
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

7-17-2020 

Solving Complex Data-Streaming Problems by Applying Solving Complex Data-Streaming Problems by Applying 

Economic-Based Principles to Mobile and Wireless Resource Economic-Based Principles to Mobile and Wireless Resource 

Constraint Networks Constraint Networks 

Concepcion Z. Sanchez Aleman 
Florida International University, csanc066@fiu.edu 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Sanchez Aleman, Concepcion Z., "Solving Complex Data-Streaming Problems by Applying Economic-
Based Principles to Mobile and Wireless Resource Constraint Networks" (2020). FIU Electronic Theses 
and Dissertations. 4606. 
https://digitalcommons.fiu.edu/etd/4606 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4606?utm_source=digitalcommons.fiu.edu%2Fetd%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SOLVING COMPLEX DATA-STREAMING PROBLEMS BY APPLYING

ECONOMIC-BASED PRINCIPLES TO MOBILE AND WIRELESS RESOURCE

CONSTRAINT NETWORKS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Concepción Zulema Sánchez Alemán

2020



To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Concepción Zulema Sánchez Alemán, and entitled
Solving Complex Data-Streaming Problems by Applying Economic-Based Principles
to Mobile and Wireless Resource Constraint Networks, having been approved in
respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Sundaraja Sitharama Iyengar

Kang K. Yen

Jean H. Andrian

Deng Pan

Niki Pissinou, Major Professor

Date of Defense: July 17, 2020

The dissertation of Concepción Zulema Sánchez Alemán is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2020

ii



c© Copyright 2020 by Concepción Zulema Sánchez Alemán

All rights reserved.

iii



DEDICATION

To my mother, Angela Argentina Alemán J., in memory of the dream we began

together and she knows and sees, being in heaven. To my beloved daughter,

Marianna Angela, my reason and strength. My dad and brothers: Ramiro Sánchez

Reyna, Ramiro and Kedin Sánchez Alemán.

iv



ACKNOWLEDGMENTS

First, I wish to express my deepest gratitude to my advisor, Dr. Niki Pissinou,

whose guidance, encouragement and support has enabled me to complete this work.

I am also thankful to her for her encouraging advice, knowledge and strict training

helped me become an independent researcher, and overcome significant challenges.

I am thankful for all my thesis committee members: Dr. Sundaraja Sitharama

Iyengar, Dr. Deng Pan, Dr. Jean Andrian, and Dr. Kang Yen for their time and

knowledge shared while serving on my dissertation committee. Their comments and

feedback were valuable to the completion of this work.

I also thank the excellent faculty members of the Department of Electrical &

Computer Engineering and the School of Computing and Information Sciences for

their lectures and projects. Thank you to Colonel Jerry Miller, Mrs. Patricia

Brammer, Mrs. Olga Carbonell and Mrs. Ariana Taglioretti.

I want to acknowledge my lab mates at Telecommunication and Information

Technology Institute (IT2). Especially thanks go to Sheila Alemany Blanco, for her

valuable collaboration to my research. Also, thanks to Dr. Georges Kamhoua, Dr.

Mingming Guo, Dr. Abdur Rahman Bin Shahid and Dr. Samia Tasnim for their

constant encouragement and support.

I want to thank my family, especially my mother, Angela Argentina Alemán J

for her unconditional love. Her hard work and perseverance has set an admirable ex-

ample for me to follow. Moreover, I want to thank my aunts Modesta Alemán, Yara

Suman and Doris Arroyo, for their support. Also, I would like to appreciate all the

love and encouragement from John, Ruth, Luis and Lloyd during my dissertation.

I would like to acknowledge that my graduate studies have been partially funded

by the National Bureau of Science, Technology and Innovation of the Republic of

Panama (SENACyT), the US National Science Foundation, Department of Defense,

the department of Electrical & Computer Engineering and the graduate school at

Florida International University through the Dissertation Year Fellowship.

v



ABSTRACT OF THE DISSERTATION

SOLVING COMPLEX DATA-STREAMING PROBLEMS BY APPLYING

ECONOMIC-BASED PRINCIPLES TO MOBILE AND WIRELESS RESOURCE

CONSTRAINT NETWORKS

by

Concepción Zulema Sánchez Alemán

Florida International University, 2020

Miami, Florida

Professor Niki Pissinou, Major Professor

The applications that employ mobile networks depend on the continuous input of

reliable data collected by sensing devices. A common application is in military

systems, where as an example, drones that are sent on a mission can communicate

with each other, exchange sensed data, and autonomously make decisions. Although

the mobility of nodes enhances the network coverage, connectivity, and scalability,

it introduces pressing issues in data reliability compounded by restrictions in sensor

energy resources, as well as limitations in available memory, and computational

capacity.

This dissertation investigates the issues that mobile networks encounter in pro-

viding reliable data. Our research goal is to develop a diverse set of novel data

handling solutions for mobile sensor systems providing reliable data by considering

the dynamic trajectory behavior relationships among nodes, and the constraints in-

herent to mobile nodes. We study the applicability of economic models, which are

simplified versions of real-world situations that let us observe and make predictions

about economic behavior, to our domain. First, we develop a data cleaning method

by introducing the notion of “beta,” a measure that quantifies the risk associated

with trusting the accuracy of the data provided by a node based on trajectory

behavior similarity. Next, we study the reconstruction of highly incomplete data

streams. Our method determines the level of trust in data accuracy by assigning

variable “weights” considering the quality and the origin of data. Thirdly, we design

a behavior-based data reduction and trend prediction technique using Japanese can-

dlesticks. This method reduces the dataset to 5% of its original size while preserving

vi



the behavioral patterns. Finally, we develop a data cleaning distribution method

for energy-harvesting networks. Based on the Leontief Input-Output model, this

method increases the data that is run through cleaning and the network uptime.
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CHAPTER 1

INTRODUCTION

1.1 Background

The emergence of Mobile Wireless Sensor Networks (MWSN) changed the atten-

tion from the common static wireless sensor networks to networks in which nodes

are mobile. This mobility in the sensor nodes enables the possibility to achieve a

world in which networks are pervasive and ubiquitous. As a result, the study of

MWSN has taken an encouraging direction and their applications extend to a wide

range of domains, including tactical military systems, homeland security, health

care systems, environmental monitoring, vehicular systems, logistics, and industrial

monitoring [YLL+14]. For example, in vehicular systems, autonomous vehicles that

follow a common leader, separated by small inter-vehicle gaps, can form road trains

to improve vehicular flow and reduce accidents [TCS17].

Typically, these types of networks consist of a large number of sensor nodes de-

ployed over a wide area, where sensors share information, collaborate to perform

operations, and autonomously make decisions [Ma11]. In essence, sensors enable

the collection of information about the physical world to be utilized in data analy-

sis processes for decision-making applications. The mobility of nodes facilitates the

expansion of the coverage of networks and its rapid scalability. Nevertheless, the mo-

bility also increases the difficulty in preserving data reliability due to data collision

[SBB13a], sensor isolation, and short-term connectivity of the network [PGWC16].

Moreover, sensor nodes are expected to function properly for long periods of time

and to provide reliable and accurate data, a critical factor in system functionality

and reliable real-time decision-making.

In consideration of the data-centric nature of real-time decision-making applica-

tions, it is of remarkable importance to build resilient mechanisms to prevent these

applications from making erroneous decisions. As expressed in November 2019 by

Lt. Gen. Jack Shanahan from the Department of Defense, sensing data holds very

high value as it is employed in crucial operations that go from preventive mainte-

nance to targeting. Clean, accurate data helps to make military operations more
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efficient, reduce collateral damage, and bring the military personnel home safely

[gen19]. Given the relevance of data quality in MWSN, in this dissertation we in-

vestigate the challenges that MWSN confront when seeking to provide accurate and

reliable data to employ in critical decision-making for real-time applications. We

built techniques to handle sensor data streams employing economic theories.

Specifically, we investigate the application of economic models that simplify real-

world problems, allowing us to observe, understand and make predictions about an

economic behavior, to mobile and wireless network systems. Economic models orig-

inate from the examination of data, the individuals generating these data and the

factors affecting their behavior. An economic model supports in the identification of

correlations, and helps us to explain the causality behind these correlations. Once

an economic model has been constructed, an economic theory is used to hypothe-

size the future data behavior and test if in fact these predictions are reflected in the

data. Economic models and mobile networks scenarios share similarities including

limited resources and the rationality of its participants. Moreover, the simplified

view of economic models supports the development of methods with reduced com-

putational complexity, a desirable characteristic for in-network processing. It is for

this reason that in this research, we propose the application of economic theories to

solve problems in mobile networks.

1.2 Motivation

According to the Allied Market Research, the global market of sensors was valued at

$138,965 million in 2017 and is projected to reach $287 billion in 2025 [Res20]. The

key element driving this exponential growth is its critical role in IoT applications,

as these applications permit the collection of information about the physical world

employed in data analysis for decision-making applications. MWSN are essential

elements of the Internet of Things (IoT) as they increase the coverage of the In-

ternet and the expansion of computing [YH18]. Due to the increasing adoption of

MWSN, extending its life to continuously collect real-time and reliable information

has become of crucial interest. Nevertheless, in MWSN the two greatest energy con-

2



sumers are computational operations in in-network processing and communication

tasks [AQAKS17]. Existing data handling methods rely on the presence of a sink or

a base station for their data processing, and most of them do not consider the sink

isolation that leads to network failure, network delays caused by the transmission

of large volumes of data to a sink for processing, and energy holes caused by the

energy exhaustion in sensors near sink due to heavy traffic. All these difficulties

result in high volumes of missing, noisy or duplicated data in MWSN [DWW+19],

and this data imprecision can lead to erroneous decisions. For example, in the

military, deploying soldiers can be risky and dangerous. It is for this reason that

autonomous mobile nodes can be deployed to patrol hostile territories to gather and

distribute information to be employed in different applications including perimeter

surveillance and protection, nuclear, chemical, and biological attacks detection, and

missile monitoring [AFS17]. If sensors fail to provide accurate data in the observed

environment, soldiers can be commanded to proceed to the dangerous area, and this

decision can lead to unnecessary troop fatalities.

Moreover, although real-time monitoring and prediction of future data values

are beneficial for decision support, the projection of data behavior trends is par-

ticularly relevant for applications that seek to take preventive actions. While the

prediction of specific values can assist in taking preventative measures, the ability

to foresee the direction of the data evolution may have the same impact without

the added computation involved in the prediction of data values. Two applications

that directly benefit from the data behavior analysis and prediction of data trends

are environmental monitoring and remote health care monitoring. In environmen-

tal monitoring, air quality is a significant problem for public health, particularly in

metropolitan cities [HAdC+15]. In 2012, the World Health Organization (WHO)

approximated that air pollution produced 3 million premature deaths each year, and

by 2016, these deaths increased by 40%. This fatality is a result of the exposure

to small particles, which can cause heart disease, lung disease, and cancer [O+18].

In 2016, more than half of the world population was living in places where the air

pollution levels in the outdoors were at least 2.5 times above the safety standard set

by WHO. The use of mobile nodes and IoT devices enables cities to rapidly expand

3



their monitored area without incurring excessive costs of network infrastructure de-

ployment. Mobile sensor nodes embedded in vehicles and hand-held devices can

collect air quality data within citizens’ trajectories throughout the cities. The rise

in pollution levels can be predicted to take preventive actions and limit the exposure

to highly polluted air, thus impeding massive health issues. In remote health care

monitoring applications, patients can carry wearable sensors that communicate with

IoT devices. Health care providers can collect vitals information to facilitate the

analysis of a patient’s condition for diagnostics and preventive/emergency treatment

decisions. General medical practice utilize a numeric thresholds to act towards a

specific patient. In other words, a patient’s health condition needs to reach a cer-

tain level of severity before medical intervention. The discovery and prediction of

patterns in a patient’s vitals data evolution can help to determine the patient’s

condition promptly, before surpassing a pre-set threshold. This prompt condition

discovery can provide additional time to attempt to counteract the deteriorating

state of the patient and potentially save the patient’s life.

These examples motivate our research in new methodologies to mitigate the

negative effects that mobility and resources scarcity impose over these types of

networks. The development of light-weight methods that seek to reduce energy

consumption while providing highly accurate data is necessary. Therefore, different

data handling methods to ensure the availability of reliable data in MWSN have

been proposed and evaluated in this research. The aim is to eliminate unnecessary

energy expenditure in order to extend the nodes’ lifetime without having to trade

off data quality.

1.3 Research Problems

The aforementioned examples demonstrate the importance of addressing the chal-

lenges that mobility and resources constraint inflict in real-time applications that

are dependent on data collected by sensor nodes. The main problem that this dis-

sertation undertakes is that nodes composing wireless and mobile networks are have

limited resources and that differently from static wireless networks, the availability
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of a base station to support heavy computational operations is unrealistic. Firstly,

it means that existing data handling techniques that rely on a base station or a

sink are not available for mobile scenarios. Secondly, it has been observed that in

MWSN’s dynamic environments, nodes may have only one interaction with specific

nodes. It is for this reason that trust in data accuracy must be determined quickly.

Effective data handling methods in MWSN are required to contemplate the mobility

of sensors. Even though previous research studies have pursued better data qual-

ity in static networks, there is still much work needed to improve data quality in

MWSN. The objective in [GLN15] [LBX+16] [KSY+14], [ZSS15], is to clean dirty

data, and although [LBX+16] showcased effectiveness when tested with various real

datasets, authors only considered static environments. While [KSY+14], [ZSS15]

and [GLN15] were proposed for wireless environments, due to its high computation

the presence of a sink or a base station is still required for processing, making it

unsuitable for completely mobile scenarios.

On the other hand, most data trend prediction techniques employ computa-

tionally heavy methods, including Neural Networks and machine learning [BM16],

[WY17],[WTL+17], [GSB+18]. However, the energetic cost assumed by computa-

tional operations in these methods is too expensive to be performed at the sensor

node. Also, sensor nodes are still required to spend an ample amount of their energy

to transmit the sensing data to the base station. Furthermore, complex abstraction

processes, including Principal Component Analysis (PCA), have been implemented

in [WTX16], [FK17], [IUK16], but these methods are also very expensive to be

performed at the sensor node level.

Finally, in an effort to reduce the energy constraint in MWSN, energy-harvesting

technologies have been applied. Although the sensor’s lifetime is not a problem in

energy-harvesting mobile wireless sensor networks (EH-MWSN), when the onboard

residual energy of a node goes below a pre-set threshold, the sensor adopts an en-

ergy saving strategy and becomes inactive. Once it has harvested enough energy

it becomes active again and to reassume its normal operations. These energy sav-

ing strategies reduce the sensor’s functionality including its ability to sustain data

reliability. To reduce network downtime, substantial attention has been placed in
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methods involving the management of energy [FD11, GHZH14, ZCZ+16, KHZS07,

VGB07, ZSA11, SSCS17, TAH+15, Cui18]. Nevertheless, limited attention has been

placed on increasing the quality of the sensed data. With the large quantities of

dirty data provided by mobile nodes, data cleaning becomes critical due to the neg-

ative effects that dirty data have over data mining, machine learning models and

other techniques employed in decision-making applications [QWLG18, PGWC16].

While these methods use diverse approaches to manage the power used in commu-

nication, sensing and data processing in EH-WSN, the mobility of nodes and the

variability in energy availability add complexity to the challenges already present

in static networks. In the ideal EH-MWSN the network performance is maximized

while sustaining a harvesting rate higher than the energy expenditure rate, and sus-

taining this goal depends on the energy harvested by multiple distributed nodes.

Undoubtedly, there are still problems that need to be addressed to handle data in

MWSN.

1.4 Research Objectives

In MWNS, sensor nodes are constrained by low memory, computational capacity

and limited energy resources. Also, the mobility of nodes promotes the high dynam-

icity of its network topology. These limitations make it difficult to ensure reliable

data for decision-making applications. This research stems from the realization that

the application in MWSN will not be exploited to their highest capabilities unless

methods that take into consideration sensors’ resources constraint and mobility into

data handling mechanisms are developed. This dissertation includes the design of

methodologies and evaluation results of different scenarios that require data han-

dling to ensure reliable data for real-time decision-making applications in MWSN.

Specifically, we investigate the following four topics:

Diversification of Trust to Clean Data in MWSN

Selecting a sensor node to support in the data cleaning processes is a primary

challenge that is not well tackled in existing sensor data cleaning methods. In par-
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ticular, existing methods rely on an associated set of static sensors for their clean-

ing processes. However, when sensors are moving, we cannot rely on a predefined

static set of sensors. Therefore, these methods are not transferable to MWSN. Even

though there are existing techniques that take advantage of the Spatio-temporal

characteristics exhibited in mobile environments, other factors can affect the sensed

data collected by sensors. We hypothesize that we can select the most helpful set of

neighboring sensors to support the data cleaning process of a sensor if we evaluate

a set of parameters to measure the trustworthiness of sensor data accuracy based

on trajectory behavior similarity using economic theories. At the same time, we

can minimize the error in data estimation by diversifying the risk associated with

trusting data accuracy among this set of selected nodes. The greater the trajectory

behavior similarity, the easier a set of trustworthy sensors can be selected. There-

fore, our first objective is to develop a data cleaning method to model trust in data

accuracy based on the trajectory behavior similarity of sensors in a pre-defined area.

Dynamically Allocate Trust Weights to Reconstruct Data in MWSN

According to the developed method for trust diversification, we found that

MWSN exhibit different types of data loss patterns [KXL+13]. Methods that con-

sider a combination of these data loss patterns can help to reconstruct highly in-

complete datasets. Additionally, we found that due to the mobility of sensors, they

may have been close to each other during the data collection period, but may never

come close again, making it difficult to find a set of sensors that can provide all

the information required to clean data. We hypothesize that we can determine the

trust level in the data accuracy of each candidate node in MWSN using economic

theories. In this type of networks sensors experience data loss due to noise and

collision, unreliable links, sensors losing energy or malfunctioning. Therefore, the

objective of this task is to develop a data reconstruction method capable of eval-

uating second-hand data when there is no first-hand data available. This method

should also select second-hand data when this data is more accurate than the first-

hand data by assigning variable “weights” considering the quality and the origin of

data
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Modeling of Data Behavior and Data Trend Prediction for MWSN in IoT

The methods that seek to predict future data trends take advantage of IoT tech-

nologies to perform their computational operations. However, the massive loads of

data needed to be transmitted from the sensor node to IoT devices are excessive

and the energy depletion problem still prevails. Moreover, existing data reduction

methods are either too complex to take place at the sensor node, or they fail to

represent the behavior of the real phenomena being observed. We hypothesize that

the use of economic theories to extract the features that describes the behavior of

individual sensor’s collected data can effectively model data behavior in MWSN.

