dramatic surface expansion and folding. Physical models suggest that relatively

rapid growth of the cortical gray matter helps drive this folding, and structural data suggests

that growth may vary in both space (by region on the cortical surface) and time. In this study,

we propose a new method to estimate local growth from sequential cortical reconstructions.

Using anatomically-constrained Multimodal Surface Matching (aMSM), we obtain accurate,

physically-guided point correspondence between younger and older cortical reconstructions

of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of

cortical expansion with unprecedented precision. By considering 30 preterm infants scanned

4Magnetic resonance imaging data in this study was collected, processed, and reconstructed by the Wash-
ington University Neonatal Development Research group, and section 4.4.1 was drafted by Dimitrios Alex-
opoulos, Christopher Smyser, and Cynthia Rogers. Philip Bayly helped design the experiments. Philip
Bayly, Emma Robinson, Larry Taber, Donna Dierker, Matt Glasser, Tim Coalson, and Daniel Rueckert con-
tributed to methods. Christopher Smyser, Cynthia Rogers, Cynthia Ortinau, and David Van Essen helped
interpret results. All edited the manuscript.
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2-4 times during the period of rapid cortical expansion (28 to 38 weeks postmenstrual age), we

observe significant regional differences in growth across the cortical surface that are consistent

with the emergence of new folds. Furthermore, these growth patterns shift over the course

of development, with non-injured subjects following a highly consistent trajectory. This

information provides a detailed picture of dynamic changes in cortical growth, connecting

what is known about patterns of development at the microscopic (cellular) and macroscopic

(folding) scales. Since our method provides specific growth maps for individual brains, we are

also able to detect alterations due to injury. This fully-automated surface analysis, based on

tools freely available to the brain mapping community, may also serve as a useful approach

for future studies of abnormal growth due to genetic disorders, injury, or other environmental

variables.

4.1 Introduction

During the final weeks of fetal or preterm development, the human brain undergoes crucial

changes in connectivity and cellular maturation (Ball et al., 2014; Mukherjee et al., 2005).

The cerebral cortex also rapidly increases in surface area, coinciding with the formation

of complex folds (Fig. 4.1). Physical simulations suggest that cortical folding may result

from mechanical instability, as the outer gray matter grows faster than underlying white

matter (Bayly et al., 2013; Tallinen et al., 2016). Such models accurately predict stress

patterns within folds and explain abnormal folding conditions such as polymicrogyria and

pachygyria. However, even recent models that consider uniform cortical growth on a realistic

brain geometry do not accurately reproduce the conserved (primary) patterns of folding

observed in the human brain (Tallinen et al., 2016). This discrepancy suggests a role for
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Figure 4.1: Global measures of cortical surface area and folding increase over time. (A)
Cortical mid-thickness surfaces for individual hemisphere at 28, 30, 33, and 38 weeks PMA.
Color overlay represents non-dimensional curvature, K∗, a useful metric of the degree of fold-
ing. (B) Total cortical surface area (left) and average magnitude of K∗ (right) increase with
time. However, these global measures do not provide information about regional variations
in maturation and morphology.

other hypothesized factors such as axon tension in white matter (Van Essen, 1997), regional

differences in material properties, or regional differences in growth (Toro and Burnod, 2005).

Advances in magnetic resonance imaging (MRI) and cortical reconstruction have enabled

detailed quantification of brain structure and connectivity during brain development (Dubois

et al., 2007; Shimony et al., 2016; Glasser et al., 2016a). Nonetheless, measuring patterns

of physical growth over time presents a unique challenge, requiring precise identification of

corresponding points between multiple scans. To date, clinical studies often rely on global

measures of shape or total surface expansion (Shimony et al., 2016) despite evidence of

important regional differences (Hill et al., 2010b). Primary sensory and motor regions exhibit

earlier maturation and folding than other areas (Mukherjee et al., 2005; Dubois et al., 2007).

Furthermore, even subtle or localized abnormalities in folding have been linked to disorders

such as epilepsy, autism, and schizophrenia (Lin et al., 2006; Li et al., 2016; Hardan et al.,

2004).
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To attain more detailed measures of cortical growth, several groups have segmented the brain

into user-delineated regions of interest (ROIs) for analysis (Moeskops et al., 2015; Lyall et al.,

2014; Wang et al., 2017). However, manual definition of ROIs may introduce bias or error

and typically requires labor-intensive editing. A priori parcellation can also lead to skewed

or weakened conclusions if the true effect does not fall neatly within the assumed area.

In this study, we employ an ROI-independent approach to estimate spatiotemporal patterns

of cortical growth over the course of human brain folding. Harnessing recent developments

in anatomical Multimodal Surface Matching (aMSM) (Robinson et al., 2014, 2017), we

achieve physically-guided point correspondence between cortical surfaces of the same in-

dividual across multiple time points. This was accomplished by automatically matching

common features (gyri and sulci) within a spherical framework and penalizing physically un-

likely (energy-expensive) deformations on the anatomical surface, an approach first described

in ferret models (Knutsen et al., 2010, 2012). While alternative methods have been proposed

to match anatomical surfaces (Orasanu et al., 2016; Durrleman et al., 2014), none provide

MSM’s flexibility in terms of data matching (Robinson et al., 2014) or utilize penalties in-

spired by physical behavior of brain tissue (Knutsen et al., 2010). Our approach produces

smooth, regionally-varying maps of surface expansion for each subject analyzed. By consid-

ering right and left hemispheres from 30 preterm subjects, scanned at different intervals from

approximately 28 to 38 weeks postmenstrual age (PMA), we observe consistent, meaningful

patterns of differential growth that change over time.

This study provides a comprehensive, quantitative analysis of cortical expansion dynamics

during human brain folding. We report statistically significant regional differences consistent

with established patterns of cellular maturation and the emergence of new folds. These

findings, which suggest that prenatal cortical growth is not uniform, may guide future studies

105



of regional maturation and more accurate simulations of cortical folding. Furthermore, since

our tools are freely available to the neuroscience community Robinson et al. (2014); Marcus

et al. (2011); Winkler et al. (2014); Glasser et al. (2016a), the approach presented here can

be widely applied to future studies of development and disease progression.

4.2 Results

To visualize changes in cortical growth over the course of brain folding, we analyzed right

and left hemispheres from 30 very preterm infants (born <30 weeks PMA, 15 male, 15

female) scanned 2-4 times leading up to term-equivalent (36-40 weeks PMA). Six subjects

were excluded from group analysis due to injury (see Materials and Methods for criteria),

but all were analyzed longitudinally for individual growth patterns.

4.2.1 aMSM produces accurate point correspondence and smooth

growth estimation across the cortex of individual subjects

Multimodal Surface Matching uses a flexible spherical framework to align surfaces based on

a range of available surface data (Robinson et al., 2014). As shown in Fig. 4.2, anatomical

surfaces (Fig. 4.2A) and corresponding data (e.g., univariate patterns of curvature, Fig.

4.1A) are projected to a spherical surface to provide a simpler mathematical framework for

registration (Fig. 4.2B). Spherical registration shifts points on the input sphere until data

is optimally aligned with that of the reference sphere (Fig. 4.2C ), such that reprojection

onto the input anatomical surface reveals accurate point correspondence with the reference

surface (Fig. 4.2D).
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Figure 4.2: Longitudinal (intra-subject) registration with aMSM. (A) Cortical mid-thickness
surfaces (ordered sets of vertices in 3D) were generated at multiple time points for each
individual. After resampling to a standard mesh, vertices on the input surface (red dots)
do not correspond to the same locations on the reference surface (black dots). Red and
black boxes outline a region of interest, in which black stars represent plausible locations for
point correspondence. (B) Mean curvatures (generated from original topologies, Fig. 4.1A),
along with deformations (generated from area-normalized input and reference anatomical
surfaces), are projected to a spherical framework to drive registration. (C ) aMSM moves
points on the input sphere in order to (1) optimize curvature matching and (2) minimize
deformations between the anatomical surfaces. (D) Projection of shifted vertices reveals new
anatomical locations with plausible alignment and reduced deformations.

In this study, we use mean surface curvature (K), calculated at the cortical mid-thickness, to

drive initial matching. To reduce unrealistic distortions induced by both curvature matching

and spherical projection, we further refine our registration to minimize physical strain energy

(Eq. 4.1) between the input and reference anatomical surfaces (Robinson et al., 2017). Unlike

other spherical registration methods, which reduce distortions on the sphere, this allows us

to explicitly minimize deformations that are energetically unfavorable (and thus unlikely),

greatly reducing artifacts associated with the spherical projection process. (See SI Text for

examples and validation.) Local expansion can then be estimated for each individual mesh

face as the ratio of older to younger surface area.

Using aMSM, we were able to obtain physically justified point correspondence and smooth

maps of cortical expansion at the individual level. Figure 4.3 shows results for a represen-

tative subject at multiple developmental periods: 27 to 31 weeks, 31 to 33 weeks, 33 to 37

weeks, and directly from 31 to 37 weeks PMA. Qualitatively, plotting the same color map
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Figure 4.3: Gradients of cortical expansion are evident in individual brains. Relative cortical
expansion (local surface expansion normalized by total hemisphere expansion) is shown for
each developmental period. For each column, the same map is overlaid on younger (top)
and older (bottom) surface to visualize point correspondence after longitudinal registration.
From left to right, relative expansion is estimated for growth from 27 to 31 weeks PMA,
31 to 33 weeks PMA, 33 to 37 weeks PMA. Far right: Direct registration from 31 to 37
weeks PMA, as considered for group analysis in Fig. 4.4. True cortical expansion is equal to
relative expansion (plotted) multiplied by global cortical expansion of 1.26, 1.37, 1.70, and
2.33, respectively.

on registered younger (top) and older (bottom) geometries reveals accurate point correspon-

dence for each time period. Quantitative analysis confirmed significant improvements in

curvature correlation and strain energy due to aMSM registration (Table 4.1). As illustrated

in Fig. 4.3, direct registration from 31 to 37 weeks was also similar to registration from 31

to 33 then 33 to 37 weeks. (See Fig. B.5 for group-wise comparison.)

4.2.2 Spatial patterns of preterm growth are consistent across

subjects and correspond to folding regions

For statistical comparisons, individuals were also registered to a 30-week atlas generated

from our cohort (Fig. 4.4A, see SI Text for details). Since folding patterns (primary sulci)

are similar across individuals at 30 weeks PMA (Dubois et al., 2007), and because most
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Figure 4.4: Gradients of cortical expansion and folding are consistent across subjects. (A)
Correspondence between individual surfaces (closest to 30-weeks, black arrow) and the 30-
week atlas was determined by aMSM registration. Using intra-subject correspondence from
aMSM (double arrows), individual growth patterns from each period are registered to the
30-week atlas for inter-subject statistics. (B) For the period from 30 to 38 weeks PMA (black
double arrow in A), relative area expansion (top) and regional folding (bottom) were highest
in the lateral parietal-temporal-occipital region and lateral frontal lobe (n=20). Black and
white contours enclose regions where relative expansion is significantly higher and lower than
the global average.

subjects were scanned near 30 weeks PMA, this atlas served as an appropriate reference for

group analyses. Once registration was established between 30-week individual surfaces and

the 30-week atlas (inter-subject registration, black arrow in Fig. 4.4A), individual growth

metrics determined by intra-subject registration were transformed to the atlas, facilitating

statistical analysis across individuals and time points.

To determine whether regional differences in cortical expansion are conserved across individ-

uals, we first considered the period from 30±1 to 38±2 weeks PMA (n=20 subjects without

significant injury). Permutation Analysis of Linear Models (PALM) with threshold-free clus-

ter enhancement (Winkler et al., 2014) revealed significantly higher cortical expansion in the

lateral parietal, occipital, and temporal regions and significantly lower cortical expansion in

medial and insular regions (Fig. 4.4B, top). These patterns were consistent across right and

left hemispheres.
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At the individual level, we observed highest cortical expansion in areas undergoing the most

dramatic folding (Fig. 4.3), consistent with previous reports in ferret (Knutsen et al., 2012;

Reillo et al., 2010; Kriegstein et al., 2006; Smart and McSherry, 1986). To quantify change in

preterm folding, we analyzed non-dimensional mean curvature, defined as K∗ = KL where

L =
√
SA/4π and SA = total cortical surface area (Knutsen et al., 2012). As shown in Fig.

4.1B (right), K∗ = 1 across a spherical surface, and the global average of |K∗| increases for

more convoluted surfaces. Local folding was estimated as the difference between |K∗| on the

older and younger surfaces after one iteration of Gaussian kernel smoothing (σ = 4 mm) on

the atlas. As shown in Fig. 4.4B, regions of highest cortical folding were similar, but not

identical, to those of highest cortical expansion (Pearson’s correlation = 0.46 and 0.42 for

left and right hemispheres).

4.2.3 Cortical growth changes regionally and dynamically during

folding

From individuals with scans less than 6 weeks apart (n=27 measurements from 15 subjects),

we also investigated temporal variations in regional growth. As shown in Fig. 4.5A, relative

expansion initially appears highest in the early motor, somatosensory, and visual cortices,

as well as the insula, but lower near term-equivalent (n=4 with four sequential scans). By

contrast, relative growth appears to increase with age in lateral parietal, temporal, and

frontal regions. To determine whether these dynamic shifts were statistically significant, we

considered the effect of midpoint PMA (midpoint between younger and older scan PMAs) as

a covariate. PALM revealed mean spatial patterns (Fig. 4.5B left, mean PMA=33 weeks)

similar to those for 30 to 38 weeks (Fig. 4.4B, mean PMA=34 weeks). Importantly, temporal

analysis revealed significant decreases in relative expansion of the insula and early motor,
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somatosensory, and visual cortices (initially fast-expanding regions slow over time relative

to other regions), as well as increases in the lateral temporal lobe (Fig. 4.5B).

We also examined dynamic changes in terms of growth rate, defined as local percent increase

in cortical area per week. By plotting vertex values versus midpoint PMA (Fig. 4.6A), we

quantified the rate and acceleration of cortical growth at specific locations over time. For

non-injured individuals (blue and red dots), growth rates were generally higher at younger

ages. Note that growth decelerates significantly (p¡0.05) in the initially fast-growing primary

cortices (3, 8, 9) and insula (7), but it remains fairly constant in frontal (1-2, 10), temporal

(6) and lateral parietal-occipital (4-5) vertices. Linear fit and statistics are available in Table

4.2.

4.2.4 Local growth estimation detects abnormalities associated

with preterm injury

Since our technique produces continuous estimates of cortical growth for individual subjects,

we also analyzed cortical surfaces of infants identified to have grade III/IV IVH and/or

ventriculomegaly during their Neonatal Intensive Care Unit course (n=6). For illustration,

Fig. 4.6B compares a subject with no injury (same subject as Fig. 4.3) to one diagnosed with

bilateral grade III/IV IVH. Reduction in growth rate is particularly evident in the temporal

and occipital lobes of the subject with IVH (Fig. 4.6B, middle). We also note that growth

rate ‘recovered’ to near non-injured levels during the period from 34 to 38 weeks PMA in

this individual (Fig. 4.6B, bottom, and black open stars in Fig. 4.6A).
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Figure 4.5: Regions of highest cortical expansion change over time. (A) Maps of
average relative expansion are shown for brief windows of development, denoted on left.
For subjects in which three distinct periods of growth could be measured (n=4), regions of
maximum expansion (white arrowheads) appear to shift over time. For illustration, average
mid-thickness surfaces are also shown to scale for each time point. (B) Regions of statistically
significant differences relative to global growth were observed based on 27 growth measure-
ments (15 subjects) over the third trimester equivalent (temporal resolution <6 weeks, mean
PMA=33 weeks). Left: Relative expansion is higher in the lateral parietal, temporal, oc-
cipital and frontal regions (red) and lower in the medial frontal and insular regions (blue).
Right: Relative expansion in the primary motor, sensory, and visual cortices, as well as
in the insula, decreases over time (green). By contrast, relative expansion increases in the
temporal lobe over time (yellow).
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Figure 4.6: Growth rate decreases in initially fast-growing cortical areas. (A) To quantify
changes over time, local growth rates (n=27 measurements from 15 non-injured subjects)
are plotted against midpoint PMA at ten vertices on left (blue) and right (red) hemispheres.
Growth rate decreases with PMA at vertices 3, 8, and 9 (early motor, somatosensory, and
visual cortices) and 7 (insula). By contrast, vertices 1-2, 4-6 and 10 remain relatively con-
stant. (B) Individual growth rates were also compared between a non-injured subject (left)
and a subject with bilateral grade III/IV intraventricular hemorrhage (IVH, right). From
top to bottom, surfaces are shown at approximately 30 weeks, 34 weeks, and 38 weeks PMA.
Growth rate from 30 to 34 weeks is plotted on the 34-week surface, and growth rate from 34
to 38 weeks is plotted on 38-week surface. For the subject with IVH, growth rate is initially
reduced in occipital (5, 9) and temporal (6) lobes, but later recovers to near non-injured
levels. Rates at locations 1-10 in these specific individuals are denoted in (A) by blue stars
(no injury) or black stars (IVH).
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4.3 Discussion

In this work, we implemented an automated, quantitative method for analyzing regional

growth in longitudinal studies of cortical maturation. Individual registration with aMSM

not only produced accurate alignment of gyri and sulci, but it also effectively minimized

distortions on the cortical surface (Fig. 4.3, Table 4.1). This shift in focus – regularizing the

physical anatomical mesh instead of the abstract spherical mesh – offers a significant improve-

ment for longitudinal registration using spherical techniques, which have been plagued by

artifactual deformations that obscure real trends and limit interpretation of cortical growth

maps (Robinson et al., 2017). Furthermore, our mechanics-inspired regularization penalty

(strain energy density, Eq. 4.1) is physically justified for longitudinal registration and has

been shown to outperform other mathematical approaches (Robinson et al., 2017).

Other registration techniques have been proposed to control distortion via spectral match-

ing or varifolds (Orasanu et al., 2016; Durrleman et al., 2014), but they have not been

integrated into widely-used analysis pipelines Glasser et al. (2013, 2016b,a) or produced

smooth, meaningful maps of cortical surface expansion. By contrast, spherical registration

provides an efficient, versatile framework for inter- and intra-subject analysis based on a

variety of imaging modalities Robinson et al. (2014); Tong et al. (2017). While this study

matched curvatures, an intrinsic feature of any cortical reconstruction, MSM allows regis-

tration based on multimodal data, which may further improve the accuracy of registration

(Glasser et al., 2016a). Future studies may exploit additional data, such as myelin content

and fMRI contrasts, to establish or improve correspondence.

The current approach provides continuous maps of local expansion for each individual, en-

abling continuous statistical analysis across the surface. Without the limitations of ROIs
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(Moeskops et al., 2015; Lyall et al., 2014; Wang et al., 2017), spatiotemporal trends pre-

sented here offer new insight into the trajectory of cortical growth and maturation. In many

respects, these patterns are consistent with past literature: Diffusion tensor imaging and

histological analyses have reported mature dendritic branching in the primary motor and

sensory cortices before the visual cortex, which in turn matures earlier than the frontal

cortex Mukherjee et al. (2005); Ball et al. (2014). Similar patterns have been reported for

regional folding in the preterm brain Dubois et al. (2007). The dynamic measures of cortical

surface expansion reported here offer a bridge between these metrics, supporting the idea

that biological processes (neuronal migration and dendritic branching) contribute to physical

expansion of the cortex (constrained regional growth), which leads to mechanical instability

and folding in different areas at different times.

As shown in Fig. 4.7, the patterns we report for preterm growth (third trimester equiva-

lent) may also link existing studies of cortical growth during the late second trimester and

childhood. A volumetric study of fetal MRIs found maximum cortical growth at the cen-

tral sulcus, which increased between 20-24 weeks and 24-28 weeks, as well as above-average

growth near the insula, cingulate, and orbital sulcus (Rajagopalan et al., 2011). Similarly,

we observe a trajectory in which the area of maximum growth migrates outward from the

central sulcus at 28-30 weeks (Fig. 4.7A, top) toward the parietal then temporal and frontal

lobes while dissipating from the medial occipital lobe (Fig. 4.7C ). As shown in Fig. 4.7B,

this is generally consistent with reported patterns of postnatal expansion (term to adult in

human, also proposed for human evolution) (Hill et al., 2010b).

One limitation of our study is the use of preterm infant data rather than fetal scans. With the

advent of improved motion correction tools (Kuklisova-Murgasova et al., 2012), fetal scans

have become feasible and may reveal faster or different growth patterns Clouchoux et al.
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(2012). Though our results appear consistent with second trimester and postnatal trends,

future studies should assess potential differences in preterm versus healthy growth as in

utero longitudinal scans become available with sufficient temporal resolution. Furthermore,

the current approach may not fully characterize within-fold differences, such as gyri-specific

growth (de Juan Romero et al., 2015); higher resolution matching data may be needed to

resolve growth patterns at subgyral scales.

We also note some conflicting results with past studies using manually-defined ROIs. For

example, a recent study of preterm infants (30 weeks PMA to term-equivalent) analyzed

growth by dividing the brain into its major lobes (Moeskops et al., 2015). Authors reported

high expansion in the parietal and occipital lobes, in agreement with our results, but low

expansion in the temporal lobe. We speculate that this discrepancy stems from inclusion of

the insula and medial temporal surface in their temporal lobe ROI. Relatively low expansion

of these regions (Fig. 4.4B) may be sufficient to ‘cancel out’ the high expansion we observed

in the lateral temporal region. Another recent study used ROIs to relate regional surface

expansion and cellular maturation in the developing rhesus macaque brain (Wang et al.,

2017). This ROI analysis did not reveal a clear relationship, whereas our current approach

in human (Fig. 4.6) (Mukherjee et al., 2005; Ball et al., 2014) and ferret (Knutsen et al.,

2012) suggests a connection between the two. We speculate that a priori definition of ROIs

may diminish the ability to detect such relationships.

Finally, we note that, for infants with high-grade IVH and/or ventriculomegaly, our analysis

was able to clearly detect alterations in local growth. Fig. 4.6B provides an example

of grade III/IV IVH, where abnormal folding is evident at all time points. However, as

illustrated in Fig. 4.4B, folding may not serve as a perfect representation of underlying

growth. Our method revealed reduced growth rate in specific regions, followed by recovery
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Figure 4.7: Trajectory of preterm growth may continue after term. (A) We observe that
regions of highest expansion (‘hot spots’) migrate smoothly from the central sulcus and
nearby regions (top) into parietal (middle) then, finally, frontal and temporal regions (bot-
tom). Growth slows gradually in the primary visual cortex. (B) Reported postnatal trends
appear to continue this trajectory, maintaining high growth in the parietal, temporal and
frontal lobes (Hill et al., 2010b). Expansion is lowest in the insula and visual cortex af-
ter birth (though still a minimum of two-fold, adapted from Fig. 1 of ref. (Hill et al.,
2010b)). (C ) Schematic illustrating the trajectory of the maximum growth region from pri-
mary motor, sensory and visual cortices areas highly conserved across species and critical
for basic survival into regions highly developed in humans, particularly after birth. pre =
prenatal/preterm, post = postnatal.

to near-normal levels. These areas and effects would be difficult to pinpoint with global

measures, or even local measures of folding. Just as we were able to detect subtle differences

in preterm growth, future studies may apply this approach to detect differences related to

specific injury mechanisms, genetic disorders, or environmental variables.
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4.4 Methods

4.4.1 Recruitment, MRI acquisition and surface generation

Preterm infants in this study were born at <30 weeks gestation and were recruited from St

Louis Childrens Hospital. The Washington University Institutional Review Board approved

all procedures related to the study, and parents or legal guardians provided informed, written

consent. Images were obtained using a turbo spin echo T2-weighted sequence (repetition time

= 8,500 milliseconds; echo time = 160 milliseconds; voxel size = 1 x 1 x 1 mm3) on a Siemens

(Erlangen, Germany) 3T Trio scanner. T2-weighted images were processed, and cortical

segmentations were generated at the mid-thickness of the cortex using previously documented

methods (Hill et al., 2010a). These segmentations were then used to generate cortical surface

reconstructions, including mid-thickness and spherical surfaces, for each hemisphere using

methods previously reported (Hill et al., 2010a).

