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Chapter 1

Introduction

Computers are rapidly becoming indispensable parts of our social fabric. For instance,

computers are being used more and more for solving problems, exchanging information,

preparing papers, giving presentations and carrying out business transactions. Recent

advances in the cost reduction and minimization of computing devices, wireless com-

munication technologies and sensors have clearly facilitated the spread of computers

into our everyday lives and beyond. For instance, calendars, calculators, email appli-

cations, infrared and bluetooth communication modules, and even Java virtual machines

are available in cell phones that are being used by people on the move. IBM is developing

watches with embedded Linux operating systems. Fossil is planning to release its Palm

OS watches. Wireless sensor networks are being tested and deployed for environmental

and habitat monitoring tasks. Mobile ad hoc networks1 are being developed and tested

for tasks such as emergence response, disaster relief, roadway safety, batter field com-

munication because of its advantage of low cost, easy of deployment and infrastructure

independence. The mobility of computers with ubiquitous sensing systems will assist our

interaction with the world in a more untethered and natural way. They already have and

will further empower us with (seemly unbounded) extensions of our natural capabilities.

The availability of positioning systems together with the pervasiveness of com-

puting devices including sensors and actuators creates an even more interesting picture.

Imagine you have landed in an unfamiliar future Caribbean town. Your personal digital

assistant (e.g., in your watch or badge or cell-phone or various futuristic form you might

1Ad hoc networks refers to the types of networks formed spontaneously by a group of autonomous
computers via wireless links for communication tasks. In ad hoc networks everyone serves as a router
for others, i.e., everyone is an endpoint and a router at the same time. Examples of such networks
include those formed by vehicles communicating with each other on the road, an area of wireless sensors
communicating with each other for monitoring tasks. Ad hoc networks are often “unplanned” and often
have more dynamic topologies and yet less power and fewer computation resources than infrastructure-
based networks.
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imagine) senses your current location and quickly pools information from area databases

and various tourist kiosks and makes local information of your interest, such as best

restaurants and your preferred seafood bars nearby, available to you. It also talks to the

sensors close by and tells you that the radiation level in the sunlight was higher than

normal and that you’d better put on some protective suntan lotion. As you drive along

the scenic roadway, your car adjusts its speed automatically as it continuously talks to

vehicles nearby and exchanges precise location and velocity information with them, and

coordinates the traffic. As a result, you have more time and attention to spare for en-

joying the wonderful views along the way. One can see that computers with location

awareness bring many new opportunities.

As always, the advance of science and technology creates new opportunities and

brings new challenges at the same time. This dissertation envisions and focuses on a

few opportunities brought by the pervasiveness of computers, wireless communications

and positioning systems, proposes novel solutions, and addresses the key challenges. It

identifies key challenges under the technical terms (scopes) of “spatiotemporal multicast”

in ad hoc networks and “partitionable group membership” in mobile ad hoc networks,

and explores respective location-aware and mobility-aware solutions.

1.1 Paradigms of Multicast

In the real world, oftentimes a piece of information realizes its highest intrinsic value

when reaches the recipients at the right time and place. For instance, a tornado warning

is most valuable to you only if you are in the potentially affected area and you received

the information some time before the tornado hits. The warning information is of no or

little use to you if you are not in the area or you received too late, or too early (e.g, you

might have travel plan to move out of the area before the tornado hits anyway.)

This is also is true for many information dissemination scenarios in mobile ad hoc

network or sensor network applications. Consider an intruder tracking application in an

ad hoc sensor network. When a group of sensors detects some moving object and is able to

estimate its velocity, one sensor can be elected to send an “intruder detected” message to

inform the sensor nodes “down the road”, i.e., in a geographic envelope approximating the

object’s expected movement path, to get ready, e.g., to wake up if they are in power-saving

mode, and prearm for the tracking task. Note that this “intruder coming” information has

two unique spatial and temporal properties with respect to its intended application. First,

it is most useful for the sensor nodes that are close to the object’s expected movement

path and within certain distance to the current location of the object. Second, it is
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desirable to be delivered within a specific period of time: early enough for the sensors to

wake up before the object gets to where they are, and close enough to the object’s arrival

time so as to avoid unnecessary dissipation of energy. In other words, it has a preferred

time window of delivery for every respective spatial destination.

Consider another scenario where an ambulance on the road tries to inform vehicles

down the road that it is coming and ask the vehicles to be alert and to yield the way.

Currently, this is achieved by the ambulance using a siren which can be heard within

a few blocks. We envision a futuristic scenario where an electronic siren information is

propagated in a multi-hop vehicle network, especially for auto-piloting vehicles. The siren

information (e.g. “ambulance coming from direction x at speed y with current location

z, etc”) needs and only needs to be delivered to the vehicles at some distance down the

road relative to the ambulance that might interfere with the ambulance’s motion, as is

shown in Figure 1.1. Furthermore, the delivery needs to be done a few seconds before

Figure 1.1: Information Dissemination Needs of An Ambulance

potential interference can take place so the vehicles have enough time to react to the

information. As the ambulance moves, the relative geographic area of delivery changes

accordingly. Note also that the delivery of siren information should not be delivery too

early before the potential time of interference. Because the vehicles might change their

route well before the potential interference time, the likelihood of the siren information

to become invalid is high if it is delivered too early.

Similar spatial and temporal properties can be found in other information dissem-

ination applications such as a forest sensor network sending information about the size

of a fire and its spreading velocity to fire-fighters in some dangerous area, or a biological

sensor network sending bio-agent alarm information to personnel within a certain area.
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In all such cases, the type of information being disseminated is useful only to recipients in

a specific geographic area at a specific time, and the information is preferred NOT to be

disseminated as soon as possible in space, but rather to be disseminated in a controlled

manner, e.g., in constant velocity. The fundamental reason is that the information being

disseminated has a correlated space-time value. For this type of information, its arrival

at a destination “on time” usually exhibits higher value than “earlier” or “later.” This

distinguishes itself from most other information that exhibits “sooner is better” delivery

semantics, and demands new strategies for dissemination.

Delivery of information to an area often involves multiple recipients. Multicast

is a well-known communication abstraction for information delivery from one source to

multiple recipients, and is widely regarded and used as a fundamental building block

for many distributed computation applications and systems. We first examine existing

multicast mechanisms and discuss their applicability to the previous scenarios.

1.1.1 IP Multicast and Geocast

There were two main multicast paradigms: IP multicast [52] and geographical multicast

(geocast) [128]. They differ in their recipient identification and addressing schemes. IP

multicast identifies the recipients by their subscription to a common multicast IP address.

A message sent to a multicast IP address such as 238.5.1.8 is expected to be delivered

to all subscribers of this address. Figure 1.2(a) shows an IP multicast example, in which

the sender is S and other solid circles represents expected recipients. The IPv4 network-

ing standard defines and reserves the “Class D” addresses (ranging from 224.0.0.0 to

239.255.255.255) for multicast.

Geocast identifies the set of recipients by the geographical locations of the relevant

parties. In other words, the set of recipients is addressed in geocast by a geographical area,

often described by a polygon. A message geocast to a area is expected to be delivered to

all parties in the area. Figure 1.2(b) shows an example where the source node S wants

to geocast a message to all nodes in one of the southeast rectangles. A geocast protocol

may use one path or multiple paths from the source node to the rectangle for forwarding

the message. Once the message arrives in the rectangle, it is flooded to all nodes in the

rectangle [99]. Geocast is a more natural and economic alternative for building geographic

service applications than conventional IP address based multicast addressing and routing.

While different in style and approach, both conventional IP multicast and geocast

assume the same information delivery semantics in the temporal domain, i.e., the infor-

mation is expected to be delivered as soon as possible. This delivery semantics turns out

not to be the best choice for many applications targeted to resource constrained ad hoc
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Figure 1.2: IP Multicast and Geocast

networks, and for disseminating information with temporal value. For instance, in the

object tracking example above, an early delivery of the wake-up call is likely to waste the

precious power resources and reduce system’s affectiveness over time.

The Contention Between Slack and Overhead

Using existing multicast mechanisms to achieve the goal of information delivery to the

right place at the right time is indirect and exhibits significant overhead. The fundamental

reason is that the existing protocols all have “as-soon-as-possible” delivery semantics.

In this section, we will use geocast to construct a solution for the previous am-

bulance siren information delivery problem, and illustrate a few inherent issues relating

to the solution quality. Geocast is a reasonable match in the existing communication

mechanism arsenal for supporting the ambulance siren application example.

Assume that the ambulance uses geocast, as shown in Figure 1.3. For simplicity,

we use a rectangular delivery area in the example. Let the rectangle between points A

and C be the initial geocast area for the siren information when the ambulance at point

A. As it moves forward, the ambulance’s desired geocast area moves forward as well. So

the ambulance should periodically re-geocast the siren information. Clearly, the period
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Figure 1.3: Ambulance Geocast Scenario

should be small enough such that there is at least one re-geocast between points A and C.

Otherwise, some of the vehicles on the road will miss the siren information. Furthermore,

for the siren system to work, one may require the vehicles to receive the siren information

by a certain time, ta, before the ambulance reaches them. This advanced warning is

necessary for the vehicles to have enough time to take appropriate evasive actions and

serves the purpose of a siren. This leads to a necessary re-geocast, say at point B. Re-

geocasting the siren information at point B means that some of the nodes between point

B and point C receive the information at least twice and they also need to act as routers

for nodes beyond point C. The area between B and C increases proportionally with the

required advanced delivery time and the speed of the ambulance, and so does the number

of nodes that receive the redundant information.

Now we formulate the issues more precisely. Let the width of each geocast destina-

tion (area) be L. Regardless of the actual forwarding scheme used, the number of radio

transmissions needed for all nodes in the geocast area to receive the message is roughly2

proportional to L.

2“Roughly” in the sense that we omit the discreteness effect which occurs when the size of the area is
close to the radio range. Note also that we assume a constant height of the geocast area in the analysis.
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Let the ambulance speed be va. Let the desired advance warning time for the

vehicles be ta. The distance W between points B and C must be no less than vata. To

inform the nodes beyond point C (the lightly shaded ones), the ambulance geocasts a

message to them using some of the nodes between B and C as intermediate forwarding

routers. Regardless of the actual forwarding scheme used, the number of forwarding

nodes between B and C is proportional to the length W . In turn, the number of radio

transmissions generated for this forwarding between B and C, MW , is proportional to

W :

MW ∝ W ∼ vata (1.1)

Note that the number of these radio transmissions between B and C represents the extra

message overhead of using the geocast protocol since the nodes between B and C have

received and forwarded the message before (i.e., in the previous geocast initiated at A.).

In the above scheme, the ambulance re-geocasts at B for the goal of having the

vehicles close to C on the right to receive the message ta time in advance. This leads

to the following consequence: most of the nodes between C and D receive the message

at more than ta time in advance since geocast delivers message in an as soon as possible

fashion. Let vm be maximum message propagation speed in the network. Then the

following quantity, called “average slack time,” measures the average earliness of the

nodes between C and D on receiving the message:

ts =
1

2
(
S

va

− S

vp

) =
1

2
(L − W )(

1

va

− 1

vp

) (1.2)

Usually smaller average slack time is more desirable, like in the cases of most real-

time systems. Smaller average slack time in our example entails more nodes receiving

the message just in time, resulting in a system that is more flexible and robust against

uncertainties and changes over time.

The average slack time decreases when W increases, while the message overhead

increases with W . As such, we observe a fundamental contention in the geocast based

approach: one can not reduce the message overhead and the average slack time simultane-

ously. One reason behind this contention is that the geocast protocol does not explicitly

concern the temporal domain of message delivery. That is, geocast only addresses ap-

plication’s need for the “right place” perspective of information delivery, but does not

address the “right time” perspective. Inevitably, exact steps and methods are necessary

when using geocast protocols for constructing “just-in-time” type solutions, which in turn

leads to extra overhead as we see in the previous discussion.
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We also observe that, if the ambulance did not change its speed and direction

during its course between A and B, a more economic alternative approach to this problem

is letting some nodes in the front of the geocast area forward the message at an appropriate

time rather than requiring that the ambulance re-issue the geocast periodically. This

approach entails a self-sustained mobile message wave on the network and leads to our

discovery of a new multicast paradigm which we describe next.

1.1.2 Spatiotemporal Multicast

In this dissertation we propose a new multicast paradigm, called “spatiotemporal mul-

ticast,” catering to the class of applications that need to disseminate their multicast

messages to the “right-place” at the “right-time.” Spatiotemporal multicast identifies

the set of recipients by a space and time constraint characterized by an area function Z[t]

and a time period [Ts, Ts + T ]. In other words, a spatiotemporal multicast session can be

specified by a four-tuple

〈m,Z[t], Ts, T 〉 (1.3)

where m is the multicast message, Z[t] describes the expected area of message delivery at

time t, Ts and T are the sending time and duration of the multicast session, respectively.

At each instant of time t ∈ [Ts, Ts+T ], Z[t] describes a geographical area, which we

call “delivery zone” henceforth. A message sent to the delivery zone Z[t] is expected to be

delivered to a node at time t if the node is in the area of Z[t] and has not yet received the

message. As the delivery zone Z[t] evolves over time, the set of recipients for m changes

as well. Note that in geocast [128, 88, 99] the delivery area Z is fixed for each multicast

session, and there is no explicit specification of when the session terminates. The key

characteristic of the spatiotemporal multicast service is its ability to give applications

explicit control over both the spatial and temporal perspectives of multicast information

delivery. Clearly, geographical multicast can be viewed as a special case of spatiotemporal

multicast.

Figure 1.4 shows two examples of spatiotemporal multicast with different kinds of

delivery zones. Figure 1.4(a) depicts a rectangle-shaped zone (shaded) that moves from

the source located at the bottom of the figure to the top. As the delivery zone moves,

some nodes enter the zone while others leave the zone. The delivery specification of spa-

tiotemporal multicast may require that a node be delivered the message m at the time the

delivery zone reaches the node. Note that the shape and evolving behavior of a delivery

zone are defined by users (for their spatiotemporal delivery requirement of information
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m). A spatiotemporal multicast protocol then needs to achieve this spatiotemporal de-

livery requirements efficiently in various network topologies. Figure 1.4(b) shows a more

general example where the delivery zone assumes an arbitrary shape with both its shape

and location evolving over time. This may be the case when the delivery requirements

change in response to dynamic context observed in the mobile delivery zone.

Figure 1.4: Spatiotemporal Multicast Examples

The unique characteristic of spatiotemporal multicast makes it a natural candi-

date for many space-time-sensitive information dissemination tasks in ad hoc networks.

Application developers can easily encode their desired spatiotemporal constraints for in-

formation dissemination into the changing behavior of the delivery zone. For instance in

the object tracking example, if the sensor group initiates a spatiotemporal multicast for

the intruder detected message using a rectangular delivery zone that moves at the esti-

mated velocity of the object (or a little faster), the wake-up just-in-time requirement can

be readily satisfied. This is also true for the ambulance example. Using a mobile delivery

zone quickly leads to a solution in which only nodes in the forefront of the delivery zone

are involved in forwarding the siren information; there is no need for the ambulance to

re-issue the siren information unless there is a change in its motion plan, or the network

experiences vicious partitions.

Just-in-time information propagation has an additional benefit. It is more flexible

in responding to changes than an “as soon as possible” information propagation mecha-

nism. It enables the possibility of undoing an outdated information dissemination process

in a simple way. For instance, again in the object tracking scenario, when the object has

a relatively big change in its moving speed and direction, one can stop the sensors on the



10

old expected path from being waken up by sending a faster message to stop the previous

information propagation. While in an “as soon as possible” delivery mechanism, this is

relatively hard to do without a specialized and prioritized control message channel. This

natural ability to allow flexible responses to dynamic changes is very desirable in our

envisioned applications.

1.1.3 Some more comparisons

In a sense, IP multicast by its logical addressing scheme is concerned with whom you

are. Geocast’s spatial addressing scheme emphasizes that the information it is dissemi-

nating is more relevant to where you are rather than whom you are. And spatiotemporal

multicast emphasizes when you are and where you are. Table 1.1 summarizes the differ-

ences between the three multicast paradigms. Note that even though we have only talked

Table 1.1: Three Multicast Paradigms
Multicast paradigm IP Geographical Spatiotemporal

Addressing Logical Physical Physical
Location concern No Yes Yes

Time concern No No Yes
Additional comment whom where where and when

about 2-dimensional cases for geocast and spatiotemporal multicast, their extension to

3-dimension cases is straightforward.

Chapters 2, 3, and 4 continue on the topic, propose and investigate various proto-

cols for a special class of spatiotemporal multicast, called mobicast. Next we switch our

attention to the second problem this thesis addresses: the group membership problem in

mobile ad hoc networks.

1.2 Partitionable Group Membership

Group membership has been an important problem in the area of fault-tolerant dis-

tributed computing and has been the subject of extensive investigation [44, 5, 15, 148,

6, 62, 123, 160, 141, 13, 37]. Solving the problem requires the provision of a service

that establishes and maintains some kind of agreement over time among participating

components about who is currently in the group, despite the presence of failures in the

corresponding distributed system. Such a group membership service simplifies the de-

velopment of many fault-tolerant distributed applications [44] and is widely used for

supporting reliable group communications.
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We encountered a group membership problem in our attempt to support group

computation in ad hoc mobile environments. Peer-to-peer or group cooperation are com-

mon scenarios for ad hoc mobile applications. When two or more mobile hosts come

together to form a group working on the same problem, it is sometimes essential for all

of them to have the same view of the joint computation state when they start working or

when some of the members leave the group. One important piece of group state informa-

tion is membership in the group, i.e., who is and who is not in the working group. Any

situation that demands (for legal or technical reasons) the presence of two or more specific

entities to carry out a task may impose the need for a consistent membership view. One

can envision the futuristic notion of an electronic witness to a contractual transaction

or the circumstance in which routine maintenance of commercial aircraft requires secure

logging in the presence of an FAA inspector carrying an authorized electronic badge. The

need for consistent view among group members also rises in the fledging area of intelligent

transportation systems [43, 91]. Driving assistance systems are being developed on top

of the mobile wireless ad hoc network for collision warning and avoidance [154, 86, 166].

In such systems, a consistent view about participating vehicles and consistent decisions

across the members about acceleration, deceleration, lane change [78], etc., are critical.

To further see why the same view about membership and the order of member-

ship changes are important, consider a computation scenario that involves four hosts,

Ha, Hb, Hc, and Hd. Initially Ha and Hb form a group; they agree that if Hc joins the

group, they will execute protocol C; if Hd joins the group, they will execute protocol D;

if Hc and Hd join at the same time, they will execute protocol E. If Ha and Hb do not

observe the same order of joins by Hc and Hd, (e.g., Ha observes Hc joining first, and

Hb observes Hd joining first) then the group will result in a protocol execution confusion:

Ha will execute protocol C while Hb will execute protocol D. The importance of agree-

ing on the same view about membership state introduces the need for group membership

services, which maintain a consistent view about the membership among group members.

The group membership problem we encountered in the mobile ad hoc environment

is new in the sense that it has special requirements that are different from all previously

studied ones. It not only requires availability and progress in the presence of network

partitions, as most partitionable group membership services do, but also requires consis-

tency when partitions occur, which none of the previous partitionable group membership

services support [63, 13, 7, 6, 56, 55, 160]. The reason why the previous partitionable

group membership services do not support consistency in the presence of partitions is

fundamental; because the assumed system model is asynchronous and distributed, con-

sensus is impossible [65, 33]. Furthermore, network partition in a fixed network is usually
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infrequent and short-lived. This makes manual checking a viable option to solve any

inconsistencies that might occur during a network partition. Yet in our case, we em-

phasize the consistency requirement because network partition is a frequent event in ad

hoc mobile environments and the cost of “short-term” inconsistency can be very high in

mobile computation scenarios. Mobile hosts interact over wide spaces, and inconsistency

can propagate indefinitely and cause irreparable damage in mission critical applications.

Similar strict consistency has been considered by Cristian and Fetzer [49] for the primary

group membership problem in timed-asynchronous systems, but has not been investigated

for the partitionable group membership problem.

