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Multitemporal hyperspectral remote sensing data have the potential to detect altered areas on the earth’s surface.However, dissimilar
radiometric and geometric properties between the multitemporal data due to the acquisition time or position of the sensors
should be resolved to enable hyperspectral imagery for detecting changes in natural and human-impacted areas. In addition, data
noise in the hyperspectral imagery spectrum decreases the change-detection accuracy when general change-detection algorithms
are applied to hyperspectral images. To address these problems, we present an unsupervised change-detection algorithm based
on statistical analyses of spectral profiles; the profiles are generated from a synthetic image fusion method for multitemporal
hyperspectral images. This method aims to minimize the noise between the spectra corresponding to the locations of identical
positions by increasing the change-detection rate and decreasing the false-alarm rate without reducing the dimensionality of
the original hyperspectral data. Using a quantitative comparison of an actual dataset acquired by airborne hyperspectral sensors,
we demonstrate that the proposed method provides superb change-detection results relative to the state-of-the-art unsupervised
change-detection algorithms.

1. Introduction

Hyperspectral imaging based on spaceborne or airborne
imagery has strong potential for applications in remote sens-
ing because each pixel of the hyperspectral data, which are
composed of a continuous spectral profile, includes a detailed
description of the spectral features of the image. These
descriptions allow for an analysis of the specific differences
in the characteristics of the earth’s surface. Several satellite-
based hyperspectral sensors, such as the Hyperion spectrom-
eter of the National Aeronautics and Space Administration
(NASA), and various airborne sensors, including the Air-
borne Imaging Spectrometer for Applications (AISA), Com-
pact Airborne Spectrographic Imager (CASI), and HyMap,
are currently available. In addition, several hyperspectral

sensors are planned for future launches, including the Hyper-
spectral Imager SUIte (HISUI), Hyperspectral Precursor
of the Application Mission (PRISMA), HYPererspectral-X
IMagery (HYPXIM), and the Environmental Mapping and
Analysis Program (ENMAP) [1]. Thus, the development of
core technologies for various applications of future hyper-
spectral sensor systems is necessary.

Change detection is one of the most commonly used
applications in remote sensing. In general, change detection is
defined as the use of remotely sensed data for the same area at
different times to identify altered areas on the earth’s surface.
When studying human-induced or natural disasters such
as floods, earthquakes, landslides, oil spills, and industrial
accidents, change-detection technologies based on remotely
sensed data can be effectively used to detect and estimate the
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extent of the damaged area. Several researchers have analyzed
the existing change-detection methods for applications in
the remote sensing data, including image differencing, image
rationing, vegetation index, regression, data transformation,
change vector, postclassification comparison, and GIS-based
methods [2–5]. According to the literature, change-detection
techniques comprise two types: supervised change detec-
tion and unsupervised change detection [5]. In particular,
unsupervised change-detection techniques are preferred for
remote sensing applications because the training data do
not need to be manually collected, even though super-
vised methods can provide change aspects of specific land-
cover classes and “from-to” information of change detection
[3].

Traditional unsupervised change-detection algorithms
are focused on proposing change-detection indices and
applying automatic thresholding methods for generating a
binary map of the changed area. For example, change-
detection indices such as change vector analysis (CVA),
image correlation, and Relative Dimensionless Global Error
(ERGAS) have been proposed [6, 7]. In addition, various
thresholding techniques have been developed and applied
to multitemporal remote sensing data [8]. Molina et al. [9]
integrated different change-detection indices to improve the
statistical properties of indices for single change detection.
Bruzzone and Prieto proposed modified image differencing
and thresholding of adaptive parcels based on a homogeneous
region [10]. Markov random fields (MRFs), expectation-
maximization (EM) algorithms, and neural networks have
been used to determine optical thresholds for automatic
change detection [11, 12]. In addition, Bruzzone and Bovolo
[13] analyzed change-detection techniques for very-high-
resolution (VHR) satellite imagery and developed a novel
framework using the top-down approach considering the
radiometric characteristics of multitemporal images.

With the launches and high availability of hyperspectral
sensors, new change-detection methodologies have been
developed, and existing methods have been modified to
make them appropriate for hyperspectral imagery. Eismann
et al. [14] proposed an algorithm based on linear predictors
to detect subtle targets against a complex background, and
Kim [15] modified matched filtering using target signal
exclusion. Song et al. [16] proposed unsupervised change-
detection algorithms using spectral unmixing and iterative
error analysis (IEA). Hao et al. [17] applied hyperspectral data
to detect changes in urban forest resources in natural disaster
zones. Image transformation techniques, such asmultivariate
alteration detection (MAD) and principal component anal-
ysis (PCA), which can be applied to general multispectral
images have been extended to include hyperspectral data [18,
19]. In particular, iterative regularized multivariate alteration
detection (IR-MAD) is considered a state-of-the-art change-
detection algorithm due to its stability and outstanding
change-detection results [20–22]. However, dimensionality
reduction through PCA or the minimum noise fraction
(MNF) is required prior to the application of IR-MAD-
based algorithms. Meola et al. [23] proposed a model-
based change-detection approach that reduces false alarms
caused by shadow differences using calibrated hyperspectral

data, and Liu et al. [24] proposed a hierarchical change-
detection algorithm using endmember detection and cluster
merging in multitemporal hyperspectral images. Júnior et
al. [25] used CVA based on distance (Euclidean distance
and Mahalanobis distance) and similarity (spectral angle
mapper, SAM, and spectral correlation mapper, SCM) mea-
surements and concluded that CVA using the Euclidean
distance and SAM is superior to other measures. Wu et al.
[26] developed a subspace-based algorithm using two types
of information from Hyperion and from the Chinese HJ-
1A satellite, proving that measurements based on the SAM
are identical to the orthogonal subspace projection- (OSP-)
based measurements. Based on this concept, the authors
have proposed local and adaptive measures based on OSP
to minimize registration errors. Other advanced algorithms
based on target detection, anomaly detection, and change
detection have also been developed recently [27–29].