Preterm infants with moderate to severe cerebellar hemorrhage, grade III/IV IVH, cystic

periventricular leukomalacia or ventriculomegaly on MRI were identified and analyzed sep-

arately (Inder et al., 2005; Kidokoro et al., 2014). Clinical and demographic information for

included and excluded subjects can be found in Table 4.3. Three out of 26 included subjects

exhibited non-cystic white matter injuries. These details, as well as PMA for each individual

scan, can be found in Table 4.4.
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4.4.2 Longitudinal surface alignment and theory

To obtain point correspondence across time, individual surfaces (‘input’ and ‘reference’) were

projected to a sphere and registered with aMSM (Robinson et al., 2017) (Fig. 4.2). This tool

systematically moves points on the input spherical surface in order to maximize similarity of

a specified metric and minimize strain energy between the anatomical input and reference

surfaces. Mean curvatures, generated in Connectome Workbench (Marcus et al., 2011), were

used for matching data and cortical mid-thickness surfaces, rescaled to the same total surface

area, were used as the anatomical input and reference surfaces.

Inspired by studies that have modeled brain tissue as a hyperelastic material (Bayly et al.,

2013; Tallinen et al., 2016; Xu et al., 2010b; Toro and Burnod, 2005), we define surface strain

energy as:

W =
µ

2
(R +

1

R
− 2) +

κ

2
(J +

1

J
− 2), (4.1)

where R = λ1/λ2 represents change in shape, J = λ1λ2 represents change in size, and λ1

and λ2 represent in-plane anatomical stretches in the maximum and minimum principal

directions, respectively. This form corresponds to a modified, compressible Neo-hookean

material in 2D, and here we define bulk modulus, κ, to be 10 times greater than shear

modulus, µ. To prevent bias associated with the direction of registration (Reuter et al., 2012),

average results were calculated for aMSM registration performed from both older to younger

and younger to older surfaces (Fig. B.3). Additional details on theory and implementation

of aMSM, as well as parameter effects of bulk-to-shear ratio, are described in SI Text and

(Robinson et al., 2017). Other parameter effects have been described previously (Robinson

et al., 2017, 2014).
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4.4.3 Group statistics

To analyze trends in growth, individual metric maps were compared on the 30-week group

atlas by applying point correspondences described in Fig. 4.4. Atlas generation details can

be found in SI Text. Individual-to-atlas alignment was accomplished with aMSM, using one

surface from each individual as input (time point closest to 30 weeks PMA). PALM was

performed with threshold-free cluster enhancement (TFCE) (Winkler et al., 2014), using

1000 iterations and a medial wall mask. Single group t-tests were performed on the log

transform of relative surface expansion to obtain a normally distributed metric centered

at zero. Atlas mid-thickness surfaces and vertex areas were used for TFCE surface area

computations.

Significance of correlations was assessed using Pearson’s correlation coefficient, and total

strain energy was calculated by integrating Eq. 4.1 with respect to cortical surface area

(MATLAB, The MathWorks, Inc., Natick, MA) (Knutsen et al., 2010). Significant improve-

ments due to aMSM were assessed by comparing total correlation and energy values before

and after registration with paired t-tests (Table 4.1).
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4.5 Addendum

Table 4.1: Statistical improvements due to aMSM alignment (n = 10 for each column)

Weeks (PMA): 28 to 30 30 to 34 34 to 38 30 to 38

P before (affine registration) 0.31 ± 0.09 0.32 ± 0.07 0.27 ± 0.13 0.14 ± 0.08

P after (aMSM registration) 0.70 ± 0.14 0.81 ± 0.06 0.87 ± 0.03 0.68 ± 0.08

E/µA before (affine registration) 1.92 ± 0.45 1.83 ± 0.33 1.87 ± 0.37 3.70 ± 0.65

E/µA after (aMSM registration) 0.59 ± 0.29 0.61 ± 0.26 0.60 ± 0.33 2.19 ± 0.58

For statistical analysis of aMSM performance, right and left hemisphere results are combined

from 5 subjects scanned at all four time points (n=10 per group). This includes one injured

subject (small focal hemorrhagic lesion) that was excluded from analysis of non-injured

development in the main results (n=4 in Fig. 4.5A). P represents Pearson’s correlation

coefficient between curvatures, such that this value approaches 1 with improved alignment.

E =
∫
W (A) dA represents total strain energy across the anatomical surface, here normalized

by shear modulus (µ) and total surface area (A). Values reported as mean ± standard

deviation.
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Table 4.2: Linear fits for locations 1-10 in Fig. 4.6: growth rate (ġ, % per week) versus PMA

Description ġ28,L ġ28,R g̈L g̈R PL PR pL pR L/R

1 Prefrontal (lateral) 11 12 0.14 0.00 0.15 0.00 0.449 0.995 /

2 Frontal (lateral) 13 14 0.20 -0.06 0.16 -0.05 0.436 0.806 /

3 S.-Motor (lateral) 16 17 -0.45 -0.71 -0.43 -0.57 0.026 0.002 */**

4 Parietal (lateral) 13 17 0.31 -0.13 0.27 -0.09 0.174 0.646 /

5 Occipital (lateral) 15 16 -0.20 -0.25 -0.18 -0.22 0.377 0.275 /

6 Parietal (lateral) 12 15 0.30 -0.12 0.33 -0.18 0.088 0.376 /

7 Insula (lateral) 14 18 -0.53 -0.97 -0.50 -0.64 0.007 <0.001 **/**

8 S.-Motor (medial) 16 15 -0.57 -0.62 -0.53 -0.48 0.004 0.011 **/*

9 Visual (medial) 17 19 -0.63 -0.99 -0.41 -0.64 0.033 <0.001 */**

10 Frontal (medial) 11 12 0.08 -0.19 0.10 -0.21 0.629 0.290 /

Labels 1-10 correspond to locations denoted in Figure 4.6B for left (L) and right (R) hemi-

spheres. Values shown for 28-week intercept (ġ28), slope (g̈), Pearson’s correlation coeffi-

cient, and p-value; Trend significance for L/R hemispheres denoted in rightmost column

with *(p<0.05) or **(p<0.01).
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Table 4.3: Demographic information for studied cohort (n = 30)

No significant injury Injured

(n = 24) (n = 6)

Gestational age at birth (weeks) 27 ± 1 26 ± 2

Birth weight (g) 976 ± 226 898 ± 239

Head circumference at birth (cm) 25 ± 2 24 ± 2

Male 50% (12) 50% (3)

Caucasian 46% (11) 67% (4)

CRIB score (Bührer et al., 2000) at birth 10 ± 2 12 ± 3

Time on ventilator (hours) 24 (0-792) 1104 (24-1176)

Sepsis 16% (4) 50% (3)

Intrauterine growth restriction 13% (3) 0% (0)

Head circumference at final scan (cm) 33 ± 2 33 ± 2

PMA at final scan (weeks) 37 ± 1 37 ± 1

Above statistics are formatted to denote one of the following: mean ± standard deviation,

% (n), or median (min–max). Subjects were excluded from group analysis due to: (1)* small

grade IV IVH and focal cerebellar hemorrhage on left hemisphere, (2) grade IV IVH on right

hemisphere, (3) grade II IVH and below average cortical surface area / delayed folding, (4)**

bilateral grade IV IVH, (5) bilateral grade IV IVH, (6) left ventricular dilation. *Used in

Table 4.1. **Used in Fig. 4.6B. (CRIB = Clinical Risk Index for Babies.)
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Table 4.4: Postmenstrual age and time steps (weeks) for individual scans (n = 30)

A B C D B-A C-B D-C D-B

noninjured1 28 30 33 38 2.3 2.7 5.3 8.0

noninjured2 27 31 33 37 4.1 2.0 3.9 5.9

noninjured3 27 29 33 36 2.0 3.1 3.6 6.7

noninjured4’ 27 30 34 36 2.9 4.1 2.1 6.3

noninjured5 29 32 37 3.0 5.0 8.0

noninjured6 31 33 37 2.0 4.1 6.1

noninjured7 30 34 38 4.1 3.7 7.9

noninjured8 29 33 36 4.1 2.9 7.0

noninjured9 33 37 4.7

noninjured10 36 39 3.3

noninjured11 35 40 4.6

noninjured12 33 36 3.0

noninjured13 32 39 7.0

noninjured14 29 38 8.9

noninjured15 30 38 8.4

noninjured16’ 30 40 10.1

noninjured17 30 37 7.7

noninjured18 29 36 7.6

noninjured19 30 36 5.6

noninjured20 31 38 7.0

noninjured21’ 29 37 8.3

noninjured22 30 35.9 5.1

noninjured23 30 40 10.0

noninjured24 32 37 4.9

injured1 27 31 34 37 3.3 3.4 3.4 6.9

injured2 31 34 38 3.4 3.6 7.0

injured3 29 33 38 4.9 4.3 9.1

injured4 35 37 2.0

injured5 34 37 3.0

injured6 31 36 5.7

124



’ denotes non-cystic white matter injury in noninjured subject.
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Chapter 5

Conclusions

Mechanical forces represent an often overlooked, but important, aspect of morphogenesis.

Past studies have used mechanical analysis to elucidate gastrulation (Rauzi et al., 2015);

heart tube formation and bending (Hosseini et al., 2017; Shi et al., 2014); gut morphogenesis

(Savin et al., 2011); eye morphogenesis (Oltean et al., 2016); and lung bud formation (Kim

et al., 2013). In the brain, neurulation (Chen and Brodland, 2008) and cortical folding

(Toro and Burnod, 2005; Bayly et al., 2013) have also benefited from physical analysis and

simulation.

In the study of cortical folding, computational models have gradually increased in sophis-

tication (Richman et al., 1975; Toro and Burnod, 2005; Bayly et al., 2013; Tallinen et al.,

2014, 2016). However, even the most complex models – starting from realistic 3D geometries

of the human cortex – have failed to predict the expected folding patterns (Tallinen et al.,

2016). In Chapter 4, we provide novel insights into the dynamics of human cortical growth.

Since previous models only considered uniform growth across the gray matter, our finding of

nonuniform growth may provide the (or, at least, one) missing link. To determine whether

our measured growth patterns are sufficient to induce accurate folds, future studies should

model regional growth gradients on realistic cortical geometries.
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This scenario exemplifies the value of combining mechanical modeling with experimental

results. For a complex case like cortical folding, multiple research groups and disciplines have

worked together to (1) develop mechanical hypotheses (Richman et al., 1975; Van Essen,

1997) (2) gain insights from animal models (Reillo et al., 2010; Knutsen et al., 2010; Xu

et al., 2010b; Wang et al., 2017) (3) develop simple models based on these insights (Toro and

Burnod, 2005; Bayly et al., 2013; Tallinen et al., 2014), and (4) collect complex clinical data

(Mukherjee et al., 2005; Shimony et al., 2016; Glasser et al., 2016a). Only by integrating

all of this information can we create a model that explains normal and abnormal folding in

the convoluted human brain. For the simpler cases described in Chapters 2-3, we gained

valuable insights through experimental perturbations and measurements, considering the

easily accessible chicken embryo as an approximation of human brain development. By

iterating between models and experiments, we were able to develop and test novel hypotheses.

Building on previous research, which has suggested roles for pressure, actomyosin contrac-

tion, and differential growth in the embryonic brain, we highlighted the interplay of multiple

mechanisms during embryonic morphogenesis. By analyzing initial segmentation of the fore-

brain into optic vesicles, diencephalon, and the telencephalon-hypothalamus complex, we

discovered circumferential alignment of F-actin between segments, as well as shape changes

that depends on actomyosin contraction. This discovery extended the work of Filas et al.

(2012), who reported a similar mechanism between forebrain, midbrain, and hindbrain. How-

ever, by extending our analysis to HH20, we discovered the need for another mechanism,

stress-dependent growth, to maintain constrictions between vesicles as the brain tube inflates

and bends.

As illustrated in Fig. 2.8, understanding how the forebrain is shaped can inform where we

delineate brain regions for other analyses. Similar to cell tracking or fate mapping studies,
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computer simulation allows us to accurately predict the trajectory of a given cell (exposed

to specific signaling patterns). This knowledge may clarify how regions develop into specific

tissue types. With improvements in computational speed and 3D simulation, future studies

could model development from the patterned neural plate all the way through hemisphere

division. By applying a similar approach, based on physical laws and biological observations,

such studies could predict other “peculiar” morphologies observed by biologists and clinicians

(e.g., proboscis formation in cyclopia).

In Chapters 2-3, we highlighted the role of stress-dependent growth in the early forebrain.

Past studies had suggested a role for eCSF, noting that overall brain size and proliferation

are modulated by changes in pressure. Through physical and osmotic perturbations, we pre-

cisely quantified this change in growth due to pressure. By incorporating (chemo)mechanical

feedback in our models, we accurately predicted normal and abnormal morphologies, includ-

ing microcephaly and megalencephaly. For the first time, we also showed that low or high

eCSF pressure can impede hemisphere formation, leading to morphologies like to classic or

midline interhemispheric holoprosencephaly.

We also showed that, through mechanical feedback, a relatively small mechanical force can

produce a large morphological change. By considering external tissues that surround the

early brain tube, we offer an explanation for observed reductions in ventral proliferation.

In turn, differential growth produces greater bending of the brain tube and relatively small

ventral structures. By considering the compression produced by actomyosin contraction,

stress-dependent growth also suggests a mechanism by which proliferation is reduced at

boundaries. In turn, this differential growth deepens the sulci separating brain regions.

Similar effects may exist in other organs or developmental stages. Tension has been shown

to induce growth in a wide range of tissues (Wyatt et al., 2015; Streichan et al., 2014;
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Chaturvedi et al., 2007; Lehoux et al., 2005; Walker et al., 2005), and mechanical feedback

may even determine cell fate in some cases (Mammoto and Ingber, 2010).

Make everything as simple as possible, but not simpler.
– Albert Einstein

In morphogenesis, problems are inherently complicated. However, as scientists and engineers,

we strive to find simple laws that may explain a range of different phenomena. In Chapter

1, we assumed a general law by which tissues can minimize stress or energy (Taber, 2009).

In Chapters 2-3, we show that the same law may misguidedly increase stress under certain

circumstances, producing dramatic changes in shape, i.e., morphogenesis. In Chapter 4,

we used the simplified assumption of strain energy minimization (Knutsen et al., 2010) to

obtain valuable estimates of differential growth in preterm infant brains. These concepts

and tools may prove useful in a range future applications, including morphogenesis of other

organ systems, tissue engineering, and quantification of surface growth in studies including

brain development and degeneration.
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Appendix A

Supplemental data on embryonic

brain development

A.1 Measurement of normal growth

The embryonic BT steadily bends and grows during the stages following initial sulcus for-

mation. To quantify regional growth over the course of development, we measured re-

gional BT dimensions from stages HH11 to HH20 using OCT (Fig. A.1). By tracing the

perimeter of the inner wall over the course of development (Fig. A.1A–B, n=6–9 embryos

per group), we saw that average vesicle radii (T, D, M) increase approximately linearly

with hours of development. The rate of radius increase was highest for the telencephalon-

hypothalamus complex (ṙT = 0.012 mm/h, RT (40h) = 0.14 ± 0.02 mm), followed by the

midbrain (ṙM = 0.010 mm/h, RM(40h) = 0.11 ± 0.02mm), and lastly the diencephalon

(ṙD = 0.008 mm/h, RD(40h) = 0.12 ± 0.01mm). Linear correlation was highest for the

midbrain region (Fig. A.1C, R2 = 0.95), and for this reason the midbrain radius was used

to compare growth models in subsequent analysis.
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Figure A.1: Change in lumen size during development. (A) Sagittal OCT cross section of
HH17 brain tube. Dashed lines cross through the middle of each vesicle, solid lines cross
through sulci. (A) For comparison, sagittal cross section of a HH12 brain tube is shown
to scale. (B) Sulci and vesicle cross sections corresponding to each line in A. (C) Average
vesicle radius (perimeter/2π) versus time of development (HH11–20). (D) Average vesicle
wall thickness (wall area/perimeter) at HH11 and HH17. T=telencephalon, D=diencephalon,
M=midbrain, AIS=anterior intraencephalic sulcus, DMB=diencephalon-midbrain boundary
sulcus, MHB=midbrain-hindbrain boundary sulcus, overlaid circle in A, A’ denotes location
of optic stalk. Scale bar: 0.5 mm, all images shown to scale.

Regional thickness was also estimated at HH11 (n=10) and HH17-18 (n=8). To obtain

a single value for each cross section, average wall thickness was estimated as the wall area

(bounded by outer and inner edges) divided by perimeter. We observe insignificant thickening

of the forebrain regions (Fig. A.1D) but significant thickening of the midbrain (P<0.001),

which could result in part from bending. Note that this increase is less than 40%, while

circumference increases by 240% across the same stages.
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A.2 Experiments to rule out other factors

Figure A.2: Experiments to rule out external factors. (A–A’) Application of ATP produced
hypercontraction after 3 h, similar to embryos cultured in calyculin A at similar stage. (B–
B’) Removing external mesenchyme and membranes to isolate embryos (HH11–12) caused
slight hypercontraction after 6 h culture in control media. (C–C’) However, those iso-
lated and cultured 6 h in calyculin A exhibited strong hypercontraction (n=5), similar to
non-isolated embryos. (D) In embryos for which the neural tube failed to close (during
development in ovo), constrictions were still observed between all vesicles. (E) Staining for
cell death (Nile blue) did not indicate cell death at brain sulci. White arrowheads indicate
locations where stain is positive for cell death: lens, otic placode, and optic fissure. (F–F”)
When embryos were cultured in calyculin A beyond HH14, no effect was observed, suggest-
ing actomyosin contraction has relatively little effect on BT morphology at these stages.
(G) F-actin remains concentrated on the apical surface of sulci and vesicles at late stages.
Scale bars on brightfield images are 500 µm; scale bar on confocal image is 200 µm. Black
arrowheads indicate AIS; black arrow points to maximally hyperconstricted optic stalk.

Several potential mechanisms of forebrain morphogenesis were ruled out through experi-

ments. To consider contractile response at a shorter time scale, ATP was applied to per-

meabilized embryos at HH12 (n=5). To rule out effects of the surrounding mesenchyme,
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several brain tubes were isolated and cultured in control media (n=3) or media contain-

ing calyculin A (n=5). Results in Fig. A.2A–C indicate that contraction is intrinsic to the

neuroepithelium.

Upon extraction from the egg, we observed that brain tubes had failed to close in several em-

bryos (n=3), producing exencephaly (open brain tube). The AIS, DMB, and MHB were still

constricted in all cases, suggesting that pressure is not necessary for initial sulcus formation

(Fig. A.2D). Furthermore, Nile blue stain did not indicate patterned cell death in vesicles or

sulci (n=10 HH11–13 and n=11 HH16–18, Fig. A.2E). Late-stage embryos (HH14–17) were

also cultured for 6 h in 30nM (n=6) or 100nM (n=5) calyculin A (Fig. A.2F–F”). No effect

was observed, but confocal imaging revealed that F-actin was still present on the apical

surface of sulci and vesicles at late stages (n=14 HH16–18, Fig. A.2G). These results suggest

that actin structure remains intact but actomyosin contraction has little effect on BT shape

at later stages.

A.3 Notochord tension

In our computational models that include cephalic flexure, the growing brain tube is con-

strained by a nongrowing notochord along the ventral midline. This quickly builds longitu-

dinal tension in the notochord as it resists growth of the surrounding tissue (Fig. A.3A). To

test whether this occurs in the embryo, the BT was isolated in embryos after the onset of

bending (HH12–13, n=6) and the notochord was surgically cut. In all cases, the notochord

sprang apart (Fig. A.3B), suggesting that it is in tension.
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Figure A.3: Notochord tension supports constrained growth model of flexure. (A) When the
BT model including ventral notochord (nt) is allowed to grow, longitudinal tension develops
in the nongrowing notochord (HH12+). At early stages, dorsal and lateral regions are still
under compression or near-zero longitudinal stress. (B) When the notochord is cut at similar
stages, it springs apart suggesting tension (white arrows). Alternately, a cut in the lateral
BT shows minimal change, suggesting relatively low stress (white arrowhead). Scale bars:
100 µm. Experimental images courtesy of Dr. Benjamen Filas.

A.4 Early measures of normal pressure

Figure A.4: Lumen pressure measurements in vivo (mean ± standard deviation). Data
courtesy of Dr. Shuddahadeb Ray.

Embryonic CSF pressure was recorded using a servo-null micropressure system (model 5A,

Instruments for Physiology and Medicine, San Diego, CA) as described by Chabert and

Taber (2002). To measure pressure in the early brain tube (HH12–13), pipette tips were
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inserted into the midbrain. Pressure measurements shown in Fig. A.4 fall within the range

measured by Jelinek and Pexieder (1968).

A.5 Optic vesicle effects on brain tube morphogenesis

After initial contraction, the optic vesicles and optic stalks undergo complex morphogenesis

that is outside the scope of this paper. To determine whether optic vesicles had an effect on

the behavior of the BT at later stages, optic vesicles were surgically removed at the stalk

(HH11–13), and the embryos were cultured for 18–24 h on a 0.3% agarose albumin gel as

described by Chapman et al. (2001) for improved viability. After healing, the BT retained

normal development with respect to the AIS and DMB (Fig. A.5). The hypothalamus was

less compressed in these embryos (T more circular) and more closely resembled the shape of

our BT model.
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Figure A.5: Removal of OVs has minimal effect on late stage BT morphogenesis. (A–D)
Representative bright field images comparing embryo before perturbation (A), after OV
removal (B), after wound healing and AIS formation (C), and after BT expansion and bend-
ing (D, shown at HH15). (E) Representative OCT cross section of control telencephalon-
hypothalamus complex (T) at HH17. (E’) Representative OCT cross section of T at HH17
for embryos in which OVs had been surgically removed. (F) Left: scatterplot of T radii ver-
sus midbrain (M) radii (HH15–17) for control (n=11, black) and experimental (n=8, white)
embryos. Midbrain radius was chosen as the x-axis because it offered the closest linear cor-
relation with stage (Fig. A.1). Right: Circularity of the lumen was significantly higher in
T when the OVs were removed. A value of 1 corresponds to a perfect circle, similar to the
circular cross section assumed in BT models. Scale bars: 300 µm for (A–D), 200 µm for (E).
** denotes P<0.001, X denotes absent OV.
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Appendix B

Strain energy minimization with

aMSM

B.1 Anatomical mesh regularization

In the original MSM algorithm (Robinson et al., 2014) flexible cortical surface registration is

achieved via projection of convoluted brain surfaces to a sphere. This is a common simplifica-

tion inherent to other popular spherical algorithms (e.g., FreeSurfer and Spherical Demons)

(Yeo et al., 2010), and can be beneficial under some circumstances (e.g., removing the in-

fluence of cortical shape on cross subject alignments of brain function). For the case of lon-

gitudinal (intra-subject) registration, however, accurate quantification of physical distortion

becomes vital. For this paper, we therefore propose anatomically-constrained MSM (aMSM,

available at https://www.doc.ic.ac.uk/ ecr05/). In this modified algorithm, correspondences

between surfaces are constrained by estimated distortions between the anatomical (mid-

thickness) surfaces. With this process, we use the locations and spacing of anatomical
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landmarks to obtain physically-reasonable deformation gradients. Though the mathemati-

cal details of our approach have been described in Robinson et al. (2017), a brief synopsis is

provided below for convenience.

B.1.1 Strain energy density as an improved, higher-order regular-

ization penalty

Soft materials like brain tissue are often modeled as hyperelastic (the relationship between

loading and deformation is nonlinear) and slightly compressible (total volume can change

under loading) (Knutsen et al., 2010; Chatelin et al., 2010; Bayly et al., 2013; Tallinen et al.,

2016; Xu et al., 2010b). These properties can be described via a strain energy density func-

tion, such as Eq. 4.1 of the main text, which captures the effects of 2- or 3D deformations in

a scalar quantity. Because strain energy density functions represent a clear physical concept

(work done by deformation-producing loads), they often separate the energies produced by

isochoric deformations (change in shape) and volumetric deformations (change in size). The

relationship between deformation and energy for each component can be experimentally de-

termined and associated with shear modulus (µ) and bulk modulus (κ′), for isochoric and

volumetric deformations, respectively.