The goal of our group membership service is not only to create a consistent view

of group membership among participants, but also to help users and application pro-

grammers avoid the complexities introduced by potential data inconsistencies caused by

mobility-induced link failures. Mobility-induced link failures refer to the communication

failures caused by mobile units moving out of each other’s communication range. The key

characteristic of a mobility-induced link failure is that it is unrecoverable and more dam-

aging than link failures in fixed networks. For instance, a message sent while a physical

network partition is taking place can be in a dubious state of delivery. That is, one side

(sender/receiver) thinks it is “delivered,” while the other side (receiver/sender) thinks it

is not. To make matters worse, no mechanism exists for either party to disambiguate this

situation. The link failures occurring in fixed networks are usually recoverable, in the

sense that the communicating peers can always use an acknowledgement-retransmission-

based protocol like TCP to ensure a link failure is transient because in a fixed network

its is assumed that a failed link will eventually come back. The unrecoverability of

mobility-induced link failure can result in permanent data inconsistency and poses a

great challenge to mobile application programmers. Our group membership service tries

to help programmers in this matter by guaranteeing that communication between group

members will not suffer from mobility-induced failure.

The strong requirements of the new group membership service make it impossible

to implement in asynchronous systems. To make this problem solvable, we introduce a

certain level of synchrony into our system model. We assume the communication service

is reliable in each physical network partition and has a bounded message delivery time td

within the partition. Furthermore, as we mentioned earlier, a message sent at time t < td

before a physical network partition takes place can be in a dubious state of delivery. We

introduce a key concept called safe distance to solve this problem. It works by preventing

a group message from falling into a pocket of network instability caused by partitioning.

We rely on location information to decide when a host within communication range is
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admitted to or eliminated from a group. The group membership policy is conservative

in nature to ensure that the changes in group membership appear to be atomic, i.e., are

serializable transactions. The algorithm accommodates both the merging of groups and

the partitioning of one group into multiple disjoint groups.

We have implemented a version of the strong partitionable group membership

protocol in Java. It supports LIME [124, 125], a middleware for rapid development of

mobile applications. The implementation works properly if the system assumptions of

the protocol are met. The validity of the system assumptions and how they might be

implemented are discussed later.

Chapter 5 continues with detail on this topic.

1.3 Contributions

This dissertation has contributions in two areas. It is the first to propose and investigate

the spatiotemporal multicast paradigm. This contributes to the arsenal of multicast

communication technologies. It is also the first to identify the implications of mobility

for the group membership problem and to investigate new solutions. This contributes to

the areas of software engineering and fault-tolerant distributed computing. More detailed

technical contributions include:

• Specifications of spatiotemporal multicast and mobicast, and their performance

metrics.

• Two new graph metrics for spatiotemporal communication analysis, namely ∆-

compactness and Γ-compactness, capturing the distortions in a network relevant to

communication.

• Novel protocols for mobicast with performance analysis.

• Two new geometry notions, namely k-cover of a polygon and spatial neighbor-

hood in planar graphs. In spatial communication, K-cover is a useful tool for locating

shortest paths with minimal information. Knowledge of the spatial neighborhood

in planar graph helps construct efficient geometric routing algorithms.

• A distributed algorithm for spatial neighborhood discovery and maintenance.

• A new specification of the group membership problem catering to the require-

ments of applications in wireless mobile ad hoc environments.
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• A mobility-aware protocol for partitionable group membership service in mobile

ad hoc environments.

1.4 Thesis Organization

The dissertation is organized as follows. Chapter 2 explores the formal specification of

delivery guarantees of spatiotemporal multicast and proposes optimization metrics for

spatiotemporal multicast protocols. It focuses on mobicast and presents a reliable mobi-

cast protocol. It introduces new network compactness metrics and the geometric notion

of k-cover for analyzing the protocol. Chapter 3 investigates the compactness properties

of random sensor networks. Using the insights gained from this investigation, it explores

alternative mobicast strategies and evaluates them via network simulations. Chapter 4

introduces and analyzes the Face-Aware Routing (FAR) protocol for mobicast with the

notion of spatial neighborhood in planar graphs. It also features a novel distributed

algorithm for spatial neighborhood discovery. Chapter 5 presents the new specification

for partitionable group membership service and proposes a corresponding mobility-aware

protocol for the service. Chapter 6 summarizes this dissertation and discusses future

work.
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Chapter 2

Mobicast: Mobile Multicasting

Cases and Protocols

This chapter explores the formal specification of delivery guarantees for spatiotemporal

multicast and proposes optimization metrics for spatiotemporal multicast protocols. It

focuses on a special class of spatiotemporal multicast called “mobicast” and presents a

reliable mobicast protocol. It introduces two new notions of network compactness and

proves several related theorems useful in analyzing information propagation in wireless ad

hoc networks. Another by-product is a notion of “k-cover” for polygons, which is a gen-

eralization for ellipse and is useful for locating shortest paths using network compactness

values.

2.1 Mobicast

Mobicast is a special class of spatiotemporal multicast that has the following special

behavior: its delivery zone is some fixed convex polygon P that translates through a 2-D

space at some constant velocity ~v, i.e.,

Z[t] = P [~r0 + ~v(t − Ts)] (2.1)

with P [~r0] being the polygon centered at ~r0. We call this specific class of spatiotemporal

multicast “constant velocity mobile multicast”, abbreviated as “mobicast”. A mobicast

session example is shown in Fig.(2.1) in which the solid rectangular area Z[3] represents

the current delivery zone (at time t = 3), and the two dashed rectangles Z[1] and Z[2]

represent two instances of the same delivery zone at times t = 1 and t = 2, respectively.
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Figure 2.1: Mobicast example: A Moving Rectangular Delivery Zone

Note that there are many other spatiotemporal multicast and mobicast scenarios

besides the constant velocity mobicast. For instance, some applications may like the

delivery zone to move on a path under a specific speed schedule, or on a path with

maximum information gain [113].

As an abstract communication paradigm, mobicast is conceptually independent

of underlying communication media. However, its actual implementation has to take

the characteristics of the media into account. In this chapter, we consider mobicast on

wireless sensor networks with random but static topology.

2.2 Application Examples

Mobicast can be used for sensor network applications such as intruder tracking [28, 113]

or information scouting, as shown in Figure 2.2. On the left we have an intruder tracking

example. In this example, a set of sensors discovers an enemy tank, and sends an alert

message to sensors and actuators (e.g., camera control units) on the intruder’s expected

path to alert and pre-arm them for better tracking and other operations. This alert

message can be sent by a mobicast service using a delivery zone of desired size that

moves at a certain distance ahead of the intruder, with a speed approximating that of

the intruder’s, thus creating an evolving alert “cloud” just in front of it. The right side of
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Figure 2.2: Tracking and Scouting Applications

Figure 2.2 depicts an information scouting example. A solider is running to the southeast

area. For safety and efficiency, he would like to know the field information ahead of him

so as to adjust his actions accordingly. His area of interest changes as he runs. One can

see that this is another natural application scenario for mobicast. The solider can send

a scouting request to a delivery zone that moves on his path in front of him. Only the

sensors that enter the delivery zone (receive the scouting message) will pool their currently

sensed information and send aggregated data back to him. The use of mobicast naturally

delivers the spatial and temporal locality requirements of information dissemination and

gathering exhibited by these applications.

A key observation here is that if the mobile event does not change its motion very

often, the system alert or scouting message does not need to be continuously issued. But

rather, one can let the message roll on its own according to a motion plan. If the mobile

event changes or the old mobicast expires, one can always issue a new mobicast reflecting

the new information.

2.3 Spatiotemporal Delivery Guarantees

As we have pointed out earlier, application developers can encode their spatiotemporal

information delivery requirements via the delivery zone behavior. The complexity of a

mobicast protocol in general depends on the delivery guarantees it is required to achieve.

A straight-forward delivery specification may demand that once a node α is in a delivery

zone Z[t], it receives the information m immediately. Here we will first define and refine

this specification formally, and discuss its feasibility and implications. Let Ω be the set

of all nodes in space, let ~r(j) be the location of node j, and let Dm[j, t] denote the fact

that j has been delivered the information m at time t. Let the time when the mobicast
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is initiated be Ts. This mobicast delivery property can be formally stated as

〈∀j, t : j ∈ Ω ∧ Ts ≤ t ≤ Ts + T :: ~r(j) ∈ Z[t] =⇒ Dm[j, t]〉1 (2.2)

This statement can be interpreted as “During the mobicast session, all nodes inside zone

Z at time t should have information m.”

Unfortunately, the delivery property (2.2) is practically impossible to realize in

most wireless ad hoc networks. The reasons include:

• First, communication latency is often not negligible in wireless ad hoc networks.

This is especially true in wireless sensor networks where sensor nodes might have

a sleeping schedule in order to save energy. Note that (2.2) implies instantaneous

delivery to all nodes at the initial delivery zone Z[0]. If Z[0] contains a node other

than the sender node, it is impossible for the node to receive information D instantly

when considering the communication latency.

• Second, a wireless ad hoc network may be partitioned. A delivery zone, specified

by some geometric property alone, might cover nodes in multiple disjoint network

partitions, which renders delivery impossible.

• Third, we did not put any restrictions on the speed of the delivery zone. One can

imagine cases where a user-specified delivery zone moves so fast that it exceeds the

maximum delivery speed a network can support.

As such, we are forced to weaken the ideal mobicast delivery property in the

following practically-minded manner: mobicast satisfies property (2.2) only after some

initialization time tinit. That is

〈∀j, t : j ∈ Ω ∧ tinit < t ≤ T :: ~r(j) ∈ Z[t] =⇒ D[j, t]〉 (2.3)

Thus, each mobicast session has two phases. The first, from time 0 to tinit, is an initial-

ization phase in which no delivery guarantee is specified. The second phase, from time

tinit to T , is a stable phase in which the strong spatiotemporal guarantee is required. We

also implicitly assume the speed of delivery zone is smaller than the maximum speed the

network can support and the network is not partitioned.

1The three-part notation 〈op quantified variable : range :: expression〉 used throughout the text is
defined as follows: The variables from quantified variables take on all possible values permitted by range.
If range is missing, the first colon is omitted and the domain of the variables is restricted by context.
Each such instantiation of the variables is substituted in expression producing a multiset of values to
which op is applied, yielding the value of the three-part expression.
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2.4 Optimization Concerns

Note that specification (2.3) addresses only the functional requirement for mobicast, and

does not address any performance optimization perspectives. Yet, performance is an in-

dispensable dimension of protocol design. Here we discuss three optimization dimensions

for mobicast protocols.

Note that, since communication latency is a random variable, it is impossible to

deliver a message to a node at an exact time. In order to achieve the delivery property

(2.3), one has to consider the worst case scenario and schedule the delivery of mobicast

messages ahead of time.

Let tr(j) denote the time at which node j first receives the mobicast message,

and let tin(j) be the first instant of time j enters the delivery zone. We call the time

difference tin(j)−tr(j) the “slack time” associated with the message delivery. It measures

how early the message is delivered to a node with respect to its requisite deadline (to be at

the specific node). Note that specification (2.3) implies that tin is the deadline of message

delivery. In general, one would like to maximize the number of expected recipients that

meet the delivery deadline. Let Θ be the set of the “delivery zone nodes” that is defined

as the set of all nodes that are expected to receive the mobicast message in a mobicast

session. Let Ξ be the set of delivery zone nodes that received the mobicast message on

or before the deadline, i.e.,

Ξ ≡ {j|(j ∈ Θ) ∧ (tin(j) − tr(j) ≥ 0)} (2.4)

One obvious optimization dimension is to make the initialization phase as short as

possible. A smaller tinit means more nodes will meet the delivery deadline. In general,

the length of the initialization time depends on the size of the delivery zone, the network

connectivity pattern within the region, and the protocol execution behavior. While a

mobicast protocol has no control over the first two factors, it can try to make tinit as

short as possible by optimizing its execution strategy.

Another optimization concern for any mobicast protocol is to reduce the overall

time interval between the reception of a message and its required delivery to the appli-

cation, i.e., the slack time. Minimizing the average slack time tslack for all nodes that

were ever in the delivery zone improves the timeliness of mobicast message delivery, and

means less time is spent in “holding” the message before it is needed. A small tslack is also

desirable as it potentially leads to less energy consumption and better locality in spatial

data aggregation. As such, a mobicast protocol should seek to minimize the average slack
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of the delivery zone nodes:

tslack =

∑
j∈Ξ(tr(j) − tin(j))

|Ξ| (2.5)

where |Ξ| denotes the cardinality of the set Ξ. The ideal case for a mobicast protocol

involves reducing tslack to zero, i.e., a node receives the mobicast message right when

it enters the delivery zone. Unfortunately, this may not always be possible due to the

randomness of the communication latency.

The third optimization dimension for mobicast is to reduce the total number of

retransmissions needed for each mobicast session while delivering the spatial and temporal

guarantees. This is common to all broadcast and multicast protocols for ad hoc networks.

2.5 Simple Mobicast Solutions

To help clarify the inherent complexity of mobicast, we present first two simple mobicast

protocols that succeed and fail in different ways. In both protocols, mobicast packets are

always marked by the sender with a description of the packet delivery zone and a lifetime.

The first simple mobicast protocol is based on flooding. Once a node receives a

mobicast call from the application, it floods the mobicast message to the whole network.

The rest of the nodes in the network, in addition to participating in the flooding, behave

as follows: once a mobicast message is received, they schedule the delivery of the mobi-

cast message to the interested applications at the time when the delivery zone reaches

them. If a node finds itself to be never in the delivery zone, it drops the message after

having fulfilled its forwarding responsibility and after the message has expired, without

delivering the message to application layer. Even though this protocol can achieve the

spatiotemporal delivery specification (2.3), it is not desirable in at least two respects.

The first is that the global flooding has a large overhead, especially when the cumulative

(union) delivery zone area is much smaller than the span of the whole network. The

second is that the average slack time of the mobicast reception is too high, especially

when the mobicast delivery zone speed is much slower than the maximum information

propagation speed on the network.

The second protocol examined here employs a hold-and-forward strategy where

only nodes on the path of the delivery zone will participate. For convenience, we call it

the “Delivery-Zone Constrained” (DZC) protocol. The DZC protocol exhibits minimal

delivery overhead and has good slack time characteristics on “good networks,” but is

not entirely reliable. A good network is one that is compact and with no large holes.
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The compactness of and holes in a network will be formally defined later. For simplicity,

Figure 2.3 shows a mobicast example on a one-dimensional network with a rectangular

delivery zone moving at a constant velocity. The DZC protocol works as follows. Once

Figure 2.3: Greedy Hold-and-Forward Mobicast Protocol

a node receives a new mobicast packet, it first checks if the packet has expired. If not,

the node checks if it is in the current delivery zone for the packet. If it is, the packet is

delivered to the application immediately and is forwarded as soon as possible; otherwise, if

the node is not in the delivery zone but expects to be in it soon, like node H in Figure 2.3,

the packet is held and scheduled for delivery and forwarding at the time the delivery zone

reaches the node. In all other cases, nodes will ignore mobicast packets. The hold and

forward behavior of nodes in front of the running delivery zone makes the packet delivery

and forwarding “just-in-time,” and creates a self-sustained mobile message wave. Note

that only nodes that find themselves in the delivery zone path will join the forwarding.

This keeps the forwarding overhead at a minimum. However, the protocol fails to deliver

the mobicast message to delivery zone nodes that are not directly connected to the source

through a path fully contained in delivery zone’s path. This is illustrated in Figure 2.4.

The DZC protocol fails to deliver the mobicast message to node X because the nodes

outside of the delivery zone do not participate in the forwarding process.

The drawbacks of the DZC protocol indicate that in order to guarantee mobicast

delivery for all delivery zone nodes, some nodes that are never in the delivery zone must

still participate in message forwarding. An important question is: how to determine who

should participate without knowing the detail of the global network topology? Further-

more, potential holes in the network (as in Figure 2.4) show that two nodes close in

physical space can be relatively far away in terms of network hops. This presents a major

challenge for the timely delivery of mobicast messages, i.e., a mobicast protocol needs to

consider potential propagation latency in physical space due to long underlying network

paths in order to achieve timely delivery across the physical space. In the next section,
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Figure 2.4: DZC protocol cannot guarantee delivery

we further investigate these challenges under the backdrop of random sensor networks

and propose a reliable mobicast protocol.

2.6 A Reliable Mobicast Protocol

As we alluded earlier, a key challenge is the reliable mobicast delivery specified by (2.3)

on networks of arbitrary topology while using only limited information about the net-

work topology. In this section, we explain the key assumptions regarding the network,

describe the framework for a reliable mobicast protocol, and offer an analysis and proof

of reliability for this protocol. Our effort in deriving the protocol yields new insights

and concepts useful in the study of spatiotemporal information dissemination strategies

across sensor networks.

2.6.1 Sensor Network Model

The sensor network model for our protocol is as follows. The network is not partitioned,

and all nodes are location-aware, i.e., they know their location ~r with reasonable accu-

racy. The maximum clock-drift among the sensors in the system is assumed to be small

enough to be negligible. All nodes support wireless communication and are able to act as
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routers for other nodes. Local wireless broadcast is reliable, i.e., once a local broadcast

is executed, it will be heard by all its neighbors within latency τ1.

2.6.2 Forward-Zone Constrained Mobicast Protocol

In this section we propose a mobicast protocol featuring a “forwarding zone” that cruises

in front of the moving delivery zone at a certain prescribed distance. Only nodes in the

path of the forwarding zone will participate in the mobicast forwarding. We call this

protocol the “Forward-Zone Constrained” (FZC) mobicast protocol. In order to describe

the FZC mobicast protocol more concisely, we need to introduce some terminology. The

reader is reminded that the delivery zone, specified by the application , is an area where

the delivery of messages to the application takes place. Our protocol creates and uses a

“forwarding zone” F [t] that is moving at some distance ahead of the delivery zone, as

shown in Fig. 2.5. We call the distance between the forwarding zone and its associated

delivery zone the “headway distance”. The shape of the forwarding zone depends on the

shape of the delivery zone, and the topology of the underlying network. More specifically,

in our protocol, the shape of the forwarding zone is generated from a “seed shape” which

we call the “core” of the forwarding zone with a metric of the network topology. The

choice of the headway distance and the size of the forwarding zone guarantees that all

nodes entering the delivery zone will have received the mobicast message in advance, even

if some of them are not directly connected to any nodes already in the delivery zone. The

forwarding zone limits retransmission to a bounded space while ensuring that all nodes

that need to get the message will. We will discuss how the forwarding zone is determined

in the next section.

While nodes in a forwarding zone retransmit the mobicast message as soon as they

receive it for the first time, the nodes in front of the forwarding zone enter a “hold-and-

forward” state whenever they hear the mobicast message. They will forward the message

only after becoming members of the forwarding zone. As we pointed out earlier, the

action of the nodes in the hold-and-forward zone implements the “just-in-time” feature

of the mobicast delivery policy while keeping the average slack time tslack small. This

behavior results in a virtual “hold-and-forward zone” in front of the forwarding zone, as

also indicated in Fig.2.5.

When a request 〈m,Z[t], Ts, T 〉 is presented to the mobicast service, it constructs

and broadcasts a mobicast message to all the neighbors at time Ts. A mobicast packet m̃

contains the following information: a unique message identifier, a delivery zone descriptor,

a forwarding zone descriptor, the session start time Ts, the session lifetime T , and the

message data m. The unique message identifier is created from the combination of the
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Figure 2.5: Mobicast example

location of the source and the time Ts of the request. The delivery zone descriptor

encodes the original location, the shape of the zone, and its velocity. The forwarding

zone descriptor encodes the shape and the original location of the forwarding zone, which

is computed using some knowledge about the network and the shape of the delivery zone.

We will discuss in detail the computation of the forwarding zone in later sections.

The FZC mobicast protocol is described in Fig.2.6. While not explicitly shown in

the code, this mobicast protocol exhibits two phases in its spatiotemporal behavior. The

first is an initialization phase, in which the nodes are trying to “catch-up” with the spatial

and temporal demands of the mobicast. When a node in the path of the forwarding zone

receives a message for the first time, it rebroadcasts the message as soon as possible. This

phase continues until a stable forwarding zone travelling at a certain distance ds ahead

of the delivery zone is created.

The second is a cruising phase where the forwarding zone moves at the same

velocity as the delivery zone. The protocol enters this phase after the delivery zone and

the forwarding zone reach the stable headway distance ds. This cruising effect is achieved

by having the nodes at the moving front of the forwarding zone retransmit the mobicast

message in a controlled “hold-and-forward” fashion to make the forwarding zone move

at the velocity ~v. The initialization and the cruising phases together establish mobicast

property (2.3) with tinit being the time required by the initialization phase.