Therefore, this part of our research is directed to develop an effective data behavior

modeling method using sensor’s historical data. The output from this data behavior

modeling analysis can be employed in predicting the future data behavior trend.

Data Cleaning Workload distribution in EH-MWSN

The energetic cost of data cleaning can be elevated for sensors with large loads

of dirty data. Although energy-harvesting-enabled nodes promise to deliver infinite

lifetime when deployed in environments with a constant energy supply, the hetero-

geneity and mobility of the sensors add challenges that severely affect the collection

of high-quality data [SBB13b] and uptime extension. Our hypothesis is that the

distribution of the data cleaning workload in EH-MWSN powered by predictable

energy sources can increase network uptime and the quantity of data that is run

through data cleaning processes. Therefore, the aim of this method is to ensure

the availability of accurate data and increasing the uptime in networks composed of

nodes possessing heterogeneous functions and capabilities.

1.5 Research Contributions

In this dissertation, we investigate the challenges that MWSN encounter when han-

dling data. According to the research objectives, we focused on developing diverse

data handling solutions that include protocol design, algorithm development, exper-
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imental and simulation results and analyses. These solutions involve (1) developing

a data cleaning method that models trust in data accuracy based on the similarity

of the continuous evolving trajectory and Spatio-temporal relationships of moving

sensors; (2) building a data reconstruction method that evaluates second-hand and

first-hand data accuracy in highly incomplete datasets; (3) creation of a data behav-

ior modeling that reduces the space complexity in a mobile node and that can that

can be employed in accurately predicting the data behavior trends; (4) distributing

data cleaning workload in EH-MWSN to increase the availability of reliable data

and extend network survivability. Specifically, we make the following contributions.

Cleaning Dirty Data in Mobile Wireless Sensor Networks [SAPA+18]

Contrary to previously mentioned research works [LBX+16, GLN15, KSY+14,

ZSS15], we address the problem of selecting a set of sensors to support during data

cleaning in mobile environments where the network topology is dynamic. Particu-

larly, we select this set of sensors by measuring the trustworthiness of sensor data

accuracy based on the similarity of their trajectory, and their Spatio-temporal re-

lationship. This method compares (i) the similarity in trajectory behavior of each

candidate node with respect to a baseline node, (ii) calculates the spatial autocor-

relation of neighboring nodes, and (iii) minimizes the error in estimating the dirty

data sample by diversifying the trust in data accuracy among the selected nodes.

The major contributions we have made with this work can be summarized as

follows: this work introduces a unique data cleaning method tailored for dynamic

mobile environments where sensor nodes are connected for short periods of time,

so they need to quickly determine which received data has the highest accuracy.

We present an economic-based approach to identify the trustworthy set of sensors

to support during the data cleaning. Our method assigns trustworthiness weights

to the selected candidate sensors, utilizing the computation of two Beta scores, the

Speed Beta (βs) and the Angle of Travel Beta (βθ). The combination of these Beta

scores measures the trajectory behavior similarity between two nodes [Section 3.3.1].

Then, we select the set of candidate sensors that will support the process of data

cleaning employing local Moran’s I. Local Moran’s I separates clustered sensor nodes
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from outliers by computing the spatial autocorrelation, among the group of previ-

ously selected sensor nodes [Section 3.3.2]. Additionally, to estimate the missing

data we assign weights to the different candidate sensors, based on the risk to trust

each sensor’s data [Section 3.3.3]. Our results show that samples cleaned by the

proposed method exhibit lower percent error when compared to other well-known

and effective data cleaning algorithms in tested outdoor and indoor scenarios. This

content was published during my Ph.D. study. 1.

Reconstructing Highly Incomplete Data in Mobile Wireless Sensor Net-

works [APAK18a]

To overcome the limitations of the aforementioned data cleaning method, we

focused on investigating how to reconstruct incomplete data in mobile networks

where there is not first-hand data available or the second-hand data available is more

accurate that the first-hand data. This method (i) evaluates the number of correct

observations provided, (ii) prioritize first-hand data and consider second-hand data

using the Euclidean distance between two nodes, (iii) quantify the strength of a linear

relationship between the collected sensed data, and (vi) measures the trajectory

similarity between a pair of sensors.

The major contributions we have made with this work can be summarized as

follows: this work proposes a light-weight data reconstruction method for mobile

environments, where energy preservation is crucial. We present a novel data re-

construction method to identify a set of sensors to support the prediction of miss-

ing data. Our method dynamically assigns weights for trust in data accuracy to

first-hand and second-hand data in highly incomplete data without the usage of a

predefined threshold. Our proposed scheme describes trustworthy nodes as nodes

containing the highest quantity of high-quality, spatiotemporally correlated data

with resemblance in trajectory behavior in relation to the evaluating node.

1

c© [2018] IEEE. Reprinted, with permission, from [Concepcion Sanchez Aleman, Niki
Pissinou, Sheila Alemany, Kianoosh Boroojeni, Jerry Miller, Ziqian Ding, Context-Aware
Data Cleaning for Mobile Wireless Sensor Networks: A Diversified Trust Approach, 2018
International Conference on Computing, Networking and Communications (ICNC)]
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To compute the total trust, our method evaluates a set of parameters including:

confidence level, Spatio-temporal closeness, the Pearson’s Correlation coefficient,

trajectory similarity [Section 4.4.1]. Lastly, the total trust score is computed by

combining the evaluated parameters [Section 4.4.2], and the missing values are es-

timated using trust diversification based on the number of available trustworthy

sensor nodes [Section 4.4.3]. Our results demonstrate that data reconstructed using

our dynamic trust allocation method depicts a significant lower Root Mean Square

Error (RMSE) compared to methods that only consider Spatio-temporal and sensed

data values correlation. Our approach showed consistent outstanding performance

by achieving high data accuracy in datasets containing vast quantities of missing

data. This content was published during my Ph.D. study. 2.

Modeling Data Behavior and Predicting Trends for Mobile Wireless Sen-

sor Networks in IoT [APAK18b]

For scenarios where the prediction of the trend of the data behavior can help to

take preventive actions, we develop a method to model the behavior of the sensed

data and predict the future trend of the data. We perform these predictions using

the value that describes the behavior of the data from a time partition to the sub-

sequent one as input for the SVM. The major contributions we have made with this

work can be summarized as follows: we employ Japanese candlestick data abstrac-

tion to extract the main features of data in the different time partitions [Section

5.4.1]. Also, we use this abstracted data together with dynamic time warping to

model sensors’ data evolving behavior in real-world applications of MWSN in IoT

[Section 5.4.2]. This data behavior modeling reduces overall space complexity. Also,

we utilize a supervised learning algorithm, multi-class SVM, to accurately predict

sensor nodes’ future data trends [Section 5.4.3]. A comparative study was conducted

2

c© [2018] IEEE. Reprinted, with permission, from [Concepcion Sanchez Aleman, Niki
Pissinou, Sheila Alemany, Georges Kamhoua, A Dynamic Trust Weight Allocation Tech-
nique for Data Reconstruction in Mobile Wireless Sensor Networks, 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And Commu-
nications/ 12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE)]
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to investigate the effectiveness of our method on real-world datasets. Our results

show that data trends predicted achieve better precision, recall, and accuracy score

when contrasted against four well-known techniques while reducing the space com-

plexity by at least a factor of 10. This content was published during my Ph.D.

study. 3.

Distributing Data Cleaning Workload in Energy-Harvesting Mobile Wire-

less Sensor Networks[SAPA20]

In EH-MWSN, when a node adopts energy-saving strategies, its ability to sustain

data accuracy gets limited. It is for this reason that we develop a method designed

to distribute the data cleaning workload in energy harvesting MWSN. This method

(i) creates interrelations between sensor nodes and (ii) distribute the data cleaning

workload among these nodes. This procedure reduces the downtime of nodes and

increases the quantity of data that is run through data cleaning processes.

The main contributions made with this work can be summarized as follows: this

work proposes an economic-based data cleaning workload distribution method that

employs sensors’ current and predicted onboard residual energy to compute a data

cleaning workload distribution strategy that seeks to achieve Neutral Network Op-

eration, a state in which the energy harvesting rate of the network is greater than

its energy consumption rate [Section 6.4.1]. Our method increased network surviv-

ability by planning this workload distribution considering the network as a whole,

rather than only individual sensors, which consequently benefits the overall system

performance [Section 6.4.2]. We evaluate the performance of our proposed method

using real-world datasets. The results show that our data cleaning workload dis-

tribution method increases the number of data samples engaged in data cleaning

processes by up to 25.57%. This technique also increases the count of active sensors

by up to 44.01%, and the overall well-being of the network by up to 55.42% when

3

c© [2018] IEEE. Reprinted, with permission, from [Concepcion Sanchez Aleman, Niki
Pissinou, Sheila Alemany, Georges Kamhoua, Using Candlestick Charting and Dynamic
Time Warping for Data Behavior Modeling and Trend Prediction for MWSN in IoT, 2018
IEEE International Conference on Big Data (Big Data)]
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compared to data cleaning performed by each sensor node individually. This content

was published during my Ph.D. study. 4.

1.6 Organization of the Dissertation

The outline of this dissertation is as follows: Chapter 1 presents an introduction to

the research in this dissertation. It describes the background, challenges, research

objective, and the overall contributions of this dissertation. In Chapter 2, we review

a comprehensive literature related to data handling methods employed in MWSN.

Chapter 3 presents the diversified trust approach to clean data that analyzes the be-

havior trajectory similarity of sensor nodes to select the set of sensors to support the

data cleaning process. We describe the dynamic trust weight allocation method to

reconstruct incomplete data in Chapter 4. Chapter 5 covers the data behavior mod-

eling and data trend prediction and Chapter 6 discusses the data cleaning workload

distribution strategy and its justification. Lastly, in Chapter 7 we conclude what

we achieved and provide a conclusion and recommendations for potential further

research directions.

4

c© [2020] IEEE. Reprinted, with permission, from [Concepcion Sanchez Aleman, Niki
Pissinou, Sheila Alemany, Leontief-Based Data Cleaning Workload Distribution Strategy
for EH-MWSN, 2020 IEEE International Workshop Technical Committee on Communi-
cations Quality and Reliability (CQR)]
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CHAPTER 2

RELATED WORK

Applications in MWSN require a continuous input of data streams to be em-

ployed in data analytics and real-time decision-making. Having reliable data is

important, as inaccurate or incomplete data can lead to unfavorable outcomes. Un-

reliable data refers to noisy data, missing data, duplicated data, etc. Existing data

handling methods that seek to preserve data accuracy for applications in MWSN

include data cleaning, data reconstruction, data abstraction, and data classification.

Nevertheless, the mobility of nodes in the network increases the difficulty in pre-

serving data accuracy due to energy, memory and computational power constraints.

The aforementioned constraints prevent the existing methods designed for static

WSN from being employed in mobile environments. The purpose of this chapter is

to provide a brief literature review on data handling methods in static WSN and

MWSN. We organize and present each section based on the data handling method.

2.1 Data Handing Approaches

2.1.1 Missing Data Estimation

Multiple data cleaning techniques have been proposed to improve data quality. In

[CFSC18], Cheng et al. presented a quality-based data cleaning method. This

method employed a quality assessment by evaluating the relationship between sen-

sors’ data quality indicators. Then, the results of the quality assessment are used

to propose a sequence in which data cleaning needs to be carried over. Also, Zhang

et al. presented a reliability-based technique, where the reliability of each sensor is

adapted according to its performance [ZSS14]. At every iteration, the consistency

is updated based on the difference of the prediction made and the real sensed value.

These selected sensors’ data was used to improve data quality in environmental mon-

itoring. Later, a method for selecting a reliable sensor was presented by Zhang et al.

[ZSS15] using a statistical model based on sensed data and latent variables, such as

the sensors’ faulty state. On the other hand, Ghorbel et al. [GASA15] detected out-

liers using Mahalanobis distance (MD) and the kernel principal component analysis
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(KPCA). The authors separated outliers from the normal data distribution patterns

by computing mapping data points and then mapping the data to another feature

space.

Moreover, many techniques have been proposed for predicting missing data.

In [KXL+14], Kong et al. proposed Environmental Space Improved Compressive

Sensing (ESTICS). ESTICS employed compressive sensing while combining Spatio-

temporal correlation to reconstruct complete information from a portion of data.

Later, Lei et al. [LBX+16] estimated the missing values in incomplete sensor data

by repeating two processes: selecting spatially correlated sensors and updating the

training sensor dataset with the data selected from those sensors. This procedure

assists in obtaining a more suitable neighbor sensor and refines the regression model

by querying a record within the training sensor dataset. Chen et al. proposed

an environmental data reconstruction method based on a guided temporal stability

matrix [CCH+18]. The method employed the block coordinate descent method and

the operator splitting technique. Additionally, the accuracy in the reconstructed

data was increased by introducing a constraint about short-term stability to the

matrix completion that enabled the erroneous data recognition.

Considering the dynamic nature of mobile environments, other methods were

proposed for MWSN. In their research, Gill et al. proposed a context-aware model-

based technique for cleaning environmental data from sensors [GLN15]. The authors

used geographical and meteorological datasets to create statistical models to train

the system. Outliers are identified and discarded, then the partially cleaned data

is analyzed by comparing the observed value with the predicted value for each at-

tribute. Every time the observed value surpasses the error threshold concerning the

predicted data, the predicted data is used to replace the observed value. Further-

more, multivariate linear regression was employed by Kurasawa et al. to predict the

missing data by exploiting multiple attribute correlation [KSY+14]. The method

exploited Spatio-temporal relationships and used machine learning to build training

datasets through the back end, sending data back to the sensor periodically. Later,

Tasnim et al. [TPI17] proposed a data cleaning technique for ensuring data accuracy

for applications of MWSN in environmental sensing. The authors selected a sensor
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to help during the data cleaning taking into consideration the mobility pattern of

the sensor nodes. In this work, sensors computed and updated a credibility value

of the historical sensing performance of sensor nodes and a context credibility value

using the context value of neighboring sensors during the time window.

Although [KXL+14], [GLN15], [ZSS15], [ZSS14], [GASA15] and [KSY+14] exhib-

ited high levels of effectiveness, the importance of methods that perform in-network

computations and capable of handling large volumes of trajectory data is not con-

sidered. Moreover, the energy consumption to perform the heavy computations that

most of these models propose is elevated. It is for this reason that these methods are

not transferable to MWSN. Light-weight techniques are crucial, as sensors deployed

in mobile environments tend to work unattended with limited power and compu-

tational capacity [FZ16]. Despite the fact that [KXL+14], [LBX+16], and [ZSS15]

were proposed for wireless environments, and [GLN15] and [KSY+14] for mobile

networks, they relied on the presence of a sink and/or a back-end for their data

processing. MWSN tend to present delays related to continuous data transmissions

and delays related to the data processing even when there is no data to reconstruct,

as in [ZSS14]. Also, authors in [KXL+13] did not consider network failure due to

sink isolation produced by the sensors near the sink that deplete their energy faster

due to heavy traffic, creating energy holes and network failure.

2.1.2 Future Data Prediction Methods

The prediction of future data was proposed by Wu et al. [WTX16]. In this method,

sensor nodes selectively sent data to a cluster head. The cluster head then made

predictions based on the received readings using the least mean square prediction

algorithm but added an adaptive optimal step size parameter that minimized the

mean square derivation. Data features were reduced using the Principal Component

Analysis (PCA) and sent to the base station. Upon receiving the data, the original

values were recovered for further calculations. Barton et al. [BM16] proposed a

method where neural networks were employed to predict future trends. The model

was generated by utilizing the calculated slope of a linear fit that started in the
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current time and ended in the future. This method claimed to reduce the number

of model updates while predicting future trends.

These methods were employed to predict future sensing samples and may reduce

the energy expenditure related to sensing and data communication tasks in WSN

[WTX16, BM16]. However, the energy used in computational operations by neural

networks and complex data feature analysis, such as PCA, are too expensive to be

performed at the sensor node. Also, sensor nodes are still required to spend an

ample amount of their energy to transmit the sensing data to the base station.

On the other hand, there are many techniques explicitly used to take preventive

actions in multiple diverse fields. In the health care field, Forkan et al. [FK17]

employed PCA to extract and validate variations of different vitals data. It clustered

normal and abnormal states. These observed behaviors were passed into a Hidden

Markov Model (HMM) to conduct the prediction of various vitals as a sequence of

temporal dependent time series. Ghazal et al. [GSB+18] proposed the use of machine

learning methods to predict hemoglobin oxygen saturation levels (SpO2) five minutes

after a ventilator setting changed. The authors classified the saturation levels and

balanced the data so that the classifier learned the majority class labels equally.

The method predicted SpO2 classifications employing an artificial neural network

and bagged complex decision trees. Ravishankar et al. [?] proposed a pattern

detection algorithm to identify respiratory distress in hospitalized patients. The

technique employed temporal abstractions followed by a Markov Model-Based Finite

State Machine to predict the condition before the violation of the SpO2 acceptable

threshold.

In the industrial field, Wan et al. [WTL+17] proposed a method for preventive

maintenance in a manufacturing environment using neural networks. The technique

depicted real-time active support to fulfill the real-time requirements of operations

and an off-line prediction and analysis to forecast failures in the different compo-

nents. Wang et al. [WY17] also designed a real-time data monitoring framework

to ensure food quality in the supply chain network and prevent food recall. It em-

ployed an association rule mining and IoT technology to monitor and share data

among all agents involved in the supply chain. The framework predicted food safety
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risks to give decision-support information to maintain the quality and safety of food

products. While these methods seek to predict future data trends take advantage

of IoT technologies to perform their computational operations, the massive loads

of data streams needed to be transmitted from the sensor node to IoT devices are

excessive and the energy depletion problem still prevails.