In this study, we seek to minimize energetically unfavorable (thus, unlikely) deformations

via a physically-relevant strain energy density function, replacing the original scalar regu-

larization penalty term in MSM. In 3D, one popular form used to describe biological soft

tissues, including brain, is the classic compressible Neo-hookean model,

W3D =
µ

2
(Ī1,3D − 3) +

κ′

2
(J − 1)2 (B.1)
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where I1,3D = trace(FT
3D ·F3D), J = det(F3D), and Ī1,3D = I1,3D/J

2/3, and F3D is the 3D de-

formation tensor. These terms are invariant with respect to coordinate transformation. Ī1,3D

can be also written in terms of the (invariant) principal stretches as (λ2
1 +λ2

2 +λ2
3)/(λ1λ2λ3),

and J3D can be written as J3D = λ1λ2λ3.

Note that Ī1,3D − 3 is greater than zero for shape-changing (‘shear’) deformations but not

changes in volume. Similarly, (J3D − 1)2 is greater than zero for size-changing (‘bulk’)

deformations but not changes in shape. A limitation of the classic Neo-hookean form is

that (J3D − 1)2 approaches infinity as volume increases (J3D →∞) but just κ′/2 as volume

decreases to zero (J3D → 0). To better match physical observations and improve numerical

stability, this volumetric term is often modified to a form that also approaches infinity as

volume decreases. Furthermore, for our surface analysis, modifications are necessary to

approximate strain energy in 2D. To address both of these issues, we used the following

modified, compressible 2D Neo-hookean form in our analysis:

W2D,mod =
µ

2
(Ī1,2D − 2) +

κ

2
(J +

1

J
− 2) (B.2)

where I1,2D = trace(FT
2D · F2D), J = det(F2D) = λ1λ2, and Ī1,2D = I1,2D/J = (λ2

1 +

λ2
2)/(λ1λ2). In the main text, we have rewritten Ī1,2D as λ1/λ2 + λ2/λ1 = R + 1/R for

easier conceptualization. R = λ1/λ2 represents a new variable that conveniently describes

change in 2D shape (e.g., aspect Ratio). The new form of the right-hand side was chosen

to (1) penalize area shrinkage and expansion similarly and (2) conceptually match the Neo-

hookean function on the left-hand side (R and J are penalized using the same equation).

The isochoric term, modulated by µ, now describes strain energy due to change in surface

shape; and the volumetric term, modulated by κ, describes strain energy due to change in

surface area.
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In mechanical studies of actual brain tissue (3D), both gray and white matter have been

found to behave as nearly incompressible materials (κ′ ≥ 1000µ) (Chatelin et al., 2010).

However, our 2D analysis requires adjustment of the 3D bulk modulus into a 2D effective

bulk modulus (κ) based on assumptions of either ‘plane stress’ or ‘plane strain’ (Jasiuk et al.,

1994). Under the assumption of plane strain, thickness of the cortex cannot deform due to

in-plane forces (λ3 = 1), and change in area relates directly to a change in volume (κ ≈ κ′).

Under the assumption of plane stress, thickness of the cortex must deform to ensure zero

stress in the thickness direction; for κ′ ≥ 1000µ, it can be shown that the 2D effective bulk

modulus is κ ≈ 3µ (Jasiuk et al., 1994). In reality, behavior of the cortical mid-thickness

likely falls between these extremes: Cortical thickness is not rigidly constrained to prevent

deformation, but cross-sectional models of folding also reveal developing stresses normal to

the cortical surface (Bayly et al., 2013). Fig. B.1B’ illustrates the effect of κ/µ on strain

energy minimization throughout this range.

We also note that 2D strain energy minimization only involves in-plane surface distortions

and displacements – it does not introduce changes in surface curvature or penalize bending.

In shells, 3D strains are due to a combination of membrane strains (uniform across the

shell thickness) and bending strains which vary across the thickness (higher on the outer

curvature, lower on the inner curvature). Here, we have focused on membrane strain energy,

considering the cortical mid-thickness as a rough approximation for the neutral surface (the

surface at which bending strains are zero).
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B.1.2 Proposed form meets requirements of a hyperelastic mate-

rial.

As described in Darijani and Naghdabadi (2010), several conditions should be met for any

isotropic hyperelastic material. For 2D, these requirements can be summarized - and satisfied

by our proposed form - as follows:

The strain energy density function, W , must be greater than or equal to zero for

all deformations. In the following proofs, it is convenient to consider the proposed strain

energy density equation in terms of principal stretches. By definition, λ1 ≥ λ2 ≥ 0, so we

must only consider Rk ≥ 0 and Jk ≥ 0. Since both anisotropic and areal terms in W employ

the basic function, f(x) = x + 1/x − 2, we can simply take the first and second derivative

to see that (for x ≥ 0) the global minimum exists at x = 1 and f(1) = 0. Therefore, W ≥ 0

for all λ1 ≥ λ2 ≥ 0.

The strain energy density function must be a function of either the stretch

or strain invariants and invariant under all coordinate transformations. Since

J = det(F) is an invariant by definition, we must only prove that R is a function of other

invariants. In 2D, recall that

Ī1,2D = trace(FT
2D · F2D)/J =

λ1

λ2

+
λ2

λ1

= R +
1

R
(B.3)

By rearrangement, this can be written as R2− Ī1,2DR+ 1 = 0. Using the quadratic formula,

we see that

R =
1

2
(Ī1,2D ±

√
Ī2

1,2D − 4). (B.4)
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We take only the positive sign from ±, enforcing the definition of R = λ1/λ2 ≥ 1 rather

than R = λ2/λ1 ≤ 1.

The strain energy density function must be symmetrical with respect to the

principal stretches λ1, λ2. The function is considered symmetrical if swapping λ1 and

λ2 does not alter the value of W . For this and the following postulates, it is useful to rewrite

W2D,mod in terms of principal stretches:

W2D,mod(λ1, λ2) =
µ

2
(λk1λ

−k
2 + λ−k1 λk2 − 2) +

κ

2
(λk1λ

k
2 + λ−k1 λ−k2 − 2). (B.5)

We can now see clearly that swapping λ1 and λ2 makes no difference (commutative property

of multiplication).

The strain energy density function must equal zero at the undeformed state,

λ1 = λ2 = 1.

W2D,mod(1, 1) =
µ

2
(1 + 1− 2) +

κ

2
(1 + 1− 2) = 0 (B.6)

To ensure a stress-free configuration at the undeformed state, the strain energy

density function must be at minimum at λ1 = λ2 = 1. This is true if the following

criteria are met at λ1 = λ2 = 1:

1. ∂W
∂λi

= 0

∂W2D,mod

∂λ1

(λ1, λ2) =
µ

2

(
kλk−1

1 λ−k2 − kλ−k−1
1 λk2

)
+

κ

2

(
kλk−1

1 λk2 − kλ−k−1
1 λ−k2

)
(B.7)

142



∂W2D,mod

∂λ1

(1, 1) =
µ

2

(
k − k

)
+
κ

2

(
k − k

)
= 0 (B.8)

Same is true for λ2.

2. ∂2W
∂λ2i

> 0

∂2W2D,mod

∂λ2
1

(λ1, λ2) =
µ

2

(
k(k − 1)λk−2

1 λ−k2 + k(k + 1)λ−k−2
1 λk2

)
+

κ

2

(
k(k − 1)λk−2

1 λk2 + k(k + 1)λ−k−2
1 λ−k2

)
(B.9)

∂2W2D,mod

∂λ2
1

(1, 1) =
µ

2

(
k2− k+ k2 + k

)
+
κ

2

(
k2− k+ k2 + k

)
=
k2

2
(µ+ κ) > 0 (B.10)

Same is true for λ2.

3. det( ∂2W
∂λi∂λj

) > 0

∂2W2D,mod

∂λ1∂λ1

(λ1, λ2) =
µ

2

(
− k2λk−1

1 λ−k−1
2 − k2λ−k−1

1 λk−1
2

)
+

κ

2

(
k2λk−1

1 λk−1
2 − k2λ−k−1

1 λ−k−1
2

)
(B.11)

∂2W2D,mod

∂λ1∂λ1

(1, 1) =
µ

2

(
− k2 − k2

)
+
κ

2

(
k2 + k2

)
=
k2

2
(κ− µ) (B.12)

Combining the results from equations B.10 and B.12, we see that

det
(∂2W2D,mod

∂λi∂λj

)
(1, 1) =

k2

2

(
(µ+ κ)2 − (κ− µ)2

)
= k2µκ > 0. (B.13)

The strain energy density function must approach positive infinity as deforma-

tions approach infinity (very large λ1 or λ2), but also as deformations approach
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the singularity case (λ1 = 0 or λ2 = 0).

lim
λ1→∞

W2D,mod(λ1, λ2)→ µ

2

(
∞+ 0− 2

)
+
κ

2

(
∞+ 0− 2

)
→∞ (B.14)

lim
λ1→0

W2D,mod(λ1, λ2)→ µ

2

(
0 +∞− 2

)
+
κ

2

(
0 +∞− 2

)
→∞ (B.15)

Same is true for λ2.

B.1.3 Using projection to minimize anatomical deformations within

a spherical framework

A procedure for minimizing anatomical deformations within a spherical framework was first

described in (Knutsen et al., 2010). As in that study, here we describe 3D deformation

between the younger and older anatomical surfaces with F3D = ∂x/∂X, where x and X

represent vertex coordinates on the older and younger anatomical surfaces, respectively.

(Surface strain energy is calculated from F2D by considering the in-plane deformation of

each anatomical face.) Similarly, projection from the younger anatomical surface to its

corresponding spherical surface can be described by H3D = ∂Y/∂X, where Y represents

vertex coordinates on the younger spherical surface. Projection from the older anatomical

surface to its corresponding spherical surface can be described by h3D = ∂y/∂x, where y

represents vertex coordinates on the older spherical surface. Deformations on the sphere

– which are typically considered in spherical registration algorithms – can be defined as

G3D = ∂y/∂Y. Note that a spherical deformation of G3D = I (the identity matrix, no

deformation) will not correspond to F3D = I unless x = X and h3D = H3D. Helpful
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schematics and further mathematical description of this process are available in (Knutsen

et al., 2010).

In Fig. 2 we defined the younger surface as the ‘input’: its vertices will be repositioned

to obtain accurate point-correspondence with the older reference surface. Therefore, let us

consider a second configuration, Y∗, to represent a potential perturbation of the younger

spherical surface. (Registration can also be performed in the opposite direction, which

would simply reverse the terminology. We choose to denote the younger, initial surface

using capital letters for consistency with standard notation of continuum mechanics.) Since

y, Y, and Y∗ represent coordinates on a sphere of a set radius, we switch from Cartesian

coordinates (Y1, Y2, Y3) to spherical coordinates (Θ,Φ, R), such that we only need to consider

rotations in Θ and Φ directions (r = R = R∗). Shifted positions, Θ∗ = Θ + ∆Θ and Φ∗ =

Φ + ∆Φ, are projected as as new anatomical locations constrained to the original anatomical

surface geometry (X∗) using barycentric interpolation. For each potential perturbation of

the spherical surface (Y∗), an average surface strain penalty is calculated from the resulting

in-plane anatomical deformations (X∗ to x) of the surrounding faces.

B.2 aMSM validation

To evaluate how aMSM performs under specific circumstances, we used simple geometries

to test specific aspects of the registration technique. These served to validate aMSM under

cases where the correct result is known and provided a starting point for optimization of

more complex registration cases.
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First, we validated the behavior of our strain energy minimization term (W ) in the absence

of data matching. For comparison to past work, we considered the same geometry as ref.

Knutsen et al. (2010): a spherical surface that deforms into a ‘pumpkin’ shape according to

r = 1.1(R + 0.1sin(4Θ)cosΦ), φ = Φ, θ = Θ, (B.16)

shown in Fig. B.1A. Note that, since curvature is uniform across the spherical surface,

curvature matching is irrelevant in this example. However, the deformation produces strains

that are not optimized (minimized) across the surface. Based on W , surface strains will be

minimized differently depending on the input values for bulk (κ) and shear (µ) moduli.

Fig. B.1B (top) shows the areal (J) and shape (R) components of this initial deformation.

If areal and shape changes are penalized equally in aMSM (κ/µ = 1, bottom image), both

J and R are reduced and smoothed slightly. Conversely, if areal changes are penalized more

heavily (κ/µ = 10, middle image), J becomes much smoother at the expense of higher R

variability. Despite algorithmic differences between aMSM and previously described finite

element approaches (Knutsen et al., 2010), both approaches produce similar results (Fig.

B.1B’ ). In keeping evidence that 3 ' κ/µ ' 1000 in real brain tissues (Chatelin et al., 2010),

we choose an intermediate value of κ/µ = 10, which produces an intermediate behavior,

throughout our analysis.

Next, we consider the efficacy of curvature matching with strain energy minimization as a

regularizing term (weighted by MSM input parameter Λ) to accurately align undulations on

our pumpkin surface. For this, we created a second pumpkin, shifting the deformation field

in Eq. B.16 by ∆Θ = π/8. As illustrated in Fig. B.1C, this results in a surface with the

same geometry as before but with misaligned vertices. The vertex denoted with a black star
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is located on an outward fold (‘gyrus’) in the left surface but an inward fold (‘sulcus’) on the

right surface.

As shown in Fig. B.1E (top), the initial configuration leads to nonzero values of strain

energy density (W ) and differences in curvature (∆kmin). For this simple case, we know

that the difference between surfaces can be best described as a global affine rotation (∆Θ =

π/8), which results in no deformation (W = 0) and no differences in curvature (∆kmin =

0). However, since global rotation is insufficient for more complicated cases such as the

folding brain, our discrete approach must be capable of producing the same alignment and

deformations.

By setting regularization weight extremely high (Λ ≥ 10), we approach the result of strain

minimization alone (Fig. B.1E, second row). In this case, deformations and strain energy are

drastically reduced, but points are not pushed toward the correct gyri and sulci (as illustrated

by the remaining differences in kmin). Conversely, unconstrained curvature matching with

very low regularization (Λ ≤ 0.001) induces unrealistic deformations (Fig. B.1E, bottom

row). A reasonable balance of curvature matching and strain energy minimization (optimal

Λ = 0.1 for this case) achieves accurate alignment (∆kmin = 0, ∆K = 0) and minimal

distortion (W = 0, J = 1). An order of magnitude parameter sweep for the regularizing

parameter, Λ, is shown in Fig. B.1D.
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Figure B.1: aMSM parameter effects on simple undulating geometry. (A) Effect of bulk-

shear ratio (κ/µ) was explored by minimizing surface strain energy between a sphere and

‘pumpkin’. (B) Areal changes (J) and shape changes (R) are not minimized in the initial,

mathematically-generated pumpkin shape (top). Using aMSM, equal values of κ and µ

smooth both J and R moderately (bottom). By contrast, increasing κ reduces J at the

expense of more variable R (top). (B’ ) For comparison, J and R distributions for the full

theoretical range of κ/µ were calculated using code modified from (Knutsen et al., 2010). (C )

Effect of regularization weight (Λ) was explored by aligning a shape shifted by affine rotation.

(D) Parameter sweep reveals an optimal range of Λ that minimizes both strain energy (W )

and mean curvature differences (∆K). For registration at each Λ, distribution of vertex

values are represented by boxplots, with outliers denoted by red + symbols, optimal solution

denoted by hashtag. (E ) Distributions of strain energy, curvature differences, and J before

(top) and after (bottom) registration. Solutions near the optimal Λ (middle) accurately

moved points to approximate the true affine rotation solution (W = 0, ∆kmin = 0, J = 1).

Note: For illustration we show change in minimum curvature, kmin, which appeared most

pronounced. Changes were similar for K = 0.5(kmin + kmax).

148



B.3 aMSM implementation details

For the simple case described above, we saw that an optimal value of the regularizer weight

parameter, Λ, could be obtained through trial-and-error. However, optimal balance depends

on both the magnitude of deformations and the magnitude of curvature differences between

surfaces, which varies for different time spans and different subjects. Furthermore, in complex

brain geometries, where different areas grow and fold at different rates, the optimal balance

can vary spatially within each registration. This presents a new practical issue: too much

regularization may prevent a subset of points from moving to the correct fold/position, but

too little allows unrealistic deformations to develop.

For complex, variable geometries such as the brain, we modified our approach to perform

two-step registration. First we applied the lowest acceptable regularization weight (Λ = 0.01)

which consistently allows each point to reach the correct gyrus or sulcus for each time span

considered in this study (such that the same parameters could be used for all time spans in

this study). Then we applied a heavy regularization weight (Λ = 10000) to allow relaxation of

unrealistic deformations, including those induced by spherical projection and over-alignment

of curvatures. In (a)MSM, registration of complex surfaces also progresses in a coarse-to-fine

fashion, as described in Fig. B.2, and Λ can be altered and optimized for each resolution

level.

Since curvature matching was only considered to obtain general, initial alignment between

gyri and sulci, we performed our two-step registration (balanced then high Λ) only at low

resolution levels. At higher resolution levels, after qualitative alignment had been obtained

between gyri and sulci, the emphasis was shifted to strain energy minimization only (high Λ).

This successfully matched each gyrus and sulcus while providing robust, smooth deformation
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maps at high resolution, as quantified in Table 4.1. Non-default configuration parameters

used in this study are shown below. With these parameters, over half of registrations com-

pleted in less than 12 hours and 97% of registrations completed in less than 24 hours when

run on a single processor:

–CPgrid=2,2,3,3,4,5 (see Fig. B.2)

–SGgrid=4,4,5,5,6,6 (see Fig. B.2)

–datagrid=4,4,5,5,6,6 (see Fig. B.2)

–lambda=0.01,10000, 0.01,10000,10000,10000 (see Fig. B.2)

–bulkmod=10 (see Fig. B.1A,B)

–shearmod=1 (see Fig. B.1A,B)

–regoption=3 (aMSM)

–IN (histogram matching)

–regexp=1 (exponent on W penalty)

–kexp=1 (exponent on R and J)

–dopt=HOCR (higher order clique reduction)

–rescaleL (rescaled grid options at each iteration)

–it=50,50,50,50,50,50*
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*MSM stops running each level once it reaches convergence, usually between 10-20 iterations

for registrations considered in this study. Here, we set an excessively high number of itera-

tions to ensure consistent, fully-converged solutions, but future optimization could consider

limiting each level to fewer iterations.
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Figure B.2: aMSM optimized for complex, variable geometries. For speed and robustness,

MSM aligns complex surfaces in ‘levels’, starting with a coarse (low resolution) representation

of the input and reference surfaces, then progressively moving to higher resolutions. From left

to right in black box: the internal control point grid (CPgrid, points to be moved/optimized)

begins as a very basic representation of the cortex. Illustration of how this grid is distributed

on a cortex shown in parentheses to right. The corresponding sampling grid (SGgrid, set

of locations to which control points can move) is typically set to a higher resolution. For

increased accuracy, anatomical strains were calculated at a default resolution (anatgrid) of

10,242 vertices, the maximum for our final CPgrid for all levels, for each level within aMSM

optimization. Low resolutions were optimized twice: first with a ‘balanced’ Λ = 0.01, the

highest value that consistently allowed each point to reach the correct gyri and sulci, then

with a high Λ = 10000 to minimize unrealistic deformations after accurate alignment had

been achieved.
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B.4 Minimizing directional registration bias for accu-

rate growth measurements

Lastly, we address the issue that the basic MSM algorithm produces a unidirectional reg-

istration of an input surface to a reference surface. As such, differences are likely to exist

between a registration of a younger surface to an older surface (forward registration) versus

registration of an older surface to a younger surface (reverse registration). To minimize any

bias, we ran forward and reverse registrations for each longitudinal case. All growth maps

reported in the main text represent the average of forward and reverse registrations, accom-

plished via a series of projections and averages in Connectome Workbench (Marcus et al.,

2011) (http://www.humanconnectome.org/software/get-connectome-workbench). (Each di-

rection of registration produces a deformed version of its input sphere. In order to average

these relationships, the inverse of the reverse registration was applied to the reference sphere.

The coordinates of this sphere’s vertices were then averaged with the forward registration’s

deformed sphere, to reduce the directional bias of registration. The inverse-reverse registra-

tion was also used to resample the growth map – always calculated from younger to older –

from reverse registration into the forward framework, where it was averaged with the growth

map from forward registration. The opposite of this procedure can also be used to obtain

averages in the reverse framework.)

Fig. B.3 quantifies observed differences between forward and reverse registrations for our

largest subject group and longest time step: 30 to 38 weeks PMA (n=20). As in the main

text, mean relative expansion maps are plotted for each, as well as regions of significantly

higher (red) or lower (blue) expansion. As shown in Fig. B.3A-B, patterns were similar but

not identical between forward and reverse aMSM registrations. Furthermore, discrepancies
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appear to flip for right versus left hemisphere: e.g., relative expansion is high on the forward-

registered left frontal lobe and the reverse-registered right frontal lobe. As shown in Fig.

B.3C, a paired t-test in PALM (Winkler et al., 2014) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM)

revealed significant trends in the difference between forward and reverse registrations. These

differences also appear to roughly flip for right versus left hemisphere: reverse registration

leads to higher relative expansion on the right lateral surface but the left medial surface.

Note, however, that these differences largely cancel out when forward and reverse registra-

tions are averaged, such that unbiased results for right and left hemispheres show nearly

identical trends Fig. B.3C.

It is important to note that right and left hemispheres were analyzed independently through-

out this study. Furthermore, lateral coordinates were consistently defined such that a positive

value on the right hemisphere is negative on the left hemisphere. These differences may have

introduced subtle biases during surface generation (Hill et al., 2010a), spherical projection,

and/or optimization. As such, left and right hemispheres serve as a valuable check for con-

sistency. Though general trends reported in this study are robust, studies which combine

analysis of right and left hemispheres should carefully consider this issue and ensure proper

validation.
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Figure B.3: Averaging forward and reverse registrations to eliminate bias. (A) For forward

(left) and reverse (right) registration, map of mean relative expansion is shown for 30 weeks

PMA to 38 weeks PMA (n=20). (B) Areas of statistical significance corresponding to the

relative expansion maps shown in (A), where red is significantly higher than the global av-

erage and blue is significantly lower than the global average. Since here we are interested

in the effects of registration, which includes registration of the non-cortical medial wall, the

medial wall was not excluded from this statistical analysis. (C ) Testing paired differences

between forward (left) to reverse (right) registrations reveals significant regional differences.

Note similarity between the right lateral and left medial walls, as well as dissimilarity be-

tween corresponding right and left regions. (D) Averaging forward and reverse registration

effectively eliminates this bias, resulting in similar maps for right and left.
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B.5 Effect of strain energy minimization on quality of

alignment

Since the parameters for registration in this paper allow strong strain energy regulariza-

tion, we performed additional tests to determine whether this could adversely affect the

quality of alignment between folds. I.e., Can unconstrained minimization of strain energy

(using κ = 10µ) push initially-aligned points off of the correct fold? If so, will regional

differences in surface expansion dissipate under the fully converged solution? To illus-

trate this theoretical issue, we considered strong, regional folding of a sphere defined by

r = 1.1(R+ 0.2sin(7Θ)cosΦ) if Θ ≥ 0, else r = 1.1R (Fig. B.4A). (In this case, the regional

difference in relative surface expansion was designed to be on the order of results in Fig. 3.)

By solving the problem via mechanical equations of motion, again using code modified from

(Knutsen et al., 2010), we can see the solution approaches convergence as a function of time

(Fig. B.4C ). At t = 70 s, clear differences in relative expansion are still visible (Fig. B.4B,

right). Despite large regional differences in expansion, we observe only a slight shift at the

border between static and folding regions, and the distribution within each gyrus and sulcus

remains reasonable (Fig. B.4D).

While these theoretical results are useful for conceptualization, they do not prove that align-

ment will be maintained in discrete optimization of more complex surfaces. To examine

whether alignment is maintained on an actual set of mid-thickness surfaces using aMSM, we

revisit the representative subject in Fig. 3. Specifically, we examine the large time period

(representing a more drastic change in folding) from 31 to 37 weeks PMA (Fig. B.4E ). Fig.