In the next section we turn our attention to explaining how the forwarding zone

and its stable headway distance are computed, what is the value of tinit given a specific
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Upon hearing a mobicast message m̃ at time t.
——————————

1.if (m̃ ) is new and t < t0 + T
2. if (I am in F[t]) then
3. broadcast m̃ immediately ; // fast forward
4. if (I am in Z[t]) then
5. deliver the message data D to the application layer;
6. else
7. compute the earliest time tin for me to enter the delivery zone;
8. if tin exists and tin < t0 + T
9. schedule delivery of data D to the application layer at tin;
10. end
11. end
12. else
13. compute the earliest time t′ for me to enter the forwarding zone;
14. if t′ exists
15. if t0 ≤ t′ ≤ t
16. broadcast m̃ immediately ; // catch-up!
17. else if t < t′ < t0 + T
18. schedule a broadcast of m̃ at t′; //hold and forward
19. end
20. end
21. end
22. end

Figure 2.6: The FZC mobicast protocol

mobicast request and the spatial properties of the underlying network, and how the

protocol delivers on its guarantees.

2.7 Reliability Analysis

The key elements in the FZC mobicast protocol (Fig.2.6) are the forwarding zone and its

headway distance ds. As we mentioned earlier, the purpose of the forwarding zone and its

headway distance is to ensure that all the nodes entering a delivery zone will receive the

mobicast message in advance, while minimizing the total number of nodes participating

in each mobicast session.

The shape of the forwarding zone depends on the following three factors: the shape

of the delivery zone, the spatial distribution of the network nodes, and the topology of the



26

network. Fig.2.7 illustrates this for a rectangular mobicast delivery zone (solid rectangle).

The source node S initiates a mobicast. For node A to be able to deliver the message

(to the application layer) when it becomes a member of the delivery zone, it must have

received the message by that time. In scenario Fig.2.7(a), the message is required to have

gone through G in order for it to reach A. This requires A and G to be in the forwarding

zone together at some point in time before A can receive the message. Otherwise, the

mobicast message will not be forwarded to A, since A is in a “past” location comparing to

G (with respect to the delivery zone velocity direction). On the other hand, if the network

connectivity is “denser,” as in Fig.2.7(b), the width of forwarding zone represented by the

dashed rectangle, can be smaller. Furthermore, in Fig.2.7(a) the height of the forwarding

Figure 2.7: Spatial and connectivity configuration of the network influences the size of
the forwarding zone

zone has to be bigger than the height of the delivery zone so as to include D. Otherwise,

nodes A,B and C will be virtually disconnected from the rest of the network nodes,

because node D will not participate in the routing process. This is just one special

example. The question we would like to address is, in an arbitrary sensor network, how

does one determine the forwarding zone and its headway distance for a specific delivery

zone?

We found that the minimum size, shape, and headway distance for a mobicast

protocol that provides a strong spatial and temporal delivery guarantee (in the presence of

an arbitrary network topology) depend on two network metrics we call “∆-compactness”

and “Γ-compactness.” These two metrics capture the spatial and temporal information
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propagation properties of geometric networks, and are related to three of the following

four distance metrics between two nodes i and j in a network:

• Euclidean distance, denoted as d(i, j);

• Shortest network distance, in terms of smallest network hops, denoted as h(i, j);

• Shortest Euclidean path distance, in terms of the shortest Euclidean path length,

denoted as D(i, j).

• S2 distance, defined as Smallest Euclidean path length among the set of Shortest

network paths between nodes i and j, denoted as d̃(i, j). We will call the corre-

sponding path S2 path.

Figure 2.8: Three network distances

Note that a shortest hop network path is not necessarily a shortest Euclidean network

path and vice versa. A shortest Euclidean network path is not necessarily a shortest S2

path and vice versa. Figure 2.8 illustrates such an example. The solid edges in Figure 2.8

represent the network connections. The numbers along the edges represent the Euclidean

lengths of the corresponding distances. The shortest network paths between nodes A and

B include ACB and AFB since both of them are 2 hops. The shortest Euclidean network

path between nodes A and B is ADEB, whose length is 2+
√

2 (Euclidean unit). However,
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the S2 path between nodes A and B is AFB, even though its length is
√

3 (Euclidean

unit), which is greater than the length of ADEB. The unique definition of S2 effectively

connects the world of Euclidean geometry and the world or communication topology. Its

uniqueness makes S2 distance play a key role in our spatiotemporal multicast protocols.

Next we first formalize the network compactness metrics and discuss how they

relate to the computation of the forwarding zone and its headway distance. Then we

show that our protocol provides the desired spatiotemporal guarantees given the proper

choice of the forwarding zone and its headway distance.

2.7.1 Computing the Forwarding Zone

In order to describe how the minimum forwarding zone can be determined for a spe-

cific delivery zone in an arbitrary network, we first introduce the definition of the “∆-

compactness” measure for the network.

∆-compactness

Given a geometric graph/network G(V,E), ∆-compactness seeks to quantify the relation

between the Euclidean distance and the S2 distance among network nodes. We denote

the Euclidean distance to S2 distance ratio between two nodes i and j as δ(i, j), i.e.,

δ(i, j) =
d(i, j)

d̃(i, j)
(2.6)

We call δ(i, j) the pairwise “∆-compactness” between nodes i and j. The ∆-compactness

of a geometric graph G(V,E) is defined as the smallest ∆-compactness of all node pairs

of the network:

δ = min
i,j∈V

{δ(i, j)} (2.7)

In a sense, ∆-compactness describes the worst case “distortion” of the shortest

paths in a network. Figure 2.9 shows ∆-compactness value of four different networks.

Note that ∆-compactness has a close relation with the terms “dilation”[60], “span-

ning ratio”[19], and “stretch-factor”[127] used in the graph and computational geometry

community. “Dilation” is defined as the maximum ratio between Euclidean path distance

and geometric distance,

Dilation = max
i,j∈V

{D(i, j)

d(i, j)
}
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Figure 2.9: ∆-compactness of various networks

while ∆-compactness is defined as minimum ratio between the geometric distance and the

corresponding S2 distance. They have more than an inverse relationship. For instance,

for nodes A and B in Figure 3.2,

path ACB contributes to the computation of ∆-compactness while path ADEB

(which is shorter than ACB in Euclidean measure) contributes to the computation of

dilation. Note that ∆-compactness is computed on the set of shortest network paths

(path of minimum hops) only, while dilation is computed on the set of all paths. Path

ADEB has 3 hops and is not a shortest network path between A and B, even though

it is a shortest Euclidean network path2 between them. For convenience, we call the

inverse of ∆-compactness ∆-dilation . One can see that the ∆-dilation of this graph

is 4/2
√

2 = 1.414, while the dilation is 3.56/2
√

2 = 1.26. (Reader can verify that the

pairwise dilations of other pairs of nodes are smaller than 1.26.)

2The path lengths are

EuclideanLength(ACB) = 4

EuclideanLength(ADEB) =
√

3 + 2
√

2 − 1 = 3.56
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Figure 2.10: Dilation and ∆-compactness

Theorem 1 Let i, j be any two nodes in a network with ∆-compactness δ. Let E(i, j, δ)

be an ellipse using i, j as two foci and with eccentricity δ. There is at least one shortest

path between i and j inside the ellipse E(i, j, δ).

Proof: We prove this theorem by contradiction. Assume the theorem is not true.

There must be at least one pair of nodes i and j, whose shortest paths all have at least

one vertex outside the ellipse E(i, j, δ). Using the fact that for all points k on the ellipse,

d(i, k) + d(j, k) = d(i, j)/δ, it is easy to prove in this case

d̃(i, j) >
d(i, j)

δ

that is

δ >
d(i, j)

d̃(i, j)

this directly contradicts the definition of ∆-compactness (2.7).

This theorem is very useful for limiting the forwarding region while guaranteeing

point to point message delivery in a geometric network. In our case, this metric helps

decide the shape and size of the forwarding zone, which turns out to relate to a notion

called “k-cover.”
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K-cover

We introduce the notion “k-cover” of a polygon to simplify the mathematical description

of the forwarding zone. The k-cover of a convex polygon P is defined as the locus of all

points p in the plane for which two points q and r in the polygon P exist such that

d(p, q) + d(p, r) ≤ kd(q, r) (2.8)

where the d(x, y) is the distance between points x and y.

Theorem 2 Let i, j be two nodes in a network with ∆-compactness value δ, and assume

that i and j are inside a convex polygon P . The 1
δ
-cover of P contains at least one shortest

path between i and j.

Proof: The proof is similar to that of theorem (1). Proof by contradiction. Assume

that none of the shortest network paths between nodes i and j is inside the 1
δ
-cover of P .

That means for any shortest network path between i and j, there is at least one node z

on the path that is outside of the 1
δ
-cover. Then, from the definition of k-cover we know

that

d(i, z) + d(z, j) >
1

δ
d(i, j) (2.9)

We also have

d̃(i, j) ≥ d(i, z) + d(z, j) (2.10)

This leads to

δ >
d(i, j)

d̃(i, j)
(2.11)

This contradicts the definition of ∆-compactness .

One may view an ellipse to be a special case of k-cover. An ellipse of eccentricity

e is a 1
e
-cover of the line segment between the two foci of the ellipse. In other words, the

k-cover is a generalization for the ellipse.

Henceforth, for convenience, we will also call a k-cover for a polygon P “a cover

for polygon P with cover factor k”.

The Forwarding Zone

Given a mobicast delivery zone of convex shape P , if the mobicast is executed on a

network with ∆-compactness value δ, then we choose the shape of the forwarding zone’s

core to be P and the shape of the forwarding zone to be the 1
δ
-cover of its core. In other
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words, the shape of the forwarding zone is a cover for the delivery zone with a cover factor
1
δ
. In this case, we will also say the forwarding zone factor is 1

δ
. For a given delivery zone,

the bigger the forwarding zone factor is, the bigger the forwarding zone is.

Corollary 1 Let i, j be two nodes in the core of a forwarding zone on a network whose

∆-compactness is δ. The forwarding zone contains at least one shortest path between i

and j.

Proof: This results from theorem (2) and the construction of the forwarding zone.

2.7.2 Computing the Stable Headway Distance

The headway distance tells the protocol how far ahead to prepare for the message delivery

in order not to miss the delivery deadline as a result of some unexpected distortions on

related network paths. It should be intuitively clear that a network with more “indirect”

network paths requires a longer headway distance than one whose paths are more “direct.”

In order to capture this notion more precisely, we introduce the “Γ-compactness” metric.

Γ-compactness

Γ-compactness quantifies the relation between the shortest network distance and the

Euclidean distance among the nodes in a geometric network. We define the Γ-compactness

of a geometric graph G(V,E) to be the minimum ratio of the Euclidean distance to the

shortest network distance between any two nodes in the network, i.e.,

Γ = min
i,j∈V

d(i, j)

h(i, j)
(2.12)

Intuitively, if a network’s Γ-compactness value is γ, then any two nodes in the network

at a distance d have a shortest path no greater than d/γ hops.

Theorem 3 Let N be a network with a Γ-compactness value γ and let τ1 be its maximum

1-hop communication latency. The lower bound of the maximum message delivery speed

over the space on N is γ
τ1

.

Proof: Let d(i, j) be the distance between two arbitrary nodes i and j in the network.

We know that the shortest network path h between the two nodes is bounded by

h(i, j) ≤ d(i, j)

γ
(2.13)
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We also know that a message sent from one node to another node h-hops away takes

no longer than hτ1 if each intermediate node forwards the message immediately after

receiving it. Let t be the time it takes for the message to go from i to j. In this case we

have

t ≤ h(i, j)τ1

From this we know that the average speed v of this information propagation over distance

d(i, j) is

v =
d(i, j)

t
≥ d(i, j)

hτ1

≥ γ

τ1

(2.14)

Note that the bound γ
τ1

is not dependent on d(i, j). This inequality (2.14) is true

for any two nodes in any network with Γ-compactness value γ, when all nodes in the

network relay the message as soon as possible. That means γ
τ1

is a lower bound on the

maximum spatial message delivery speed on networks with Γ-compactness value γ.

Theorem (3) states that, given a geometric network, there is a clear limit to how

fast spatiotemporal information dissemination can be achieved. For instance, given a

geometric network with Γ-compactness value γ, one can not guarantee the delivery zone

to move at a speed higher than γ
τ1

in all areas.

2.7.3 The Headway Distance

The stable headway distance ds must be large enough to ensure that the message has

been received when the delivery zone reaches a node, i.e., tin > tr is achieved for all

nodes.

Theorem 4 Let Sd be the maximum distance between the boundary points of the delivery

zone, v be the speed of the delivery zone, τ1 be the 1-hop maximum network latency of the

network and γ be its Γ-compactness . If we let ds = vτ1bSd

γ
c, then all nodes in the core

of the forwarding zone will have received the the mobicast message by the time delivery

zone reaches them assuming there is at least one node in the core that has received the

message.

Proof: Let us consider a snapshot of the mobicast at some time t and the core of the

current forwarding zone. Let i denote the node in the core that already has the message.

Its distance to all other nodes in the core is less than Sd, because Sd is the maximum size

of the delivery zone, as well as that of the core. The longest of the shortest network paths

from i to all other nodes in the core of is less than bSd

γ
c hops. In turn, at most τ = bSd

γ
cτ1

time is needed for a message to traverse the core if all nodes forward the message as soon
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as possible. We can conclude that after τ , all nodes in the core of the forwarding zone

will get the message, because in the protocol all nodes inside the forwarding zone forward

mobicast messages as soon as possible, and there is always a shortest path inside the

forwarding zone for any two nodes inside its core. Since the speed of the delivery zone is

v, a distance ds = vτ1bSd

γ
c takes exactly τ time to be traversed.

Hence, it is true that all nodes in the core of the forwarding zone will have received

the the mobicast message when the delivery zone reaches them, assuming at least one

node in the core has received the message and given the headway distance ds = vτ1bSd

γ
c.

Given the headway distance d and the shape F of the forwarding zone, a node

can easily determine the current forwarding zone using velocity v, current time t, sending

time t0 and the source location r0. Note that t0 and r0 can be obtained from the mobicast

protocol message header.

2.7.4 Duration of Initialization Phase

As we pointed out earlier, it is in the cruising phase that the mobicast protocol guarantees

on-time delivery. In the initialization phase, the timing constraint of mobicast is realized

in a best-effort manner. It is possible that in the initialization phase, some nodes may

not get the messages in time. The initialization phase continues until one node inside the

core of the forwarding zone that is ds ahead of the delivery zone receives the mobicast

message. From theorem (4), we know that after this the timing constraint of mobicast is

always satisfied.

The time it takes for the mobicast protocol to enter the cruising phase, tinit, is re-

lated to the needed stable distance, the delivery zone speed, and the maximum admissible

spatial propagation speed of the network.

Theorem 5 Let ds be the required headway stable distance between the forwarding zone

and the delivery zone. Let w be the width of the delivery zone. Let v be the speed of the

delivery zone and u be lower bound on the maximum message delivery speed achievable

in the network. The mobicast protocol initialization time tinit is no greater than (ds+w)
u−v

Proof: In the protocol, the nodes in the forwarding zone and between the forward-

ing zone and the delivery zone retransmit the message immediately the first time they

receive it. As such, the protocol achieves a maximum message propagation speed vmax

in this phase. This message propagation speed relative to the delivery zone is vmax − v.
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Meanwhile, the end-to-end distance between the delivery zone and the core of the for-

warding zone is ds + w, which can be covered by a message propagating at the speed

vmax − v in t = ds+w
vmax−v

time. When a message from the delivery zone reaches the core of

the forwarding zone ds distance ahead of the delivery zone, by definition the initialization

phase is over. Hence we have

tinit ≤ t =
ds + w

vmax − v
≤ (ds + w)

u − v
(2.15)

in the above we also used u < vmax, which by definition is true.

The Spatiotemporal Guarantees of the Protocol

The spatiotemporal guarantees of the FZC mobicast protocol (2.6) are addressed by the

following theorem:

Theorem 6 If at any instant of time in a mobicast session, its (user-defined) delivery

zone covers at least one node in the network, our mobicast protocol delivers property (2.3)

with

tinit ≤
vτ1bSd

γ
+ wc

γ
τ1
− v

.

Proof: If a delivery zone covers at least one node in the network at any instant of

time, then whenever the last node in a delivery zone is leaving, there must be another

node entering it. The same is true for the core of the forwarding zone, because it is of the

same shape as the delivery zone and moves on the same path. If a node in the core of the

delivery zone receives the mobicast message, it will always be able to pass the message

to all other nodes on the path because our protocol and choice of the forwarding zone

guarantees that if two nodes ever appear together in the same core of the forwarding

zone, one having the message means the other will get it too.

By using theorems (4) and (5), it is easy to see that property (2.3) is satisfied.

2.8 Discussion

For reliable mobicast, we introduced two network compactness metrics to help us choose

the right forwarding zone and its headway distance for a given delivery zone so as to
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achieve the mobicast delivery guarantee without unnecessary flooding. These compact-

ness values must to be computed for supporting the FZC mobicast protocol. Calculating

them involves computing the shortest path and Euclidean distances of each pair of nodes

in a given network. The all-pair shortest path of a graph G(V,E) can be computed

in O(V E log V ) time by using Johnson’s algorithm [42]. All-pair distance can be com-

puted in O(V 2) time. Therefore, we can compute the Γ-compactness of the graph in

O(V E log V ) time. ∆-compactness can also be computed in O(V E log V ) time. It is

not feasible for individual sensor nodes to compute these values in a large network. A

central server may be used to collect all the location and connectivity information, do the

computation and use one broadcast to inform all the nodes this value. However, for the

local compactness values, it is possible for the sensor nodes to compute the metric values

as they involve only a relatively small number of nodes in their respective neighborhood.

While we chose the shape of the forwarding zone to be a 1
δ
-cover of the shape of

the delivery zone, this was done only for the purpose of analysis. Computing an exact

k-cover for an arbitrary polygon P can be difficult. Yet one can always choose some

approximation techniques such as using the k-cover of P ’s bounding box or bounding

circle, which is computationally much simpler, but still has the required property that

a shortest path between two nodes inside a specific instance of the delivery zone exists

in the cover. However, the resulting forwarding zone is bigger than necessary, and thus

may entail more re-transmissions for the same delivery goal. We should note that in the

FZC protocol the forwarding zone only needs to be computed once by the sender. The

nodes that receive the mobicast message only need to translate the forwarding zone with

respect to their distances from the sender.

An important aspect of mobicast is that applications have control over the velocity

of the information dissemination over the space. This brings many new spatial and

temporal coordination and interaction possibilities across a network. For instance, an

application might use a mobicast to send some information to the east at a speed of

40 miles per hour. One second later, it may detect a change (e.g., there is a change

in the intruder’s expected path) and may want to send the new information and stop

further propagation of the old information in the network. As alluded to earlier, stopping

previous information dissemination is impossible in conventional protocols which have

explicit or implicit “as-soon-as-possible” delivery semantics. Yet, in mobicast, a “stop

that message” message can be sent at a much higher speed, say 120 miles per hour,

(or even more than 1000 miles per hour which we found possible in our simulation, see

Chapter 3), with a same-size delivery zone along the previous path. Clearly, this new
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mobicast recall message can easily catch up with its target message which propagates at

a much lower speed.

Furthermore, for simplicity of presentation, our protocol essentially carries out

flooding inside the forwarding zone. If the nodes have an accurate picture about the loca-

tions of their one-hop or two-hop neighbors, one can reduce the number of re-transmissions

by using this knowledge in a manner similar to techniques proposed for improving broad-

cast efficiency [136, 145]. In a probabilistic guarantee scenario, one may also use proba-

bilistic retransmission-reduction techniques such as the one proposed in [129]. A review

of these and other related methods can be found in [162]. Our protocol, by only using

the compactness values of the network, tries to use minimum number of bits to capture

the relevant topology. If the nodes have local knowledge about the network topology in

the neighborhood, (e.g., know the locations of all nodes within certain distance) more

communication efficient mobicast protocols can be designed.