2.1.3 Classification-Based Prediction Methods

The general usage of classifiers in WSN has also been studied. Islam et al. [IUK16]

presented a technique to diagnose faults in electric motors employing PCA for fea-

tures abstraction and a multi-class SVM for classification and training of different

types of faults at the sensor node. Samanta et al. [SBS16] employed K-Nearest

Neighbors (K-NN) to diagnose faults in the same type of motors in an online fash-

ion. Both employed sequence component analysis. The positive and negative se-

quence components were computed utilizing Sample Shifting Technique. K-NN was

then used to diagnose a faulty phase and severity of the fault. Patel et al. [PG16]

proposed a multi-class fault detection and diagnosis method for condition-based

maintenance for bearings in rotational machinery using the Random Forest classi-

fier. They applied a statistical parameter extraction from the sensed vibration data

and used it as an input feature for the classification task.

Elghazel et al. [EMZ+15] proposed a method for industrial devices functioning

diagnostics using Random Forest in the presence of data streams with a heteroge-

neous number and quality of features. In [RMH+19], Rida et al. proposed EK-Means

for reducing the redundancy in data. The proposed method was divided into two

levels In the first level, the sensor node collected data and cluster it based on the

Euclidean distance. In the second level, the intermediate node aggregated the data

received from the neighboring node. Later this data was clustered one more time

based on their spatial correlation. Even though the aforementioned classification

techniques were effective in accurately diagnosing faults in WSN, none considered

a data abstraction technique to reduce the complexity at the node level. Authors

did not consider scenarios that included mobile nodes and where light-weight data
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reduction methods are crucial to avoid energy depletion and prolong network func-

tionality.

2.2 Energy saving Strategies Energy-Harvesting Networks

The use of predictable renewable energy resources to power sensor nodes is a promis-

ing approach toward achieving self-sustainable MWSN. However, the uncertainty in

the availability of this type of energy requires the implementation of techniques to

manage sensors’ resources and ensure the successful completion of tasks. For this

reason, research work has been directed to employ energy availability prediction to

adjust the nodes’ operations to satisfy Energy Neutral Operation (ENO), a state

in which a sensor node harvests more energy than it consumes. In recent work,

Cui et al. [Cui18] used long short-term memory recurrent neural network (LSTM-

RNN) to predict solar energy in the subsequent days using solar energy historical

data together with environmental data. Next, the method carried out a predictive

task-scheduling strategy based on the predicted energy.

Additionally, Kansal et al. [KS03] proposed a dynamic duty cycle method that

kept a summary of the energy generation and employed Exponential Weighted Mov-

ing Average (EWMA) to predict future energy availability for harvesting. The duty

cycle was reduced or increased based on the required energy and the actually har-

vested energy [KHZS07]. Moreover, Vigorito et al. [VGB07] adapted the duty cycle

to achieve ENO in WSN utilizing adaptive control theory. This model-free method

sought to provide a stable duty cycle in environments under dynamic conditions by

controlling the energy supply level parameter.

Furthermore, Fafoutis et al. [FD11] presented an On-Demand Medium Access

Control method to achieve ENO state. The energy-harvesting rate and battery

level were used to dynamically adjust the duty cycle by computing the duration of

the sensing period. When a node was available for reception, it broadcast a bea-

con packet to alert nodes needing to transmit. It then employed an opportunistic

forwarding scheme to reduce the energy wastage caused by long wait time. Subse-

quently, Tan et al. [TAH+15] proposed a topology control strategy. The authors
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used game theory to model the behavior of sensor nodes as an ordinal potential

game with an existing Nash equilibrium. This method considered sensors’ energy

status and harvesting capabilities to encourage cooperation among the high and low

harvesting power nodes to optimize the network topology. Finally, the transmission

power of the node is determined by analyzing the rates of consumed and harvested

power.

In [SSCS17], Shu et al. presented a utility-based sensing rate allocation algo-

rithm that exploited the redundant deployment of sensors. It computed the optimal

energy replenishment and coverage control strategy to achieve a harvesting-aware

task scheduling. Likewise, Zhang et al. [ZSA11] proposed a method to maximize the

total application utility. This sensing rate allocation epoch-based algorithm defined

the utility of a node based on its packet rate. This method used a collection tree

protocol to organize sensor nodes as a data collection tree. Moreover, Gu et al.

[GHZH14] synchronized nodes’ activity patterns with the available energy budget.

The method used an energy synchronized communication protocol (ESC) to reduce

data forwarding delays and to increase data delivery using the excess harvested en-

ergy, rather than maximizing conserved energy subject to leakage. Additionally,

Zhang et al. [ZCZ+16] proposed a cooperative transmission scheme that balanced

the node’s residual energy. The method chose the sensor with the maximum residual

energy to cooperate as a relay for a source node based on the initial energy in this

source, its energy harvesting rate, and the channel gain.

While the above methods use diverse approaches to manage the power used in

adjusting sensor nodes activities such as communication, routing and sampling based

on their energy harvesting and consumption rates in WSN, the mobility of nodes

and the variability in energy availability add complexity to the challenges already

present in static networks. Moreover, data accuracy is still a critical component

in MWSN applications, and given the exponential growth of sensing data that is

being generated, it is important to consider the development of methods that seek

to increase data reliability without affecting network uptime.
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2.3 Summary

In this chapter, we have reviewed existing approaches to handle data and static and

mobile wireless sensor networks. The work discussed above magnifies the importance

and the need for the development of data handling methods designed to solve the

problem of data reliability in real-time applications in MWNS. Furthermore, we

discussed energy-saving strategies and their role in ensuring data accuracy in EH-

MWSN. In the following chapters, we will present the approached we developed to

solve some of the open problems, the results of our evaluations, conclusions and

future research directions.
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CHAPTER 3

DATA CLEANING FOR MWNS: A DIVERSIFIED TRUST

APPROACH

Dirty data is a prevailing problem in mobile wireless sensor networks. The

mobility of sensor nodes challenges the data cleaning process in the existing methods

employed in static wireless sensor networks. In this chapter, we address the problem

of identifying a set of sensor nodes with the most accurate data to help during the

data cleaning in mobile environments. This method introduces a novel economic-

based approach to quantify risk in trust data accuracy to later diversify this trust

and minimize the error in cleaning the dirty sample. Our method has the ability

to effectively clean more than 92% of the dirty data under 5% error threshold,

outperforming existing well-known methods. This chapter is organized as follows:

An introduction about data cleaning in MWSN is presented in Section 3.1. The

problem statement is reviewed in Section 3.2. The proposed method is introduced

in Section 3.3. The evaluation of results is described in Section 3.4. Lastly, a

summary of this chapter is presented in Section 3.5.

3.1 Introduction

The Diversified Trust Portfolio (DTP) proposed in this chapter employs the calcu-

lation of ”beta” to measure the trajectory behavior similarity between two nodes.

In essence, beta analysis allows for a comparison of trajectory behavior of each can-

didate node with respect to a baseline , determining the set of sensors with the

most accurate data to clean the dirty samples. In addition to the introduction of

betas, this technique combines the use of diversified portfolio, form Modern Portfo-

lio Theory (MPT), to find an effective trust distribution. Diversified trust portfolio

computation seeks to minimize the error percentage between the value of reference

and the predicted value (product of our approach). Both concepts, betas and port-

folio diversification, are introduced in the Capital Asset Pricing Model (CAPM) in

financial-field applications [Dam], [Mar52].

The CAPM describes the relationship between the expected return of a given

asset and the risk measured by beta coefficient. In finance, risk refers to the degree
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of uncertainty and/or potential financial loss inherent in an investment decision.

Similarly, in MWSN, we define risk as the degree of potentially selecting inaccurate/

unrelated data to be employed to estimate the data that will support in decision

making applications, as inaccurate data translates into wrong decisions. Similarly

to investors in the CAPM, mobile nodes are risk aversed and have access to all

available information. We consider sensors tell the truth and provide all available

data unselfishly. To the best of our knowledge, this is the first study that utilizes

the beta calculation in combination with portfolio diversification from CAPM in

modeling trust. Since the assumptions of CAPM resemble the assumptions made

in our MWSN model, we can apply Modern Portfolio Theory (MPT), which states

that a specific risk can be removed or at least mitigate through diversification

3.2 Problem Statement and Assumptions

The location of mobile sensor nodes changes dynamically over time; it is for this

reason that sensor nodes cannot rely on a permanent set of sensors to help during

data cleaning. Spatio-temporal characteristics have been employed in the past to

evaluate the correlation among sensor nodes and clean the dirty samples. Neverthe-

less, it is our hypothesis that a set of sensor nodes can be selected to determine the

trustworthiness of data accuracy by evaluating the trajectory behavior similarity of

among sensor nodes. Figure 3.1 shows an example of a MWSN where sensor nodes

embedded into vehicles and/or devices carried by people move in a determined pat-

tern. At first glance, a group of sensors sharing similar locations may appear to have

similar behaviors. But this may not be the case. For example, the speed at which

the node with dirty data travels compared to the speed of the neighboring nodes

may be a factor in determining the most trustworthy node. Moreover, selecting

a single node can reduce the accuracy of the estimated values as the data of the

selected node could be corrupted or imprecise. Selecting a set of candidate sensors

can help to minimize the error during the estimation of the missing data. Once we

have selected the set of most trustworthy sensors, the cleaning is performed using
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their data to calculate and replace the missing values.

Figure 3.1: Example of a mobile wireless sensor network

We consider a decentralized, in-network computational method. This means

the detection of dirty data, the selection of the nodes to clean data, and the data

cleaning are all done by each sensor. We assume that each sensor node has an

internal pre-process for detection of dirty data. Sensors are assumed to be (1)

mobile, (2) to cooperate, and (3) to have a priori knowledge of the area where they

are deployed. Also, each sensor node has a unique identity and its sensing task

takes place asynchronously. The data exchange will only take place between any

two nodes if these nodes are within transmission range. In other words, no data

exchange will take place via multi-hop communication. Data exchanges follow the

Round Robin Scheduling Technique as explained in [SJG15]. With the data from

its surrounding sensor nodes, each node should be able to approximate the missing

values. However, finding a trustworthy sensor becomes a challenge.

3.3 Diversified Trust Approach

Our method utilizes the computation of two beta scores, the Speed Beta (βs) and

the Angle of Travel Beta (βθ), combined with the spatial autocorrelation, local
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Moran’s I, to select the set of candidate sensors for the process of data cleaning.

The local Moran’s I measures the spatial autocorrelation between a group of sensor

nodes, while the beta computations compare the behavior of a group of sensors in

relation to the node under analysis [YTW+16]. These computations quantify the

risk involved in trusting a set of spatially correlated candidate nodes, as behavior

similarities are directly proportional to their level of trustworthiness.

Data Gathering

Our data cleaning process requires a time window T which is partitioned into two

phases: sensing phase Ts and cleaning phase Tc; at the same time T is divided into

t time instants. Individual time instants are referred to as tj where j = 1, 2, ..., t.

Sensing Phase (Ts)

When the sensor is performing the cleaning of its data, nodes with dirty data will

select the fraction of time, Te, within Ts to carry out the evaluation of candidate sen-

sors. The time partition can be defined as: Te = td−k, ..., td−2, td−1, td, td+1, td+

2, ..., td + p, where td is the time instant where there is a missing value. The initial

and final time instants in Te are defined as to = td − k and tf = td + p accordingly.

|Te| is user-defined and p, k are dynamic values dependent on the time instant to

be cleaned, td. For example, if the sensor needs to clean the first time instant in Ts,

its Te will only evaluate the time instances after td. Therefore, k and p are assigned

0 and |Te| − 1, respectively. If td is not near the initial or final time instances in

Ts, p = k = |Te|−1
2

. At the end of every tj sensors will update their internal tables

with the sensed value xij, its position (x, y)ij, angle of travel θij, and average speed

sij, where i = 1, 2, ..., n, and n is the total number of sensors in the network. To

avoid error propagation, once a sensor node detects a dirty sample within its sensed

values, the value is marked with a flag. No dirty data will be considered during the

process of data cleaning. Table 3.1 shows the internal table for sensor i at each tj

during Ts.
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Time tj 1 2 ... j

Position (x, y)ij (x, y)i1 (x, y)i2 ... (x, y)ij

Sensed Value xij xi1 xi2 ... xij

Average Speed sij si1 si2 ... sij

Angle of Travel θij θi1 θi2 ... θij

Dirty Flag fij fi1 fi2 ... fij

Table 3.1: Sensor i Internal Table for Ts

Cleaning Phase (Tc)

The cleaning phase begins after the sensing phase. In this period if sensors have

data to be cleaned, at every time tj, sensors will search for neighboring nodes within

transmission range by broadcasting a cleaning status message (CSM) containing

its identification and current location. After the CSM has been received, sensors

estimate if there is enough time to send its data to neighboring sensors before

the neighboring sensors move out of transmission range, as in [NP15]. If there

is enough time to send the data to at least one node with dirty data, sensors will

transmit their information in the form of data streams containing their internal

tables. Once sensors have exchanged their data, in the event of future encounters,

the received request will be ignored. To begin the evaluation, sensors will only

evaluate neighboring candidates who were within one hop during td.

3.3.1 Beta-Based Candidate Reduction

Our beta-based candidate reduction chooses a set of sensors who are the most cor-

related with respect to their trajectory behavior. We focus on the consideration of

sensors within the transmission range at time td. Candidate sensors with the least

similar behavior (i.e., the sensors with beta values below or above the lower and

upper pre-defined boundaries Lb and Ub) are discarded. The ideal candidate sensor
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would return a beta value of 1 for both betas, βs and βθ, meaning the sensor had

the exact trajectory behavior as the sensor containing dirty data.

Trajectory Speed Beta

The similarity in trajectory speed variations along the sensors’ trajectory path for

a pair of nodes is measured by the speed beta, βs, defined as:

βs =
cov(sc, sd)

var(sd)
(3.1)

where

sc: The speed values of the candidate sensor during Te.

sd: The are the speed values of the sensor with dirty data.

Angle of Travel Beta

The angle of travel represents the direction in which the sensor node is moving at

the time instant the sensing is taking place. For a trajectory, the angle of travel

beta, βθ, is given by the equation:

βθ =
cov(θc, θd)

var(θd)
(3.2)

where

θc: The angle of travel values of the candidate sensor

θd The angle of travel values of the sensor with dirty data

3.3.2 m-Candidate Selection: Spatial Autocorrelation

The similarity in trajectory behavior evaluated above does not provide enough infor-

mation in regards to the spatial correlation among the sensor nodes under analysis.

Since the environmental data exhibits two main features: time stability and space

correlation [KXL+13], we employ local Moran’s I to identify spatial clusters most

spatially autocorrelated during time td as depicted in Algorithm 1 Local Moran’s I
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identifies clustered sensor nodes with positive index values and outliers with neg-

ative index values. When evaluating the local Moran’s I for the sensor containing

dirty data, the missing value at time td is assigned the average of the sensed values

collected in Te. Local Moran’s I is defined by:

Ii =

∑n
a=1wia(za − z̄)(zi − z̄)

s2
∑n

a=1wia
(3.3)

where

s2 =
∑n

i=1(xi−x̄)2

n
.

z: The z-score of the sensor evaluated at time td.

wia = αdia : An exponential function of the Euclidean distance dia between i and a.

α: A hyper-parameter specified using cross-validation.

After local Moran’s I is calculated for all sensor nodes, the sensor containing

dirty data selects m sensors with the smallest |Id − Ici | values as the set of most

trustful candidate sensors. Id and Ici are the local Moran’s I of the sensor containing

the dirty data and the candidate sensors, ci, respectively.

3.3.3 Diversified Trust Portfolio Distribution

Based on the technique proposed in [Mar52], instead of devoting all our trust into one

candidate sensor, we diversify the trust throughout a set of candidate sensors. Our

DTP approach delivers a trust portfolio by assigning weights, wi, to the different

candidate sensors, ci, based on the risk to trust each sensors’ data. To find the

weight that needs to be assign to each candidate sensor, it is necessary to calculate

relative observation error:

E(w1, w2, ..., wm) =

√∑
j∈{t·}fo\td(

xdj−
∑m

i=1 xcj×wci

xdj
)2

|Te| − 1
(3.4)

where

m: The total number of candidate sensors
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xdj: The sensed value of the sensor containing dirty data time j

xcj: The sensed value of the candidate sensor at time j

|Te| − 1: The cardinality of the time instants selected for evaluation excluding td.

Since this is a continuous function and the domain of the function is compact,

there is a minimum and a maximum. The diversified trust portfolio is generated by:

minE(w1, w2, ..., wm) (3.5)

such that wi ≥ 0 for any i = 1, 2, ...,m.

After the weights have been distributed among the candidate sensors to minimize

the error, the estimated value, R, is computed as follows:
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R =
m∑
i=1

xcij × wci (3.6)

where

xcij: The sensed value of the candidate sensor ci at the dirty time j

wci : The weight assigned by the trust portfolio to the candidate sensor ci.

3.4 Simulations and Interpretation of Results

To evaluate the effectiveness of our approach, a number of environmental sensor

nodes were placed in an area. The sensors select an initial sensor nodes’ position,

speed, and rest times, and continues to choose random destination points and speeds

as per the steady state distributions of the random waypoint model outlined in

[NC04]. Once the sensor arrives at the chosen point, it stops for a randomly selected

time interval and continues to select another point and speed randomly.

We utilized Bonnmotion as our mobility generator together with MATLAB to

simulate the environment and test our proposed approach. The simulation employs

50 minute time windows divided into two phases: sensing phase of 42.5 minutes and

cleaning phase of 7.5 minutes. At the same time, each 50 minute time window is

divided into 30 second time instants, in which sensors will begin to sense randomly.

Our assessment is executed in indoor and outdoor environments.

The values for Lb, Ub, α and m are -0.50, 2.00, 0.10 and 5 respectively, which

are hyper-parameters for our selected dataset determined using cross-validation.

The node densities tested are 1 and 2.5 nodes per 100 m2. The number of sensors

employed reaches up to 2,250 nodes with up to 95,625 dirty samples. The efficiency

of the proposed technique was evaluated by calculating the average percent error of

all cleaned samples at each time instant. Additionally, we calculated the cleaning

level percentage for thresholds ranging from 0.50% to 10%. A sample is considered

to be successfully cleaned if the absolute value of the percentage error between the

value of reference and the calculated value falls below the specified error threshold.