B.4F plots mean curvature from the younger surface on the older surface after forward, re-

verse, and average aMSM registrations. In all cases, common sulci (blue) and gyri (orange)
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remain correctly positioned despite strong strain energy regularization at levels 2, 4, 5 and

6.

0 50 100
time (s)

0

0.1

0.2

0 50 100
time (s)

0

0.1

0.2

0 50 100
time (s)

0

1

2

0 50 100
time (s)

0

1

2 #10-3

A

Before After
static
region
folding  
region

folding  
region

static
region

1.2

0.8

B

Before After

D

C W σ(W)

Deform

Test:  
regional  
folding

Energy   minimization  
effect  on  alignment

E Typical  
alignment   with  
aMSM (Fig.  3)

La
te
ra
l  
vi
ew

M
ed
ia
l  v
ie
w

K
fro
m
  y
ou
ng
er
  s
ur
fa
ce

0.3

-0.3

Fo
rw
ar
d  

aM
SM

R
ev
er
se
  

aM
SM

U
nb
ia
se
d  

aM
SM

Early  
(common)  
folds

True  K
for  older  
surface

F

R
el
at
iv
e  

ex
pa
ns
io
n

Figure B.4: Strain energy minimization does not adversely affect alignment of folds. (A) Ef-

fect of strain energy minimization on drift was explored by considering asymmetric (regional)

folding of a sphere. (B-C ) Strain energy minimization (using κ = 10µ) approximates the

converged solution at t = 70 s, shown in (B) as the average and standard deviation of strain

energy density, W̄ and σ(W ), approach a constant value. (D) Two artificial segmentations

(based on original angle Φ) are shown for the aligned geometry before and after strain energy

minimization to visualize the final locations of points. (E-F ) Effects of aMSM strain energy

minimization do not appear to impede qualitative alignment of folds. Regional expansion

patterns for this subject are shown in Fig. 3. By plotting K for early folds, we see that rea-

sonable alignment of these early folds is maintained on the corresponding older surface after

aMSM including strong regularization (strain energy minimization). Inset: Older folding

pattern is shown for reference.
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Although strong regularization via strain energy minimization worked well for these sur-

faces, we recognize that this solution may not be ideal for all cases. In particular, cortical

mid-thickness reconstructions in this study had undergone careful manual editing to re-

move topological ‘holes’ and other artifacts. The presence of artefactual irregularities could

skew strain energy minimization and lead to unrealistic results. Furthermore, constraints

on computational time may dictate the need for faster registration. These issues have been

considered in ref. (Robinson et al., 2017), which obtained strikingly similar results from 30

weeks to term-equivalent using different parameters and fewer iterations. Consistency be-

tween these results, with different surface reconstruction methods and different regularization

parameters, suggest that aMSM is a robust tool for longitudinal analysis of growth.

B.6 Growth estimates for short and long time steps

As shown in Table 4.4, subjects in this analysis were scanned at a variety of ages, with

varying time steps between scans. To confirm that growth maps were accurate for larger

time steps, we compared relative expansion maps from 30±1 to 38±2 weeks PMA with and

without an intermediate registration time point (34±2 weeks PMA). As shown in Fig. B.5A,

average expansion maps were qualitatively similar with and without the intermediate time

points (n=8 per group). For the case with an intermediate step, relative expansion maps

(30 to 34 weeks and 34 to 38 weeks) were multiplied. Therefore, the higher and lower

peaks observed in this case may represent multiplication of “noise” in discrete registration,

rather than true growth. Paired t-test in PALM revealed only small regions of statistically

significant difference (Fig. B.5B).
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Figure B.5: Effect of time interval between scans. (A) For registration with (left)

and without (right) an intermediate time point, maps of mean relative expansion are shown

for 30±1 weeks PMA to 38±2 weeks PMA (n=8, noninjured1-8 in Table 4.4). (B) Testing

paired differences with and without the intermediate step reveals only a few small areas of

statistical significance. Green denotes areas where relative expansion was higher without

an intermediate step, yellow denotes areas lower without an intermediate step. Note: To

visualize small differences that do exist, and account for low sample size, the threshold for

plotting has been raised to p=0.1. Only the dark green region of the right temporal lobe

was significant with p<0.05.

B.7 Atlas generation with aMSM

For group analysis, a 30-week PMA group atlas was created through the following steps,

as outlined in Fig. B.6: (A) Cortical surfaces from 18 non-injured subjects (30±1 weeks

PMA) were affine-aligned at the anterior and posterior commissures and projected to a cor-

responding spherical surface using CARET (Van Essen et al., 2001). (B) Using Connectome

Workbench (Marcus et al., 2011), cortical surfaces were resampled to a standard 40,962-

vertex mesh and averaged to create a proto-atlas. (C ) Individual surfaces were registered
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to the proto-atlas with aMSM using the same parameters described above. (D) Registered

surfaces were averaged in Connectome Workbench to create a final 30-week atlas. Note that

this final atlas conserves greater anatomical detail and reduces 3D dispersion (minimizes

standard deviation of the distance of subjects vertices to the mean 3D coordinate) (Fig.

B.6E ). For group analysis, all individual surfaces (time point closest to 30 weeks PMA) were

registered to this final 30-week atlas.

All atlas registrations in this study used the individuals scan closest to 30 weeks, so that

variability between age groups did not affect our individual-to-atlas registrations. At 30-

weeks, variability was small between our subjects, as illustrated in Fig. B.6. In future

studies using multiple or different subject groups, investigators should assess variability

between groups when deciding whether to use this (or another existing) atlas, or whether to

develop multiple group atlases for their specific research question.
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Atlas generation and aMSM improvement (reduction in 3D dispersion)
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Appendix C

Codes

C.1 Discrete orientation fields and stress-dependent

growth in ABAQUS

The UMAT generator developed by Young et al. (2010) offers a useful tool to implement

growth with nonlinear materials in ABAQUS. ABAQUS is especially useful for handling

complex geometries and full, 3-dimensional analysis: offering a range of capabilities including

spatially-varying loads and vector fields. In Chapters 2-3 of this dissertation, we considered

complex 3D geometries that could not be defined using standard spherical or cylindrical

coordinates (SP models).

To circumvent this issue, we defined discrete orientation fields in ABAQUS. However, the

UMATs originally produced by the UMAT generator are not designed to handle pre-defined

orientations. The following MATLAB code, UMAT modifications, and instructions offer one

solution to this issue.
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Note that this UMAT also reorients Cauchy stress to these discrete orientation directions

to facilitate orthotropic stress-dependent growth in the original material directions. This

required modification of the rotation tensors originally defined in the UMAT generator.

162



discreteA.m 
 
% Written by Kara E. Garcia 
 
% Converts Discrete Orientation Table (DiscOrient) from Abaqus input file 
% to orthogonal base vectors (A11-A33) that can be used in a modified UMAT 
% (Kara Garcia) based on the UMAT generator by Young et al. (2010) 
 
% Note: DiscOrient must be copied into a separate text file 
% eg. 'discorient12448.txt' 
% Then, all references to the discrete orientation field in the input file 
% should be deleted or commented out before use with UMAT described above. 
  
T1T2 = load('discorient12448.txt'); 
element = T1T2(:,1); 
T1 = T1T2(:,2:4); 
T2 = T1T2(:,5:7); 
N3 = cross(T1,T2); 
A1A2A3 = [T1,T2,N3]; 
count = 1:100; 
  
A1A2A3T = A1A2A3'; 
  
fileID = fopen('A_12448.f77','w'); 
for i=1:(max(element)-min(element)+1) 
   fprintf(fileID,'      %4.3f,%4.3f,%4.3f,%4.3f,%4.3f,%4.3f,%4.3f,%4.3f,%4.3
f, \n',A1A2A3(i,1:9)); 
end 
fclose(fileID); 
  
fileID = fopen('A1_12448.f77','w'); 
for i=1:(max(element)-min(element)+1) 
    fprintf(fileID,'      %16.15f,%16.15f,%16.15f, \n',A1A2A3(i,1:3)); 
end 
fclose(fileID); 
  
fileID = fopen('A2_12448.f77','w'); 
for i=1:(max(element)-min(element)+1) 
    fprintf(fileID,'      %16.15f,%16.15f,%16.15f, \n',A1A2A3(i,4:6)); 
end 
fclose(fileID); 
  
fileID = fopen('A3_12448.f77','w'); 
for i=1:(max(element)-min(element)+1) 
    fprintf(fileID,'      %16.15f,%16.15f,%16.15f, \n',A1A2A3(i,7:9)); 
end 
fclose(fileID); 
  
max(element)-min(element)+1 
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C	  	  
C	  
C	  ABAQUS/STANDARD	  UEXTERNALDB	  FROM	  MATHEMATICA	  
C	  
C	  Used	  to	  update	  the	  total	  rotation	  at	  the	  end	  of	  increment.	  
C	  	  
C	  Mathematica	  Routine	  Written	  by:	  Jonathan	  Young	  	  
C	  Modified	  by	  Kara	  Garcia	  to	  incorporate:	  
C	  (1)	  discrete	  orientation	  fields	  (ABAQUS	  CAE)	  to	  define	  complex	  material	  orientations	  	  
C	  (2)	  stress-‐dependent	  growth,	  using	  Cauchy	  stress	  in	  material	  (reference)	  orientations	  
C	  *This	  example	  also	  incorporates	  morphogen	  effects	  based	  on	  predefined	  distributions.	  
C	  **This	  UMAT	  considers	  a	  modified	  neo	  Hookean	  material,	  using	  UMAT	  generator	  by	  JY.	  
C	  	  
	  	  	  	  	  	  SUBROUTINE	  UEXTERNALDB(LOP,LRESTART,TIME,DTIME,KSTEP,KINC)	  
C	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  
C	  
	  	  	  	  	  	  DIMENSION	  TIME(2)	  
	  	  	  	  	  	  	  
C	  MUST	  INSERT	  TOTAL	  NUMBER	  OF	  ELEMENTS	  AS	  FIRST	  NUMBER	  IN	  KA1-‐3EL,RTOTAL,DROTINC	  
C	  	  	  	  	  ALSO	  IN	  LINES	  TO	  IMPORT	  "A"	  DATA	  FILES,	  AND	  BEGINNING	  OF	  UMAT!!!	  
C	  FOR	  RTOTAL	  AND	  DROTINC,	  MULTIPLY	  TOTAL	  NUMBER	  OF	  ELEMENTS	  BY	  INTEGRATION	  POINTS	  
C	  	  	  	  	  INTEGRATION	  POINTS	  =	  8	  FOR	  HEX	  (LINEAR	  C3D8,	  QUAD	  C3D20R	  [C3D20=27])	  
C	  	  	  	  	  INTEGRATION	  POINTS	  =	  4	  FOR	  TET	  (LINEAR	  C3D4,	  QUAD	  C3D10)	  
C	  	  	  	  	  ALSO	  IN	  LINES	  TO	  INITIALIZE	  ROTATION	  VARIABLES,	  AND	  BEGINNING	  OF	  UMAT	  	  
	  
	  	  	  	  	  	  REAL*8	  KA1EL(10875,3)	  
	  	  	  	  	  	  REAL*8	  KA2EL(10875,3)	  
	  	  	  	  	  	  REAL*8	  KA3EL(10875,3)	  
	  	  	  	  	  	  COMMON	  RTOTAL(10875*8,9)	  
	  	  	  	  	  	  COMMON	  DROTINC(10875*8,9)	  
	  	  	  	  	  	  COMMON	  KA1EL	  
	  	  	  	  	  	  COMMON	  KA2EL	  
	  	  	  	  	  	  COMMON	  KA3EL	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DIMENSION	  R0(3,3),	  DROT(3,3),	  R(3,3)	  
	  
	  	  	  	  	  	  CHARACTER(256)	  FILENAME	  
	  	  	  	  	  	  CHARACTER(256)	  JOBDIR	  
C	  	  
C	  INITIALIZE	  COMMON	  ROTATION	  VARIABLES	  
C	  	  
C	  At	  the	  start	  of	  the	  analysis.	  
	  	  	  	  	  	  IF(LOP.EQ.0)	  THEN	  
C	  For	  all	  integration	  points.	  	  	  	  	  
	  	  	  	  	  	  	  	  	  DO	  K1=1,10875*8	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,1)	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,2)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,3)	  =	  0.D0	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,4)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,5)	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,6)	  =	  0.D0	  
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	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,7)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,8)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,9)	  =	  1.D0	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,1)	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,2)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,3)	  =	  0.D0	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,4)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,5)	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,6)	  =	  0.D0	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,7)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,8)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  DROTINC(K1,9)	  =	  1.D0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  CALL	  GETOUTDIR(JOBDIR,LENJOBDIR)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  FILENAME=JOBDIR(:LENJOBDIR)//'\A1_10875.f77'	  
	  	  	  	  	  	  	  	  	  	  	  	  OPEN(UNIT=111,FILE=FILENAME)	  
C	  AGAIN,	  MUST	  DEFINE	  TOTAL	  NUMBER	  OF	  ELEMENTS	  AS	  SECOND	  NUMBER!!!!	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K1=1,10875	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  READ(111,*)	  (KA1EL(K1,K2),K2=1,3)	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  PRINT	  *,KA1EL(1,1:3)	  
	  	  	  	  	  	  	  	  	  	  	  	  CLOSE(111)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  FILENAME=JOBDIR(:LENJOBDIR)//'\A2_10875.f77'	  
	  	  	  	  	  	  	  	  	  	  	  	  OPEN(UNIT=112,FILE=FILENAME)	  
C	  AGAIN,	  MUST	  DEFINE	  TOTAL	  NUMBER	  OF	  ELEMENTS	  AS	  SECOND	  NUMBER!!!!	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K1=1,10875	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  READ(112,*)	  (KA2EL(K1,K2),K2=1,3)	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  PRINT	  *,KA2EL(1,1:3)	  
	  	  	  	  	  	  	  	  	  	  	  	  CLOSE(112)	  
	  	  
	  	  	  	  	  	  	  	  	  	  	  	  FILENAME=JOBDIR(:LENJOBDIR)//'\A3_10875.f77'	  
	  	  	  	  	  	  	  	  	  	  	  	  OPEN(UNIT=113,FILE=FILENAME)	  
C	  AGAIN,	  MUST	  DEFINE	  TOTAL	  NUMBER	  OF	  ELEMENTS	  AS	  SECOND	  NUMBER!!!!	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K1=1,10875	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  READ(113,*)	  (KA3EL(K1,K2),K2=1,3)	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  PRINT	  *,KA3EL(1,1:3)	  
	  	  	  	  	  	  	  	  	  	  	  	  CLOSE(113)	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  	  	  	  
C	  	  
C	  UPDATE	  TOTAL	  ROTATION	  
C	  	  	  
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C	  At	  the	  end	  of	  the	  current	  increment	  
	  	  	  	  	  	  IF(LOP.EQ.2)	  THEN	  
C	  For	  all	  integration	  points	  	  	  	  	  
	  	  	  	  	  	  	  	  	  DO	  K1=1,10875*8	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(1,1)	  =	  RTOTAL(K1,1)	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(2,1)	  =	  RTOTAL(K1,2)	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(3,1)	  =	  RTOTAL(K1,3)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(1,2)	  =	  RTOTAL(K1,4)	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(2,2)	  =	  RTOTAL(K1,5)	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(3,2)	  =	  RTOTAL(K1,6)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(1,3)	  =	  RTOTAL(K1,7)	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(2,3)	  =	  RTOTAL(K1,8)	  
	  	  	  	  	  	  	  	  	  	  	  	  R0(3,3)	  =	  RTOTAL(K1,9)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(1,1)	  =	  DROTINC(K1,1)	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(2,1)	  =	  DROTINC(K1,2)	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(3,1)	  =	  DROTINC(K1,3)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(1,2)	  =	  DROTINC(K1,4)	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(2,2)	  =	  DROTINC(K1,5)	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(3,2)	  =	  DROTINC(K1,6)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(1,3)	  =	  DROTINC(K1,7)	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(2,3)	  =	  DROTINC(K1,8)	  
	  	  	  	  	  	  	  	  	  	  	  	  DROT(3,3)	  =	  DROTINC(K1,9)	  
	  
C	  Update	  the	  total	  rotation	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  CALL	  MULMAT(DROT,R0,R)	  
	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,1)	  =	  R(1,1)	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,2)	  =	  R(2,1)	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,3)	  =	  R(3,1)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,4)	  =	  R(1,2)	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,5)	  =	  R(2,2)	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,6)	  =	  R(3,2)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,7)	  =	  R(1,3)	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,8)	  =	  R(2,3)	  
	  	  	  	  	  	  	  	  	  	  	  	  RTOTAL(K1,9)	  =	  R(3,3)	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  IF	  
	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
C	  	  
C	  
C	  ABAQUS/STANDARD	  UMAT	  GENERATED	  BY	  MATHEMATICA	  
C	  
C	  Mathematica	  routine	  written	  by:	  
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C	  Jonathan	  M.	  Young	  (1*)	  
C	  
C	  With	  contribution	  from:	  
C	  Dr.	  Jiang	  Yao	  (1),	  	  
C	  Dr.	  Ashok	  Ramasubramanian	  (2),	  	  
C	  Dr.	  Larry	  A.	  Taber	  (3),	  and	  
C	  Dr.	  Renato	  Perucchio	  (1)	  
C	  
C	  (1)	  Dept.	  of	  Mechanical	  Engineering	  
C	  	  	  	  	  University	  of	  Rochester	  
C	  	  	  	  	  Rochester,	  NY	  14627	  
C	  
C	  (2)	  Dept.	  of	  Mechanical	  Engineering	  
C	  	  	  	  	  Union	  College	  
C	  	  	  	  	  Schenectady,	  NY	  12308	  
C	  
C	  (3)	  Dept.	  of	  Biomedical	  Engineering	  
C	  	  	  	  	  Washington	  University	  
C	  	  	  	  	  St.	  Louis,	  MO	  63130	  
C	  
C	  *	  Address	  correspondence	  to:	  
C	  Jonathan	  M.	  Young	  	  
C	  jyoung@me.rochester.edu	  
C	  01.585.275.8074	  
C	  
C	  Date:	  5/12/2014	  
C	  
C	  	  
	  	  	  	  	  	  SUBROUTINE	  UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,	  
	  	  	  	  	  1	  RPL,DDSDDT,DRPLDE,DRPLDT,	  
	  	  	  	  	  2	  STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,	  
	  	  	  	  	  3	  NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,	  
	  	  	  	  	  4	  CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)	  
C	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  
C	  
	  	  	  	  	  	  CHARACTER*8	  CMNAME	  
	  	  	  	  	  	  DIMENSION	  STRESS(NTENS),STATEV(NSTATV),	  !TEMP(28),	  
	  	  	  	  	  1	  DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),	  
	  	  	  	  	  2	  STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),	  
	  	  	  	  	  3	  PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)	  
	  
C	  ONCE	  AGAIN,	  UPDATE	  TOTAL	  NUMBER	  OF	  ELEMENTS	  FOR	  KAEL!	  
	  	  	  	  	  	  REAL*8	  KA1EL(10875,3)	  
	  	  	  	  	  	  REAL*8	  KA2EL(10875,3)	  
	  	  	  	  	  	  REAL*8	  KA3EL(10875,3)	  
	  	  	  	  	  	  COMMON	  RTOTAL(10875*8,9)	  
	  	  	  	  	  	  COMMON	  DROTINC(10875*8,9)	  	  
	  	  	  	  	  	  COMMON	  KA1EL	  	  	  	  
	  	  	  	  	  	  COMMON	  KA2EL	  
	  	  	  	  	  	  COMMON	  KA3EL	  	  	  	  	  	  	  
	  	  	  	  	  	  REAL*8	  KH1,	  KH2,	  KH3,	  KSTEPG,	  KACONSTANT,	  KR1,	  KRATIO,	  KBCONSTANT	  
	  	  	  	  	  	  REAL*8	  KAG1T,	  KAG2T,	  KAG3T,	  KPI,	  KC1,	  KD1,	  KCN,	  KCA	  
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	  	  	  	  	  	  REAL*8	  KBMP,	  KSHH,	  KFGF,	  KFP,	  KRP,	  KFPA,	  KRPA,	  KBEXP,	  KSEXP,	  KFEXP	  
	  	  	  	  	  	  REAL*8	  KGBASE,	  KSG1,	  KSG2,	  KSG3,	  KSMAX,	  KGMAX,	  KAIS	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  DIMENSION	  CBAR1(3,3),	  CL1(3,3,3,3),	  CL2(3,3,3,3),	  C(3,3),	  
	  	  	  	  	  1	  DEVS(3,3),	  DI(3,3),	  DWDE(3,3),	  D2WDE2(3,3,3,3),	  	  
	  	  	  	  	  2	  FBAR1(3,3),	  FBAR1T(3,3),	  F1(3,3),	  F2(3,3),	  FE(3,3),	  FT(3,3),	  
	  	  	  	  	  3	  E1(3,3),	  E2(3,3),	  E3(3,3),	  FWC(3,3),	  FWCF1(3,3),	  
	  	  	  	  	  4	  GI(3,3),	  WC(3,3),	  A1A2A3(9),	  DROT1(3,3),	  DROT2(3,3),	  DROT3(3,3),	  
	  	  	  	  	  5	  R0(3,3),	  R(3,3),	  RT(3,3),	  RI(3,3),	  RIT(3,3),	  R0T(3,3),	  
	  	  	  	  	  6	  S1(3,3),	  S2(3,3),	  S3(3,3),	  S4(3,3),	  S4A(3,3),	  S5(3,3),	  S6(3,3),	  
	  	  	  	  	  6	  S4MX(3,3),	  S4MR(3,3),	  PS(3),	  AN(3,3),	  	  
	  	  	  	  	  7	  SOUT1(3,3),	  SOUT2(3,3),	  SYM(3,3,3,3)	  
	  	  	  	  	  	  
C	  	  DEFINED	  DISCRETE	  ORTHOGONAL	  BASE	  VECTORS	  (A11-‐A33	  FOR	  EACH	  ELEMENT,	  A	  TRANSPOSE)	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  A1A2A3(1)=KA1EL(NOEL,1)	  
	  	  	  	  	  	  A1A2A3(2)=KA2EL(NOEL,1)	  
	  	  	  	  	  	  A1A2A3(3)=KA3EL(NOEL,1)	  
	  	  	  	  	  	  A1A2A3(4)=KA1EL(NOEL,2)	  
	  	  	  	  	  	  A1A2A3(5)=KA2EL(NOEL,2)	  
	  	  	  	  	  	  A1A2A3(6)=KA3EL(NOEL,2)	  
	  	  	  	  	  	  A1A2A3(7)=KA1EL(NOEL,3)	  
	  	  	  	  	  	  A1A2A3(8)=KA2EL(NOEL,3)	  
	  	  	  	  	  	  A1A2A3(9)=KA3EL(NOEL,3)	  
	  	  	  	  	  	  