2.8.1 Additional Related Work

Mobicast is motivated by the need for coordination activities related to moving entities

in the physical environment. In [31], Cerpa et. al. proposed a Frisbee model in which

an active sensing zone moves through the network along with the target. [108] and [38]

proposed several data service protocols for improving the accuracy of distributed sens-

ing in mobile environments. Both protocols entail communication schemes that push

information about the object to the nodes close the projected location of the object in

the future. The EnviroTrack group management protocol [17] dynamically creates and

maintains a group that tracks mobile entities in the environment. [53] proposed localiza-

tion and dynamic tracking algorithms. However, neither of the aforementioned projects

include communication mechanisms geared toward meeting explicit spatiotemporal con-

straints related to mobility. Mobicast can be viewed as complimentary to these projects

by providing a convenient underlying communication mechanism that allows applications

to push information with specified spatiotemporal requirements.

Mobicast has a spatial multicast component similar to geocast, a multicast paradigm

proposed by Navas and Imielinski [128]. In a geocast protocol, the multicast group mem-

bers are determined by their physical locations. The initiator of a geocast specifies a fixed

area for a message to be delivered, and the geocast protocol tries to deliver the message

only to the nodes in that area. Ko and Vaidya [99] investigated geocast in the context

of mobile ad hoc networks. Other mechanisms ([155, 110, 18]) have been proposed to

improve geocast efficiency and delivery accuracy in wireless ad hoc networks. Mobicast

differentiates itself from geocast by a mobile delivery area rather than a fixed one, and
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gives application developer a powerful tool for controlling information dissemination in

the spatiotemporal domain rather than just the spatial domain. As a mobicast protocol,

FAR uses face routing to achieve high space delivery guarantee and uses timed forwarding

for controlling information propagation speed.

2.8.2 New Challenges

We have proved that our FZC mobicast protocol is able to achieve the strong mobicast

delivery guarantees specified in Section 2 in theory, given a proper choice of the forwarding

shape and its headway distance and under a set of necessary assumptions. Note that for

the FZC mobicast protocol, the forwarding zone is the 1
δ
-cover of the delivery zone. A

small value for ∆-compactness implies a relatively big mobicast overhead, defined as the

number of nodes that participate in the mobicast message forwarding. Note also that in

the previous protocol, the network compactness values are used because of the need for

strong delivery guarantees, captured by the concern with the worst case path distortion

in a network rather than the average case. Several new questions arise: (1) What is the

typical compactness value for common sensor networks? (2) Can we make a network

more compact to support better spatiotemporal communication? (3) The protocol uses

the worst case compactness among all paths, as it was geared towards 100% delivery

guarantee. This choice might be pessimistic if the worst case is rare. How will an

optimistic choice of forwarding zone perform in reality? (4) Can we use a local notion of

compactness and can the mobicast session and the forwarding zone be adaptively adjusted

to the local compactness values? We turn our attention to addressing these questions in

the next chapter.
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Chapter 3

Properties of Random Geometric

Network and Alternative Mobicast

Protocols

In this chapter, we first investigate the compactness properties of random sensor net-

works. Using the insights gained from this investigation we propose alternative mobicast

strategies and evaluate them via network simulations.

3.1 The Statistical Compactness Properties of Ran-

dom Unit Disk Graphs

In the previous chapter, we showed that a network with higher compactness admits a

more economic FZC mobicast protocol, i.e., fewer nodes need to participate in mobicast

forwarding. Notice that ∆-compactness is the minimum ratio of the Euclidean distance

and the S2 distance, which accounts for the worst case “indirect” path among all nodes.

An immediate question is, how typical is the worst case scenario? The answer to this

question is very important to applications which do not need 100% delivery guarantee.

If most of the pairwise ratios among nodes are much larger than the minimum, then a

choice of a much smaller forwarding zone may be able to practically guarantee mobicast

delivery most of the time with only a small number of participating nodes. Energy can be

saved by slightly sacrificing the delivery guarantee. This is desirable for sensor networks

as they are typically resource limited and for applications that are not very strict on

delivery guarantees.
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Motivated by these observations, we carried out several experiments to see the

potential distribution of the pairwise ∆-compactness value δ(i, j) in randomly distributed

networks. We found that, indeed, in random networks of uniform distribution, most

δ(i, j) are close to 0.8 while the minimum δ(i, j) is close to zero. Figure 3.1(a) shows
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Figure 3.1: Pairwise Compactness distribution

the distribution of pairwise compactness value δ(i, j) in 10 different randomly generated

uniformly distributed networks. Figure 3.1(b) shows the average case (averaged over the

above 10 network instances) in a cumulative distribution view with standard deviation

bars. Note that more than 90% of node pairs have a δ(i, j) greater than 0.6, while

the minimum δ(i, j) (i.e., the value of ∆-compactness of the network) is less than 0.2.

Note also that a mobicast protocol using ∆-compactness value δ = 0.2 to construct its

forwarding zone results in a forwarding zone size 25 (= (1/δ)2) times bigger than the

delivery zone, while using δ = 0.6 results in a forwarding zone less than 3 times bigger

than the delivery zone. So more than 200% ∼( 1/0.2−1/0.6
1/0.6

) of the forwarding cost may

be saved by slightly sacrificing the delivery guarantee if one uses δ = 0.6 rather than the

minimum pairwise compactness value in the construction of the forwarding zone. (Note

that in the above calculation we use a linear rather than a quadratic relation of 1/δ

in estimating overhead because, while the forwarding zone size is quadratic to 1/δ, its

integral volume over the path of a mobicast is proportional to 1/δ).

These results suggest three approaches to improve the efficiency of mobicast. The

first is to design a sensor network with high compactness to support spatial temporal

communication. The second is to use a smaller forwarding zone than the one needed for

an “absolute” delivery guarantee. The third is to use a protocol that adapts to the local

compactness conditions rather than the global one. We investigate and examine these

approaches in the next few sections.
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3.2 Impact of Node Density on Network Compact-

ness

As we pointed out earlier, for a specific delivery zone, the more “compact” a network is,

the smaller the forwarding zone needs to be. An immediate question is, can we design

the sensor network so as to make its ∆-compactness value as close to the maximum value

of one as possible? Since we want to continue with the random distribution assumption,

there is only one design dimension left: the sensor node density. Note that we define

sensor density as the average number of immediate network neighbors for each node,

rather than number of nodes in a unit area.

Intuitively, the higher the sensor density, the “better” connected the sensor network

is and the larger the corresponding network ∆-compactness . To verify this observation,

we designed the following experiment. We scatter 800 sensors uniformly distributed in a

1000x400 rectangular area and select only configurations that are not partitioned for a

communication range of 35. (Note that because of random distribution, the network is

sometimes partitioned. 35 is close to a critical range for connectivity in our experimental

configuration). For the surviving configurations, we compute the values of ∆-compactness

assuming communication range values between 35 and 90. Note that in this experiment

we chose to vary the communication range rather than to vary node density directly by

adding more nodes to the area. The reason we chose to vary the communication range as

a mechanism to vary the relative sensor density is because this does not change the actual

location configuration of the sensors in the experiment, which makes the corresponding

compactness value comparison more meaningful.

The above procedure was repeated for five different configurations and the results

are presented in Figure 3.2. Figure 3.2(a) shows the average (across the 5 runs) ∆-

Dilation (defined as the inverse of ∆-compactness ) versus the change of communication

range. Figure 3.2(b) shows a corresponding figure with the average node degree as the

x-axis.

The results show that the network compactness indeed increases when the node

density increases. But surprisingly, there appears to have a saturation point at a moderate

density. The network exhibits a rapid increase in compactness (rapid decrease in ∆-

dilation ) when the average number of neighbors changes from 8 to 15 and then starts

to saturate. This appears to be an area to increase the compactness of the network with

highest efficiency for these randomly distributed networks. This may provide a good

heuristic for deploying mobicast/communication friendly sensor networks. For instance,

if one wants to monitor a area of 1000x1000 square meters using sensors of average range
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Figure 3.2: (a)∆-Dilation vs Range, (b)∆-Dilation vs Average Number of Neighbors

50 meters, the total number of sensors should be about 1000×1000
π502 ×15 = 1910 for a random

scattering deployment method. One can also see that after a certain threshold (15 ∼ 20

neighbors in this case), increasing the node density no longer introduces much benefit in

terms of improving compactness.

In addition, we also examined the value of the majorities of the pairwise ∆-

compactness and how they change with node density. The lower curve in Figure 3.2(a)

and (b) shows how the lower bound of the top 99% of the δ(i, j) of the network changes

with node density. One can see that the occurrence of the lower extreme compactness

value is a rare event. This further suggests that an optimistic choice of k-cover for the

forwarding zone is a good mobicast strategy in practice.

3.3 An Optimistic Mobicast Protocol

To verify our observations about the potential benefit of optimistic mobicast on random

networks with uniform distribution, we implemented an extended mobicast protocol on

the ns-2 network simulator. Our implementation was extended with a mode to let the

user specify the parameter (delta) for determining the forwarding zone. This allows us

to test the trade-off between the message1 forwarding cost and the delivery guarantee.

The header of our mobicast protocol packet contains the following information:

- message type - delivery zone size (radius)

- sender packet sequence number - delivery zone velocity

1Note that we use “packet” and “message” interchangeably here. In the simulation, we only deal with
cases where a mobicast message can be fit in one mobicast packet.
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- sender location (x and y coordinates) - delta factor

- sending time - gamma factor

- message lifetime

Our protocol only provides support for a circular delivery zone. We also assume

that the initial delivery zone is centered at the sender. One may augment the header with

the information about the initial delivery zone center to allow applications to explicitly

set the initial delivery zone location. Because this is not essential for our validation and

verification test purposes, we simply default the sender location as the center of the initial

delivery zone.

Upon hearing a optimistic mobicast message m̃ at time t.
1.if (m̃ ) is new and t < T
2. cache this message
3. if the value of the delta field is zero
4. use local knowledge of delta for later computation
5. else

6. use the value in the packet for later computation
7. end

8. if (I am in current forwarding zone F[t]) then

9. broadcast m̃ immediately ; // fast forward
10. if (I am in current delivery zone Z[t]) then

11. deliver the message data D to the application layer;
12. else

13. compute the earliest time td[in] for me to enter the delivery zone;
14. if td[in] exists and td[in] < T
15. schedule delivery of data D to the application layer at td[in];
16. end

17. end

18. else

19. compute the earliest time tf [in] for me to enter the forwarding zone;
20. if tf [in] exists
21. if t0 ≤ tf [in] ≤ t
22. broadcast m̃ immediately ; // catch-up!
23. else if t < tf [in] < T
24. schedule a broadcast of m̃ at tf [in]; //hold and forward
25. end

26. end

27. end

28. end

Figure 3.3: Optimistic Mobicast Protocol

The mobicast protocol is depicted in Figure 3.3 (modified from Figure 2.6, with

additional compactness information processing). In this presentation we omit details

about the geometric computation involved in determining if and when a node is in a

forwarding zone and delivery zone, because it is not conceptually essential. The mobicast

protocol also maintains a transient message cache (it is periodically cleaned by throwing

out expired messages). Figure 3.4 is a state transition diagram for the complete protocol.
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T : Message expiration time; t: Current Time;
tf [in]: Earliest time to be in the forwarding zone;

td[in]: Earliest time to be in the delivery zone

Figure 3.4: State Transition Diagram of Implemented Mobicast Protocol

To minimize the dependence of simulation results on the network configuration

used, our experiments were run on five different connected network configurations gen-

erated via uniformly distributing 800 sensor nodes on a 1000x400m area. Figure 3.5(b)

shows one such configuration example used. The network connectivity pattern is shown

Figure 3.5(a). One node close to the left is chosen as the mobicast sender. Our results

are averaged over multiple runs on five network configurations. For all runs, the delivery

zone velocity is 40m/s, from left to right, and each mobicast session has a lifetime of 20s.

For all the configurations used, the critical communication range for all the nodes to form

a connected graph is between 30 to 35 meters. We chose the delivery zone radius to be

45 meters.

We designed two sets of experiments. The first investigated how the mobicast

delivery ratio and forwarding overhead changes with the size of the forwarding zone on

these uniformly distributed networks. Delivery ratio is defined as the percentage of nodes

in the delivery-zone path that received the mobicast message. Forwarding overhead is

defined as the number of extra message transmissions per node delivery, i.e., the total

number of retransmissions divided by the number of delivery zone nodes that actually re-

ceived the message. Figure 3.6(a) shows the simulation results of delivery ratio versus the
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(a)
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Figure 3.5: Optimistic Mobicast Simulation Example

normalized forwarding zone size (the actual k used in forwarding zone computation.) One

can see the delivery ratio improves when the forwarding zone becomes bigger. The high

variance in delivery ratio value is due to the random distribution of holes across different

configurations, which causes each mobicast session to stop prematurely at different loca-

tions across different configurations. The limited number of network configurations used

also contribute to this. Figure 3.6(b) shows how the forwarding overhead changes with

the forwarding zone factor. Clearly, the message forwarding overhead increases almost

linearly with the increase of forwarding zone factor.

The second set of simulation experiments was designed to investigate how the de-

livery ratio is affected when the network becomes more compact. Due to the limited

scalability of ns-2, we again use the change of the communication range to change com-

pactness, rather than by adding more nodes. In the experiment, the delivery zone radius

was 45 meters. The communication radius varied from 35 to 45 meters. We collected

results from multiple runs of mobicast using different forwarding zone factors over the

five configurations and those results are summarized in Table 3.3.

From these results we can see that indeed the delivery ratio increases when the

node density increases, and when the size of the forwarding zone increases. Again the

high variance in the value is due to the random distribution of holes across different

configurations and each mobicast session stops prematurely at different locations across
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Figure 3.6: (a) Delivery ratio vs Forwarding Zone Size; (b) Normalized Forwarding Over-
head vs Forwarding Zone Factor

Table 3.1: Delivery ratio v.s. node density and forwarding size
R \ δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4

35 0.69± 0.29 0.78± 0.29 0.80± 0.28 0.90± 0.21 0.90± 0.21 0.99± 0.10 1
40 0.90± 0.21 0.90± 0.21 0.90± 0.21 1 1 1 1
45 0.998± 0.003 1 1 1 1 1 1

different configurations. These results also demonstrate that the forwarding zone in the

FZC protocol (based on the value of worst case network compactness) is indeed sufficiently

large to guarantee the reliable delivery on a connected network of random topology.

Considering communication speed is much faster than the delivery zone speed in

our simulation, we let the headway distance the zero in these experiments. Note that in

this case, when δ = 1, the FZC protocol reduces to DZC protocol. In the above data, we

can see in high network density, the greedy DZC protocol performs very well, achieving

near 100% delivery.

In our simulation, we also examined the timeliness of mobicast delivery on these

networks. More specifically, we wanted to see how far ahead a node received the mobicast

message before entering the delivery zone (or how late after entering the delivery zone).

Figure 3.7 shows one typical result of a mobicast session, when the communication range

is 35m, the delivery zone radius is 45m, δ is 0.7, ds is 0, and the mobicast speed is 40m/s.

Figure 3.7(a) shows the mobicast packet reception time relative to the sending time for

all the nodes that were ever in the delivery zone. The solid line is the expected reception

deadline for nodes in each location, i.e, the first time they are expected to enter the

delivery zone. The star dotted line is the actual reception time of the mobicast packet for

each node. For comparison, we also included a simulation result (the diamond dotted line)
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of a spatial multicast on the same path with “as soon as possible” delivery. (Note that

in this case the spatial propagation speed exceeds 1600m/s, i.e., 800m is traversed in less

than half a second). We can clearly see the temporal locality property of mobicast. The

packet reception time is very close to the deadline specified by the delivery zone semantics.

These results also show the benefit of mobicast over a more conventional spatial multicast
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Figure 3.7: Slack Time of Mobicast Delivery

like geocast, which assume implicit as-soon-as-possible temporal delivery semantics, i.e,

using mobicast one can control information propagation speed to better satisfy application

needs without overwhelming spatiotemporally unrelated nodes. We believe this “just-

in-time” delivery nature of mobicast is a powerful mechanism for optimizing resource

utilization for related applications in sensor network.

3.4 Adaptation to Local Compactness

So far we have discussed two ways to improve mobicast in uniformly distributed sensor

networks: (1) Making the network more compact by choosing an optimal node density;

(2) Using an optimistic choice for the forwarding zone size by slightly relaxing the de-

livery guarantee. A third mechanism likely to improve mobicast is to let the protocol

adapt to a local notion of compactness. For instance, when the mobicast delivery zone

moves from a more compact area into a less compact one, its forwarding zone will ex-

pand. If the delivery zone moves from a less compact area into a more compact one,

its forwarding zone should shrink. The local notion of compactness can be area-based

or per-node based. For instance, one may partition the space into a grid and compute
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the compactness value for each grid area. Or one may let each node probe up to cer-

tain depth into its neighborhood and compute the compactness around it. The latter

is what we use in our adaptive mobicast simulation which is presented next. This type

of local compactness adaptation is beneficial when the network is more compact in one

area and less so in others and the difference in compactness is relatively large. Yet, our

preliminary investigation shows that for random networks with uniform distribution, all

areas have similar compactness. Figure 3.8 shows one example of the spatial distribution

of local compactness for a uniformly distributed network of size 1000x400 (as the one in

Figure 3.5(a)). The local compactness is computed for each node to a depth of five hops

and within a 100 meter radius. One can see that for uniformly distributed networks,

local compactness also appears to be uniformly distributed spatially. This suggests that

in such networks, local adaptation may not provide significant improvement for mobicast

with respect to its efficiency. For networks that have distinct and relatively long range
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Figure 3.8: Local Delta Distribution Over Space (Uniform Distribution)

spatial variations in compactness, adaptive protocols may prevail.

In order to verify the above observations, we modified the previous mobicast (Fig-

ure 2.6) and made it adaptive in the following manner. First, the header is augmented

with an extra field: location (x,y), which is used for recording the location of the most

recent delivery-zone node that handled the packet. In the adaptive mobicast protocol,

when receiving a packet, a delivery zone node will replace the delta value in the packet

by its local delta value before forwarding it. This is an attempt to inform other down-

stream nodes about its view of the network compactness. A node finding itself not to be

a delivery-zone node upon receiving a mobicast packet will use the delta in the packet to

determine its own forwarding status (forward immediately, schedule for future forward,

or drop the packet). If a node not in delivery zone path finds that it is a forwarding-zone

node, it forwards the packet but does not make any change to the delta value in the
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packet. The reason for this forwarding behavior difference between delivery-zone nodes

and non-delivery-zone nodes is that the purpose of forwarding is to guarantee the mobi-

cast delivery for the delivery zone nodes. The potential path distortion between delivery

zone nodes is expected to be captured by the local compactness values of the delivery zone

nodes. Depending on the network topology, there are cases where a forwarding node is

relatively far away from the delivery zone and having a very different neighbor topology.

By replacing the delta with its own, downstream nodes might be mis-informed.

Our preliminary simulation results of this adaptive mobicast protocol in ns-2 are

as follows. For the uniformly distributed network topology such as the one in Figure 3.5,

the adaptive protocol appears to guarantee 100% delivery2, but the delivery overhead is

about two radio transmissions per delivery, which is relatively high. The reason is, as

we pointed out earlier, that holes are ubiquitous in the random network and most of the

nodes have some worst form of path distortion in their neighborhood. Furthermore, the

collective behavior of the protocol forms a forwarding zone whose size in determined by

the smallest compactness in each subarea. This in turn causes more nodes to participate

in the forwarding.
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Figure 3.9: Local Delta Distribution Over Space

To examine the behavior of our adaptive mobicast protocol in more detail, we hand-

crafted a well-connected network in a 1000x400 area with 800 nodes, with a big hole at

the center, as shown in the top side of Figure 3.10. For this topology, the compactness

value for the nodes close to the hole is distinctively smaller than the nodes close to both

ends, as shown in Figure 3.9. The bottom picture of Figure 3.10 shows a mobicast session

run from a node on the left to the right. The delivery zone has a radius of 45, and moves

2Note that we only experimented on a limited number of configurations, this 100% is not equivalent to
an absolute guarantee. Actually, in theory, sometimes this adaptive protocol will not have 100% delivery,
because the local compactness value only captures the topology distortion in a limited scope.
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Figure 3.10: Example of Adaptive Mobicast

at a speed of 40 m/s with a session length of 20 seconds. The circled nodes are those

participated in the mobicast session. One can see that the protocol adapts to the local

topology, and achieves 100% delivery, even in the presence of a big hole on its path.