To contrast our results with existing techniques we selected Mean [JAF+06] and
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LLSE [SGG10]. We specifically employed Mean’s point, smooth and merge steps to

detect sensor value outliers and correct missing data.

Intel Lab Data

During our indoor environment simulation we used the data provided by the Intel

Indoor experiment [int], where 54 Mica2Dot static sensors collected various environ-

mental data in an area of 1,200 m2. This humidity data was employed to establish

the values of reference for the area where our deployed mobile sensors collected data.

The mean speed and transmission range used by each sensor were 2 miles per hour

and 5 meters respectively.

When the simulation was done in a low-density environment, the variance of the

data collected by all sensors fluctuates drastically as shown in Figure 3.2(a). The

discontinuities in the graphs occur when there were no values to be cleaned. Figure

3.3 shows that the average percent error of cleaned data by DTP stayed below Mean

and LLSE when the simulation was performed with 20% and 50% of dirty data.

(a) 1 node per 100 m2 (b) 2.5 node per 100 m2

Figure 3.2: Collected Data Variance for Intel Lab Data.

Figure 3.4 confirms the performance of DTP as the cleaning level percentage

reaches above the 98% under the 10% error threshold and above the 44% under 1%

error threshold.
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(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.3: Data cleaning level in 1 node per 100 m2 for Intel Lab Data.

(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.4: Cleaning level percentage at 1 node density for Intel Lab Data.

When the node density was increased to 2.5 nodes per 100 m2, the variance of

the data collected increased in stability, shown in Figure 3.2(b). Since LLSE takes

into account the covariance among each sensors’ data, its performance improved

with the increase of the data stability, shown in Figure 3.5. Figure 3.6 displays our

DTP approach kept a consistent performance over 99% of cleaning level percentage

at 10% of error threshold and over 49% when tested for 1% error threshold.
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(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.5: Data cleaning accuracy at 2.5 node per 100 m2 for Intel Lab Data.

(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.6: Cleaning level percentage at 2.5 node density for Intel Lab Data.

Melbourne Weather Data

For our outdoor environment simulation, we used the Melbourne weather dataset

[mel], where sensors collected temperature at 8 different locations from February

23-28, 2015. This collected data was used to generate the values of reference when

evaluating the performance of our proposed method. In this assessment, sensors

move in an area of 90,000 m2 with a mean speed and transmission range of 20 miles

33



per hour and 15 meters respectively. From Figure 3.7 (a), it can be observed that

the variance of the data collected by all sensors displays minimal fluctuations. The

average percent error cleaned, shown in Figure 3.8, demonstrate DTP still maintains

a lower average percentage error than Mean and LLSE methods.

(a) 1 node per 100 m2 (b) 2.5 node per 100 m2

Figure 3.7: Collected Data Variance for Melbourne Data.

Figure 3.9 support the high efficiency of DTP by displaying over a 95% of clean-

ing level percentage for 10% error threshold and 49% for 1% error threshold. Similar

to Figure 3.7(a), 3.7(b) shows a high variance on the data initially, while the perfor-

mance of Mean and LLSE are affected by this variance, DTP keeps a consistently

high performance as seen in Figure 3.10.
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(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.8: Data Cleaning accuracy at 1 node per 100 m2 for Melbourne Data.

(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.9: Cleaning level percentage at 1 node density for Melbourne Data

Figure 3.11 shows that the cleaning level percentage was able to reach 98% under

1% error threshold and 59% for 10%. The consistent results of DTP are justified

by its dependency on sensors’ spatial autocorrelation and trajectory behavior rather

than on the collected data only.

35



(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.10: Data Cleaning accuracy 2.5 node per 100 m2 for Melbourne Data.

(a) 20% Dirty Data (b) 50% Dirty Data

Figure 3.11: Cleaning level percentage at 2.5 node density for Melbourne Data
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3.5 Summary

Our unique Diversified Trust Portfolio (DTP) approach for cleaning data in MWSN

has demonstrated to be an effective method that utilizes the Spatio-temporal cor-

related data integrated with the analysis of each sensors’ trajectory behavior to

analyze the relationships among sensors. This constitutes an effective online system

for selecting a trustworthy set of sensors to help during the in-network data cleaning

process. By selecting a set of sensors, DTP is able to find the combination of weights

to more accurately predict the values to clean the dirty data. This diversified trust

technique reduces the risk involved in trusting a single sensor node’s data. DTP

demonstrated its outstanding capabilities to consistently achieve high data accuracy

in comparison to two reputable data cleaning methods.
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CHAPTER 4

A DYNAMIC TRUST WEIGHT ALLOCATION TECHNIQUE FOR

DATA RECONSTRUCTION IN MWSN

Data accuracy and low energy consumption in MWSN are crucial attributes for

real-time applications. Although there are many existing methods to reconstruct

data for wireless sensor networks, there are few developed for highly mobile environ-

ments. In this chapter we propose a novel in-network data reconstruction method

that determines the trust level in the data accuracy of each candidate node by eval-

uating Spatio-temporal correlations, trajectory behavior, quantity and quality of

data, and the number of hops traveled by the received data from the source. Our

proposed method is capable of evaluating second-hand data when there is no first-

hand data available and selecting second-hand data the second-hand data is more

accurate than the first-hand data. The evaluation of our results shows our method

achieved lower and stable RMSE compared to other methods when predicting the

missing data in scenarios with up to 70% of missing data. This chapter is organized

as follows: Section 4.1 presents an introduction to data reconstruction in MWSN.

Section 4.2 describes the problem statement. Section 4.3 describes the methodology.

The proposed method is presented in Section 4.4. The evaluation of results and the

summary can be reviewed in Section 4.5 and Section 4.6, respectively.

4.1 Introduction

Sensing data has gained increased importance in today’s applications because it

serves a means for understanding our surroundings. The accuracy of this data is a

crucial component for real-time decision-making applications in MWSN. Neverthe-

less, sensor nodes in real-world MWSN data loss follow a set of different patterns

that can result from noise, data collision, unreliable links or sensor nodes malfunc-

tion. Added to these challenges, the mobility of nodes reduces the chances of finding

a set of sensor nodes that could help during the reconstruction of the data with high

accuracy.

Moreover, when missing data in data streams reaches high levels, the energetic

cost of reconstructing these data streams in an in-network fashion can be elevated.
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It is known that in MWSN the maximum amount of energy is consumed by the

communication process, which includes the transmission and reception of data. The

second greatest energy consumer is computational operations in in-network process-

ing. However, compared to the communication process, the computational opera-

tions expend much less energy [AQAKS17]. To mitigate the negative effects these

limitations impose on mobile networks, the development of a light-weight method

that seeks to reduce energy consumption while providing highly accurate data is

necessary.

In the existing highly effective data reconstruction methods described in chapter

2 of this dissertation, nodes train models and upload them to the sink, and the

utilization of this same model reconstructs sensed values. Nevertheless, in mobile

environments, the delays produced by model training processes and the constant

availability of a sink are unrealistic. Our proposed method is designed for real-time

applications in mobile environments. Besides the trust in data accuracy concepts

we employed in the previous method, we evaluate the quantity of high-quality data

obtained from each node, and the nodes traveled to reach the evaluating point. This

approach evaluation is based on the dynamic allocation of weights that indicates how

trustworthy the data is without any threshold limitation.

4.2 Problem Statement and Assumption

It has been already discussed in this dissertation that the location of sensor nodes

resulting from the mobility of nodes challenges the ability of sensor nodes to estimate

the missing data accurately. As depicted in Figure 3.1 sensor nodes in MWSN ap-

plications can be embedded into vehicles or devices carried by people, and they can

communicate to exchange information while moving in a determined pattern. Sensor

nodes may have shared similar trajectory behavior and Spatio-temporal character-

istics during the period in which either node experiments a loss of data. However,

at a later time when a specific sensor node is carrying out its data reconstruction

task, the nodes that were in its surroundings previously may have been far gone.

Also, the sensors that are within communication range, may lack of the data re-
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quired to reconstruct the data accurately. Is for this reason that in this method

we consider the use second-hand data. We define second-hand data as any received

data originated in a node other than the sensor node that transmitted it to the final

destination.

It is assumed that each sensor node has an internal pre-process for the detection

and elimination of dirty data, resulting in missing data. Data that is not detected as

missing is considered valid and to be used for reconstruction. Our proposed method

assumes a decentralized, in-network computational method. In other words, the

selection of the candidate sensor(s) to perform the reconstruction, and the recon-

struction itself, is done by each node. The sensing task takes place asynchronously,

and the sensors are considered to be mobile, cooperative, and to have a priori

knowledge of the area. The data exchange can take place between any two nodes

via multi-hop communication and follow the Round Robin Scheduling Technique,

as described in [SJG15].

4.3 Methodology

4.3.1 Data Loss Patterns

It is known that MWSN exhibit different types of data loss patterns [KXL+13]. The

most commonly employed data loss patterns in real-time applications are:

• Element random loss pattern: Elements are dropped independently and

randomly during the transmission. This can be as a result of noise and colli-

sion.

• Element frequent loss in a row pattern: Sensed data from a single node

has higher probabilities of loss. This can be produced by unreliable links.

• Successive element loss in a row: Sensor stops sensing at some point in

time and produces no more sensed values until the end of the simulation. This

could be a result of sensors losing energy or malfunctioning.
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Figure 4.1: Element Random Loss

Figure 4.2: Element Frequent Loss

Figure 4.3: Successive Element Loss in a Row

DTWA is designed to reconstruct real-life data loss patterns which include a

combination of all the aforementioned patterns. Figures 4.1, 4.2 and 4.3 give a

graphic view of the described data loss patterns in MWSN.
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4.3.2 Data Gathering

In our DTWA approach, data is gathered and reconstructed in a time window T ,

which is partitioned into (1) sensing phase Ts and (2) reconstruction phase Tr; at

the same time T is divided into t time instants. Each time instant is appointed as

tj, where j = 1, 2, ..., t.

4.3.3 Sensing Phase (Ts)

Each node will sense and collect data. At the end of every tj, sensors will update

their internal tables, as shown in Table 4.1, using the sensed value (xij), its position

(lij), angle of travel (θij), and average speed (sij), where i = 1, 2, ..., n, and n is

the total number of sensors in the network. When the node detects a dirty sample

within its sensed values, the value is marked with a flag as missing. When a sensor is

reconstructing its data, it will select the sub-partition of time, Te (evaluation time),

within Ts to carry out the evaluation of candidate sensors. The sub-partition of

time can be described as: Te = tm− k, ..., tm− 2, tm− 1, tm, tm + 1, tm + 2, ..., tm + p,

where tm is the time instant where there is a missing value. The initial and final

time instants in Te are to = tm− k and tf = tm + p, respectively. |Te| is user-defined

and, k and p are dynamic values based on the position of tm.

Time tj 1 2 ... j

Location lij li1 li2 ... lij

Sensed Value xij xi1 xi2 ... xij

Average Speed sij si1 si2 ... sij

Angle of Travel θij θi1 θi2 ... θij

Missing Data Flag fij fi1 fi2 ... fij

Table 4.1: Sensor i Internal Table for Ts
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Reconstruction Phase (Tr)

In this period, if sensors have data to be reconstructed, at every time tj, sensors will

broadcast a data request message containing its identification and current location.

Receiving sensors estimate if there is enough time to send their data to the requesting

sensor before the two move out of the transmission range. Once sensors confirm the

feasibility of the transmission, sensors will transmit their information together with

the information from any other node received during Tr.

4.4 Dynamic Trust Weight Allocation (DTWA)

Our Dynamic Trust Weight Allocation (DTWA) method quantifies the level of trust

in data accuracy for each of the candidate sensors without the usage of predefined

thresholds. The DTWA scheme revolves around common factors and conditions

faced by each node. When a sensor node contains a missing value, it must evaluate

influencing factors to identify which node(s) data accuracy to trust. DTWA de-

scribes trustworthy nodes as nodes containing the highest quantity of high-quality,

spatiotemporally correlated data with a significant resemblance in trajectory be-

havior about the evaluating node. To compute the total trust (τ), we evaluate the

following parameters:

• Confidence level (φc): To evaluate the trustworthiness of the accuracy of

the data provided by a node, taking into consideration the number of correct

observations provided.

• Spatio-Temporal Closeness (φx): To prioritize first-hand data yet, con-

sider second-hand data while taking into account the Euclidean distance be-

tween two nodes.

• Pearson’s Correlation Coefficient (ρ): To quantify the strength of a linear

relationship between the collected sensed values for the pair of sensors.

• Normalized Speed Beta (βs): To quantify the similarity in trajectory speed

variations for a pair of sensors.

43



• Normalized Angle of Travel Beta (βθ): To measure the similarity in

direction of a pair of sensors. The angle is calculated at the time instant the

sensing is occurring, and are values from a point of interest relative to a given

axis.

After all the parameters have been evaluated, the total trust in the data ac-

curacy of an individual node can be computed. Figure 4.4 shows an example of

an MWSN, in this scenario, all sensor nodes may have provided their sensed data

and depicted a strong correlation among their sensed values. Although nodes may

receive the data of each candidate node via one-hop communication and share sim-

ilar locations/trajectories at time t1, the change of speed after time t1 can be the

determining factor if a node is attempting the reconstruction of data after time t1.

Trust Parameters Evaluation

The degree of trust evaluation is an adaptive mechanism to assess the certainty in

data accuracy. Each evaluating node performs this evaluation for each candidate

sensor with the data provided. To carry out this evaluation, we consider the following

parameters:

Figure 4.4: Trajectory Behavior Example

44



a) Confidence Level

The confidence level quantifies the number of samples provided versus the number of

missing samples during the evaluation time Te. This value ranges from [0,1], where

0 indicates that the node did not provide any valid sensed sample and 1 represents

that the node provided all valid samples and no missing samples. The confidence

level can be calculated using a modified formula from [SDBA15], and is given by:

φc = 1−

√
12× δ × ξ

(δ + ξ)2(δ + ξ + 1)
(4.1)

where

δ: The number of time instances containing complete, accurate data.

ξ: The number of time instances with missing data for the candidate sensor, y.

b) Spatio-Temporal Closeness

The Spatio-temporal closeness parameter quantifies how close two sensor nodes were

in tm. It considers not only the distance among the two nodes but whether the data

was received via one-hop or multi-hop. In other words, if the data received is first-

hand or second-hand. The Spatio-temporal can be determined as shown below:

φx =

(α)d if received via one-hop

(γ)d if received via multi-hop
(4.2)

subject to α > γ

where

α: Hyper-parameter assigned when data was received via one-hop.

γ: Hyper-parameter assigned when data was received via multi-hop.

d: The Euclidean distance between the sensors at the time to be reconstructed.
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c) Pearson’s Correlation Coefficient

Pearson’s correlation coefficient [Pea95] calculates the correlation between the sensed

values during the evaluation period Te. For a pair of nodes, a positive correlation

indicates sensed values are directly proportional. A negative correlation indicates

sensed values are inversely proportional. The closer Pearson’s correlation coefficient

approaches 1, the stronger the positive linear relationship. DTWA considers only

positive Pearson’s correlation coefficients ranging from [0,1] and negative coefficients

ranging from [-1,0) are assigned 0 at evaluation time. Namely, sensors with inverse

relationships are given no trust. Pearson’s Correlation coefficient is given by:

ρ =
cov(x, y)

σx × σy
(4.3)

where

x: The sensed values during Te of the sensor with data to be reconstructed.

y: The sensed values of the candidate sensor during Te.

σx: The standard deviations for x.

σy: The standard deviations and y.

d) Trajectory Behavior Similarity

To compare the trajectory behavior between the baseline node and each candidate

node, we utilize Beta analysis [Dam, SAPA+18]. Specifically, we compute Speed

Beta (βs), and Angle of Travel Beta (βθ). Betas quantify how similar or dissimilar

each node behaves in relation to the evaluating node. The ideal candidate sensor

would return a beta value of 1 for both betas, βs and βθ, meaning that both sensors

had the exact trajectory behavior. The similarity in trajectory variations along the

sensors’ trajectory path for a pair of sensors is computed as:

βu =
cov(uc, um)

var(um)
(4.4)

where uc and um: are the speed or angle of travel values of the candidate sensor

during Te and the sensor with missing data, respectively. The beta values are
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normalized to be transformed into weight coefficients. The new normalized values

represent the probability that the value could appear in the given historical data.

To obtain the normalized beta values, β′u, we compute the following formula:

β′u =
βu −min(βu)

max(βu)−min(βu)
(4.5)

where

βu: The non-normalized beta values.

min(βu): The minimum values of all the collected beta values that a sensor contains.

max(βu): The maximum values of all the collected beta values that a sensor has.

Total Trust Computation

Combining the five parameters described above results in our total trust formula.

The total trust is computed as follows:

τ =
(w1φc) + (w2φx) + (w3ρ) + (w4β

′
s) + (w5β

′
θ)

w1 + w2 + w3 + w4 + w5

(4.6)

where

φc: The confident level.

φx: The spatio-temporal closeness.

ρ: The Pearson’s Correlation coefficient.

β′s: The normalized speed beta.

β′θ: The normalized angle of travel beta.

w1, w2, w3, w4 and w5: User-defined weights assigned to each parameter.

Once the sensor containing missing data has computed the total trust (τ) for

each candidate sensor, it will select the sensor(s) with the highest value (τ), as shown

in Algorithm 2. Finally, the selected sensors’ information is used to approximate

the missing data.
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Missing Value Approximation

If at least nc candidate nodes with φc = 1 exist, the diversified trust portfolio

and data predictions are made using Equations (4.7) and (4.8). If that does not

exist, then linear regression is employed is employed. Equations (4.9) and (4.10) are

employed for the prediction. Where nc is a user-defined parameter that specifies the

minimum quantity of candidate sensors are preferred to employ the diversified trust

portfolio technique.
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a) ∃ nc Candidate Sensors with φc = 1

Based in the portfolio selection technique proposed in [Mar52], instead selecting one

single candidate node, we diversify the trust throughout a set of candidate sensors.