C	  	  
C	  MATERIAL	  PROPERTIES	  
C	  	  
	  	  	  	  	  	  b1111	  =	  PROPS(1)	  
	  	  	  	  	  	  b1122	  =	  PROPS(2)	  
	  	  	  	  	  	  b1133	  =	  PROPS(3)	  
	  	  	  	  	  	  b1112	  =	  PROPS(4)	  
	  	  	  	  	  	  b1113	  =	  PROPS(5)	  
	  	  	  	  	  	  b1123	  =	  PROPS(6)	  
	  	  	  	  	  	  b2222	  =	  PROPS(7)	  
	  	  	  	  	  	  b2233	  =	  PROPS(8)	  
	  	  	  	  	  	  b2212	  =	  PROPS(9)	  
	  	  	  	  	  	  b2213	  =	  PROPS(10)	  
	  	  	  	  	  	  b2223	  =	  PROPS(11)	  
	  	  	  	  	  	  b3333	  =	  PROPS(12)	  
	  	  	  	  	  	  b3312	  =	  PROPS(13)	  
	  	  	  	  	  	  b3313	  =	  PROPS(14)	  
	  	  	  	  	  	  b3323	  =	  PROPS(15)	  
	  	  	  	  	  	  b1212	  =	  PROPS(16)	  
	  	  	  	  	  	  b1213	  =	  PROPS(17)	  
	  	  	  	  	  	  b1223	  =	  PROPS(18)	  
	  	  	  	  	  	  b1313	  =	  PROPS(19)	  
	  	  	  	  	  	  b1323	  =	  PROPS(20)	  
	  	  	  	  	  	  b2323	  =	  PROPS(21)	  
	  	  	  	  	  	  C1	  =	  PROPS(22)	  
	  	  	  	  	  	  D1	  =	  PROPS(23)	  
	  	  	  	  	  	  T0	  =	  0.1	  
	  	  	  	  	  	  TMAX	  =	  PROPS(25)	  
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	  	  	  	  	  	  AG1T	  =	  PROPS(26)	  
	  	  	  	  	  	  AG2T	  =	  PROPS(27)	  
	  	  	  	  	  	  AG3T	  =	  PROPS(28)	  	  	  	  	  	  	  
	  	  	  	  	  	  A11	  =	  A1A2A3(1)	  
	  	  	  	  	  	  A21	  =	  A1A2A3(2)	  
	  	  	  	  	  	  A31	  =	  A1A2A3(3)	  
	  	  	  	  	  	  A12	  =	  A1A2A3(4)	  
	  	  	  	  	  	  A22	  =	  A1A2A3(5)	  
	  	  	  	  	  	  A32	  =	  A1A2A3(6)	  
	  	  	  	  	  	  A13	  =	  A1A2A3(7)	  
	  	  	  	  	  	  A23	  =	  A1A2A3(8)	  
	  	  	  	  	  	  A33	  =	  A1A2A3(9)	  
	  
	  	  	  	  	  	  E	  =	  2.718281828459046	  
	  	  	  	  	  	  KPI	  =	  3.141592654	  
	  
	  	  	  	  	  	  NLINE	  =	  8*(NOEL	  -‐	  1)	  +	  NPT	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  CT	  =	  TIME(2)	  +	  DTIME	  
	  	  	  	  	  	  	  
C	  DEFINE	  SPATIAL	  VARIATION	  GROWTH/CONTRACTION	  
	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  KH1	  =	  0.175	  !TELENCEPHALON	  (MID)RADIUS	  	  
	  	  	  	  	  	  KH2	  =	  0.1	  !FLOORPLATE	  ADDITIONAL	  DISTANCE	  	  
	  	  	  	  	  	  KH3	  =	  0.1	  !BOUNDARY	  EDGE	  OF	  MODEL	  (AIS)	  
	  	  	  	  	  	  KSTEPG	  =	  1.	  !TIME	  TO	  START	  STRESS-‐DEPENDENT	  GROWTH	  LAW	  
	  	  	  	  	  	  KACONSTANT	  =	  2./2	  *	  6	  !2.73*2	  !STRESS-‐DEPENDENT	  	  
	  	  	  	  	  	  KGBASE	  =	  0.39	  	  
	  	  	  	  	  	  KBCONSTANT	  =	  0.38	  !CONSTANT	  FOR	  THICKENING	  
	  	  	  	  	  	  KRATIO	  =	  0.	  !0.2	  !RATIO	  OF	  THICKENING	  TAKEN	  FROM	  G1,G2	  (0-‐1)	  
	  	  	  	  	  	  KR1	  =	  0.	  !0.5	  !RATIO	  OF	  G1,G2	  REMOVED	  VENTRALLY	  
	  	  	  	  	  	  KSEXP	  =	  10.	  !EXPONENT	  FOR	  SHH	  DECAY	  IN	  D-‐V	  AXIS	  
	  	  	  	  	  	  KFEXP	  =	  2.	  !10.	  !EXPONENT	  FOR	  FGF	  DECAY	  IN	  R-‐C	  AXIS	  
	  	  	  	  	  	  KBEXP	  =	  5.	  !10.	  !EXPONENT	  FOR	  BMP/RP/FP	  DECAY	  
	  	  	  	  	  	  KRPA	  =	  0.05	  !	  0.075	  !MAX	  WIDTH	  OF	  BMP/RP	  BAND	  
	  	  	  	  	  	  KFPA	  =	  0.1	  !MAX	  WIDTH	  OF	  FP	  BAND	  
	  	  	  	  	  	  KCN	  =	  0.	  !FLOORPLATE	  EXTRA	  STIFFNESS	  
	  	  	  	  	  	  KCA	  =	  5.	  !10.	  !BOUNDARY	  STIFFNESS	  
	  	  	  	  	  	  KAIS	  =	  1-‐1./6	  !BOUNDARY	  FRACTION	  OF	  GROWTH	  *REMOVED*	  
	  	  	  	  	  	  KENDG	  =	  2.5	  !STEP	  2	  TOTAL	  TIME	  (ACTUAL	  END	  OF	  MODEL=36h)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  IF	  (TIME(2).EQ.0.)	  THEN	  !RECORD	  COORDS	  AT	  T=0	  
	  	  	  	  	  	  	  	  STATEV(15)	  =	  COORDS(1)	  !X	  (ROSTRAL	  X>0)	  
	  	  	  	  	  	  	  	  STATEV(16)	  =	  COORDS(2)	  !Y	  (DORSAL	  Y>0)	  	  
	  	  	  	  	  	  	  	  STATEV(17)	  =	  COORDS(3)	  !Z	  (LATERAL	  Z>0)	  
	  	  	  	  	  	  	  	  STATEV(10)	  =	  ATAN2(COORDS(2),COORDS(1))	  !PHI(0=R,PI/2=D,-‐PI/2=V)	  
	  	  	  	  	  	  	  	  STATEV(11)	  =	  ATAN2(COORDS(2),COORDS(3))	  !THETA	  (0=L,",")	  
	  	  	  	  	  	  END	  IF	  
	  
C	  	  	  	  	  BMP	  GRADIENT,	  NO	  GROWTH	  HH17-‐END	  
	  	  	  	  	  	  KBMP	  =	  1/(1	  +	  E**(KBEXP	  *	  ((STATEV(17)**2	  	  
	  	  	  	  	  1	  +	  ((STATEV(10)-‐KPI/5)*.125/KPI)**2)	  /	  (KRPA)**2	  -‐	  1)))	  
	  	  	  	  	  2	  *	  (1-‐1/(1	  +	  E**(20	  *	  (CT-‐KSTEPG	  -‐	  2.*(KENDG-‐KSTEPG)/4))	  ))	  !	  
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C	  	  	  	  	  FP	  (NO	  LONGER	  NEEDED)	  
	  	  	  	  	  	  KFP	  =	  1/(1	  +	  E**(KBEXP	  *	  ((STATEV(17)**2	  	  
	  	  	  	  	  1	  +	  ((STATEV(10)+KPI*1.4)*.2/KPI/2)**2)	  /	  (KFPA)**2	  -‐	  1)))	  
	  	  	  	  	  	  
C	  	  	  	  	  RP	  (ABSOLUTELY	  NO	  THICKENING)	  
	  	  	  	  	  	  KRP	  =	  1/(1	  +	  E**(KBEXP	  *	  ((STATEV(17)**2	  	  
	  	  	  	  	  1	  +	  ((STATEV(10)-‐KPI/5)*.125/KPI)**2)	  /	  (KRPA)**2	  -‐	  1)))	  
	  
C	  	  	  	  	  SHH	  GRADIENT	  (THICKENING/ASYMMETRIC	  SIPHONED	  FROM	  TANGENTIAL/SYMMETRIC)	  
c	  	  	  	  	  	  KSHH	  =	  (-‐1*STATEV(16)+KH1+KH2+0.025)/(2*KH1+KH2+0.05)	  
	  	  	  	  	  	  KSHH	  =	  1.0	  !instead,	  let	  thickening	  happen	  everywhere	  except	  RP	  
	  	  	  	  	  	  	  
C	  	  	  	  	  FGF	  GRADIENT	  (ROSTRAL-‐CAUDAL	  GROWTH)	  
c	  	  	  	  	  	  KFGF	  =	  1	  -‐	  KAIS/(1	  +	  E**(10	  *	  ((STATEV(15)+KH3)/(KH3/2)	  -‐	  1)))	  
	  	  	  	  	  	  	  KFGF	  =	  1	  -‐	  KAIS/(1	  +	  E**(KFEXP*((STATEV(15)+KH3/2)/(KH3/2)	  -‐	  1)))	  
	  	  	  	  	  	  
C	  	  	  	  	  REGIONAL	  STIFFNESS	  (CAN	  BE	  INCREASED	  FOR	  BOUNDARY,	  VENTRAL	  MESENCHYME)	  
	  	  	  	  	  	  KC1	  =	  C1	  +	  KCN*(1-‐COS(KSHH*KPI/2)**4)	  
	  	  	  	  	  1	  +	  KCA/(1	  +	  E**(5	  *	  ((STATEV(15)+KH3)/(KH3/2)	  -‐	  1)))	  !STIFF	  AIS	  
	  	  	  	  	  	  KD1	  =	  D1/KC1	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  KSGMAX	  =	  1.0	  !MAX	  STRESS	  FOR	  GROWTH	  LAW	  
	  	  	  	  	  	  IF	  (STATEV(4).GT.KSGMAX)	  THEN	  
	  	  	  	  	  	  	  	  KSG1	  =	  KSGMAX	  
	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  KSG1	  =	  STATEV(4)	  
	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  IF	  (STATEV(5).GT.KSGMAX)	  THEN	  
	  	  	  	  	  	  	  	  KSG2	  =	  KSGMAX	  
	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  KSG2	  =	  STATEV(5)	  
	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  KSG3	  =	  (STATEV(4)	  +	  STATEV(5))	  /	  2	  !COULD	  DO	  ABOVE	  
	  	  	  	  	  	  IF	  (KSG3.GT.KSGMAX)	  THEN	  
	  	  	  	  	  	  	  	  KSG3	  =	  KSGMAX	  
	  	  	  	  	  	  END	  IF	  
C	  	  	  	  	  ONLY	  USE	  FOLLOWING	  LINES	  FOR	  TRANSVERSELY	  ISOTROPIC	  GROWTH	  
	  	  	  	  	  	  KSG1	  =	  KSG3	  
	  	  	  	  	  	  KSG2	  =	  KSG3	  
	  	  	  	  	  	  	  
C	  	  	  	  	  PREDEFINED	  GROWTH	  IN	  STEP	  1	  	  	  	  	  	  	  
	  	  	  	  	  	  AG1T	  =	  1.0	  	  !INITIAL	  GROWTH	  IN	  MATERIAL	  DIRECTION	  1	  
	  	  	  	  	  	  AG2T	  =	  1.0	  	  !INITIAL	  GROWTH	  IN	  MATERIAL	  DIRECTION	  2	  
	  	  	  	  	  	  AG3T	  =	  1.0	  -‐	  0.5*KRP	  !INITIAL	  GROWTH	  IN	  MATERIAL	  DIRECTION	  3	  
c	  	  	  	  	  ^	  only	  thin	  for	  hh13	  onward	  model	  	  
C	  	  
C	  INITIALIZE	  MATRICES	  
C	  	  
C	  DI	  =	  Identity	  matrix	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  

170



	  	  	  	  	  	  	  	  	  	  	  	  IF(K1.EQ.K2)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DI(K1,K2)	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DI(K1,K2)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  	  	  	  DWDE(K1,K2)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  WC(K1,K2)	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
C	  Fourth	  order	  symmetric	  matrix	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K3=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  K4=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SYM(K1,K2,K3,K4)	  =	  (DI(K1,K4)*DI(K2,K3)	  	  
	  	  	  	  	  1	  +	  DI(K1,K3)*DI(K2,K4))/2.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
C	  	  
C	  MATERIAL	  ORIENTATION	  
C	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  CALL	  SPRIND(STRESS,PS,AN,1,NDI,NSHR)	  !PRINCIPAL	  STRESSES	  =	  PS(3)	  
	  	  	  	  	  	  	  
C	  	  	  	  	  	  IF(TIME(2).LT.KSTEPG)	  THEN	  
	  	  	  	  	  	  	  	  	  RI(1,1)	  =	  A11	  
	  	  	  	  	  	  	  	  	  RI(2,1)	  =	  A21	  
	  	  	  	  	  	  	  	  	  RI(3,1)	  =	  A31	  
	  
	  	  	  	  	  	  	  	  	  RI(1,2)	  =	  A12	  
	  	  	  	  	  	  	  	  	  RI(2,2)	  =	  A22	  
	  	  	  	  	  	  	  	  	  RI(3,2)	  =	  A32	  
	  
	  	  	  	  	  	  	  	  	  RI(1,3)	  =	  A13	  
	  	  	  	  	  	  	  	  	  RI(2,3)	  =	  A23	  
	  	  	  	  	  	  	  	  	  RI(3,3)	  =	  A33	  
	  	  	  	  	  	  	  	  	  	  
C	  	  	  	  	  COULD	  DEFINE	  STRESS-‐DEPENDENT	  GROWTH	  IN	  PRINCIPAL	  STRESS	  DIRECTIONS	  
C	  	  	  	  	  *BUT*	  NEED	  TO	  CORRECT	  AN	  WHEN	  INT	  PTS	  FACING	  OPPOSITE	  DIRECTIONS	  
C	  	  	  	  	  	  ELSE	  IF(TIME(2).GE.KSTEPG)	  THEN	  	  
C	  	  	  	  	  	  	  
C	  	  	  	  	  	  	  	  	  RI(1,1)	  =	  AN(1,1)	  !MAX	  EIGENVECTOR	  
C	  	  	  	  	  	  	  	  	  RI(2,1)	  =	  AN(1,2)	  !MAX	  EIGENVECTOR	  
C	  	  	  	  	  	  	  	  	  RI(3,1)	  =	  AN(1,3)	  !MAX	  EIGENVECTOR	  
C	  
C	  	  	  	  	  	  	  	  	  RI(1,2)	  =	  AN(2,1)	  !MIN	  EIGENVECTOR	  
C	  	  	  	  	  	  	  	  	  RI(2,2)	  =	  AN(2,2)	  !MIN	  EIGENVECTOR	  
C	  	  	  	  	  	  	  	  	  RI(3,2)	  =	  AN(2,3)	  !MIN	  EIGENVECTOR	  
C	  
C	  	  	  	  	  	  	  	  	  RI(1,3)	  =	  AN(3,1)	  !MID	  EIGENVECTOR	  
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C	  	  	  	  	  	  	  	  	  RI(2,3)	  =	  AN(3,2)	  !MID	  EIGENVECTOR	  
C	  	  	  	  	  	  	  	  	  RI(3,3)	  =	  AN(3,3)	  !MID	  EIGENVECTOR	  
C	  	  	  	  	  	  	  	  	  	  
C	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  CALL	  TRMAT(RI,RIT)	  
	  	  	  	  	  	  CALL	  MULMAT(RI,DFGRD1,F1)	  
	  	  	  	  	  	  CALL	  MULMAT(F1,RIT,F2)	  	  	  	  	  	  
C	  	  
C	  GROWTH	  
C	  	  
	  	  	  	  	  	  IF(TIME(2).LE.KSTEPG)	  THEN	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  IF(CT.LE.T0)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG1	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG2	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG3	  =	  1.D0	  
	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  	  IF(CT.GT.TMAX)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG1	  =	  AG1T	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG2	  =	  AG2T	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG3	  =	  AG3T	  
	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  	  IF(CT.GT.T0.AND.CT.LE.TMAX)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG1	  =	  1.D0	  +	  (AG1T	  -‐	  1.D0)*(CT	  -‐	  T0)/(TMAX	  -‐	  T0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG2	  =	  1.D0	  +	  (AG2T	  -‐	  1.D0)*(CT	  -‐	  T0)/(TMAX	  -‐	  T0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG3	  =	  1.D0	  +	  (AG3T	  -‐	  1.D0)*(CT	  -‐	  T0)/(TMAX	  -‐	  T0)	  
	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  ELSE	  IF(TIME(2).GT.KSTEPG)	  THEN	  !STRESS-‐DEPENDENT	  GROWTH	  
	  	  	  	  	  	  	  	  	  	  IF(CT.LE.T0)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG1	  =	  AG1T	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG2	  =	  AG2T	  
	  	  	  	  	  	  	  	  	  	  	  	  	  AG3	  =	  AG3T	  	  
	  	  	  	  	  	  	  	  	  	  END	  IF	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  IF(CT.GT.KSTEPG.AND.CT.LE.KENDG)	  THEN	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  IF	  (KSG3.GE.0.)	  THEN	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  KAG1T	  =	  (KACONSTANT*KSG1+KGBASE)	  
	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  *	  (1.	  -‐	  KBMP)	  !NO	  GROWTH	  IF	  BMP	  
	  	  	  	  	  3	  	  	  	  	  	  	  	  	  	  	  	  	  	  *	  (1.	  -‐	  KR1*KSHH)	  *	  KFGF	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  KAG1T	  =	  0.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  IF	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  IF	  (KSG3.GE.0.)	  THEN	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  KAG2T	  =	  (KACONSTANT*KSG2+KGBASE)	  
	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  *	  (1.	  -‐	  KBMP)	  !NO	  GROWTH	  IF	  BMP	  
	  	  	  	  	  3	  	  	  	  	  	  	  	  	  	  	  	  	  	  *	  (1.	  -‐	  KR1*KSHH)	  *	  KFGF	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ELSE	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  KAG2T	  =	  0.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  IF	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  KAG3T	  =	  (KBCONSTANT)	  
	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  *	  (1.	  -‐	  KRP)	  !NO	  THICKENING	  AT	  ROOFPLATE	  
	  	  	  	  	  	  	  	  	  	  AG1	  =	  STATEV(1)	  *	  (1	  +	  KAG1T*DTIME)	  	  
	  	  	  	  	  	  	  	  	  	  AG2	  =	  STATEV(2)	  *	  (1	  +	  KAG2T*DTIME)	  	  
	  	  	  	  	  	  	  	  	  	  AG3	  =	  STATEV(3)	  *	  (1	  +	  KAG3T*DTIME)	  
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	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  	  IF(CT.GT.KENDG)	  THEN	  
	  	  	  	  	  	  	  	  	  	  AG1	  =	  STATEV(1)	  
	  	  	  	  	  	  	  	  	  	  AG2	  =	  STATEV(2)	  
	  	  	  	  	  	  	  	  	  	  AG3	  =	  STATEV(3)	  
	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  END	  IF	  	  
	  
	  	  	  	  	  	  GI(1,1)	  =	  1.D0/AG1	  
	  	  	  	  	  	  GI(2,2)	  =	  1.D0/AG2	  
	  	  	  	  	  	  GI(3,3)	  =	  1.D0/AG3	  
	  	  	  	  	  	  GI(1,2)	  =	  0.D0	  
	  	  	  	  	  	  GI(1,3)	  =	  0.D0	  
	  	  	  	  	  	  GI(2,3)	  =	  0.D0	  
	  	  	  	  	  	  GI(2,1)	  =	  0.D0	  
	  	  	  	  	  	  GI(3,1)	  =	  0.D0	  
	  	  	  	  	  	  GI(3,2)	  =	  0.D0	  
	  	  	  	  	  	  	  
C	  Remove	  growth	  part	  
	  	  	  	  	  	  CALL	  MULMAT(F2,	  GI,	  FE)	  	  
	  
C	  	  
C	  VOLUMETRIC	  CONSTANTS	  
C	  	  
C	  DUDJ	  =	  dU/dJ,	  D2UDJ2	  =	  (d/dJ)(dU/dJ)	  
	  	  	  	  	  	  CALL	  DETMAT(FE,AJ1)	  
	  	  	  	  	  	  DUDJ	  =	  (-‐(1/AJ1)	  +	  AJ1)/KD1	  
	  	  	  	  	  	  D2UDJ2	  =	  (1	  +	  AJ1**(-‐2))/KD1	  
	  
C	  	  
C	  DISTORTIONAL	  DEFORMATION	  GRADIENT	  
C	  	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  FBAR1(K1,K2)	  =	  (AJ1**(-‐1.D0/3.D0))*FE(K1,K2)	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
C	  	  
C	  DISTORTIONAL	  STRAIN	  COMPONENTS	  
C	  	  
	  	  	  	  	  	  CALL	  TRMAT(FBAR1,	  FBAR1T)	  
	  	  	  	  	  	  CALL	  MULMAT(FBAR1T,	  FBAR1,	  CBAR1)	  
	  	  	  	  	  	  Ebar1	  =	  (CBAR1(1,1)	  -‐	  1.D0)/2.D0	  
	  	  	  	  	  	  Ebar2	  =	  (CBAR1(2,2)	  -‐	  1.D0)/2.D0	  
	  	  	  	  	  	  Ebar3	  =	  (CBAR1(3,3)	  -‐	  1.D0)/2.D0	  
	  	  	  	  	  	  Ebar4	  =	  CBAR1(1,2)/2.D0	  
	  	  	  	  	  	  Ebar5	  =	  CBAR1(1,3)/2.D0	  	  
	  	  	  	  	  	  Ebar6	  =	  CBAR1(2,3)/2.D0	  
	  
C	  Anisotropy	  Constant	  
	  	  	  	  	  	  AQ	  =	  b1111*Ebar1*Ebar1	  +	  b1122*Ebar1*Ebar2	  +	  	  
	  	  	  	  	  1	  b1133*Ebar1*Ebar3	  +	  	  
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	  	  	  	  	  1	  b1112*Ebar1*Ebar4	  +	  b1113*Ebar1*Ebar5	  +	  b1123*Ebar1*Ebar6	  +	  	  
	  	  	  	  	  2	  b2222*Ebar2*Ebar2	  +	  b2233*Ebar2*Ebar3	  +	  b2212*Ebar2*Ebar4	  +	  	  
	  	  	  	  	  3	  b2213*Ebar2*Ebar5	  +	  b2223*Ebar2*Ebar6	  +	  b3333*Ebar3*Ebar3	  +	  	  
	  	  	  	  	  4	  b3312*Ebar3*Ebar4	  +	  b3313*Ebar3*Ebar5	  +	  b3323*Ebar3*Ebar6	  +	  	  
	  	  	  	  	  5	  b1212*Ebar4*Ebar4	  +	  b1213*Ebar4*Ebar5	  +	  b1223*Ebar4*Ebar6	  +	  	  
	  	  	  	  	  6	  b1313*Ebar5*Ebar5	  +	  b1323*Ebar5*Ebar6	  +	  b2323*Ebar6*Ebar5	  
	  
C	  	  
C	  CAUCHY	  STRESS	  
C	  	  
C	  DWDE	  =	  dW/dE	  
	  	  	  	  	  	  DWDE(1,1)	  =	  2.*KC1	  
	  	  	  	  	  	  DWDE(1,2)	  =	  0	  
	  	  	  	  	  	  DWDE(1,3)	  =	  0	  
	  	  	  	  	  	  DWDE(2,1)	  =	  0	  
	  	  	  	  	  	  DWDE(2,2)	  =	  2.*KC1	  
	  	  	  	  	  	  DWDE(2,3)	  =	  0	  
	  	  	  	  	  	  DWDE(3,1)	  =	  0	  
	  	  	  	  	  	  DWDE(3,2)	  =	  0	  
	  	  	  	  	  	  DWDE(3,3)	  =	  2.*KC1	  
	  
	  	  	  	  	  	  CALL	  MULMAT(FBAR1,	  DWDE,	  S1)	  
	  	  	  	  	  	  CALL	  MULMAT(S1,	  FBAR1T,	  S2)	  
	  	  	  	  	  	  CALL	  DEV(S2,	  S3)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  S4(K1,K2)	  =	  S3(K1,K2)/AJ1	  +	  DUDJ*DI(K1,K2)	  
	  	  	  	  	  	  	  	  	  	  	  	  S4A(K1,K2)	  =	  S3(K1,K2)/AJ1	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  	  	  	  	  
	  
C	  Rotate	  stresses	  back	  to	  global	  system	  
	  	  	  	  	  	  CALL	  MULMAT(RIT,S4,S5)	  	  
	  	  	  	  	  	  CALL	  MULMAT(S5,RI,S6)	  
	  
	  	  	  	  	  	  STRESS(1)	  =	  S6(1,1)	  
	  	  	  	  	  	  STRESS(2)	  =	  S6(2,2)	  
	  	  	  	  	  	  STRESS(3)	  =	  S6(3,3)	  
	  	  	  	  	  	  STRESS(4)	  =	  S6(1,2)	  
	  	  	  	  	  	  STRESS(5)	  =	  S6(1,3)	  
	  	  	  	  	  	  STRESS(6)	  =	  S6(2,3)	  
	  