The radio transmission overhead is less than 1.2 transmissions per delivery in the above

case (195 extra radio transmissions for 164 delivery zone node deliveries) comparing to

the non-adaptive FCF mobicast protocol which has an overhead of more than 3 radio

transmissions per delivery. This appears to validate our observation that the adaptive

protocol excels in a non-uniformly distributed sensor network.

3.5 New Questions

The adaptive mobicast protocols glossed over the following question: if all the nodes

collected multi-hop neighbor location information and used them for computing local

compactness values, why not use the location knowledge for better routing in addition to

the less informative compactness value for routing? Using more topology information can

potentially lead to more efficient routing methods. It is hard to imagine cases where the

a network node has only enough temporary storage for the purpose of computing local

compactness values yet not enough permanent storage for the collected neighborhood

information.
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These observations led us in turn to investigate more efficient adaptive algorithms

for mobicast by using more information about network neighborhood. This investigation

is presented in the next chapter.
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Chapter 4

Face-Aware Routing and Spatial

Neighborhood

This chapter presents a new Face-Aware Routing protocol (FAR) for mobicast and a

related spatial neighborhood discovery algorithm. FAR distinguishes itself from previous

mobicast protocols by providing both reliability and scalability at the same time. Its

scalability comes from the fact that it does not rely on any global topological informa-

tion, and each node makes local forwarding decisions based on its spatial neighborhood

configuration, which is found to be small in average case via both theoretical analysis

and simulation for random wireless ad hoc networks. We also prove in theory that FAR

can reliably deliver a mobicast message to all nodes that ever enter the delivery zone.

The idea of face routing is inspired by previous geometric routing algorithms such

as GPSR [98] and GOAFR+ [106]. They all have a face routing component to help their

greedy forwarding component get out of local minima in their unicast message forwarding

path. However, these unicast protocols can not be applied directly to mobicast, due to

two key problems. In unicast, the destination node is known, and so is its location in

geometric routing scheme. The location of the destination node is key in determining

the forwarding path and in detecting whether the greedy algorithm has gone into a local

minimum. In mobicast, however, there is no single destination location, only the delivery

zone is known, the exact locations of nodes in future delivery zones are not known.

Simple approaches such as selecting some arbitrary location in the delivery zone path

as a destination and use unicast protocols to reach the destination and dispatch the

message to nodes close by does not work, since without a global node-location look up

service, one can’t even tell if a particular location has a node at or near its position.

Moreover, the mobicast delivery zone is not fixed. A mobicast protocol must consider

the temporal domain of information dissemination, which none of the previous geometric



53

unicast protocols address. The FAR protocol addresses the first issue via some knowledge

about its spatial neighborhood (to be defined later), and addresses the second problem by

a novel timed face routing strategy.

For clarity, we first assume that the network is a planar graph. In general, a

random wireless network may not be planar. Later we also discuss graph planarization

methods and how the FAR algorithm can be modified to deal with a non-planar graph.

We also assume that each node knows all of its spatial neighbors and their locations. We

provide an algorithm for obtaining this information and discuss the cost for storing such

information in later sections. We first define the concept of a spatial neighborhood.

4.1 The Planar Spatial Neighborhood

On a planar graph, each node has one or more adjacent faces. A face is a maximal

connected subset of the plane that does not contain a point on an edge or a vertex [51].

For instance, in the planar graph as shown in Figure 4.1, node A has six adjacent faces,

and node B has four adjacent faces. Note that the “boundary node” M has two adjacent

faces. One of them is the “inner” face formed by nodes M,L,G and H, the other is

the “outer face” formed by nodes M , H, I, J , K, F , E, D, C, N , O and L. Note

also that even though the “boundary”, “inner” and “outer” faces of a planar graph seem

visually easy to identify, topologically it is hard to define and distinguish them. This has

important consequences for face-based geometric routing mechanisms. We will discuss

this issue later.

Figure 4.1: Planar Graph and Planar (Spatial) Neighborhood
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We define the “spatial neighborhood” of a node in a planar graph to be the set of

nodes in all faces adjacent to that node except the node itself. So in Figure 4.1, node

A has six spatial neighbors (B,C,D,E,F and P ) which are the same as its immediate

graph neighbors. Yet node G has 10 spatial neighbors (L, H, B I, J , K, F , P , C and

N) while it only has three immediate graph neighbors(L, H, B). Note that the spatial

neighborhood of a node X as we define it represents the set of nodes that can be reached

from X without crossing an edge or other nodes, and in general is equal to or greater

than the immediate graph neighborhood.

The spatial neighborhood information plays an important role in our face-based

geometric forwarding strategies, just like immediate network neighborhood information

is very useful for many routing algorithms. In our face-ware routing protocol, each node

maintains the spatial neighborhood information as a routing table. When a node receives

a new mobicast message is received, it builds a care list which contains itself and those

of its spatial neighbors that are delivery zone nodes.

4.2 Face-Aware Routing

We now describe the face-aware routing algorithm. The essence of the algorithm is very

simple: every node that has at least one spatial neighbor that is a delivery-zone node will

forward (locally broadcast) the mobicast packet once1. We will prove that this simple

rule can guarantee all delivery zone nodes will receive the corresponding packet. Yet

using this simple rule alone leads to an “as-soon-as-possible” style mobicast protocol

that exhibits a high average slack-time which is not desirable. We need certain temporal

controls to achieve a just-in-time style mobicast protocol. As a result, the face-aware

algorithm consists of two methods for forwarding packets: greedy forwarding and timed

forwarding. Before discussing these two methods in detail, we first presents the format

of a FAR mobicast packet.

4.2.1 Packet Format

Each FAR mobicast packet contains the following information in its header:

• sender location

• packet sending time

1An optimization can change this to “forward the mobicast packet once, if necessary”. We try to
keep it simple here and leave the optimization issue aside for the moment.
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• initial delivery zone coordinates

• delivery zone velocity

• message lifetime

• message type

• sender packet sequence number

• last forwarder location

Similar to previous mobicast protocols, we do not assume each node has a unique

ID. The sender location, the packet sending time stamp and the sender packet sequence

number are jointly used to identify each packet on the network. The initial delivery zone

field contains an ordered sequence of locations corresponding to the initial vertices of the

delivery zone. For a circular delivery zone, the radius and the initial center are recorded

instead. The message type field is used for indicating the type of delivery zone, e.g.,

rectangle, pentagon, circle, ellipse, etc. The initial delivery zone coordinates combined

with the delivery zone velocity and packet sending time, can be used to determine the

location of the delivery zone at any point time in the future. The message lifetime is

used for terminating each mobicast session. The last forwarder information is used for

determining if further forwarding of a packet is needed. We will discuss these in more

detail.

For simplicity, henceforth we assume each mobicast message fits in one packet, and

we use the words packet and message interchangeably.

4.2.2 Greedy Forwarding

Greedy forwarding applies to all nodes that are currently (or previously)2 covered by

the mobicast delivery zone, or have at least one spatial neighbor that is currently (or

previously) covered by the mobicast delivery zone. In such cases, a node forwards a new

packet in an “as soon as possible” fashion.

Figure 4.2 depicts an FAR mobicast example featuring a rectangular delivery zone

moving to the right at speed v at a certain time instance. In this example, the greedy

forwarding rule applies to nodes A,K, D, B, C, J , as they are either in the delivery zone

2The “previously” condition is unlikely to happen in most cases. Yet it is necessary here as our
specification of mobicast requires all delivery zone nodes to receive the packet. If a new specification
only admits on-time reception, then this notion of “previously” is unnecessary.
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Figure 4.2: Greedy and Timed Face-Aware Forwarding

or have a spatial neighbor that is in the current delivery zone. Note that the condition

specifies a spatial neighbor rather than a direct neighbor, which causes K to be included.

Note that after K, D, B, C, J perform local broadcasts, nodes P ,G,L,M ,N ,E

and F all hear the mobicast message since they are each connected to at least one of

the previous broadcasting nodes. But because P ,G,L,M ,N ,E and F do not have spatial

neighbors in the current delivery zone, they do not perform the greedy forwarding, and

use timed forwarding instead if they have spatial neighbors to be in the delivery zone.

4.2.3 Timed Forwarding

Timed forwarding applies to a node that has no spatial neighbor in the current delivery

zone but either will itself soon be in the delivery zone or will have at least one spatial

neighbor that will be in the delivery zone. Nodes H, G,L,M ,E, F and I in Figure 4.2

belong to this category. Nodes L and M are to be in the delivery zone themselves as to

delivery zone move to the right. Nodes G, E and F find three of their spatial neighbors,

B, L and M are to be in the delivery zone. Nodes H and I will discover the same after

hearing the mobicast packet from G and F .

The timed forwarding method works as follows. If a node X receives a new mo-

bicast packet at time t and finds itself in the timed forwarding category, it makes a

forwarding decision based on the relative times that the delivery zone reaches its de-

livery zone neighbors and the expected communication latency between itself and those

neighbors.

Let Y1, Y2, ..., Yk be the ordered list of all spatial neighbors of X that will be in

the delivery zone and ∆t1, ∆t2, ..., ∆tk be the corresponding times for the delivery zone
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to reach them. Let h1, h2, ..., hk be distance from X in the number of hops. Let τ1 be

the expected 1-hop network latency. We then have hiτ1 as the expected communication

latency between X and Yi. Let Ta be the minimum time difference between the time for

the delivery zone to reach Yi and the expected latency hiτ1 for a message sent from X to

reach Yi. i.e.,

Ta = min{hiτ1 − ∆ti|i = 1, 2, ..., k} (4.1)

The forwarding decision of X is as follows:

1. If Ta ≤ 0 forward the packet as soon as possible;

2. If Ta > 0 schedule a forwarding at time Ta from now.

In Figure 4.2, nodes H, G, C, B, L, D, M , E, F and I share one face which

extends to the east. Among them, nodes C, B and D have already greedily forwarded the

packet. Nodes G, L, M ,E and F have heard the packet and will schedule the forwarding

according to the timed forwarding rule. From this example, one can also see that this face

forwarding algorithm can be improved. For instance, nodes L and M do not need to do

the forwarding at all since their local broadcast effort does not help the mobicast packet

reach any new node, and they have the local topology knowledge to learn that. Node G

knows node B has received the message as it heard it from C, and B,C are connected.

Note that G does not know if B has re-broadcast the packet but does know B will take

care of L and M . So G may take B,L,M off its “care list”, i.e, the list of nodes used

for computing the forwarding time. A similar argument is true for E. We will discuss

optimization methods later.

Note that node F is a different case than G or E. It has heard the packet from

node K, and it does not know if E has heard the message, or D, B, M , L, C, G. So its

care list has to include B, L, and M . Note also that even though B is the earliest among

its spatial neighbors to enter the delivery zone, F can not simply compute its forwarding

time based on B, since hFLτ1 − ∆tL may be smaller than hFBτ1 − ∆tB.

In the previous discussion, we choose τ1 to be the expected 1-hop latency. If one

choose τ1 to be the maximum 1-hop latency, the protocol will result in higher average

slack time but less potentially late receptions.

Since every node makes the forwarding decision locally, it is possible for a node to

receive a packet it has forwarded earlier. In this case a node simply ignores the packet.

For a node to be able to determine which packets are new and which are old, every node

maintains a local cache to log received packets. This cache is periodically checked, and

packets that have expired are removed.
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Note that in Figure 4.2, although node N has heard the packet, it will never

forward the packet since it has no spatial neighbor that is a delivery zone node. This is

also true for node P .

4.2.4 Protocol Termination

In addition to greedy forwarding and timed forwarding, the algorithm also has a mobicast

termination method based on the packet life time value in the packet header. A packet

is not simply ignored if it has expired. An expired packet is dropped only in the timed

forwarding mode, i.e., when the recipient node finds that no node in its care list is in

any previous delivery zone. If a node is in greedy forwarding mode, it will forward

the packet even if the packet has expired. This choice intends to tolerate some level

of timing uncertainty by admitting marginal overhead caused by potential “expired face

forwarding” in the last few faces in the delivery zone path. This also simplifies our

statements and proofs of the delivery properties of the protocol later.

Figure 4.3: Bird’s Eye View of the FAR Protocol Behavior and Result

To give a bigger picture of the behavior and results of the FAR algorithm, Figure 4.3

schematically shows a rectangular mobicast history in a larger network context. The

faces with arrows are those that have experienced face-forwarding. The solid circles

represent the nodes that have forwarded the packet. The lightly shaded dashed circles

represent those that have heard (received) the packet but did not forward it. The empty

circles never hear the packet. One can see that the face-aware forwarding algorithm

creates a localized forwarding cloud (area) surrounding the mobile delivery zone, and the

forwarding area adapts to the topology on the delivery zone path and makes the delivery
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zone cross holes in the network. Next we prove that our forwarding strategy indeed

delivers mobicast packets to all its expected recipients under one reasonable assumption.

4.3 Delivery Guarantee

Our FAR algorithm guarantees the delivery of a mobicast packet to all its delivery zone

nodes, under the following assumption on the size of the forwarding zone: the forwarding

zone span on the direction perpendicular to the mobicast velocity direction (we call

it “perpendicular span” henceforth) must be no smaller than the maximum neighbor

distance. (In wireless ad hoc networks, this may be interpreted as the perpendicular span

to be no smaller than the maximum communication range). If the perpendicular span is

too small, the algorithm may terminate prematurely. Figure 4.4(a) shows such an example

in a partial network. Nodes J ,C,G and K will not forward the packet because they have

no spatial neighbor that is a delivery zone node. This results in E, a delivery zone node,

never receiving the packet. Note that the constraint is only on the perpendicular span of

the delivery zone. Small delivery zone size on the velocity direction is acceptable, as one

can see in Figure 4.4(b), in which the mobicast will not stop prematurely. Next we prove

(a) (b)

Figure 4.4: FAR Assumption

this delivery guarantee in the general case. We start from the following lemma.

Lemma 1 If X and Y are in the same face and X is a delivery zone node, the FAR

protocol guarantees that if Y has received the mobicast packet, X either has received it or

will receive it.

Proof: Assume that X has not received the packet. X will at some point in time be

in the delivery zone. The fact that Y has received the packet means it has the data for

computing the delivery zone trajectory over the packet lifetime. Y also has the knowledge
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of the locations of all its spatial neighbors which include X. So Y can compute whether

X either was previously, is currently or will be in the delivery zone.

Figure 4.5: FAR on a Face

Without loss of generality, let Y be the closest (among the nodes that have received

the packet) in terms of hops to X on the face under consideration. If Y finds X was

previously in the delivery zone or is currently in the delivery zone, it will do a local

broadcast as soon as possible according to the FAR protocol. Note that one of Y ’s direct

neighbor is closer to X in terms of hops than Y is (e.g., node Z in Figure 4.5). As a

result, when the neighbors of Y hear the packet, the packet has at least moved one step

closer to X. The same argument applies to the closer neighbor(Z). The mobicast packet

moves a node closer to X in each step, until the distance is zero, when X receives the

packet.

If Y finds that the delivery zone will reach X some time in the future, it will

schedule a forwarding at the appropriate time according to the FAR protocol. The same

“one step closer” argument applies.

Using Lemma 1 we can prove the following theorem regarding the FAR protocol.

Theorem 7 In a connected network, FAR guarantees that all delivery zone nodes will

receive the mobicast message if the initial delivery zone contains the source node.

Proof: We prove the theorem by contradiction. Let B be a delivery zone node that

missed the packet. Being a delivery zone node, B must be located inside the integral

delivery zone (the union of all delivery zone areas over the packet’s lifetime), as shown in

Figure 4.6 in which the long dashed rectangle represents the integral delivery zone. Let

A be the source node. Let X1, X2, ..., Xk be the set intersection points between the line

segment AB and the graph edges, in order from A to B.

If B missed the packet, none of the two end points of edge ek would have received

the packet. Otherwise, by Lemma 1, B should receive the packet because ek and B are
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Figure 4.6: Delivery Accuracy of the FAR protocol

around the same face(they are around the same face because there is no edge between Xk

and B). Note also that at least one of the endpoints of the edge ek is in the delivery zone

because the height of the integral delivery zone is equal to the perpendicular span of the

delivery zone, which is assumed to be larger than the edge length. Let this end point of ek

be C. C being a delivery zone node that missed the message leads to the same argument

that none of the endpoints on edge ek−1, in turn ek−2, ..., e2, e1, has received the message.

Yet, e1 and A are around the same face, and by Lemma 1, this is not possible, because,

as the source node, A must have the message, so the message would have traversed e1.

The FAR algorithm assumes all nodes have locally accessible information about

their spatial neighbors. An important question is: how big is the spatial neighborhood in

general? The answer to this question will shed light on the question of how much memory

and storage the algorithm needs, which is very important in protocol and system design.

Another important question is: how big is the average face size? The answer to this

question relates to the forwarding overhead of the FAR protocol. We address these issues

in the next section.

4.4 Cost Analysis

In this section we explore two cost metrics of FAR: (1) the memory space needed for

the spatial neighborhood information, and (2) the communication overhead due to the

traversing of face nodes that are not in the delivery zone. We start from an investigation

of the average face size, average node degree on planar graphs and average spatial neigh-

borhood size via geometric analysis, and conclude with simulation results from random

networks.
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4.4.1 Spatial Neighborhood Size

Average Face Size

The size of a face is defined by the number of vertices surrounding the face. The following

theorem states a bound on the average size of faces on the planar graph.

Theorem 8 Given a planar graph G(V,E), the average size of a face is

Sf ≤ 2ne

nf

(4.2)

where ne and nf are the numbers of edges and faces of G respectively.

Proof: Let s1, s2, · · · , sk be the sizes of all the faces of graph G. We have k = nf

and the total number of edges on all the faces is

s1 + s2 + · · · + sk ≤ 2ne (4.3)

the 2 appears in the equation because each edge is counted at most twice (once on each

side). Note that dangling edges are counted only once, resulting in an inequality rather

than an equality expression.

The average number of edges on each face is

Sf =
s1 + s2 + · · · + sk

k
(4.4)

Combining equality 4.4 with inequality 4.3, we immediately have

Sf ≤ 2ne

nf

Next we derive a bound for Sf in terms of the number of nodes and edges rather

than edges and faces. This is more desirable because it is straightforward to count the

number of nodes and edges in a graph and it is not very obvious how to count the number

of faces.

Corollary 2 Given a planar graph G(V,E), the average size of a face is

Sf ≤ 2ne

ne − nv + 2
(4.5)

where nv and ne are the numbers of nodes and edges of G respectively.
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Proof: From Euler’s formula[51], we have the following relation between nodes,

edges, and faces of any planar graph:

nf + nv − ne = 2 (4.6)

Use Theorem 8 and the Euler’s formula, we get

Sf ≤ 2ne

ne − nv + 2

Average Node (Face) Degree

So far we have derived an upper bound for the average face size. Another question is how

many faces each node has. The next lemma helps lead to an answer.

Lemma 2 On a planar graph G(V,E), the edge degree of a node is always equal to a

greater than its face degree. That is, let dei be the edge degree of node i, and dfi be the

face degree of node i. We have the following inequality

dei ≥ dfi (4.7)

Proof: For each node i, sort its edges in clockwise or counter-clockwise order. There

is at most one face between adjacent edges. Note that it is “at most” because of potential

dangling edges which do not create new faces.

Using Lemma 2, we can derive the following theorem

Theorem 9 The average number of faces Df each node has in a planar graph G(V,E)

is upper bounded by the following expression

Df ≤ 2
ne

nv

(4.8)

where nv and ne are the numbers of nodes and edges of G respectively.

Proof: Let dei and dfi be the edge and face degrees of node i respectively. Then the

sum of degrees across all nodes is

nv∑

i=1

dei = 2ne (4.9)
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because each edge is counted once on both ends.