Choosing a set of candidate sensors can help to minimize the error between the

predicted data and the real values. The diversified trust portfolio assigns weights to

multiple candidate sensors based on the risk to trust each sensors’ data [SAPA+18].

To find the weight to be assigned to each candidate sensor, it is necessary to minimize

the relative observation error:

E(w1, w2, ..., wnc) =

√∑
j∈{t·}fo\tm(

xdj−
∑nc

i=1 xcj×wci

xdj
)2

|Te| − 1
(4.7)

where

nc: The total number of candidate sensors.

xdj: The sensed values of the sensor missing data at time j.

xcj: The sensed values of the candidate sensor during time j.

wci: The weight variable to be minimized.

|Te| − 1: The cardinality of the set of time instants under evaluation, excluding tm.

tm: The time containing the missing data we are approximating.

This is a continuous function with a compact domain, so there is a guaran-

teed minimum and maximum. To find the combination of weights that will depict

the highest precision when approximating the missing value, the diversified trust

portfolio is generated by minimizing E(w1, w2, ..., wnc) such that wi ≥ 0 for any

i = 1, 2, ..., nc. After the weights have been spread out among the candidate sensors

to minimize the error, the estimated value, R, is calculated as follows:

R =
nc∑
i=1

xcim × wci (4.8)

where

xcim: The sensed value of the candidate sensor ci at the missing time m.
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wci : The weight assigned by the trust portfolio to the candidate sensor ci.

b) @ nc Candidate Sensors with φc = 1

If there are no sensors that do not contain an missing values in Te, then we select

one candidate sensor with the highest trust value τ . To approximate the value at

the time with missing data, we calculate the r-correlation coefficient [MPV12] as

below:

r =

tf∑
i=to

(xi − x̄)(yi − ȳ)√
tf∑
i=to

(xi − x̄)2(yi − ȳ)2

(4.9)

where b1 = r σx
σy

.

b0 = ȳ − (b1 × x̄).

x: The values for the sensor containing missing data.

y: The sensed values for the sensor the candidate sensor.

x̄: The mean of the sensed values of the sensor containing missing data.

ȳ: The mean of the sensed values the candidate sensor.

ym: The sensed value of the selected candidate sensor at tm.

The missing value, R, is approximated as:

R = b0 + (b1 × ym) (4.10)

where

b0: The estimate of the regression intercept.

b1: The estimate of the regression slope.

ym: The value provided by the candidate sensor that is employed for the prediction.
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4.5 Simulations and Interpretation of Results

To evaluate the performance of our method, a number of mobile sensor nodes were

placed in an area. The sensors followed the steady state random waypoint mobil-

ity model [NC04]. We utilized the Bonnmotion Mobility Scenario Generation and

Analysis Tool to generate sensor mobility and MATLAB to simulate our testing en-

vironment and perform the data cleaning computations. In this assessment, sensors

move with a mean speed and transmission range of 20 miles per hour and 15 me-

ters, respectively. For our simulation, we used the Melbourne dataset [mel], where

sensors collected temperature at 8 different locations from February 23-28, 2015.

This collected data was used to generate the values of reference when evaluating

the performance of our proposed method. We employed a 50-minute time window

divided into two phases: sensing phase of 42.5 minutes and reconstruction phase

of 7.5 minutes. Every time instant tj had a duration of 30 seconds and sensing

occurred asynchronously during every time instant of the sensing phase.

The values for α and γ are 1 and 0.01, respectively, and are the hyper-parameters

for our selected dataset evaluated using cross-validation. The weight parameters w1,

w2, w3 w4 and w5 employed to calculate total trust are equal to 1, as we consider

all parameters to be equally important. |Te| and nc are 10 and 5, respectively. The

simulation was performed with 900, 450 and 250 nodes in an area of 90,000 m2. The

percentage of missing samples were 20%, 50%, and 70%. The performance of our

technique was evaluated by calculating the Root Mean Square Error (RMSE) of all

reconstructed samples at each time instant. RMSE is a quadratic scoring rule that

measures the average magnitude of the error and is beneficial in penalizing large

errors. To evaluate our results, we compared DTWA with IMC [ZSS14].

Table 4.2 shows the average percentages of missing data reconstructed using

first-hand and second-hand data throughout our simulation. It also presents the

average distribution of missing data generated by each of the data loss patterns

simulated. As element frequent loss in a row is the most common data loss pattern

in MWSN, up to 66.51% of the missing data was lost using that data loss pattern.

Up to 22.51% and 20.54% of the missing data was generated using the element

random loss pattern and the successive element loss in a row pattern, respectively.
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Sensor Count n 250 450 900

First-Hand 42.07% 31.42% 36.71%

Second-Hand 57.93% 68.58% 63.29%

Element Random Loss 21.64% 22.51% 22.09%

Element Frequent Loss in a Row 58.20% 56.95% 66.51%

Successive Element Loss in a Row 20.16% 20.54% 11.40%

Table 4.2: Average Data Loss and Collection Statistics

Figure 4.5: Collected Data Variance

Figure 4.5 shows a sample of the variance of the data collected by the 450 sensors’

simulation. The variance of the data collected in all of our simulations had similar

behavior with a spiked variance in the initial few time instances and a constant lower

variance once all sensors have collected a few values. This is due to the steady state

behavior of our sensors in our simulation. From the behavior of the data collected

and the RMSE at each simulation, it is inferred that the RMSE and the variance

are directly proportional.

The RMSE of the values reconstructed by DTWA contrasted against IMC for

250 sensors’ simulation is shown in Figure 4.6. When tested for 50% of incomplete

data, IMC shows to be highly competitive compared to DTWA. However, when

tested for 70%, it is evident that it is much harder for IMC to learn which sensor
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is most trustworthy, while DTWA is resilient to high quantities of missing data.

This is because IMC only considers Spatio-temporal and sensed value correlations

while DTWA considers additional parameters that influence the data reconstruction

process in real-life applications. Figures 4.6, 4.7, and 4.8 contain insets to more

clearly see the RMSE at each time instant after the initial spike in the variance.

(a) 50% Dirty Data (b) 70% Dirty Data

Figure 4.6: 250 sensors collecting Melbourne Data.

(a) 50% Dirty Data (b) 70% Dirty Data

Figure 4.7: 450 sensors collecting Melbourne Data.

53



(a) 50% Dirty Data (b) 70% Dirty Data

Figure 4.8: 900 sensors collecting Melbourne Data.

The likelihood of finding an optimal sensor with the most valid data and similar

trajectory behaviors increases as the number of sensors increases. Utilizing the

trust parameters evaluation, DTWA selected second-hand data in up to 68% of its

predictions, as shown in Table 4.2. IMC shows spikes in their RMSE throughout

the simulations because, at particular time instances, the amount of available valid

data is minimal. DTWA depicts a low and stable RMSE regardless of how many

missing values there were at a specific point in time.

The increase in the number of sensors complicates the selection of trustworthy

sensor(s) in data reconstruction techniques. Figures 4.7 and 4.8 demonstrate that

DTWA performed better compared to IMC by predicting the missing data with

higher precision, even when the number of sensors and their interactions were in-

creased. It was easier for DTWA to approximate the values because the prediction

of the missing data depends on the evaluation of different behavior parameters in

both first-hand and second-hand data.
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4.6 Summary

DTWA is a novel and effective light-weight in-network technique designed to recon-

struct highly incomplete datasets in mobile environments. Our scheme quantifies the

level of trust in data accuracy for each candidate sensor and revolves around com-

mon factors and conditions faced by each node in real-world applications. DTWA’s

accuracy is obtained from the selection of sensor(s) with the highest quantity of

high-quality, spatiotemporally correlated data and with a significant resemblance in

trajectory behavior. DTWA can be easily tailored to different scenarios in MWSN,

and the flexibility of the modification of weights given to each attribute can con-

tribute to meet specific user requirements in diverse scenarios. The dynamic adap-

tive features of DTWA makes it suitable for evaluating the certainty of data accuracy

for neighboring sensor nodes in scenarios with large quantities of missing data and

sensor count, such as in IoT.

When compared to IMC, another useful light-weight algorithm, DTWA demon-

strated its outstanding capabilities to consistently achieve high data accuracy with

vast quantities of missing data. Since IMC showed to outperform LLSE and the

Mean methods [SGG10, JAF+06], and DTWA outperformed IMC, we can derive

that DTWA can achieve better data accuracy than the two well-known methods,

LLSE, and the Mean. Contrary to various current methods, the evaluation of trust in

DTWA is not affected by past interactions, which addresses the newcomer problem.

DTWA is also an energy-aware method, as sensors will only compute predictions

when there is missing data.
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CHAPTER 5

USING CANDLESTICK CHARTING AND DYNAMIC TIME

WARPING FOR DATA BEHAVIOR MODELING AND TREND

PREDICTION FOR MWSN IN IOT

There is a rapid emergence of new applications involving MWSN in the field of

the Internet of Things. Although useful, MWSN still carry the restrictions of having

limited memory, energy, and computational capacity. At the same time, the amount

of data collected in the Internet of Things is exponentially increasing. In this chapter

we propose a data abstraction and trend prediction technique, called Behavior-Based

Trend Prediction (BBTP), to address the limited memory constraint in addition to

providing future trend predictions. Predictions made by BBTP can be employed

by real-time decision-making applications and data monitoring. BBTP applies the

Japanese Candlestick charting technique, popularly employed in financial markets

to abstract the data behavior of a time partition in evolving data streams. It also

quantifies differences between a pair of consecutive time partitions utilizing dynamic

time warping at the sensor node. Then, it forwards the data to an Internet-enabled

device, where the sensor’s future data trends are predicted. Our results demonstrate

that data trends predicted by BBTP achieve better precision, recall, and accuracy

score when contrasted against four well-known techniques while reducing the space

complexity by at least a factor of 10. This chapter is organized as follows: An

introduction to predictive methods in MWSN is provided in Section 5.1. Section 5.2

presents the problem statement. Section 5.3 introduces the proposed method. The

evaluation of results and the summary can be reviewed in Section 5.4 and Section

5.5, respectively.
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5.1 Introduction

Mobile wireless sensor networks (MWSN) are essential elements of the Internet of

Things (IoT) as they increase the coverage of the Internet and the expansion of

computing [YH18]. The well-known resource constraints in these types of networks

include limited memory, low computational capacity, and restricted power sources.

It is for this reason data abstraction techniques that reduce the required stored

and transmitted data and effectively model the evolving data streams are crucial.

Although real-time monitoring and prediction of future data values are beneficial

for decision support, the projection of data streams behavior trends is particularly

relevant for applications that seek to take preventive actions. While the prediction

of specific values can assist in taking preventative measures, the ability to foresee

the direction of the data evolution may have the same impact without the added

computation involved in the prediction of data values.

This chapter proposes a Behavior-Based Trend Prediction (BBTP) method that

abstracts the behavior of data and predicts their future trends. BBTP consists of

the use of three main algorithms: a Japanese candlestick charting technique for

data abstraction, a similarity measure using dynamic time warping (DTW), and a

multi-class Support Vector Machine (SVM) for trend prediction. The Japanese can-

dlestick charting technique models the historical behavior of evolving data streams

for a sensor node. Then, dynamic time warping (DTW) measures the similarity

between consecutive time partitions to characterize the changes and progression of

the extracted data over time. Lastly, the SVM learns the data behavior progression

from the similarity measures obtained during the DTW stage and predicts future

data trends. The data reduction propelled by BBTP results in multiple benefits,

including network traffic reduction and energy preservation at the sensor node level,

and a prolonged functionality of the network [BH14]. At the Internet-enabled device

level, less data is required to train the model, without having to trade off the accu-

racy of predicted trends. The applicability of our proposed solution may extend to

a variety of applications in IoT in which data streams possess an evolving behavior.
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5.2 Problem Statement

The goal of this work is to reduce the amount of required stored data in sensor

nodes. This reduction in data through data abstraction can lessen the network traf-

fic and reduce the energy employed during the transmission of large volumes of data

streams. The individual sensor nodes also serve to perform the data abstraction

to aid in modeling the evolving behavior of data streams in an in-network fash-

ion. An effective abstraction and modeling will result in accurate future data trend

predictions. We consider a scenario as shown in Figure 5.1, where mobile sensors

communicate to Internet-enabled devices. In this scenario, the data abstraction is

performed by the sensor node and then data is forwarded to the IoT device, where

trend predictions are computed. The predictions are sent to a server, where it can

be stored and accessed through a dashboard for visual analysis and monitoring or

which can be employed for decision-making in real-time applications.

Figure 5.1: Mobile Wireless Sensor Networks in the Internet of Things
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5.3 Behavior-Based Data Prediction

Our Behavior-Based Trend Prediction (BBTP) method abstracts the behavior of

sensor’s data generated in the form of data streams. For this behavior abstrac-

tion, BBTP employs a candlestick charting technique, commonly used in currency

markets analysis. Once the data is partitioned, each time partition or candlestick

contains the data of a user-defined time duration. In other words, each candlestick

represents the data during this given time duration. Once the data is extracted, our

method employs the Dynamic Time Warping (DTW) algorithm to quantify the be-

havior similarity between each consecutive pair of time partitions, or candlesticks.

The trend prediction in our technique utilizes a multi-class SVM that learns the

evolution of the behavior of the abstracted data to make the predictions. These

three main steps are depicted in Algorithm 3, where the inputs are the sensor’s

evolutionary data streams ({x1, x2, x3, ...xn}) and the user-defined time duration

(dt).

In our analysis of data behavior, a sensor only evaluates the data it collects and

not data collected by surrounding sensors. It mainly focuses on the progression of

the sensor’s historical information and its data evolution throughout a given period.

In other words, our data behavior analysis is only concerned with the data a sensor

generates about itself and its data evolution over time. Data behavior analysis

assumes that the data evolution reflects the variables and factors that influence

the sensing data and cause its behavior to change. Due to this reason, analyzing

a sensor’s historical data is enough to make predictions about future data trends
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without the need to exhaust resources by collecting and analyzing different variables.

Data evolution patterns, or data pattern progress, are fundamental aspects of data

behavior analysis as these patterns are the ones that provide the SVM with a strong

basis to predict the data behavior that the sensed phenomena will exhibit next.

5.3.1 Augmented Candlestick Data Abstraction

In financial markets, the Japanese candlestick charting is a technique widely used for

investment decision making [Nis01]. This technique facilitates the identification of

patterns in price movements of currencies. In MWSN, we use candlesticks to extract

features that describe the changes experienced by the sensed data in a user-defined

time duration, dt. In our BBTP approach, the candlestick abstraction technique is

the foundation of the data behavior analysis. A candlestick extracts the first, last,

minimum, and maximum sensed values registered during a time partition. Tradi-

tional augmented Japanese candlestick has a feature that also represents the number

of transactions that took place during a time partition [CJKO15]. Differently from

traditional augmented candlesticks, BBTP method substitutes the features related

to the behavior of the financial markets with features that describe the behavior of

the sensor node.

The features Q(t) and E(t) are the cardinality of the collected data and the

Euclidean distance traveled during the time partition, respectively. Q(t) serves as

a means to compare the sampling interval stability between time partitions as a

significant difference between the sampling intervals of two time series streams can

influence the accuracy of the predictions made. Moreover, behavior extraction tech-

niques usually make assumptions that are not met by real world scenarios (e.g.,

uniform sampling rate during each time partition). The feature E(t) provides spa-

tial information of the sensor node and is only added in applications where the

captured phenomena depict spatio-temporal features, such as environmental moni-

toring applications [KXL+13]. A candlestick C at time partition t with duration dt

can be represented as follows:

C(t) = (F (t), X(t), N(t), L(t), Q(t), E(t)) (5.1)

60



where:

F (t): First sensed value.

X(t): Maximum sensed value.

N(t): Minimum sensed value.

L(t): Last sensed value.

Q(t): Cardinality of the collected data.

E(t): Euclidean distance traveled during time partition.

To quantify the similarities between candlesticks, the extracted features must

be comparable. A normalization process to allow this comparison must take place

using the following:

A′(t) =
A(t)− L(t)

σL
(5.2)

B′(t) =
B(t)

σB
(5.3)

where the Equation (5.2) is used to normalize the first sensed value F (t), the maxi-

mum sensed value X(t), and the minimum sensed value N(t) of the candlestick. L(t)

and σL are the last sensed values and its standard deviation, respectively. Equation

(5.3) is used to normalize the cardinality of the total sensed values collected Q(t),

the Euclidean distances traveled by each sensor in one candlestick E(t), and the

last sensed values L(t) where σB is their respective standard deviations. A sequence

of multiple normalized candlesticks allow for a generalized visualization of behavior

evolution over prolonged periods of time. The total number of candlesticks is de-

noted as n. A candlestick chart represented by a sequence of normalized candlesticks

S(t) is defined as:

S(t) = (C ′(1), C ′(2), ..., C ′(n)) (5.4)

Upon completion of the candlestick charts, the sensor discards the sensed data

and stores only a data stream containing the sequence of normalized candlesticks. A

description of the data abstraction process is showed in the Algorithm 4. Once data

abstraction has been completed, the sensor node is ready to quantify the similarities

between each candlestick by using the dynamic time warping technique.
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5.3.2 Similarity Quantification

We employ the Dynamic Time Warping (DTW) algorithm to measure the similarity

between two consecutive candlesticks [SC07]. This step of the behavioral analysis

compares the past and evolving patterns to aid in the prediction of future data

trends. The DTW algorithm calculates the optimal alignment path between the

individual elements, or attributes, in each candlestick to quantify their dissimilar-

ity. The smallest path found between two candlesticks evaluates how different two

candlesticks are. Two candlesticks that are identical will result in a DTW measure
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of zero. The dissimilarity between two candlesticks is summarized in a single value,

which favors a faster classification during the next step of BBTP and reduces the

space complexity to the final form in our method. After the DTW is completed, the

data is entirely abstracted.

