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ABSTRACT

Formal methods are widely used in engineering to determine whether a system ex-

hibits a certain property (verification) or to design controllers that are guaranteed

to drive the system to achieve a certain property (synthesis). Most existing tech-

niques require a large amount of accurate information about the system in order to

be successful. The methods presented in this work can operate with significantly less

prior information. In the domain of formal synthesis for robotics, the assumptions of

perfect sensing and perfect knowledge of system dynamics are unrealistic. To address

this issue, we present control algorithms that use active estimation and reinforcement

learning to mitigate the effects of uncertainty. In the domain of cyber-physical sys-

tem analysis, we relax the assumption that the system model is known and identify

system properties automatically from execution data.

First, we address the problem of planning the path of a robot under temporal
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logic constraints (e.g. avoid obstacles and periodically visit a recharging station)

while simultaneously minimizing the uncertainty about the state of an unknown fea-

ture of the environment (e.g. locations of fires after a natural disaster). We present

synthesis algorithms and evaluate them via simulation and experiments with aerial

robots. Second, we develop a new specification language for tasks that require gath-

ering information about and interacting with a partially observable environment,

e.g. “Maintain localization error below a certain level while also avoiding obstacles.”

Third, we consider learning temporal logic properties of a dynamical system from

a finite set of system outputs. For example, given maritime surveillance data we

wish to find the specification that corresponds only to those vessels that are deemed

law-abiding. Algorithms for performing off-line supervised and unsupervised learn-

ing and on-line supervised learning are presented. Finally, we consider the case in

which we want to steer a system with unknown dynamics to satisfy a given temporal

logic specification. We present a novel reinforcement learning paradigm to solve this

problem. Our procedure gives “partial credit” for executions that almost satisfy the

specification, which can lead to faster convergence rates and produce better solutions

when the specification is not satisfiable.
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Chapter 1

Introduction

In this dissertation, we present a collection of methods that are used to discover and

enforce high-level behaviors in dynamical systems under uncertain or limited infor-

mation. An example of this kind of problem is controlling a robot with an unknown

or partially known dynamical model to perform a complicated “pick and place task”

such as “Ensure that the product at workstation A is delivered to workstation B and

that the product at workstation C is delivered to workstation D while avoiding region

E. Go to region F after all products are delivered.” This task involves two problems

that are independently challenging: controlling the robot without the aid of a dynam-

ical model, and solving a navigation problem that involves temporally and logically

interleaved constraints, i.e. both product placements have to happen (logical) and

products have to be picked up before they are placed (temporal). The solution to

this problem must adapt to new information about the robot’s dynamics in a way

that still ensures it satisfies the given task.

The field of formal methods is concerned with checking, enforcing, and finding

high-level specifications in a wide array of systems (Baier and Katoen, 2008). Many

of these techniques were originally applied to software models, but recently there has

been much interest and success in applying them to models of physical systems. The

key feature of formal methods techniques is that they give deterministic or proba-

bilistic correctness guarantees, such as “An unsafe configuration will never be reached
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under any set of inputs to the model.” or “This control policy will drive the system

to one of the desired goal regions with probability at least 0.9.” These guarantees are

inherently tied to the model of the system under consideration. One of the challenges

with applying formal methods techniques to physical systems is that, in contrast to

software systems, a complete, accurate model of the system is rarely known.

The fields of estimation (Simon, 2006; Cover and Thomas, 2006) and machine

learning (Marsland, 2009) are concerned with discovering a priori unknown informa-

tion. In estimation, the goal is to use noisy measurements of a quantity to determine

its value. In particular, we are concerned with active estimation, in which some de-

ciding agent has control over which measurements to take in order to improve the

quality of the estimate. An example of active estimation is controlling the orientation

of a camera in order to track a moving object. One challenge with active estimation

techniques is reconciling the actions that are optimal to take to gain information with

other requirements on the system, e.g. using the camera to track object A if object

B should periodically be in its field-of-view.

In machine learning, the goal is to learn a model or its features from data. For

example, in the well-known problem of image discrimination, the goal is not to learn

whether or not a particular picture is an image of a human face, but rather to learn

what separates pictures of human faces from other images. One of the challenges

with machine learning, however, is that frequently some form of significant expert

guidance is required for learning to be successful. For instance, in the case of image

discrimination, it is difficult for machine learning algorithms to be successful without

knowing that features such as eyes, noses, mouths, etc. are important.

In this dissertation, we present a collection of algorithms that combine techniques

and principles from formal methods and estimation/machine learning to solve classes

of problems that are beyond the scope of established methods in each field. In essence,
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we combine the ability of formal methods to answer questions about complicated,

high-level system behavior with the ability of estimation and learning to gain insight

about a system through data. This combination is non-trivial, as formal methods

techniques must be made to handle model uncertainty while estimation and machine

learning techniques must be extended to handle complicated, history-dependent fea-

tures.

In this body of work, we consider high-level specifications that are formulated

as temporal logic (TL) formulae. Temporal logic is an extension of propositional

(Boolean) logic (Section 2) or predicate logic (Section 5) that allows us to reason

about how a system evolves over time. Many of these properties can naturally be

expressed in plain English, such as “Visit a recharging region 1 or 2 infinitely many

times and ensure that obstacles are always avoided.” or “The velocity of the car

remains above 45 mph until braking begins.” In addition to having plain English

interpretations, these logics have rigorous mathematical formulations that we exploit

in our algorithms.

We address four separate problems in this dissertation. First, we examine the

problem of controlling a robot with known dynamics to gather the maximum amount

of information about some unknown feature while still satisfying constraints on its

motion given as a temporal logic formula. An example of this kind of problem is

steering a robot on the surface of Mars to ensure that it collects as much scientifically-

relevant information about soil while also avoiding hard-to-traverse terrain, ensuring

that it visits locations where it will have a good link with the ground crew, and

visiting locations where it can gather enough sunlight. This problem is challenging

because each action the robot takes affects which parts of the environment its sensors

can cover and its progress towards satisfying the given specification. We consider

both finite- and infinite-horizon versions of this problem.



4

Second, we examine the case where, in contrast to the previous information gath-

ering problem, the robot must not only estimate the state of some a priori unknown

feature, but must also interact with it. An example of such a problem is steering a

robot to find survivors after a natural disaster and guide any found survivors to a safe

location. We develop a new temporal logic, called distribution temporal logic, that is

capable of reasoning about the time evolution of not only the state of the system but

also the uncertainty in this state. An example of a property that can be expressed

in DTL is “Ensure that the uncertainty about the locations of fires remains below u

for all time. If a survivor is found with probability p, guide the survivor to a safe

location.”

Third, we investigate the problem where, instead of steering a system to satisfy a

given specification, we solve an inverse problem in which we want to determine what

specification a given system is satisfying. In particular, we are interested in learning

specifications that systems behaving in a desirable manner satisfy but those which

are behaving in an undesirable manner do not. For example, in the context of naval

surveillance, we learn specifications that law-abiding vessels are following and which

law-avoiding vessels are not. We address this problem with off-line supervised learn-

ing, i.e. we infer a specification from a database of execution data labeled according

to whether or not it represents desirable behavior, on-line supervised learning, i.e. in-

stead of a database, we learn the formula as more data becomes available over time,

and off-line unsupervised learning, i.e. the data in the database is unlabeled.

Finally, we consider the problem where again we are steering a system to satisfy

a given specification, but we do not know what the dynamical model of the system

is. The “pick and place” task is an example of this problem. We solve this problem

via reinforcement learning, a machine learning technique in which the system takes

actions, observes outcomes, and reinforces favorable actions. Over time, reinforcement
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learning generates an optimal policy. In our case, we reinforce policies based on how

close the outputs are to satisfying the given specification. This problem is not readily

addressed with standard reinforcement learning methods, as the progress towards

satisfaction depends on the history of the system, while standard methods assume

stationarity.

1.1 Synthesizing Information Gathering Policies with Tem-

poral Logic Constraints

In Chapter 3, we address the problem of controlling a robot with known dynamics

and noisy sensors to gather as much information as possible about some a priori

unknown feature while satisfying a high-level temporal logic mission specification.

An example of this problem is using an autonomous underwater vehicle to measure

the temperature of the ocean water as precisely as possible while avoiding high-traffic

or tumultuous areas, periodically visiting locations where it can communicate with

researchers, and eventually returning to a base station for recharging and servicing.

We consider both finite-horizon (Jones et al., 2013a; Jones et al., 2015b) and infinite-

horizon (Jones et al., 2015c) versions of this problem. In the infinite-horizon version,

the constraints are given as linear temporal logic (LTL) formulae (Chapter 2). LTL

is a well-known paradigm in formal methods (Kloetzer and Belta, 2008; Baier and

Katoen, 2008), and can be used to describe many properties that can be stated

in plain English, such as “Visit regions A and C or D infinitely often and ensure

that region A is visited before C or D and always avoid region E.” In the finite-

horizon case constraints are given as a subset of LTL called syntactically co-safe LTL

(scLTL) that is appropriate for describing constraints that can be satisfied in finite

time (Kupferman and Vardi, 2001).
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We consider a robot using a recursive Bayesian filter to estimate an uncertain

quantity of interest (e.g. the locations of survivors) over a discrete environment. We

take information-theoretic measures, namely the Shannon entropy (Shannon, 1948)

of the Bayesian estimate in the finite-horizon case and the rate of this entropy in the

infinite-horizon case, as a cost to be minimized over its closed-loop control policy. Our

key insight is that we can construct a Markov decision process (MDP) that simul-

taneously encapsulates the robot’s motion, its estimation process, and its progress

towards satisfying a given TL formula. In this way we reduce our problem to the

optimal control of an MDP.

For the finite-horizon case, we then use stochastic dynamic programming to find

a feedback policy that globally optimally minimizes the uncertainty in the estima-

tion task subject to satisfying the TL specification. We develop receding-horizon

dynamic programing algorithms that a robot uses to generate a sub-optimal policy

on-line. This approach drastically decreases computation time compared to the opti-

mal dynamic programming solution. In our case studies, we have observed that the

performance penalty we pay for this computational efficiency is small. We charac-

terize these algorithms with theoretical guarantees and verify their performance in

Monte Carlo simulations. We assess the algorithms’ practicality in experiments with

an aerial robot using an on-board camera to localize a randomly moving target.

We approach the infinite-horizon problem with a hierarchal planner. The low-level

planner extends the receding horizon algorithm from (Jones et al., 2015b) to satisfy

LTL constraints and maximize the mutual information rate (MIR) locally. The high-

level planner uses a pre-computed policy to select inputs to the receding horizon

algorithm that maximize the MIR over the long term. We construct this high-level

policy using sampling-based techniques combined with value iteration. Our procedure

is evaluated via Monte Carlo simulation.
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In both sets of work, we synthesize high-level mission controllers rather than

designing low-level motion controllers. We represent the environment as a discrete

graph, where nodes are locations, rooms, or regions, and edges are available transitions

between these regions. This implicitly assumes that our robot has low-level control

and sensing capabilities to navigate and localize within its continuous world. Such

low-level control and navigation can be accomplished with myriad existing techniques,

for example with sophisticated SLAM algorithms (Thrun, 2008). For example, our

algorithms consider controlling a high-level sequence of actions to ensure that data

is uploaded and that recharging stations are visited, but we do not consider how to

control wheel speeds to drive through a doorway given range measurements. The

strength of our formulation is that it assumes a generic representation such that our

procedures will work over a wide range of low-level motion control and data processing

tools.

Our work addressing the finite-horizon problem is closely related to sensor place-

ment (Akyildiz et al., 2002), where optimal locations are found for a static sensor net-

work, and informative path planning, in which paths for mobile sensors are planned to

collect a maximum amount of information. Previous works have focused on optimiz-

ing various information measures for both these problems, including Shannon mutual

information and Fischer information. Many sophisticated algorithms exist for per-

forming informative path planning in discretized environments for single or multiple

agents using e.g. recursive greedy planning (Singh et al., 2007) or sequential dynamic

programming (Meliou et al., 2007). Other constraints on the agents’ motion such

as communication constraints (Ghaffarkhah and Mostofi, 2012; Kassir et al., 2012),

collision avoidance (Binney et al., 2010; Gan et al., 2012; Candido and Hutchinson,

2011), and environmental hazards (Schwager et al., 2011) have also been considered.

Our use of scLTL constraints subsumes these more traditional kinds of constraints,
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and allows for the expression of a much richer class of constraints. Further we provide

feedback policies, not open-loop planned paths. In a stochastic iterative problem such

as information gathering, it is well known that optimal policies must be feedback

policies (Bertsekas, 2000; Bellman, 1957).

There exist forward computed receding horizon algorithms that are used to maxi-

mize local reward gathering while guaranteeing satisfaction of TL constraints (Wong-

piromsarn et al., 2010; Ding et al., 2012). In contrast to these two works, our algo-

rithm gives a dynamic programming receding horizon policy which is advantageous for

optimizing stochastic objective functions such as information. Secondly, the distribu-

tion of the information-dependent cast that is incurred when taking an action from a

particular state under our approach depends on what measurements and actions have

been taken before. In contrast, the cost distribution is stationary in the cited works.

Further, these works involved optimizing to satisfy the mission as quickly as possible,

which can conflict with the goal of gathering as much information as possible. The

receding algorithm presented in (Jones et al., 2015b) instead uses a new approach

to ensure mission satisfaction within a certain time-bound. This increases the set of

actions that the agent can take when compared with the standard approaches, which

means that it can possibly take more informative paths. This change to the receding-

horizon method is of independent interest as it may be adapted to other optimization

problems with TL constraints.

The infinite-horizon problem is closely related to the problem of persistent mon-

itoring, i.e. ensuring that the robot maintains a high-quality estimate indefinitely,

under LTL constraints. Persistent monitoring strategies have recently been consid-

ered in the literature. In (Smith et al., 2012), the authors demonstrate how to regulate

the speed of an agent moving along a fixed path such that the uncertainty about the

state of the environment remains below a certain threshold indefinitely. This work
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is extended to planning trajectories in (Lan and Schwager, 2013). The problem of

multi-agent persistent monitoring is investigated in (Cassandras and Lin, 2013). The

above works consider a measurement model that is independent of the agent’s loca-

tion in the environment and either completely unconstrained motion or motion along

predefined paths. In contrast, we assume that the agent’s sensing capability depends

on its position in the environment and we incorporate LTL motion constraints. The

most relevant existing work in this area is (Kress-Gazit et al., 2007), in which a re-

lated temporal logic (GR(1)) was used to encode tasks that were related to the agent’s

sensors. This work showed how to synthesize motion policies that were reactive to

changes in the environment that were detected by the sensors, but no active estima-

tion was performed to attempt to increase the knowledge of the unknown state of

the underlying environment. In the search-and-rescue case study presented in(Kress-

Gazit et al., 2007), the agents patrolled fixed paths until the survivors were “found”,

while in our approach, an agent would update its planned path on-line in order to

localize the survivors as quickly as possible.

We presented results on this topic in (Jones et al., 2013b; Jones et al., 2015b;

Jones et al., 2015c). In summary, our contributions are

• We defined and formalized the problem of gathering information under temporal

logic constraints. (Jones et al., 2013b).

• We constructed a model that encapsulates how each action the robot takes

affects the quality of its estimate and its progress towards satisfying a given TL

specification (Jones et al., 2015b)

• We developed a pair of algorithms, a provably optimal algorithm and a sub-

optimal algorithm with much better computational performance, that use this

model to solve the constrained information gathering problem for finite-horizon
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missions (Jones et al., 2015b). Both algorithms are guaranteed to satisfy the

given specification.

• We extended these results to the problem of persistent monitoring and es-

tablished a high-level planner that mitigates the myopia inherent in receding-

horizon methods. (Jones et al., 2015a)

• While our algorithms have focused on information gathering, they are valid

regardless of the chosen stochastic objective. This contributes to the field of

stochastic optimization under temporal logic by augmenting the class of prob-

lems that can be addressed to include non-stationary cost distributions.

1.2 Temporal Logic Tasks under Uncertainty

In chapter 4, we develop a new paradigm for the specification of problems involv-

ing partially observable systems. Partially observable systems are doubly-embedded

stochastic processes whose state can only be observed via an external related process.

These models are frequently used in engineering to describe systems that evolve over

time and observed via noisy measurements, such as a robot with noisy actuators that

is operating in an environment and localizing itself via on-board LIDAR. In particu-

lar, we consider Partially Observable Markov Decision Processes (POMDPs) in which

we update a Bayesian filter on-line to give a current probability distribution over the

hidden state. This probability distribution is itself treated as a state, called a belief

state in the POMDP literature.

In (Jones et al., 2013a), we defined distribution temporal logic (DTL), a predicate

logic defined over sequences of belief states. DTL allows us to define properties not

only of the evolution of the underlying unknown (hidden) state, but also the evolution
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of the estimation process as well. With DTL, we can describe tasks such as “Measure

the system state until estimate variance is less than v while minimizing the probability

of entering a failure mode” or “If the most likely card to be drawn next is an Ace,

increase your bet”. DTL is a promising framework for high-level tasks over POMDPs

as it can be used to describe the value of taking observations, as well as describing

complex tasks defined over the hidden states of the system, and how to react to gains

in certainty about the state of the system.

For stochastic systems with a fully observable state, some results exist that address

the problems of model checking (determining with what probability any sample path

satisfies a given specification), synthesis (synthesizing a policy that maximizes the

probability of satisfying a given specification), and monitoring (determining on-line

whether a system execution satisfies a given specification). For example, probabilistic

computational tree logic (PCTL) can be used to describe temporal logic properties

of Markov chains (Baier and Katoen, 2008). The probability of satisfaction of a TL

formula over Markov chains can be calculated exactly using a reachability calculation

(Baier and Katoen, 2008) or estimated from a subset of sample paths using statistical

model checking (Sen et al., 2005; Zuliani et al., 2010). Formal synthesis for proba-

bilistic robots modeled as Markov decision processes is also an active area of research

(Lahijanian et al., 2012a; Ding et al., 2011; Wolff et al., 2012).

We introduces DTL as a means to formally pose formal methods problems over

partially observable systems. We provide a statistical monitoring procedure that ver-

ifies ex post facto with what probability a particular execution of a POMDP satisfies

a particular DTL specification.

Formal methods for stochastic systems with hidden states are difficult to develop.

In general, if TL formulae are defined with respect to hidden states, their logical

satisfaction can only be verified up to a probability based on partial knowledge of
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the state. The logic POCTL* is an extension of PCTL that describes TL properties

over hidden states and observations in Hidden Markov Models (HMMs) (Zhang, 2004;

Zhang et al., 2005). HMMs are partially observable systems in which the true (hidden)

state of the system evolves according to a Markov chain and can be probed by a

related observation process. HMMs are widely used as models in speech recognition

where phonemes are the hidden states of the system and vocal recordings are the

observed states. POCTL* is used for checking properties such as “The probability

that the sequence of hidden states s0 . . . st produces an observation sequence o0 . . . ot

is less than 0.1.” The inclusion of observations in POCTL* allows us to specify some

properties involving our external knowledge of the system, but, as we show in Chapter

4, DTL is more expressive and, for example, can be used to describe hypothesis testing

tasks that POCTL* can’t.

Recent development of point-based approximation methods (Smith and Simmons,

2005; Shani et al., 2012; Pineau et al., 2003; Kurniawati et al., 2008) and bisimulation

- based reduction methods (Castro et al., 2009; Jansen et al., 2012) have made it

possible to find sub-optimal solutions for maximizing the expected reward defined over

hidden states in high-dimensional POMDPs with low computational overhead. It is

well known, however, that maximizing the actual reward gathered in an execution of

a POMDP is undecidable (Madani et al., 2003). Synthesizing policies over POMDPs

to maximize the probability of satisfying a TL formula over hidden states is thus

a hard problem, though some results exist for synthesis over short time horizons

(Wongpiromsarn et al., ) and in systems where TL satisfaction can be guaranteed

(Cimatti and Roveri, 2000).

The best action to take in a POMDP to increase the probability of satisfaction

depends intimately on the quality of knowledge of the system. POCTL* describes

the quality of knowledge based on the observation process, but this approach ignores
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the richness of information conveyed by belief states. Information-theoretic measures

defined over belief states can quantify the uncertainty (i.e. Shannon entropy) of

the current estimate or the expected informativeness (i.e. mutual information) of

future actions (Shannon, 1948; Cover and Thomas, 2006). Considering these two

measures in mobile robots have increased environmental estimation quality (Julian

et al., 2012; Bourgault et al., 2002; Hoffmann and Tomlin, 2010; Choi and How,

2010); incorporating them into TL-based planning for POMDPs will possibly yield

similar results.

We presented results on this topic in (Jones et al., 2013a). In summary, our

contributions are

• We develop a new type of temporal logic that can be used over partially ob-

servable systems. This logic expresses properties over the belief state, including

measures of uncertainty.

• We define syntactically co-safe linear DTL (scLDTL), a DTL based on scLTL

that can be used to prescribe finite-time temporal logic behaviors of POMDPs.

• We demonstrate that DTL can describe behaviors in partially observable sys-

tems that cannot be expressed by current TLs, including the logic POCTL*

that was explicitly designed to be used in Hidden Markov Models.

• We provide an algorithmic procedure for evaluating the probability of satisfac-

tion of an scLDTL formula with respect to an execution of a POMDP.

1.3 Learning Temporal Logic Specifications from Data

In Chapter 6, we address a trio of problems in the field of specification mining (or

temporal logic inference). Specification mining is the “inverse” problem of model
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checking. In model checking, the problem is to check whether a system satisfies a given

specification via automata-theoretic (Baier and Katoen, 2008) or statistical methods

(Zuliani et al., 2010). In specification mining, the problem is to determine which

specification a system satisfies. We use specification mining to study systems with

continuous state spaces with a special focus on security for cyber-physical systems.

We approach these problems with principles from machine learning

Modern systems play increasingly important roles in the operation of critical in-

frastructure such as transportation networks and power grids. The large scale and

highly nonlinear nature of some of these systems, however, renders the use of classical

analysis tools difficult. Due to their networked nature, these systems are also vulnera-

ble to external attacks or disruptions. Recent high-profile attacks, e.g. the Maroochy

water breach (Slay and Miller, 2007) and the control system malware Stuxnet (Farwell

and Rohozinski, 2011), highlight the need to understand system security (Fawzi et al.,

2012; Gupta et al., 2010; Zhu and Mart́ınez, 2013; Pasqualetti et al., 2011; Teixeira

et al., 2012; Shoukry et al., 2013). In (Shoukry et al., 2013), a packet delay attack is

considered, in which, by accessing and then delaying the sensor data, the adversary

can harm the physical components of the system. In (Pasqualetti et al., 2011) and

(Teixeira et al., 2012), more general issues such as detectability and identifiability for

a wide range of attacks are investigated. In all the cited works, the physical system

evolves according to a linear model that is known to the designers. This assumption

is not consistent with the growing complexity of modern systems and the involvement

of agents, such as humans, whose behaviors are generally quite hard to predict.

Anomaly detection is the problem of detecting patterns from data that do not

conform to expected behavior. It has been used in a wide range of applications, such

as intrusion detection for cyber-security, fault detection in safety-critical systems, and

video surveillance of illicit activities (Chandola et al., 2009). Tools from statistics,
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machine learning, data mining and information theory, such as k-means clustering and

k-nearest neighbor (k-NN) graphs, have been adapted to solve the anomaly detection

problem (Auslander et al., 2011; Kowalska and Peel, 2012). In general, existing tech-

niques for anomaly detection infer a surface embedded in a high-dimensional feature

space that separates normal and anomalous data. However, it is hard to interpret

the meanings of the surfaces, especially in the context of prediction, knowledge base

construction and on-line monitoring (i.e. determining on-line whether a behavior is

anomalous) (Ustun et al., 2013).

In Chapter 6, we present model-free algorithms for system security. We use signal

temporal logic (STL) formulae (Chapter 5), a specification language suited for con-

tinuous systems, as data classifiers. STL can be used to express system properties

that include time bounds and bounds on physical system parameters, such as “If

the boat remains in region A while maintaining its speed below 10 kph for 10 min.,

it is guaranteed to reach the port within 15 min.” STL formulae resemble natural

language, which means they can be useful for human operators. Further, the rig-

orous mathematical definition of the logic means that the formulae can be searched

over using optimization methods and can be used in computational routines to auto-

matically monitor systems for undesired behaviors. Specification mining in discrete

systems is typically done via automata-based learning (Chen et al., 2013b; Angluin

and Fisman, 2014), in which automata representations of LTL formulae are learned

from finite substrings of infinite words. Since STL is not amenable to automata the-

ory, we propose a novel machine learning-based approach for specification mining in

systems with continuous state spaces.

We consider two critical security problems. The first is anomaly learning via

supervised learning. In this case, given system outputs labeled according to whether

a system behaves normally or not, we infer a temporal logic formula that can be



16

used to distinguish between normal system behaviors, e.g. the brakes of a train are

engaged if the velocity is beyond a certain threshold, and anomalous (or undesired)

behaviors, e.g. the brakes are not properly engaged due to attacks (Kong et al., 2014).

The second problem is anomaly detection via unsupervised learning. In this case, the

system outputs are not labeled, i.e. there is no expert-in-the-loop that determines

whether a given trace represents normal or attacked operation, and we infer a formula

to detect out-of-the-ordinary (anomalous) outputs (Jones et al., 2014).

Most of the recent research on logical inference has focused on the estimation of

parameters associated with a given temporal logic structure (Asarin et al., 2012; Yang

et al., 2012; Jin et al., 2013; Bartocci et al., 2013). That is, a designer gives a struc-

ture such as “The speed settles below v m/s within τ seconds” as an input and the

inference procedure finds values for v and τ that optimize a given objective function.

These structures are given as parametric STL (PSTL) formulae, an extension of STL

in which bounds on space and time are replaced with variables. The given structure

reflects domain knowledge of the designer and properties of interest to be queried.

However, the selected formula may not reflect achievable behaviors (over-fitting) or

may exclude fundamental behaviors of the system (under-fitting). Furthermore, by

giving the formula structure a priori, the inference procedure cannot derive new

knowledge from the data. Thus, in our procedures, we infer the formula structure

(the form of the property that the system demonstrates) along with its optimal pa-

rameterization. We guide the search via the robustness degree (Chapter 5) a signed

metric on the signal space which quantifies to what degree a signal satisfies or violates

a given formula.

In (Jones et al., 2014), we defined a new logic called inference parametric signal

temporal logic (iPSTL). iPSTL is a generalization of reactive Parametric Signal Tem-

poral Logic (rPSTL), which we defined in (Kong et al., 2014). iPSTL is expressive
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enough to capture properties that are crucial to a wide range of applications, e.g.

naval surveillance and train network monitoring. We showed in (Kong et al., 2014)

that we are able to build a directed acyclic graph (DAG) for all iPSTL formulae. The

formulae in the DAG are organized according to how general they are such that if ϕ2

is a child of ϕ1, then the property described by ϕ1 implies the property described by

ϕ2. This result enables us to formulate both the anomaly learning and the anomaly

detection problems as optimization problems whose objective functions involve the

robustness degree. We solve the optimization problems by combining discrete search

over the DAG and a continuous search over the parameters.

To combat computational complexity, we have also developed an on-line super-

vised learning algorithm (Kong et al., 2015). That is, we present an algorithm to

modify the classifying formula as more data is collected over time rather than learn

a formula from a large batch of data. This procedure has lower computational costs

than the supervised learning procedure developed in (Kong et al., 2014), making it

applicable to high dimensional systems producing large amounts of data. Further, our

new procedure requires no a priori system data, meaning it is applicable to systems

from which no prior outputs are available.

Results on this topic have appeared in (Kong et al., 2014; Jones et al., 2014; Kong

et al., 2015). To summarize, our contributions to this field are:

• We proposed the use of temporal logic formulae as data classifiers and formal-

ized the supervised learning problem of inferring a temporal logic formula from

labeled data (Kong et al., 2014).

• We defined a fragment of parametric signal temporal logic, called iPSTL, that

is expressive enough to describe many properties of interest (Kong et al., 2014;

Jones et al., 2014).
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• We show that the set of iPSTL formulae can be organized into a DAG based

on their inclusivity (Kong et al., 2014).

• We developed a supervised learning algorithm that combines searching for for-

mula structures over the DAG and searching for optimal parameter values using

derivative-free continuous optimization methods (Kong et al., 2014).

• We defined the problem of anomaly detection as an unsupervised learning prob-

lem and extended the results from (Kong et al., 2014) to develop an algorithm

to solve it (Jones et al., 2014).

• We developed an on-line supervised learning algorithm that is more computa-

tionally efficient (Kong et al., 2015).

1.4 Reinforcement Learning and Temporal Logic

In Chapter 7, we consider the problem of controlling a system with unknown, stochas-

tic dynamics, i.e. a “black box”, to achieve a complex, time-sensitive task given as an

STL formula. An example is controlling a noisy aerial vehicle with partially known

dynamics to visit a pre-specified set of regions in some desired order while avoiding

hazardous areas. When a stochastic dynamical model is known, there exist algorithms

to find control policies for maximizing the probability of achieving a given proposi-

tional TL specification (Luna et al., 2014; Lahijanian et al., 2015; Svorenova et al.,

2014; Kamgarpour et al., 2011) by planning over stochastic abstractions (Julius and

Pappas, 2009; Abate et al., 2011; Lahijanian et al., 2015). Synthesizing policies to

satisfy STL formulae in both deterministic and non-deterministic settings has only

recently been considered (Raman et al., 2014; Raman et al., 2015). However, only

a handful of papers have considered the problem of enforcing TL specifications on
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a system with unknown dynamics. Passive (Brazdil et al., 2014) and active (Sadigh

et al., 2014; Fu and Topcu, 2014) reinforcement learning has been used to find a

policy over finite models, i.e. MDPs, that maximizes the probability of satisfying a

given linear temporal logic formula.

In (Jones et al., 2015a), in contrast to the above works on reinforcement learning

which use propositional temporal logic, we use STL (Chapter 5). By considering a

logic that can directly reason about continuous states and bounded time, our method

can be applied to classes of systems with bounded, real-valued state spaces, as opposed

to those systems that can be modeled by Markov decision processes with finite state

spaces. Further, the robustness degree associated with STL quantifies how strongly

a given sample path exhibits an STL property as a real number rather than just

providing a yes or no answer. This robustness gives more fine-grained information

about how a given policy performs over the real-valued state space than simply using

its probability of satisfaction.