From Lemma 2, we also have the sum of face degrees to be no greater than the

sum of edge degrees
nv∑

i=1

dfi ≤
nv∑

i=1

dei (4.10)

This leads to

Df ≡
∑nv

i=1 dfi

nv

≤ 2ne

nv

(4.11)

Average Spatial Neighborhood Size

From Theorem 8 and Theorem 9, we may estimate the average spatial neighborhood size

(Υ) as follows. Let Df be the average number of faces of each node, and Sf be the average

face size. Sf ∗ Df may be used for estimating the average number of nodes in all faces

adjacent to each node if the variances in face sizes and node degrees are not high3. This

leads to

Υ ∼ 4n2
e

nv(ne − nv + 2)

Considering the double counting of nodes in adjacent faces, this estimation can

be improved. The double counted nodes, say, with respect to node G in Figure 4.7,

Figure 4.7: Planar (Spatial) Neighborhood

include the following three kinds: (1) the node G itself, being counted twice (once on

each adjacent face); (2) immediate double-faced neighbors of G: H,L,B (note that even

3Note that mean(xiyi) does not equal to mean(xi)mean(yi). But these two quantities have close
values when all xi’s are close to mean(xi) and all yi’s are close to mean(yi).
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though P is an immediate neighbor of G, it was not counted twice as it belongs to only

one face); (3) non-immediate double-faced neighbors such as node A. We know that on

average, the first kind of double-counting occurred Df times, and the second kind also

occurred Df times. So there were at least 2Df double counting of nodes in SfDf . This

leads to

Υ ∼ (Sf − 2)Df

∼ 4ne(nv − 2)

nv(ne − nv + 2)
∼ 4ne

ne − nv + 2
(4.12)

Figure 4.8 plots this estimation of spatial neighbor size against the relative edge

to node ratio of a graph. We can see that, given a fixed number of nodes, more edges
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Figure 4.8: Average spatial neighbor Size Estimation

means a smaller spatial neighborhood. In other words, the “denser” the graph is, the

smaller its average spatial neighborhood is. Note that planar graphs have a limit on the

number edges they can have. A well-known corollary of Euler’s formula states that for a

planar graph, the number of possible edges it can have is bounded above by

ne ≤ 3nv − 6 (4.13)

The curve in Figure 4.8 also suggests that the size is around 6 when ne/nv gets close to

3.
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An important insight from this analysis is that for random ad hoc networks with

uniform distribution, the average spatial neighborhood size is likely to be on the order of

10. As alluded to earlier, the closeness of this estimate depends on the variations on face

sizes and node degrees of the planar network. This average case approximation is good

only when the variances are small, which is likely to be the case in uniformly distributed

networks. Next we test this observation via simulation.

4.4.2 Statistical Face Size and Spatial Neighborhood Size Dis-

tribution of Planar Graphs

The goal of this section is to study the statistical distribution of face sizes in a planar

graph. This statistical information complements our previous average case results for

estimating memory cost for our FAR mobicast protocol.

Note that ad hoc communications networks such as random wireless sensor net-

works are often not planar graphs. A unit disk graph, in which two nodes have a common

edge if and only if their Euclidean distance is less than a constant, is a widely used ab-

straction for wireless ad hoc networks. Figure 4.9 shows an example of a random unit

Figure 4.9: Unit Disk Graph

disk graph with nodes distributed uniformly in the 2-d space. One can see that there are

many crossing edges, and such graph is thus not planar.

The FAR protocol uses the knowledge of spatial neighborhood defined by a planar

graph. To let each node find out locally who its spatial neighbors are, we first need a

method to planarize the network.

It is well known that the Gabriel Graph (GG) and the Relative Neighborhood

Graph (RNG) [51][93] are planar graphs, and there exist simple distributed algorithms to
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Figure 4.10: Gabriel Edge and Relative Neighborhood Edge

obtain a GG or RNG from a non-planar graph. In a geometric graph, an edge e = (u, v)

is called a “Gabriel edge” if there is no other node inside the disk which uses e as a

diameter. An example is in Figure 4.10(a).

This definition immediately leads to the following simple distributed algorithm

that computes a Gabriel graph [21]:

Algorithm: GABRIEL

1. for each u ∈ Neighbor(v) do

2. if disk(u, v) ∩ (Neighbor(v)\{u, v}) 6= ∅ then

3. delete (u, v)

4. end if

5. end for

Where disk(u, v) is the disk that uses edge (u, v) as a diameter. This algorithm requires

O(d2) time, where d is the degree of node v. More efficient algorithms using a Voronoi

diagram and Delaunay triangulation reduce the time complexity to O(d log d) [21]. It has

been proven that this algorithm produces a connected planar graph if the original graph

is connected. Figure 4.11 shows a result of running the algorithm on the network shown

in Figure 4.9. The definition of RNG is similar to GG. An edge is a “relative neighbor

graph edge” if there is no node in its lune, where the “lune” of an edge (u, v) is defined as

the intersection of two disks Du, Dv of radius length(u,v) centered at u and v respectively.
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Figure 4.11: The Gabriel Subgraph of the Unit Disk Graph from Figure 4.9

Fig.4.10(b) shows an example of a relative neighbor graph edge. A graph is an RNG if

all its edges are relative neighbor graph edges. More details regarding GG and RNG can

be found in[93][98][106].

Note that for computing the Gabriel subgraph, immediate neighborhood locations

must be known. This can be achieved by simple local beacons; the details are omitted

here.

Face and Spatial Neighbor Statistics
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Figure 4.12: Faces Size Distribution of Random Gabriel UDG
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For random unit disk graphs, we found the average face size of their Gabriel sub-

graph and the average spatial neighborhood size are both on the order of 10. Figure 4.12

shows the face size distribution and Figure 4.13 illustrates the spatial neighborhood size

distribution (of non-boundary nodes) obtained in our simulation. The results shown in

these figures were averaged over 8 random unit disk graphs. All unit disk graphs were

generated in a 1000x1000 area with 1600 nodes and a communication range of 42, which

is very close to the critical range (40) for a connected graph. In this case the average face

size is about 5 and the average spatial neighborhood size of non-boundary nodes in the

Gabriel subgraph stays very close to 19. These results also indicate that, on average, if we

use the Gabriel subgraph of a wireless ad hoc network, the memory needed for the FAR

algorithm is very low. Furthermore, we also found that the average number of adjacent

faces to a node is around 4 and does not vary much across the network. Figure 4.14 shows

the distribution of the number of adjacent faces to a node in the graph. These results

also suggest our earlier observation about the spatial neighborhood size to be valid.

Furthermore, we observe that when node density increases from the critical (con-

nectivity) density (about 8 network neighbors per node in our experiments), the average

face size quickly decreases, as shown in Figure 4.15. When the average number of net-

work neighbors is beyond 14, the average number of spatial neighbors is smaller. This

suggests in such cases most spatial neighbors of a node are within one hop4. Face-aware

4Note that direct neighbors are not necessarily spatial neighbors.
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forwarding is virtually reduced to local broadcast forwarding. The advantage of face-

aware forwarding are expected to disappear from this point on, since there is not many

big holes in high density networks.

This result is also consistent with our previous mobicast simulation results showing

that in a high density network, delivery zone based greedy forwarding can achieve high

delivery guarantee.

4.4.3 Message Overhead

The FAR protocol propagates the message on all faces that are inside or intersecting the

path of the delivery zone. Its overhead can be measured by the number of non-delivery-

zone nodes traversed per delivery-zone node delivery. Figure 4.16 shows our preliminary

simulation results of this delivery cost on uniformly distributed random networks of 1600

nodes in a 1000x1000 area. The mobicast setting is a rectangular delivery zone moving at

a velocity of 35m/sec for 20sec. From Figure 4.16 we can see that given a fixed delivery

zone width (i.e., the size perpendicular to the velocity direction), FAR overhead decreases

with the increase of node density (in terms of average number of network neighbors). This

is reasonable since a smaller density means larger holes, and FAR adapts to it and uses

more nodes for successfully routing around the holes. Note also that given a network

density, the per node delivery cost decreases when the delivery zone path is wider, as a

result of amortization effects.
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4.5 Topology Discovery and Maintenance Protocol

In this section we present a protocol for spatial neighborhood discovery. This protocol

features a sorted ring-buffer assisted right-hand rule, a randomization strategy and a

location-based tie-breaking rule. It used the following result of the Gabriel planarization

as a starting point: each node v not only knows who its immediate network neighbors are,

but also which among them are its immediate planar neighbors, defined as the set of nodes

whose edges to the node v remain in the Gabriel subgraph of the original connectivity

graph.

The protocol essentially creates a discovery message flow in each face, as shown in

an example in Figure 4.17. As a discovery message traverses a face, the coordinates of

the nodes it has traversed are added to the message. After a discovery message finishes

traversing a face, all nodes’ locations on the face are collected and a message traverses the

same face another time to inform everyone on the face of the complete discovery results.

There are four key problems that such a protocol needs to address: (1) Identifi-

cation: how to make each discovery message traverse the correct face; (2) Termination:

how to determine when a message has traversed the whole face; (3) Cost minimization:

how to coordinate between nodes such that only one discovery message flows around each

face; (4) Outer face limitation: the size of the outface is proportional to
√

N , where N

is the total number of nodes in the network. When the network is very large, it is not
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Figure 4.16: FAR Protocol Pernode Delivery Overhead

feasible and not reasonable to traverse this face, since a node shouldn’t really concern

itself with nodes on the other side of the network boundary.

We solve the first problem by using a ring-buffer on each node for storing the

incident planar edges. The edges are directed (all viewed as outgoing edges from the

node under consideration) and are sorted counter clock-wise. When a discovery message

comes from one edge, it will be sent on the next edge in the ring-buffer. Each discovery

message contains the next hop location and an ordered list of visited nodes’ locations, so

it can be used to identify the incoming edge and designate the outgoing edge. This simple

direction sorted ring-buffer enables each node to always choose the right outgoing edge

for each discovery message, and in such a way make a message traverse a face correctly.

Upon receiving a discovery message dm, a node determines whether dm has com-

pleted a full traversal of a face by the following criterion: the outgoing edge for dm is

contained in its ordered traversal list. Note that a node can be traversed many times via

a right-hand walk on a face. In turn, a simple termination rule such as “when the message

come back to a node already traversed” does not work. For instance, in Figure 4.17, node

G is traversed twice on the · · · -H-G-P -G-B-· · · face, and B is also traversed twice on

the · · · -A-B-R-Q-B-G-· · · face. Note also that the edges should be viewed as directed

edges, e.g., edge G-P and edge P -G should be viewed as different edges. If P gets a

discovery message that contains a G in the message’s ordered traversal list, it should not

necessarily think that the edge P -G has been traversed by the message.
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Figure 4.17: Right-hand Neighborhood Discovery Protocol

The cost of the discovery protocol will be unnecessarily high if every node has its

own discovery message flowing on each face. On each face, ideally one traversing discovery

message will suffice. The problem is, some kind of leader election mechanism is needed

for each face to determine who should initiate the discovery message. However, leader

election is not possible before the members are known.

We use two strategies for reducing the number of discovery messages. First, we

use a random starting time to reduce the number of messages initiated on each face.

On each node, an initial discovery message dmi is scheduled at a random time for each

of its faces fi. The initial discovery message contains the next hop location and a list

containing only the sender location. The initial scheduled discovery message dmi will

not be sent if the node receives a discovery message dm from its neighbor regarding the

same face before dmi’s scheduled sending time. When this happens, the node simply

appends itself to the ordered list in dm, resets the next hop destination in the message,

and forwards it. This randomization method can eliminate some but not all unnecessary

discovery message initiations. For instance, in Figure 4.18, A,B,and C may have all sent

their discovery message for the same face (before receiving any from their neighbors). A

tie-breaking strategy is needed to reliably reduce the messages to one. We use a starting

location based tie-breaking rule: east is preferred, and if there is still a tie, then north

is preferred. That is, if a node receives a discovery message initiated by others on the

same face on which it has sent one, it will forward the message only if the initiator of this

message is located east of him; if they are on the same east location (i.e., have the same

x-coordinate), then only if the initiator is located north from it. When no two nodes have

the same coordinates, this rule can uniquely identify one legitimate initiator and make

each face have only a single discovery message remaining.
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Figure 4.18: Location Based Tie Breaking for Elimination

The outer face problem is hard since there is no way to determine which face is

the “outer” one without a global bird’s eye view. The outer face and the inner faces

are topologically indistinguishable. To see this more clearly, imagine the graph is on the

surface of a sphere instead of a plane. The only way to identify the “outer” face is its

size. This leads to our solution: a discovery message has a max hop count. If it reaches

its hop limit, a flag is set and it will traverse back to the originator. By doing this, every

“boundary node” learns a limited amount of spatial neighborhood information on the

outer face. Obviously, this strategy also leads to a potentially incomplete traversal in any

“inner” face that is large. The existence of a better strategy is an open question.

4.6 Discussion and Related Work

The FAR protocol is similar to geometric unicast routing protocols such as GPSR [98]

and GOAFR+ [106] from the perspective of using face routing as a mechanism for routing

around potential holes in the network. There are significant differences. In GPSR and

GOAFR+, face routing is activated when a void is encountered. The detection of a

void relies on the known location of the destination for detecting if a progress toward the

destination has been made. For mobicast, however, there is no single destination location,

only the mobile delivery zone is known; the exact locations of nodes in the delivery zone’s

path are not known. Therefore, the face routing activation criterion in both GPSR and

GOAFR+ does not apply. This is also why we use spatial neighborhood information as a

routing table to help identify when face routing is necessary for mobicast. In FAR, each

node is constantly aware of nodes in adjacent faces rather than exploring the nodes on the

fly. Furthermore, the mobility of the delivery zone in mobicast invites consideration of
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the temporal domain of information dissemination, which none of the previous geometric

unicast protocols address.

The FAR protocol relies on the notion of spatial neighborhoods, and a smaller

spatial neighborhood means that less memory is needed. This suggests that our protocol

desires a planar graph with as many edges as possible. Given a non-planar graph, how

to find its maximal planar subgraph is an active research subject. Recently Li, et al.

[109] proposed a localized Delaunay graph LDel which is denser compared to the Gabriel

graph. Some other pointers to related research on maximal planarization can be found

in [111].

The following optimization can further reduce the overhead of the FAR protocol.

A node does not forward a mobicast packet if it learns that all nodes in its care list are

covered by nodes that is closer to them in terms of hops. For instance, assume a node A

hears a mobicast packet m from node B and finds node C is the only one in its care list.

If A finds B is closer to C (in terms of hops) than it is, it will not forward the packet.

We omit the detail of this optimization in this thesis.

4.7 Summary

In this chapter we presented FAR, a new face-aware mobicast routing protocol which,

in theory, reliably delivers mobicast message spatially and has good mobicast temporal

characteristics. This protocol relies on the notion of spatial neighborhoods and features a

novel timed face-aware forwarding method. Since there exists no close localized protocol

for interesting and fair quantitative comparison, we focus on analyzing the qualitative

perspectives of this protocol such as theoretical delivery accuracy, protocol cost and op-

timization opportunities. Besides proving that the FAR protocol achieves reliable spatial

delivery, we estimated the size of its routing table in random wireless ad hoc networks via

geometric analysis, and found that it is on the order of 10 entries. The latter is verified

by statistical study of spatial neighborhood sizes on planar graphs. Furthermore, we also

presented a novel spatial neighborhood discovery protocol and addressed key issues a

spatial neighborhood discovery protocol must face, such as face identification, discovery

termination, and duplicate elimination. Besides the novel merits of the FAR protocol and

the spatial neighborhood discovery protocol, we believe this study, especially the proven

theorems and the insight gained from statistical study about spatial neighborhood prop-

erties, helps to build a solid foundation for spatiotemporal protocol analysis in wireless

ad hoc networks.
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Chapter 5

The Partitionable Group

Membership Problem in Mobile Ad

Hoc Environments

The design of ad hoc mobile applications often requires the availability of a consistent

view of the application state among the participating hosts. Such views are important

because they simplify both the programming and verification tasks. We argue that pre-

venting the occurrence of unannounced disconnection is essential to constructing and

maintaining a consistent view in the ad hoc mobile environment. In this light, we provide

the specification for a partitionable group membership service supporting ad hoc mobile

applications and propose a protocol for implementing the service. A unique property

of this partitionable group membership is that messages sent between group members

are guaranteed to be delivered successfully, given appropriate system assumptions. This

property is preserved over time despite movement and frequent disconnections. The pro-

tocol splits and merges groups and maintains a logical connectivity graph based on a

notion of safe-distance. An implementation of the protocol in Java is available for test-

ing. This work is used in an implementation of LIME, a middleware for mobility that

supports transparent sharing of data in both wired and ad hoc wireless environments.

5.1 Problem Definition

Our ultimate goal is to provide application developers the ability to maintain a consistent

global data structure in a setting in which mobile hosts come and go as they please and

engage in reliable transient collaborative activities. Applications that require this level

of consistency are not common today, but with the advent of wireless communication,
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the situation is expected to change dramatically. Any situation that demands (for legal

or technical reasons) the presence of two or more specific entities to carry out a task

may impose the need for a consistent membership view, as seen from the example in

the previous section. One can envision the futuristic notion of an electronic witness to a

contractual transaction or the circumstance in which routine maintenance of commercial

aircraft requires secure logging in the presence of an FAA inspector carrying an authorized

electronic badge.

In this context, the group membership service needs to provide an accurate snap-

shot of the membership view all the time (without detectable inconsistency), and a mes-

sage entrusted in a view shall be guaranteed to be delivered to members in that view,

despite motion and motion-induced disconnections. This property makes the group mem-

bership service useful for many mobile applications, such as those we mentioned earlier.

At the same time, it is a strong requirement that most other partitionable group member-

ship services do not implement. One reason that they can not implement this requirement

is that in traditional distributed system models, there is no way to know when a partition

will occur. A message can be sent while a network partition is taking place, and thus may

get lost. To make this strong group membership service implementable, we have to make

some stronger assumptions on the system model and discuss their implementability. We

first give a full specification of this strong group membership service. Second, most of

the traditional distributed system models that partitionable group membership services

use are asynchronous. A message may eventually be delivered be there is no guarantee

on time of delivery. We now formally define the group membership problem.

5.1.1 Membership Specification

The group membership service can be specified by defining its local state variables and

the safety and progress properties that it satisfies. We use terminology and notation

similar to that of Cristian [46] to specify the properties. Let P be the set of all hosts that

exist over time. We assume each host has a unique identifier denoted by i and drawn from

the integer set Z+, and all groups that exist over time have group identifiers drawn from

a partially ordered set G. Each host in P maintains the following two state variables: g

and π. g is the group identifier, and π is a subset of P . π is also called the membership

view of P , or “view” for short. Let T = [0,∞) be the range of time. Two functions are

introduced to simplify the phrasing of the specification:

group : P × T −→ G
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mem : P × T −→ 2P

group(p, t) yields the group identifier for host p at local time t; mem(p, t) yields p’s local

view of the membership π at time t.We call a group g if its identifier is g. We call g ′ a

successor of group g if there exists a member p of g such that the next group p joins after

leaving g is g′. Like in [46], succ(g, p) is used to denote the successor of group g relative

to host p; pred(g, p) is used to to denote the predecessor of group g relative to p. Given

these terms, the group membership service is specified in the following manner:

• Self inclusion: a host is always a part of its membership view, i.e., p ∈ mem(p, t)1

• Local monotonicity: group identifiers installed on each host are in increasing order,

i.e., pred(g, p) < g < succ(g, p).

• Initial membership view: a host always installs itself as the only member in its view

when it starts, i.e., mem(p, tinit) = {p}.

• Membership Agreement: If hosts p and q have the same group id, then they have

the same views, i.e., group(p, tp) = group(q, tq) ⇒ mem(p, tp) = mem(q, tq).

• Membership change justification: The successor of group g with respect to p is

either a proper superset or a proper subset of the group g.

• Same view message delivery: If host p sends a message mpq to host q at time t,

and q is in mem(p, t), then mpq is guaranteed to be delivered to q at time t′, and

mem(q, t′) = mem(p, t). Note that this property is traditionally included in group

communication service ([63][13]) rather than the group membership service([44][13]).

We will explain later why we include it here.

• Conditional bounded integration: Let p belong to group g1 and q belongs to group g2.

Assume g1 and g2 are the only two groups satisfying the merging criteria (explained

later) at time T . There exists a time constant Tc such that, if g1 and g2 stay

satisfying the merging criteria for at least time Tc, the two groups will merge into

one group, i.e., ∃tp, tq ∈ [T, T + Tc],mem(q, tq) = mem(p, tp).

• Conditional group split: A group splits only if it is necessary, i.e., when a split

condition (explained later) is met.

The first two safety requirements are common to most partitionable group mem-

bership specifications [56, 62, 63, 13, 37]. The third requirement in our specification,

1To simplify notation, we assume unrestricted variables are universally quantified
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the initial membership view requirement, differs from most of those in the literature [56,

62, 63, 13, 37] and is relatively unique, catering to the reality of ad hoc mobile environ-

ments: a mobile host may start up with no knowledge of other hosts in the world. The

membership change justification is introduced to ensure some continuity in view change

properties.