C	  	  
C	  DDSDDE	  	  
C	  	  
C	  D2WDE2	  =	  d2Wbar/(dEbar)-‐dyad-‐(dEbar)	  
	  	  	  	  	  	  D2WDE2(1,1,1,1)	  =	  0	  	  
	  	  	  	  	  	  D2WDE2(1,1,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,1,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,1,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,1,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,1,2,3)	  =	  0	  
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	  	  	  	  	  	  D2WDE2(1,1,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,1,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,1,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,2,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(1,3,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,1,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,2,2)	  =	  0	  	  
	  	  	  	  	  	  D2WDE2(2,2,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,2,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(2,3,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,2,2)	  =	  0	  
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	  	  	  	  	  	  D2WDE2(3,1,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,1,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,2,3,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,1,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,1,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,1,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,2,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,2,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,2,3)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,3,1)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,3,2)	  =	  0	  
	  	  	  	  	  	  D2WDE2(3,3,3,3)	  =	  0	  	  
	  
C	  	  
C	  TENSOR	  OF	  ELASTICITY	  LOOP	  
C	  	  
C	  DEVIATORIC	  STRESS	  DEVS	  =	  DEV(S4)	  
	  	  	  	  	  	  CALL	  DEV(S4,DEVS)	  
	  
C	  WC	  =	  D2WDE2:C	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K3=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  K4=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  WC(K1,K2)	  =	  WC(K1,K2)	  +	  	  
	  	  	  	  	  1	  D2WDE2(K1,K2,K3,K4)*CBAR1(K3,K4)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
C	  FWCF1	  =	  F.(D2WDE2:C).TRANSPOSE(F)	  
	  	  	  	  	  	  CALL	  MULMAT(FBAR1,WC,FWC)	  
	  	  	  	  	  	  CALL	  MULMAT(FWC,FBAR1T,FWCF1)	  
	  
C	  FULL	  COMPONENT	  LOOP	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K3=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  K4=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP1	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCWC1	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L1=1,3	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP2	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP3	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCWC2	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L3=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP4	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L4=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP4	  =	  SUMCSP4	  +	  	  
	  	  	  	  	  1	  D2WDE2(L1,L2,L3,L4)*FBAR1(K4,L4)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCWC2	  =	  SUMCWC2	  +	  	  
	  	  	  	  	  1	  D2WDE2(L1,L2,L3,L4)*CBAR1(L3,L4)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP3	  =	  SUMCSP3	  +	  SUMCSP4*FBAR1(K3,L3)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP2	  =	  SUMCSP2	  +	  SUMCSP3*FBAR1(K2,L2)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMWCW1	  =	  SUMWCW1	  +	  SUMWCW2*CBAR1(L1,L2)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUMCSP1	  =	  SUMCSP1	  +	  SUMCSP2*FBAR1(K1,L1)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CSP	  =	  SUMCSP1/AJ1	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CWC	  =	  SUMCWC1/(9.D0*AJ1)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  FWCF	  =	  DI(K1,K2)*FWCF1(K3,K4)/(3.D0*AJ1)	  	  
	  	  	  	  	  1	  +	  FWCF1(K1,K2)*DI(K3,K4)/(3.D0*AJ1)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CS1	  =	  (2.D0/3.D0)*(DEVS(K1,K2)*DI(K3,K4)	  +	  
	  	  	  	  	  1	  DI(K1,K2)*DEVS(K3,K4))	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CS2	  =	  (2.D0/3.D0)*(S2(1,1)	  +	  	  
	  	  	  	  	  1	  S2(2,2)	  +	  S2(3,3))*(SYM(K1,K2,K3,K4)	  -‐	  	  
	  	  	  	  	  2	  (1.D0/3.D0)*DI(K1,K2)*DI(K3,K4))/AJ1	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  U1	  =	  DUDJ*(DI(K1,K2)*DI(K3,K4)	  -‐	  	  
	  	  	  	  	  1	  2.D0*SYM(K1,K2,K3,K4))	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  U2	  =	  AJ1*D2UDJ2*DI(K1,K2)*DI(K3,K4)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DSIG	  =	  (S4(K1,K4)*DI(K2,K3)	  +	  S4(K2,K3)*DI(K1,K4)	  +	  	  
	  	  	  	  	  1	  S4(K1,K3)*DI(K2,K4)	  +	  S4(K2,K4)*DI(K1,K3))/2.D0	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CL1(K1,K2,K3,K4)	  =	  CSP	  +	  CWC	  -‐	  FWCF	  -‐	  CS1	  +	  	  
	  	  	  	  	  1	  CS2	  +	  U1	  +	  U2	  +	  DSIG	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
C	  Rotate	  CL	  back	  to	  global	  system	  	  	  	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  DO	  K3=1,3	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  K4=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM1	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L1=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM2	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM3	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L3=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM4	  =	  0.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DO	  L4=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM4	  =	  SUM4	  +	  CL1(L1,L2,L3,L4)*RI(L4,K4)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM3	  =	  SUM3	  +	  SUM4*RI(L3,K3)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM2	  =	  SUM2	  +	  SUM3*RI(L2,K2)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SUM1	  =	  SUM1	  +	  SUM2*RI(L1,K1)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CL2(K1,K2,K3,K4)	  =	  SUM1	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  
C	  Components	  of	  DDSDDE	  
	  	  	  	  	  	  DDSDDE(1,1)	  =	  CL2(1,1,1,1)	  
	  	  	  	  	  	  DDSDDE(1,2)	  =	  CL2(1,1,2,2)	  
	  	  	  	  	  	  DDSDDE(1,3)	  =	  CL2(1,1,3,3)	  
	  	  	  	  	  	  DDSDDE(1,4)	  =	  CL2(1,1,1,2)	  
	  	  	  	  	  	  DDSDDE(1,5)	  =	  CL2(1,1,1,3)	  
	  	  	  	  	  	  DDSDDE(1,6)	  =	  CL2(1,1,2,3)	  
	  
	  	  	  	  	  	  DDSDDE(2,2)	  =	  CL2(2,2,2,2)	  
	  	  	  	  	  	  DDSDDE(2,3)	  =	  CL2(2,2,3,3)	  
	  	  	  	  	  	  DDSDDE(2,4)	  =	  CL2(2,2,1,2)	  
	  	  	  	  	  	  DDSDDE(2,5)	  =	  CL2(2,2,1,3)	  
	  	  	  	  	  	  DDSDDE(2,6)	  =	  CL2(2,2,2,3)	  
	  
	  	  	  	  	  	  DDSDDE(3,3)	  =	  CL2(3,3,3,3)	  
	  	  	  	  	  	  DDSDDE(3,4)	  =	  CL2(3,3,1,2)	  
	  	  	  	  	  	  DDSDDE(3,5)	  =	  CL2(3,3,1,3)	  
	  	  	  	  	  	  DDSDDE(3,6)	  =	  CL2(3,3,2,3)	  
	  
	  	  	  	  	  	  DDSDDE(4,4)	  =	  CL2(1,2,1,2)	  
	  	  	  	  	  	  DDSDDE(4,5)	  =	  CL2(1,2,1,3)	  
	  	  	  	  	  	  DDSDDE(4,6)	  =	  CL2(1,2,2,3)	  
	  
	  	  	  	  	  	  DDSDDE(5,5)	  =	  CL2(1,3,1,3)	  
	  	  	  	  	  	  DDSDDE(5,6)	  =	  CL2(1,3,2,3)	  
	  
	  	  	  	  	  	  DDSDDE(6,6)	  =	  CL2(2,3,2,3)	  
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C	  Fill	  symmetric	  parts	  of	  DDSDDE	  
	  	  	  	  	  	  DO	  K1=2,6	  
	  	  	  	  	  	  	  	  	  K3	  =	  K1-‐1	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,K3	  
	  	  	  	  	  	  	  	  	  	  	  	  DDSDDE(K1,K2)	  =	  DDSDDE(K2,K1)	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
C	  	  
C	  SPECIFIC	  ELASTIC	  STRAIN	  ENERGY:	  SSE	  
C	  	  
	  	  	  	  	  	  SSE	  =	  KC1*(0.	  +	  2.*(Ebar1	  +	  Ebar2	  +	  Ebar3))	  	  
	  	  	  	  	  	  	  
C	  	  	  	  	  	  	  
C	  ROTATIONS	  
C	  	  
	  
C	  Use	  the	  A_ij	  bases	  in	  the	  initial	  increment.	  	  
C	  	  	  	  	  	  IF(KINC.EQ.1)	  THEN	  
	  	  	  	  	  	  IF(CT.LE.T0)	  THEN	  
	  	  	  	  	  	  	  	  	  R0	  =	  RI	  
C	  Use	  the	  updated	  bases	  in	  later	  increments.	  
	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  	  R0(1,1)	  =	  RTOTAL(NLINE,1)	  
	  	  	  	  	  	  	  	  	  R0(2,1)	  =	  RTOTAL(NLINE,2)	  
	  	  	  	  	  	  	  	  	  R0(3,1)	  =	  RTOTAL(NLINE,3)	  
	  
	  	  	  	  	  	  	  	  	  R0(1,2)	  =	  RTOTAL(NLINE,4)	  
	  	  	  	  	  	  	  	  	  R0(2,2)	  =	  RTOTAL(NLINE,5)	  
	  	  	  	  	  	  	  	  	  R0(3,2)	  =	  RTOTAL(NLINE,6)	  
	  
	  	  	  	  	  	  	  	  	  R0(1,3)	  =	  RTOTAL(NLINE,7)	  
	  	  	  	  	  	  	  	  	  R0(2,3)	  =	  RTOTAL(NLINE,8)	  
	  	  	  	  	  	  	  	  	  R0(3,3)	  =	  RTOTAL(NLINE,9)	  	  
	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  CALL	  TRMAT(R0,R0T)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  CALL	  MULMAT(RI,DROT,DROT1)	  !OR	  NOT?	  
	  	  	  	  	  	  CALL	  MULMAT(DROT1,RIT,DROT2)	  !OR	  NOT?	  
	  	  	  	  	  	  CALL	  MULMAT(DROT2,RI,R)	  !Changed	  from	  R0	  to	  RI	  
C	  	  	  	  	  ^depends	  if	  NLGEOM	  is	  on	  or	  off	  
	  	  	  	  	  	  	  
C	  Save	  initial	  total	  rotation	  
	  	  	  	  	  	  RTOTAL(NLINE,1)	  =	  R0(1,1)	  
	  	  	  	  	  	  RTOTAL(NLINE,2)	  =	  R0(2,1)	  
	  	  	  	  	  	  RTOTAL(NLINE,3)	  =	  R0(3,1)	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  RTOTAL(NLINE,4)	  =	  R0(1,2)	  
	  	  	  	  	  	  RTOTAL(NLINE,5)	  =	  R0(2,2)	  
	  	  	  	  	  	  RTOTAL(NLINE,6)	  =	  R0(3,2)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  RTOTAL(NLINE,7)	  =	  R0(1,3)	  
	  	  	  	  	  	  RTOTAL(NLINE,8)	  =	  R0(2,3)	  
	  	  	  	  	  	  RTOTAL(NLINE,9)	  =	  R0(3,3)	  
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C	  Save	  incremental	  rotation	  
	  	  	  	  	  	  DROTINC(NLINE,1)	  =	  DROT2(1,1)	  
	  	  	  	  	  	  DROTINC(NLINE,2)	  =	  DROT2(2,1)	  
	  	  	  	  	  	  DROTINC(NLINE,3)	  =	  DROT2(3,1)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DROTINC(NLINE,4)	  =	  DROT2(1,2)	  
	  	  	  	  	  	  DROTINC(NLINE,5)	  =	  DROT2(2,2)	  
	  	  	  	  	  	  DROTINC(NLINE,6)	  =	  DROT2(3,2)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DROTINC(NLINE,7)	  =	  DROT2(1,3)	  
	  	  	  	  	  	  DROTINC(NLINE,8)	  =	  DROT2(2,3)	  
	  	  	  	  	  	  DROTINC(NLINE,9)	  =	  DROT2(3,3)	  
	  
C	  Calculate	  current	  increment	  total	  rotation	  transposed.	  	  	  	  	  	  	  	  
	  	  	  	  	  	  CALL	  TRMAT(R,RT)	  
	  	  	  	  	  	  	  
C	  	  
C	  CAUCHY	  STRESSES	  IN	  ROTATED	  MATERIAL	  DIRECTION	  (IF	  RI=MATERIAL	  DIRECTION)	  
C	  	  	  
	  	  	  	  	  	  CALL	  MULMAT(RT,S4,SOUT1)	  
	  	  	  	  	  	  CALL	  MULMAT(SOUT1,R,SOUT2)	  !ROTATE	  BACK	  TO	  INITIAL	  XYZ	  
	  	  	  	  	  	  CALL	  MULMAT(RI,SOUT2,S4MX)	  
	  	  	  	  	  	  CALL	  MULMAT(S4MX,RIT,S4MR)	  !ROTATE	  TO	  MATERIAL	  DIRECTIONS	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  CALL	  TRMAT(F2,FT)	  
	  	  	  	  	  	  CALL	  MULMAT(FT,F2,C)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  IF(K1.EQ.K2)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  E1(K1,K2)	  =	  (C(K1,K2)	  -‐	  1.D0)/2.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  E1(K1,K2)	  =	  C	  (K1,K2)/2.D0	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  	  
C	  	  
C	  LOCAL	  STRESSES	  AND	  GROWTH	  
C	  	  	  	  	  	  	  	  
	  	  	  	  	  	  STATEV(1)	  =	  AG1	  !T1	  GROWTH	  
	  	  	  	  	  	  STATEV(2)	  =	  AG2	  !T2	  GROWTH	  
	  	  	  	  	  	  STATEV(3)	  =	  AG3	  !N	  GROWTH	  
	  	  	  	  	  	  STATEV(4)	  =	  S4MR(1,1)/KC1	  !T1	  MATERIAL	  STRESS	  
	  	  	  	  	  	  STATEV(5)	  =	  S4MR(2,2)/KC1	  !T2	  MATERIAL	  STRESS	  
	  	  	  	  	  	  STATEV(6)	  =	  S4MR(3,3)/KC1	  !N	  MATERIAL	  STRESS	  	  
	  	  	  	  	  	  STATEV(7)	  =	  S4MR(1,2)/KC1	  !IN-‐PLANE	  SHEAR	  MATERIAL	  STRESS	  
	  	  	  	  	  	  STATEV(8)	  =	  KC1	  
	  	  	  	  	  	  STATEV(9)	  =	  (STATEV(4)+STATEV(5))/2	  
	  	  	  	  	  	  STATEV(12)=	  KBMP	  
	  	  	  	  	  	  STATEV(13)=	  KRP	  
	  	  	  	  	  	  STATEV(14)=	  KFGF	  
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c	  1ST	  (MAX)	  PRINCIPAL	  STRESS	  DIRECTION	  COSINES	  
c	  	  	  	  	  	  STATEV(7)	  	  =	  AN(1,1)	  !X	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  	  	  	  	  	  STATEV(8)	  	  =	  AN(1,2)	  !Y	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  	  	  	  	  	  STATEV(9)	  	  =	  AN(1,3)	  !Z	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  2ND	  (MIN)	  PRINCIPAL	  STRESS	  DIRECTION	  COSINES	  
c	  	  	  	  	  	  STATEV(10)	  =	  AN(2,1)	  !X	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  	  	  	  	  	  STATEV(11)	  =	  AN(2,2)	  !Y	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  	  	  	  	  	  STATEV(12)	  =	  AN(2,3)	  !Z	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  3RD	  (MID)	  PRINCIPAL	  STRESS	  DIRECTION	  COSINES	  
c	  	  	  	  	  	  STATEV(13)	  =	  AN(3,1)	  !X	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  	  	  	  	  	  STATEV(14)	  =	  AN(3,2)	  !Y	  COMPONENT	  OF	  UNIT	  VECTOR	  
c	  	  	  	  	  	  STATEV(15)	  =	  AN(3,3)	  !Z	  COMPONENT	  OF	  UNIT	  VECTOR	  
	  	  	  	  	  	  	  
C	  	  
C	  END	  UMAT	  
C	  	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
C	  	  
C	  AUXILIARY	  FUNCTIONS	  
C	  
C	  TRMAT	  -‐	  Gives	  B,	  the	  3x3	  matrix	  transpose	  of	  A.	  
C	  MULMAT	  -‐	  Gives	  C	  the	  3x3	  matrix	  multiplication	  of	  A.B.	  
C	  MATINV	  -‐	  Gives	  B,	  the	  3x3	  matrix	  inverse	  of	  A.	  
C	  DETMAT	  -‐	  Gives	  the	  determinant	  of	  a	  3x3	  matrix	  A.	  
C	  DEV	  -‐	  Gives	  B,	  the	  3x3	  devaitoric	  part	  of	  3x3	  matrix	  A.	  
	  
C	  	  
C	  TRMAT	  
C	  	  	  	  Subroutine	  to	  transpose	  a	  3x3	  matrix	  A	  into	  a	  3x3	  matrix	  AT.	  
C	  INPUTS:	  A	  -‐	  3x3	  matrix.	  
C	  	  	  	  	  	  	  	  	  AT	  -‐	  The	  3x3	  matrix	  transpose	  of	  A.	  
C	  	  	  
	  	  	  	  	  	  SUBROUTINE	  TRMAT(A,AT)	  	  	  	  	  	  	  	  
	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  
	  
	  	  	  	  	  	  DIMENSION	  A(3,3),	  AT(3,3)	  
	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  AT(K1,K2)	  =	  A(K2,K1)	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
C	  	  
C	  MULMAT	  
C	  	  	  Subroutine	  which	  computes	  the	  matrix	  C	  =	  A*B,	  	  	  
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C	  where	  C,	  A,	  and	  B	  are	  3x3	  matrices.	  
C	  INPUTS:	  A	  -‐	  3x3	  matrix.	  
C	  	  	  	  	  	  	  	  	  B	  -‐	  3x3	  matrix.	  
C	  	  	  	  	  	  	  	  	  C	  -‐	  3x3	  matrix,	  such	  that	  C	  =	  A*B.	  
C	  	  	  	  	  	  	  
	  	  	  	  	  	  SUBROUTINE	  MULMAT(A,B,C)	  	  
	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  	  
	  
	  	  	  	  	  	  DIMENSION	  A(3,3),	  B(3,3),	  C(3,3)	  	  
	  
	  	  	  	  	  	  C(1,1)	  =	  A(1,1)*B(1,1)	  +	  A(1,2)*B(2,1)	  +	  A(1,3)*B(3,1)	  
	  	  	  	  	  	  C(1,2)	  =	  A(1,1)*B(1,2)	  +	  A(1,2)*B(2,2)	  +	  A(1,3)*B(3,2)	  
	  	  	  	  	  	  C(1,3)	  =	  A(1,1)*B(1,3)	  +	  A(1,2)*B(2,3)	  +	  A(1,3)*B(3,3)	  
	  
	  	  	  	  	  	  C(2,1)	  =	  A(2,1)*B(1,1)	  +	  A(2,2)*B(2,1)	  +	  A(2,3)*B(3,1)	  
	  	  	  	  	  	  C(2,2)	  =	  A(2,1)*B(1,2)	  +	  A(2,2)*B(2,2)	  +	  A(2,3)*B(3,2)	  
	  	  	  	  	  	  C(2,3)	  =	  A(2,1)*B(1,3)	  +	  A(2,2)*B(2,3)	  +	  A(2,3)*B(3,3)	  
	  
	  	  	  	  	  	  C(3,1)	  =	  A(3,1)*B(1,1)	  +	  A(3,2)*B(2,1)	  +	  A(3,3)*B(3,1)	  
	  	  	  	  	  	  C(3,2)	  =	  A(3,1)*B(1,2)	  +	  A(3,2)*B(2,2)	  +	  A(3,3)*B(3,2)	  
	  	  	  	  	  	  C(3,3)	  =	  A(3,1)*B(1,3)	  +	  A(3,2)*B(2,3)	  +	  A(3,3)*B(3,3)	  
	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
C	  	  
C	  MATINV	  
C	  	  	  Subroutine	  which	  calculates	  the	  inverse	  of	  a	  3x3	  matrix.	  
C	  INPUTS:	  A	  -‐	  3x3	  initial	  matrix.	  
C	  	  	  	  	  	  	  	  	  AINV	  -‐	  3x3	  matrix,	  which	  is	  the	  inverse	  of	  A.	  
C	  
	  	  	  	  	  	  SUBROUTINE	  MATINV(A,AINV)	  
	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  
	  
	  	  	  	  	  	  DIMENSION	  A(3,3),	  AINV(3,3),	  COFA(3,3),	  ADJA(3,3)	  
C	  	  
C	  Compute	  the	  cofactor	  of	  A:	  
C	  	  
	  	  	  	  	  	  COFA(1,1)	  =	  A(2,2)*A(3,3)	  -‐	  A(2,3)*A(3,2)	  
	  	  	  	  	  	  COFA(1,2)	  =	  (-‐1.D0)*(A(2,1)*A(3,3)	  -‐	  A(3,1)*A(2,3))	  
	  	  	  	  	  	  COFA(1,3)	  =	  A(2,1)*A(3,2)	  -‐	  A(2,2)*A(3,1)	  
	  
	  	  	  	  	  	  COFA(2,1)	  =	  (-‐1.D0)*(A(1,2)*A(3,3)	  -‐	  A(1,3)*A(3,2))	  
	  	  	  	  	  	  COFA(2,2)	  =	  A(1,1)*A(3,3)	  -‐	  A(1,3)*A(3,1)	  
	  	  	  	  	  	  COFA(2,3)	  =	  (-‐1.D0)*(A(1,1)*A(3,2)	  -‐	  A(1,2)*A(3,1))	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  COFA(3,1)	  =	  A(1,2)*A(2,3)	  -‐	  A(2,2)*A(1,3)	  
	  	  	  	  	  	  COFA(3,2)	  =	  (-‐1.D0)*(A(1,1)*A(2,3)	  -‐	  A(2,1)*A(1,3))	  
	  	  	  	  	  	  COFA(3,3)	  =	  A(1,1)*A(2,2)	  -‐	  A(1,2)*A(2,1)	  
C	  
C	  Compute	  the	  adjoint	  of	  matrix	  A:	  
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C	  	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  ADJA(K1,K1)	  =	  COFA(K2,K1)	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
C	  	  
C	  Compute	  the	  determinant	  of	  A:	  
C	  	  
	  	  	  	  	  	  DETA	  =	  A(1,1)*COFA(1,1)	  +	  A(1,2)*COFA(1,2)	  +	  A(1,3)*COFA(1,3)	  
C	  	  
C	  Compute	  the	  inverse	  of	  A:	  
C	  	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  AINV(K1,K2)	  =	  (1.D0/DETA)*ADJA(K1,K2)	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
C	  	  
C	  DETMAT	  
C	  	  	  	  Subroutine	  to	  calculate	  the	  determinant	  of	  a	  3x3	  matrix	  
C	  INPUTS:	  A	  -‐	  3x3	  matrix.	  
C	  	  	  	  	  	  	  	  	  DETA	  -‐	  determinant	  of	  A.	  
C	  	  	  
	  	  	  	  	  	  SUBROUTINE	  DETMAT(A,	  DETA)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DIMENSION	  A(3,3)	  
	  
	  	  	  	  	  	  DETA	  =	  A(1,1)*(	  A(2,2)*A(3,3)	  -‐	  A(2,3)*A(3,2)	  )	  -‐	  	  
	  	  	  	  	  1	  A(1,2)*(	  A(2,1)*A(3,3)	  -‐	  A(2,3)*A(3,1)	  )	  +	  	  
	  	  	  	  	  2	  A(1,3)*(	  A(2,1)*A(3,2)	  -‐	  A(2,2)*A(3,1)	  )	  
	  	  	  	  	  	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
C	  	  
C	  DEV	  
C	  	  	  	  Subroutine	  to	  calculate	  the	  deviatoric	  components	  	  
C	  of	  a	  3x3	  matrix	  
C	  INPUTS:	  A	  -‐	  3x3	  matrix.	  
C	  	  	  	  	  	  	  	  	  DEVA	  -‐	  deviatoric	  part	  of	  A.	  
C	  	  	  
	  	  	  	  	  	  SUBROUTINE	  DEV(A,	  DEVA)	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  INCLUDE	  'ABA_PARAM.INC'	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  DIMENSION	  A(3,3),	  DEVA(3,3)	  
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	  	  	  	  	  	  TRA	  =	  A(1,1)	  +	  A(2,2)	  +	  A(3,3)	  
	  
	  	  	  	  	  	  DO	  K1=1,3	  
	  	  	  	  	  	  	  	  	  DO	  K2=1,3	  
	  	  	  	  	  	  	  	  	  	  	  	  IF(K1.EQ.K2)	  THEN	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DEVA(K1,K2)	  =	  A(K1,K2)	  -‐	  (1.D0/3.D0)*TRA	  
	  	  	  	  	  	  	  	  	  	  	  	  ELSE	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DEVA(K1,K2)	  =	  A(K1,K2)	  
	  	  	  	  	  	  	  	  	  	  	  	  END	  IF	  
	  	  	  	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  END	  DO	  
	  	  	  	  	  	  
	  	  	  	  	  	  RETURN	  
	  	  	  	  	  	  END	  
	  
	  
C	  	  
C	  END	  SUBROUTINES	  
C	  	  
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C.2 Strain energy minimization in MATLAB

The following code minimizes surface strain energy between two surfaces. It requires two

closed surfaces (on which to minimize strain energy) as well as a spherical surface which they

can be mapped to, all with the same number of vertices and connections. This code does

not match landmarks, so surfaces should first be brought into approximate register for best

results.