One of the difficulties in solving problems with TL formulae is the history-

dependence of their satisfaction. For instance, if the specification requires visiting

region A before region B, whether or not the system should steer towards region

B depends on whether or not it has previously visited region A. For LTL formulae

with time-abstract semantics, this history-dependence can be broken by translating

the formula to a deterministic Rabin automaton (DRA) and composing it with the

system model to produce a product automaton that automatically takes care of the

history-dependent “book-keeping” (Ding et al., 2014; Sadigh et al., 2014). However,

in the case of STL, such a construction is difficult due to the time-bounded semantics.

We circumvent this problem by defining a fragment of STL such that the progress

towards satisfaction is checked with some finite number τ of state measurements. We

thus define an MDP, called the τ -MDP whose states correspond to the τ -step history
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of the system. The inputs to the τ -MDP are a finite collection of control actions.

We use a reinforcement learning strategy called Q-learning (Tsitsiklis, 1994), to

find a non-stationary optimal policy, i.e. a mapping from states of the τ -MDP and

the current time to the next control action to be taken. to either maximize the

probability of satisfying a given STL formula, or maximize the expected robustness

with respect to the given STL formula. Due to the history-dependent nature of

formula satisfaction, we cannot formulate either objective as a sum of stage rewards.

Thus, we cannot use traditional Q learning techniques to solve these problems. To

solve this problem, we developed novel Q-learning algorithms that are guaranteed to

converge to the optimal policies (with respect to a given τ -MDP) of each problem.

We propose that maximizing expected robustness is typically more effective than

maximizing probability of satisfaction. We prove that in certain cases, the policy

that maximizes expected robustness is guaranteed to also maximize the probability

of satisfaction. However, if the given specification is not satisfiable, the probabil-

ity maximization will return an arbitrary policy, while the robustness maximization

will return a policy that gets as close to satisfying the policy as possible. Finally, we

demonstrate through simulation case studies that the policy that maximizes expected

robustness in some cases gives better performance in terms of both probability of sat-

isfaction and expected robustness when fewer training episodes are available. This

phenomenon occurs because the continuous nature of the robustness degree means

that the robustness maximization algorithm reinforces policies that produce trajecto-

ries that almost satisfy the given formula more than policies that produce trajectories

that do not come close. On the other hand, the probability maximization algorithm

would reinforce both policies equally. Thus, before observing a satisfying trajectory,

the probability maximization algorithm executes a random search, while the robust-

ness maximization performs a search that is analogous to stochastic gradient descent.
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Results on this topic appear in (Jones et al., 2015a). In summary, our contribu-

tions to this field are

• We define the problem of using reinforcement learning to enforce STL specifi-

cations rather than LTL specifications.

• We defined a fragment of STL whose progress towards satisfaction can be de-

termined with a finite number of samples.

• We define a finite-memory Markov Decision Process abstraction that allows us

to search for finite, history-independent policies

• We map the problem of enforcing an STL formula to maximizing expected

robustness

• We prove that in some cases, maximizing expected robustness subsumes maxi-

mizing probability of satisfaction

• We define novel, provably-convergent Q-learning algorithms to maximize prob-

ability of satisfaction or expected robustness.

• We show via simulation that the algorithm that maximizes robustness can per-

form better in terms of both probability of satisfaction and expected robustness

for a small number of training samples.

1.5 Organization of Dissertation

This dissertation is outlined as follows. In Chapter 2, we introduce some mathe-

matical preliminaries. In particular, we introduce some of the basics of propositional

temporal logic and finite systems and give a brief overview of how these models are
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used in robotic navigation. Chapter 3 presents our work on synthesizing policies for

information gathering under temporal logic constraints. Our work on distribution

temporal logic, our novel paradigm for describing temporal logic properties of par-

tially observable systems, is presented in Chapter 4. In Chapter 5, we review the

basic properties of signal temporal logic. Chapter 6 presents our machine learning

approach to specification mining problems for cyber-physical system security. Our

reinforcement learning algorithm for steering systems with unknown dynamics to sat-

isfy a given STL specification is presented in Chapter 7. Finally, we present some

conclusions and future research directions in Chapter 8.
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Chapter 2

Temporal Logic and Finite Systems

In this section, we present some background on finite systems and temporal logic that

are preliminaries for Chapters 3 and 4.

2.1 Notation

For sets A and B, 2A denotes the power set of A, A × B is the Cartesian product

of A and B, and An = A × A × . . . A. We use the shorthand notation x1:t for a

time-indexed sequence of states x1 . . . xt where xi is the value of x at time i. The set

of all finite and set of all infinite words over alphabet Σ are denoted by Σ∗ and Σω,

respectively. We frequently use the indicator function I, where

I(p) =

{
1 p is true
0 p is false

(2.1)

where p is a proposition or predicate.

2.2 Finite Models

In this section, we define a set of finite models that can be described by graph-like

representations.

Definition 2.1. A (deterministic) transition system (TS) (Baier and Katoen, 2008)



24

is a tuple TS = (Q, q0, Act, T rans,AP, L), where Q is a set of states, q0 ∈ Q is

the initial state, Act is a set of actions, Trans ⊆ Q × Act × Q is a deterministic

transition relation, AP is a set of atomic propositions, and L : Q→ 2AP is a labeling

function of states to atomic propositions. A run of a weighted transition system is

a sequence of states q0q1 . . . ∈ Q∗ (or Qω) such that q0 = q0, and ∃ai ∈ Act such

that (qi, ai, qi+1) ∈ Trans ∀i = 0, 1, . . .. An output trace of a run q0q1 . . . is a word

w = w0w1 . . . where wi = L(qi).

Definition 2.2. A discrete time Markov Chain (MC) is a tuple MC = (S, s0, P )

where S is a set of states, s0 is an initial state of the system, and P : S × S → [0, 1]

is a probabilistic transition relation such that the chain moves from state s to state

s′ with probability P (s, s′).

Definition 2.3. A discrete time Markov decision process (MDP) is a tuple MDP =

(S, s0, P, Act), where S, s0 are as defined for a MC, Act is a set of actions, and P :

S × Act × S → [0, 1] is a probabilistic transition relation such that taking action

a drives MDP from state s to state s′ with probability P (s, a, s′). We denote the

set of actions a that can be taken at state s such that ∃s′ ∈ S with P (s, a, s′) > 0

as Act(s) ⊆ Act. A sample path of an MDP is a sequence of states s0s1 . . . s` with

P (si, a, si+1) > 0 for some a ∈ Act(si) ∀i = 0, . . . , `.

2.2.1 Stochastic Dynamic Programming

In this section, we give some basic preliminaries for stochastic dynamic programming.

In stochastic dynamic programming, the goal is to select inputs to an MDP such that

in expectation the resulting sample path minimizes a cost function defined over S.

The terminal cost of a trace of length `+ 1 is a function g` : S → R where g`(s) is the

cost of ending a trace in state s. A discrete stochastic optimal control problem with
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a budget of ` actions is an optimization of the form

min
a0:`−1

E[g`(s
`)]

subject to
ai ∈ Act(si) ∀i = 0, . . . , `− 1

si+1 ∼ P (si, ai, si+1),

(2.2)

where ai is the action taken at time i. A feedback policy is a mapping µ : N×S → Act

such that µ(i, si) is the action taken at time i in state si. The solution to (2.2) is an

optimal feedback policy µ∗ such that

µ∗(i, s) = arg min
ai∈Act(s)

E[J`−i−1(s`−i−1)], (2.3)

where
Jk(s) = min

a`−k:`
E[g`(s

`)]

subject to
s`−k = s

ai ∈ Act(si) ∀i = `− k, . . . , `− 1
si+1 ∼ P (si, ai, si+1),

(2.4)

is the cost to go function with k steps to go. The cost to go and optimal policy are cal-

culated via the following recursive relations, called the Bellman iteration (Bertsekas,

2000).
J0(s) = g`(s)
Jk(s) = min

a∈Act(s)
E[Jk−1(s`−k+1)]

µ∗(`− k, s) = arg min
a∈Act(s)

E[Jk−1(s`−k+1)],
(2.5)

for k = 1, . . . , `.

2.3 Propositional Temporal Logic

In this section, we define the basics of some propositional temporal logics.

Definition 2.4. Propositional logic is a decidable logic defined over a set of atomic
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propositions (variables that are either “true” or “false”). The set of propositional

formulae is defined by the following four rules (Baier and Katoen, 2008)

1. True (denoted >) is a propositional formula

2. Any proposition p ∈ AP is a formula. This is the smallest possible formula,

hence the adjective “atomic”.

3. Given two formulae φ1 and φ2, ¬φ1, (“not φ1”) and φ1 ∧ φ2 (“φ1 and φ2”) are

also formulae.

4. Nothing else is a propositional formula.

An example of a propositional logic formula is a∧ b, which is true iff the proposi-

tions a and b are both true.

In this dissertation, we use temporal logics to specify temporally layered properties

of a variety of systems. Temporal logic is an extension of decidable logics to have

“temporal modalities”. That is, while typical logics can be evaluated over a “state”,

e.g. set of propositions, at a particular time, a temporal logic is decidable over states

that evolve over time. In this thesis, we use exclusively linear-time logics , that is

logics that are decidable over linear (as opposed to branching) sequences.

A logic is defined by its syntax , which is a set of rules about how formulae can

be constructed using Boolean connectives, temporal operators, and atomic units, e.g.

atomic propositions, and its semantics , which is a set of rules that tells how to

interpret the logic over a set of models. In some cases, two formulae φ1 and φ2 may

have differing syntax, but may be satisfied by the same set of models. In this case,

we say that the two formulae are semantically equivalent , denoted φ1 ≡ φ2.
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Example 2.1. The syntax of propositional logic is

φ := >|p|¬φ|φ1 ∧ φ2, (2.6)

where p is an atomic proposition and φ, φ1, and φ2 are propositional formulae. Ex-

pression 2.6 expresses the rules given in Definition 2.4. The semantics of propositional

logic is interpreted over sets P ∈ 2AP . We say that P satisfies a propositional for-

mula φ, denoted P |= φ, if φ is true when interpreted over P . The semantics of

propositional logic is defined recursively as

P |= >
P |= p ⇔ p ∈ P
P |= ¬φ ⇔ P 6|= φ( P does not satisfy φ)
P |= φ1 ∧ φ2 ⇔ P |= φ1 and P |= φ2

(2.7)

Now we define a generic linear time propositional logic called Linear Temporal

Logic (LTL) that is frequently used to describe properties of discrete systems.

Definition 2.5 (LTL). The syntax of linear temporal logic is defined as

φ := >|p|¬φ|φ1 ∧ φ2| © φ|φ1Uφ2 (2.8)

where p,¬, φ, φ1, and φ2 are as defined in (2.6) and © and U are the temporal oper-

ators “next” and “until”, respectively. The following derived symbols are frequently
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used for convenience.

⊥ ≡ ¬>
φ1 ∨ φ2 ≡ ¬(φ1 ∧ φ2)
φ1 ⇒ φ2 ≡ (¬φ1) ∨ φ2

φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)
♦ φ = >Uφ
� φ = φU⊥

(2.9)

The symbol ⊥ is read as “false”, ∨ as “or”, ⇒ as “implies”, ⇔ as “is equivalent to”,

♦ as “eventually”, and � as “always”. The semantics of LTL is interpreted over

infinite words w = w0w1w2 . . . in the set (2AP )ω and is defined recursively as

wi |= >
wi |= p ⇔ p ∈ wi
wi |= ¬p ⇔ p 6∈ wi
wi |= φ1 ∧ φ2 ⇔ wi |= φ1 and wi |= φ2

wi |= φ1 ∨ φ2 ⇔ wi |= φ1 or wi |= φ2

wi |=©φ ⇔ wi+1 |= φ
wi |= φ1Uφ2 ⇔ ∃j ≥ i such that wj |= φ2 and wk |= φ1 ∀i ≤ k < j
wi |= ♦ φ ⇔ ∃j ≥ i such that wj |= φ.
wi |= � φ ⇔ ∀j ≥ i, wj |= φ.

(2.10)

A word w satisfies φ, denoted w |= φ, iff w0 |= φ. We call the set of all words in

(2AP )ω that satisfy φ it’s language , denoted L(φ)

Example 2.2. Consider the LTL formula

φ = � ¬π1 ∧ ( � ♦ π2). (2.11)

In plain English, (2.11) means “Never π1 and always eventually (infinitely often) π2.”

The word consisting of π3π2 repeated infinitely many times satisfies (2.11). The word

π3π2π1 . . . does not.

In this work, we also consider linear time properties that can be satisfied with a
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finite number of symbols. We model this set of properties with syntactically co-safe

LTL (scLTL), a fragment of LTL. (Kupferman and Vardi, 2001; Latvala, 2003). A

fragment of a logic is a logic that has the same semantics but whose syntax is a subset

of the original.

Definition 2.6 (scLTL). The syntax of scLTL is inductively defined as (Kupferman

and Vardi, 2001):

φ := p|¬p|φ ∨ φ|φ ∧ φ|φUφ| © φ| ♦ φ, (2.12)

Any linear time property that can be checked with a finite prefix can be expressed

as an scLTL formula (Kupferman and Vardi, 2001; Latvala, 2003). Technically, scLTL

formulae are defined over infinite words, i.e. words in (2AP )ω. However, any infinite

word that contains a finite prefix that satisfies an scLTL satisfies the formula, so for

the purpose of this paper, we model scLTL as being defined over only those finite

prefixes, i.e. words in (2AP )∗.

Example 2.3. The formula in (2.11) is in LTL but not scLTL, as its satisfaction

requires infinite repetitions of π2. On the other hand,

φ = ♦ π2 ∧ (¬π1Uπ2) (2.13)

is in scLTL, as it only requires π2 to occur once without π1 occurring before π2.

That is, it requires no infinite repetitions or infinite-time safety conditions (hence the

name “co-safe”).
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2.4 Automata

Many propositional temporal logics can be translated to an automaton, a graph- like

representation that can be used to check whether a given sequence of inputs (words)

satisfy a certain condition. In our case, this condition is a temporal logic formula.

In this dissertation, we focus on LTL formulae that can be translated to a Buchi

automaton (Baier and Katoen, 2008; Gastin and Oddoux, 2001).

Definition 2.7 (Buchi automaton). A deterministic Buchi automaton (DBA) (Baier

and Katoen, 2008) is a tuple B = (Σ,Π, δ, σ0, F ) where Σ is a finite set of states, Π

is a finite alphabet, δ ⊆ Σ × Π × Σ is a deterministic transition relation, σ0 ∈ Σ is

the initial state of the automaton, and F ⊆ Σ is a set of final (accepting) states. An

accepting run on a DBA is a sequence of states in Σ∞ that intersects with F infinitely

often. The language of a DBA (written L(B)) is the set of all accepting words in

Σ∞.

Given an LTL formula φ, there exist algorithmic procedures (Bauer et al., 2011) to

construct a DBA Bφ with alphabet 2AP such that the language of all words satisfying

φ, L(φ), is equal to L(Bφ). (Vardi, 1996). The details of this translation is beyond

the scope of this dissertation. Such a DBA can be composed with a transition system

and the resulting product can be used to check whether all paths in the TS satisfy

φ (model checking) or to find an infinite path (that includes some sort of periodic

behavior) that satisfies φ.

Definition 2.8 (Product Buchi automaton). The product Buchi automaton of a tran-

sition system TS = (Q, q0, Act, T rans,AP, L) and a DBA Bφ = (Σ, 2AP , δ, σ0, F ) is

the Buchi automaton P = TS×Bφ = (ΣP, χ
0, Act, FP,∆P) (Baier and Katoen, 2008).

ΣP ⊆ Q × Σ is the state space of the automaton, χ0 = (q0, σ0) is the initial state,
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and FP ⊆ Q × F is the set of accepting states. The transition relation is defined

as ∆P = {(q, σ), p, (q′, σ′)|(q, p, q′) ∈ Trans, (σ, L(q), σ′) ∈ δ}. The state of the au-

tomaton at time k, (qk, σk) is denoted as χk for short. If χ0:k satisfies the acceptance

condition on P, then L(q0:k) |= φ, where the labeling function L is applied element-

wise.

Frequently, we denote the state of a product automaton at time k, (qk, σk), as

χk for short. For scLTL, similar translations can be made to a different type of

automaton, the finite state automaton (FSA) (Baier and Katoen, 2008; Kupferman

and Vardi, 2001; Latvala, 2003).

Definition 2.9 (Finite State Automaton). A (deterministic) finite state automaton

(FSA) is a tuple FSA = (Σ,Π,Σ0, F,∆FSA) where Σ is a finite set of states, Π is an

input alphabet, Σ0 ⊆ Σ is a set of initial states, F ⊆ Σ is a set of final (accepting)

states, and ∆FSA ⊆ Σ×Π×Σ is a deterministic transition relation. An accepting run

rFSA of an automaton FSA on a finite word π0π1 . . . πj ∈ Π∗ is a sequence of states

σ0σ1 . . . σj+1 such that σj+1 ∈ F and (σi, πi, σi+1) ∈ ∆FSA ∀i ∈ [0, j]. We call the set

of words that can lead to an accepting run on FSA the language of FSA, denoted

L(FSA).

Given an scLTL formula φ over the set of atomic propositions AP , there exist

algorithms (Latvala, 2003) for creating an FSA with input alphabet 2AP that accepts

all and only words satisfying φ, i.e. an automaton FSAφ such that L(FSAφ) = L(φ).

Definition 2.10 (Product FSA). The product automaton between a deterministic

transition system TS = (Q, q0, Act, T rans,AP, L) and an FSA FSAφ = (Σ, 2AP ,Σ0,

F,∆FSA) is an FSA Pφ = TS × FSAφ = (ΣP, χ
0, Act, FP,∆P) (Baier and Katoen,

2008). ΣP ⊆ Q × Σ is the state space of the automaton, χ0 = (q0, σ0) is the initial
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state, and FP ⊆ Q×F is the set of accepting states. The transition relation is defined

as ∆P = {(q, σ), p, (q′, σ′)|(q, p, q′) ∈ Trans, (σ, L(q), σ′) ∈ ∆FSA}.

The previous definitions are fairly standard tools in formal methods. In what

follows, we present a set of tools that were used to enforce formula satisfaction in

(Aydin Gol et al., 2012; Ding et al., 2012; Jones et al., 2013b; Jones et al., 2015b;

Jones et al., 2015c).

Definition 2.11 (Distance to acceptance). The distance to acceptance as a function

W : ΣP → Z+ such that W (χ) is the minimal number of actions that can be taken to

drive Pφ from χ to an accepting state in FP. If χ ∈ FP, then W (χ) = 0. If W (χ) =∞,

then there doesn’t exist an accepting run originating from χ.

Definition 2.12 (k-step reachability neighborhood). The k-step boundary about a

state χ, denoted ∂N(χ, k) is the set of states that can be reached by applying exactly

k inputs.

2.5 Formal Methods and Robotics

In chapter 3, we consider constraints on the motion of robots that can be formulated

as temporal logic formulae. These constraints subsume a large class of constraints

that are commonly considered in the literature, such as reach-avoid specifications.

In this section, we briefly give a “high-level” view of how formal methods may be

used to solve robot navigation problems and motivate their use over ad hoc planning

methods.

Example 2.4 (Reach-avoid). Consider an agent in the environment shown in Figure

2·1(a). Each of the regions in the environment is either a goal region, an obstacle

region, or empty. The goal of a “reach-avoid” problem is to reach a goal region
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(a) (b)

Figure 2·1: (a) An illustration of a “reach-avoid” problem in robotics. The agent must find a path
to one of the green goal regions while avoiding all of the red obstacle regions. (b) An example of a
specification that requires reactivity. The agent must conform to the specification 2.15

while avoiding all of the obstacle regions. This is typically achieved by applying a

numerical reward to entering a goal region and a numerical penalty for entering an

obstacle region and then using optimization methods such as dynamic programming

to find a path from an initial state to a goal region that doesn’t intersect any of the

obstacle regions.

We can handle the same problem using formal methods by labeling each of the

obstacle regions with the propositional label πo (obstacle) and labeling each of the

goal regions with the proposition πg and enforcing the specification

φreachavoid = ♦ πg ∧ (¬πgUπo), (2.14)

which in plain English is “Eventually reach πg and avoid πo until πg is reached.”

In addition to typical navigation problems, temporal logic can be used to describe
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more complex, temporally layered specifications than are easily modeled by using

time-invariant rewards and costs on regions or states in the robot’s environment.

More importantly, the use of formal method allows us to find automatically the entire

family of paths over the environment that satisfy the specification.

Example 2.5 (Reactive navigation). Consider the example shown in Figure 2·1(b).

φreactive = φb(π1, π2, π3) ∨ φb(π2, π3, π4)
∨φb(π3, π4, π1) ∨ φb(π4, π1, π2),

(2.15)

where

φb(πj, πk, πm) = ♦ (πk ∨ πm) ∧ (¬(πk ∧ πm)Uπj)). (2.16)

In plain English, φb(πj, πk, πm) means “Region πj is reached before either region

πk or region πm.” Thus, each instantiation of φb admits two classes of solutions (“πj

is reached and then πk is reached” and “πj is reached and then πm is reached.”) The

formula φreactive is effectively a choice among four different instantiations of φb and

hence admits eight total classes of solutions. Three example solutions from three

different classes are shown in Figure 2·1(b). Note that the constraints of the problem

depend explicitly on state history. That is, where the agent can go next depends

explicitly on where the agent has been in the past. If the agent has visited π1,

visiting π4 will not make progress towards satisfying φreactive. However, if the agent

has visited π2, visiting π4 will cause the specification to be satisfied.

Now, consider the case in which we want to find a path that satisfies the specifica-

tion and is optimal in some sense, e.g. shortest distance or minimum energy. In the

case of open-loop path planning, e.g. deterministic costs, it is possible to solve this

problem by enumerating all eight solution classes, defining reachability constraints

for each class by using traditional tools, solving the problem for all eight possible
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solution classes, and picking the best solution from the eight possibilities. This pro-

cess is tedious, as it requires the enumeration of all possible solution classes and the

modeling and solution of eight different problems. Further, the enumeration of the

different solution classes is prone to user error and grows more cumbersome as the

number of possible solution classes grows.

If, on the other hand, we use formal synthesis methods to solve this problem, the

only input the user has to provide is the temporal logic specification and the cost

function. Given a formula, it is possible to construct automatically a graphical model

(the product automaton) whose states correspond to the region of the environment

and the progress towards satisfying the specification. In other words, the product

automaton contains the minimal amount of “bookkeeping” required to describe all

possible paths that can satisfy the specification. History-dependent properties become

history independent when translated to the product automaton. The optimal control

problem can be solved by applying Dijkstra’s algorithm to generate the minimum

cost path that is guaranteed to satisfy the specification.

The usefulness of formal methods becomes even more evident when we consider

closed-loop planning, i.e. optimizing with respect to stochastic costs. In general, we

cannot use stochastic dynamic programming techniques over the original system to

find an optimal policy that is guaranteed to satisfy the specification. The history

dependence of specifications breaks the assumption of optimal substructures that is

required to guarantee the optimality of dynamic programming (Bertsekas, 2000). In

contrast, if we use formal methods, we can use stochastic dynamic programming

to find a feedback policy over the states of the product automaton. This policy is

guaranteed to satisfy the specification and to minimize the expected incurred cost.

Again, the only user input required to this process is the specification and the cost
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function.
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Chapter 3

Informative Planning with Temporal

Logic Constraints

In this chapter, we address the problem of constructing a control policy for a mo-

bile agent to maximize the information it collects about an environment, while also

satisfying a realistic high-level mission specification given as a temporal logic for-

mula (Baier and Katoen, 2008). Consider a robot deployed to a building after a

natural disaster to locate survivors. The robot’s primary objective is to maximize

the information it collects about the locations of survivors. However, while collect-

ing information, it must satisfy realistic requirements, for example: “Avoid collisions

with obstacles, visit data transmit stations after visiting areas of interest, and exit

the building at one of several possible exits at the end of its tour, or if it becomes

damaged while in operation.” These complex specifications involving temporally and

logically interleaved goals can be expressed naturally as a TL formula.

In Section 3.1, we present our models of the robot’s motion and sensing capabilities

and our model of the stochastically evolving environment. We present the problem

of minimizing estimation uncertainty over a finite horizon under scLTL constraints in

Section 3.2. We originally addressed this problem in (Jones et al., 2013b; Jones et al.,

2015b). We consider an infinite-horizon version of this problem in Section 3.3. We

originally addressed the infinite-horizon problem in (Jones et al., 2015c). Recently,
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we have also considered a multi-agent version of this problem (Leahy et al., 2015),

but this is not included in the dissertation.

3.1 Robot and Environment Models

In this section, we present the motion and sensing model of the robot and the model

of the environment that we use throughout this chapter.

3.1.1 Motion model

We consider a single robot moving on a graph-like environment described by a tran-

sition system Robot = (Q, q0, Act, T rans,AP, L). Q is a finite set of states (the nodes

of the graph) and q0 is the robot’s initial state. Act is a set of actions that the

robot can enact. Trans is a transition relation (set of edges in the graph) such that

(q, a, q′) ∈ Trans if action a drives Robot from state q to q′. AP is a set of atomic

propositions (properties) and L : Q→ 2AP is the mapping from a state to the set of

propositions it satisfies. We define a discrete clock k that is initialized to zero and

increases by 1 each time Robot takes an action. We denote the Robot’s state at time

k as qk.

Remark 3.1. A transition system such as the one described above can be easily

constructed by partitioning a planar or 3D environment. The states would correspond

to the regions in the partition. The transitions and the corresponding actions would

capture adjacency relations and feedback controllers driving all states from a region

to another, respectively. Such controllers can be efficiently constructed for affine /

multi-affine dynamics and simplicial / rectangular partitions (Belta et al., 2005; Belta

and Habets, 2006). Such techniques can be extended to more complicated systems,

such as unicycle and car-like dynamics through the use of input-output linearization
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R

(a) (b) (c)

Figure 3·1: Illustration of Example 3.1. (a) The hallway environment in which the robot (denoted
by R) operates. The data upload regions are blue and the exits are green. The labels qi for the
regions correspond to states in the transition system Robot. (b) Transition system constructed from
the hallway environment. Action uij corresponds to a control driving the robot from region qi to qj .
The labels pd and pe correspond to data upload and exit regions, respectively. (c) FSA constructed
from scLTL formula φex given in (3.5). Accepting states are indicated with double circles.

techniques. If a partition is not given a priori and the system has linear dynamics,

there also exist techniques for iteratively partitioning the environment such that a

controller is guaranteed to drive the system from any point in a region to a point in

a neighboring region. (Aydin Gol et al., 2012).

See Figure 3.1(a)-(b) for an example of a transition system corresponding to Ex-

ample 3.1, a scenario that will serve as a running example throughout this paper.

Example 3.1. A ground robot equipped with a noisy camera is deployed to an

office building after a natural disaster to locate survivors as precisely as possible. We

consider a problem in which the robot operates in a hallway divided into six regions

(Figure 3·1(a)). The robot must visit a region where it can upload data to rescue

workers before eventually exiting the hallway.
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3.1.2 Sensing model

We associate with the environment a feature that evolves in time synchronously with

the clock k according to the Markov chain Env = (S, s0, P ). We denote the state of

Env at time k as sk. The initial state s0 is a priori unknown.

At each time k, when the robot moves to state qk, it measures sk using noisy

sensors. The sensor output at time k is a realization yk ∈ RY of a discrete random

variable Y k. In addition to qk and sk, the distribution of Y k depends on the statistics

of the sensor (how well the sensor measures the feature). We denote the time-invariant

conditional measurement distribution as

h(y, s, q) = Pr[ the measurement is y
|Env in state s, Robot in state q].

(3.1)

Example 3.1 (continued). Let S = {0, 1}6. The jth element of a state s ∈ S corre-

sponds to whether or not a survivor is located in region qj−1, e.g. sk = [0, 1, 0, 0, 0, 0]

means at time k a survivor is located in region q1 and no other regions contain

survivors (See Figure 3·1(a)). s0 represents the initial locations of survivors, and

P represents the probability that survivors move between neighboring regions, e.g.

P ([0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]) is the probability that a survivor moves from region

q1 to q0. For simplicity, we assume that at most one survivor may be located in a

region. The robot uses a camera to survey its surroundings and runs a detection

algorithm on the gathered frames to estimate whether or not a survivor is located

in its current hallway region, i.e. yk = 1 if the algorithm produces a detection and

yk = 0 if it does not.

The robot’s estimate of sk is given via the estimate probability mass function

(pmf) bk, called the belief state or belief , where bk(s) = Pr[sk = s|y1:k, q0:k]. The
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belief state is initialized with a pmf b0 that reflects the a priori belief about the value

of s0 and maintained via the Bayes filter

bk(s) =
h(yk, s, qk)

∑
s′∈S P (s′, s)bk−1(s′)∑

σ∈S h(yk, σ, qk)
∑

s′∈S P (s′, σ)bk−1(s′)
. (3.2)

The belief bk evolves over time according to the MDP Est = (B, b0, Pest, Q). Q and

b0 are as defined previously. Pest is the probabilistic transition relation such that if b′

is the result of applying the Bayes filter (3.2) with measurement y collected in state

q, then Pest(b, q, b
′) is the total probability of observing y, i.e.

Pest(b, q, b
′) =

∑
s1,s2∈S2

h(y, s2, q)P (s1, s2)b(s1), (3.3)

where a was the action that drove Robot to q. B is the (countably infinite) set of all

possible beliefs that can be outputs of computing the Bayes filter with initial belief

b0 with a run of Robot along with the measurements the robot takes at each state in

the run.

Remark 3.2. Note that here we use Q, rather than Act, which is the set of inputs

inputs that are typically used when constructing MDPs involving a mobile robot. The

likelihood function h, and by extension the Bayes filter mapping (3.2), is a function

of Robot’s state (qk ∈ Q) and not the action that drove it to that state (ak−1 ∈ Act).