The Euclidean distance is the distance measure used between two candlesticks

and is the sum of the squared distances from the n-th attribute in one candlestick

with the n-th attribute value in the other. A warp path W = (w1, w2, ..., wa) is

constructed when comparing the attributes of the candlesticks. This warp path is

of length a, where a is the number of total attributes used in the candlesticks. As

in Figure 5.2 a warp path can be found from D(F (t+ 1), F (t)) to D(E(t+ 1), E(t))

between candlesticks C(t) and C(t + 1), and is calculated upon completion of the

filled cost matrix. The cost matrix is filled one column at a time starting from the

bottom to the top, from the far left to the right column. The value of one cell in

the cost matrix is calculated using the following:

D(i, j) = Dist(wi, wj) + min[D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)]

where i and j represent each normalized data attribute F , X, N , L, Q, and E

from the candlesticks C(t) and C(t + 1). The warp path is calculated in reverse

order starting from D(E(t), E(t+ 1)). A greedy search is performed that evaluates

cells to the left, down, and diagonally to the bottom-left, similarly to the calculation

of the cost matrix. Whichever of these three adjacent cells has the smallest value

is added to the beginning of the warp path found so far, and the search continues

from that cell. The search stops when D(F (t), F (t+ 1)) is reached. The minimum

distance, between two consecutive candlesticks, C(t) and C(t+ 1), is defined as:

Dist(W ) =
a∑
k=1

Dist(wki, wkj) (5.5)

where Dist(wki, wkj) is the dissimilarity between the two data point indexes, i and j,

visually represented by one square in the cost matrix. The optimal path alignment

or minimum-distance warp path is calculated by constructing a two-dimensional
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a × a cost matrix D, where the value of D is the minimum distance warp path

that can be constructed from two consecutive candlesticks. The value that truly

describes the behavior in a sequence S(t) is obtained when the DTW minimum

distance measures have been calculated for all pairs of consecutive candlesticks.

Lastly, for each candlestick, the DTW similarity measure between one candlestick

and the next is stored. The candlesticks are discarded and only the DTW values are

employed for training. The usage of DTW values facilitates the discovery in data

evolution patterns to predict the behavior of future data trends.

Figure 5.2: Cost matrix for Candlesticks C(t) and C(t+1) with a traced warp path
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5.3.3 Data Behavior Learning and Prediction

To learn from the sensor’s data behavior and subsequently perform predictions,

BBTP uses a multi-class Support Vector Machine (SVM) [WX14]. As studied by

various authors [WZWM17, MHF07, TNK17], SVM has good performance for classi-

fication problems when compared with other techniques, including Random Forest,

HMM and K-NN. Support Vector Machines tend to be less prone to overfitting

problems, a desirable quality in MWSN given that the presence of noisy data is

common in these types of networks. Overfitting happens when a model learns the

details and noise in the training data to the extent that it negatively impacts the

performance of the model on new data. In other words, when a model overfits, the

model recognizes the noise in the training data and learns it as principle.

The SVM step of the BBTP technique utilizes the DTW output and its corre-

sponding labels to learn from the behavior extracted from the already abstracted

data. The labels are assigned depending on the trend between two DTW values, or

three consecutive candlesticks. There are three possible classes or trends: a negative

or downward trend, zero or flat trend, and a positive or upward trend. For each

dissimilarity measure between DTW values yt−1 and yt, the label lt is determined

as follows:

lt =


−1, yt−1 > yt

0, yt−1 = yt

1, yt−1 < yt

(5.6)

Once the dissimilarity measures have been classified, the SVM is trained. Given

training data {(y1, l1), ..., (yn, ln)} ∈ R×{−1, 0, 1}, where t ∈ {1, 2, ..., n}. Our goal

is to solve the following primal problem:

min
w,b,ζ

1

2
wTw + C

n∑
t=1

(ζt) (5.7)

subject to lt(w
Tφ(yt) + b) ≥ 1− ζt, ζ≥0, and t = 1, 2, ..., n. Its dual is

min
α

1

2
(α)TQ(α)− eT (α) (5.8)
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subject to lT (α) = 0, 0 ≤ αt ≤ C, and t = 1, 2, ..., n where y and l are the

dissimilarity measures and the corresponding trend classes, respectively. w is a

linear combination of the training patterns, and C > 0 is the upper bound. ζt is a

slack variable that allows for errors and approximation in case the above problem is

unfeasible. Q is an n× n positive semidefinite matrix, Qij ≡ k(yi, yj) = φ(yi)
Tφ(yj)

is the kernel of the function φ, which is employed to map the training vectors into

feature space, and here i and j ∈ t, but i 6= j. Furthermore, e is the vector of

all ones, the threshold b is computed to satisfying the Karush-Kuhn-Tucker (KKT)

conditions [?], and αt, α
∗
t are weight Lagranian multipliers employed to perform the

dualization of the primal problem. Finally, the decision function is returned by:

sgn(
n∑
t=1

ltαtK(yt, y) + ρ) (5.9)

where K(yt, y) represents the evaluating kernel functions. This function returns a

predicted data trends. As the SVM technique is trained given dissimilarity measures,

the predicted trend is dependent on the abstracted behavior rather than just the

behavior of raw sensed values.

5.4 Experimental Results

To assess the performance of our proposed method, we conducted simulations us-

ing the Python programming language and two real-world datasets, OpenSense

[LFS+12] and Physionet MIMIC II [SVR+11]. To contrast the results of BBTP,

we have selected four well-known classification methods widely employed for predic-

tions [KAA18]: Random Forest, Decision Tree, K-Nearest Neighbor (K-NN), and

SVM without our behavior abstraction step.

As a prediction accuracy metric, we have employed the statistical metrics recall,

precision and accuracy score [SL09]. Recall measures the ability of a classification

model to identify all relevant instances, while precision measures the ability to re-

turn only relevant instances. While recall measures the ability to find all pertinent

instances of a dataset, precision measures the proportion of the data points our

66



model says was relevant truly were relevant. The Table 5.1 shows the confusion

matrix for the four possible outcomes during prediction where precision and recall

are mathematically formulated as:

precision =
true positives

true positives+ false positives
(5.10)

recall =
true positives

true positives+ false negatives
(5.11)

Actual

Positive Negative

Positive True Positive False Positive

Predictions Negative False Negative True Negative

Table 5.1: Confusion Matrix for Binary Classification

In addition, we computed the accuracy score, which evaluates the subset of

predictions which were labeled exactly the corresponding set of true labels. In other

words, if p′i is the predicted value of the i-th sample and pi is the corresponding

actual value, then the fraction of correct predictions over ntrends the accuracy score.

This is defined as:

Accuracy(p, p′) =
1

ntrends

ntrends−1∑
i=0

1(p′i = pi) (5.12)

5.4.1 OpenSense Dataset

In the OpenSense project, sensors were placed on ten trams traveling through the

city of Zurich. The installed sensors collected temperature, humidity, and the ozone

concentration levels along with their longitude and latitude from May 31st, 2013

18:40:00 to June 7th, 2013 20:06:40. These attributes have spatio-temporal corre-

lation [KXL+13]. As a result, it contains finite-time stability and will not change

abruptly. Making the use of this dataset is suitable for our BBTP technique as it is

an evolving data stream. We specifically employed our BBTP method utilizing the
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ozone concentration data values, along with the latitude and longitude points. The

total amount of collected data in this simulation is 124,815 samples of ozone concen-

tration levels, latitude, and longitude points. The average amount of data collected

from each tram is 11,347 samples. Figure 5.3 contains a visual representation of all

the collected ozone concentration levels and latitude/longitude points over time.

(a) Collected Ozone Concentration Levels (b) Trajectories Coverage

Figure 5.3: OpenSense Dataset

For this simulation, it is assumed that outliers have been eliminated. All data

contained in the sensor internal memory is considered valid and to be used for the

future data prediction. Sensors have a priori knowledge of the area in which the are

deployed. With every sensed value collected, the sensor will register timestamp and

its location (latitude and longitude) information. Once the data has been collected,

the timestamps, ozone levels concentrations, and location points are used to model

the behavior of the data through our data abstraction step. Once data abstraction

has been performed, the reduced data is forwarded to the IoT device. The IoT device

learns the behavior and performs the future trend prediction of ozone concentration

levels for the specific route. The timestamp represented in each candlestick was

10 minutes in duration (dt = 10 minutes). In this study, since environmental data

depicts a spatio-temporal relation [KXL+13], the attributes extracted to construct

candlesticks are the first (F ), last (L), minimum (N), and maximum (X) sensed

values. In addition, the cardinality of the collected data per candlestick (Q), and
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the Euclidean distance traveled during the time partition (E) were included as

augmented features in our candlestick data structure. After the candlestick charts

were constructed, behavior dissimilarity measures were computed resulting in 3,069

values employed for training the model. For the contrasting methods, the training

data size employed was the original 62,409 ozone concentration values. Half of

the data was used for training, and the other half was used for testing. In this

application, we simulated this by training for 24 hours and testing for 24 hours at a

time.

Figure 5.4: Recall in OpenSense Simulation

The ability to predict upward trends, downward trends and flat trends, and the

over all accuracy of the predictions made for all studied methods, can be examined in

Figure 5.4, 5.5 and 5.6. It can be observed that BBTP outperformed SVM, Random

Forest, Decision Tree and K-NN. Moreover, it is notable that SVM showed superior

performance against Random Forest, Decision Tree and K-NN, which confirms the

selection of SVM as the appropriate classification method employed in the final

stage of BBTP. Although all classifiers had a good performance and that BBTP

performance was slightly better than SVM, it is important to note that the amount

of data employed to train the model in BBTP represents 4.92% of the training data
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utilized by the other techniques as observed in Table 5.2. Therefore, we can draw the

conviction that BBTP’s data abstraction and behavior characterization strategies

Figure 5.5: Precision in OpenSense Simulation

Figure 5.6: Prediction Performance in OpenSense Dataset
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effectively model the behavior of evolving data streams.

Prediction Technique Accuracy Score Training Size

BBTP 0.9970 3,069

SVM-only 0.9964 62,409

Decision Tree 0.9925 62,409

Random Forest 0.9935 62,409

K-NN 0.9972 62,409

Table 5.2: Accuracy Scores for OpenSense Dataset

5.4.2 PhysioNet MIMIC II Dataset

PhysioNet MIMIC II database used in our simulation contains 4,458 vitals records

from 3,704 adult Intensive Care Unit (ICU) patients and 249 neonates. For this

study, we have selected the time series of vital signs sampled. The hemoglobin sat-

uration levels (SpO2) were sampled per minute for thirty different patients during

different dates from 2009 to 2017. The data recorded for each patient ranged from

one to fifteen days, resulting in a with a total 122 days of total data. The average

amount of data collected from each patient was 5,778 samples. In total 216,767 sam-

ples were collected, and 173,312 samples remained after the outliers were removed.

Figure 5.7 shows the SpO2 values for a sample patient. Most of the patients con-

tained values that behave similarly. Although patients’ vitals data had an evolving

data behavior, it is not as evident in all patients, as in the air quality data. It is

common for physiologic time series to be interrupted or changed occasionally during

recordings of such long duration [GAG+00].

The time represented in each candlestick was 15 minutes in duration (dt = 15

minutes). In this study, the sensed data does not depict spatial dependence and for

that reason the Euclidean distance augmented feature was not included in the data

behavior analysis. The attributes extracted to construct candlesticks are the first

(F ), last (L), minimum (N), and maximum (X) sensed values. In addition, the

cardinality of the collected data per candlestick (Q). After the candlestick charts

were constructed, behavior dissimilarity measures were computed resulting in 9,241
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values employed for training the model. For the contrasting methods, the training

data size employed was 138,649 values. A total of 2,310 trends were predicted

employing each of the tested methods. Due to the increased amount of data available

and the lower overall sensed data variance, all techniques tested performed with a

Figure 5.7: Sample Patient from PhysioNet MIMIC II Dataset

Figure 5.8: Recall in PhysioNet MIMIC II Simulation
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Figure 5.9: Precision in PhysioNet MIMIC II Simulation

Figure 5.10: Prediction Performance in PhysioNet MIMIC II Dataset
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higher accuracy compared to the environmental simulation. However, BBTP still

employed less than 7% of the data used by other methods for model training and

it showed comparable recall and precision scores and a higher accuracy score as

showed in Table 5.3 and Figures 5.8, 5.9 and 5.10.

Prediction Technique Accuracy Score Training Size

BBTP 0.9999 9,241

SVM-only 0.9982 138,649

Decision Tree 0.9979 138,649

Random Forest 0.9980 138,649

K-NN 0.9966 138,649

Table 5.3: Accuracy Scores for PhysioNet MIMIC II Dataset

5.5 Summary

Our Behavior-Based Trend Prediction approach is a novel data trend prediction

technique designed to model the behavior of evolving data streams in MWSN. Our

method reduces the space complexity in sensor nodes and exploit the increasing IoT

technology benefits. The aftereffect of reducing the size of the data at the node level

also corresponds to a reduction of the network traffic, which as well, may lead to

fewer message collisions and re-transmissions.

BBTP’s ability to effectively model evolving data streams’ behavior has been

demonstrated through its simulations in two real-world datasets. During the can-

dlestick data abstraction, together with the sensing data, BBTP captures meaningful

information that describes the true conditions of the real-world to model the sens-

ing data behavior. This information includes the sampling interval stability and the

distance traveled by the sensor node between consecutive time partitions. The main

virtue of the dynamic time warping lies in its capability to encapsulate the behavior

of the data together with the real world conditions in a single value. This behavior

characterization makes it possible to discard large amounts of data without losing

the information about behavior over time. In addition, the use of the behavior

dissimilarity measure as input to train the SVM enables the use of a tiny fraction
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of data compared to the original sensed data, while still maintaining competitive

results.

BBTP had better efficacy than SVM method without data abstraction, even

when SVM employed up to 95% more data to train the model. Moreover, BBTP’s

superior performance is justified by its behavior-based learning principals, rather

than learning from raw data. This quality makes BBTP suitable for MWSN, where

there is limited memory, low computational capability, and small or irreplaceable

power sources. Overall, BBTP shows diverse applicability in mobile wireless sensors

in the field of Internet of Things.
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CHAPTER 6

DATA CLEANING DISTRIBUTION IN EH-MWSN

The use of energy-harvesting technologies in mobile wireless sensor networks (MWSN)

delivers a promising opportunity to mitigate the limitations that irreplaceable en-

ergy sources impose over conventional MWSN. Existing energy-efficient methods

that exploit the benefits of energy-harvesting technologies focus on increasing the

uptime of individual sensor nodes; however, they lack planning in the survivability

of the network as a whole. Moreover, the existing methods do not consider the

consequences that dirty data can have on real-time decision-making applications.

In this chapter we propose an Leontief Data Cleaning Distribution Strategy

(Leontief-DCD), an economic-based method designed to distribute the data cleaning

workload in energy-harvesting MWSN powered by predictable energy sources, such

as solar energy. The resulting data cleaning distribution strategies computed aim to

increase network uptime and the quantity of data that is run through data cleaning

processes. Our method creates interdependencies among sensor nodes to predict

the required cooperation from each node in the data cleaning process benefiting the

network as a whole, rather than only individual sensors. Furthermore, our results

show that when employing our method to distribute data cleaning workload in

highly dirty, real-world datasets in scenarios with high and low energy, our method

increased the number of data samples engaged in data cleaning processes by up to

25.57%, the count of active sensor nodes by up to 44.01%, and the network overall

well-being by up to 55.42%. This chapter is organized as follows: The Section 6.1

offers an introduction to energy harvesting MWSN. The problem statement can

be reviewed in Section 6.2. The Section 6.3 present our proposed method. The

evaluation of results are described in Section 6.4. Lastly, Section 6.5 presents a

summary.
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6.1 Introduction

The limited energy resources that characterize MWSN is a major bottleneck for

applications in this type of networks. However, through energy-harvesting technolo-

gies, nodes are in theory enabled to have infinite lifetime when in Energy Neutral

Operation (ENO) [KHZS07]. Formally defined, a node in ENO state harvests more

energy than it consumes [AMAT+18]. In other words, its energy consumption rate

is always less than its harvesting energy rate. Although sensors’ lifetime is not a

critical problem in energy-harvesting mobile wireless sensor networks (EH-MWSN),

network uptime can be affected. Generally, in EH-MWSN, when a node does not

possess enough energy to perform its normal functions, it adopts energy-saving

strategies and becomes operational only when its onboard residual energy reaches

a predefined threshold. These energy-saving strategies, together with the reduction

of the network’s uptime, may limit a sensor network’s functionality, including the

ability to sustain data accuracy to be employed in decision-making applications.

As discussed in chapter 2, substantial attention has been placed in methods in-

volving the management of energy with the purpose to reduce network downtime

[FD11, GHZH14, ZCZ+16, KHZS07, VGB07, ZSA11, SSCS17, TAH+15, Cui18].

Nevertheless, limited attention has been placed on increasing data quality. More-

over, data collected in EH-MWSN has an exponential growth, and its mobility chal-

lenges the accuracy of data due to sensor isolation, short-term sensor connectivity

and data collision[PGWC16, SBB13b]. All these difficulties result in high volumes

of missing, noisy or duplicated data.

With the large quantities of dirty data provided by mobile nodes, data cleaning

becomes critical due to its negative effects on data mining, machine learning models,

and decision-making applications [QWLG18, PGWC16]. For this reason, we focus

on helping sensor nodes increase data quality by distributing the data cleaning

among sensor nodes based on their onboard residual energy and quantity of dirty

samples while seeking to drive the network to a neutral operation state. It should

be noted that ideally, a network is described to be in neutral operation, Network

Neutral Operation (NNO), when all the sensor nodes that compose the network are

in ENO state. We establish the future NNO state by employing a simple regression

77



and the sensor’s onboard residual energy historical data to predict the energy at the

end of the following time slot. Finally, a workload distribution strategy is computed

based on the NNO state of each cluster.

In this method we apply the Leontief Input-Output model to achieve NNO by

distributing the data cleaning workload, without affecting network uptime in EH-

MWSN. Economic theories have been successfully solving problems in the world’s

economy, and in economy it is assumed that individuals are rational and have lim-

ited resources. For this reason, resources must be carefully allocated for maximum

benefits. Likewise in EH-MWSN, sensor nodes are considered rational and have

limited energy; therefore must use it carefully to avoid depletion. Additionally, in

economics individuals make decisions to obtain the most happiness at the least cost.

Similarly, sensors make decisions driven by self-interest to sustain high-quality of

service (QoS) and increase lifetime/uptime.