This code follows the approach outlined in Knutsen et al. (2010), replacing the steps requiring

transition from MATLAB to Comsol Multiphysics (solving equations of motion). Note that

this code calls other MATLAB codes developed in Knutsen et al. (2010). These can be found

in Appendix 2 of Knutsen (2010). Additional codes for importing GIfTI surface files can be

found at https://www.artefact.tk/software/matlab/gifti/
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Relax.m 
 
% POST-PROCESSING STRAIN RELAXATION CODE 
% Written by Kara E Garcia and Philip V Bayly 
% Based on technique by Andy K Knutsen and Philip V Bayly 
  
% THEORY:  
% 
% F = H*G1*Hinv*F0  
%   where H=dx/dy, G1=dy'/dy, F0=dx/dX 
% 
% W = mu/2*(I1st2D - 2) + kappa/2*(J + 1/J - 2) 
%   where I1st2D and J are functions of F 
%   = mu/2*(R + 1/R - 2) + kappa/2*(J + 1/J - 2) 
%   where R=maxstretch/minstretch and J=maxstretch*minstretch 
% 
% Q = Hp'*P*F0'*inv(H')  
%   where Pij=(W1-W2)/(Fij1-Fij2) 
%  
% nu*vdot(i) = dQ(i) + g(i) 
%   such that the updated G1 = I + del*v 
  
% Input: OAS (x) - Older anatomical surface (+normals) 
%        YAS (X) - Younger anatomical surface (+normals) 
%        OSS (y) - Older spherical surface 
%        YSS (Y) - Younger spherical surface 
%        Similarity function on sphere (g) 
% Output: ROAS (x') - Relaxed older anatomical surface 
%         ROSS (y') - Relaxed older spherical surface 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INITIAL DEFINITIONS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
close all;  
  
Wopt = 'neoalt'; %choose neo, blatzko, neoinc, or neoalt for material 
kappa = 10; %bulk modulus 
mu = 1; %shear modulus 
PR = 0.5*(3*kappa - 2*mu) / (3*kappa + mu); %Poisson's ratio 
nu = 1; %viscosity 
  
subject = 'MSMoutput/WUNDER_ico6/caf009.R.bc'; 
radius = 100; %for MSM, radius always = 100mm 
ptfit = 12; %number of points to fit, must be >=6 (5-6 surround each vertex) 
deltat = 0.01; %initial time increment 
deltaG = 0.001; %for finite difference calculation of dW/dG 
itmax = 25; %number of iterations 
fit_radius = 8; %for curvature calculations 
  
viewleft = [-1 0 0]; %lateral view for left hemisphere 
viewright = [1 0 0]; %lateral view for right hemisphere 
viewtop = [0 0 -1]; %top view w.r.t. model 
perspective = viewtop; %choose view for future plots 
distaxis = [-.2,.2]; 
  
% IMPORT INITIAL SURFACES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Load YAS (X) from GIFTI 
FV = gifti('ico4sphere.LR.reg.surf.gii'); 
index = FV.vertices(:,1); 
figure(1) 
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hold on; 
p = patch('Faces',FV.faces,'Vertices',FV.vertices, ... 
    'FaceColor','green','EdgeColor','none'); 
view(perspective);axis image;grid on 
title('YAS'); 
camlight headlight 
hold off 
  
%Load OAS (x) from GIFTI 
fv = gifti('ico4pumpkin_half2.surf.gii'); 
index = fv.vertices(:,1); 
figure(2) 
hold on; 
p = patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
    'FaceColor','green','EdgeColor','none'); 
view(perspective);axis image;grid on 
title('OAS'); 
camlight headlight 
hold off 
  
%Load OSS (y) from GIFTI  
sph = gifti('ico4sphere.LR.reg.surf.gii'); 
index = sph.vertices(:,1); 
figure(3) 
hold on; 
p = patch('Faces',sph.faces,'Vertices',sph.vertices, ... 
    'FaceColor','green','EdgeColor','none'); 
view(perspective);axis image;grid on 
title('OSS'); 
camlight headlight 
hold off 
  
%Surface normals from GIFTI 
NS = sph.vertices./radius; 
ns = sph.vertices./radius; 
nss = sph.vertices./radius; 
  
X = [FV.vertices(:,1),FV.vertices(:,2),FV.vertices(:,3)]; %3D coords 
vertices = length(FV.vertices(:,1)); %# vertices 
triangles = length(FV.faces(:,1)); %# triangles 
h = ((4*pi*radius^2)*2/triangles)^0.5; %average link length (OSS), mm 
angle0 = (2/pi/triangles)^0.5; %average link angle (OSS), radians 
  
% INITIALIZE MATRICES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
W0 = zeros(vertices,1); 
J0 = zeros(vertices,1); 
I10 = zeros(vertices,1); 
lambdamax = zeros(vertices,1); 
lambdamin = zeros(vertices,1); 
R0 = zeros(vertices,1); 
I(1,1) = 1; 
I(1,2) = 0; 
I(1,3) = 0; 
I(2,1) = 0; 
I(2,2) = 1; 
I(2,3) = 0; 
I(3,1) = 0; 
I(3,2) = 0; 
I(3,3) = 1; 
Q11 = zeros(vertices,1); 
Q12 = zeros(vertices,1); 
Q13 = zeros(vertices,1); 
Q21 = zeros(vertices,1); 
Q22 = zeros(vertices,1); 
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Q23 = zeros(vertices,1);         
Q31 = zeros(vertices,1); 
Q32 = zeros(vertices,1); 
Q33 = zeros(vertices,1); 
g1 = zeros(vertices,1); 
g2 = zeros(vertices,1); 
g3 = zeros(vertices,1); 
V = zeros(vertices,3); 
v = zeros(vertices,3); 
vs = zeros(vertices,3); 
ys = zeros(vertices,3); 
xp = zeros(vertices,3); 
Wavg = zeros(itmax,2); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CALCULATIONS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
y = [sph.vertices(:,1),sph.vertices(:,2),sph.vertices(:,3)]; %3D coords 
  
for i=1:vertices 
    phicompare(i) = atan2(y(i,2),y(i,1)); %azimuth 
end 
  
figure(4) 
patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
            'FaceVertexCData',phicompare','FaceColor','interp',... 
            'EdgeColor','none'); 
        xlabel('x'),ylabel('y'),zlabel('z') 
        view(perspective);daspect([1 1 1]),grid off 
        h1 = gcf;set(h1,'color',[1 1 1]);   
        colorbar; %camlight;  
        colormap(gca,'lines'); 
  
t = 0; %initial time 
for count=1:itmax; 
    x = [fv.vertices(:,1),fv.vertices(:,2),fv.vertices(:,3)]; %3D coords 
    y = [sph.vertices(:,1),sph.vertices(:,2),sph.vertices(:,3)]; %3D coords 
  
    % Calculate F0 -> W0 -> Q 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if t==0 %only find neighboring points once, then keep set 
        [Hi,keep_pts]=calc_defgrad_KG(y,x,nss,ptfit); %H = dx/dy 
    else 
        [Hi,keep_pts]=calc_defgrad_KG(y,x,nss,ptfit,keep_pts); %H = dx/dy 
    end 
    [F0i,keep_pts]=calc_defgrad_KG(X,x,NS,ptfit,keep_pts); %F0 = dx/dX 
     
    for i=1:vertices 
        F0 = F0i(:,:,i); 
        H = Hi(:,:,i);  
        I10(i,:) = trace(F0'*F0); 
        I30 = det(F0'*F0); 
        J0(i,:) = I30^0.5; 
        R0(i,:) = real(((I10(i,:) - 1)/J0(i,:) + ... 
            sqrt(((I10(i,:) - 1)/J0(i,:))^2 - 4)) / 2); 
        if J0(i,:) >= 1 
            Jprime = J0(i,:); 
        else 
            Jprime = 1/J0(i,:); 
        end 
        I1st0(i,:) = I10(i,:)*I30^(-1/3); 
        if strcmp(Wopt,'neo') 
            %Neo-Hookean material: 
            W0(i,:) = mu/2*(I1st0(i,:)-3) + kappa/2*(J0(i,:)-1)^2; 
        elseif strcmp(Wopt,'neoinc') 
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            %Incompressible Neo-Hookean material: 
            W0(i,:) = mu/2*(I10(i,:)-3); %not a good idea 
        elseif strcmp(Wopt,'blatzko') 
            %Blatz-Ko material: 
            W0(i,:) = mu/2*(I10(i,:)-3 + ... 
                (1-2*PR)/PR*(J0(i,:)^(-2*PR/(1-2*PR))-1)); 
        elseif strcmp(Wopt,'neoalt') 
            %Balanced alternative Neo-Hookean material 
            W0(i,:) = mu/2*((I10(i,:)-1)./J0(i,:)-2) + ... 
                kappa/2*(J0(i,:)+1/J0(i,:)-2); 
        else 
            disp('Invalid material choice') 
        end 
                
        % 1st PK stress: Qij=(Wt-W)/(Gijt-Gij) - finite difference method 
        for m=1:3 
            for n=1:3                  
                G1 = I; G2 = I; Hp = H; %let Hprime = H since small delta 
                G1(m,n) = G1(m,n) + deltaG;  
                G2(m,n) = G2(m,n) - deltaG;  
                F1 = Hp*G1*inv(H)*F0;  
                F2 = Hp*G2*inv(H)*F0; 
                I11 = trace(F1'*F1);  
                I12 = trace(F2'*F2); 
                I31 = det(F1'*F1);  
                I32 = det(F2'*F2); 
                J1 = I31^0.5;  
                J2 = I32^0.5; 
                if J1 >= 1 
                    J1prime = J1; 
                else 
                    J1prime = 1/J1; 
                end 
                if J2 >= 1 
                    J2prime = J2; 
                else 
                    J2prime = 1/J2; 
                end 
                I1st1 = I11*I31^(-1/3);  
                I1st2 = I12*I32^(-1/3); 
                if strcmp(Wopt,'neo') 
                    %Neo-Hookean material: 
                    W1 = mu/2*(I1st1 - 3) + kappa/2*(J1 - 1)^2; 
                    W2 = mu/2*(I1st2 - 3) + kappa/2*(J2 - 1)^2; 
                elseif strcmp(Wopt,'neoinc') 
                    %Incompressible Neo-Hookean material: 
                    W1 = mu/2*(I11 - 3); 
                    W2 = mu/2*(I12 - 3); 
                elseif strcmp(Wopt,'blatzko') 
                    %Blatz-Ko material: 
                W1 = mu/2*(I11-3 + (1-2*PR)/PR*(J1^(-2*PR/(1-2*PR))-1)); 
                W2 = mu/2*(I12-3 + (1-2*PR)/PR*(J2^(-2*PR/(1-2*PR))-1)); 
                elseif strcmp(Wopt,'neoalt') 
                %Balanced alternative Neo-Hookean material 
                W1 = mu/2*((I11-1)/J1 - 2) + kappa/2*(J1 + 1/J1 - 2); 
                W2 = mu/2*((I12-1)/J2 - 2) + kappa/2*(J2 + 1/J2 - 2); 
                else 
                    disp('Invalid material choice') 
                end 
         
                Q(m,n) = (W1 - W2)/deltaG./J0(i,:); 
            end 
        end 
                 
        Q11(i,:) = Q(1,1); 
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        Q12(i,:) = Q(1,2); 
        Q13(i,:) = Q(1,3); 
        Q21(i,:) = Q(2,1); 
        Q22(i,:) = Q(2,2); 
        Q23(i,:) = Q(2,3);         
        Q31(i,:) = Q(3,1); 
        Q32(i,:) = Q(3,2); 
        Q33(i,:) = Q(3,3);  
         
    end  
     
    if t==0 
        Jmax = max(J0); Jmin = min(J0); 
        I1max = max(I10); I1min = min(I10); 
        I1stmax = max(I1st0); I1stmin = min(I1st0); 
    end 
     
    % Calculate v, constrain radial 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % Spatial derivative of Q (dQ_ij/dy_j) - polynomial fit    
    [dQ11d1,dQ12d2,dQ13d3,dQ21d1,dQ22d2,dQ23d3,dQ31d1,dQ32d2,dQ33d3] = ... 
       calc_spatial_linear2(y,keep_pts,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33); 
  
    vmag = h; %initialize vmag=h to start loop 
    %Decrease timestep if displacements are too large 
    while max(vmag) > 0.1*h %|| deltat > 10 
        deltat = deltat/2; 
         
        % Calculate displacement vector: nu*vdot_i = dQ_ij/dy_j + g_i 
        v(:,1) = deltat/nu*(dQ11d1 + dQ12d2 + dQ13d3 + g1); 
        v(:,2) = deltat/nu*(dQ21d1 + dQ22d2 + dQ23d3 + g2); 
        v(:,3) = deltat/nu*(dQ31d1 + dQ32d2 + dQ33d3 + g3); 
  
        %Convert v to spherical coordinates, remove r-displacement, return 
        for i=1:vertices  
            rho = sqrt(y(i,1)^2+y(i,2)^2); %cylindrical r 
            theta = atan2(rho,y(i,3)); %elevation 
            phi = atan2(y(i,2),y(i,1)); %azimuth 
            Rsph(1,1) = sin(theta)*cos(phi); 
            Rsph(1,2) = sin(theta)*sin(phi); 
            Rsph(1,3) = cos(theta); 
            Rsph(2,1) = cos(theta)*cos(phi); 
            Rsph(2,2) = cos(theta)*sin(phi); 
            Rsph(2,3) = -1*sin(theta); 
            Rsph(3,1) = -1*sin(phi); 
            Rsph(3,2) = cos(phi); 
            Rsph(3,3) = 0; 
  
            vs(i,:) = (Rsph*v(i,:)')'; 
            vs(i,1) = 0; % REMOVE RADIAL DISPLACEMENT 
            v(i,:) = (inv(Rsph)*vs(i,:)')'; 
        end 
        vmag = (v(:,1).^2 + v(:,2).^2 + v(:,3).^2).^0.5; 
    end 
     
    if t==0 
        Wmax = max(W0); 
        Wmin = min(W0); 
    end 
     
    if cos((count-1)*pi*2)==1 
        figure 
         
        subplot(2,2,1); 
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        patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
            'FaceVertexCData',log(J0),'FaceColor','interp',... 
            'EdgeColor','none'); 
        str = sprintf('ln(J), t = %6.2f',t); title(str); 
        xlabel('x'),ylabel('y'),zlabel('z') 
        view(perspective);daspect([1 1 1]),grid off 
        h1 = gcf;set(h1,'color',[1 1 1]); 
        colorbar; camlight;  
        colormap(gca,'jet') 
        caxis(distaxis); 
         
        subplot(2,2,2); 
        patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
            'FaceVertexCData',log(R0),'FaceColor','interp',... 
            'EdgeColor','none'); 
        str = sprintf('ln(R), t = %6.2f',t); title(str); 
        xlabel('x'),ylabel('y'),zlabel('z') 
        view(perspective);daspect([1 1 1]),grid off 
        h1 = gcf;set(h1,'color',[1 1 1]);   
        colorbar;  
        colormap(gca,'jet') 
        caxis(distaxis); 
                 
        subplot(2,2,3); 
        patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
            'FaceVertexCData',W0,'FaceColor','interp',... 
            'EdgeColor','none'); 
        str = sprintf('W, t = %6.2f',t); title(str); 
        xlabel('x'),ylabel('y'),zlabel('z') 
        view(perspective);daspect([1 1 1]),grid off 
        h1 = gcf;set(h1,'color',[1 1 1]);   
        colorbar;  
        colormap(gca,'jet') 
        caxis([0 Wmax]); 
                 
        subplot(2,2,4); 
        patch('Faces',sph.faces,'Vertices',y,'FaceVertexCData',... 
            W0,'FaceColor','interp','EdgeColor','none'); 
        title('W and future displacement (100v)'); 
        xlabel('x'),ylabel('y'),zlabel('z') 
        view(perspective);daspect([1 1 1]),grid off 
        h1 = gcf;set(h1,'color',[1 1 1]);   
        colorbar; camlight; 
        colormap(gca,'jet') 
        caxis([0 Wmax]); 
        hold on 
        quiver3(y(:,1),y(:,2),y(:,3),100*v(:,1),100*v(:,2),100*v(:,3),0) 
        hold off 
         
        pause(0.1) 
    end 
  
     
    % Calculate yp, correct radial  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    yp = y + v; %yp = y + displacement 
    V = V + v; %cumulative displacement vector 
     
    % Correct for any overshoot in radial direction 
    yp3D = yp; %for comparison, record y before correction 
    for i=1:vertices  
        rho = sqrt(yp(i,1)^2+yp(i,2)^2); %cylindrical r 
        theta = atan2(rho,yp(i,3)); %elevation 
        phi = atan2(yp(i,2),yp(i,1)); %azimuth 
        Rsph(1,1) = sin(theta)*cos(phi); 
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        Rsph(1,2) = sin(theta)*sin(phi); 
        Rsph(1,3) = cos(theta); 
        Rsph(2,1) = cos(theta)*cos(phi); 
        Rsph(2,2) = cos(theta)*sin(phi); 
        Rsph(2,3) = -1*sin(theta); 
        Rsph(3,1) = -1*sin(phi); 
        Rsph(3,2) = cos(phi); 
        Rsph(3,3) = 0; 
         
        ys(i,:) = (Rsph*yp(i,:)')'; 
        ys(i,1) = radius; %CRITICAL! KEEP RADIUS CONSTANT 
        yp(i,:) = (inv(Rsph)*ys(i,:)')'; 
    end 
    Vc = V + yp - yp3D; %corrected total displacement vector 
         
    % Calculate G, Hp-->xp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      
    % Reproject vertices 
    [vert,face] = project_to_surf(yp,sph); 
     
    % Project vertices from sphere sph to deformed surface fv  
    xp = surf_to_surf(sph,fv,vert,face); 
                 
    sph.vertices = yp; %make yp the new y 
    nss = sph.vertices/radius; %update sphere normals - easy :) 
    fv.vertices = xp; %make xp the new x 
     
    %print timestep and new time 
    t = t + deltat; 
    fprintf('iteration:%1.0f \t step:%8.6f \t total time:%8.4f \n',... 
        count,deltat,t) 
    deltat = deltat*10; 
    Wsum(count,1) = t; %time 
    Wsum(count,2) = sum(W0)/vertices; %average 
    Wsum(count,3) = std(W0); 
    Wsum(count,4) = max(W0); %max 
    Wsum(count,5) = min(W0); %min 
            
end 
  
figure 
subplot(2,2,1); plot(Wsum(:,1),Wsum(:,2)) 
title('Average Strain Energy') 
xlabel('time (s)') 
subplot(2,2,2); plot(Wsum(:,1),Wsum(:,3)) 
title('Standard Deviation') 
xlabel('time (s)') 
subplot(2,2,3); plot(Wsum(:,1),Wsum(:,4)) 
title('Maximum Strain Energy') 
xlabel('time (s)') 
subplot(2,2,4); plot(Wsum(:,1),Wsum(:,5)) 
title('Minimum Strain Energy') 
xlabel('time (s)') 
  
figure 
hold on; 
p = patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
    'FaceColor','green','EdgeColor','none'); 
view(perspective);axis image;grid on 
title('ROAS'); 
camlight headlight 
hold off 
  
[Curvs,Residuals,CVectors]=curv(X,NS,fit_radius); 
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[curvs,residuals,cvectors]=curv(x,ns,fit_radius); 
  
figure 
subplot(2,2,1) 
patch('Faces',FV.faces,'Vertices',FV.vertices,'FaceVertexCData',... 
    Curvs.max-curvs.max,'FaceColor','interp','EdgeColor','none'); 
title({'Maximum Curvature Differences'}); 
xlabel('x'),ylabel('y'),zlabel('z') 
view(perspective);daspect([1 1 1]),grid off 
h1 = gcf;set(h1,'color',[1 1 1]); 
colorbar 
  
subplot(2,2,2) 
patch('Faces',FV.faces,'Vertices',FV.vertices,'FaceVertexCData',... 
    Curvs.min-curvs.min,'FaceColor','interp','EdgeColor','none'); 
title({'Minimum Curvature Differences'}); 
xlabel('x'),ylabel('y'),zlabel('z') 
view(perspective);daspect([1 1 1]),grid off 
h1 = gcf;set(h1,'color',[1 1 1]); 
colorbar 
  
subplot(2,2,3) 
patch('Faces',fv.faces,'Vertices',fv.vertices,'FaceVertexCData',... 
    Curvs.max-curvs.max,'FaceColor','interp','EdgeColor','none'); 
title({'Maximum Curvature'}); 
xlabel('x'),ylabel('y'),zlabel('z') 
view(perspective);daspect([1 1 1]),grid off 
h1 = gcf;set(h1,'color',[1 1 1]); 
colorbar 
  
subplot(2,2,4) 
patch('Faces',fv.faces,'Vertices',fv.vertices,'FaceVertexCData',... 
    Curvs.min-curvs.min,'FaceColor','interp','EdgeColor','none'); 
title({'Minimum Curvature'}); 
xlabel('x'),ylabel('y'),zlabel('z') 
view(perspective);daspect([1 1 1]),grid off 
h1 = gcf;set(h1,'color',[1 1 1]); 
colorbar 
  
  
figure(44) 
patch('Faces',fv.faces,'Vertices',fv.vertices, ... 
            'FaceVertexCData',phicompare','FaceColor','interp',... 
            'EdgeColor','none'); 
        xlabel('x'),ylabel('y'),zlabel('z') 
        view(perspective);daspect([1 1 1]),grid off 
        h1 = gcf;set(h1,'color',[1 1 1]);   
        colorbar;  
        colormap(gca,'lines'); 
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calc_spatial_linear2.m 
 
function 
[out1,out2,out3,out4,out5,out6,out7,out8,out9]=calc_spatial_linear2(xyz,np,varargin) 
  