Thus, Pest depends on qk and not ak−1.

In general, the states and transitions of Est can be arranged in a tree structure

with root b0. The children of a node b in the tree are {b′|∃q ∈ Q,Pest(b, q, b′) > 0}.

Because of this branching, Est is also referred to as the belief tree in the partially

observable MDP (POMDP) literature (Kurniawati et al., 2011) (Section 4.1).
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3.2 Finite-Horizon Constrained Information Gathering

We consider a specific family of constraints on the motion of the agent that can be

described with syntactically co-safe linear temporal logic (scLTL) (Kupferman and

Vardi, 2001; Latvala, 2003) (Section 2.3). These formulae can be used to express a

large class of natural constraints on the motion of robots, such as “Eventually reach

the target region while avoiding unsafe regions. Visit region A or B before going to

the target region. If you enter region C, go immediately to region D.”

Several important problems can be considered as examples of information gath-

ering with scLTL constraints. A micro-aerial vehicle tasked with urban surveillance

must avoid buildings, visit data fusion centers to upload data, and finally land at a

base or charging station, while simultaneously ensuring that it accurately character-

izes the scene of interest. Information gathering problems with complex constraints

have previously been formulated and solved such as in (Binney et al., 2010), in which

the authors construct policies for an autonomous underwater vehicle that avoids high

traffic areas and periodically communicates with researchers. In this section, we and

introduce the MDP that encapsulates sensing, motion, and progress towards sat-

isfying a given formula in Section 3.2.1. We formalize the constrained information

gathering problem in Section 3.2.2. We present a pair of stochastic dynamic program-

ming procedures to solve this problem, an optimal approach that precisely solves the

problem and a sub-optimal approach that solves the problem with lower computa-

tional complexity in Section 3.2.3. Finally, we evaluate our results with simulations

and experiments in Section 3.2.4.
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Figure 3·2: Product automaton constructed from the scenario in Example 3.1. Each state (qi, σj)
is annotated with its distance to acceptance, Wij = W ((qi, σj)). Accepting states are denoted with
double circles.

3.2.1 Full Model MDP

For a given scLTL formula φ, let Pφ = Robot×FSAφ as illustrated in Figure 3·2. Since

the motion of an agent is deterministic, the correctness of a run of Robot with respect

to φ can be determined precisely via Pφ, but its estimate b evolves probabilistically

according to the MDP Est. As Robot and Est evolve synchronously, we can combine

them into a single MDP that encapsulates the robot’s movement and estimation

process.

Definition 3.1. Full Model MDP

Consider a robot whose motion is modeled by Robot (Section 3.1.1) under a

temporal logic constraint φ. Simultaneously, the robot is estimating the state of

Env through the process Est (Section 3.1.2). The MDP FullModel = (ΣPφ ×

B,Ptot, Act, (χ0, b
0)) describes the synchronous evolution of the robot’s position and

estimate pmf. The probabilistic transition relationship Ptot is defined as

Ptot((χ, b), a, (χ
′, b′)) = Pest(b, q

′, b′)I((χ, a, χ′) ∈ ∆Pφ) (3.4)
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where I is the indicator function (I(x ∈ X) is 1 if x ∈ X and 0 if x 6∈ X) and

χ′ = (q′, σ′).

FullModel has a tree structure with root (χ0, b
0). The states at the i+1st level are

the set of states that are reachable from taking one action and making one observation

from any state in the ith level.

Example 3.1 (continued). The regions where data can be uploaded are labeled with

pd and the regions with exits are labeled with pe. The constraints on the motion of

Robot may be expressed as

φex = ♦ pe ∧ (¬peUpd), (3.5)

meaning “Go to a data upload region (pd) before going to an exit (pe).” The cor-

responding finite state automaton FSAφex is shown in Figure 3·1 (c). Figure 3·3

shows the full model MDP constructed from the hallway scenario shown in Figure

3·1. To simplify the visual representation, edges in the MDP are grouped together

via action, and the probabilistic transition relation is not explicitly shown. Note that

any sequence of actions in this MDP will result in a state in which the automaton

state component is accepting (denoted by double circles). The subscripts of the belief

states correspond to states in the MDP Est (not shown) which were indexed sequen-

tially as the tree was constructed, i.e. the subscript index increased by 1 each time a

state was added to the topmost level of the tree. The temporal logic constraint (3.5)

limits branching. This MDP has 218 total states, compared to 980 states in Est with

depth 5.
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Figure 3·3: Full model MDP for hallway scenario (Example 3.1 with planning budget ` = 5.

3.2.2 Problem Definition

We are interested in planning a finite trajectory for Robot such that the uncertainty

about the state of Env is minimized when Robot completes the mission given by an

scLTL formula φ over the labeled regions of the environment.

We quantify the uncertainty in a belief b with its Shannon entropy

H(bk) = H(sk|q0:k, Y 0:k) = −
∑
s∈S

bk(s) log2 b
k(s) (3.6)

In this paper, we measure the entropy in terms of bits . Roughly speaking, the

Shannon entropy quantifies how hard it is on average to correctly guess the value of

a random sample drawn from the given distribution. When entropy is measured in

bits, then this can be interpreted as the number of yes/no inquiries one needs to make

on average to guess the random value. If the mean of a Bernoulli random variable

is 1, then its entropy is 0 bits, as we know that the outcome is guaranteed to be 1.

If the mean is 0.5, then the entropy is 1 bit, as we need to ask the question “Is the
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value 1?” in order to determine it precisely. By minimizing the Shannon entropy, we

minimize how much additional information we would require to determine precisely

the state of Env.

Our goal is to select actions a0:t−1, ai ∈ Act ∀i ∈ 1, . . . , t, such that in expectation

H(bt) is minimized. We predict the expected entropy of the belief that results from

following a given path q0:t by calculating the conditional entropy H(bt|b0, Y 0:t, q0:t) ,

denoted H(bt) for short for short.

We allow Robot to take at most ` actions. This budget constraint reflects energy

limitations on the robot. Each action consumes energy, and the robot should measure

its environment and complete its mission (satisfy φ) before it drains its reserves.

The scLTL-constrained informative path planning problem is formulated in Prob-

lem 3.1.

Problem 3.1 (scLTL-constrained informative path planning). Given a robot with

model Robot operating in an environment Env, a finite budget `, and an scLTL

formula (mission) φ over AP , solve

min
a0:t−1

EY 0:t [H(bt|b0, Y 0:t, q0:t)]

subject to
t ≤ `

φ is satisfied

(3.7)

We can cast Problem 3.1 as a constrained stochastic optimal control problem

defined over FullModel.

Proposition 3.1. Let FullModel be defined according to Definition 3.1. Then, Prob-

lem 3.1 is equivalent to the following constrained stochastic optimal control problem:
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min
a0:t−1

EY 0:t [H(bt)]

subject to
(3.8a)

t ≤ ` (3.8b)

ai ∈ Act((χi, bi)) ∀i = 0, . . . , t− 1 (3.8c)

(χi+1, bi+1) ∼ Ptot(·, ai, (χi, bi)) (3.8d)

χt ∈ FPφ . (3.8e)

Remark 3.3. In our algorithms, we only consider a finite subset of FullModel,

namely the states and transitions such that every sample path of length at most `

beginning from the initial state (χ0, b
0) is guaranteed to satisfy φ. The number of

states in this finite subset of FullModel is less than or equal to the number of states

in the first ` + 1 levels of Est. This is due to the fact that the children of a node

in Est correspond to all actions that can be taken in the current state. However,

taking certain actions may violate φ or ensure that it cannot be satisfied within the

remaining budget. The children of such actions do not appear in FullModel.

Remark 3.4. The cost in (3.8) is defined with respect to a pmf, which may recall

stochastic optimal control of POMDPs (Kaelbling et al., 1998) (Section 4.1). It is

tempting to use established approximation methods such as point-based value itera-

tion (Pineau, 2004; Shani et al., 2012) to optimize over the continuous space of pmfs

rather than enumerate a finite number of states. However, in our formulation, the

cost of a pmf H(b) is highly non-linear in the components {b(s)|s ∈ S}. Since the

cost-to-go function is not piecewise linear, such approximations cannot be applied
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(Smallwood and Sondik, 1973).

3.2.3 Algorithms

In this section, we connect Problem 3.1 to Markov decision processes (MDPs) and

present two solutions: an off-line dynamic programming approach and an on-line

receding-horizon dynamic programming approach. The off-line dynamic program-

ming approach is outlined in Algorithm 3.1.

Algorithm 3.1 Returns a policy for ` time units that satisfies φ and minimizes
EY 0:tH(bt)

1: function FiniteHorizonDP(Pφ,χ0,b0,`)
2: if W (χ0) > ` then
3: return None
4: automatonStates := PossibleStates(Pφ,χ0,`, `)
5: (MDPStates,Ptot,actionSet) := ConstructMDP(Pφ, χ0,b0,automatonStates,`)
6: return BellmanIteration(MDPStates,Ptot,actionSet)

First, Algorithm 3.1 ensures that the planning budget ` is long enough to allow

Robot to satisfy φ, i.e. checks whether the distance to accepting W (χ0) is at most

`. Next, Algorithm 3.2 calculates ` subsets of ΣPφ automatonStates[i], i = 1, . . . , `.

Each state χ ∈ automatonStates[i] is reachable from χ0 in exactly i transitions (is

in ∂N(χ0, i)) and can reach an accepting state within the remaining budget of ` − i

transitions (W (χ) ≤ `− i).1

Next, we use Algorithm 3.3 to build a finite subset of the infinite-dimensional MDP

FullModel such that under any admissible control policy, the trace of the constructed

MDP results in a trace of Robot that satisfies φ. The root of the constructed MDP is

(χ0, b0). The ith level of the tree is constructed from the i− 1st level by enumerating

for each state (χ, b) in the i− 1st level the actions that can enable a transition from

1Algorithm 3.2 uses two separate inputs, m and `, to determine the number of sets constructed and
the threshold on W (χ), respectively. This may seem redundant as m = ` here, but this distinction
is necessary for our approximation algorithm (Algorithm 3.4) presented in Section 3.2.3.
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Algorithm 3.2 Calculate all product automaton states that can lead to accepting
runs in ` or fewer transitions.

1: function PossibleStates(Pφ,χ0,m,`)
2: automatonStates[0] := χ0

3: for i := 1 to m do
4: automatonStates[i] = {χ ∈ ΣPφ |W (χ) ≤ `− i} ∩ ∂N(χ0, i))
5: return automatonStates

χ to a state χ′ = (q′, σ′) ∈ automatonStates[i]. For each such action a, we enumerate

all the possible measurements y ∈ RY that can be observed in q′ and calculate the

estimate pmf b′ that results from applying the Bayes filter (line 8) and add the state

(χ′, b′) to the ith level. The probabilistic transition relation Ptot is then constructed

(line 11).

Algorithm 3.3 Construct the full model MDP

1: function ConstructMDP(Pφ,χ0,b0,automatonStates, `)
2: MDPStates[0] := (χ0, b0)
3: for j := 1 to ` do
4: for all (χ, b) ∈ MDPStates[j − 1],χ′ ∈ automatonStates[j] do
5: if χ 6∈ FPφ then
6: a := action such that (χ, a, χ′) ∈ ∆Pφ

7: for all y ∈ RY do
8: b′ := output of (3.2) with b, a, y
9: MDPStates[j].add((χ′, b′))

10: actionSet[(χ, b)][j − 1].add(a)
11: Ptot((χ, b), a, (χ

′, b′)) := output of (3.4)
12: return (MDPStates,P ,actionSet)

Finally, the function BellmanIteration uses standard, finite-horizon Bellman iter-

ation to calculate the optimal policy with zero stage costs.

The reactive policy generated by Algorithm 3.1 can be applied to FullModel

to generate trajectories of Robot that are guaranteed to satisfy φ and in expectation

minimize the Shannon entropy of the resulting estimate. The next theorem establishes

the optimality of this method.
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Theorem 3.1. The policy generated by Algorithm 3.1 is the exact solution of Problem

3.1.

Proof. Let µ∗χ0,b0,`,` (µ∗, briefly) be the result of applying Algorithm 3.1 to MDPχ0,b0,`,`

(MDP`, briefly), the MDP constructed in Algorithm 3.3. µ∗ is calculated by applying

finite horizon Bellman iteration to MDP`, so, by principle of optimality,

µ∗ = arg min
µ∈M`

E(MDP`,µ)[H(bt)], (3.9)

where Mχ0,b0,`,` (M`) is the set of all possible policies of length ` that can be defined

over MDP`. Thus in order to prove the optimality of µ∗, we must prove that the set

of traces produced by MDP` under the policies in M` are exactly those traces which

satisfy the constraints (3.8b)-(3.8e).

(3.8b) The max depth of MDP` is `.

(3.8c) In order for an action a to be in actionSet[(χ, b)][i], (a) (χ, a, χ′) ∈ ∆Pφ and

(b) Pest(b, q
′, b′) > 0. (a) and (b) together imply Ptot((χ, b), a, (χ

′, b′)) > 0, meaning

(3.8c) is satisfied for all a ∈ actionSet[·][i], i = 0 . . . `− 1.

(3.8d) This follows immediately from (a) and (b) and Algorithm 3.3, line 11.

(3.8e) Since χ ∈ automatonStates[i] ∀(χ, b) ∈MDPStates[i], every state in

MDPStates[i] is at most ` − i transitions away from a state (χf , bf ) ∈ FPphi × B.

Every state χ ∈ automatonStates[i] with distance to acceptance W (χ) < ` − i has

a neighbor that is closer to an accepting state, so ∃χ′ ∈ automatonStates[i + 1]

such that W (χ′) < ` − i − 1. Every state in MDPStates[i] is either an ac-

cepting state or has a child in MDPStates[i + 1]. Since MDPStates[`] is con-

structed from automatonStates[`], either each state in MDPStates[`] is accepting

or MDPStates[`] = ∅, implying ∃k < ` such that every state in MDPStates[k] is

accepting. Therefore, every trace produced by MDP` must end in accepting state.
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We expect the performance of the algorithm to improve with a longer budget.

Indeed,

Proposition 3.2. Increasing the budget ` cannot decrease and can increase the ex-

pected quality of the calculated optimal policy.

Proof. Let `1 < `2 and let µi = µ∗χ0,b0,`i,`i
Since the states and actions in MDP`1 at

each level are included in the states and actions in MDP`2 at the same level for the

first `1 levels, M`1 ⊆M`2 . Thus,

min
µ∈M`1

E(MDP`1 ,µ)[H(bt)] ≥ min
µ∈M`2

E(MDP`1 ,µ)[H(bt)]. (3.10)

Further, since the family of possible traces produced by MDP`1 under µ2 is a subset

of the family of possible traces produced by MDP`2 under µ2,

E(MDP`1 ,µ2)[H(bt)] ≥ E(MDP`2 ,µ2)[H(bt)]. (3.11)

Inequalities (3.10) and (3.11) together imply the proposition.

However, calculating longer policies is considerably more computationally expen-

sive. More specifically,

Lemma 3.1. The time complexity of Algorithm 3.1 is O(|Act|`|RY |`|S|).

The average case complexity can be lower than the bound given in Lemma 3.1 due

to the pruning of actions that occurs when constructing FullModel (Remark 3.3),

but the exponential dependence on ` remains.
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Receding Horizon Dynamic Programming

The computational cost of Algorithm 3.1 is too great for large budgets. As an alter-

native, Algorithm 3.4 constructs an approximation to the optimal policy on-line using

a receding-horizon implementation. At each time step k, Algorithm 3.4 constructs an

MDP whose root is the pair (χk, bk) and whose depth is at most some finite horizon

m (line 5). The ith level of each MDP is constructed from automaton state/pmf

pairs that are reachable from (χk, bk) in i transitions and can satisfy φ in `− (k + i)

actions. Bellman iteration is performed on this MDP to form the m-step optimal

policy (Line 6). The agent applies the policy for n ≤ m time steps. Then, the agent

begins the process again from an MDP with root (χk+n, bk+n). This is repeated until

the trajectory of Robot has satisfied φ.

Algorithm 3.4 Receding-horizon approximation to Algorithm 3.1.

1: function RecedingHorizonDP(Pφ,χ0,b0 ,m,n,`)
2: χ := χ0; b := b0;k := 0
3: if W (χ0) > `) then
4: return None
5: while χ 6∈ FPφ do
6: automatonStates := PossibleStates(Pφ,χ,m,`− k)
7: (MDPStates,Ptot,actionSet) := ConstructMDP(Pφ,χ,b,automatonStates)
8: µ :=BellmanIteration(MDPStates,Ptot,actionSet)
9: if k ≥ `−m then

10: n := `− k
11: for i := 1 to n do
12: (χ, b) := result from applying µ(i, (χ, b))
13: k + +

Lemma 3.3 states the time complexity of Algorithm 3.4, which leads to a significant

savings in computational effort if ` is long.

Lemma 3.2. The time complexity of Algorithm 3.4 with budget `, planning horizon

m, and action horizon n is O(|Act|m|RY |m|S|d `ne).
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Now, we must establish the correctness of Algorithm 3.4 with respect to the spec-

ification φ.

Theorem 3.2. If W (χ0) ≤ `, the solution of Algorithm 3.4 is guaranteed to satisfy

φ.

Proof. At time k < ` − m, if the full state of the system is described by (χk, bk),

Algorithm 3.4 constructs MDPχk,bk,`,m (line 5). If we apply any policy µ ∈Mχk,bk,`,m

for n time periods, we are guaranteed to visit a sequence of states (χk+i, bk+i) such

that W (χk+i) ≤ ` − k − i i = 1, . . . , n. Thus while k < ` − m, W (χk) ≤ ` − k.

If Algorithm 3.4 has not terminated when k ≥ ` − m, Algorithm 3.4 constructs

MDPχk,bk,`−k,`−k, and applies the policy µ∗, effectively executing Algorithm 3.1 with

initial state (χk, bk) and horizon `− k. Since applying Algorithm 3.4 up until time k

guarantees W (χk) < `−k, by Theorem 3.1, Robot will satisfy φ within `−k steps.

Finally, we have to consider performance. Calculating a precise sub-optimality

gap between Algorithms 3.1 and 3.4 is difficult due to the non-linear natures of the

entropy measure and the Bayes filter and variability of possible automaton structures.

Instead, we present a pair of results that establishes some general properties of the

solution quality of Algorithm 3.4.

Proposition 3.3. If ` = m, executing Algorithm 3.4 and 3.1 result in the same

policy.

Proof. If ` = m, then both Algorithm 3.1 and Algorithm 3.4 construct the same MDP

and calculate the same policy. MDPχ0,b0,`,` (lines 5 and 5, resp.) and use Bellman

iteration (lines and 6, resp.) to construct the optimal policy µ∗χ0,b0,`,`. In Algorithm

3.1, lines 7-8 ensure that µ∗χ0,b0,`,` is applied for ` time steps.
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Corollary 3.1. If m < `, the policies produced by Algorithm 3.4 are in general

suboptimal.

Proof. Let ] be the policy concatenation operator such that for two policies µ1, µ2,

µ1[n1]]µ2[n2] is the policy resulting from applying µ1 for n1 time steps and µ2 for n2

time steps. Also define [·], ] set wise such that if M1,M2 are sets of policies, then

M1[n1]]M2[n2] = {µ1[n1]]µ2[n2]|µ1 ∈ M1, µ2 ∈ M2}. Let MRH
`,m,n be the family of

policies considered in Algorithm 3.4. Then,

MRH
`,m,n = {Mχ0,b0,`,m[n]]Mχn,bn,`,m[n]]

. . . ]Mχpn,bpn,`−pn,`−pn
|(χrn, brn) ∈MDPχ(r−1)n,b(r−1)n,`,m

∀r = 1, . . . , p}

(3.12)

where ` − pn ≤ m. Thus, µ∗ ∈ MRH
χ0,b0,`,m,n, but µRHχ0,b0,`,m,n 6= µ∗ in general.

Since MRH
χ0,b0,`,m,n ⊆ M`, no other policy in MRH

χ0,b0,`,m,n can outperform it. Therefore

Algorithm 3.4 with m < ` is suboptimal.

Intuition tells us that the performance should depend on the planning horizon

m and the action horizon n, but similarly, we cannot characterize this relationship

precisely. Instead, we will observe the effects of varying each of these quantities

empirically in the next section.

3.2.4 Case Study and Experiments

In this example, we use simulations and experiments to validate and compare Algo-

rithms 3.1 and 3.4.
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Conclusion of running example

We tested Algorithms 3.1 and 3.4 using a simulation of Example 3.1. We simulated

500 Monte Carlo trials of each method with horizon ` = 8 on a machine with a 2.1

GHz processor and 7.4 GB RAM. Parallelization was not used. For the receding

horizon method, the planning and acting horizons were m = 3, n = 2, respectively.

The average terminal entropy H(bt) that resulted from the trajectories generated as

well as the average mistake rate m(t), defined as

m(t) =
∑
j|qj∈Q

|
∑

σ|σj 6=stj

bt(σ)− stj|, (3.13)

for Algorithms 3.1 and 3.4 are given in Table 3.1.

That is, m(t) is the sum over the rooms of the difference between the true state

of the room (whether or not a survivor is present) and the belief about the room

(probability that a survivor is present).

All trajectories generated by both algorithms satisfied the given scLTL specifica-

tion. The resulting statistics for the simulation are given in Table 3.1. The calculation

time T for Algorithm 3.1 was the total time required to calculate the optimal policy.

For Algorithm 3.4, this is the average time required to calculate the optimal policy

per trial. As expected, Algorithm 3.1 performed better (achieved lower average ter-

minal entropy and error) than Algorithm 3.4. The difference in timing, however, was

significant, as Algorithm 3.4 was faster by a factor of roughly 33.

An example of the finite horizon MDPs that are constructed during solution of

Example 3.1 are presented in Figure 3·4. The four MDPs that are constructed to

solve this problem contain a total of 58 states in them, which is about a quarter of

the number of states as the MDP constructed to solve the same problem with the
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Method ¯H(bt) σH(bt)
¯m(t) σm(t) T̄ σT

Exact DP 3.50 0.49 1.70 0.62 28.71 0

Rec Hor DP 3.58 0.32 1.71 0.57 0.85 0.24

Table 3.1: Results from the case study simulation using 500 Monte Carlo simulations. Exact DP
refers to Algorithm 3.1 and Rec Hor DP refers to Algorithm 3.4. Sample means denoted with bars
and standard deviations noted as σ with subscripts.

same horizon using Algorithm 1 (Figure 3·3).

We also used this case study to evaluate empirically the effect of the planning

horizon m and action horizon n on Algorithm 3.4. We varied the pairs (m,n) over

the range {(m,n) ∈ {1, . . . , 7}2|n ≤ m} and performed 100 Monte Carlo trials with

each pair. The effect of varying m and n on average entropy and average mistake

rates are shown in Figure 3·5(a) and (b),respectively.

The entropy and mistake rates both decrease overall as m grows larger and n grows

smaller. These decreases, however, are not monotonic. We hypothesize that this non-

monotonicity is not a sampling artifact. Rather, this relationship is likely heavily

influenced by the transition probability of Env, the topology of the environment, and

the specification φ. Each decision the receding horizon algorithm makes “prunes” a

part of the full model MDP that is reachable. Because this pruning process occurs

with incomplete information (i.e. receding horizon approaches are somewhat myopic),

increasing the planning horizon may indeed lead to pruning more desirable solutions

than having a shorter planning horizon.

Experimental Scenario

We complement the theoretical results and simulation of the running example with

a larger data-driven simulation and an experimental case study. The scenario is as

shown below. We control a pursuing aerial robot Rp that is tasked with localizing
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Figure 3·5: Heatmaps of (a) the average terminal entropy H(bt) and (b) the average mistake rates
m(t) for 100 Monte Carlo trials at each pair of (m,n) values.

a target Rt on the ground (Figure 3·6a). The target Rt moves to an adjacent cell

with probability pmove. Rp can move north, south, east, or west (N,S,E,W ). Rp

observes Rt via a downward facing camera. The field of view of the camera is one cell

beyond Rp’s position and denoted by the green outline in Figure 3·6(a). Rp’s motion

is constrained by the scLTL formula

φexp = ♦ p1 ∧ ♦ p3 ∧ (¬p3Up1) ∧ (¬p2Up3)∧
(( ♦ p4)⇒ ( ♦ p5 ∧ (¬p3Up5)).

(3.14)

The specification φexp can be translated to plain English as “Visit a magenta

region (p1) before visiting a green region (p3). Always avoid the red region (p2). If

a blue region (p4) is visited, then also visit a cyan region (p5) before visiting a green

region.”

Data-Based Simulation

In this section, we performed a series of simulations of the scenario shown in Figure

3·6. We built the camera measurement model, i.e. the likelihood function h, from

data collected from a real downward-facing camera on a quadrotor platform. We
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Figure 3·6: (a) Labeled, partitioned space in which the target robot (Rt) and pursuing robot
(Rp) are operating. (b) Table showing the mapping between the color on the grid in (a) and the
propositions used in specification (3.14).

then used this model in simulation to generate a large number of trials for statistical

analysis.

The ground environment is simulated as a purple square projected via a series of

short-throw projectors on the ground. The target Rt is simulated as a red circle on

this purple background. We ran a set of experiments in which the position of Rt and

the position of Rp were varied and a set of experiments in which Rt was not in the

view of Rp. The quadrotor Rp was controlled over a wireless network and localized

via an OptiTrack system. The experimental testbed used to collect the data is shown

in Figure 3·7(a). For each configuration of Rp and Rt, we recorded 25 pictures from

the downward-facing camera. A red color detection algorithm was run on each of the

collected images as demonstrated in Figure 3·7. We hand-selected one of the images

in which Rt was visible in Rp’s field of view. From this image, we recorded the average

and standard deviation of the red-green-blue (RGB) value in the area of Rt. Then, for

a given image, the RGB value of each pixel was compared to the calibration data. We

created a binary image where a pixel i is denoted as white if Ci ∈ [C̄−ηsdC , C̄+ηsdC ]

where C ∈ {R,G,B} is a color value and C̄, sdC are the mean and standard deviation
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(a) (b) (c)

Figure 3·7: (a) A picture of the experimental setup used to construct the measurement likelihood
model. (b) Example image taken by the quadrotor’s camera. (c) The binary image resulting from
running the red detection algorithm on the picture from part (c).

of the calibration color data, respectively. Then, the binary image was split into four

quadrants. The algorithm then returned a value Y ∈ {NP,NW,NE, SW, SE} such

that Y = NP if the proportion of white pixels in any quadrant was than a value

ν, and Y = NW , Y = NE, Y = SW , or Y = SE if at least one quadrant has a

proportion of white pixels greater than ν and the northwest, northeast, southwest,

or southeast quadrants, respectively, had the highest proportion of white pixels. The

frequency of the algorithm output for each set of images with fixed position of Rp

and Rt were recorded and used to build the likelihood function h.

Note that the field of view of Rp actually encompasses nine possible locations of

Rt, so the measurement model represents a down-sampling. This means that in order

to localize Rt well, a single image in which Rt is in the field of view is not sufficient,

so Rp has to “follow” Rt in order to gather enough data to localize Rt.

In our case, we set η = 0.6 and ν = 0.01.

We used the noisy camera model to generate 100 trials each for when Rp moved

according to the following five policies
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1. Applying Algorithm 3.1 with ` = 6,

2. Applying Algorithm 3.4 with ` = 6,

3. A random walk with ` = 6,

4. Applying Algorithm 3.4 with ` = 20,

5. A random walk with ` = 20.

The random walk is constrained to satisfy the scLTL specification, i.e., at each

time i, the action ai is chosen uniformly from the set of actions that (χi, a, χi+1) ∈

TransP and W (χi+1) ≤ `− i−1. Algorithm 3.4 was executed with lookahead horizon

m = 3 and action horizon n = 1. The histograms of the terminal entropy of each trial

are shown in Figure 3·8. As we can see from the results when ` = 6, both Algorithms

3.1 and 3.4 outperform the random walk. A two-sample t-test finds a difference

between the performance of the random walk and Algorithm 3.1 with p-value with

p-values less than 0.001. Interestingly, the difference between the performance of

Algorithms 3.1 and 3.4 was not statistically significant, indicating that although 3.1

is guaranteed to outperform Algorithm 3.4, in practice this performance gap may

be quite small for some applications. When ` = 20, the difference between the

random walk and Algorithm 3.4 is statistically significant with p-value less than

0.001. This indicates that when Algorithm 3.1 cannot be applied, the receding horizon

implementation given here is also useful for gathering information.

The timing information for Algorithms 3.1 and 3.4 are summarized in Table 3.2.

The simulations were performed on a machine with a 2.1 GHz processor with 7.4

GB RAM. Parallelization was not used. Algorithm 3.1 is a one-time calculation and

hence has 0 standard deviation. The random walk algorithms took an average of less

than 1s per trial. Note that Algorithm 3.1 requires nearly 100 times as much time (on
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Method ` T̄ (s) σT (s)
Algorithm 3.1 6 727.161302 0
Algorithm 3.4 6 6.7681 1.1809
Algorithm 3.4 20 37.0905 14.0494

Table 3.2: Mean T̄ and standard deviation σT of computation time required for Algorithms 3.1
and 3.4.

average) as 3.4 for only a small gain in performance. Meanwhile, when we increase

the budget from 6 to 20, a 233 % increase, the average computational time required

for Algorithm 3.4 increases only by 446 %. This relatively modest increase indicates

further that Algorithm 3.4 may be more appropriate for practical applications.

Figure 3·9 shows the average value with one standard deviation error bars for the

estimation error, given as

err = 1− bt(st). (3.15)

That is, the estimation error is the belief that Rt is not in its true location in

the environment. The performance advantage in terms of error of our algorithms

over the random walk are all statistically significant with p-values less than 0.001.

The difference in performance between Algorithms 3.1 and 3.4 was not statistically

significant.