The Leontief Input-Output model analyzes the production and consumption in

an economy by quantifying the interdependencies between different sectors of an

economy [Leo86]. Correspondingly, in EH-MWSN we use this model to analyze the

relationship between production and consumption in a designed data cleaning work-

load distribution among the nodes of a network. In the Leontief model, economies

are divided into sectors, compared to EH-MWSN, where networks are composed

of nodes. Sectors produce and consume products/services that are used by other

sectors; in a like manner, sensor nodes produce and utilize data or other tasks that

are employed or delivered by other sensors. Examples of these tasks include data

forwarding, data cleaning and information sharing. In economics, this model as-

sumes that the demand is met without surplus or shortage, while in EH-MWSN the

energy the network uses for data cleaning is provided by the sensors of the network.

Overall, in both domains while the strategy is centrally planned, the execution of

the tasks is performed in a distributed manner.
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6.2 Problem Statement and Assumptions

The goal of our work is to develop a data cleaning workload distribution system

for EH-MWSN. The aim of this method is to ensure the availability of accurate

data while increasing network uptime in networks composed of nodes possessing

heterogeneous functions and capabilities. We consider an EH-MWSN composed of

n nodes deployed in a wide area where sensors communicate among themselves.

Nodes are embedded into vehicles and/or devices carried by people and move in

a determined pattern. Figure 6.1 shows an example of an EH-MWSN deployed

in a military environment. Deploying soldiers can be risky and dangerous. For

this reason, in this scenario, the middle area is patrolled by autonomous mobile

nodes to gather and distribute information to be employed in different applications

including perimeter surveillance and protection, nuclear, chemical, and biological

attacks detection, and missile monitoring [AFS17]. The availability of high-quality

data in EH-MWSN for military applications is imperative as it can decrease fatality

rate. Due to their mobility, some nodes received more solar energy than others

throughout their trajectories. The prediction of the energy to be harvested at the

node can help nodes adjust their functions to achieve individual nodes ENO.

Additionally, the energetic cost of data cleaning can be elevated for sensor nodes

with large amounts of data streams [SZ16]. Although, energy harvesting-enabled

nodes promise to deliver infinite lifetime when deployed in environments with a con-

stant energy supply, the heterogeneity and mobility of the sensors add challenges

that severely affect the collection of high-quality data [SBB13b] and uptime exten-

sion. To increase network uptime while ensuring high-quality data, it is necessary to

reach NNO instead of seeking to achieve individual node ENO. As a result, energy-

harvesting prediction can support the process of data cleaning workload distribu-

tion, which in return can help to accomplish NNO while propelling the availability

of high-quality data. It is assumed that sensors are mobile, cooperative and collab-

orative. In addition, sensors measure and store data in their internal memory, and

each one has an internal pre-process for detection and elimination of dirty data, re-

sulting in missing data. Since the second greatest energy consumer is computational

operations in in-network processing and, in EH-MWSN, the availability of a base
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station or a front-end for processing of large volumes of data is unlikely, the cost

of in-network data is elevated [AQAKS17]. Therefore, the in-network data cleaning

workload will be distributed.

The energy expenditure and energy-harvesting rates differ for each sensor node

and are dependent on each sensor operation and energy supply availability. We

borrow concepts from the efficient market hypothesis to create an energy profile

that can allow sensors to predict their future onboard residual energy. This financial

theory states that the price of a financial security fully reflects all relevant available

information [Fam66]. Likewise, we assume that in EH-MWSN the onboard residual

energy on sensor nodes reflects all available relevant factors (i.e. environmental

conditions, energy harvesting system architecture and sensor node functions) that

affect it. In addition, we consider that all onboard residual energy data is valid and

to be employed for future energy values predictions.

Figure 6.1: Example of EH-MWSN in Military Application
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We assume that at the end of each iteration, sensors form clusters and select a

cluster-head. Then, sensors send information related to their location, actual and

predicted residual energy, as well as the amount of dirty data to be cleaned to the

cluster-head. The cluster-head performs the data cleaning workload distribution,

and the data cleaning is completed by each node as instructed. Moreover, sensors

are assumed to have a priori knowledge of the area in which they are deployed.

6.3 Distributed Data Cleaning Strategy

In this section, we present our methodology for analyzing the energy and dirty data

input-output relationship employed to determine how to distribute the data cleaning

workload and achieve NNO. Sensor nodes within a EH-MWSN are heterogeneous

in their construction and functions, and often seek to reach ENO individually, risk-

ing the network survivability [AMAT+18]. Our technique keeps sensor nodes from

having to choose between data accuracy and NNO.

To understand how the Leontief Input-Output model is applied to EH-MWSN,

it is important to notice that the input-output relationship of energy and dirty data

in EH-MWSN are similar to supply and demand in economics. In economics, the

economy is composed of sectors which produce and consume products/services that

are used by other sectors. The output is the quantity of goods/services produced in

a given period of time by an industrial sector, to be consumed for further production,

and the input is what is used to generate output [Leo86]. The sensor nodes that

belong to an EH-MWSN behave similarly to industrial sectors. Sensor nodes within

a network can cooperate by generating data/providing services that can be used by

other sensor nodes. In the context of our research, sensor nodes can cooperate by

cleaning data of other sensors to be employed in decision making.

6.3.1 Energy Profile

To predict sensor nodes’ future onboard residual levels, we construct an energy

profile for each sensor node employing sensors’ onboard residual energy historical

data. To approximate the onboard residual energy at the beginning of the next
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iteration we employ linear regression [MPV12]. We use this data to predict the

future onboard residual energy, Z, by finding the linear regression line in the form

of Z = mx + b where x is the independent variable mapping to the times at which

the onboard residual energies were collected, m is the slope, and b is the y-intercept.

m is calculated as follows:

m =
u
∑
xy − (

∑
x)(
∑
y)

u
∑
x2 − (

∑
x)2

(6.1)

and

b =

∑
y

u
−m

∑
x

u
(6.2)

where y is the collected onboard residual energies and u is the number of samples

collected per iteration.

6.3.2 Data Cleaning Distribution Strategy

Our Leontief-DCD method is divided in two phases. The first phase determines

whether or not the sensors are in ENO and establishes the desirable state of the

cluster, NNO state. The second phase constructs a fair data cleaning workload

distribution strategy. In this step, Leontief-DCD takes in consideration sensors’

onboard residual energy and the amount of dirty data.

Desirable Future State

In EH-MWSN, sensors need to be in ENO to theoretically achieve an infinite lifetime.

We define ENO as the most desirable state, where the harvesting energy rate is

greater than or equal to the energy expenditure rate. In other words, sensors in

ENO state consume less energy than what they harvest. The identification of sensor

nodes that depict this positive increment in energy allows us to assign data cleaning

workload to this sensor nodes without compromising their uptime. To determine

ENO state, for each sensor node, we compare the current onboard residual energy

and the final onboard residual energy of the subsequent time slot, E(n,t) and Z(n,t),

respectively. If the energy-harvesting rate is greater than its consumption rate, such
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that E(n,t) < Z(n,t), the sensor node is in ENO state. Similarly, if E(n,t) ≥ Z(n,t), the

energy consumption rate is higher than the harvesting rate, so the sensor is not in

ENO state. This procedure can be visualized in the Algorithm 6.

Fair Cleaning Strategy

The fair cleaning strategy determines the data cleaning workload that each sensor

node in ENO will need to complete in order to fulfill NNO. This strategy creates

interdependencies among sensor nodes part of the cluster, that constitutes an al-

liance to reduce the amount of dirty data while increasing the network uptime. To

compute the fair cleaning strategy, we build a fair cleaning workload assignment ta-

ble in which each sensor node will use the predicted future onboard residual energy,

Z(n,t) if its energy operational state is not in ENO. Correspondingly, if the sensor

operational state is in ENO, sensors will use the current onboard residual energy,

E(n,t). This procedure will aid sensors out of ENO state to recover and avoid energy

depletion by reducing the workload assigned to sensors with low residual energy. On
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the other hand, if the predicted future onboard residual energy Z(n,t) is less than the

computed threshold, the current cleaning assignment for the sensor is removed and

its workload is evenly distributed among the remaining sensor nodes. This method

is highly beneficial for sensors with alarming low onboard residual energy and high

volumes of dirty data. The energy level threshold is computed as:

ψ = min(ω, Ēlow) (6.3)

where ω represents the energy level where sensors are normally sent to sleep mode

and Ēlow is the average energy levels for half of the sensors with the lowest onboard

residual energy.

In this stage, we establish a fair cleaning strategy by distributing the cleaning

workload based on their input-output relation, that is the onboard residual energy

available for the cluster and the number of dirty data required to be cleaned within

the cluster. We state that a sensor will clean a percentage of its dirty samples pro-

portional to the percentage of the sensor’s onboard residual energy, plus a potential

additional assignment from other nodes. In addition, sensors with alarming low

energy levels and high volumes of dirty data are not assigned a cleaning load if their

energy level is below the threshold, ψ.

Sensor 1 2 ... n ENOi

1 D1 S12 .. S1n O1

2 S21 D2 ... S2n O2

...
...

...
...

...
...

n Sn1 ... ... Dn On

Table 6.1: Fair Cleaning Workload Assignment Table

Table 6.1 shows the fair cleaning strategy table computed by the cluster-head

where the calculated values of each element represent the data cleaning workload

assigned to sensor i from sensor j. Only sensor nodes in ENO are assigned data

cleaning workload, and each row corresponds to a sensor that is capable of cleaning

84



dirty values, n ∈ ENOv. The last column corresponds to an additional workload

assigned to sensor n from those sensors that are not capable of cleaning, m ∈ ENOi.

A sensor is assigned to clean a portion of its own dirty data in addition to a

portion of dirty data belonging to other sensor nodes depending on the amount of

onboard energies per sensor in each cluster. As a result, there are cases 3 during

the data cleaning workload distribution: (1) a sensor i is cleaning its own data, (2)

a sensor j’s dirty data is be cleaned by sensor i, or (3) a sensor i does not clean

any data because it is not in ENO. For the first case, we use Equation 6.4 where for

each node i, we multiply the number of its dirty samples (di) by its onboard residual

energy level (E(i,t)).

Di = di ∗ E(i,t) (6.4)

For the second case, we use the Equation 6.5 where the energy level of the sensor

i is divided by the total energy levels of the sensors with cleaning assignment within

the cluster, excluding sensor j. It is important to note that the onboard energy level

of a sensor is a percentage based on the sensor with the highest battery capacity,

resulting in values between [0, 1] and, therefore, Sij will never be negative.

Sij =
E(i,t)∑

n∈ENOv\{j}E(n,t)

(dj − E(j,t) ∗ dj) (6.5)

For the final case, we use equation 6.6 to compute the cleaning workload assigned

to sensor i belonging to the group of sensors with energy levels below the threshold,

ENOi. It is the energy level of the sensor i divided by the total energy levels of the

sensors with cleaning assignment within the cluster, multiplied by the summation

of dirty samples belonging to the sensors with energy levels below the threshold, ψ.

Oi =
E(i,t)∑

n∈ENOv
E(n,t)

∑
m∈ENOi

dm (6.6)

Note that ENOv and ENOi are the sets of sensors with and without their energy

levels above the threshold, ψ. In other words, the set of sensors that are capable of

cleaning dirty data values and the set of sensors who are not capable. Therefore,
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we know that ENOv ∩ ENOi = ∅ and ENOv ∪ ENOi = Y where Y is the set of

all the sensors in a cluster at the end of a given time interval.

The total cleaning workload assignment for each sensor is the sum of all the

elements of its corresponding row in the Fair Cleaning Workload Assignment table.

This procedure is depicted in Algorithm 7. It represents the required number of

samples that each node needs to clean in order to achieve the NNO state of the
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cluster Y , NNOY , and is computed as:

T =



T1

T2

...

Ti
...

Tn


=



D1 +
∑

j∈ENOv\{1} S1j +O1

D2 +
∑

j∈ENOv\{2} S2j +O2

...

Di +
∑

j∈ENOv\{i} Sij +Oi

...

Dn +
∑

j∈ENOv\{n} Snj +On


= NNOY (6.7)

Once the cleaning workload assignments to accomplish NNOY have been com-

puted, the cluster-head informs the sensor nodes of the data cleaning distribution

strategy. It is then that sensors perform the cleaning and forward the cleaned data

to the corresponding recipients. Sensors continue their normal operations until the

next data cleaning period.

6.4 Performance Evaluation

To evaluate the performance of Leontief-DCD, we conducted simulations using

Python and the Bonnnmotion Mobility Scenario Generation and Analysis Tool to

generate sensor mobility. Also, we employed real-world datasets provided by The

National Renewable Energy Laboratory, NWTC M2, Solar TAC, SRRL BMS, VTIF

RSR and LRSS [NRE], and referred to as Region A to E, respectively. From these

datasets, sensors collected irradiation at five different nearby locations from April 1st

to May 30th, 2013 and from December 15th, 2012 to January 15th, 2013. This col-

lected irradiance data was used in two scenarios, along with the location information,

to be employed for energy harvesting/consumption profile creation when evaluating

the performance of our proposed method. We used these two days specifically as

they were different in terms of overall irradiation values collected. The two provided

scenarios allow us to evaluate our technique on a sunny day and on a cloudy day.

Figures 6.2 and 6.3 show the collected irradiance values per region for a cloudy

and a sunny day, respectively. We can see, though they exhibit similar patterns,
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Figure 6.2: Collected irradiance values per region on a cloudy 9-hour day

Figure 6.3: Collected irradiance values per region on a sunny 12-hour day

the cloudy day results in irradiance values that are significantly lower than the

sunny day. Similarly, the sunny day irradiance values are highly volatile compared

to the cloudy day scenario. Figures 6.4 and 6.5 show the harvested energy in five

randomly selected sensor nodes for both scenarios, sunny and cloudy. While the

energy harvested in the cloudy scenario was low due to the low irradiation from

the sun, the nodes on the sunny scenario depicted notable differences. Some sensor

nodes had a stable evolving irradiation exposure and some others show pronounced
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peaks during the hours of the day in which solar irradiation is the most elevated.

Since sensor nodes are constantly moving, some of them stay within the same region

and depicted the same patterns as the collected irradiance values of that region. It

is important to note that although some sensors kept their battery fully charged

during the times with highest irradiation, it is not guaranteed by all sensors in the

simulation. These different behaviors are the results from the heterogeneity in their

sun exposure and the functions and activities they carry over.

Figure 6.4: Residual energy levels of 5 randomly selected nodes: cloudy 9-hour day

Figure 6.5: Residual energy levels of 5 randomly selected nodes: sunny 12-hour day
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In our simulation, 5,500 mobile sensor nodes were placed in an area of 15.86

km2, where they moved following the Gauss-Markov mobility model [LH99]. This

mobility model is time dependent, and it randomly chooses an initial speed and

direction. It’s next speed and direction, however, depend on the on the previous,

so the travel is smoother. In addition, if a selected trip takes the node to the

border of our simulation area, it then chooses a direction and speed to take it back

to the simulation area when the node finishes its trip. However, other mobility

models simply restart the position of nodes, sending them back to the center of the

simulation area. Therefore, this mobility model reflects the movement of sensors in

real-time applications. The values of the mean speed and the transmission range of

each sensor is 20m and 100m, respectively.

We employed a 30-minute time window in which sensor nodes collect data, har-

vest energy and perform their normal activities. Sensing occurred asynchronously

every 30 seconds. The values for threshold ψ varies subject to ω = 10%. The

quantity of missing data samples, which represents the amount of data cleaning

workload, are randomly assigned to sensor nodes from 20% to 80% of the total

collected sensing values. At the end of the sensing period, sensors computed the

onboard energy prediction for the next data cleaning distribution period. Clusters

were formed, and sensors forwarded their current and predicted energy together

with the number of the dirty data samples contained for the specific time slot. This

information was used to perform the data cleaning workload distribution. To eval-

uate the effectiveness of our results, we compared the count of sensor nodes with

energy levels above 10%, the number of dirty data samples not submitted to data

cleaning process during its corresponding iteration, and the network welfare when

performing data cleaning individually and when performing Leontief-DCD before

cleaning the data.

6.4.1 Energy Harvesting

We employ TelosB sensors with variable energy consumption based on two opera-

tional modes to characterize the energy harvesting and consumption in EH-MWSN.

We considered a scenario where sensor nodes spend 50% of the time in receiv-
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ing mode and 50% in transmitting mode, in which sensors consume 24.8mA and

22.8mA, respectively [TEL]. In the same way, we assume that for energy value

predicted sensors spend 11.44 mJ and for every data sample cleaned 14.75 mJ. Our

sensors are supported by Energizer rechargable batteries with 2000mAh capacity.

Our energy-harvesting system is equipped with a solar panel of 0.5 Watts with di-

mensions 5.5x7cm and 17% efficiency. For this simulation, we initialized our sensor

nodes at 20% of its energy storage capacity.

Our simulation is performed in iterations, and the amount of energy that a device

can harvest during a time slot t is denoted by Eharvest [GWZ11]. We collect the

irradiation values in each time slot t of length k, and calculate the energy harvested

at every time slot using Ht which is the integral of the irradiance given in J/cm2

and is computed using the following:

Ht =

∫ k

t=1

I(t)dt (6.8)

where I is the irradiance from the sun in W/cm2. Additionally, the energy harvested

is not only depended on the irradiation during the time slot t, but it depends on the

physical characteristics of the energy system of the sensor node and is calculated

by:

Eharvest = (A)(η)(Ht) (6.9)

where A is the size of the solar panel in cm2 and η is the efficiency. We then compute

energy consumption during the time duration in which the sensor node engages in

a specific operation mode:

Econsumption = (C)(V )(P ) (6.10)

C is the battery current in Amperes, V is the energy drawn from the operation

mode, and P is the duration of the period of time while the sensor was operating in

the mode under evaluation. Finally, we compute the onboard residual energy at the
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end of time slot t for sensor n using the energy harvested and the energy consumed:

E(n,t) = Eharvest + E(n,t−1) − Econsumption (6.11)

6.4.2 Leontief-DCD Results

Leontief-DCD removes the need to trade between sensors’ uptime and data quality.

