158 research outputs found

    A convex formulation for hyperspectral image superresolution via subspace-based regularization

    Full text link
    Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.Comment: IEEE Trans. Geosci. Remote Sens., to be publishe

    High-Resolution and Hyperspectral Data Fusion for Classification

    Get PDF

    Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data

    Get PDF
    Multi-platform data introduce new possibilities in the context of data fusion, as they allow to exploit several remotely sensed images acquired by different combinations of sensors. This scenario is particularly interesting for the sharpening of hyperspectral (HS) images, due to the limited availability of high-resolution (HR) sensors mounted onboard of the same platform as that of the HS device. However, the differences in the acquisition geometry and the nonsimultaneity of this kind of observations introduce further difficulties whose effects have to be taken into account in the design of data fusion algorithms. In this study, we present the most widespread HS image sharpening techniques and assess their performances by testing them over real acquisitions taken by the Earth Observing-1 (EO-1) and the WorldView-3 (WV3) satellites. We also highlight the difficulties arising from the use of multi-platform data and, at the same time, the benefits achievable through this approach

    Spectral Super-Resolution of Satellite Imagery with Generative Adversarial Networks

    Get PDF
    Hyperspectral (HS) data is the most accurate interpretation of surface as it provides fine spectral information with hundreds of narrow contiguous bands as compared to multispectral (MS) data whose bands cover bigger wavelength portions of the electromagnetic spectrum. This difference is noticeable in applications such as agriculture, geosciences, astronomy, etc. However, HS sensors lack on earth observing spacecraft due to its high cost. In this study, we propose a novel loss function for generative adversarial networks as a spectral-oriented and general-purpose solution to spectral super-resolution of satellite imagery. The proposed architecture learns mapping from MS to HS data, generating nearly 20x more bands than the given input. We show that we outperform the state-of-the-art methods by visual interpretation and statistical metrics.Les dades hiperspectrals (HS) són la interpretació més precisa de la superfície, ja que proporciona informació espectral fina amb centenars de bandes contigües estretes en comparació amb les dades multiespectrals (MS) les bandes cobreixen parts de longitud d'ona més grans de l'espectre electromagnètic. Aquesta diferència és notable en àmbits com l'agricultura, les geociències, l'astronomia, etc. No obstant això, els sensors HS manquen als satèl·lits d'observació terrestre a causa del seu elevat cost. En aquest estudi proposem una nova funció de cost per a Generative Adversarial Networks com a solució orientada a l'espectre i de propòsit general per la superresolució espectral d'imatges de satèl·lit. L'arquitectura proposada aprèn el mapatge de dades MS a HS, generant gairebé 20x més bandes que l'entrada donada. Mostrem que superem els mètodes state-of-the-art mitjançant la interpretació visual i les mètriques estadístiques.Los datos hiperspectral (HS) son la interpretación más precisa de la superficie, ya que proporciona información espectral fina con cientos de bandas contiguas estrechas en comparación con los datos multiespectrales (MS) cuyas bandas cubren partes de longitud de onda más grandes del espectro electromagnético. Esta diferencia es notable en ámbitos como la agricultura, las geociencias, la astronomía, etc. Sin embargo, los sensores HS escasean en los satélites de observación terrestre debido a su elevado coste. En este estudio proponemos una nueva función de coste para Generative Adversarial Networks como solución orientada al espectro y de propósito general para la super-resolución espectral de imágenes de satélite. La arquitectura propuesta aprende el mapeo de datos MS a HS, generando casi 20x más bandas que la entrada dada. Mostramos que superamos los métodos state-of-the-art mediante la interpretación visual y las métricas estadísticas

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    An Unsupervised Algorithm for Change Detection in Hyperspectral Remote Sensing Data Using Synthetically Fused Images and Derivative Spectral Profiles

    Get PDF
    Multitemporal hyperspectral remote sensing data have the potential to detect altered areas on the earth’s surface. However, dissimilar radiometric and geometric properties between the multitemporal data due to the acquisition time or position of the sensors should be resolved to enable hyperspectral imagery for detecting changes in natural and human-impacted areas. In addition, data noise in the hyperspectral imagery spectrum decreases the change-detection accuracy when general change-detection algorithms are applied to hyperspectral images. To address these problems, we present an unsupervised change-detection algorithm based on statistical analyses of spectral profiles; the profiles are generated from a synthetic image fusion method for multitemporal hyperspectral images. This method aims to minimize the noise between the spectra corresponding to the locations of identical positions by increasing the change-detection rate and decreasing the false-alarm rate without reducing the dimensionality of the original hyperspectral data. Using a quantitative comparison of an actual dataset acquired by airborne hyperspectral sensors, we demonstrate that the proposed method provides superb change-detection results relative to the state-of-the-art unsupervised change-detection algorithms

    Applications of Remote Sensing to Alien Invasive Plant Studies

    Get PDF
    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions
    • …
    corecore