% Written by Kara E. Garcia, Dr. Phil Bayly 
% Based on template of strains.m by Andrew K Knutsen, Dr. Phil Bayly 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Describe Code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% [dfxxdx,dfxydy,dfyxdx,dfyydy] = spatial_deriv(xyz,dist,fxx,fxy,fyx,fyy) 
% 
% Output Variables 
% dfxxdx - spatial derivative of fxx wrt x, and so forth 
% 
% Input Variables 
% xyz - Surface Coordinates 
% f - matrix for which we want the spatial derivatives: 
% 
% USAGE EXAMPLE #1 - spatial derivative of 1st PK stress on sphere, Q 
% [dQ11d1,dQ12d2,dQ13d3,dQ21d1,dQ22d2,dQ23d3,dQ31d1,dQ32d2,dQ33d3] = ... 
%       spatial_deriv3D(ys,dist,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33) 
% varargin => all 9 components of input matrix (3x3) 
% varargout => spatial derivatives of input matrix - only the 9 we need 
% 
% USAGE EXAMPLE #2 - spatial derivative of vector function, v 
% [dv1d1,dv1d2,dv1d3,dv2d1,dv2d2,dv3d3,dv3d1,dv3d2,dv3d3] = ... 
%       spatial_deriv3D(ys,dist,v1,v2,v3) 
% varargin => all 3 components of input vector (3x1) 
% varargout => ALL spatial derivatives (9) of input vector 
% 
% USAGE EXAMPLE #3 - spatial derivatives of a scalar function, f(x,y,z) 
% [dfdx,dfdy,dfdz] = spatial_deriv(y,dist,f) 
% varargin => [f] 
% varargout => [dfdx,dfdy,dfdz] 
  
%%%%%%%%%%%%%%%%%%%%%%%%% Define Input Variables %%%%%%%%%%%%%%%%%%%%%%%%%% 
  
n_in = nargin; 
  
switch n_in 
    case 3 
        matrix = 0; %just a function 
        fxx = cell2mat(varargin(1)); 
        fxy = []; 
        fxz = []; 
        fyx = []; 
        fyy = []; 
        fyz = []; 
        fzx = []; 
        fzy = []; 
        fzz = []; 
    case 5 
        matrix = 1; %input is 3x1 vector 
        fxx = cell2mat(varargin(1)); 
        fxy = cell2mat(varargin(2)); 
        fxz = cell2mat(varargin(3)); 
        fyx = []; 
        fyy = []; 
        fyz = []; 
        fzx = []; 
        fzy = []; 
        fzz = []; 
    case 11  
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        matrix = 2; %input is 3x3 matrix 
        fxx = cell2mat(varargin(1)); 
        fxy = cell2mat(varargin(2)); 
        fxz = cell2mat(varargin(3)); 
        fyx = cell2mat(varargin(4)); 
        fyy = cell2mat(varargin(5)); 
        fyz = cell2mat(varargin(6)); 
        fzx = cell2mat(varargin(7)); 
        fzy = cell2mat(varargin(8)); 
        fzz = cell2mat(varargin(9)); 
    otherwise 
        disp('Wrong number of inputs') 
        return 
end 
  
%%%%%% Assign Normal And Tangential Coordinates - Individual Surface %%%%%% 
  
x = xyz(:,1); y = xyz(:,2); z = xyz(:,3); 
  
%tic 
for i=1:length(x), 
  
    x0 = x(i); y0 = y(i); z0 = z(i); 
     
    % Find Points in the Neighborhood 
    dx = x - x0; %x-distance between each node (x) and current node (x0) 
    dy = y - y0; %y-distance between each node (y) and current node (y0) 
    dz = z - z0; %z-distance between each node (z) and current node (z0) 
    DR = sqrt(dx.^2 + dy.^2 + dz.^2); 
     
    keep_pts = np(i,:)'; 
         
    X = x(keep_pts); %x-coords of all points in patch 
    Y = y(keep_pts); %y-coords of all points in patch 
    Z = z(keep_pts); %z-coords of all points in patch 
  
    alpha = [ones(size(X)) X Y Z]; 
  
    axx = alpha\fxx(keep_pts); %linear fit coeffs for fxx (f, fx) 
    dfxxdx(i,:) = axx(2); 
    dfxxdy(i,:) = axx(3); 
    dfxxdz(i,:) = axx(4); 
  
    if matrix > 0 
        axy = alpha\fxy(keep_pts); %polynomial fit coeffs for fxy (fy) 
        dfxydx(i,:) = axy(2); 
        dfxydy(i,:) = axy(3); 
        dfxydz(i,:) = axy(4); 
  
        axz = alpha\fxz(keep_pts); %polynomial fit coeffs for fxz (fz) 
        dfxzdx(i,:) = axz(2); 
        dfxzdy(i,:) = axz(3); 
        dfxzdz(i,:) = axz(4); 
    end 
  
    if matrix > 1 
        ayx = alpha\fyx(keep_pts); %polynomial fit coeffs for fyx 
        dfyxdx(i,:) = ayx(2); 
        dfyxdy(i,:) = ayx(3); 
        dfyxdz(i,:) = ayx(4); 
  
        ayy = alpha\fyy(keep_pts); %polynomial fit coeffs for fyy 
        dfyydx(i,:) = ayy(2); 
        dfyydy(i,:) = ayy(3); 
        dfyydz(i,:) = ayy(4); 
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        ayz = alpha\fyz(keep_pts); %polynomial fit coeffs for fyz 
        dfyzdx(i,:) = ayz(2); 
        dfyzdy(i,:) = ayz(3); 
        dfyzdz(i,:) = ayz(4); 
  
        azx = alpha\fzx(keep_pts); %polynomial fit coeffs for fzx 
        dfzxdx(i,:) = azx(2); 
        dfzxdy(i,:) = azx(3); 
        dfzxdz(i,:) = azx(4); 
  
        azy = alpha\fzy(keep_pts); %polynomial fit coeffs for fzy 
        dfzydx(i,:) = azy(2); 
        dfzydy(i,:) = azy(3); 
        dfzydz(i,:) = azy(4); 
  
        azz = alpha\fzz(keep_pts); %polynomial fit coeffs for fzz 
        dfzzdx(i,:) = azz(2); 
        dfzzdy(i,:) = azz(3); 
        dfzzdz(i,:) = azz(4); 
    end  
       
%     % Progress Of Script 
%     if i==round(length(x)/3) 
%         disp('spatial gradient script 33% finished') 
%     elseif i==round(length(x)*2/3) 
%         disp('spatial gradient script 67% finished') 
%     elseif i==length(x) 
%         disp('spatial gradient script finished') 
%     end     
end 
  
%%%%%%%%%%%%%%%%% Define Output Variables - Set varargout %%%%%%%%%%%%%%%%% 
  
if matrix < 2 
    out1 = dfxxdx; 
    out2 = dfxxdy; 
    out3 = dfxxdz; 
    if matrix > 0 
        out4 = dfxydx; 
        out5 = dfxydy; 
        out6 = dfxydz; 
        out7 = dfxzdx; 
        out8 = dfxzdy; 
        out9 = dfxzdz; 
    end 
elseif matrix == 2 
    out1 = dfxxdx; 
    out2 = dfyxdy; 
    out3 = dfzxdz; 
    out4 = dfxydx; 
    out5 = dfyydy; 
    out6 = dfzydz; 
    out7 = dfxzdx; 
    out8 = dfyzdy; 
    out9 = dfzzdz; 
end 
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calc_defgrad_KG.m 
	  
function [F,np]=calc_defgrad_KG(XYZ,xyz,NS,ptfit,varargin) 
  
% Written by Andy K Knutsen, Dr. Phil Bayly 
% For use with IntraSubject Surface Registration (ISSR)  
% Modified by Kara E Garcia for use with relax.m 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                             Description                             %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% F = calc_deformation_gradient(XYZ,xyz,NS,dist) 
  
% This function calculates the deformation gradient (or Jacobian) between 
% two surfaces with a point-to-point correspondence.  We model local  
% geometry as a second order polynomial, solving for the coefficients in 
% the least squares sense.  The method is described in more detail in 
  
% Filas B, Knutsen AK, Bayly PV, Taber LT. "A new method for measuring 
% deformation of folding surfaces during morphogenesis." J. Biomech Engr. 
% 2008: vol. 130 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                              Variables                              %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Input variables 
% XYZ - Reference surface coordinates: [X Y Z] 
% xyz - Deformed surface coordinates: [x y z] 
% NS - Reference surface normal vectors: [NX NY NZ] 
% dist - radius of points for local fit 
  
% Output variables 
% F - Calculated deformation gradient 
% np - Points used to describe the local patch at each coordinate 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                       Define Input Variables                       %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
warning off all 
  
% Normalize Surface Normal Vectors 
Mag = sqrt(NS(:,1).^2+ NS(:,2).^2+NS(:,3).^2); 
NS = [NS(:,1)./Mag NS(:,2)./Mag NS(:,3)./Mag]; 
  
XS=XYZ(:,1);YS=XYZ(:,2);ZS=XYZ(:,3); 
  
F = zeros(3,3,length(XYZ)); 
np = zeros(length(XYZ),1); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%    Assign Normal And Tangential Coordinates - Individual Surface    %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n_in = nargin; 
  
if n_in == 5 
    np = cell2mat(varargin(1)); 
else 
    np = []; 
end 
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tic 
  
for i=1:length(XS), 
  
    % Make Unit Normal And Tangents, 
    X0 = XYZ(i,1);Y0 = XYZ(i,2);Z0 = XYZ(i,3);  
    x0 = xyz(i,1);y0 = xyz(i,2);z0 = xyz(i,3); 
     
    e_N=NS(i,:)'; 
     
    imax = find(abs(e_N)==max(abs(e_N)),1,'first'); 
    switch imax 
        case 1 
            mag1=sqrt(e_N(3)^2+e_N(2)^2); 
            if mag1==0,e_T1=[0;0;1]; 
            else e_T1 = [0;-e_N(3);e_N(2)]/mag1; 
            end             
        case 2 
            mag2=sqrt(e_N(3)^2+e_N(1)^2); 
            if mag2==0,e_T1=[0;0;1]; 
            else e_T1 = [-e_N(3);0;e_N(1)]/mag2; 
            end 
        case 3 
            mag3=sqrt(e_N(1)^2+e_N(2)^2); 
            if mag3==0,e_T1=[1;0;0]; 
            else e_T1 = [-e_N(2);e_N(1);0]/mag3; 
            end             
    end; 
    e_T2 = cross(e_N,e_T1); 
     
    % Reject Pts With Normals In Opposite Direction (Opposing Faces) 
    dir_chk = e_N'*NS'; 
  
    if n_in == 5 
            keep_pts = np(i,:)'; 
    else 
            DX=XS-X0;DY=YS-Y0;DZ=ZS-Z0; 
            DR = sqrt(DX.^2+DY.^2+DZ.^2)'; 
            [dr,ix] = sort(DR);         
            keep_pts = ix(1:ptfit); 
            np(i,:) = keep_pts; 
    end 
     
        XX=XS(keep_pts);YY=YS(keep_pts);ZZ=ZS(keep_pts); 
  
        uno = zeros(length(keep_pts),1); 
        DXYZ = [XX-X0,YY-Y0,ZZ-Z0]; 
  
        % Tangential And Normal Components - Individual Surface 
        T1 = (e_T1'*DXYZ')';T2 = (e_T2'*DXYZ')';N = (e_N'*DXYZ')'; 
  
        %%%%%% Assign Normal And Tangential Coordinates - Atlas Surface %%%%%%%  
  
        % fit curves for deformed vertices 
        x = xyz(keep_pts,1);y = xyz(keep_pts,2);z = xyz(keep_pts,3);  
  
        dxyz = [x-x0,y-y0,z-z0]; % diff b/w def coords and pt of interest 
        t1 = (e_T1'*dxyz')';t2 = (e_T2'*dxyz')';n = (e_N'*dxyz')';   
  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Model Surface %%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        % Fitting Polynomial 
        alpha = [uno T1 T2 (1/2)*T1.^2 (1/2)*T2.^2 T1.*T2]; 
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        % Coefficients For Fit N=N(T1,T2),t1=t1(T1,T2),t2=t2(T1,T2),n=n(T1,T2) 
        a = alpha\N;b = alpha\t1;c = alpha\t2;d = alpha\n; 
  
        % compute derivatives N,t1,t2,n wrt T1 and T2 at (T10,T20) 
        dNdT1 = a(2);  
        dNdT2 = a(3); 
        dt1dT1 = b(2);  
        dt1dT2 = b(3); 
        dt2dT1 = c(2); 
        dt2dT2 = c(3); 
        dndT1 = d(2); 
        dndT2 = d(3); 
         
        % Describe Transformation Matrix 
        T_mat = [e_T1 e_T2 e_N]'; 
  
        %%%%%%%%%%%%%%%%%%%%%%%%%% Calculate Strain %%%%%%%%%%%%%%%%%%%%%%%%%%% 
       
        % Calculate Base Vectors 
        G1 = [1,0,dNdT1];         
        G2 = [0,1,dNdT2]; 
         
        % Calculate New Normal Vector From G1 x G2         
        G3 = cross(G1,G2); 
        G3 = G3./sqrt(dot(G3,G3)); 
         
        % Compute Contravariant Components For Undeformed Base Vectors 
        G = [G1' G2' G3']; 
         
        G_cont = inv(G)'; 
         
        % Calculate Deformed Base Vectors 
        g1 = [dt1dT1 dt2dT1 dndT1];         
        g2 = [dt1dT2 dt2dT2 dndT2]; 
         
        g3 = cross(g1,g2); 
        g3 = g3./sqrt(dot(g3,g3)); 
         
        g = [g1' g2' g3']; 
         
        % Calculate Deformation Matrix 
        f = g*G_cont';   
         
%         F(:,:,i) = f; 
  
        % Rotate F into Cartesian coord space 
        F(:,:,i) = inv(T_mat)*f*inv(T_mat)'; 
                        
end   
  
toc 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                               End Code                              %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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pumpkingii.m 
	  
% Written by Kara E. Garcia, Dr. Phil Bayly 
% Starting from a spherical surface, deforms surface into various shapes  
 
close all; clear all 
  
FV = gifti('ico4sphere.LR.reg.surf.gii');  
  
figure 
hold on; 
p = patch('Faces',FV.faces,'Vertices',FV.vertices, ... 
    'FaceColor','green','EdgeColor','none'); 
view(3);axis image;grid on 
title('YAS'); 
camlight headlight 
hold off 
  
yp = [FV.vertices(:,1),FV.vertices(:,2),FV.vertices(:,3)]; %3D coords 
vertices = length(FV.vertices(:,1)); %# vertices 
  
for i=1:vertices  
    rho = sqrt(yp(i,1)^2+yp(i,2)^2); %cylindrical r 
    radius = sqrt(yp(i,1)^2+yp(i,2)^2+yp(i,3)^2); %spherical r 
    theta = atan2(rho,yp(i,3)); %elevation 
    phi = atan2(yp(i,2),yp(i,1)); %azimuth 
    Rsph(1,1) = sin(theta)*cos(phi); 
    Rsph(1,2) = sin(theta)*sin(phi); 
    Rsph(1,3) = cos(theta); 
    Rsph(2,1) = cos(theta)*cos(phi); 
    Rsph(2,2) = cos(theta)*sin(phi); 
    Rsph(2,3) = -1*sin(theta); 
    Rsph(3,1) = -1*sin(phi); 
    Rsph(3,2) = cos(phi); 
    Rsph(3,3) = 0; 
  
    ys(i,:) = (Rsph*yp(i,:)')'; 
    %ys(i,1) = 1.1*radius + 10*sin(4*phi)*sin(theta); 
    %ys(i,1) = 1.1*radius + 10*sin(4*(phi+pi/8))*sin(theta); 
    %ys(i,1) = 0.9*(1.1*radius + 10*sin(4*phi)*sin(theta)); 
    if phi>0 
        ys(i,1) = 0.85*(1.1*radius + 20*sin(7*phi)*sin(theta)); 
    else 
        ys(i,1) = 0.85*(1.1*radius); 
    end 
    yp(i,:) = (inv(Rsph)*ys(i,:)')'; 
end 
  
fv = FV; 
fv.vertices(:,1)=yp(:,1); 
fv.vertices(:,2)=yp(:,2); 
fv.vertices(:,3)=yp(:,3); 
  
figure 
hold on; 
p = 
patch('Faces',fv.faces,'Vertices',fv.vertices,'FaceColor','green','EdgeColor','none'); 
view(3);axis image;grid on 
title('OAS') 
camlight headlight 
  
save(fv,'ico4pumpkin_half2.surf.gii','ASCII'); 
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growth and form of cortical convolutions. Nature Physics, 2016.

D. W. Thompson et al. On growth and form. On growth and form., 1942.

J.-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.-F. Joanny, and E. Paluch. Role of
cortical tension in bleb growth. Proceedings of the National Academy of Sciences, 106(44):
18581–18586, 2009. doi: 10.1073/pnas.0903353106.

T. Tong, I. Aganj, T. Ge, J. R. Polimeni, and B. Fischl. Functional density and edge
maps: Characterizing functional architecture in individuals and improving cross-subject
registration. NeuroImage, 158:346–355, 2017.

214



R. Toro and Y. Burnod. A morphogenetic model for the development of cortical convolutions.
Cerebral cortex, 15(12):1900–1913, 2005.

R. Toyoda, S. Assimacopoulos, J. Wilcoxon, A. Taylor, P. Feldman, A. Suzuki-Hirano,
T. Shimogori, and E. A. Grove. Fgf8 acts as a classic diffusible morphogen to pattern
the neocortex. Development, 137(20):3439–3448, 2010.

A. N. Tullio, P. C. Bridgman, N. J. Tresser, C.-C. Chan, M. A. Conti, R. S. Adelstein,
and Y. Hara. Structural abnormalities develop in the brain after ablation of the gene
encoding nonmuscle myosin ii-b heavy chain. Journal of Comparative Neurology, 433(1):
62–74, 2001.

D. C. Van Essen. A tension-based theory of morphogenesis and compact wiring in the central
nervous system. Nature, 385(6614):313, 1997.

D. C. Van Essen, H. A. Drury, J. Dickson, J. Harwell, D. Hanlon, and C. H. Anderson.
An integrated software suite for surface-based analyses of cerebral cortex. Journal of the
American Medical Informatics Association, 8(5):443–459, 2001.

E. Ventsel and T. Krauthammer. Thin plates and shells: theory: analysis, and applications.
CRC press, 2001.

D. A. Voronov and L. A. Taber. Cardiac looping in experimental conditions: effects of
extraembryonic forces. Developmental dynamics, 224(4):413–421, 2002.

J. L. Walker, A. K. Fournier, and R. K. Assoian. Regulation of growth factor signaling and
cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension.
Cytokine & growth factor reviews, 16(4):395–405, 2005.

J. H.-C. Wang and B. P. Thampatty. An introductory review of cell mechanobiology. Biome-
chanics and modeling in mechanobiology, 5(1):1–16, 2006.

X. Wang, C. Studholme, P. L. Grigsby, A. E. Frias, V. C. C. Carlson, and C. D. Kroenke.
Folding, but not surface area expansion, is associated with cellular morphological matu-
ration in the fetal cerebral cortex. Journal of Neuroscience, 37(8):1971–1983, 2017.

M. Warren, K. Puskarczyk, and S. C. Chapman. Chick embryo proliferation studies using
edu labeling. Developmental Dynamics, 238(4):944–949, 2009.

J. Weickenmeier, R. de Rooij, S. Budday, P. Steinmann, T. Ovaert, and E. Kuhl. Brain
stiffness increases with myelin content. Acta biomaterialia, 42:265–272, 2016.

T. Weikert, R. G. Rathjen, and P. G. Layer. Developmental maps of acetylcholinesterase and
g4-antigen of the early chicken brain: Long-distance tracts originate from ache-producing
cell bodies. Journal of Neurobiology, 21(3):482–498, 1990.

215



A. M. Winkler, G. R. Ridgway, M. A. Webster, S. M. Smith, and T. E. Nichols. Permutation
inference for the general linear model. Neuroimage, 92:381–397, 2014.

S. Withington, R. Beddington, and J. Cooke. Foregut endoderm is required at head process
stages for anteriormost neural patterning in chick. Development, 128(3):309–320, 2001.

T. P. Wyatt, A. R. Harris, M. Lam, Q. Cheng, J. Bellis, A. Dimitracopoulos, A. J. Kabla,
G. T. Charras, and B. Baum. Emergence of homeostatic epithelial packing and stress
dissipation through divisions oriented along the long cell axis. Proceedings of the National
Academy of Sciences, 112(18):5726–5731, 2015.

G. Xu, P. S. Kemp, J. A. Hwu, A. M. Beagley, P. V. Bayly, and L. A. Taber. Opening angles
and material properties of the early embryonic chick brain. Journal of Biomechanical
Engineering, 132(1):011005, 2010a.

G. Xu, A. K. Knutsen, K. Dikranian, C. D. Kroenke, P. V. Bayly, and L. A. Taber. Axons
pull on the brain, but tension does not drive cortical folding. Journal of biomechanical
engineering, 132(7):071013, 2010b.

B. T. Yeo, M. R. Sabuncu, T. Vercauteren, N. Ayache, B. Fischl, and P. Golland. Spheri-
cal demons: fast diffeomorphic landmark-free surface registration. IEEE transactions on
medical imaging, 29(3):650–668, 2010.

H. G. Yevick, G. Duclos, I. Bonnet, and P. Silberzan. Architecture and migration of an
epithelium on a cylindrical wire. Proceedings of the National Academy of Sciences, 112
(19):5944–5949, Apr. 2015.

S. Yoo, Y. Kim, H. Lee, S. Park, and S. Park. A gene trap knockout of the tiam-1 protein
results in malformation of the early embryonic brain. Molecules and Cells, 34(1):103–108,
July 2012.

J. M. Young, J. Yao, A. Ramasubramanian, L. A. Taber, and R. Perucchio. Automatic
generation of user material subroutines for biomechanical growth analysis. Journal of
Biomechanical Engineering, 132:104505, Oct. 2010.

E. A. Zamir, V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the
embryonic chick heart during looping. Annals of biomedical engineering, 31(11):1327–1336,
2003.

J. Zhou, H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during
crucial stages of elongation and neural tube closure. Development, 136(4):677–688, 2009.
ISSN 0950-1991. doi: 10.1242/dev.026211.

216



Vita

Kara E. Garcia

Degrees Ph.D. Biomedical Engineering, December 2017

M.Eng. Mechanical Engineering, May 2015

B.S. with Distinction, Biomedical Engineering, May 2012

Professional

Societies

Tau Beta Pi Engineering Honors Fraternity

Alpha Eta Mu Beta Biomedical Engineering Honors Society

Organization for Human Brain Mapping

Extracurricular

Activities

Co-Director of Mentoring, Young Scientist Program (2014–2016)

Consultant, Biotechnology and Life Science Advising Group (2016)

Translation Team, Sling Health (2015)

BME Graduate Student Advisory Board (2014–2015)

Doctoral Honors

and Awards

National Institutes of Health Pre-doctoral Training Fellowship (2014)

National Science Foundation GRFP Honorable Mention (2014)

National Science Foundation OHBM Travel Award (2016)

SB3C Student Paper Competition, 2nd Place (2015)

Peer-Reviewed

Publications

Garcia K. E., Okamoto R. J., Bayly P. V., Taber L. A. (2016) Con-

traction and stress-dependent growth shape the forebrain of the early

chicken embryo. Journal of the Mechanical Behavior of Biomedical

Materials.

Hosseini H. S., Garcia K. E., Taber L. A. (2017) A new hypothesis

for foregut and heart tube formation based on differential growth and

actomyosin contraction. Development.

Robinson E. C., Garcia K. E., Glasser M. F., Chen Z., Coalson T. S.,

Makropoulos A., Bozek J., Wright R., Schuh A., Webster M., Hutter

J., Price A., Cordero Grande L., Hughes E., Tusor N., Bayly P. V.,

Van Essen D. C., Smith S. M., Edwards A. D., Hajnal J., Jenkenson

217



M., Glocker B., Rueckert D. (2017) Multimodal Surface Matching

with higher order smoothness constraints. Neuroimage.

Submitted

Manuscripts

Garcia K. E., Robinson E. C., Alexopoulos D., Dierker D. L., Glasser

M. F., Coalson T. S., Ortinau C. M., Rueckert D. R., Taber L. A.,

Van Essen D. C., Rogers C. E., Smyser C. D., Bayly P. V. Dynamic

patterns of cortical expansion during folding of the preterm human

brain.

December 2017

218


	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-15-2017

	Mechanics of the Developing Brain: From Smooth-walled Tube to the Folded Cortex
	Kara Ellspermann Garcia
	Recommended Citation


	tmp.1555594216.pdf.Yjg1S