Experimental Validation

To help validate the findings of our simulation case study, we performed a set of

experiments in the same testbed used to gather the camera data. During the exper-

imental trials, whenever Rp moves to a new location in the environment, it hovers

and takes a picture with its camera. The image is streamed to a computer and the

red detection algorithm is applied. The output is then used to find the next action
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Figure 3·8: Histograms of simulation results and a bar graph showing the average cost of each
method (lower right). Each plot is labeled with the corresponding policy used to control Rp (Algo-
rithm 3.1, Algorithm 3.4, or random walk) and the budget given to the policy (6 or 20).
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blue line indicates the error level of the uniform distribution.
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Figure 3·10: Average costs for the 10 trials of each experiment.

Rp takes. In this case, we performed 10 experiments each in which Rp was moving

according to the five policies used in simulation. Due to battery power constraints,

the budget ` was shortened from 20 actions to 12 actions for the two long-term tests.

Partial trials that failed due to mechanical or battery failure were ignored. The av-

erage costs are summarized in Figure 3·10. The three costs with budget ` = 6 are

comparable, though both Algorithms 3.1 and 3.4 outperformed the random walk.

When ` = 12, a two-sample t-test concludes that the difference between the random

walk and Algorithm 3.4 for the experiment was statistically significant with p-value

0.02135.

Note that the average costs gathered in the experiment are slightly larger than

for the simulations. This is because the camera model we constructed is not an exact

match for the on-line performance of the camera, as levels of background illumina-

tion may change over time. However, the difference between the random walk and

Algorithm 3.1 with ` = 12 indicates that even when the sensor model is not an

exact match to the on-line model, our optimization procedures still result in better

estimation than randomized search.
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3.3 Infinite-Horizon Informative Planning

In this section, we address the problem of persistent monitoring under LTL con-

straints. This describes many real-world applications in which human decision-makers

require real-time information about large environments, such as forest rangers moni-

toring wildfires or traffic engineers monitoring congestion.

We formally state the problem under consideration in Section 3.3.1. In Section

3.3.2, we extend the receding-horizon planner we developed in (Jones et al., 2015b)

(Section 3.2.3) to guarantee satisfaction of LTL constraints. In addition, to avoid my-

opia inherent in receding horizon implementations, we develop a high-level simulation-

based planner that selects inputs to the receding horizon algorithm that attempt to

maximize the MIR over the infinite horizon. An implementation of our procedure is

applied to a simulation of a target tracking case study in Section 3.3.3.

3.3.1 Problem Definition

Our goal is to plan an infinite horizon trajectory q0:∞ for Robot that maximizes

the quality of the estimate pmf over time while satisfying a linear temporal logic

specification. In (Jones et al., 2013b; Jones et al., 2015b), we used the expected

conditional entropy EY 1:t [H(bt)] to quantify the expected quality of the estimate that

would result from the robot traveling along the finite path q0:t. Here, we use a related

quantity called the mutual information rate (Cover and Thomas, 2006; Shannon,

1948)

MIR = lim
t→∞

I(s0:t;Y 0:t)

t
. (3.16)

MIR is the average rate of information gain about the state of Env when a new

measurement is taken. We wish to maximize this quantity, as we want to increase

the rate at which measurements help to identify the state of Env. Maximizing (3.16)
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over the set of actions Robot can take is equivalent to minimizing the entropy rate

ER = lim
t→∞

H(bt)

t
. (3.17)

Due to the “infinitely often” acceptance condition of LTL formulae, any trajectory

that satisfies an LTL formula can be segmented into a finite length prefix path and

an infinite sequence of finite length suffix cycles, which are defined as follows.

Definition 3.2 (Prefix Path and Suffix Cycle). Let q0:∞ be an infinite horizon tra-

jectory over a transition system TS and φ be an LTL formula over the properties AP

in TS. Let P = TS×Bφ and let χ0:∞ be the infinite run over P induced by q0:∞. Let

ln be the nth time at which χ0:∞ intersects FP . The prefix path is the finite sequence

q0:l1 . A suffix cycle is a finite sequence of states qln+1:ln+1 .

We wish to minimize the average entropy rate per cycle, given as

AERPC = lim
n→∞

∑n
i=0

H(bln )−H(bln−1 )
ln−ln−1

n
(3.18)

This formulation is similar to the average cost-per-stage problem (Ding et al., 2010;

Bertsekas, 2000). With this new objective, we define the constrained persistent mon-

itoring problem as

Problem 3.2. Consider an agent that is estimating the state of the environment.

Solve
min

a0...∈Act∞
EY 0:l∞ [AERPC]

subject to
φ

ln+1 − ln ≤ `max∀n,

(3.19)

where φ is an LTL formula and `max is a per-cycle budget.

The budget `max describes energy constraints on the agent’s motion, e.g. the
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maximum amount of time that the agent can be active between recharging. We map

Problem 3.2 to the constrained stochastic optimal control problem over the full model

MDP (Section 3.2.1)

min
a0...∈Act∞

EY 0:l∞ [AERPC]

subject to
ln+1 − ln ≤ `max∀n ∈ N,
ai ∈ Act((χi, bi)) ∀i ∈ N

(χi+1, bi+1) ∼ Ptot(·, ai, (χi, bi)) ∀i ∈ N.

(3.20)

3.3.2 Algorithms

We propose a hierarchal dynamic programming-based method to solve this problem.

We use a low-level receding-horizon algorithm (defined in Section 3.3.2) to choose

actions that locally improve the entropy rate and drive the agent to an accepting

state in P. Whenever the agent completes a suffix cycle, the budget of actions given

to the receding horizon algorithm is selected according to a high-level policy that is

calculated off-line via value iteration (Bertsekas, 2000) to optimize the infinite-horizon

AERPC (Section 3.3.2).

Optimization of a single cycle

In (Jones et al., 2015b), we presented a receding horizon algorithm that locally min-

imized entropy and was guaranteed to satisfy the given scLTL constraint within the

budget. Algorithm 3.5 extends that procedure to handle LTL constraints.

At the kth time-step after the invocation of Algorithm 3.5, the procedure Possi-

bleStates constructs m sets Σp[i] ⊆ ΣP where Σp contains all states χ′ ∈ ∂N(χ[k], i)

such that W (χ′) ≤ ` − i − k, that is, all states reachable from χ[k] in i actions and

from which an accepting state can be reached under the remaining budget. From

the sets Σp, the procedure ConstructMDP constructs a subset of the full-model MDP
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Algorithm 3.5 Receding horizon planner for completing a single suffix cycle under
LTL constraints.

function RHP((χ, b), `,m, n)
k = 0; χ[k] = χ;
while χ[k] 6∈ FP do

Σp := PossibleStates(χ[k],m,`− k)
(Xp,Ptot,Actp) := ConstructMDP(χ[k],b,Σp)
µl :=BellmanIteration(Xp,Ptot,Actp)
if k ≥ `−m then
n := `− k

for i := 1 to n do
(χ[k + 1], b) := result from applying µ(i, (χ, b))
k + +

return (χ[k], b, k)

such that at the ith level, only pairs (χ, b) such that χ ∈ Σp[i] appear. Next, the

algorithm BellmanIteration performs standard Bellman iteration over the constructed

MDP where the terminal cost is given as

H(b[m])−H(b[0])

m
, (3.21)

where b[m] is the terminal state and b[0] was the initial belief state input to Algorithm

3.5. After the optimal policy µl has been calculated, it is enacted for n time steps.

At this point, a new MDP is constructed and a new policy calculated. This process

continues until an accepting state is reached.

Applying Algorithm 3.5 infinitely often provably satisfies the given specification.

Theorem 3.3. Let

`′ = max
χ∈FP

min
χ′∈∂N(χ,1)

W (χ′) + 1.

If `′ ≤ `max, then sequentially applying Algorithm 3.5 infinitely often with budget at

least `′ is guaranteed to drive the robot to satisfy the given LTL specification.

Proof. Algorithm 3.5 is always applied either at the initial state (χ0, b
0) or at an
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accepting state (χ, b) such that χ ∈ FP. Since we constrain ` to be at least `′, it is

guaranteed that W (χ) ≤ `. k time steps after the algorithm is applied, the system will

be in a state (χ′, b′) such that W (χ′) ≤ `−k. This means that if k = `, W (χ′) = 0, i.e.

χ′ ∈ FP. So, applying Algorithm 3.5 one time is guaranteed to drive the system to an

accepting state. Applying Algorithm 3.5 infinitely often guarantees that the system

will be in an accepting state infinitely often, thus satisfying the Buchi acceptance

condition and therefore satisfying the given LTL specification.

Further, a single application of Algorithm 3.5 is tractable.

Lemma 3.3. The time complexity of Algorithm 3.5 with budget `, planning horizon

m, and action horizon n is O(|Act|m|RY |m|S|d `ne).

Choosing cycle budgets

Although applying Algorithm 3.5 infinitely often with a fixed budget ` is guaranteed

to satisfy the LTL specification, there is no guarantee that the local information

gathering performs well over an infinite time horizon. We propose to pair the local

information gathering with long-term planning by finding a policy µg : FP ∪ {χ0} ×

B → N that maps an initial or accepting state in the automaton and a belief state,

e.g. the configuration of the robot at the end of a cycle, to the budget ` that should

be given to the receding horizon planner in the next cycle. The hierarchal structure

of the algorithm is illustrated in Figure 3·11.

It may seem that the longer the budget ` handed to the receding horizon planner,

the better we expect the performance to be. As ` increases, on average more states are

included in the MDPs constructed by Algorithm 3.5. However, the agent can take an

action that locally performs better but which may cause the long-term performance

to deviate far from optimal behavior. If this action were not present, the deviation
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Receding Horizon 
Planner

Figure 3·11: A block diagram illustrating the hierarchal dynamic programming algorithm de-
veloped in this section. The receding horizon planner applies Algorithm 3.5 to determine the next
action to take based on the current automaton state and belief state pair (χ, b) and the budget
of actions ` between satisfactions. When the system reaches an accepting configuration, denoted
(χF , bF ), the policy µg is called to determine the budget ` that should be used in the next round of
receding horizon planning.

would not occur. We address this by characterizing the statistical performance of the

receding horizon algorithm for different budgets and use this information to construct

the optimal policy µg. The policy construction is performed off-line before the agent

is deployed.

Algorithm 3.6 details how µg is calculated. We use simulation to characterize the

per-cycle performance of the receding horizon algorithm. We consider a finite set of

states T ⊂ FP × B in our optimization. Algorithm 3.6 begins by performing jmax

simulations of Algorithm 3.5 from the initial state (χ0, b0) for each value of ` from

min
χ′′∈∂N(χ0,1)

W (χ′′) + 1 to `max. The result of each simulation is a state (χ′, b′) that is

reachable from the initial state. Note that in our algorithm, we group similar belief

states together. If two states are ε close in the 1-norm, we consider them identi-

cal. This is to help mitigate the state explosion problem and to prevent unnecessary

calculation of similar quantities. The cost of going from (χ, b) to (χ′, b′) under bud-

get `, denoted g((χ, b), `, (χ′, b′)) = H(b′)−H(b)
`

, is calculated and recorded. Similarly,

the frequency of transitioning from state (χ, b) to (χ′, b′), under budget `, denoted

P ((χ, b), `, (χ′, b′)), is calculated from the set of simulations and recorded. The reach-

able state (χ′, b′) is then added to the set the set of states still to be checked C. After
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this set of simulations is completed, the states of C are iterated through and more

simulations occur.

T, P, and g are populated until |T | ≥ N and all of the accepting states in FP have

been visited or there are no states left to be checked (due to all of the states found

being ε-close to members of T ). At this point, we invoke a procedure to make the

MDP described by P ,g, and T recurrent. That is, for every state (χ, b) ∈ T for which

P is undefined, we apply Algorithm 3.5 for each possible value of `. Then, we replace

the resulting state (χ′, b′) with (χc, bc) the closest state already enumerated. The

resulting costs g((χ, b), `, (χc, bc)) and transition probabilities P ((χ, b), `, (χc, bc)) are

recorded. In short, this procedure ensures that every state in T is connected via P

to another state in T . Finally, Algorithm 3.6 uses value iteration to find the optimal

policy

µg(χ, b) = arg min
`

∑
(χ′,b′)∈T P ((χ, b), `(χ′, b′))

[g((χ, b), `(χ′, b′) + J∞((χ′, b′))],
(3.22)

for all (χ, b) ∈ T where J∞ : T → R is the infinite-horizon cost-to-go function.

(Bertsekas, 2000) Note that this optimization does not directly minimize the average

entropy rate per cycle. Rather, it minimizes the sum of the expected entropy rates

per cycle. However, since we are minimizing the entropy rate on a cycle-by-cycle

basis, the average rate will also be minimized.

Algorithm 3.7 summarizes our approach. We calculate the optimal budget policy

off-line. Then, we use the policy on-line when applying Algorithm 3.5 infinitely often.

If a state is reached that is not in the pre-calculated set T , we apply the mapping µg

to the closest state contained in T .
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Algorithm 3.6 Constructs the policy mapping current state to optimal budget.

1: function OptimalBudget(χ0,b0,`max,m,n)
2: T = {(χ0, b

0)}; C = {(χ0, b0)}; Acc = FP

3: while |T | ≤ N do
4: (χ, b) = C.pop()
5: for ` = min

χ′′∈∂Nin
W (χ′′) + 1 to `max do

6: for j = 1 to jmax do
7: (χ′, b′, k) = RHP((χ, b), `,m, n)
8: if ∃(χ′, b′′) ∈ T s.t. ||b′′ − b′||1 < ε then
9: b′ = b′′

10: else
11: T .add((χ′, b′)); C.add((χ′, b′))

12: g((χ, b), `, (χ′, b′)) = H(b′)−H(b)
k

13: P ((χ, b), `, (χ′, b′)) += 1
jmax

14: Acc = Acc \ {χ′}
15: if C = ∅ then
16: Break;
17: if |T | = N and Acc 6= ∅ then
18: N = N + 1
19: (P, g, T ) = MakeRecurrent(P, g, T )
20: µg = ValueIteration(P, g, T )
21: return µg, T

Algorithm 3.7 Solution to constrained persistent monitoring

function PersistentMonitor(χ0,b0,`max,m,n)
µg, T = OptimalBudget(χ0,b0,`max,m,n);
χ = χ0; b = b0;
while TRUE do

if (χ, b) 6∈ T then
b = arg min

b′∈T
||b− b′||1

(χ, b, k) =RHP((χ, b), µg((χ, b)),m, n)
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3.3.3 Case Studies

We implemented Algorithm 3.7 in software and applied it to a simulation of the

scenario described in Example 3.2.

Example 3.2. Consider a robot Rp operating in a grid environment as shown in

Figure 3·12(a) to track a target robot Rt. In this case, Q = {1, . . . 4}2×{N,S,E,W}

(north, south, east, west) where a state q = (i, j, dir) means that Rp is in grid cell (i, j)

and facing direction dir. The set of actions is Act = {straight, CW,CCW} which

mean go straight, rotate 90◦ clockwise, and rotate 90◦ counterclockwise, respectively.

AP = {πrecharge(green), πdata(magenta), πalarm(cyan), πreset(blue), πobs(red)}. A sub-

set of the transition system is shown in Figure 3·12(b).

In the above scenario, S = {1, . . . , 4}2 is the set of possible locations of RT .

s0 is chosen randomly. Env can transition to an adjacent state with probability

pmove. Rp has a noisy camera that can produce measurements in RY = {0, l, c, r}

which correspond to Rt not being observed and Rt being observed in the left, center,

or right portion of Rp’s field of view. Part of the measurement likelihood function

is summarized in Figure 3·12(c). The constraints on Rp can be given as the LTL

formula

φ = � ♦ πrecharge ∧ � ♦ πdata ∧ � (¬πobs)
∧ � (πalarm ⇒ (¬πrechargeUπreset)),

(3.23)

which in plain English is “Visit recharging and data upload stations infinitely often

while avoiding obstacles. If an alarm is triggered, visit the shutdown switch before

visiting the recharging station.” Figure 3·12(c) shows a prefix cycle and a suffix cycle

for φ with blue and orange arrows, respectively.

The probability that the tracked target Rt moves to an adjacent cell is pmove =

0.15. The optimal policy µg was computed with parameters ε = 0.01, N = 1500,
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Figure 3·12: (a) Environment used in Example 3.2. (b) Part of transition system corresponding to
(a). (c) Part of the measurement likelihood function. Numbers in blue, black, and red text indicate
the probability of l, c, or r being measured by Rp if Rt is in the indicated cell. (d) Example of a
prefix (blue) and a suffix cycle (orange) from formula 3.23.
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Figure 3·13: (a) random walk policy (b) Algorithm 3.7.

jmax = 100, `max = 15, m = 2, and n = 1. The computation required approximately

6 hrs. of processor time. We performed 500 Monte Carlo trials of the system in which

the system was simulated until 5 suffix cycles were completed, i.e. until Rp had visited

a recharging station and a data upload station 5 times. This was compared to 500

“random walk” simulations in which at every time k+ ln, the agent selected its action

uniformly at random from the set {a ∈ Act|(qk+ln , a, q′) ∈ Trans,W (q′) ≤ `max− k}.

This random walk policy is also guaranteed to satisfy the constraints on the system.

The results from the simulations are summarized in the histograms in Figure 3·13.

The random walk policy resulted in an average entropy rate of 0.0420 bits/action,

while the average entropy rate when using Algorithm 3.7 was -0.0090 bits/action. A

two-sample t-test confirmed that this difference in means is statistically significant

with p-value less than 10−95. Further, 3.5 % of the random walk trials resulted in

negative entropy rates while 64.8% of the trials with Algorithm 3.7 had negative

rates, i.e. on average gain information about the location of Rt with each action

taken. This indicates that in addition to having better mean performance, Algorithm

3.7 has better performance more often.
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Chapter 4

Temporal Logic Tasks under Uncertainty

In this chapter, we define Distribution Temporal Logic (DTL), a new kind of TL for

specifying tasks for stochastic systems with partial state information. DTL leverages

rich information in the belief space that is currently unexploited. We originally de-

fined DTL in (Jones et al., 2013a). The logic is well-suited to problems in which

state uncertainty is significant and unavoidable, and the state is estimated on-line.

Many such systems arise in robotics applications, where a robot may be uncertain

of, for example, its own position in its environment, the location of objects in its

environment, or the classification of objects (e.g. ‘target’ or ‘obstacle’).

We define the model under study, partially observable Markov decision processes

(POMDPs) in Section 4.1. Next, we present a motivating hypothesis testing scenario

that demonstrates that the paradigm of DTL is more expressive than existing tempo-

ral logics in Section 4.2. We then give a precise definition of scLDTL, a finite-horizon

DTL, in Section 4.3. We present an algorithm for determining ex post facto with what

probability a given sample path of a POMDP satisfies a given scLDTL specification

in Section 4.4. Finally, we validate this monitoring algorithm by using it to compare

the performance of two different control policies over a POMDP in Section 4.5.
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4.1 Partially Observable Markov Decision Processes

POMDPs (Monahan, 1982; Kaelbling et al., 1998; Varakantham et al., 2006) are

extensions of HMMs in which actions can be taken to affect the probabilistic evolution

of the hidden states and the observation process. More formally,

Definition 4.1 (POMDP). A POMDP is a tuple POMDP = (S, b0, P, Act, Obs, h)

where S is a set of (hidden) states of the system, Act is a collection of actions, and

P : S × Act × S → R is a probabilistic transition relation such that if POMDP is

in a state s, taking the action a will drive the system to state s′ with probability

P (s, a, s′). After the hidden state evolves, the system generates an observation from

the set Obs with probability h(s, a, o) = Pr[o seen |a taken, POMDP in state s].

The system maintains a belief state bt of the current state of POMDP , where bt(s) =

Pr[POMDP in state s at time t|a0:t−1 taken, o1:t seen], via sequential application of

the recursive Bayes filter (3.2) initialized with the prior distribution b0.

The belief state also has a geometric exploitation that we exploit in our monitoring

algorithm in Section 4.4.

Definition 4.2 (Belief Simplex). Given a POMDP POMDP = (S, b0, P, Act, Obs, h),

its belief state has an equivalent vector representation in the belief simplex ∆n−1 where

∆m = {[z1 . . . zm]|
m∑
i=1

zi ≤ 1, zi ≥ 0 ∀i ∈ [1,m]} (4.1)

is the m- dimensional belief simplex . The ith element of the vector is equal to

b(si). The value of b(sn) can be recovered uniquely from the probability vector via

b(sn) = 1−
∑n−1

i=1 b(si).
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a2

aO

a1a3

s1, sO

s1, s3c s1, s1c s1, s2c

Figure 4·1: A representation of the hidden state dynamics of the multiple hypothesis testing
POMDP given that the true source is s1. The full state dynamics is given by three separate graphs
of the same form where the first element si in the state tuple indicates the true source of the
observation sequence.

4.2 Motivating Example: Hypothesis Testing

In this section, we use a simple multiple hypothesis testing example to motivate the

introduction of the logic scLDTL described in Section 4.3. Consider an experiment in

which one of three coins, each with different expected frequency of heads, is flipped

repeatedly. This is an example of a Hidden Markov Model (HMM). The hidden states

of the system are Sh = {s1, s2, s3}, where si is a coin with heads frequency pi. The

set of observations is Obs = {o1, o2} where o1 is heads and o2 is tails.

Further, consider a deciding agent that at each time step can either make an

observation from the HMM or choose a hypothesis in Sh. Let S = Sh × Sd, where

Sd = {s1c, s2c, s3c, sO} is the state space of the deciding agent. sO means that the

HMM is being observed and sic means that the hidden state si is chosen as the

most likely hypothesis. The process is illustrated in Figure 4·1. Combining the

observation model from the HMM with the state dynamics described by Figure 4·1

gives a POMDP MHT = (S, b0, P, {aO, a1, a2, a3}, {o1, o2}, h) where P and h are

given by
P ([si, s0], a0, [si, s0]) = 1,
P ([si, s0], aj, [si, sjc]) = 1 ∀i, j ∈ {1, 2, 3}
P (s, a, s′) = 0, otherwise

(4.2a)

h([si, sO], aO, o1) = pi, h([si, sO], aO, o2) = 1− pi
h(s, a, o) = 0, otherwise

(4.2b)
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Consider the problem in which we are given an infinite number of observations

from MHT , but must estimate the state of the system in finite time. One solution

method is to prescribe a threshold on the entropy of the belief state and terminate

observation and select the most likely hypothesis when it is reached. In plain En-

glish, this is “When the entropy of the belief state is below h, select the most likely

hypothesis.”

This can easily be described by the new Distribution Temporal Logic (DTL) we

define in Section 4.3. As it will become clear later, this predicate logic is defined over

two types of predicates: belief predicates and state predicates. “When the entropy

of the belief state is below h” is equivalent to the belief predicate H(b) − h < 0,

which can be written in short as (H(b)− h) where H(·) denotes entropy. “The most

likely hypothesis” is equivalent to si such that b([si, sO]) > b([s, sO]) ∀s ∈ Sh \ {si}.

Each comparison between components of b is a belief predicate. The selection of

hypothesis si means the state is in the set {[sj, sic]}j∈{1,2,3}, and such sets will be

referred to as state predicates. As it will become clear in Section 4.3, the overall

specification translates to the following DTL formula

(H(b)− h)⇒
(
∧
si∈Sh(

∧
sj∈Sh\{si}(b([sj, sO])− b([si, sO]))⇒

©{[sj, sic]}j∈{1,2,3}),
(4.3)

where the temporal and logical operators have roughly the same semantics as scLTL

(see Section 4.3, Definition 4.4).

Neither the threshold on entropy nor the selection of the most likely hypothesis

can be formulated using POCTL*, the existing temporal logic for partially observable

Markov chains (Zhang, 2004). POCTL* can describe some properties with respect

to a belief state, namely whether the probability under the initial belief state of a
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collection of sample paths of hidden states and observations occurring is greater than

or less than some threshold, but this calculation is a linear function of the belief

state. As entropy is a non-linear function of the belief state, entropy levels cannot be

described in POCTL*.

The collection of sample paths that can be produced by the hidden state of the

system are infinite repetitions of the si. The probability of sample path sisi . . . under

a belief state is b([si, sO]). In POCTL* for this problem, we can only compare the

probability under a belief state of a single hypothesis or a pair of hypotheses to a

constant value: we cannot compare the estimated probabilities of hypotheses to each

other. Therefore, we cannot use POCTL* to formulate the selection of the most likely

hypothesis.

Since the problem we consider here is readily addressed with tools from optimal

estimation and information theory (see e.g. (Cover and Thomas, 2006; Scharf and

Demeure, 1991)), constructing a new TL to describe the solution strategy may seem

unnecessary. However, even considering only belief predicates that describe measures

of uncertainty allows the description of novel behaviors. We can specify low uncer-

tainty levels as temporal goals. We can use uncertainty thresholds to trigger behavior

consistent with the most likely state(s) of the POMDP.

4.3 Syntactically Co-Safe Linear Distribution Temporal Logic

Syntactically co-safe linear distribution temporal logic (scLDTL) describes co-safe

temporal logic properties of probabilistic systems and is defined over two types of

predicates: belief predicates of the type f < 0, with f ∈ FS : {f : Dist(S) → R}

(denoted simply by f) where Dist(S) is the set of all pmfs that can be defined over

state space S and state predicates s ∈ A, with A ∈ 2S (denoted simply by A).
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Formally, we have:

Definition 4.3 (scLDTL syntax). An scLDTL formula over predicates over FS and

state sets is inductively defined as follows:

φ := A|¬A|f |¬f |φ ∨ φ|φ ∧ φ|φUφ| © φ| ♦ φ, (4.4)

where A ∈ 2S is a set of states, f ∈ FS is a belief predicate, φ is an scLDTL formula,

and ¬, ∨, ∧, ©, U , and ♦ are as described in Section 2.

As scLDTL is defined over state and belief predicates, we construct a basic notion

of satisfaction over pairs of hidden state sample paths and sequences of belief states,

given by Definition 4.4.

Definition 4.4 (scLDTL satisfaction of sample path/belief state sequence pairs).

The semantics of scLDTL formulae is defined over words w ∈ (S×Dist(S))∗. Denote

the ith letter in w as (si, bi) The satisfaction of a scLDTL formula at position i in w,

denoted (si, bi) |= φ, is recursively defined as follows:

• (si, bi) |= A if si ∈ A,

• (si, bi) |= f if f(bi) < 0,

• (si, bi) |= ¬A if si 6∈ A,

• (si, bi) |= ¬f if f(bi) ≥ 0,

• (si, bi) |= φ1 ∧ φ2 if (si, bi) |= φ1 and (si, bi) |= φ2,

• (si, bi) |= φ1 ∨ φ2 if (si, bi) |= φ1 or (si, bi) |= φ2,

• (si, bi) |=©φ if (si+1, bi+1) |= φ,
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• (si, bi) |= φ1Uφ2 if there exists j ≥ i such that (sj, bj) |= φ2 and for all i ≤ k < j

(sk, bk) |= φ1,

• (si, bi) |= ♦ φ if there exists j ≥ i such that (sj, bj) |= φ.

The word w |= φ, iff (s0, b0) |= φ.

We also define a notion of probabilistic satisfaction with respect to an execution

of a POMDP in Definition 4.5.

Definition 4.5 (scLDTL satisfaction with respect to a POMDP execution). An ex-

ecution of a POMDP (a sequence of belief states b0:t, the sequence of actions taken

a0:t−1, and the sequence of observations seen o1:t) probabilistically satisfies the scLDTL

formula φ with probability Pr[{s0:t such that (s0, b0) . . . (st, bt) |= φ}|b0:t, a0:t−1, o1:t],

denoted in shorthand as Pr[φ|b0:t, a0:t−1, o1:t].

The probability of a single sample path conditioned on a POMDP execution may

be calculated via the process of recursive smoothing (Briers et al., 2010). Note that

we define Pr[φ|b0:t, a0:t−1, o1:t] with respect to finite-length sample paths. Although

the semantics of scLDTL is defined over infinite words, it is known that any co-safe

temporal logic formula can be checked for satisfaction in finite time (Latvala, 2003).

4.4 Monitoring POMDPs

Here we show algorithmically how to solve the following problem.

Problem 4.1 (scLDTL monitoring of POMDPs). Evaluate with what probability a

given finite-length execution of a POMDP POMDP = (S, b0, P, Act, Obs, h) satisfies

an scLDTL formula φ over subsets of S and belief states over S.
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The solution to this problem could be used to evaluate the performance of a

single execution of a POMDP or, as we show in Section 4.5, can be used to compare

the performance of control policies. More importantly, the tools developed for this

problem are potentially useful for developing synthesis procedures.

The evaluation proceeds in two stages. In the first stage, called feasibility check-

ing, we check a necessary condition for the given execution to satisfy φ with Pr[φ|

b0:t, a0:t−1, o1:t] > 0. The second stage is probabilistic satisfaction checking, in which

Pr[φ|b0:t, a0:t−1, o1:t] is calculated if feasibility checking has succeeded.

4.4.1 Feasibility checking

Algorithm 4.1 shows how to construct a deterministic transition system whose labels

correspond to the belief predicates involved in the scLDTL formula φ. In order to

incorporate the state predicates into this discrete system, we relax all state predicates

by mapping them to belief predicates, e.g., state predicate A is relaxed to the belief

predicate (−
∑

s∈A b(s)) (i.e. Pr[s ∈ A] > 0) (line 5). We also create a mapping

ΨF from each belief predicate to an atomic proposition (lines 3-7). Then, for each

f appearing in the relaxed scLDTL formula, we calculate the level set f(b) = 0 in

Dist(S) and map it to a set of probability vectors in the belief simplex. Many useful

belief predicates, such as inequalities over moments, have polytopic level sets that

are readily calculated. The level sets induce a partition of the simplex. A general

algorithm for producing this partition will likely require the use of geometric tools and

direct evaluations of the functions f for points in the simplex. We take the quotient

of the partition to form a transition system and label each state with ΨF (f) for each

f that was satisfied in the corresponding region (lines 13-24). We denote the region

of the simplex corresponding to the state qj in the transition system as Reg(qj).

The condition in line 22 used to create transitions in the quotient involves a notion
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of reachability that we make precise now.

Definition 4.6 (Reachability). We say a state qk is reachable from state qm if be-

ginning from any belief state in Reg(qm) there exists a sequence of actions and ob-

servations in POMDP such that sequentially applying (3.2) will drive the system to

a belief state associated with a belief state in Reg(qk).