The same view message delivery requirement is introduced to add more predictabil-

ity to the group membership service for some applications (e.g. the LIME[140, 124, 125]

middleware for mobility). With this unique property, application developers using the

service are assured that message delivery is reliable within the scope of the view. In

other words, within the membership view, programmers no longer need to worry about

the complexity of potential inconsistencies caused by message loss due to mobility. Note

that this property (or a similar one) is traditionally included in group communication

service ([63],[13]) rather than the group membership service([44],[13]). The reason that

we include it here is to augment the group membership service with a property needed

by target applications that do not require a full blown group communication service.

The conditional eventual integration and the conditional group split are introduced

to avoid the classical problem of “capricious split” [7]. Without requiring bounded in-

tegration, a group membership implementation can simply not perform any merging of

groups and still satisfy the specification by keeping all the groups singletons. Without

the conditional split requirement, a group membership protocol might continuously merge

and split groups without justification, yet still satisfy the specification. Note that in the

specification we did not explicitly say what the merging criteria and the split criteria

are. The merging and split criteria in general are application dependent. In this paper,

we use the weakest merging and split criteria. The merging criterion is weakest in the

sense that it only requires the group membership properties to be satisfied for the new

group. The split criteria is weakest in the sense that the group splits only if the group

membership property cannot be guaranteed without doing so. No other condition outside

of the membership specification is forced to hold.

5.1.2 System Model

Our system model assumes that there are no host crash failures and no omission or per-

formance failures caused by network congestion. The only failure in our system model

is the communication failure caused by hosts moving out of each other’s communication

range. This model is a reasonable starting model for ad hoc mobile systems for two rea-

sons. First, mobility-induced disconnection is much more frequent than host crash failure

given current hardware and software technology. Second, a mobile network in theory can
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be equipped with enough bandwidth for communications needed by the applications on

top of it, such that congestion can be made a rare event compared to the occurrence of

partitions.

Our system model also assumes that the underlying communication service is re-

liable and timely [45], in the sense that a message entrusted to it is guaranteed to be

delivered within a time bound td if the sender and the recipient are physically connected

during that time. By physically connected we mean two hosts are either within each

other’s communication range or transitively connected through other hosts.

For simplicity, we assume that all hosts have the same communication radius and

the communication links are bi-directional. We also assume that all hosts know their

physical location all the time. We assume no knowledge of the mobility patterns of the

mobile hosts except that the movement is continuous in space and has some upper bound

Vmax on speed. We purposely choose this extreme case in order to explore the limits

imposed on the membership problem by random ad hoc mobility. The basic ideas behind

our solution strategy are explained in the next section.
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5.2 Solution Overview

Key to our strategy to implementing the strong group membership is the notion of safe

distance among hosts and groups, i.e., the idea that if hosts are “close enough”, discon-

nection is not possible for some time and that if they are “just far enough” there is plenty

of time to carry out a configuration change protocol before disconnection actually occurs.

In other words, we define a logical connectivity graph over the physical connectivity such

that an edge appears in the logical graph if and only if two hosts represented by cor-

responding vertices are within safe distance. Group membership reflects partitions in

the logical connectivity graph rather than partitions in the physical connectivity graph.

In the remainder of this section we explain the safe distance concept and present the

discovery and reconfiguration protocols.

5.2.1 Key Concept: Safe Distance

Given two mobile hosts equipped with compatible wireless transmitters of equal range

R, we state that the distance between them is a safe distance if it does not exceed a

threshold r(v, t, t′), defined as the maximum distance at which one can guarantee that

any communication task that takes at most t time units can be completed with certainty,

assuming the two hosts move randomly at a speed that does not exceed v, and the upper

bound for a single atomic configuration change is t′. Clearly, safe distance cannot be

defined in absolute terms but must be considered relative to a context having certain

mobility and application characteristics. For example, in Figure 5.1(a) mobile hosts a

and b are within communication range (R), i.e., they are able to talk to each other

directly. They may want to be in the same group and start coordination or resource

b

a
R

R

a

(b)(a)

r

R

b

Figure 5.1: An example of safe distance

sharing immediately. Yet, they cannot do so at this point if they wish to guarantee
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message delivery within the group. This is because a and b can move out of each other’s

range immediately after acknowledging membership in the same group, with the result

being that messages between them could not be delivered successfully. The problem arises

from the mobile nature of the hosts and the asynchronous nature of message passing. Our

solution is to require a and b to agree on membership in the same group only when they

are “close enough” (as in Figure 5.1(b)), i.e., they are at a distance

r ≤ R − 2v ∗ (t + t′) (5.1)

In this context, t is the upper bound for network latency (because the consistency require-

ment is reliable message delivery) and t′ is the time needed for a group level operation

(merge or split) already in progress to complete. The factor 2v accounts for the worst case

movement pattern, i.e., a situation in which a and b are moving in opposite directions

at maximum speed. One can readily see that with this restriction, the reliable message

delivery between group members is guaranteed because it takes more than t + t′ time for

the two group members to become physically disconnected, no matter how they move.

Within this time any message delivery completes even if a configuration change is in

progress.

We call a group safe if any two members of the group are connected via a path

along which all consecutive hosts are at a safe distance. We extend the notion of safe

distance from pairs of hosts to pairs of (safe) groups by requiring that at least two hosts,

one in each of the two groups, are at a safe distance. While this definition seems to

assume that the safe distance is independent of group size, this assumption is generally

not true because both simple message delivery and reconfiguration actually depend on

the number of hops that messages must traverse en route. Because the time bound on

message-passing depends on the group size, our approach works only when the group

size is limited by the nature of the application or is constrained by the reconfiguration

protocol.

The concept of safe distance is used to determine when two groups can be merged

and when a group must be split in order to maintain the requirements for group mem-

bership. To determine whether two groups are within safe distance, one must know the

location of all hosts in the region. Since it is too expensive for everyone to keep track

of the location of others all the time, we designate a leader for each group. All hosts

in a group constantly report their location to the leader, and the leader keeps the map

(Π) of the group, checking constantly to see if the group members are still within safe

distance of each other and whether new hosts are present in the region. The map of a

group records the spatial location of group members.
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5.2.2 Group Discovery Protocol

As defined in the membership specification, each mobile host is given a unique host

identifier id, and starts as a singleton group containing itself as the only member.

For a group to merge with another group, it must first be able to discover which

other groups are present in its vicinity. The discovery protocol carries out this function

and serves as a supporting layer for the group membership maintenance protocol, i.e.,

the reconfiguration protocol. In our discovery protocol, hosts in each group use safe

distance as a criteria for finding out who is close enough to be a merge candidate, and

they report any positive discoveries to their leader. For simplicity, the host with the

smallest identifer in a group is chosen as the group’s leader. For convenience, we also

choose the host identifier (id) of the leader to serve as the name for its group (gid). Note

that gid is not the same as the partially ordered group identifier g used in the membership

specification. Rather, gid combined with a group change sequence number τ (discussed

in more detail later in the paper) yields the partially ordered group identifier g.

Our discovery mechanism requires every host to periodically broadcast a hello

message which contains its location information (xy) and its group identifier (gid). When

two groups move close, several members of one group may receive hello messages from

members of the other group. When a host u receives a hello message, it checks the

sender’s group identifier and location. If u finds the sender, say v, to be a member of

another group located within safe distance, u passes on the information to its group

leader that, in turn, will use it for merge related operations. As all group members are

involved in discovery, it is possible for the group leader to receive multiple copies of the

same notification regarding the appearance of one host. Duplicates are discarded.

There are several things one can do to reduce discovery costs. First, each host

may attach discovery information to its periodic location update messages to the leader

rather than send them separately. This pushes the discovery information towards the

leader almost for free, since the location and new neighbor information represent only a

few bytes that fit easily in a single packet. The cost associated with this piggy-backing

method is the need for each host to keep a short-term memory (ξ) of newly discovered

neighbors. Second, by utilizing neighborhood information already available at the MAC

layer, a host may send neighbor greetings only when the MAC layer discovers a new

neighbor. This reduces the discovery cost significantly in the case when the network

topology changes infrequently. The drawback for this method is its dependence on the

implementation of the MAC layer on the specific host supporting the application. We

chose not to do so in our prototype.
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The group discovery protocol allows the group leader to maintain a list of groups

which are close enough to be considered for merging. We present the group merging

protocol in the next section.

5.2.3 Reconfiguration Protocol

The reconfiguration protocol is the key layer in our group membership service. It seeks

to merge groups that come into contact and to split groups that can no longer stay

together. From the information collected in group discovery, a leader may find that there

are one or more potential candidate groups in its vicinity suitable for merging. If so,

it will initiate merging negotiations with the set (Θ) of candidates. Once an agreement

is reached regarding who is to participate and who is responsible for coordinating the

merge, all affected hosts receive a formal notification about the configuration change

from the coordinator. Furthermore, after a host receives a group change notification, in

order to prevent messages sent in one configuration from being processed in a different

configuration, it must perform a barrier synchronization. One way of accomplishing

this is to flush the messages in transit before doing anything in the new configuration.

In addition, the participants need to delay the processing of messages arriving from

“future” configurations until the synchronization is completed. Message delaying can

be accomplished by tagging each message with a configuration sequence number (τ).

Flushing requires the participating hosts to send extra messages whose arrivals guarantee

that no more messages originating from a prior configuration are in transit. The result is

an atomic configuration change. Another way of creating the synchronization boundary is

by using a time-out delay. Partitioning works in the same way but without any intergroup

negotiation because it involves only one group at a time. Next, we use several simple

examples to illustrate the merging and partition processes.

An example of merging

Figure 5.2 depicts the merging process between two groups, G1 and G2. G1 contains

hosts a and b, and b is the leader. G2 contains hosts u, v, and w, and has u as its

leader. Assume u finds G1 to be in its vicinity through the discovery data sent in by

v, and G1 is safe for merging. Next, u initiates the merger by sending a merge-request

message to b, the leader of G1. If willing to participate in the merger, b sends back

an acknowledgment (ACK) along with its group membership list and its configuration

sequence number; otherwise, it sends back a disagreement message (NACK), which forces

u to abort the merger with G1. If u gets back an ACK, as in Figure 5.2, it generates
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Figure 5.2: Merging Process

a new configuration number by adding one to the larger of the current configuration

numbers of the two groups. Next, it sends a merge-commit to b and a merge-order

to its own members. Both the merge-commit and merge-order messages contain the

new group membership list, the new configuration number, and the new leader identity.

Upon receiving the merge-commit message, b sends a merge-order to its own members.

A host enters the flushing phase after it gets a merge-order message. It sends a flush-

message to all other members of its original group and stops sending any other messages

until it has received all the expected flush-messages from its group members in the old

configuration.2 After receiving all the expected flush-messages, a host enters the new

configuration and all new messages it sends will have the new configuration number

in their headers.Clearly, hosts may enter the new configuration at different times. It

is possible for a host that is still in the old configuration to receive a message from a

host that has already reached the new configuration, as shown in Figure 5.3. In such

cases, the recipient must postpone the processing of this “future” message until the new

configuration is established, thus pretending that the message is “received” in the new

configuration. Otherwise, the consistency requirement that messages must be sent and

received in the same configuration would be violated. Implementation of this requires a

host to check each received message for the configuration in which it was sent before it

is processed.

2The dashed arrows in Figures 5.2, 5.3 and 5.4 represent flush messages.



86

a

b* u*a v w

u*

b*

u*

v w

w

v

G1

merge
merge

merge

cross boundary msg Synchonization
Boundary

commit

G2

a

(a) (b)

b

request

Ack






�
�

�
�




�
�

�
�

�
�

�
�

�
�

�
�

Figure 5.3: Synchronization and the Configuration Number

It is possible for u and b to initiate the merging at the same time. In this case,

a tie-breaking mechanism decides who is to coordinate the merger. We use the id as

the tie-breaker. The host with the lower id aborts its merger request when the collision

happens. Additional complications may appear when more than two groups are involved.

For example, u might have entered a merging process with other groups when it receives

b’s merge-request message, or it may no longer be a leader because of a merge with other

groups or due to a partition process. In all such cases, u replies with a NACK.

An example of partitioning

Figure 5.4 illustrates the partition process. Assume that two subgroups of the group

G, Z1 and Z2, are moving away from each other. By constantly checking the locations

of its group members, the leader u is able to identify if its group is in a safe spatial

configuration, given predefined distance-based safety criteria. Once the leader u deems

the configuration to be no longer safe, it immediately issues a split-order message to all

the group members. A split-order contains three pieces of information: (1) the new leader

(gid) for the recipient, (2) the new group membership list for the recipient, and (3) the

new configuration number, which is the old configuration number incremented by one. u

always chooses the host with the lowest id in each subgroup to be the new leader for that

subgroup. Upon receiving a split-order message, a host enters a message flushing phase,

similar to the third phase in the merge process. Each host waits until it is sure that all
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Figure 5.4: The Partition Process

messages sent to it by group members in the previous configuration are received, either by

receiving all the expected flush messages or by employing a time-out delay. Each newly

assigned leader assumes its leadership role after the synchronization.

The group leader must check its group configuration frequently enough in order to

discover any unsafe situation in a timely fashion. As we will see in the analysis section,

the threshold for safe distance does depend on the checking frequency, in addition to

factors discussed earlier. The example above shows a process in which a group partitions

itself into two other groups. In general, a leader might find it necessary to split its

group into more than two subgroups in order to preserve the safe distance property. The

partition process is the same. Next we explain how the leader determines when the group

configuration is not safe and how to split it into safe sub groups.

Determine safe groups

To determine if its group configuration is safe, the leader maintains a logical connectivity

graph. In the logical connectivity graph, two nodes have an edge of weight one between

them if the physical distance between them is less than a partition safe distance (dp)

and no edge between them otherwise. Whenever a new location is reported, the graph

is updated by recomputing all the edges to the reporting node. This takes O(N) steps

per update, where N is the number of nodes in the group. Given the logical connectivity

graph, the depth first search (DFS) algorithm can be used by the leader to determine
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State Variables

id node identifier
gid group identifier
xy node location constantly updated by some external mechanism
τ group transaction sequence number
π group member list
ξ the set of newly discovered leaders
Π group map containing all members’ locations (empty except for the leader)
Θ the set of merging contacts, all of which are leaders of other groups

(empty except for leaders)
UpdateT imer timer for periodic location update
GreetingT imer timer for periodic neighbor discovery

Support Functions

update(ξ, gid); Add gid to the list of newly discovered leaders.
update(Θ, ξ′); Update merge contact list Θ with newly discovered leaders

from a member’s report.
update(Π, v, xy′); Update group map Π with group member v’s new location, xy′.
MergeSafe(Π, Π′, P ); Verify that the merger of Π with Π′ is safe, according to policy P.

P includes safe distance information and the merging status of
this group member.
For example, if a host is in the process of merging, it is not safe
to start a merge.

ClearOldChannels(); Clear all group communication channels.
GeneratePartitions(Π, P ); Generate partitions for Π, subject to policy P.

This function generates a set of triples of the form 〈Πnew, πnew, gidnew〉.

Figure 5.5: State Variables and Support Functions

connected clusters in O(N) steps. So the total time complexity for maintaining the logical

connectivity graph is linear with respect to the number of nodes in the group.

Figure 5.5 summarizes the state variables a node needs to keep for the execution

of the protocol, and the support functions used in the protocol presentation that follows.

A brief description of each function is included.

The protocol is presented in Figure 5.6. The table lists each action taken by

host u, the action’s precondition, and the action’s effect, given the satisfaction of the

precondition. There are two types of actions in the system. The first column of the

figure shows actions that are triggered by a change in the local state at host u. The

second column lists actions that are triggered by the arrival of the message at host u.

Each of the actions in the latter group have the form Get Message. For each of these,

there is a corresponding Send Message. For example, Get NeighborHello at host

u is coupled with a Send NeighborHello at another host. The figure shows only the

protocol executed at a single host, u, in the system. Each host in the network has its

own instance of the actions shown.

Our implementation of the group membership maintenance protocol is discussed

in the next section.
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Actions triggered by changes in the local state

NeighborGreetings(u)
Precondition:

GreetingT imer expires;
Effect:

reset GreetingT imer;
LocalBroadcast NeighborHello(u, gid);

LocationUpdate(u)
Precondition:

UpdateT imer expires or ξ changes;
Effect:

reset UpdateT imer;
Send InformLeader(u,xy,ξ) to gid;

Merge(u)
Precondition:

u is the leader;
Θ is not empty;

Effect:
add u’s members to a new map (Πnew = Π);
add u’s members to a new list (πnew = π);
for each v in Θ

Send merge-request(u, Π) to v
endfor

for each v in Θ
if Get MergingACK(v, τv , Πv)

update group map (Πnew = Πnew + Πv);
update group member list

(πnew = πnew ∪ {Πv});
store τv ;

else if Get MergingNACK(v)
v will not participate in merger;
remove v from Θ;

endif

endfor

if Θ is not empty
set τ to the max of all τv received;
for each v in Θ

Send merge-commit(πnew, gid, τv , τnew)
to v;

endfor

for each w in π
Send merge-order(πnew, gid, τnew) to w;

endfor

endif

empty Θ;
update group member list (π = πnew);
update group map (Π = Πnew);

Partition(u)
Precondition:

u is the leader;
partition predicted based on location updates;

Effect:
Ψ = GeneratePartitions(Π, P );
for each 〈Πnew, πnew, gidnew〉 in Ψ

for each w in πnew

Send split-order(Πnew, πnew, gidnew, τ)
to w;

endfor

endfor

empty Ψ;

Actions triggered by the arrival of a message

Get NeighborHello(v, gid)
Precondition:

true;
Effect:

update(ξ, gid);

Get InformLeader(v, xy′, ξ′)
Precondition:

u is the leader;
Effect:

update(Θ, ξ′);
update(Π, v, xy′);

Get merge-request(v, Π′)
Precondition:

true;
Effect:

if MergeSafe(Π, Π′, P )
Send MergingACK(u, τ, Π) to v
empty Θ;
update safety condition P;

else

Send MergingNACK(u) to v;
endif

Get merge-commit(πnew, gidnew, τu, τnew)
Precondition:

u is the leader;
transaction numbers match (τ == τu);

Effect:
ClearOldChannels();
for each w in π

merge-order(πnew, gidnew, τnew) to w;
endfor

update group id (gid = gid′);
update transaction sequence (τ = τnew);
update group member list (π = πnew);
empty Π;

Get merge-order(πnew, gidnew, τnew)
Precondition:

true
Effect:

ClearOldChannels();
update group id (gid = gidnew);
update transaction sequence (τ = τnew);
update group member list (π = πnew);

Get split-order(Πnew, πnew, gidnew, τnew)
Precondition:

true;
Effect:

ClearOldChannels();
update group id (gid = gidnew);
update transaction sequence (τ = τnew);
update group list (π = πnew);
if u == gid

update group map (Π = Πnew);
endif

Figure 5.6: Protocol specification for host u
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5.3 Group Membership Service Implementation

Our neighbor and group discovery protocol is built on top of the MAC layer, while the

group membership service is built partly on an ad hoc routing layer. Fig. 5.7 shows

the system architecture of our group membership service. The shaded areas indicate our

contributed components.

Figure 5.7: System Architecture

The implementation of the service is written entirely in Java. The discovery layer

employs a simple beacon based mechanism using a thread that periodically sends a hello

message. Another thread listens for incoming hello messages and passes this discovery

information to the group membership layer. The main component in the group mem-

bership package is the GroupMember object, which contains several threads that control

communication between the hosts in the network. Each different type of communication

is handled by a different Java thread. These threads coordinate with each other through

their owner object, the GroupMember. The coordination effort includes forwarding discov-

ery information to the group leader, responding to merging and partitioning instructions,

and updating the group leader with current location information. Group leaders carry

the additional responsibilities of listening to their group members, communicating with

other nearby group leaders, and periodically calculating the group’s safety.

The group membership package presupposes ad hoc routing to be running on every

host participating in the network. Therefore many of the messages discussed above are

routed through other hosts in the network. As such, the leader of a group need not be

directly connected to every member of the group.

