2,266 research outputs found

    Solving Complex Data-Streaming Problems by Applying Economic-Based Principles to Mobile and Wireless Resource Constraint Networks

    Get PDF
    The applications that employ mobile networks depend on the continuous input of reliable data collected by sensing devices. A common application is in military systems, where as an example, drones that are sent on a mission can communicate with each other, exchange sensed data, and autonomously make decisions. Although the mobility of nodes enhances the network coverage, connectivity, and scalability, it introduces pressing issues in data reliability compounded by restrictions in sensor energy resources, as well as limitations in available memory, and computational capacity. This dissertation investigates the issues that mobile networks encounter in providing reliable data. Our research goal is to develop a diverse set of novel data handling solutions for mobile sensor systems providing reliable data by considering the dynamic trajectory behavior relationships among nodes, and the constraints inherent to mobile nodes. We study the applicability of economic models, which are simplified versions of real-world situations that let us observe and make predictions about economic behavior, to our domain. First, we develop a data cleaning method by introducing the notion of “beta,” a measure that quantifies the risk associated with trusting the accuracy of the data provided by a node based on trajectory behavior similarity. Next, we study the reconstruction of highly incomplete data streams. Our method determines the level of trust in data accuracy by assigning variable “weights” considering the quality and the origin of data. Thirdly, we design a behavior-based data reduction and trend prediction technique using Japanese candlesticks. This method reduces the dataset to 5% of its original size while preserving the behavioral patterns. Finally, we develop a data cleaning distribution method for energy-harvesting networks. Based on the Leontief Input-Output model, this method increases the data that is run through cleaning and the network uptime

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new specification for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Formal methods paradigms for estimation and machine learning in dynamical systems

    Get PDF
    Formal methods are widely used in engineering to determine whether a system exhibits a certain property (verification) or to design controllers that are guaranteed to drive the system to achieve a certain property (synthesis). Most existing techniques require a large amount of accurate information about the system in order to be successful. The methods presented in this work can operate with significantly less prior information. In the domain of formal synthesis for robotics, the assumptions of perfect sensing and perfect knowledge of system dynamics are unrealistic. To address this issue, we present control algorithms that use active estimation and reinforcement learning to mitigate the effects of uncertainty. In the domain of cyber-physical system analysis, we relax the assumption that the system model is known and identify system properties automatically from execution data. First, we address the problem of planning the path of a robot under temporal logic constraints (e.g. "avoid obstacles and periodically visit a recharging station") while simultaneously minimizing the uncertainty about the state of an unknown feature of the environment (e.g. locations of fires after a natural disaster). We present synthesis algorithms and evaluate them via simulation and experiments with aerial robots. Second, we develop a new specification language for tasks that require gathering information about and interacting with a partially observable environment, e.g. "Maintain localization error below a certain level while also avoiding obstacles.'' Third, we consider learning temporal logic properties of a dynamical system from a finite set of system outputs. For example, given maritime surveillance data we wish to find the specification that corresponds only to those vessels that are deemed law-abiding. Algorithms for performing off-line supervised and unsupervised learning and on-line supervised learning are presented. Finally, we consider the case in which we want to steer a system with unknown dynamics to satisfy a given temporal logic specification. We present a novel reinforcement learning paradigm to solve this problem. Our procedure gives "partial credit'' for executions that almost satisfy the specification, which can lead to faster convergence rates and produce better solutions when the specification is not satisfiable

    Geo-Spatial Analysis in Hydrology

    Get PDF
    Geo-spatial analysis has become an essential component of hydrological studies to process and examine geo-spatial data such as hydrological variables (e.g., precipitation and discharge) and basin characteristics (e.g., DEM and land use land cover). The advancement of the data acquisition technique helps accumulate geo-spatial data with more extensive spatial coverage than traditional in-situ observations. The development of geo-spatial analytic methods is beneficial for the processing and analysis of multi-source data in a more efficient and reliable way for a variety of research and practical issues in hydrology. This book is a collection of the articles of a published Special Issue Geo-Spatial Analysis in Hydrology in the journal ISPRS International Journal of Geo-Information. The topics of the articles range from the improvement of geo-spatial analytic methods to the applications of geo-spatial analysis in emerging hydrological issues. The results of these articles show that traditional hydrological/hydraulic models coupled with geo-spatial techniques are a way to make streamflow simulations more efficient and reliable for flood-related decision making. Geo-spatial analysis based on more advanced methods and data is a reliable resolution to obtain high-resolution information for hydrological studies at fine spatial scale
    corecore