Determining the reachability relationship between states is a non-trivial process.

In this work, we assume that all states are self-reachable and all state pairs correspond-

ing to neighboring regions in the belief simplex are mutually reachable. We make this

liberal assumption because if we observe a transition during monitoring that we did

not assume to exist, FTS would be invalid. Allowing all possible transitions does not

weaken our approach if a reachability relationship is false. If a transition cannot be

made in FTS, we will never observe it during monitoring. This assumption will have

to be relaxed in model checking or synthesis. Further, each transition is annotated

with a virtual action rather than a collection of action/observation sequences.

Feasibility checking of a scLDTL formula proceeds according to Algorithm 4.2.

From φ, we create an scLTL formula φ′ by replacing every predicate in φ with its image

in the mapping ΨF (lines 3 - 5). We then construct the automaton Aφ′ and form Pφ′ ,

the synchronous product of FTS (from Algorithm 4.1) and Aφ′ . The sequence b0:t is

translated into the corresponding word α0:t in the input language of Pφ′ (lines 9 - 14).

We use Pφ′ to perform scLTL verification of φ′. If verification succeeds, Algorithm

4.2 returns a deterministic transition system DTS used in probabilistic acceptance

checking to describe the time evolution of the satisfaction of belief predicates. DTS

is a simple,“linear” transition system whose action set is a singleton and whose only

possible run is q0 . . . qt where LD(qk) = LF (q|bk ∈ Reg(q)).

If verification fails, then we do not proceed to probabilistic acceptance checking, as
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Algorithm 4.1 Construct a transition system used to check a necessary condition
for Pr[φ|b0:t, a0:t−1, o1:t] > 0

1: function feasibilitySystemConstruct(φ, S,b0)
2: predicateSet := ∅ ; j := 1; Π = ∅;
3: for all predicates ∈ φ do
4: if predicate 6∈ FS then
5: predicate := (−

∑
s∈predicate b(s))

6: predicateSet := predicateSet ∪ predicate
7: ΨF (predicate) := πj
8: Π := Π ∪ πj; j := j + 1;
9: for all f ∈ predicates do

10: calculate level setf(b) = 0
11: use the probability vector representation of the level sets to partition the belief

simplex
12: QF := ∅; m := 1;
13: for all regions ∈ partition do
14: QF := QF ∪ {qm};
15: LF (qm) := {Ψ(f)|f(b) < 0 ∀b ∈ region}
16: Reg(qm) := region
17: if b0 ∈ region then
18: q0 := qm;
19: m := m+ 1
20: ActF := ∅; TransF := ∅
21: for all qm, qk ∈ Q2

F do
22: if qk is reachable from qm then
23: ActF := ActF ∪ {amk}
24: TransF := TransF ∪ {(qm, amk, qk)}
25: return FTS = (QF , q0, ActF , T ransF ,ΠF , LF ),ΨF
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Algorithm 4.2 Returns a transition system that describes the time evolution of
belief predicate satisfaction if the necessary condition for Pr[φ|b0:t, a0:t−1, o1:t] > 0
holds

1: function feasibilityCheck(b0:t, φ, S)
2: FTS,ΨF := feasibilitySystemConstruct(φ, S,b0)
3: φ′ := φ
4: for all predicates ∈ φ′ do
5: replace predicate in φ′ with ΨF (predicate);
6: Construct the finite state automaton (FSA) Aφ′ that only accepts words satisfying
φ′.

7: Pφ′ = FTS × Aφ′
8: currentState := q0; currentIndex := 0; k := 1
9: QD := ∅; ActD = {a0}; TransD = ∅; ΠD := LF (q0)

10: for i = 1 to t do
11: if bi 6∈ Reg(currentState) then
12: currentState := qj such that bi ∈ Reg(qj)
13: ΠD := ΠD ∪ LF (currentState)
14: currentIndex := j;
15: QD := QD ∪ qk
16: TransD := Trans ∪ (qk−1, a0, qk)
17: LD(qk) = LF (currentState)
18: αi := acurrentIndex,nextIndex

19: currentIndex := nextIndex
20: if α0:t−1 produces an accepting run on Pφ′ then
21: return DTS = (QD, q0,D, ActD, T ransD,ΠD, LD)
22: return False
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failure means that Pr[φ|b0:t, a0:t−1, o1:t] = 0. Due to the mapping of state predicates

to belief predicates, Algorithm 4.2 checks for the existence of at least one sample

path s0:t such that (s0, b0) . . . (st, bt) |= φ and
∏t

i=0 b
i(si) > 0. The positivity of the

product is a necessary but not sufficient condition for Pr[s0:t|a0:t−1, o1:t, b0] > 0.

We illustrate Algorithms 4.1 and 4.2 in the following example.

Example 4.1. Consider the multiple hypothesis testing POMDP MHT given in

Section 4.2 with scLDTL specification (4.3). Figure 4·2(a) shows the partitioning of

the belief simplex from the belief predicates in (4.3) resulting from Algorithm 4.1.

The predicates involving maximum likelihood (red) and specified entropy level (blue)

partition the simplex into six regions corresponding to discrete states qi, i ∈ {1, . . . , 6}.

Each red curve is a level set b([si, sO]) = b([sj, s0] for i 6= j and each blue curve is

part of the level set H(b) = 0.8 bits. From this partition, we can execute Algorithm

4.1, lines 13-24 to form the transition system FTS shown in Figure 4·2(b). A state

in FTS is labeled with proposition πj, j ∈ {1, 2, 3} if sj is the most likely hypothesis

according to any probability vector in the corresponding region. A state in FTS is

labeled with proposition π4 if the entropy of any probability vector in that region is

less than 0.8 bits.

The green curve in Figure 4·2(a) represents a single, randomly generated execution

of MHT . The observation likelihood parameters were p1 = 0.25, p2 = 0.5, p3 = 0.75.

Observations were generated with parameter p1. Each point in the curve is the

probability vector representation of the belief state bi resulting from incorporating i

observations via (3.2). The transition system DTS resulting from executing Algo-

rithm 4.2 on the given sequence of belief states is shown in Figure 4·2(c). For the first

three observations seen, the trajectory stays in Reg(q1). Thus the first three states in

DTS are labeled with π1. After the fourth measurement, the trajectory has gathered
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enough information to enter Reg(q4). Thus the fourth (and final) state in DTS is

labeled with both π1 and π4.

4.4.2 Probabilistic acceptance checking

If Algorithm 4.2 succeeds, we proceed to probabilistic acceptance checking. In this

section, we use labeled Markov decision processes (LMDPs) and labeled Markov

chains (LMCs) as abstractions to describe the probabilistic time evolution of the

hidden states of the system. An LMDP is an MDP in which the states of the sys-

tem are labeled with atomic propositions. An LMDP is given as a tuple LMDP =

(S, p0
S, P, Act, AP, L) where S, P, and Act are as defined for a POMDP. The pmf over

states pS is not conditioned on observations. AP is a set of atomic propositions

and L : S → 2AP maps states to propositions. A labeled Markov Chain (LMC) is

an LMDP without actions and is given as a tuple LMC = (S, p0
S, P, AP, L) where

S, p0
S, AP, and L are as defined for the LMDP and the probabilistic transition rela-

tionship P is not parameterized by actions.

We begin probabilistic acceptance checking by creating a mapping Ψsp : 2S → Πr

that maps state predicates to atomic propositions in the set Πr. This construction

is similar to the construction of ΨF . The scLDTL formula φ is mapped to a scLTL

formula φ′′ by applying the mapping ΨF to the belief predicates and the mapping

Ψsp to the state predicates appearing in φ. An FSA is created from φ′′. Next, we

enumerate all of the sample paths consistent with the given execution of POMDP .

We do this by creating a labeled Markov chain LMC for each possible initial state s0

such that b0(s0) > 0. LMC has a tree-like structure with root s0. Each node si has

as children any state si+1 such that P (si, ai, si+1) > 0 and h(si+1, ai, oi+1) > 0. Each

state s in the tree is labeled with {Ψsp(A)|A appears in φ, s ∈ A}. The transition
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Figure 4·2: (a) The belief simplex for bSh
partitioned according to the belief predicates used in

(4.3). The red lines divide the simplex into three regions corresponding to the most likely hypothesis.
The blue curves are the level sets H(bS) = 0.8 bits. The green curve shows the probability trajectory
corresponding to a sequence of belief states from a randomly generated execution of MHT . (b) The
transition system FTS constructed by taking the quotient of the partition shown in (a). (c) The
transition system DTS that results from applying Algorithm 4.2 to the given belief state sequence
and FTS.
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probability between states si, si+1 is given by

PLMC(si, si+1) =
Pr[oi+1:t|si+1, ai+1:t]P (si, ai, si+1)∑

s∈S Pr[o
i+1:t|s, ai+1:t]P (si, ai, s)

.

The details of this calculation can be found in (Briers et al., 2010). We construct

LMDP , the synchronous product of LMC and DTS, which encapsulates the time

evolution of both the satisfaction of state predicates (from LMC) and belief predicates

(from DTS). A state in the ith level of LMDP is labeled with atomic propositions

associated with the belief predicates satisfied by bi and state predicates satisfied by

a state si that is reachable from state s0 given the first i actions and observations.

Since the action set ActDTS is a singleton, there is no notion of choice in the

evolution of DTS and thus no choice in the evolution of LMDP . We create another

labeled Markov chain LMCP from LMDP by removing the action set and using the

probabilistic transition relationship PLMCP (s, s′) = PLMDP (s, a0, s
′). We then form

M, the synchronous product of LMCP and Aφ′′ . We perform model checking on

LMCP to find the set of all accepting runs Acc(φ′′) on M of length t + 1. Each

run in Acc(φ′′) corresponds to a sample path that satisfies φ when paired with b0:t.

For each run r0:t in Acc(φ′′), let s0:t be the corresponding sample path over LMCP .

We calculate Pr[s0:t|a0:t−1, o1:t] = Pr[s0|a0:t−1, o0:t]
∏t

i=1 PLMCP (si, si+1) (Briers et al.,

2010) and add it to the acceptance probability Pr[φ|b0:t, a0:t−1, o1:t]. By enumerating

over all possible sample paths, we calculate the exact value of Pr[φ|b0:t, a0:t−1, o1:t].

4.5 Case Study

A proposed use of mobile robots is to perform rescue operations in areas that are

too hazardous for human rescuers. A robot is deployed to a location such as an
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office building or school after a natural disaster and is tasked with finding all human

survivors in the environment and with moving any immobilized survivors to safe

areas. The robot must learn survivor locations and safety profile of the building

on-line by processing noisy measurements from its sensors. The combination of on-

line estimation and time-sensitive decision-making indicates that scLDTL is a good

framework for describing the mission specification at a high level.

4.5.1 Model

For simplicity, we consider a rescue robot acting in a two room environment. We

model the robot as a POMDP Rescue = (S, b0, P, Act, Obs, h). The state of the

system is given by a vector [sq, sO, s1,e, s2,e, s1,s, s2,s] in the state space S = {1, 2} ×

{0, 1}5. The element sq corresponds to the room in which the robot currently resides

and sO ∈ {0, 1} corresponds to whether (sO = 1) or not the robot is carrying an

object(SO = 0). The elements si,e ∈ {0, 1} correspond to safety, i.e. if si,e = 1, then

room i is safe to be occupied by a human. The elements si,s ∈ {0, 1} correspond to

survivor presence, i.e. if si,s = 1, a survivor is in room i.

The robot can stay in its current room and measure its surroundings, switch to

the other room, pick up an object, or put down an object. Here we assume the motion

model of the robot is deterministic, the safety of the environment is static, and the

survivor locations change only if the robot moves a survivor. If the robot attempts

to move a survivor, it fails with some probability pfail.

If the robot takes action Stay, its sensors return observations in the set Obs =

{0, 1}2. The elements of Obs are binary reports of the safety and survivor occupancy

of the current room. The sensor is parameterized by two independent false alarm and

correct detection rates.
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4.5.2 Problem statement

For convenience we establish the shorthand bj(σ) =
∑
{s∈S|sj=σ} b(s) where sj is a

component of an element of S. We wish to find and move all of the survivors in

the given area to safe regions. In order for the robot to be reasonably sure that

this condition is met, it must be fairly certain about the state of the environment.

Therefore, we want the entropy of our estimate to be low, i.e.

∀i ∈ {1, 2} H(bi,e) < h1, H(bi,s) < h2. (4.5)

Survivor safety is time-critical. We thus require “If the robot is confident a sur-

vivor is in an unsafe location, move it to a safe location”. We encode confidence by

saying ”with a certain probability”.

The statement that describes the rescue robotics application is “Explore the en-

vironment and if the robot is in a state where it is sure with probability p1 there

is a survivor and with probability p2 the state is unsafe, pick up the survivor, move

to the other room and deposit the survivor. Perform these actions until (4.5) and

any identified survivors are in safe regions”. The above statement is encoded in the

scLDTL formula φ1Uφ2 where

φ1 =
({s|sq = j} ∧ (p1 − bj(s)) ∧ (p2 − bj,e(0)))

⇒ (©({s|sO = 1}U{s|sq 6= j}) ∧©{s|sO = 0}

φ2 =

∧
i∈{1,2}(H(bi,e)− h1) ∧ (H(bi,s)− h2)

∧({s|si,e = 1}) ∧ {s|si,s = 1}) ∨ {s|si,s = 0})

(4.6)

The formula φ1 encodes “if the robot is in a state where it is sure with probability

p1 there is a survivor ({s|sq = j} ∧ (p1 − bj(s))) and with probability p2 the state

is unsafe (p2 − bj,e(0)), pick up the survivor ({s|sO = 1}), move to the other room
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{s|sq 6= j}) and deposit the survivor ({s|sO = 0}).” The formula φ2 encodes “Perform

these actions until (4.5) (
∧
i∈{1,2}(H(bi,e)−h1)∧ (H(bi,s)−h2)) and any survivors are

in safe regions (({s|si,e = 1}) ∧ {s|si,s = 1}) ∨ {s|si,s = 0})).”

Due to the time sensitive nature of survival, we consider the following time-

constrained optimization problem.

max
a0:t

E{o1:t}[Pr[φ1Uφ2|b0:t, a0:t−1, o1:t]] (4.7)

4.5.3 Acceptance checking

We consider two separate strategies: time share and entropy cutoff. In the time share

strategy with parameter a, the robot switches rooms every d t
a
e observations. In the

entropy cutoff strategy with parameters h3, h4, ρ, the robot switches rooms when the

entropy of the estimate of the safety and survivor presence of the current room dips

below h3 and h4, respectively. If the estimates of both rooms are of the specified

certainty, the agent must wait ρ time units before switching. Both strategies include

the reactive behavior of attempting to pick up survivors when they are found.

The results from 250 Monte Carlo trials of length t = 16 are shown in Figure

4·3. The control strategy parameters were parameter a = 3, h3 = h4 = 0.3, and

ρ = 2. Further simulation parameters are given in the caption of Figure 4·3. Here we

use Pr[φ] as shorthand for the statistic formed from samples of Pr[φ|b0:t, a0:t−1, o1:t]

collected from the trials. For both methods, there are clusters of points around the

lines Pr[φ] = 1 and Pr[φ] = 0. This is because by making the entropy of the belief

state a temporal goal in the scLDTL formula, the probability calculation sets the

acceptance probability to 0 for executions after which the characterization of the

environment is ambiguous, i.e. when the probability is close to the center of the

interval [0, 1].
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Method E[Pr[φ]] var(Pr[φ]) E[H(bt)] var(H(bt) success rate R(Pr[φ], H(bt))
Timeshare 0.855 0.115 0.366 bits 0.150 bits2 0.86 -0.547
Entropy Threshold 0.992 0.004 0.338 bits 0.034 bits2 0.916 -0.341

Table 4.1: Statistics from 250 Monte Carlo trials of the two-room rescue robotics simulation.

The statistics resulting from our simulations are shown in Table 4.1. The statistic

R(Pr[φ], H(bt)) is the Pearson’s R correlation coefficient between the two variables.

The success rate is given as the number of trials such that at time t = 16, all survivors

were safe divided by the total number of trials. Note that the entropy cutoff method

performs better in terms of acceptance probability, expected terminal entropy, and

success rate. This matches intuition, as this method will drive the robot to stay in

a room longer if the particular observation sequence it observes does not lead to any

strong conclusions or it will move to the other room if it has already obtained a good

estimate. This is in contrast to the time share method, which ignores estimate quality

in its decision policy.

Further, note that for both methods, the correlation coefficient is weakly nega-

tive. This weakness is due to the clustering of points at varying entropies around

Pr[φ] = 0 and Pr[φ] = 1. This negative correlation and the relative closeness of

the average acceptance probability of the two methods to their respective success

rates suggests that for some appropriately-defined scLDTL formulae, the probability

Pr[φ|b0:t, a0:t−1, o1:t] is an appropriate metric for the dual consideration of estimate

quality (uncertainty) and system performance.
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Figure 4·3: Scatter plots showing the results of 250 Monte Carlo trials of the two room rescue
robot POMDP under policy (a) time share and (b) entropy cutoff. The parameters used in (4.6) are
h1 = h2 = 0.375 and p1 = 0.9, p2 = 0.25. The probability that an agent fails to pick up a survivor
was pfail = 0.4. The false alarm rates for safety and survivor were both 0.1. The correct detection
rates for safety and survivor were 0.8 and 0.9, respectively.
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Chapter 5

Signal Temporal Logic

In the previous chapters, we have focused on verifying and enforcing propositional

temporal logic formulae on systems that can be modeled as discrete, graph-like repre-

sentations. In the following chapters, we investigate two problems (TL inference and

reinforcement learning for satisfying TL specifications) that are defined with respect

to continuous systems. For this reason, we use a recently developed predicate tempo-

ral logic, called Signal Temporal Logic (STL) (Maler and Nickovic, 2004). In contrast

to LTL, which can specify properties involving Boolean propositions and abstract

time, STL can specify properties over continuous systems that include bounds on

physical states and bounded time intervals. STL comes equipped with a recursively-

defined robustness degree, that is, a continuous measure of how well a given execution

of a continuous system satisfies or violates a given STL execution. Recent papers have

used this robustness degree to guide parameter estimation problems for cyber-physical

systems (Jin et al., 2013) and to control systems with continuous state space via model

predictive control (Raman et al., 2014; Raman et al., 2015).

Signal temporal logic is also closely related to metric temporal logic (MTL) (Koy-

mans, 1990), an extension of LTL that has interval time semantics, but lacks bounds

on physical states. MTL has been used to verify and monitor models of complex

cyber-physical systems (Dokhanchi et al., 2014; Abbas et al., 2014).

In this chapter, we give some preliminary definitions that are necessary for Chap-



97

ters 6 and 7.

Definition 5.1 (Signal). Given two sets A and B, F(A,B) denotes the set of all

functions from A to B. Given a time domain R+ := [0,∞) (or a finite prefix of it), a

continuous-time, continuous-valued signal is a function s ∈ F(R+,Rn). We use s(t)

to denote the value of signal s at time t, and s[t] to denote the suffix of signal s from

time t, i.e. s[t] = {s(τ)|τ ≥ t}. We use xs to denote the one-dimensional signal

corresponding to the variable x of the signal s.

Definition 5.2 (Signal Temporal Logic). Signal temporal logic (STL) (Maler and

Nickovic, 2004) is a temporal logic defined over signals.

The syntax of STL is inductively defined as

φ := µ|¬φ|φ1 ∨ φ2|φ1 ∧ φ2|φ1U[a,b)φ2, (5.1)

where [a, b) is a time interval, µ is a numerical predicate in the form of an inequality

gµ(s(t)) ∼ cµ such that gµ ∈ F(Rn,R), ∼∈ {<,≥}, and cµ is a constant.

The semantics of STL is defined recursively as

s[t] |= µ iff gµ(s(t)) ∼ cµ
s[t] |= ¬φ iff s[t] 6|= φ

s[t] |= φ1 ∧ φ2 iff s[t] |= φ1 and s[t] |= φ2

s[t] |= φ1 ∨ φ2 iff s[t] |= φ1 or s[t] |= φ2

s[t] |= φ1U[a,b)φ2 iff ∃t′ ∈ [t+ a, t+ b)
s. t. s[t′] |= φ2, s[t

′′] |= φ1

∀t′′ ∈ [t+ a, t′).

(5.2)

We also use the constructed temporal operators ♦ [a,b)φ = > U[a,b)φ (read “eventu-

ally φ”), where > is the symbol for Boolean constant True, and � [a,b)φ = ¬ ♦ [a,b)¬φ

(read “always φ”). In plain English, the semantics of ♦ a,bφ means “within a and b



98

time units in the future, φ is true,” � [a,b)φ means “for all times a and b time units

in the future φ is true,” and φ1U[a,b)φ2 means “There exists a time c between a and b

time units in the future such that φ1 is true until c and φ2 is true at c.”

A signal s satisfies an STL formula φ if s[0] |= φ. The language of an STL formula

φ, L(φ), is the set of all signals that satisfy φ, namely L(φ) = {s ∈ F(R+,Rn)|s |= φ}.

Given formulae φ1 and φ2, we say that φ1 and φ2 are semantically equivalent , i.e.,

φ1 ≡ φ2, if L(φ1) = L(φ2).

Example 5.1 (STL Formula). Consider the signal s shown in Figure 5·1. s satisfies

the formula

φg = � [0,3)( ♦ [0,2)(s > 0.8) ∧ ♦ [0,2)(s < −0.8))

In plain English, φ1 means “For every point in time t from 0s to 3s, within 2s in the

future (i.e. during the interval [t, t + 2)), the value of s exceeds 0.8 and dips below

−0.8.” This effectively captures the oscillatory behavior of s. In contrast, s does not

satisfy

φb = ♦ [0,3)( � [0,2)(s > 0.8) ∨ � [0,2)(s < −0.8)),

which in plain English means “Within 3s, s remains above 0.8 for the next 2 s or s

remains below -0.8 for the next 2 s.

Remark 5.1. Because STL is a predicate temporal logic and has interval-based time

semantics, it is in general not appropriate to construct an automaton from an STL

formula. When determining whether or not a given signal satisfies an STL formula,

the recursive semantics are used directly to calculate its satisfaction.

Definition 5.3 (Parametric STL). Parametric signal temporal logic (PSTL) (Asarin

et al., 2012) is an extension of STL where cµ or the endpoints of the time intervals

[a, b) are parameters instead of constants. We denote them as scale parameters π =
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Figure 5·1: Simple sinusoid used in Example 5.1.

[π1, ..., πnπ ], and time parameters τ = [τ1, ..., τnτ ], respectively. They range over their

respective hyper-rectangular domains Π ⊂ Rnπ and T ⊂ Rnτ . A full parameterization

is denoted by θ = [π, τ ] with θ ∈ Θ = Π× T . The syntax and semantics of PSTL are

the same as those for STL.

To avoid confusion, we will use φ to refer to an STL formula and ϕ to refer to a

PSTL formula. A valuation v is a mapping that assigns real values to the parameters

appearing in a PSTL formula. Each valuation v of a PSTL formula ϕ induces an

STL formula φv where each parameter in ϕ is replaced with its image in v. For

example, given ϕ = (xs ≥ π1)U[0,τ1)(ys ≥ π2) and v([π1, π2, τ1]) = [0, 4, 5], we have

φv = (xs ≥ 0)U[0,5](ys ≥ 4).

Definition 5.4 (Robustness Degree). The robustness degree of a signal s with re-

spect to an STL formula φ at time t is given as r(s, φ, t), where r can be calculated

recursively via the quantitative semantics (Fainekos and Pappas, 2009; Donzé and
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Maler, 2010)
r(s, µ≥, t) = gµ(s(t))− cµ
r(s, µ<, t) = cµ − gµ(s(t))
r(s,¬φ, t) = −r(s, φ, t)

r(s, φ1 ∧ φ2, t) = min(r(s, φ1, t), r(s, φ2, t))
r(s, φ1 ∨ φ2, t) = max(r(s, φ1, t), r(s, φ2, t))

r(s, φ1U[a,b)φ2, t) = sup
t′∈[t+a,t+b)

(min(r(s, φ2, t
′),

inf
t′′∈[t,t′)

r(s, φ1, t
′′)))

where µ≥ is a predicate of the form gµ(s(t)) ≥ cµ and µ< is a predicate of the form

gµ(s(t)) < cµ.

We use r(s, φ) to denote r(s, φ, 0). A signed distance from a point x ∈ X :=

F(R+,Rn) to a set S ⊆ X is defined as

Distρ(x, S) :=

{
−inf{ρ(x, y)|y ∈ cl(S)} if x /∈ S
inf{ρ(x, y)|y ∈ X \ S} if x ∈ S (5.3)

with cl(S) denoting the closure of S, ρ is a metric defined as

ρ(s, s′) = sup
t∈T
{d(s(t), s′(t))}, (5.4)

and d corresponds to the metric defined on the domain Rn of signal s. It has been

shown in (Fainekos and Pappas, 2009) that r(s, φ) is an under-approximation of

Distρ(s,L(φ)).

The robustness degree thus gives a measure of how robustly a signal either satisfies

or violates the given STL formula. If r(s, φ) is large and positive (negative), then

s satisfies (violates) φ and a large perturbation to s would be required in order for

the resulting signal s′ to violate (satisfy) φ. If r(s, φ) ≈ 0, then if even a small

perturbation is applied to s, whether or not s′ satisfies φ is unpredictable.

Example 5.1 (Cont’d). If we calculate the robustness degree of s with respect to φg
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and φb, we see that r(s, φg) = 0.2, while r(s, φb) = −1.8. This indicates that a small

perturbation to s, e.g. a change in amplitude or frequency, could cause it to violate

φg, while s would have to change by a large amount in order to stay above 0.8 or

below -0.8 for 2 seconds.

Definition 5.5 (Horizon Length). Similar to (Dokhanchi et al., 2014), let hrz(φ)

denote the horizon length of an STL formula φ. The horizon length is the required

number of samples to resolve any (future or past) requirements of φ. The horizon

length can be computed recursively as follows (adopted from (Dokhanchi et al., 2014)):

hrz(µ) = 0,
hrz(¬φ) = hrz(φ),

hrz(φ1 ∨ φ2) = max{hrz(φ1), hrz(φ2)},
hrz(φ1 ∧ φ2) = max{hrz(φ1), hrz(φ2)},

hrz(φ1U[a,b)φ2) = max{hrz(φ1) + b− 1, hrz(φ2) + b}
hrz( ♦ [a,b))φ) = hrz(φ) + b
hrz( � [a,b))φ) = hrz(φ) + b

(5.5)

Example 5.1 (Cont’d). The horizon length for φg can be calculated as

hrz(φg) = 3 + max(2 + 0, 2 + 0) = 5 (5.6)



102

Chapter 6

Learning Specifications from Data

In this chapter, we consider the problem of learning signal temporal logic formulae

from data (Kong et al., 2014; Jones et al., 2014; Kong et al., 2015). That is, we

address problems in which we do not have access to an explicit model of a system

but only the outputs from the system. These methods are therefor applicable in

situations where we want to learn high-level behaviors described as temporal logic

fomulae from complex systems such as autonomous or human-driven vehicles, where

obtaining an accurate model is difficult. Our techniques are also amenable to cases

in which models are too large or complex to be analyzed with traditional tools. In

this chapter, we use this problem formulation to address problems in cyber-physical

system security.

In Section 6.1, we use off-line supervised learning to learn formulae to distinguish

desirable behaviors from undesirable behaviors. That is, we learn formulae from

datasets where experts have labeled the data according to whether or not each tra-

jectory represents a desirable or undesirable behavior. In Section 6.2, we use on-line

supervised learning to learn a formula to classify desirable and undesirable behav-

iors. That is, instead of learning from a database, the on-line algorithm updates the

formula as new data becomes available. Finally, in Section 6.3, we use unsupervised

learning to learn formulae that distinguish anomalous behaviors from mainstream,

“normal” behaviors. That is, we learn formulae from datasets where the data is un-
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labeled. Each section is organized into subsections that define the problem under

consideration, present the algorithm for its solution, and demonstrate the algorithm

on case studies.

6.1 Supervised Learning of STL specifications

In this section, we address the problem of inferring a temporal logic formula that can

be used to distinguish between desirable system behaviors, e.g. an airplane lands in

some goal configuration on the tarmac, and undesirable behaviors, e.g. the airplane’s

descent is deemed unsafe. Moreover, in our approach, the inferred formulae can be

used as predictive templates for either set of behaviors. This in turn can be used for

on-line system monitoring, e.g. aborting a landing if the descent pattern is consistent

with unsafe behavior. Since our procedure is automatic and unsupervised beyond

the initial labeling of the signals, it is possible that it can discover properties of the

system that were previously unknown to designers, e.g. changing the direction of

banking too quickly will drive the airplane to an unsafe configuration.

This section also introduces inference parametric signal temporal logic (iPSTL),

a fragment of PSTL, which we originally defined in (Kong et al., 2014; Kong et al.,

2015). iPSTL is expressive enough to capture properties that are crucial to a wide

range of applications. In Section 6.1.2, we show that we are able to build a directed

acyclic graph (DAG) for all iPSTL formulae. The formulae in the DAG are organized

according to how general they are such that if ϕ2 is a child of ϕ1, then the property

described by ϕ1 implies the property described by ϕ2. This result enables us to

formulate the supervised learning problem as an optimization problem over iPSTL

formula structures and continuous parameterizations.
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6.1.1 Problem Definition

We wish to construct a classifier that can separate outputs from a system behaving

normally from outputs from a system behaving abnormally. Here, we consider the

case in which our inference procedure can learn from historical data that has been

labeled according to whether or not it represents a normal behavior. More formally,

we wish to solve Problem 6.1.

Problem 6.1. Let {xi}Mi=1 be a set of trajectories generated by S. Let si be the

observed output signal associated with xi and pi be the corresponding label assigned

by expert or database knowledge. pi = 1 if si represents a normal behavior and

pi = −1 if si represents an anomalous behavior. From the pairs {(si, pi)}Mi=1, find an

iSTL formula (defined in Section 6.1.2) φN such that the misclassification rate

MRL({(si, pi)}Mi=1, φN) =
FAL +MDL

M
(6.1)

is minimized, where

FAL = |{si|si 6|= φ, pi = 1)}|

is the number of false alarms (signals improperly classified as anomalous) and

MDL = |{si|si |= φ, pi = −1}|

is the number of missed detections (signals improperly classified as normal). This

problem can be adapted to the problem of constructing a formula φA that describes

only those outputs from abnormal systems.