The interface to the group membership protocol builds on the EventObject and

EventListener classes in the Java language. An application running on a host that uses
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the group membership package to participate in groups in the network simply creates a

GroupMember object. It then registers as a listener to GroupChangedEvents generated by

its GroupMember object. When a new group configuration arises, the group membership

package generates a GroupChangedEvent that is passed to all registered listeners. The

application can take further actions, based on the implementation of this listener.

The GroupMember interface allows the user to specify the parameters needed for

safe distance calculation. For example, the creator of the GroupMember can specify the

host’s maximum speed and its communication range. In addition to parameters for safe

distance, the GroupMember creator also specifies the frequency of the hello beacon and

the frequency of the group update messages to be sent to the leader.

While the implementation of the algorithm was a straightforward exercise in the

use of Java threads and socket programming, some differences worth noting cause the im-

plementation to vary from the examples presented in the previous sections. As presented,

the protocol assumes that application level messages and the group membership protocol

messages are sent on the same channel. As indicated in the discussion on merging and

partitioning, ensuring that messages are received in a FIFO order and that application

messages are sent and received in the same group configuration requires some additional

work. The example presented in the previous section used flush messages and configu-

ration numbers to accomplish this. The implementation, however, attempts to separate

as much as possible the group discovery and maintenance from the application level and

therefore leaves the flush messages and configuration numbers presented as part of the

example protocol to the particular application. This separation allows each application

to choose its own mechanism for ensuring atomicity. Applications with weak consistency

requirements may use the group membership package without any atomicity guarantees.

public class GroupMember implements GroupBeaconListener {
public GroupMember(InetAddress leaderAdd, Location loc,

int period, int range, int maxSpeed,

int updatePeriod, int networkDelay);

public void start();

public void stop();

public void pause();

public void resume();

public synchronized void addGroupChangedListener(GroupChangedListener gcl);

public synchronized void removeGroupChangedListener(GroupChangedListener gcl);

public void setLocation(Location newLocation);

public void newGroupBeacon(GroupBeaconEvent gbe);

}

Figure 5.8: The Public Interface of the Group Membership Package
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Another concern addressed in the design was the clean separation between the

group membership package and the application. By building on a model already integral

to the Java language, the simple interface requires only that the application programmer

understand the Java event model to successfully use the package. The simple interface

composed of a single type of listener and a single type of event provides the desired ease

of understanding. Figure 5.8 shows the public interface of the GroupMember object. The

constructor accepts parameters for the safe distance calculation. With a handle to the

GroupMember object, the programmer can start, stop, pause, and resume the GroupMember

object. These methods affect the running of the threads that the GroupMember object uses

for communication. The programmer can also add and remove a GroupChangedListener.

The two final methods are not used often by the application programmer as they are used

by other packages necessary for the group membership protocol to function properly. The

first method allows a location generating package (e.g., a GPS monitor) to update the

physical location of the host. The second method allows the GroupMember to respond to

beacon events that are generated by a separate beaconing package. These beacons are

the multicast hello messages discussed previously. Figure 5.9 shows an example usage of

the group membership package.

As indicated in the previous sections, this protocol was developed because the

LIME [140, 124] middleware requires the ability to transparently and consistently share

data across mobile hosts in ad hoc network environments. The LIME middleware as

originally released required a mobile agent or host to explicitly announce its intention to

engage or disengage from a group. The integration of this group membership protocol

with the LIME middleware transforms the processes of engagement and disengagement

into transparent reconciliations of LIME information when agents or hosts move in the

network, thereby changing their status with respect to the protocol’s safety requirements.

In such a way, we were able to implement a mobility-aware version of LIME which

automatically engages and disengages depending on the relative distances and mobility

patterns of the participating hosts.

Because the group membership package is completely independent of LIME or

any other application that may use it, changes to the package do not affect LIME, as

long as the changes to the package do not affect its interface. This allows for future

‘pluggable’ versions of the group membership package to replace the current version.

One can envision an implementation in which the safe distance is based on something

more complex than physical location, such as signal strength, stability etc.
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// The test class monitors the changes to a particular group member’s group

// An instance of this class runs on each participating host

public class Test implements GroupChangedListener {
// keep a handle to the group member object

private GroupMember g;

// integer count of the number of changes that have occurred

private int changes = 0;

public Test(GroupMember g) {
this.g = g;

// make this object a listener for events generated by the package

g.addGroupChangedListener(this);

}
// this method is required by the GroupChangedListener interface

// it is called when a new GroupChangedEvent occurs

public void groupChanged(GroupChangedEvent gce) {
// log the receipt of the change

changes++;

System.out.println(‘‘Change:’’ S + changes);

}
public static void main(String[] args) {

// create a new GroupMember object for this host

GroupMember g = new GroupMember(InetAddress.getLocalHost(),

new Location(0,0), 1000, 3, 0, 100, 0);

// create an instance of the Test class to monitor the GroupMember

Test t = new Test(g);

// start the GroupMember

g.start();

}
}

Figure 5.9: An Example Use of the Group Membembersip Package

5.4 Safety Analysis

The key feature of our algorithm is the use of location information and safe distance

in the group membership management. The leader of a group frequently checks the

members’ locations to make sure that only those that are guaranteed to stay connected

with the group for at least t + t′ more units of time remain in the group, where t is the

time specified by the application layer and t′ is the time bound for configuration changes.

The combination of t and t′ determines the safe distance for a specific operation, which

could be the merging operation, the partitioning operation, or any other group operations

specified by the application. Let’s assume that td is the maximum delay between the time

a control message is issued and the time it is received and processed, i.e., the sum of the

maximum network delay and the maximum process queuing delays both at the sender

and the receiver. For convenience, we refer to td as the network delay. In the case of
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splitting, the maximum time it takes for a group to be partitioned successfully is twice

the network delay.

If the leader continuously monitors the group configuration and all member loca-

tions are up to date, then mobility-induced unannounced disconnection can be caught

in advance and dealt with successfully by requiring t′ > 2 ∗ td. Yet the leader’s infor-

mation about members’ locations is always a little bit out of date. If members sample

and report their locations every tu units of time, the location information the leader has

about a member could be outdated by time tu + td. Taking this into consideration, the

reserved time T must be greater than tu + td + 2 ∗ td = tu + 3td. Whether or not we

can use dr = R − 2Vmax(tu + 3td) as the safe distance for partitioning depends on the

requirement for merging. Because we do not allow a merging process to be aborted once

committed, the computation of safe distance for partitioning also needs to account for the

time associated with the merging process. Consider the following scenario: immediately

before a commit in a merging process, the group configuration is safe using safe distance

dr; right after the commit, a leader might discover that its group is no longer safe, and

a partition process needs to be carried out immediately. However, the merging process

hasn’t finished. This is not acceptable. Taking into account that the two-phase merging

process needs at most an execution time of 4td (4 messages), and the configuration needs

to be safe right after merging, the total reserved time for both merging and partitioning

needs to be tu + 3td + 4td = tu + 7td. In other words, the safe distance for both merging

and partitioning is

ds = R − 2Vmax(tu + 7td) (5.2)

Using the same distance for merging and partitioning introduces the problem of ‘shuttle

nodes’, i.e., if a node is moving in and out the safe boundary, mergers and partitions

occur repeatedly. To avoid this, one can further tighten the safe distance for merging,

creating a ‘buffer zone’, and thus reducing the probability of shuttling.

Our algorithm also requires Vmax to be no greater than Vadm, i.e., the maximum

admissible speed for the specific wireless network system the mobile hosts are using. Most

wireless network systems (e.g. DECT, GSM, PCS, ETACS) have a maximum admissible

speed [141]. When a mobile node is moving too fast, it simply becomes invisible to the

network. For GSM and PCS, Vadm is about 50m/s; for DECT microcellular system, Vadm

is about 11m/s. Without the condition Vmax ≤ Vadm, a speed change from V ≤ Vadm to

V > Vadm creates an unannounced disconnection. Speed monitoring would be needed to

prevent this kind of unannounced disconnection from happening.
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Figure 5.10 illustrates the relation between the safe distance r and the maximum

admissible network delay td with reasonable values of R = 150m, Vmax = 10m/s and

location reporting frequency of 1 Hz (tu = 1s). One can see that as the delay bound

increases, the safe distance decreases.
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Figure 5.10: Safe distance vs. network delay

Figure 5.11 shows the relation between the safe distance threshold, the upper

bound on speed, and the network delay bound. The region above the top curve corre-

sponds to ds < 0. In this parameter space we cannot provide any consistency guarantees

for a group containing more than one member. On the other hand, if a mobile system’s

network delay bound and maximum speed bound fall into the region below the (ds = 90m)

curve, we could provide the group view consistency guarantee by using 90m as maximum

safe distance.

Choosing the proper safe distance is key to the protocol. A choice that is not

conservative enough might endanger the correctness of the group membership service. A

choice that is too conservative might cause the groups to be too small to be useful for

some applications, or smaller than necessary. One must strike a delicate balance between

these conflicting choices to make the group membership service as useful as possible.
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Figure 5.11: Relation between safe distance, speed bound and delay bound

5.5 Discussion

Our partitionable group membership specification is stronger than traditional ones in

that it not only requires availability during partition but also emphasizes consistency

during partition. Previous work in group membership either admits inconsistency during

the partition, or reduces availability during partition.

On the other hand, the strong properties required by our partitionable group mem-

bership specification make it impossible to implement in traditional asynchronous system

models. Key to our solution to the strong partitionable group membership problem is

the notion of safe distance and the corresponding notion of a logical connectivity graph.

Given information about physical properties of the mobile system, we are able to predict

certain behavior of the system. In turn, we are able to achieve the strong consistency

required by the group membership service.

At present, our algorithm assumes that all mobile nodes in the system have a

known maximum speed. Unbounded speed is another possible source of unannounced

disconnection. Low speed is a requirement for most wireless networks. In systems involv-

ing mobile nodes that can control their own velocity, e.g., cars and planes, a safe relative

velocity threshold can be used in the decision of merging and splitting. Of course, in such
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cases we would have to assume a maximum acceleration for the mobile nodes in order to

make disconnection predictions possible.
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Figure 5.12: Contribution of velocity information

Our membership service can be further refined when velocity information about

each mobile host is available. For example, consider cases (a) and (b) of Figure 5.12. In

case (a), hosts x and y are moving away from each other, while in (b), they are moving

in the same direction. Clearly, x and y are less likely to disconnect in the latter case than

in the former. Translating this into the language of safe distance, the maximum safe

distance between x and y is greater in case (b) than in case (a). In the current algorithm,

we assume the velocity information is not available. Since we cannot differentiate cases

(a) and (b), we have to consider the worst case movement scenario for each pair of hosts,

i.e., they may be moving away from each other at the maximum relative speed at any

point in time. When velocity information is available, the safe distance threshold between

hosts x and y (in Figure 5.12) can change dynamically according to the formula:

R − |~vx − ~vy| · t − |~amax · t2| (5.3)

where ~amax is the maximum acceleration for all hosts and t is the time needed for a

group operation already in progress to finish. We can change our algorithm to use the

velocity information in the following way: (1) each host includes its velocity information

in hello messages and location-update messages, and (2) the safe distance is computed

using Equation (5.3) with t = tu + 7td. The rest of the algorithm remains the same.

Although only safe physical distance is employed in our protocol to avoid unan-

nounced disconnection, other physical attributes can also be used to determine safety.
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For instance, if link failure is predictable through monitoring the bandwidth or transmis-

sion power change between two nodes, a similar group membership protocol can be built

by exploiting similar concepts, e.g., ‘safe bandwidth’ or ‘safe power level’ etc.

We assume each mobile host has knowledge of its own location. This is made

possible by the availability of positioning systems such as GPS. However, positioning

systems are not always accurate. For simplicity we did not consider this in our safe

distance analysis. One can factor data precision and sample frequency of a location

system into the safe distance and make the service more robust.

We assume that the model of wireless communication has a known communication

radius. This choice, often quoted as the “unit disk model” ([69],[106]), is widely used in

theoretical studies about the properties of wireless ad hoc networks. While this simplistic

radio communication model is an appropriate starting point for reasoning about certain

wireless network properties in an open environment, such as highway (automobiles) and

desert (battle groups), it is not valid for indoor scenarios. The reason is that radio

communication has very unpredictable characteristics in the indoor environment (due

to reflection, absorbtion, interference, etc.), and an omnidirectional range is not a good

abstraction. In turn, our safe distance based group membership service is applicable only

to open field environments in which the omnidirectional wireless communication range is

an appropriate approximation.

The correctness of our algorithm relies on the assumption that the network has a

delay bound. At this moment, we are not aware of any ad hoc routing protocols which

can provide a good delay bound. Yet, it is conceivable that a routing protocol with good

delay bound for prioritized group control messages is possible by restricting group size and

using location information. An alternative approach is to augment the merging criteria

with a maximum group size or even some group spatial configuration condition. By doing

this, it may be possible to meet the delay bound assumption with high probability.

5.6 Conclusion

The motivation for this work rests with our desire to provide data consistency in appli-

cations that execute over ad hoc networks. Yet, maintaining a consistent view of the

global state in a distributed network is difficult in general and essentially impossible in

the presence of unannounced disconnections. In ad hoc mobile systems, mobility-induced

unannounced disconnection occurs frequently, as part of the normal operation of the net-

work. This makes the development of fault-tolerant systems on top of ad hoc networks

very challenging. Our goal of assisting software developers in their efforts to design and
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build reliable mobile applications leads us to define a new partitionable group member-

ship service with strong consistency requirements. We have also presented a strategy and

an algorithm to implement the service, given appropriate system assumptions. The novel

feature of the algorithm is its ability to create the illusion of announced disconnection. By

using location and mobility information about the mobile hosts in the region, the mem-

bership service is able to guarantee to the application layer a reliable message delivery

service to group members in the presence of mobility-induced unannounced disconnec-

tion, given appropriate system assumptions. This approach represents a new direction in

fault-tolerant distributed computing, one that factors into protocols information about

mobility and space. This work also provides a practical solution to masking mobility

induced unannounced disconnections in ad hoc mobile systems.
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Chapter 6

Summary and Future Work

6.1 Summary

This work proposes spatiotemporal multicast, a new multicast paradigm, for dissemi-

nating space-and-time sensitive data for applications in wireless ad hoc networks, and

presents an extensive discussion of protocol design issues. This dissertation also explores

the partitionable group membership problem and investigates strategies for conserving

consistency in the case of mobility.

6.1.1 Spatiotemporal Multicast

Our investigation of spatiotemporal multicast starts with mobicast, a special case of

spatiotemporal multicast featuring a mobile delivery zone. The inherently powerful just-

in-time spatial delivery semantics of mobicast can optimize resource utilization for multi-

cast tasks in sensor networks and enables application programmers to explicitly address

both spatial and temporal perspectives of communication and coordination, in a manner

atypical of current multicast models.

To demonstrate the feasibility of mobicast, we first developed a stateless forwarding

zone based protocol (FZC) and explored its ability to meet strong spatiotemporal guar-

antees. We introduced two new notions of network compactness, namely ∆-compactness

and Γ-compactness, for capturing key network topological information for spatiotemporal

communication. We also introduced “k-cover,” a new geometric concept that generalizes

ellipses, and proved several related theorems useful in the analysis of information prop-

agation in wireless ad hoc networks. Using these results, we are able to determine the
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shape of the forwarding zone and the theoretical headway distance needed for our pro-

tocol to ensure strong multicast delivery guarantees in space and time while minimizing

retransmission overhead and average slack time.

We also investigated the network compactness properties of randomly distributed

wireless ad hoc networks and their implication on performance of mobicast protocols.

We found that the distribution of values for pairwise (path) compactness in randomly

distributed wireless networks to be highly concentrated around a peak close to one with a

very small portion close to zero. This leads to the identification of a fundamental tradeoff

between probabilistic delivery guarantees and communication overhead in spatiotemporal

multicast. Via analysis and simulation, we found that forwarding zone based mobicast

protocols can indeed significantly reduce its communication overhead via a propitious

choice of forwarding zone size by only a slight relaxation of its delivery guarantee.

Furthermore, we proposed and studied a scalable face-aware mobicast routing

(FAR) protocol which, in theory, also reliably delivers mobicast message. This proto-

col relies on a notion of spatial neighborhoods and features a novel timed face-aware

forwarding method. Besides proving that the FAR protocol achieves reliable spatial de-

livery, we estimated the size of its routing table in random wireless ad hoc networks via

geometric analysis, and found that it is on the order of 10 entries. The latter is verified

by a statistical study of spatial neighborhood sizes on planar graphs. To complete the

loop, we also proposed a novel spatial neighborhood discovery protocol and addressed

key issues such a protocol must face, such as face identification, discovery termination,

and duplicate elimination.

We believe this study helps to build a solid foundation for spatiotemporal protocol

analysis in wireless ad hoc networks, and hope this work will facilitate a broad research

effort in spatiotemporal communication mechanisms and wireless ad hoc network appli-

cations.

6.1.2 Partitionable Group Membership

Our goal of assisting software developers in their efforts to design and build reliable mobile

applications leads us to define a new partitionable group membership service with strong

consistency requirements. Our contribution is two-fold. The first contribution is a new

specification of partitionable group membership service catering to the requirements of

mobile applications. The second is a proactive partitionable group membership protocol

that correctly implements the new specification. A novelty of this protocol is the use of

mobility information to avoid the unannounced disconnection, created by mobility.
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6.2 Future Work

Spatiotemporal multicast represents a new horizon in communication research and there

is much future work waiting to be pursued. We discuss a few key topics here.

Mobicast in mobile environments

The mobicast protocols proposed in this work along with their analysis and simulations

have been focused on the context of relatively static networks such as sensor networks.

However, our ambulance warning system example (in Chapter 1) clearly points to mo-

bicast’s application potential in dynamic mobile ad hoc network environments. The dy-

namic topology of mobile ad hoc networks demands relaxing of assumptions, and invites

new specifications of delivery guarantees and corresponding protocols, and associated

performance study and analysis.

Other spatiotemporal multicast scenarios

Mobicast is just one, albeit the first, interesting spatiotemporal multicast scenario that

caught our attention. There are many other spatiotemporal multicast possibilities. For

instance, one possibility is a “sticky” spatiotemporal multicast that lets a message stay

in a geographic region for a certain amount of time. This kind of service mimics an

advertisement with an expiration and can be used in ad hoc mobile games. Interesting

spatiotemporal multicast extensions include those that dynamically change their spa-

tiotemporal constraints according to local context.

Spatiotemporal services

Higher level spatiotemporal services can be built on top of spatiotemporal multicast.

For instance, the information scouting example in Chapter 2 invites a spatiotemporal

service. Mobicast can be used to distribute the spatiotemporal query. However, we have

not explored strategies for transporting the distributed answers from the network to the

mobile scout. Techniques such as directed diffusion[90] can be explored, along with many

other strategies.
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The application of compactness metrics and the spatial neighborhood concept

to larger context

The mathematical byproducts of this investigation have application domains outside of

spatiotemporal multicast. We expect them to be helpful in devising more efficient ge-

ometric unicast protocols. As general graph concepts, they might also have potential

applications in areas such as biological and social science. Many possibilities in these

directions have yet to be explored.

Performance under stress

This dissertation has primarily investigated mobicast protocols from a theoretical per-

spective. The network simulations presented do not have results from stress tests, partly

due to the current limitation of the ns-2 network simulator. How background traffic

will affect the delivery ratio and timeliness of the spatiotemporal protocols and how the

protocols should be adjusted accordingly are questions we hope to answer in the near

future.

Identification and classification of wireless ad hoc networks

Different application scenarios and requirements result in different wireless ad hoc network

deployment strategies and characteristics. These differences result in wireless ad hoc

networks that favor different protocols. Simulation studies of current wireless ad hoc

routing protocols are largely done using random network topologies. While performance

on random networks provides a baseline, protocols designed with more specific knowledge

of target networks such as their topology and expected traffic pattern are often more

efficient. In turn, the identification and classification of wireless ad hoc networks is

an important step in communication protocol research, and the results points to more

optimized spatiotemporal multicast protocols. This topic so far has been largely ignored

in the wireless ad hoc networking community and there is much work to be done.

6.3 Final Remarks

This dissertation takes the first steps in studying the spatiotemporal multicast paradigm

and protocols in wireless ad hoc networks, and we believe this work provides a glimpse

of a compelling new information dissemination paradigm, and helps to lay a solid foun-

dation for future research. We hope this work will lead to more interesting and fruitful

explorations in spatiotemporal multicast, and will benefit human society at large.
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