It provides a method to centrally plan a strategy to distribute data cleaning workload

among cooperative sensors in EH-MWSN, where the mobility of nodes, sun exposure

variability and the heterogeneity of sensors’ functions challenges the survivability of

the network.

Figures 6.6 and 6.7 show the count of sensor nodes that remained active during

the cloudy scenario and sunny scenario, respectively. We consider sensor nodes to

be active when their onboard residual energy levels are above 10%. In the sunny

scenario we can observe that during the highest irradiaiton periods of the day, sen-

sors that did not add the Leontief-DCD to their data cleaning processes depicted

similar performance. Nevertheless, Leontief-DCD showed a slight superior perfor-

mace during the following three hours once the irradiance levels provided by the

sun decreased. Moreover, when we observe the cloudy scenario, where irradiation

exposure is limited, the implementation of Leontief-DCD increased the sensor count

during 6 hours in up to 44.01%. Note that when employing Leontief-DCD, the en-

ergy expenditure increased due to the extra computation. It would be expected that

an increase in energy expenditure would decrease the sensors’ uptime, but because

Leontief-DCD distributed the workloads taking in consideration the network as a

whole, rather than individual sensor nodes, the extra computation is justified by the

increase in sensors’ uptime.
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Figure 6.6: Cloudy Scenario: Number of active sensors

Figure 6.7: Sunny Scenario: Number of active sensors

Figures 6.8 and 6.9 exhibit the number of dirty samples that were not submitted

to data cleaning processes during the iteration in which they occurred. In the

sunny scenario even when initially there was a high number of dirty samples that

were not submitted to data cleaning, in the following 6 hours all dirty samples

were submitted to data cleaning in a timely manner in both cases, when sensors
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employed Leontief-DCD and when they did not. Notwithstanding, during the last

4 hours when the irradiation patterns tend to decrease, Leontief-DCD increased the

number of sensor nodes submitted to data cleaning in up to 25.57%. Moreover, in

the cloudy scenario, where the energy of the network is lower, we can see the benefit

of employing Leontief-DCD clearly. In this case the number of dirty data samples

that were not subject to data cleaning process in its corresponding iteration kept

notably lower at all times. Even though the data cleaning process that did not

employ Leontief-DCD was able to reduce the number of dirty samples not processed

for cleaning during the highest irradiance exposure, it did not process 100% of

all dirty data samples at any time. Using Leontief-DCD allowed 100% of dirty

data samples to be submitted to data cleaning during the cloudy day simulation,

showing its value and usefulness in desicion-making applications. This behavior

in the performance of Leontief-DCD shows its ability to increase the possibility to

reach a better data quality by distributing the data cleaning workload.

Figure 6.8: Cloudy Scenario: Samples not submitted to data cleaning
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Figure 6.9: Sunny Scenario: Samples not submitted to data cleaning

6.4.3 Network Welfare Analysis

In addition to the performance evaluation shown above, we conducted a network wel-

fare analysis to evaluate the collective well-being of sensors within the network when

distributing the data cleaning workload using our Leontief-DCD method. Welfare

economics analyzes how the allocation of resources and income distribution affect

social welfare. In MWSN, we employ this concept to analyze how the allocation

of energy resources by strategically redistributing the data cleaning workload using

Leontief-DCD, affects the overall well-being of the network. This network welfare

analysis takes into consideration the energy available in the network and the degree

of inequality.

To measure the network’s well-being, we employ the iso-elastic Social Welfare

Function [Atk70], as depicted in Equation 6.12. This iso-elasctic assigns lower wel-

fare values to sensors with already high energy levels and lower values to sensors

with low energy levels. In this way, the overall well-being of the network is not dic-

tated by the sensors with the highest energy levels, but by a weighted aggregation
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of the network energy distribution. Its functional form is as follows:

W =
1

N

(
1

1− e

N∑
i=1

[
(E(i,t))

1−e]) (6.12)

where N is the number of sensor nodes in the network, and E(i,t) is the sensor’s

onboard residual energy values at the end of each iteration t. Lastly, e is the

equality aversion parameter and equals 2/3 for our evaluation.

Figures 6.10 and 6.11 demonstrate the overall well-being of the network. As ex-

pected in the sunny scenario, the network welfare depicts comparable values in both

cases, when employing Leontief-DCD and when simply implementing data cleaning

by itself, due to the high energy availability in the network. On the other hand,

in the cloudy day scenario, the results of the network welfare computation when

using Leontief-DCD showed a notorious increase when compared to data clean-

ing processes carried out without distributing the workload as shown in Table 6.2.

Leontief-DCD submitted more data to cleaning process in a timely manner, and due

to the distribution of workload, the number of sensor count increased and the energy

resources in the network were distributed in such a way that the cost of the extra

computation got justified by the benefit that Leontief-DCD delivers to the network.

Figure 6.10: Cloudy Scenario: Network Welfare metric
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Figure 6.11: Sunny Scenario: Network Welfare metric

Time Sunny-IDC Sunny-LDCD Cloudy-IDC Cloudy-LDCD

7:50 67.68 68.50 0.83 4.51

8:50 73.99 74.57 11.30 8.28

9:50 81.94 82 22.78 21.92

10:50 74.10 74.68 17.50 20.34

11:50 79.79 79.89 29.75 46.24

12:50 79.92 80.05 39.34 51.62

13:50 78.94 79.06 48.18 54.94

15:50 74.49 76.71 23.48 30.01

16:50 55.07 59.47 19.20 23.31

Table 6.2: Network Welfare per Hour for Individual Data Cleaning and Data Clean-
ing using Leontief-DCD
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6.5 Summary

Leontief-DCD is a novel data cleaning workload distribution method created to em-

ploy the onboard residual energy information available at each mobile node to deter-

mine whether sensors will be in ENO state in the future. This state determination is

accomplished by predicting future onboard residual energy values without any major

external information source such as geographical and weather data. The ENO state

determination is a crucial information for our Leontief-DCD as it aids in increasing

the network uptime. Then, our method uses these predictions to distribute the data

cleaning workload based on the Leontief Input-Output closed model, widely utilized

in the analysis of global economy production and consumption. Leontief-DCD uses

each sensor nodes’ energy level information and the amount of dirty data to ana-

lyze the energetic input and output and to propose the data cleaning distribution

strategy that would drive the network as a whole towards NNO state.

The performance of Leontief-DCD in the face of networks with low energy loads

shows its ability to increase the number of dirty samples that are put though data

cleaning on time. Additionally, it reduces the sensor quantities unavailable when

associated with data cleaning of large volumes of data. We denoted sensors to be

unavailable for cleaning when evaluated under 10% of sensors’ onboard residual

energy. After evaluation under sunny and cloudy conditions, we were able to show

that Leontief-DCD is comparable in sunny conditions and provides a significant

benefit during cloudy conditions by increasing the number of data samples engaged

in data cleaning processes by up to 25.57%, the count of active sensor nodes by up

to 44.01%, and the network overall well-being by up to 55.42% compared to when

data cleaning was performed by each sensor individually. Lastly, we provided a

novel network welfare metric for evaluating the collective performance of a network

based on each sensors’ onboard energy levels.

To the best of our knowledge this is the first study that involves NNO in EH-

MWSN by distributing the data cleaning workload. This combination of approaches

collectively contribute to achieve a NNO state without having to compromise any of

the sensors’ functionality in EH-MWSN dynamic and heterogeneous environments.
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CHAPTER 7

LIMITATIONS, FUTURE WORK AND CONCLUSION

In this dissertation, we addressed the challenges that mobile networks encounter

in providing reliable data by proposing a set of diverse data handling solutions for

MWSN. These mechanisms consider the constraints in sensors’ resources and the

challenges that mobility adds in producing reliable data. In this chapter, we discuss

the contributions and limitations of this research and review the future work and

conclusion.

7.1 Limitations

Diversified Trust-Based Data Cleaning for MWSN

We developed and evaluated a data cleaning method that selects a set of sensors

to support during the data cleaning process in MWSN. Due to the heavy compu-

tation of conventional data cleaning methods, static WSN rely on the presence of

a sink and a back-end for their data processing, and since the presence of a sink or

A back-end is an unrealistic expectation in mobile scenarios, these methods cannot

be extended to MWSN. In our diversified trust-based data cleaning method, we

evaluated a set of parameters to measure the trustworthiness of sensor data accu-

racy based on trajectory behavior similarity and the Spatio-temporal characteristics

exhibited in mobile environments. Next, our approach minimizes the error in data

estimation by diversifying the risk of trusting the data accuracy of these sensors.

Finally, we perform the cleaning by diversifying this risk among the selected set of

spatially autocorrelated sensors. This scheme constitutes an effective online system

for selecting a trustworthy set of sensors to support during the in-network data

cleaning process. By selecting a set of sensors, DTP can find the combination of

weights to more accurately predict the values to clean the dirty data. This diversi-

fied trust technique reduces the risk involved in trusting a single sensor node’s data.

DTP demonstrated its outstanding capabilities to consistently achieve high data

accuracy, reaching up to 99% of cleaned data with consistent low average percent

error, outperforming other approaches.
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As limitations of this work, we only considered data received from the source

and did not evaluated second-hand data. Because sensor nodes could be within each

others’ vicinity during their sensing period and may not see each other during the

data cleaning period, it can be difficult to find a set of sensors that can provide all

the information required to clean data. Moreover, real-world scenarios in MWSN

include a combination of the different data loss patterns but, in this work we only

considered one type of data loss pattern. Lastly, our method depends on an up-

per and lower pre-defined boundaries. Sensors with trajectory behavior similarity

within these boundaries are employed to support the data cleaning. Nevertheless,

if no sensor falls within these boundaries, data cleaning cannot be performed.

Dynamic Trust Weights Allocation to Reconstruct Data in MWSN

To address the limitations of the prior data cleaning method, we designed and

tested a technique to reconstruct incomplete data in MWSN. This method consid-

ered the different types of data loss patterns that are inherent in MWSN caused

by noise and collision, unreliable links, and sensors losing energy or malfunctioning.

Moreover, this method considered that the mobility of sensors makes it difficult

to find a set of sensors that can provide all the data required to properly execute

the cleaning task. Our method is capable of evaluating first and second-hand data

and select the most accurate data. It determines the trust level in the data accu-

racy of each candidate node by evaluating Spatio-temporal correlations, trajectory

behavior, quantity and quality of data, and the number of hops traveled by the

received data from the source without the use of predefined thresholds. Our results

demonstrate that data reconstructed using our dynamic trust allocation method

depicts significantly lower Root Mean Square Error (RMSE) compared to methods

that only consider Spatio-temporal and sensed values correlations. Our approach

showed consistent outstanding performance by achieving high data accuracy when

reconstructing sensing data with vast quantities of missing data. The accuracy of

this method is obtained from the selection of sensor(s) with the highest quantity

of high-quality, spatiotemporally correlated data and with a significant resemblance

in trajectory behavior. Our method can be easily tailored to different scenarios in
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MWSN, and the flexibility of the modification of weights given to each attribute

can contribute to meet specific user requirements. The dynamic adaptive features

of this method make it suitable for evaluating the data accuracy for neighboring

sensor nodes in scenarios with large quantities of missing data and sensor count,

such as in IoT. Contrary to various current methods, our evaluation of trust is not

affected by past interactions, which addresses the newcomer problem.

The main limitation of this work includes the assumption that all sensor nodes

are collaborative and that the data shared is correct. We did not consider the selfish

or malicious behaviors of nodes. Also, sensor nodes are expected to store the data of

previous interactions with other nodes to be shared. With the exponential growth

of sensing data, it can become a problem for sensors to store the data rather than

use what they require and drop the rest.

Data Behavior Modeling and Trend Prediction for Mobile Wireless Sen-

sor Networks in IoT

We developed and assessed the performance of a method to model the behavior

of evolving time series data by extracting the features of time partitions and measur-

ing the dissimilarity between consecutive pairs. This dissimilarity measure results

in a single value that describes the behavior of data from one time partition to the

next and serves as effective input for the SVM to predict the future trend of data.

Our method is capable of reducing the space complexity and reach superior predic-

tion accuracy, recall, and precision utilizing only a fraction that represents 5% from

the original size of the training data. This data reduction characteristic makes the

implementation of BBTP suitable for MWSN, where there is limited memory, low

computational capability, and small or irreplaceable power sources. BBTP reduces

the amount of data required to be stored and processed in individual sensor nodes.

The aftereffect of reducing the size of the data at the node level also corresponds to

a reduction of the network traffic, which may lead to fewer message collisions and

re-transmissions. Nevertheless, in this method, we did not consider the effects that

some contextual parameters may have on the behavior of the data. For example,

in a healthcare application, where sensors are tracking the heart rate of a patient,
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a sudden spike in heart rate can mean that the patient is about to have a heart

attack and an ambulance should be dispatched or that the patient is having a fun

ride in the roller coaster at the local fair. The evaluation of contextual parameters

can support the identification of the factors causing specific data behavior, which

can lead to more accurate data trend predictions.

Data Cleaning Workload Distribution in Energy-Harvesting MWSN

We designed and demonstrated an efficient method for distributing the data

cleaning workload in EH-MWSN using Leontief Input-Output model. Our economic-

based method sought to benefit the network as a whole rather than individual sensor

nodes. In this approach, we proposed the creation of a data cleaning workload dis-

tribution strategy that exploits cooperation to drive the network to a state in which

for every sensor node, the energy harvested is greater than the energy consumed.

This method increases the number of data samples that are run through data clean-

ing processes and the network uptime. Although the energetic cost rises as the

number of data samples ran through data cleaning increases, the network uptime

is not reduced. This positive outcome results from the distribution of the overall

data cleaning energetic cost, that eases the data cleaning workload in sensors with

critically low onboard residual energy. The reduction in the energetic cost experi-

enced by these sensors prevents them from adopting energy-saving strategies that

may limit their functionality, including the ability to clean data in a timely man-

ner. It is important to note that our method also improved the overall well-being

of the network by up to 55.42% compared to data cleaning performed by each node

individually. However, this method assumed that all sensor nodes would agree to

collaborate. It did not consider mechanisms to encourage honesty and coopera-

tion from nodes. Also, additional experimentation needs to be made with different

real-world datasets.
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7.2 Future Work

This dissertation investigated and developed novel techniques to handle data in

MWSN. Nevertheless, the increase in applications of MWSN in IoT has incremented

the amount of sensing data being generated. Although the value of this data has

become one of the most important currencies, future research needs to focus on

addressing the challenges that are arising as a result of the increase in sensing data

combined with the limitations in resources and the mobility of nodes.

The first part of this dissertation involves cleaning and reconstructing data in

MWSN. Sensor nodes in these methods evaluated various parameters to determine

trust in data accuracy in a network with symmetric information. Future work can

investigate data cleaning and reconstruction methods considering the presence of

asymmetric information in the network. This asymmetric information pertains to

the fact that sensor nodes where the data originates have more information than

the sensor node that receives the data. The uncertainty in the quality of the data

received can be studied by employing the ”Markets of Lemons” theory. The markets

of lemons in MWSN would mean that there are three types of data: good or accurate

data, lower quality, or relevant data that can help us to estimate or infer the data

we require and lemons or data that was intentionally manipulated. Methodologies

that help to overcome a network where only lemons are offered would be a relevant

research direction.

Moreover, another part of this research investigates modeling data behavior and

predicting data trends in internal sensing for MWSN in IoT. A future research

direction points to the utilization of exogenous contextual parameters to determine

when data that may look like outliers is data that reflects the true behavior of the

phenomena being observed. Another interesting future research direction of this

work includes the extension of the use of the data behavior extraction technique to

other applications. We consider that this data feature extraction can be employed

to detect malicious data manipulation that may pose a threat to MWSN in IoT.

Furthermore, the last section of this work studies the distribution of the data

cleaning workload in MWSN. Our future work will focus on incorporating negotia-

tion methods for scenarios containing non-cooperative nodes in EH-MWSN. Utility
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functions can be applied to determine the value of the proposed data cleaning strat-

egy for individual sensor nodes. This valuation may help to demonstrate the fair-

ness of the strategy and encourage the collaboration of all sensor nodes. Moreover,

negotiation techniques combined with our Leontief-DCD can help in the dynamic

redistribution of data cleaning workload based on the negotiated strategy.

Finally, in the future we will focus on implementing the techniques developed in

this dissertation in real sensors. This implementation will enable us to conduct vari-

ous tests to measure and corroborate the performance of the system when executing

our methods.

7.3 Conclusion

Mobile wireless sensor networks have become essential elements for modern real-

time decision-making applications. These types of applications will transform the

way we live. However, the data-centric nature of these applications requires the

uninterrupted availability of reliable data to preserve its functionality. This dis-

sertation arises from the recognition of the remarkable importance of resilient data

handling mechanisms to prevent applications in MWSN from making erroneous de-

cisions. We investigated and proposed data handling methods that considered the

dynamic trajectory behavior relationships among nodes, and the constraints inher-

ent to mobile nodes. This dissertation addressed four main problems when seeking

to ensure the availability of reliable and accurate data in mobile environments. First,

we developed a method to clean data. Based on the Capital Asset Pricing Model,

we evaluated the risk involved in trusting the data accuracy by comparing sensors’

trajectory behavior and the Spatio-temporal relationship. We have demonstrated

that our method can be used to clean data accurately. Second, we proposed an

improvement from our first method to reconstruct highly incomplete sensing data.

This method evaluates second-hand and first-hand data accuracy. We showed the

ability of this method to accurately reconstruct data with up to 70% of missing data

samples without the limitations of boundaries or thresholds. Third, we developed a

data behavior modeling method to extract the features of the data that describes its
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behavior in a time partition using Japanese Candlesticks and a dissimilarity mea-

sure. We showed our method can match the accuracy of other methods while being

more efficient in terms of space and training data size. Finally, we proposed a data

cleaning workload distribution strategy in EH-MWSN based on the Leontief Input-

Output model. We demonstrated that our method favored scenarios with limited

energy availability by increasing the data engaged in data cleaning processes and

network uptime. To the best of our knowledge, this is one of the first works that

apply economic-based principles in mobile and wireless networks. We are optimistic

that the outcome from employing economic models in this dissertation research mo-

tivates the research community to bridge between economics and problems that

remain unsolved in MWSN.
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