Here, we give a motivating scenario that illustrates Problem 6.1.
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Figure 6·1: A naval surveillance example. Trajectories of vessels behaving normally are shown in
green. The red trajectories represent possible human trafficking scenarios and the blue trajectories
represent possible terrorism scenarios. The layout resembles Boston harbor.

Example 6.1 (Naval Surveillance). In maritime surveillance (Kowalska and Peel,

2012), the Automatic Identification System (AIS) enables law enforcement authorities

to collect data at regular intervals on a large number of ships. The available data

includes the vessels’ locations, courses, speeds, and destinations. This information can

be used to uncover security threats and suspicious activities such as drug smuggling,

human trafficking, arms trading, or terrorism. However, high volumes of traffic make

manual inspection of the collected data for anomalous behavior time-consuming and

error-prone. Thus there is a need for systems that automate the process of detecting

and responding to anomalous events. Consider the academic example shown in Figure

6·1.

Normal Behavior A vessel behaving normally (shown in green in Figure 6·1) ap-

proaches from the sea until it reaches the narrow passage between the peninsula and

the island. Then, it heads directly towards the port.

Anomalous Behavior Consider two scenarios modified from (Kowalska and Peel,

2012) that may indicate illicit actions. In the first scenario, a vessel (shown in red in
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Figure 6·1) deviates to the island. This may indicate a human trafficking scenario in

which the vessel initially follows a normal track, then heads to the shore to pick up

people before returning to its original path. In the second scenario, a vessel (shown

in blue in Figure 6·1) approaches a ferry, loiters, and then quickly returns to the

open sea. This behavior may indicate terroristic activity in which the vessel plants

an explosive device on or near the ferry.

This example requires us to learn a classifier that differentiates desired behaviors

from undesirable behaviors. A single output of this system can have a large number of

data points, which means that finding a classifier using traditional machine learning

methods would require the definition of features. For example, we could use time to

reach a point in the state space in the maritime example or frequency of oscillation

in the brake example. However, these features or set of features must be defined by

some expert with knowledge of the problem domain (or by visual data inspection).

Our methods are able to solve each of these problems directly without using such

user-defined features, thus minimizing the need for an expert.

6.1.2 Inference Parametric Signal Temporal Logic

In this chapter, we focus on a fragment of PSTL that we call inference PSTL (iPSTL).

This fragment has a partial order over formulae that is essential for the formula

structure search we perform in Section 6.2. The syntax of iPSTL is given as

ϕ ::= ♦ [τ1,τ2)ϕi (6.2a)

ϕi ::= ♦ [τ1,τ2)`| � [τ1,τ2)`|ϕi ∧ ϕi|ϕi ∨ ϕi (6.2b)
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where ` is a linear predicate of the form (xs ∼ π) and xs is a coordinate of the signal s.

Since iPSTL is a fragment of PSTL, any valuation θ of an iPSTL formula induces an

STL formula. We call the fragment of all such STL formulae inference STL (iSTL).

The semantics of iSTL are the same as defined in Definition (5.2). Given an iPSTL

formula ϕ and a valuation θ, we denote the corresponding iSTL formula as φθ.

Expressivity

iPSTL can be used to express a wide range of important system properties, such as

• Bounded-time invariance, e.g. ♦ [0,τ1)( � [τ2,τ3)(ys < π)) (“There exists a time

t ∈ [0, τ1) such that ys will always be less than π in [t+ τ2, t+ τ3).”)

• Reachability to multiple regions in the state space, e.g. ♦ [0,τ1)( ♦ [τ2,τ3)(ys ≥

π1)∨ ♦ [τ2,τ3)(ys < π2)) (“There exists a time t ∈ [0, τ1) such that eventually ys

is either less than π1 or greater than π2 from t+ τ2 seconds to t+ τ3 seconds.”)

Example 6.1 (Naval Surveillance (contd.)). The normal vessel behavior can be de-

scribed by the iSTL formula

ϕN = ♦ [0,590)( � [0,200)(ys ≥ 20) ∧ � [0,200)(ys < 35)
∧ ♦ [0,350)(xs < 25))

(6.3)

As shown in Figure 6·1, the two scale parameters related to ys, 20 and 35, define

the bounds of the normal traces corresponding to the narrow passage between the

peninsula and the island. The scale parameter related to xs, 25, defines the right

boundary of the port. In plain English, this formula reads “There is a time t within

[0, 590) such that the vessel’s y coordinate should always be between 20 and 35 for the

next 350 units and within 350 units the vessel will eventually reach an x coordinate

that is less than 25”. The human trafficking scenario (shown in red in Figure 6·1)



108

violates the conjunction of the first and second clauses while the terrorism scenario

(shown in blue in Figure 6·1) violates the third clause.

There are some temporal properties that cannot be described directly in iPSTL,

namely,

• Concurrent eventuality, e.g. ϕi = ♦ [0,τ1)((ys < π1) ∧ (xs ≥ π2)). (“Within τ1

seconds, ys is less than π1 and xs is greater than π2 at the same time.”)

• Nested “always eventually”, e.g. ϕi = � [0,τ1) ♦ [τ2,τ3) (ys < π1). (“At any time

t in the next τ1 seconds, ys will be less than π1 at some point in the interval

[t+ τ2, t+ τ3).”)

The lack of concurrent eventuality means that we cannot directly specify that a

trajectory will eventually reach some intersection of half-spaces in the state-space,

though we can approximate such properties by specifying ϕi = ♦ [0,τ1)(ys < π1) ∧

♦ [0,τ1)(xs > π2).

The lack of nested “always eventually” limits the periodic properties that may be

expressed, but we can approximate such properties by specifying ϕi = ♦ [τ2,τ3)(ys <

π1) ∧ . . . ∧ ♦ [τ2+nε,τ3+nε)(ys < π1), that is by selecting n points in the interval [0, τ1)

ε apart and specifying that the property ♦ [τ2,τ3)(ys < π1) is true at all points.

Properties of iPSTL

In this subsection, we fist define a partial order over iPSTL, the set of all iPSTL

formulae. The formulae in iPSTL can be organized in a directed acyclic graph (DAG)

where a path exists from formula ϕ1 to formula ϕ2 iff ϕ1 has a lower order than ϕ2.

Finally, for any parameterization, the robustness degree of a signal with respect to a

formula φ1,θ is greater than with respect to φ2,θ if ϕ1 has a higher order than ϕ2. This
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enables us to find an iSTL formula against which a signal is more robust by searching

for a parameterization of an iPSTL formula that is further down the DAG.

Partial Orders Over iSTL and iPSTL

We define two relations �S and �P for iSTL formulae and iPSTL formulae, respec-

tively.

Definition 6.1.

1. For two iSTL formulae φ1 and φ2, φ1 �S φ2 iff ∀s ∈ F(R+,Rn), s |= φ1 ⇒ s |=

φ2, i.e. L(φ1) ⊆ L(φ2).

2. For two iPSTL formulae ϕ1 and ϕ2, ϕ1 �P ϕ2 iff ∀θ, φ1,θ �S φ2,θ, where the

domain of θ is Θ(ϕ1)∪Θ(ϕ2), the union of parameters appearing in ϕ1 and ϕ2.

Based on these definitions and the semantics of iSTL and iPSTL, we have

Proposition 6.1. Both �S and �P are partial orders.

Proof. A partial order � is a binary relation that is reflexive, transitive and antisym-

metric.

(�S) Reflexivity φ1 �S φ1 is equivalent to L(φ1) ⊆ L(φ1), which is trivially

true. Transitivity φ1 �S φ2 and φ2 �S φ3 is equivalent to L(φ1) ⊆ L(φ2) and

L(φ2) ⊆ L(φ3). It implies L(φ1) ⊆ L(φ3), which means φ1 �S φ3. Antisymmetry

φ1 �S φ2 and φ2 �S φ1 is equivalent to L(φ1) ⊆ L(φ2) and L(φ2) ⊆ L(φ1). It implies

L(φ1) = L(φ2), which means φ1 ≡ φ2.

(�P ) Regardless of the relationship among formulae ϕ1, ϕ2 and ϕ3, the relationship

among their parameter sets Θ(ϕ1), Θ(ϕ2) and Θ(ϕ3) can be generally represented as in
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Figure 6·2: Relationship among Θ(ϕ1), Θ(ϕ2) and Θ(ϕ3).

Figure 6·2. Due to the independence of assignment to each parameter, the valuation of

a formula’s parameters can be decomposed into the valuations of its parameter subset.

For instance, the valuation of formula ϕ1 can be written as θ = [θA, θB, θC , θD], where

row vectors θA, θB, θC and θD denote the valuations of parameter subsets A, B, C

and D, respectively.

Reflexivity ϕ1 �P ϕ1 is equivalent to ∀θ, φ1,θ ≡ φ2,θ or L(φ1,θ) = L(φ1,θ), which is

trivially true.

Transitivity If ϕ1 �P ϕ2 and ϕ2 �P ϕ3, we have

∀θ = [θA, θB, θC , θD, θE, θF ], φ1,θ �S φ2,θ

and ∀θ′ = [θ′B, θ
′
C , θ

′
D, θ

′
E, θ

′
F , θ

′
G], φ2,θ′ �S φ3,θ′

⇒ ∀θ′′ = [θ′′A, θ
′′
B, θ

′′
C , θ

′′
D, θ

′′
E, θ

′′
F , θ

′′
G], φ1,θ′′ �S φ2,v′′

and φ2,v′′ �S φ3,θ′′

⇒ ∀θ′′ = [θ′′A, θ
′′
B, θ

′′
C , θ

′′
D, θ

′′
E, θ

′′
F , θ

′′
G], φ1,θ′′ �S φ3,θ′′

due to transitivity of �S
⇒ ∀θ′′′ = [θ′′A, θ

′′
B, θ

′′
C , θ

′′
D, θ

′′
E, θ

′′
G], φ1,θ′′′ �S φ3,θ′′′

⇒ ϕ1 �P ϕ3.

Antisymmetry If ϕ1 �P ϕ2 and ϕ2 �P ϕ1, we have

∀θ, φ1,θ �S φ2,θ and φ2,θ �S φ1,θ

⇒ ∀θ, φ1,θ ≡ φ2,θ due to antisymmetry of �S
⇒ ϕ1 ≡ ϕ2
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Further, we have

Lemma 6.1. The partial order �P satisfies the following properties.

1. ϕ1 ∧ ϕ2 �P ϕj �P ϕ1 ∨ ϕ2 for j = 1, 2

2. � [τ1,τ2)` �P ♦ [τ1,τ2)`, where ` is a linear predicate.

The first property is an extension of the propositional logic rules A ∧ B ⇒ A ⇒

A∨B. The second property states “If a property is always true over a time interval,

then it is trivially true at some point in that interval”.

DAG and Robustness Degree

v
*

1v
*

2v
*
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*
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2ϕ 3ϕ
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4,( , )r s θφ

.,( , )r s θφ

Figure 6·3: Illustration of the relationship between iPSTL formulae and robustness degree.

The structure of iPSTL and the definition of the partial order �P enable the

following theorem.

Theorem 6.1. The formulae in iPSTL have an equivalent representation as nodes

in an infinite DAG. A path exists from formula ϕ1 to ϕ2 iff ϕ1 �P ϕ2. The DAG has

a unique top element (>) and a unique bottom element (⊥).
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Proof. A partially ordered set < X,�> forms a lattice if any two elements x1, x2 ∈ X

have a join and a meet (Davey and Priestley, 2002). The join and meet can be

computed by means of two binary operators, t : X ×X → X and u : X ×X → X,

using the supremum and infimum functions, i.e.,

x1 t x2 := sup {x1, x2}
x1 u x2 := inf {x1, x2}

(6.4)

Any partially ordered set < X,�> with a lattice structure can be represented by

a directed acyclic graph (DAG). First, a Hasse diagram(Davey and Priestley, 2002)

can be constructed with each node of the diagram corresponding to an element of X.

Then, the DAG can be obtained by adding a direction to each line segment of the

Hasse diagram, which point from a ‘lower’ element (in Cartesian coordinates, has a

strictly smaller second coordinate) to a ‘higher’ element (has a strictly larger second

coordinate). The join (meet) of two elements x1 and x2 is the ‘lowest’ (‘highest’) node

where two paths starting from node x1 and node x2 and along forward (backward)

edges meets.

Proving Theorem 6.1 is equivalent to proving that the set of iPSTL formulae with

partial order �P form a lattice. More formally,

Proposition 6.2. For all ϕ1, ϕ2 ∈ Φ, their join ϕ1 u ϕ2 and meet ϕ1 t ϕ2 exist and

are unique.

Proof. Join Treat the subformulae � Ip and ♦ Ip where p is a linear predicate

and I is a time interval I := [τ1, τ2) as different Boolean predicates. Calculate the

Disjunctive Normal Form (DNF) of ϕ1 ∧ ϕ2 (Huth and Ryan, 2004). Then, if � Ip

and ♦ Ip coexist in a term replace them with � Ip; if � Ip and ♦ I¬p coexist in a

term, we replace them with ⊥ (False) or equivalently delete the corresponding term;
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similarly, if � I¬p and ♦ Ip coexist in a term, we delete the corresponding term.

The resulting formula is the join ϕ1 u ϕ2, which is unique because DNFs are unique.

Meet The existence and uniqueness of ϕ1tϕ2 can be proved similarly by utilizing

the Conjunctive Normal Form (CNF) of ϕ1 ∨ ϕ2.

Thus, < iPSTL,�P> is a lattice and therefore has an equivalent representation

as an infinite DAG.

An example of such a DAG is shown in Figure 6·6.

Next, we establish a relationship between the robustness degrees of a signal s with

respect to iSTL (iPSTL) formulae φ (ϕ) and the partial order �S (�P ).

Theorem 6.2. The following statements are equivalent:

1. φ1 �S φ2;

2. ∀s ∈ F(R+,Rn), r(s, φ1) ≤ r(s, φ2).

Proof. (⇒) Since L(φ1) ⊂ L(φ2), for any s ∈ F(R+,Rn), there are three possibilities:

1) s ∈ L(φ1); 2) s ∈ L(φ2) ∩ L(¬φ1); 3) s ∈ L(¬φ1) ∩ L(¬φ2). Here, L(¬φ1) :=

F(R+,Rn) \ L(φ1) and L(¬φ2) := F(R+,Rn) \ L(φ2). For Condition 1,

L(φ1) ⊂ L(φ2)⇒ L(¬φ2) ⊂ L(¬φ1)

⇒ L(¬φ1) = L(φ2) ∪ (L(¬φ1) ∩ L(φ2))

Thus,

r(s, φ1) =Distρ(s,L(φ1))

= inf{ρ(s, y)|y ∈ cl(L(¬φ1))}

= inf{ρ(s, y)|y ∈ cl(L(φ2)
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∪ (L(¬φ1) ∩ L(φ2)))}

= inf{ρ(s, y)|y ∈ cl(L(φ2))

or y ∈ cl(L(¬φ1) ∩ L(φ2))}

= inf{inf{ρ(s, y)|y ∈ cl(L(φ2))},

inf{ρ(s, y)|y ∈ cl(L(¬φ1) ∩ L(φ2))}}

= min{inf{ρ(s, y)|y ∈ cl(L(φ2))},

inf{ρ(s, y)|y ∈ cl(L(¬φ1) ∩ L(φ2))}}

≤ inf{ρ(s, y)|y ∈ cl(L(φ2))}

=Distρ(s,L(φ2))

=r(s, φ2)

Condition 3 can be proved similarly. For Condition 2, since s /∈ L(φ1) and s ∈ L(φ2),

we have r(s, φ1) ≤ 0 and r(s, φ2) ≥ 0. Then it is true that r(s, φ1) ≤ r(s, φ2).

(⇐) Assume otherwise, then there exists an s ∈ F(R+,Rn) such that r(s, φ1) ≤

r(s, φ2) and s ∈ L(φ1) but s /∈ L(φ2). Thus, we have r(s, φ1) ≥ 0 and r(s, φ2) ≤ 0,

which results a contradiction, since r(s, φ1) and r(s, φ2) can not be zero simultane-

ously.

Corollary 6.1. The following statements are equivalent:

1. ϕ1 �P ϕ2;

2. ∀s ∈ F(R+,Rn) and ∀θ, r(s, φ1,θ) ≤ r(s, φ2,θ).

Corollary 6.1 is illustrated in Figure 6·3. The formulae are organized according

to the relation ϕ1 �P ϕ2, ϕ3 �P ϕ4, which means that r(s, φ1,θ) ≤ r(s, φ2,θ), r(s, φ3,θ)
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≤ r(s, φ4,θ) for all valuations θ.

6.1.3 Supervised Learning Algorithm

In this section, we show how to solve Problem 6.1. The general idea for this procedure

is to map the learning problem into an optimization problem by using the robustness

degree as an intermediate fitness function. The optimization problem is then solved

by combining a discrete search over a DAG to find an iPSTL formula ϕ with a

continuous search to find its appropriate parameterization θ. The final output is an

iSTL formula φθ.

Problem 6.1 can be cast as the following optimization problem.

Problem 6.2. Find an iSTL formula φN,θN such that the iPSTL formula ϕN and

valuation θN minimize

Ja(ϕ, θ) =
1

L

L∑
i=1

l(pi, r(si, φθ)) + λ||φθ||, (6.5)

where λ is a weighting parameter, and ||φθ|| is the length of φθ (number of linear

predicates that appear in φθ) and l is a loss function, which is chosen to be hinge loss

in our case

l(pi, r(si, φθ)) = max(0, εr − pir(si, φθ)), (6.6)

where εr << 1.

We continuize l by using the robustness degree as an intermediary fitness function,

a measure of how well a given formula fits observed data. Formula length is penalized

in our approach because if φN,θN grows arbitrarily long, it becomes as complex to

represent as the data itself, which would render the inference process redundant.

Theorem 6.1 and Corollary 6.1 have important implications for solving Problem
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6.1. The inferred formula should be a close representation of the properties that

differentiate normal behaviors from attacked behaviors. Contracting the inferred

formula’s language by a small amount should result in a formula with a high missed

detection rate. Thus, the mined formula should in principle be the lowest ordered

formula that satisfies all of the observed normal behaviors. The DAG representation

of iPSTL can naturally be used to find such a “barely” satisfying formula. The search

starts from the most exclusive formula and follows directed edges until a satisfying

formula is found. This is shown in Figure 6·3. A formula is sought to describe the

single normal output s. The formulae induced from optimal valuations (denoted

with ∗ superscripts) of formulae ϕ1, ϕ2, ϕ3 are all still violated by s (have negative

robustness degrees). Thus, we have to go up the DAG to formula ϕ4 to find a formula

that s ‘barely’ satisfies, i.e. a formula with a small yet positive robustness degree.
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Figure 6·4: Simple example of formula search.

The interaction between the graph search and parameter estimation is further
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illustrated in Figure 6·4. Suppose we have a single boat’s trajectory s, whose x and

y coordinates are shown in the top left and right plots, respectively. The center left

(right) figure shows the robustness degree with respect to ϕ1 := ♦ [0,τ)(x > 100)

(ϕ2 := ♦ [0,40)(y < π)) for various values of τ (π). Note that by selecting the

parameter τ(π) for each ϕi, we can maximize or minimize the robustness degree of

the signal with respect to the induced formula φi,θ. The bottom left plot shows

the robustness degree for ϕ3 := ϕ1 ∧ ϕ2 for various pairs (τ, π) and the bottom

right plot shows the robustness degree with respect to ϕ4 := ϕ1 ∨ ϕ2. Note that

ϕ3 �P ϕ1(ϕ2) �P ϕ4. By considering ϕ3 rather than ϕ1 or ϕ2 alone, we can find a

larger class of iSTL formulae that strongly violate the specification, which is useful

for mining formulae with respect to undesirable behavior. Similarly, by considering

ϕ4, we can find a larger class of formulae that robustly satisfy the behavior. This

is useful when we consider large groups of outputs, as it is more likely that for two

signals s1, s2 where p1 = 1, p2 = −1, we can find a formula φj,θ, j ∈ {3, 4} such that

r(s1, ϕj,θ) > 0 and r(s2, ϕj,θ) < 0 for i = 1, 2 than to be able to find a formula φ1,θ or

φ2,θ that achieves the same classification.

The framework for solving Problem 6.1 is detailed in Alg. 6.1.

Initialization Our algorithm operates on V , the set of all variables represented in

the output signals from the system. The inference process begins in line 4 of Alg.

6.1, where DAGInitialization(V ) generates the basis of the candidate formulae. The

basis is a set of rectangular predicates with temporal operators, called basis nodes, of

the form O[τ1,τ2)(xs ∼ π1) where O ∈ { � , ♦ }, ∼∈ {≥, <} and xs ∈ V . That is,

the basis represents all internal formulae ϕi of length 1. Edges are constructed from

ϕj to ϕk in the initial graph G1 iff ϕj �P ϕk. For example, in the naval surveillance

example if we only consider the (x, y) position of the boat, then the initial graph is

shown in Figure 6·5.
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Algorithm 6.1 Unsupervised Learning

1: function UnsupervisedLearning({(si, pi)}Mi=1, V, δ, Lmax)
2: for i = 1 to Lmax do
3: if i = 1 then
4: G1 ← DAGInitialization(V );
5: List← ListInitialization(G1);
6: else
7: Gi ← PruningAndGrowing(Gi−1);
8: List← Ranking(Gi \ Gi−1, );
9: while List 6= ∅ do

10: ϕ← List.pop();
11: (θ, cost)← ParameterEstimation({(si, pi)}Mi=1, ϕ)
12: if cost ≤ δ then
13: return (ϕ, θ).
14: return MinimumCostNode(GLmax);

Figure 6·5: The initial graph G1 constructed from x, y coordinates.

ListInitialization(G1) (line 5) generates a ranked list of formulae from the basis

nodes. Since we do not yet know anything about how well each of the basis nodes

classifies behaviors, the rank (used in parameter estimation) is generated randomly.

Parameter Estimation After the graph is constructed, we find the optimal param-

eters for each of the nodes. The candidate formulae in List are iterated through from

lowest rank to highest (line 10). ParameterEstimation({(si, pi)}Li=1, ϕ)(line 11) uses

simulated annealing (Russell and Norvig, 1995) to find an optimal valuation for ϕ by

minimizing the cost Jai.

Structural Inference After the first set of parameters and costs have been found,

the iterative process begins. The definition of the partial order allows for dynamic

extension of the formula search space. We cannot explicitly represent the infinite
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DAG, so we construct a finite subgraph of possible candidate formulae and expand it

when the candidate formulae perform insufficiently. PruningAndGrowing(Gi−1) (line

7) does this by first eliminating a fixed number of nodes with high costs, i.e. those

formulae that do not fit the observed data. Pruning the graph to eliminate high cost

formulae follows naturally from forward subset selection ideas developed in machine

learning (Trevor et al., 2001). Then, the function grows the pruned Gi−1 to include

nodes with length i according to graph manipulation rules detailed in Section 6.1.2.

An example of a subset of a graph G2 grown from the (pruned) basis graph is given

in Figure 6·6.

Figure 6·6: A subset of the DAG G2 after pruning and expansion. For compact representation,
only the internal formulae ϕi are shown.

Ranking(Gi \ Gi−1) (line 8) ranks the newly grown nodes based on a heuristic

function

1

|pa(ki)|
∑

ki−1∈pa(ki)

Ja(ki−1), (6.7)

where ki is a node in Gi−1, pa(ki) is the set of ki’s parents, and |pa(ki)| is the size of

pa(ki). For example, in Figure 6·6, for ki = ( ♦ [0,τ1)(x ≥ π1) ∧ ( ♦ [0,τ2)(y < π2)),

pa(ki) = { ♦ [0,τ)(x ≥ π), ( ♦ [0,τ)(y < π)} and |pa(ki)| = 2.

The iterative graph growing and parameter estimation procedure is performed

until a formula with low enough misclassification rate is found or Lmax iterations are
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completed. At this point, MinimumCostNode(Gi) returns the node with the minimum

cost within Gi.

Complexity Without pruning, the discrete layer of the described algorithm runs in

time O(Lmax ·2|V |). Since PruningAndGrowing prunes a constant number of nodes at

each iteration, the complexity of the discrete layer is reduced to O(Lmax · |V |2) when

pruning is applied. The continuous layer of the algorithm, based on the simulated

annealing algorithm, runs in time O(Lmax(n
2 +m) · log(L)), with n being the number

of samples used in simulated annealing, and m being the number of data points per

signal.

Remark 6.1. It has been shown in (Fainekos, 2011) that the set of all linear temporal

logic (LTL) formulae can also be organized in a DAG using a partial order similar

to �S. However, unlike LTL, PSTL can express temporal specifications involving

continuous-time intervals and constraints on continuously valued variables. To our

own knowledge, our algorithm is the first of its kind which can be used to infer an

STL formula by inferring both its PSTL structure and its optimal valuation.

6.1.4 Case Studies

Algorithm 6.1 was implemented in a software tool called TempLogIn (TEMPoral

LOGic INference) in MATLAB. We developed all of the components of our solution in-

house, including the graph construction, search algorithms, and the simulated anneal-

ing algorithm. The software is available at http://hyness.bu.edu/Software.html.
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Synthesized data

In this case study, we apply our supervised learning algorithm to the naval surveillance

scenario used in Example 6.1. We model each vessel as a Dubins’ vehicle:


ẋ = v cosα
ẏ = v sinα
α̇ = ω,

(6.8)

where x and y are the vessel’s coordinates, v is its constant speed, α is its heading,

and ω is its angular velocity. Further, assume that the x and y coordinates collected

by the AIS are subjected to an additive white Gaussian noise N(0, 0.1).

We generated 50 trajectories demonstrating normal behaviors, 25 trajectories

demonstrating suspicious behaviors consistent with human trafficking behaviors, and

25 trajectories demonstrating suspicious behaviors consistent with terroristic behav-

iors. A subset of these trajectories are shown in Figure 6·10. Our goal was to find a

formula that described only the normal behaviors from this training set. Using our

implementation of Algorithm 6.1 with n = 15, m = 15 yielded the formula

φN = ♦ [0,229)( � [28,227)ys > 21.73) ∧ ( � [308,313)xs < 34.51) (6.9)

with total misclassification rate 0.0950. The total computation time was 1313 s

(approx. 22 minutes) on a computer with 2.41 GHz processor and 7.4 GB RAM.

In plain English, this formula reads “Within 229 minutes, the boat’s y coordinate

remains less than 21.73 dam and dips below 34.51 dam”. The blue lines in Figure

6·10 correspond to the thresholds in (6.9).
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Off−line learning: Naval scenario

Figure 6·7: Results of offline inference. The green trajectories represent normal behaviors, the
red trajectories represent human trafficking, and the black trajectories represent terroristic activity.
The blue lines are boundaries given by the formula (6.9)

Experimentally derived data

In addition to the naval surveillance example, we consider a more realistic example

from synthetic biology. In this field, gene networks are engineered to achieve specific

functions (Kirby, 2010; Salis et al., 2009). The robustness degree has previously been

exploited in gene network design and analysis (Rizk et al., 2008; Bartocci et al.,

2013; Donzé et al., 2011), but to our knowledge, specification mining has never been

used to analyze a gene network. We consider the gene network presented in (Gol

et al., 2013). The network, shown in Figure 6·8, controls the production of two

proteins, namely tetR and RFP . This network is expected to work as an inverter

in which the concentrations of tetR and RFP can be treated as the input and the

output, respectively. In particular, tetR represses the production of RFP . A high

tetR concentration decreases the production rate of RFP , hence the concentration

of RFP eventually decreases and stays low. Similarly, if the concentration of tetR is

low, then the production of RFP is not repressed, and its concentration eventually
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increases and stays high.

Arabinose

pBad
tetR

pTet
RFP

Figure 6·8: A synthetic gene network. The genes coding for proteins tetR and RFP are shown as
colored polygons. The promoters (pBad and pTet) regulating protein production rates are indicated
by bent arrows. The regulators (arabinose and tetR) are connected to the corresponding promoters.

In (Gol et al., 2013), a stochastic hybrid system modeling the gene network was

constructed from characterization data of the biological network components. Sta-

tistical model checking was used to check a temporal logic formula (expressing a

property chosen by biology experts) that describes the inverter behavior of the net-

work. In this paper, sample trajectories of this system 1 are used to find a formula

that describes the inverter behavior without any prior expert knowledge.
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Figure 6·9: Concentration levels xtetR (green) and xRFP (red) for the high and low output cases.
100 signals are plotted for each protein and each case.

We generated 600 signals, half of which correspond to the low output case (repres-

sion) and half of which correspond to the high output case (no repression). Figure 6·9
1Arabinose regulates the production rate of tetR. We use trajectories generated at different

concentration levels of arabinose. As we are interested in cause-effect relationship between tetR and
RFP , we omit the concentration of arabinose.
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shows 200 of these signals. Assume that we are interested in characterizing the low

output case (pi = 1 for low output signals). The inferred rSTL formula φdes which

classifies both cases and describes the pre-conditions for low output is

φdes = ♦ [0,118)( � [0,340)(xtetR ≥ 23209)⇒
� [188,323)(xRFP < 13479))

(6.10)

This formula captures the repressing effect of tetR, and shows that the designed

gene network works as expected. In particular, the formula implies that tetR represses

the production of RFP when its concentration is higher than 23209 for 340 time units.

Moreover, when the production of RFP is repressed, its concentration drops below

13479 within 188 time units. Such quantitative information learned from the formula

helps the user to design more complex gene networks.

On the same computer used in the first case study, the inference procedure took a

total of 1188 seconds. 2 For the biological network case study, the number of samples

generated by the simulating annealing, n, and the maximum number of data points

per signal, m, were 100 and 600, respectively.

6.2 On-line Supervised Learning of STL Formulae

In this section, we present an alternative approach to solve the supervised learning

problem (Problem 6.1) considered in Section 6.1. The goal of the problem remains the

same, namely to infer an iSTL formula that is used to differentiate desirable behaviors

from undesirable behaviors, In the on-line learning case, however, instead of having

an entire database of labeled trajectories a priori, the learning agent receives labeled

2This problem was solved using rPSTL instead of iPSTL (Kong et al., 2014). This is a minor
restriction that leads to a slight difference in the algorithm used to solve it. When rPSTL is used,
we first apply the inference procedure to data after time ttrunc, learn a formula that classifies this
data, and then use this information to guide the search for the entire formula when running the
inference algorithm over all the data.
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trajectories sequentially. Our approach is based on stochastic gradient descent with

numerical rather than analytic derivatives. In addition to being more computationally

efficient than the procedure given in Section , the nature of sequential learning makes

the on-line approach more appropriate for systems in which no or very little historical

data is available.

6.2.1 Problem Definition

On-line supervised learning is defined by Problem 6.3.

Problem 6.3. A system or a group of systems produce outputs si with expert-

given labels pi as defined in Problem 6.1. Maintain a formula φtN such that the

misclassification rate MR({(si, pi)}ti=1, φ
t
N) as defined in Problem 6.1 is minimized.

When a new pair (st+1, pt+1) becomes available, use φtN and the new pair to construct

φt+1
N .

Problem 6.3 was addressed in (Kong et al., 2015). An on-line version of the

anomaly detection problem can be similarly proposed. However, due to the inherent

difficulty in on-line unsupervised learning, this remains an open problem.

6.2.2 On-line Supervised Learning Algorithm

Here, we consider how to extend Alg. 6.1 to solve Problem 6.3. In principle,

optimization problems such as (6.5) can be solved for on-line settings via stochastic

gradient descent (Trevor et al., 2001; Kivinen et al., 2004). With mild assumptions,

for a fixed iPSTL formula structure ϕ, such a method can find its optimal parame-

terization θ∗ if there exists a φθ∗ with structure ϕ that can classify the data. Let θi

be the parameterization of ϕ after i pairs of signals and labels have been observed.
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Algorithm 6.2 Online Learning

1: function OnlineLearning({(si, pi)}Li=1,ηmax, ηmin,α,checkInt,numIter)
2: for ϕk ∈ formulae do
3: θk = ParameterEstimation((si, pi), ϕk);
4: for i = 1, . . . numIters do
5: traces= UpdateTraces(traces, si, pi);
6: for (ϕk, θ

k) in formulae do
7: θk = ParameterUpdate((si, pi), ϕk, θ

k);
8: η = max(αη, ηmin)
9: if i mod checkInt == 0 then

10: for (ϕm, θ
m) in do

11: formulae← ReplaceFormulae(formulae)
12: η ⇒ ηmax
13: return BestFormula(formulae);

The stochastic gradient descent that minimizes the loss function l is given by

θi+1 =

{
θi if pir(si, φθi) ≥ εr,
θi + η ∂r

∂θ
pi otherwise.

(6.11)

where η > 0 is a learning rate and the partial derivative is calculated according to the

centered first distance. If ϕ is the correct iPSTL formula for classification, it should

be expected that there exist a step ī such that pir(si, φθi) ≥ 0 for all i ≥ ī. That is

to say the total misclassification rate approaches 0. 3 If, on the other hand, ϕ is not

the correct formula, then the improvement on classification performance saturates at

a certain step ĩ and a new formula should be sought.

We propose an on-line learning procedure described by Alg. 6.2. This new proce-

dure can learn a formula φθ as the labeled signals (si, pi) arriving sequentially. This

procedure operates on a collection of Nf candidate formulae {ϕj, θj}
Nf
j=1. The algo-

rithm operates on this collection instead of considering a single formula at a time

3The difference between subsequent valuations θi and θi+1 should not be too extreme, as this
would cause the valuation to oscillate about the optimal value θ∗. Therefore, the learning rate η
should be chosen to be a small, positive number or to decrease with respect to the iteration number.
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because there is initially very little information about what kinds of behaviors the

system may satisfy. This is still more computationally efficient than the offline learn-

ing method, however, because for each trajectory and label pair (si, pi) are introduced

to the algorithm, Nf robustness calculations are performed, in contrast to the n2m

calculations that are performed by the simulated annealing algorithm.

The algorithm initializes the set of formulae to Nf formulae from the basis and

corresponding initial valuation guesses that are found via simulated annealing with

small values of n,m. Then, when a new trajectory and label pair (si, pi) becomes

available, the function ParameterUpdate is called to update each value θj in the

formula database according to the rule (6.11). Every checkInt trajectories, the mis-

classification rates of each ϕj,θj with respect to the trace database are evaluated and

the formula database is then populated with new formulae.

The replacement formulae are constructed from the best performing formulae

according to Algorithm 6.3. Pairs of the best performing formulae (φb,θb , φsb,θsb) are

selected from the best-performing formulae. If the missed detection rates are greater

than the false alarm rates, e.g. the size of the languages of the formulae are too large,

then the conjunction of the two formulae is added to the formula database. Otherwise,

the disjunction of the two is added. The subroutine simplify removes tautologies from

the constructed formula. The subroutine getValuation maps the two valuations θb, θsb

to the corresponding valuation θnew of the simplified combined formula.

Our algorithm uses a variable learning rate η throughout the on-line inference

procedure. We initially start at a high rate ηmax and decrease it in a geometric

fashion with rate 0 << α < 1 until it reaches a level ηmin. Whenever the formula

database is replaced, this rate is reset to its original level. The variable learning rate

allows the ParameterUpdate formula to make bigger steps whenever we initially know

very little about the optimal parameterizations for each structure and make smaller,
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finer steps after more information has been collected.

Algorithm 6.3 UpdateFormulae. Inputs are a database of traces tr and a database
of formulae f.

1: function UpdateFormulae(tr,f)
2: for k = 1 to Nf do
3: (ϕb, θ

b) = bestFormula(f,tr)
4: uf1 = uf1 ∪ {(ϕb, θb)}
5: (mdb,fab) = calculateRates(ϕb, θ

b, tr)
6: for m = 1 to Nf − k do
7: (ϕsb, θ

sb) = bestFormula(f \ (uf1 ∪ uf2), tr)
8: (mdsb,fasb) = calculateRates(ϕsb, θ

sb, tr)
9: if (mdsb+mdb > fab+fasb) then

10: ϕnew = simplify(ϕb ∧ ϕsb)
11: else
12: ϕnew = simplify(ϕb ∨ ϕsb)
13: θnew = getValuation(ϕnew, θ

b, θsb)
14: f = f ∪{(ϕnew, θnew)}
15: uf2 = uf2 ∪(ϕsb, θsb)
16: return f

Complexity As mentioned above, each time a new trajectory and label pair is in-

troduced to the online learning procedure, O(Nf ) robustness calculations with com-

plexity O(|ϕj|) are performed. If Nr formula database updates are performed, the

worst-case formula length is 2Nr−1, though this represents an unlikely extreme situa-

tion in which no tautologies are introduced and the longest formulae in the database

are always among the best-performing. The user has some control over the maximum

length of the formula via the parameter checkInt which determines how often the

formula replacement occurs. In practice, the maximum formula length is determined

by the length of the shortest formula that can separate the two classes of trajectories.

6.2.3 Case Study

We used a larger set of signals of the naval scenario and inferred a formula by using

our on-line learning algorithm. At each iteration of our algorithm, we drew a signal
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uniformly at random from a set of 2000 trajectories, which consisted of 1000 normal

trajectories, 500 human trafficking trajectories, and 500 terrorist trajectories. The

learning rate parameters we used were α = 0.995, ηmax = 0.2, and ηmin = 0.01. Figure

6·10(b) shows the misclassification rate of the inferred formula at time i with respect

to all 2000 traces. As we can see, the rate does not monotonically decrease, but it

does decrease to a point. The formula that was inferred after all 2000 trajectories

were used is

φN = ♦ [0,229)( � [174,228)xs < 19.88)
∧( � [92,297)ys < 34.08)

(6.12)

In plain English, this means that “At some point within 229 minutes, the boat’s

x coordinate remains below 19.88 between 174 and 228 minutes in the future and

its y coordinate remains less than 34.08 dam between 92 and 297 minutes in the

future.” The space parameters for (6.12) are illustrated in Figure 6·10(a). The

total misclassification rate of the final formula was 0.0885. The total computation

time was 996 s (approx. 16 minutes) on a computer with 2.41 GHz processor and

7.4 GB RAM. This computation time included evaluating misclassification rates for

the entire set at certain time intervals, i.e. generating Figure 6·10(b). Using the

same parameters and not doing this calculation yields a computation time of 648 s

(approx. 11 minutes). This represents a significant computational speedup over the

off-line method, especially when we consider that the method operated on a larger

data set.

6.3 Unsupervised Learning of STL Formulae

In this section, we extended the supervised learning machinery we presented in Section

6.1 (Kong et al., 2014) to a model-agnostic unsupervised learning algorithm. This

technique infers an STL formula from unlabeled system output data that can be used



130

0 20 40 60 80
15

20

25

30

35

40

45

x (dam)

y
 (

d
a

m
)

On−line learning: Naval scenario

0 5000 10000
0

0.1

0.2

0.3

On−line learning

iteration

M
R

 (
a
ll 

tr
a
c
e
s
)

Formula
Database

Update

(a) (b)

Figure 6·10: (a) Results of on-line inference. The green trajectories represent normal behaviors, the
red trajectories represent human trafficking, and the black trajectories represent terroristic activity.
The blue lines are boundaries given by the formula (6.12). (b)The misclassification rate over time
for on-line learning with respect to all traces.

to classify data as normal or anomalous.

6.3.1 Problem Definition

Here, we consider a more challenging version of Problem 6.1 in which the inference

procedure learns from historical data without the knowledge of whether a given output

was produced by a system behaving normally or abnormally. More formally, we wish

to solve Problem 6.4.

Problem 6.4. From the set {si}Mi=1 (defined in Problem 6.1), find an an iSTL formula

φN such that the misclassification rate

MRD({si}Mi=1, φN) =
FAD +MDD

M

is minimized, where

FAD = |{si|si 6|= φ, xi is normal }|
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and

MDD = |{si|si |= φ, xi is anomalous }|.

Here, we give a motivating example that illustrates Problem 6.4.

Example 6.2 (Train Network Monitoring). Consider a train using an electronically-

controlled pneumatic (ECP) braking system. The train has 3 cars, each of which has

its own braking system. Our model of the train system is modified from (Sistla et al.,

2011). See Section 6.3.3 for more details.

Normal Behavior In this model, the braking system is automated to regulate the

velocity v below unsafe speeds and above low speeds to ensure that the train reaches

its destination. When the train begins moving, its brakes are inactive and its speed

oscillates noisily about a nominal value (25 m/s). However, as a consequence of the

system dynamics, if v(t) exceeds a threshold vmax (28.5 m/s), the velocity of the

un-braked system does not decrease (shown in green in Figure 6·11(a)). Each of the

brakes responds to the threshold crossing after a random time delay by engaging. The

brakes decrease the velocity of the train (shown in black in Figure 6·11(a)) until it

passes a second threshold vmin (20 m/s). After random delays, the brakes disengage

and the speed resumes oscillation.

Anomalous Behavior An adversary has the possibility to disable each of the brakes

of the train. A few sample outputs from the attacked system are shown in Figure

6·11(b). The behavior of the system depends on how much access the adversary has

to disrupt its operation. Let b be the number of brakes the agent can affect. If the

adversary can only disable one brake (b = 1), more time is required for the velocity to

be decreased after vmax is exceeded, but the velocity is still regulated. If the adversary

can disable two brakes (b = 2), then the deceleration is further slowed and the train
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spends an unacceptable amount of time in its upper operating region. Finally, if the

adversary can affect all three brakes, then braking can’t happen (b = 3), meaning

the train will travel indefinitely. All three attacked outputs behave qualitatively

differently from each other, but they all clearly violate the desired invariant behavior.

In order to simplify Problem 6.4 we make two key assumptions. First, anoma-

lous behavior happens infrequently. That is, given a system output si, the a priori

probability that it is anomalous is low. This allows us to classify as anomalous those

signals that behave differently from the majority. Second, the outputs of a system

behaving abnormally differ qualitatively from the outputs of a system behaving nor-

mally. Otherwise, it is impossible to infer any classifier to separate the two sets of

outputs. Both assumptions are plausible for real-world scenarios and are commonly

made in other anomaly detection problems (Chandola et al., 2009).

6.3.2 Unsupervised Learning Algorithm

Since Problem 6.4 is an unsupervised learning problem, we use some notions from

classical unsupervised learning to aid in our approach. In particular, we consider one-

class support vector machines (SVMs). A one-class SVM is an optimization technique

that, given a set of data, lifts the data to a higher-dimensional feature space and

constructs a surface in this space that separates normal data from anomalous data

(Shin et al., 2005). Since we use a different paradigm and do not need to lift the

problem to a feature space, we ignore many of the feature-specific components of the

problem and adapt the objective function used in one-class SVMs to our problem.

Thus, we map Problem 6.4 to the following optimization.

Problem 6.5. Find an iPSTL formula φN,θN such that the formula ϕN and valuation
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Figure 6·12: A conceptual illustration of our anomaly detection algorithm. Normal outputs are
denoted by circles and anomalous ones are denoted by squares.

θN minimize

min
φθ,ε

d(φθ) +
1

νN

M∑
i=1

µi − ε (6.13)

such that

µi =

{
0 r(si, φθ) >

ε
2

ε
2
− r(si, φθ) else

∀i, (6.14)

where φθ is an iSTL formula, ε is the “gap” in signal space between outputs identified

as normal and outputs defined as anomalous, ν is the upper bound of the a priori

probability that a signal xi is anomalous (Shin et al., 2005), and µ is a slack variable.

µi is positive if si does not satisfy φθ with minimum robustness ε
2
. The function d is

a “tightness” function that penalizes the size of L(φθ).

By minimizing the sum of the µi, optimization (6.13) minimizes the number of

traces the learned formula φθ classifies as anomalous. This is consistent with our

assumptions on the problem. By maximizing the gap ε, optimization (6.13) attempts

to maximize the separation between normal and anomalous outputs. By minimizing
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the function d(φθ), optimization (6.13) prevents the learned formula from trivially

describing all observed signals (i.e. finding a formula such that L(φ) = L(S)), which

would render the optimization redundant.

Figure 6·12 illustrates how the optimization formulation (6.13) can be used to

solve the anomaly detection problem. For the sake of simplicity, let’s assume the

iPSTL formula ϕ(.) is fixed and we need to infer its optimal valuation θ ∈ R. We

further assume that r(si, φθ) is monotonically increasing with respect to θ, i.e., for

θ1 < θ2 and any signal si, r(si, φθ1) < r(si, φθ2). In such a case, we can choose

d(φθ) = θ. With θ = θ1, a significant number of µi are still non-zero, so a larger θ

such as θ2 is needed. Similar to the anomaly learning case, solving (6.13) requires

searching over the set of continuous variables (θ and ε) as well as over the discrete

set of iPSTL formula structures (the structure ϕ of φθ). Alg. 6.1 can be adapted to

solve (6.13) with the following two changes:

1. The input signals are not labeled, i.e., the inputs are {si}Mi=1.

2. ParameterEstimation solves (6.13) instead of (6.5).

Algorithm 6.4 Tightness Function

1: function Tightness(θ,ϕ)
2: k = 0
3: for all parameters (τ1, τ2, π) ∈ θ such that O[τ1,τ2)xi ∼ π) in ϕ do
4: tightness[k] = Normalize(τ1); k + +;
5: if ∼ is < then
6: tightness[k] = Normalize(π); k + +;
7: else
8: tightness[k] = 1-Normalize(π); k + +;

9: return λ
D+

∑
k tightness[k]

length(tightness) + ||ϕ||

The ParameterEstimation procedure uses the heuristic tightness function d when

calculating the objective function in (6.13). In this paper, we use a heuristic that
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penalizes the size of τ1, as as for monitoring purposes we would prefer to infer formulae

that can describe behaviors of the early parts of the system’s outputs. For each

predicate appearing in φ, if the comparison operator is <, the size of π is penalized,

as the size of the language of (xs < π) increases with π. If the comparison operator

is >, small values of π are penalized for the same reason. Please see (Jones et al.,

2014) for more details. The time complexity of the anomaly detection algorithm is

the same as that of the anomaly learning algorithm.

6.3.3 Case Study

In this subsection, we apply our anomaly detection algorithm to the train braking

scenario used in Example 6.2. We model the train as a classical hybrid automaton,

whose definition is given in (Lygeros et al., 1999). In this example, an adversary can

disable the brakes of the system and cause its velocity to become unregulated. More

details on the particular model we used can be found in (Sistla et al., 2011; Jones

et al., 2014).

A hybrid automaton produces trajectories x : R+ → X, where X ⊆ Rn is a

continuous state space. The dynamics of a trajectory x depend on the current discrete

mode q ∈ Q (denoted by a vertex of a graph) of the automaton. The mode of the

system changes (denoted by edges of a graph) if a guard condition over the state of

the system is satisfied. If a transition occurs, the state of the system may change

discontinuously according to a reset relation. Here we denote guards in black text

and reset relations in red text over transition edges in automata.

The hybrid automaton H which describes the total model of the train consists of

3 identical braking subsystems with modes Qbk = {qbk,j}5
j=1 that describe the state of

each brake and a velocity subsystem with modes Qv = {qv,j}3
j=1 which describes the

dynamics of the train’s velocity. The mode of the system is a tuple q ∈ Q = Qv ×
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∏3
k=1Qbk . We do not explicitly show the entire system. The interdependence of the

velocity and brake subsystems are given by the dynamics of the velocity subsystem,

guard conditions, and reset relations.

The subsystem associated with brake 1 is shown in Figure 6·13(a). The noise

processes n1 . . . n5 are all Gaussian processes with variance 1, 0.1, 0.3, 3, and 3,

respectively. The brake remains in mode qb1,1 during acceleration until v(t) exceeds a

threshold vmax. At this point, the timer c1 is initialized to a random value generated

by the process n1, which models the delay between velocity exceeding vmax and the

engagement of the brake. In the absence of attack, the system stays in the delayed

mode qb1,2 until the delay is complete, at which point the brake engages (mode qb1,3).

After the velocity is decreased below vmin, the system transitions to a second mode

qb1,4 in which the brake is still engaged. The counter c2 models the delay between

the speed decrease and brake disengagement. Once the brakes are disengaged, the

system returns to mode qb1,1.

The velocity subsystem is shown in Figure 6·13(b). The velocity of the train

begins in mode qv,1 (blue in Figures 6·11(a) and 6·11(b)) and accelerates to vmax. At

this point, the dynamics of the train shift to the higher velocity mode qv,2 (green in

Figures 6·11(a) and refnormalTraces(b)). Once at least one brake engages, the system

transitions to a decelerating mode (black in Figures 6·11(a) and refnormalTraces(b)).

Once the brakes have all disengaged, the train returns to mode qv,1.

An adversary can disable each of the brakes. If an adversary attacks the first brake

(denoted by the exogenous event attack1 in magenta), the brake system transitions

to a mode qb1,5. The brake cannot transition out of this mode to reach mode qb1,3, so

the brake will never be engaged. The events attack2 and attack3 similarly inactivate

the second and third brakes, respectively.

We used the train model to generate 50 outputs of H. 43 of the trajectories were
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(a)

(b)

Figure 6·13: (a) ECP braking subsystem of the first car in the train. (b) Velocity subsystem of
the entire train.

from normal operation and 7 were from an attacked operation. We only considered

attacks in which all of the brakes were disabled (b = 3). Our algorithm inferred the

formula

φ = ♦ [0,100)( ♦ [10,69)(y < 24.9)
∧ ♦ [13.9,44.2)(y > 17.66)).

(6.15)

In plain English, (6.15) means “At some point, between 10s and 69s in the future

the output dips below 24.9 m/s and the output exceeds 17.66 m/s. between 10 and

44.2 s in the future.” The formula was inferred using 15 simulated annealing cycles

with 15 sample points per cycle. The computation time was 154 s on an 8 core PC

with 2.1 GHz processors and 8 GB RAM.

Figure 6·14, shows the values of the scale parameters overlaid with braked and

un-braked velocity outputs. Formula (6.15) is consistent with the oscillatory nature of

the velocity output under normal behavior, as the velocity must increase and decrease

over a window. Note again that this oscillatory behavior was recovered without any
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Figure 6·14: Outputs from 6·13. The green trajectories are from the system with brakes engaged
and red trajectories are with brakes disengaged. The scale parameters from (6.15) are indicated
with blue lines.

prior knowledge of which trajectories were good or bad, when possible attacks could

happen, or what those attacks could possibly look like. The formula (6.15) perfectly

separates the data, i.e. the misclassification rate is 0.
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Chapter 7

Reinforcement learning and STL

In this chapter, we consider using reinforcement learning to control a system to satisfy

a given temporal logic specification. In contrast to previous works on this topic,

we consider STL specifications instead of LTL specifications. Thus, our approach

is more appropriate for systems with real-valued state space. An example of this

problem is automatically controlling an HVAC system with requirements such as

“Maintain the temperature in room 1 between 68 and 74 degrees for 6 hours. If

the temperature in room 2 drops below 66 degrees, ensure it is raised to 68 degrees

within 10 minutes.” when we do not have an accurate model of how applying heat

or cooling will affect the temperature in every location in the building. We provide

provably convergent algorithms based on Q-learning (Tsitsiklis, 1994) to maximize

the probability of satisfaction or maximize the expected robustness with respect to a

given STL formula. Further, we demonstrate that optimizing the expected robustness

instead of the probability of satisfaction in some cases results in better performance

of

Here, we use discrete-time signals and a discrete-time version of STL. The recursive

semantics and robustness degree are calculated in the same way, except continuous

intervals are now defined as finite sequences of integers.

In Section 7.1, we define a finite-memory Markov decision process abstraction we

use in this work. Next, in Section 7.2, we define the problems of using reinforcement
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learning to learn to control a system modeled as a τ -MDP to maximize the probability

of satisfying a given STL specification or to maximize the expected robustness with

respect to a given STL formula. We present our provably-convergent Q-learning

algorithms in Section 7.3. Finally, we conclude with a pair of robot navigation case

studies in Section 7.4.

7.1 τ-MDP

In this chapter, the desired mission specification is described by an STL fragment

with the following syntax :

φ := ♦ [0,T ]ψ| � [0,T ]ψ,
ψ := f(s) ≤ d|¬ξ|ξ1 ∧ ξ2|ξ1U[a,b)ξ2,

(7.1)

where φ, ψ, and ξ are all STL formulae. We denote the horizon length (Chapter

5) of the inner specification ψ as hrz(ψ) = τ . Thus, in order to update at time t

whether or not a formula φ with syntax (7.1) has been satisfied or violated, we can

use the τ previous state values st−τ+1:t

Example 7.1. Consider the robot navigation problem illustrated in Figure 7·1(a).

The specification is “Visit Regions A or B and visit Regions C or D every 4 time

units along a mission horizon of 100 units.” Let st =
[
xt yt

]T
, where x and y are

the x− and y− components of the signal s. This task can be formulated in STL as

φ = � [0,100) ψ

ψ =
(
♦ [0,4)

(
(xs > 2 ∧ xs < 3 ∧ ys > 2 ∧ ys < 3)

∨(xs > 4 ∧ xs < 5 ∧ ys > 4 ∧ ys < 5)
)

∧ ♦ [0,4)

(
(xs > 2 ∧ xs < 3 ∧ ys > 4 ∧ ys < 5)

∨(xs > 4 ∧ xs < 5 ∧ ys > 2 ∧ ys < 3)
))
.

(7.2)
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In order to make as few assumptions as possible about the “black box” systems

considered in this paper, we discretize the control space and the state space of the

system. In particular, we define a finite set of control actions Act that the system can

take. Then, we partition the state space of the system to form the quotient graph

G = (Σ, E), where Σ is a set of discrete states corresponding to the regions of the

state space and E corresponds to the set of edges such that an edge between two

states σi and σj exists in E if and only if σi and σj are neighbors (share a boundary)

in the partition.

Example 7.1 (Cont’d.). Let the robot shown in Figure 7·1(a) evolve according to

the discrete-time Dubins dynamics

xt+1 = xt + vδt cos θt

yt+1 = yt + vδt sin θt,
(7.3)

where xt and yt are the x and y coordinates of the robot at time t, v is its forward

speed, δt is a time interval, and the robot’s orientation is given by θt. The control

primitives in this case are given by Act = {up, down, left, right} which correspond

to the directions on the grid. Each (noisy) control primitive induces a distribution

with support θdes ± ∆θ, where θdes is the orientation where the robot is facing the

desired cell. When a motion primitive is enacted, the robot rotates to an angle θt

drawn from the distribution and moves along that direction for δt time units. The

partition of the state space and the induced quotient G are shown in Figures 7·1(a)

and 7·1(b), respectively. A state σi,j in the quotient (Figure 7·1(b)) represents the

region in the partition of the state space (Figure 7·1(a)) with the point (i, j) in the

lower left hand corner.
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For the case in which the stochastic dynamics of the system are known and we

wish to find a policy to maximize the probability of satisfying a given LTL formula,

the typical approach is to discretize the system as above and construct a Markov

decision process abstraction. One approach to the problem of enforcing LTL satis-

faction in a stochastic system is to partition the state state space and design control

primitives that can (nominally) drive the system from one region to another region.

These controllers, the stochastic dynamical model of the system, and the quotient

obtained from the partition are used to construct an MDP, called a bounded param-

eter MDP or BMDP, whose transition probabilities are interval-valued (Abate et al.,

2011). These BMDPs can then be composed with a DRA constructed from a given

LTL formula to form a product interval-valued MDP. Dynamic programming (DP)

can then be applied over this MDP to generate a policy from region to control primi-

tives that maximize the probability of satisfaction. Other approaches to this problem

include aggregating the states of a given quotient until an MDP can be constructed

such that the transition probability can be considered constant (with bounded error)

(Lahijanian et al., 2012b). The optimal policy can be computed over the result-

ing MDP using DP (Lahijanian et al., 2012a) or approximate DP, e.g. actor-critic

methods (Ding et al., 2012). In our case, since STL has time-bounded semantics, we

cannot use an automaton with a time-abstract acceptance condition (e.g. a DRA) to

represent it and then compose it with a BMDP or MDP to check formula satisfaction.

For this reason, we choose to learn policies over a finite-memory MDP Mτ , called

a τ -MDP, whose states correspond to paths of length τ in G.

Definition 7.1. Given a quotient of a system G = (Σ, E) and a set of actions Act, a

τ -Markov Decision Process (τ -MDP) is a tuple Mτ = (S, σ0
τ , Act,P), where

• S ⊆ (Σ ∪ ε)τ is the set of finite states, where ε is the empty string. Each state
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Figure 7·1: (a) Robot navigation problem with a partitioned state space. (b) Subsection
of the induced quotient.

στ ∈ S corresponds to a τ−horizon (or shorter) path in G. Shorter paths of

length n < τ (representing the case in which the system has not yet evolved for

τ time steps) have ε prepended τ − n times.

• σ0
τ = ετ−1σ0, where σ0 corresponds to the region that contains the initial state

of the system s0

• P : S × Act × S → [0, 1] is a probabilistic transition relation. P(στ , a, σ
′
τ ) can

be positive only if the first τ − 1 states of σ′τ are equal to the last τ − 1 states

of στ and there exists an edge in G between the final state of στ and the final

state of σ′τ .

We denote the state of the τ -MDP at time t as σtτ = σt−τ+1:t. Given a trajectory

st−τ+1:t of the original system, we define its induced trace in the τ -MDP Mτ as

Tr(st−τ+1:t) = σt−τ+1:t = σtτ . The construction of a τ -MDP from a given quotient

and set of actions is straightforward. We make the following key assumptions on the

quotient and the resulting τ -MDP:
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• The partition that induces G is such that the defined control actions Act will

drive the system either to a point in the starting region or to a point in a

neighboring region of the partition, e.g. no regions are “skipped”.

• The transition relation P is Markovian. This assumption is reasonable, as each

state in the τ -MDP represents paths of length τ in G. Thus, Pτ is conditioned

on the previous τ regions the system was in rather than simply the previous

region.

Example 7.1 (cont’d). Figure 7·2 shows a portion of the τ -MDP constructed from

Figure 7·1. The states in M4 are labeled with the corresponding sample paths of

length 4 in G. The transitions are annotated with some example transition probabili-

ties. The green and blue σ’s in the states in M4 correspond to green and blue regions

from Figure 7·1.

7.2 Problem Definition

In this chapter, we address the following two problems.

Problem 7.1 (Maximum Probability of Satisfaction). Let Mτ be a τ -MDP ab-

stracted from a system with unknown dynamics st+1 = f(st, ut, wt), where ut is a

control action and wt is a random process. Given an STL formula φ with syntax

(7.1), find a policy µ∗mp ∈ F(S× N, Act) by solving

µ∗mp = arg max
µ∈F(S×N,Act)

Prs0:T [s0:T |= φ]

subject to
st+1 = f(st, µ(st−τ+1:t, T − t), wt)

(7.4)
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Problem 7.2 (Maximum Average Robustness). Let Mτ and f be as defined in Prob-

lem 7.1. Given an STL formula φ with syntax (7.1), find a policy µ∗mr ∈ F(S, Act) by

solving
µ∗mr = arg max

µ∈F(S×N,Act)
Es0:T [r(s0:T , φ)]

subject to
st+1 = f(st, µ(st−τ+1:t, T − t), wt)

(7.5)

Figure 7·2: Part of the τ -MDP constructed from the robot navigation scenario shown in Figure
7·1.

Problems 7.1 and 7.2 are two alternate solutions to enforce a given STL specifica-

tion. The policy found by Problem 7.1, i.e. µ∗mp, maximizes the chance that φ will be

satisfied, while the policy found by Problem 7.2, i.e. µ∗mr, drives the system to satisfy

φ as strongly as possible on average. Problems similar to (7.4) have already been

considered in the literature (e.g., (Fu and Topcu, 2014; Sadigh et al., 2014)). How-

ever, Problem 7.2 is a novel formulation that provides some advantages over Problem

7.1. As we show in Section 7.2.1, for some special systems, µ∗mr achieves the same

probability of satisfaction as µ∗mp. Furthermore, if φ is not satisfiable, any arbitrary

policy could be a solution to Problem 7.1, as all policies will result in a satisfaction
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probability of 0. If φ is unsatisfiable, Problem 7.2 yields a solution that attempts to

get as close as possible to satisfying the formula, as the optimal solution will have

an average robustness value that is least negative. This could be quite useful for

practical situations when it is not know a priori whether a given specification can be

satisfied.

The forms of the objective functions differ for the two different types of formula,

φ = ♦ [0,T )ψ and φ = � [0,T )ψ.

Case 1: Consider an STL formula φ = ♦ [0,T )ψ. In this case, the objective function

in (7.4) can be rewritten as

Prs0:T [∃t = τ, . . . , T − τ s.t. st−τ+1:t |= ψ], (7.6)

and the objective function in (7.5) can be rewritten as

Es0:T [ max
t=τ,...,T−τ

r(st−τ+1:t, ψ)]. (7.7)

Problem 7.1 becomes a “quasi-reachability” problem, in which the goal is to reach

a τ -state σtτ such that the associated trajectories satisfy φ with high probability.

Similarly, Problem 7.2 becomes a search for a trajectory st−τ+1:t that maximizes

r(st−τ+1:t, φ).

Case 2: Now, consider an STL formula φ = � [0,T )ψ. The objective function in (7.4)

can be rewritten as

Prs0:T [∀t = τ, . . . , T − τ , st−τ :t |= ψ], (7.8)

and the objective function in (7.5) can be rewritten as

Es0:T [ min
t=τ,...,T−τ

r(st−τ+1:t, ψ)]. (7.9)
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Problem 7.1 is a “quasi-avoidance” problem, in which the goal is to avoid some

τ−states in the τ -MDP, whose associated trajectories violate ψ with high probability.

Similarly, Problem 7.2 is the problem of minimizing the “worst-case” violation of ψ

over the horizon T .

7.2.1 Relationship Between Maximizing Expected Robustness and Max-

imizing Probability of Satisfaction

Here, we demonstrate that the solution to (7.5) subsumes the solution to (7.4) for a

certain class of systems. For the rest of this section, we only consider formulae of the

type φ = ♦ [0,t)ψ. Let Mτ = (S,Pτ , Act) be a τ -MDP. For simplicity, we make the

following assumption on S.

Assumption 7.1. For every state στ ∈ S, either every trajectory st+τ−1:t that passes

through the sequence of regions σt+τ−1:t associated with στ satisfies ψ, denoted στ |= ψ,

or every trajectory that passes through the sequence of regions associated with στ does

not satisfy ψ, denoted στ 6|= ψ.

Assumption 7.1 can be enforced in practice during partitioning. Further, we define

the set A as A = {στ ∈ S|στ |= ψ}.

Definition 7.2. The signed distance of a τ−state σiτ ∈ S to a set X ⊆ S is

d(σiτ , X) =


min
σjτ∈X

l(σiτ , σ
j
τ ) σiτ 6∈ X

− min
σjτ∈S\X

l(σjτ , σ
i
τ ) σiτ ∈ X

(7.10)

where l(σiτ , σ
j
τ ) is the length of the shortest path from σiτ to σjτ .

Assumption 7.2. Let Dστ (δ) = Pr[r(st:t+τ , ψ) > δ|Tr(st:t+τ ) = στ ]. For any two

states,

d(σiτ , A) < d(σjτ , A)⇒ Dσiτ
(δ) ≥ Dσjτ

(δ) ∀δ ∈ [Rmin, Rmax] (7.11)
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Finally, we make the following simple assumption.

Assumption 7.3. For any signal st−τ+1:t such that Tr(st−τ+1:t) ∈ S, let r(st−τ+1:t, ψ)

be bounded from below by Rmin and from above by Rmax.

Now we define the policies µ∗mp and µ∗mr over Mτ as

µ∗mp = arg max
µ∈F(S×N,Act)

Prσ0:T
τ

[
∃t ∈ [0, T ] s.t. σtτ |= ψ

]
subject to

σt+1
τ = στ w. p. P(σtτ , µ(σtτ , T − t), στ ),

(7.12)

µ∗mr = arg max
µ∈F(S×N,Act)

Eσ0:T
τ

[
max
t=0,...,T

r(σtτ , ψ)
]

subject to
σt+1
τ = στ w. p. P(σtτ , µ(σtτ , T − t), στ ).

(7.13)

Proposition 7.1. Let Assumptions 7.1,7.2 and 7.3 hold. The policy µ∗mr maximizes

the expected probability of satisfaction.

Proof. Given any policy µ, its associated reachability probability can be defined as

Prµ(στ ) = Prµ[στ = arg min
σ0
τ ,...,σ

T−τ
τ

d(στ , A)]. (7.14)

By definition, the expected probability of satisfaction for a given policy µ is

EPS(µ) = E
[
I(∃0 < k < T − τ s.t. σkτ |= ψ)

]
=
∑
στ∈S

P r
µ(στ )I(στ ∈ A)

=
∑
στ∈A

P r
µ(στ ).

(7.15)
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Thus, the expected robustness of policy µ becomes

ER(µ) = E
[

max
k=0,...,T−τ

r(σkτ , ψ)
]

=
∫ Rmax

0
Pr
[

max
k=0,...,T−τ

r(σkτ , ψ) > x
]
dx

+
∫ 0

Rmin
1− Pr

[
max

k=0,...T−τ
r(σkτ , ψ) > x

]
dx

=
∫ Rmax
Rmin

Pr
[

max
k=0,′ldots,T−τ

r(σkτ , ψ) > x
]
dx+Rmin

=
∫ Rmax
Rmin

∑
στ∈S

P r
µ(στ )Dστ (x)dx+Rmin

=
∑
στ∈A

P r
µ(στ )

∫ Rmax
0

Dστ (x)dx+∑
στ 6∈A

P r
µ(στ )

∫ 0

Rmin
Dστ (x)dx+Rmin.

(7.16)

Since Rmin is constant, maximizing (7.16) is equivalent to

max
µ

∑
στ∈A

Prµ(στ )
∫ Rmax

0
Dστ (x)dx+

∑
στ 6∈A

Prµ(στ )
∫ 0

Rmin
Dστ (x)dx

subject to∑
στ∈A

Prµ(στ ) = p

(7.17)

We can rewrite the objective as

J(µ) = p
∑
στ∈A

Prµ
[
στ = arg min

σ0
τ ,...,σ

T−τ
τ

d(στ , A)|στ ∈ A
] ∫ Rmax

0
Dστ (x)dx

+(1− p)Prµ
[
στ = arg min

σ0
τ ,...,σ

T−τ
τ

d(στ , A)|στ 6∈ A
] ∫ 0

Rmin
Dστ (x)dx

(7.18)

Now,

∂J(µ)
∂p

=
∑
στ∈A

Prµ
[
στ = arg min

σ0
τ ,...,σ

T−τ
τ

d(στ , A)|στ ∈ A
] ∫ Rmax

0
Dστ (x)dx

−Prµ
[
στ = arg min

σ0
τ ,...,σ

T−τ
τ

d(στ , A)|στ 6∈ A
] ∫ 0

Rmin
Dστ (x)dx

≥ 0

(7.19)

Thus, if we increase the allowed acceptance probability p, the expected robustness

is non-decreasing. Therefore, the policy that maximizes the robustness also achieves
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the maximum satisfaction probability.

7.3 Policy Generation through Q-Learning

Since we do not know the dynamics of the system under control, we cannot a priori

predict how a given control action will affect the evolution of the system and hence

its progress towards satisfying/dissatisfying a given specification. Thus, we use the

well-known paradigm of reinforcement learning to learn policies to solve Problems

7.1 and 7.2. In reinforcement learning, the system takes actions and records the

rewards associated with the state-action pair. These rewards are then used to update

a feedback policy that maximizes the expected gathered reward. In our cases, the

rewards that we collect over Mτ are related to whether or not ψ is satisfied (Problem

7.1) or how robustly ψ is satisfied/violated (Problem 7.2).

Our solutions to these problems rely on a Q-learning formulation (Tsitsiklis, 1994).

Let R(σtτ , a) be the reward collected when action a ∈ Act was taken in state σtτ ∈ S.

Define the function Q : S× Act× N as

Q(σT−tτ , a, t) = R(σT−tτ , a) + max
{µl∈}Tl=T−t−1

E
[∑T

l=T−t−1R(σlτ , µl(σ
l
τ ))
]

= R(σT−tτ , a) + max
a′∈Act

Q(σT−t+1
τ , a′, t− 1).

(7.20)

For an optimization problem with a cumulative objective function of the form

∑
l=τ :T

R(σlτ , a
l), (7.21)

the optimal policy µ∗ ∈ F(S, Act) can be found by

µ∗(σtτ , T − t) = arg max
a∈Act

Q(σtτ , a, T − t). (7.22)
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Applying the update rule

Qt+1(σtτ , a
t, T − t) = (1− αt)Qt(σ

t
τ , a

t, T − t)+
αt[R(σtτ , a

t) + γmax
a′∈A

Qt(σ
t+1
τ , a′)] (7.23)

will cause Qt converges to Q w.p. 1 as t goes to infinity (Tsitsiklis, 1994).

7.3.1 Batch Q-learning

We cannot reformulate Problems 7.1 and 7.2 into the form (7.21) (see Section 7.2).

Thus, we propose an alternate Q−learning formulation, called batch Q-learning, to

solve these problems. Instead of updating the Q-function after each action is taken,

we wait until an entire episode s[0:T ) is completed before updating the Q-function.

The batch Q-learning procedure is summarized in Algorithm 7.1.

Algorithm 7.1 The Batch Q learning algorithm.

function BatchQLearn(Sys,probType,Nep,φ)
Q← RandomInitialization
µ← InitializePolicy(Q)
for n = 1 to Nep do
s[0,T ) ←Simulate(Sys, µ)
Q← UpdateQFunction(Q,µ,s0:T ,φ,probType)
µ← UpdatePolicy(µ,Q)

return Q,µ

As in the typical Q-learning approach, Q is initialized to random values and µ is

computed from the initial Q values. Then, for Nep episodes, the system is simulated

using the current policy µ. The observed trajectory is then used to update the Q

function according to Algorithm 7.2. The new value of the Q function is used to

update the policy µ. Note that µ is not always the arg max of Q, as the policy

update function may be randomized to allow exploration of the policy space.
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Algorithm 7.2 Function used to update Q function used in Algorithm 7.1.

function UpdateQFunction(Q,µ,s0:T ,φ,γ,probType)
for n = T − τ − 1 to τ do

if probType is MaximumProbability then
if φ = ♦ [0,T )ψτ then
Qtmp(σ

n
τ , µ(σnτ , T − n)) ← max(I(sn−τ+1:n |= φ), γQtmp(σ

n+1
τ , µ(σn+1

τ , T −
n− 1))

else
Qtmp(σ

n
τ , µ(σnτ , T − n)) ← min(−I(sn−τ+1:n |= φ), γQtmp(σ

n+1
τ , µ(σn+1

τ , T −
n− 1))

else
if φ = ♦ [0,T )ψτ then
Qtmp(σ

n
τ , µ(σnτ , T−n))←max(r(sn−τ+1:n, φ), γQtmp(σ

n+1
τ , µ(σn+1

τ , T−n−1))
else
Qtmp(σ

n
τ , µ(σnτ , T −n))← min(−r(sn−τ+1:n, φ), γQtmp(σ

n+1
τ , µ(σn+1

τ , T −n−
1))

Qnew(σnτ , µ(σnτ , T − n)← (1− α)Qtmp(σ
n
τ , µ(σnτ , T − n) +αQ(σnτ , µ(σnτ , T − n)

return Qnew

7.3.2 Convergence of Batch Q-learning

Given a formula of the form φ = ♦ [0,T )ψτ and an objective of maximizing the

expected robustness (Problem 7.2), we show that applying Algorithm 7.1 converges

to the optimal solution. The other three cases discussed in Section 7.2 can be proven

similarly. The following analysis is based on (Melo, ).

Define the reward-to-go (derived from (7.7)) at time k as

V (σkτ , {at}T−1
t=k , T − k) = E[ max

t=k,...,T−1
γr(σtτ , ψ)], (7.24)

where 0 < γ < 1 is a discount factor. The optimal (discounted) reward to go is

V ∗(σkτ , T − k) = max
{at}T−1

t=k

V (σkτ , {at}T−1
t=k , T − k)

= max
a∈Act

∑
σt+1
τ

P (σtτ , a, σ
t+1)

×max(r(σtτ , ψ), γV ∗(σt+1
τ , T − k − 1)).

(7.25)
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The associated optimal Q function is

Q∗(σkτ , a, T − k) =
∑

σt+1
τ

P (σtτ , a, σ
t+1) max(r(σtτ , ψ),

max
b∈Act

γQ∗(σt+1
τ , b, T − t− 1)). (7.26)

Proposition 7.2. The optimal Q-function given by (7.26) is a fixed point of the

contraction mapping H where

(Hq)(σtτ , a, T − t) =
∑

σt+1
τ

P (σtτ , a, σ
t+1) max(r(σtτ , ψ),

γmax
b∈Act

q(σt+1
τ , b, T − t− 1)). (7.27)

Proof. By (7.26), if H is a contraction mapping, then Q∗ is a fixed point of H.

Consider

||Hq1 −Hq2||∞ = max
στ ,a

∑
σ′τ

P (στ , a, σ
′
τ )(max(r(στ , ψ),

γmax
b∈Act

q1(σ′τ , b, T − t− 1))

−max(r(στ , ψ), γ
b∈Act

q2(σ′τ , b, T − t− 1)).

(7.28)

Define

q∗j (t) = max
b∈Act

γq1(σ′τ , b, t). (7.29)

WOLOG let q∗1(T − t− 1) > q∗2(T − t− 1). Define

R(σ′τ ) = (max(r(στ , ψ), q∗1(T − t− 1)−max(r(στ , ψ), q∗2(T − t− 1)) (7.30)

There exist 3 possibilities for the value of R(στ ).

r(στ , ψ) > q∗1(T − t− 1) > q∗2(T − t− 1)
⇒ R(σ′τ ) = 0

. (7.31a)

q∗1(T − t− 1) > r(στ , ψ) > q∗2(T − t− 1)
⇒ R(σ′τ ) = ||q∗1(T − t− 1)− r||∞ < γ||q1 − q2||∞

(7.31b)
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q∗1(T − t− 1) > q∗2(T − t− 1) > r(στ , ψ)
⇒ R(σ′τ ) < γ||q1 − q2||∞.

(7.31c)

Thus, this means that R(σ′τ ) ≤ γ||q1 − q2||∞ ∀σ′τ . Hence,

||Hq1 −Hq2||∞ = maxστ ,a
∑

σ′τ
P (στ , a, σ

′
τ )R(σ′τ )

≤ maxστ ,a
∑

σ′τ
P (στ , a, σ

′
τ )γ||q1 − q2||∞

≤ γ||q1 − q2||∞.
(7.32)

Therefore, H is a contraction mapping.

The proof of Q learning convergence relies on the following result from stochastic

systems (Jaakkola et al., 1994).

Lemma 7.1. The random process ∆t defined as

∆t+1 = (1− αt)∆t + αtF t (7.33)

converges to 0 w.p.1 under the assumptions

1. 0 < αt < 1,
∑∞

t=0 α
t =∞, and

∑∞
t=0(αt)(2) <∞

2. ||E[F t|Ft]||W ≤ γ||∆t||W where γ < 1

3. var[F t|Ft] ≤ C(1 + ||∆t||(2)
W )

Proposition 7.3. The Q-learning rule given by

Qt+1(σkτ , a
k, T − k) = (1− αt)Qt(σkτ , a

k, T − k)
+αt max(r(σkτ , ψ),max

b∈Act
γQt(σk+1

τ , b, T − k − 1)), (7.34)

converges to the optimal Q function (7.26) if the sequence {αt}∞t=0 is such that

∞∑
t=0

αt =∞ (7.35)
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and
∞∑
t=0

(αt)(2) <∞ (7.36)

Proof. Define the stochastic process ∆t as

∆t(σkτ , a, T − k) = Qt(σkτ , a, T − k)−Q∗(σkτ , a, T − k). (7.37)

If we subtract Q∗(σkτ , a, T − k) from both sides of (7.34), we can rewrite it as

∆t+1(σkτ , a
k, T − k) = (1− αt)∆t(σkτ , a

k, T − k)+
αt(max(r(σkτ , ψ),max

b∈Act
γQt(σk+1

τ , b, T − k − 1))

−Q∗(σkτ , a, T − k))

(7.38)

Now, define the stochastic process F t as

F t(σkτ , a, T − k − 1) = max(r(σkτ , ψ),max
b∈Act

γQt(σk+1
τ , b, T − k − 1))

−Q∗(σkτ , a, T − k)
(7.39)

such that

∆t+1(σkτ , a
k, T − k) = (1− αt)∆t(σkτ , a

k, T − k) + αtF t(σkτ , a, T − k − 1) (7.40)

Now,

E[F t(σkτ , a
k, T − k)|Ft] =

∑
σ′τ
P (σkτ , a

k, σ′τ ) max(r(σkτ , ψ),

max
b∈Act

γQt(σk+1
τ , b, T − k − 1))

−Q∗(σkτ , a, T − k))
= HQt(σkτ , a

k, T − k)−Q∗(stk, ak, T − k)

(7.41)

From Proposition 7.2, Q∗ = HQ∗. Hence,

E[F t(σkτ , a
k, T − k)|Ft] = HQt(σkτ , a

k, T − k)−HQ∗(stk, ak, T − k)
≤ γ||Qt −Q∗||∞ = γ||∆t||∞

(7.42)
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Now,

var[F t(σkτ , a
k, T − k)|Ft]

= E[(max(r(σkτ , ψ),max
b∈Act

γQt(σk+1
τ , b, T − k − 1))−Q∗(σkτ , a, T − k)

−HQt(σkτ , a
k, T − k) +Q∗(stk, ak, T − k))2]

= E[(max(r(σkτ , ψ),max
b∈Act

γQt(σk+1
τ , b, T − k − 1))−HQt(σkτ , a

k, T − k))(2)]

= var[max(r(σkτ , ψ),max
b∈Act

γQt(σk+1
τ , b, T − k − 1))|Ft].

(7.43)

Since the robustness degree with respect to a sub-trajectory of length τ is bounded,

max
στ∈S

r(στ , ψ) is also bounded and hence for some value C,

var[F t(σkτ , a
k, T − k)|Ft] ≤ C(1 + ||∆t||(2)

∞ ). (7.44)

Thus, the defined values of ∆t and F t and {αt} (by assumption) adhere to the as-

sumptions of Lemma 7.1, which means

∆t(σkτ , a
k, T − k)→ 0

⇒ Qt(σkτ , a, T − k)−Q∗(σkτ , a, T − k)→ 0
⇒ Qt(σkτ , a, T − k)→ Q∗(σkτ , a, T − k)

(7.45)

with probability 1.

7.4 Case Studies

We implemented the batch-Q learning algorithm (Algorithm 7.1) and applied it to

two case studies that adapt the robot navigation model from Example 7.1. For each

case study, we solved Problems 7.1 and 7.2 and compared the performance of the

resulting policies. All simulations were implemented in Matlab and performed on a

PC with a 2.6 GHz processor and 7.8 GB RAM.
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7.4.1 Case Study 1: Reachability

First, we consider a simple reachability problem. The given STL specification is

φcs1 = ♦ [0,20)( � [0,4)ξA ∨ � [0,4)ξB), (7.46)

where ξA and ξB are the subformulae from (7.2) which specify being in regions A and

B, respectively. In plain English, (7.46) can be stated as “Within 20 time units, reach

either region A or B and remain there for at least four time units.” The results from

applying Algorithm 7.1 are summarized in Figure 7·3, where regions A and B are in

blue. We used the parameters γ = 1, αt = 0.95, Nep = 1000 and εt = 0.995t, where

εt is the probability at iteration t of selecting an action at random. Constructing the

τ -MDP took 16.7s. Algorithm 7.1 took 461s to solve Problem 7.1 and 442s to solve

Problem 7.2.

The two approaches perform very similarly. In the first row, we show a histogram

of the robustness of 500 trials generated from the system simulated using each of the

trained policies after learning has completed, i.e. without the randomization that is

used during the learning phase. Note that both trained policies satisfied the specifi-

cation with probability 1. The performance of robustness maximization is negligibly

better, as the mean robustness is 0.0717 with standard deviation 0.0661, while the

probability maximization has mean robustness 0.0716 with standard deviation 0.0617.

In the second row, we see trajectories simulated by each of the trained policies. Each

of the trajectories satisfies the specification and appears to be similar.

The similarity of the solutions in this case study are not surprising. If the state

of the system is deep within A or B, then the probability that it will remain inside

that region in the next 3 time steps (satisfy φ) is higher than if it is at the edge

of the region. Trajectories that remain deeper in the interior of region A or B also
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Figure 7·3: Comparison of Policies for Case Study 1. Regions A and B are in blue.
Histogram of robustness values for trained policies for solution to (a) Problem 7.1 and (b)
Problem 7.2. Trace generated from policies for solution to (c) Problem 7.1 and (d) Problem
7.2.
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have a high robustness value. Thus, for this particular problem, there is an inherent

coupling between the policies that satisfy the formula with high probability and those

that satisfy the formula as robustly as possible on average.

7.4.2 Case Study 2: Repeated Satisfaction

In this second case study, we look at a problem involving repeatedly satisfying a

condition finitely many times. The specification of interest is

φcs2 = � [0,20)( ♦ [0,5)(ξA ∨ ξB) ∧ ♦ [0,5)(ξC ∨ ξD)), (7.47)

where ξA through ξD are the subformulae from (7.2) which specify being in regions

A through D. In plain English, (7.47) is “Ensure that every 5 time units over a 20

unit interval, at least one of regions A or B is entered and at least one of regions C

or D is entered.” Results from this case study are shown in Figure 7·4. A and B are

in blue, and C and D in green. We used the same parameters from Section 7.4.1,

except Nep=500. Constructing the τ -MDP took 103s. Applying Algorithm 7.1 took

820s for Problem 7.1 and 844s for Problem 7.2.

In the first row, we see that the solution to Problem 7.1 satisfies the formula with

probability 0 while the solution to Problem 7.2 satisfies the formula with probability

1. At first, this seems counterintuitive, as Proposition 7.3 indicates that a policy that

maximizes probability would achieve a probability of satisfaction at least as high as

the policy that maximizes the expected robustness. However, this is only guaranteed

with an infinite number of learning trials, while here we train with relatively few

trials. The performance in terms of robustness is obviously better for the robust-

ness maximization (mean 0.0730, standard deviation 0.0699) than for the probability

maximization (mean -0.3035, standard deviation 0.1962). In the second row, we see
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Figure 7·4: Comparison of Policies for Case Study 2. Regions A and B are shown in blue,
and C and D in green. The subplots have the same meaning as in Figure 7·3.

that the trajectory produced by the solution to Problem 7.1 wanders around region

A, while the trajectory generated from the solution to Problem 7.2 clearly exhibits

the behavior of oscillating between blue and green regions implied by (7.47).

The discrepancy between the two solutions can be explained by what happens

when trajectories that almost satisfy (7.47) occur during training. If a trajectory

that almost oscillates between a blue and green region every five seconds is encoun-

tered when solving Problem 7.1, it collects 0 reward. The policy that produced this

trajectory is reinforced as much as a policy that produces a trajectory that never

enters any region A through D. On the other hand, when solving Problem 7.2, the

policy that produces the almost oscillatory trajectory will be reinforced much more

strongly, as the resulting robustness is less negative. This illustrates an important

advantage of using the robustness degree as an objective in reinforcement learning.

Since the robustness degree gives “partial credit” for trajectories that are close to



162

satisfying the policy, the reinforcement learning algorithm performs a directed search

to find policies that satisfy the formula. Since probability maximization gives no par-

tial credit, the reinforcement learning algorithm is essentially performing a random

search until it encounters a trajectory that satisfies the given formula. Therefore, if

the family of policies that satisfy the formula with high probability is small, it will

on average take the Q-learning algorithm solving Problem 7.1 a very long time to

converge to a solution that satisfies the formula with positive probability.
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Chapter 8

Conclusions and Future Research

Directions

In this dissertation, we presented a body of work that addresses problems involving

describing, discovering, and enforcing high-level system behaviors when limited a

priori information is available. The procedures we develop combine features from

formal methods, the field concerned with verifying, enforcing, and inferring high-level

specifications, with principles from estimation and machine learning, two fields which

are concerned with using noisy data to discover a priori unknown information. The

key features of our methods are their ability to handle rich, temporally layered and

history dependent system properties and their ability to adapt to new information

over time. Our work contributes to formal methods by reducing the amount of prior

information that is required in order to be executed effectively. Our work contributes

to the field of active estimation by augmenting the class of constraints that can be

handled. Finally, our work contributes the field of machine learning by introducing a

rich set of data classifiers and a rich set of behaviors that can be generated with an

unknown system model.

This dissertation addressed a total of four different problems. The first problem

was controlling a robot to gather as much information about its environment as

possible while still satisfying constraints on its motion given as propositional temporal
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logic formulae. An example of this problem is using an aerial robot to monitor the

location of forest fires while ensuring that it periodically visits recharging stations

and data upload stations and perpetually avoids restricted areas. In Chapter 3,

we presented algorithms to solve this problem with finite-horizon constraints (Jones

et al., 2013b; Jones et al., 2015b) and infinite-horizon constraints (Jones et al., 2015c).

We developed receding horizon algorithms that are computationally efficient, are

guaranteed to satisfy the given specification, and locally minimize uncertainty. For

the infinite-horizon case, we introduced a high-level planner that attempts to mitigate

the myopia inherent in receding horizon formulations. Our algorithms were evaluated

in simulation and the finite-horizon solution was evaluated using an aerial agent with

a downward-facing camera in a laboratory environment.

This research leads to several intriguing extensions. Recently, we have extended

the finite-horizon problem to a multi-agent setting (Leahy et al., 2015). This work

combines the receding horizon information gathering algorithm with recently- devel-

oped task distribution techniques (Chen et al., 2013a). We plan to extend this to the

multi-agent, infinite horizon case. We have also recently developed a new logic for

the coordination of teams of agents that we call Braid temporal logic (Diaz-Mercado

et al., 2015). This logic can be used to specify properties involving the agents’ relative

locations, absolute location, and interactions (communications) between agents. This

logic is intended to coordinate teams of vehicles to solve coordinated sensing tasks.

We plan to incorporate information gathering algorithms with this new paradigm.

The second problem we addressed was developing a new specification language

for partially observable systems. This new logic, called distribution temporal logic,

was presented in Chapter 4 and is defined over sequences in the belief space of a

discrete random variable (Jones et al., 2013a). We defined a particular instantiation

of distribution temporal logic for finite-time executions. This logic is more expressive
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than the previously proposed specification language developed to express properties

over partially observable models. We developed a verification algorithm that calcu-

lates ex post facto with what probability a given execution of a partially observable

system satisfies a given specification. We then used this in a statistical procedure to

characterize and compare the performance of two different control strategies.

In the future, we plan to synthesize control policies that maximize the probability

of satisfying a given specification. One avenue of research that we are pursuing is to

construct a distribution temporal logic based on Gaussian distributions. This logic

has the advantage of being able to be interpreted over systems with a continuous

hidden state space. Further, since the Gaussian is a parameterized and well-studied

distribution, computing functions of Gaussians is efficient even for large state spaces.

We plan to combine this logic with belief-space sampling techniques, such as the

recently-developed feedback information roadmap (Agha-mohammadi et al., 2011),

to develop efficiently computable control policies that can steer a robot to satisfy a

given distribution temporal logic specification. A simple example of this problem is

steering a robot to move between several regions in an environment while continually

maintaining its localization uncertainty below a pre-specified level.

The third problem we addressed in Chapter 6 was learning specifications from

system execution data. We mapped a pair of problems in cyber-physical system

analysis to machine-learning like problems where we learned data classifiers in the

form of temporal logic formulae. We considered the problem of learning a formula that

separates desirable from undesirable behavior via supervised learning (Kong et al.,

2014) and the problem of learning a formula that separates anomalous data from

mainstream data via unsupervised learning (Jones et al., 2014). In order to do this,

we defined a fragment of temporal logic formula structures that could be organized

into a directed acyclic graph based on their inclusivity. This allowed us to develop
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algorithms that used a discrete search over the graph to find formula structures and

use continuous optimization methods to fit parameters to these structures. We also

developed an on-line version of the supervised learning algorithm based on stochastic

gradient descent (Kong et al., 2015). We evaluated our methods on case studies using

academic and data-driven simulations.

In the future, we plan to grow the class of formulae that can be inferred by our

method. Thus far, we have only considered formulae involving rectangular predicates

of the form x < π where x is a variable and π is a constant. We would like to extend

our formula structure search to consider searching over a larger sets of predicates, e.g.

linear or polynomial predicates. We may find inspiration in kernelization techniques

from machine learning during this process. We would also like to test our methods

on data from larger systems such as electrical grids. In addition, we plan to address

the problem of on-line unsupervised learning. This is considerably more difficult than

on-line supervised monitoring.

The final problem we addressed was controlling a system with unknown dynamics

to satisfy a given temporal logic specification. We extended this problem from fi-

nite systems and propositional temporal logic constraints to continuous systems with

predicate temporal logic constraints. We defined two different ways to enforce the

given specification: maximizing the probability of satisfying the specification and

maximizing the expected robustness, a continuous measure of how strongly a given

trajectory satisfies or violates the specification. We showed that in some cases, maxi-

mizing the expected robustness subsumes maximizing the probability of satisfaction.

We developed novel, provably convergent Q-algorithms to solve both problems. In

simulation, we showed that maximizing the expected robustness performed better in

terms of both probability and robustness than maximizing the probability with a low

number of training samples.
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In the future, we plan to integrate our reinforcement learning method with the

partitioning process. That is, in addition to optimizing over policies on the con-

structed finite-memory MDP, we would like to use the gained (implicit) information

about the system’s dynamics to update the boundaries of the partition. This may

lead to policies that are more consistent with the underlying agent’s dynamics.
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