These related approaches have generally focused on the
development of change-detection algorithms that increase
accuracy by effectively using hyperspectral bands to maxi-
mize the advantages of hyperspectral sensors. In other words,
these approaches have focused on using abundant spectral
information. However, the dissimilarity of radiometric and
geometric properties between multitemporal data based
on the acquisition time or position of the sensors should
be resolved to enable hyperspectral imagery for detecting
changes in natural and human-impact areas. Moreover, few
considerations related to data noise have been included in the
spectrum of hyperspectral imagery, potentially decreasing
the change-detection accuracy when general change-detec-
tion algorithms are applied to hyperspectral images without
dimensionality reduction.

Most studies have also considered hyperspectral datawith
low or medium spatial resolutions due to the technical limi-
tations of generating hyperspectral sensors with high spatial
resolutions. However, considering the future development of
hyperspectral sensors, hyperspectral data with high spatial
resolutions are necessary.Thus, approaches for change detec-
tion should consider high spectral and spatial resolutions
simultaneously. High-resolution images acquired at various
times demonstrate local geometric location differences and
spectral variation by phenomenological or temporal differ-
ences between dates of imagery, even when the data are geo-
referenced. These geometric differences can cause poor
change-detection results based on false alarms of the changed
area caused by the differences [30]. Information exclusively
obtained from the data acquired at two times, that is, before
and after the change occurs, is insufficient for accurate change
detection.

The main objective of this study is to develop a change-
detection index suitable for hyperspectral imagery. We
applied unsupervised change detection using an image fusion
technique and an ordered combination of similaritymeasures
to identify the changed regions. To minimize the radiometric
and geometric dissimilarities between multitemporal images
with high spatial and spectral resolutions, a temporal-data-
based synthetic image fusion method is applied which gen-
erates combined images at two data points at different times.
A combination of the synthetically fused images is then used
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Figure 1: Study site with targets for change detection: (a) CASI image of study site generated with an RGB composite (red: 657 nm, green:
557 nm, and blue: 471 nm), (b) example of the area changed by camouflage nets (red circle of Figure 1(a)), and (c) example of the area changed
by artificial turf (green circle of Figure 1(a)).

to optimize the change-detection results. We propose a new
measure for change detection that is appropriate for hyper-
spectral data without the loss of dimensionality. To evaluate
the proposed method, we install a test-bed acquired from
an airborne hyperspectral sensor taken at different times.
Finally, the obtained experimental results are compared with
the performance of the state-of-the-art algorithms.

2. Study Site and Dataset Description

The proposed change-detection algorithm was applied to
airborne hyperspectral images collected by CASI. The CASI
images for this experiment were collected over Gangnae-
myeon, Cheongwon-gun, and Chungcheongbuk-do, Korea,
on 22 June 2013 (127∘ 22󸀠 E, 36∘ 34󸀠 N).The data specifications
are described in Table 1.

A total of 45 spectral bands with spectral wavelength of
413.4–1044.9 nm, excluding noise bands, were used, and a
subset of 500 × 500 image sizes was extracted for the exper-
iments. The constructed study site is shown in Figure 1(a).

Table 1: CASI data specifications.

Sensor CASI
Spatial resolution 0.5m
Bands 48
Wavelength 370–1044 nm
Spectral resolution (nm @ FWHM) 3.6
Flight height 750m

To artificially construct the changed areas within the study
site, we installed two types of targets: camouflages (4.5m ×4.5m, 1.5m × 1.5m, and 0.5m × 0.5m) and an artificial
turf (4.5m × 4.5m) that have colors similar to the vegetation
and ground in the study site (Figures 1(b) and 1(c)). In
addition, we covered a car using a camouflage net, as shown
in the left side of Figure 1(b). The ginseng field (yellow circle
of Figure 1(a)) includes an inclined canvas, giving rise to
different reflectance values depending on the position of the
airborne hyperspectral sensor.
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Figure 2: Study area: (a) reference data, (b) target data, (c) ground-truth data, and (d) specification of changed area in the study area.

Figures 2(a) and 2(b) show the reference and target data
for the experiment, and Figures 2(c) and 2(d) show the
ground-truth data of the altered regions for the evaluation of
the accuracy using image interpretation [31].

3. Methodology

Theworkflow of ourmethod is illustrated in Figure 3. Follow-
ing geometric and radiometric preprocessing of hyperspectral

data acquired at different times with deliberate differ-
ences, synthetic image fusion is applied. Then, a spectral
similarity is calculated using the fused images. Finally, the
changed area is detected by the proposed unsupervised simi-
larity measure. A detailed explanation of each step is
provided below.

3.1. Preprocessing. Prior to change detection, geometric and
radiometric correctionsmust be applied to themultitemporal
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Figure 3: Workflow of the proposed method.

images. In our proposed method, image-to-image registra-
tion using a manually extracted ground control point (GCP)
is used to obtain georeferenced images. Registered hyper-
spectral images are atmospherically corrected using the
atmospheric and topographic correction (ATCOR) module
and then radiometrically adjusted using an empirical line-
calibration algorithm based on linear predictions [32]. Four
tarps with different reflectance (3.5%, 23%, 35%, and 53%)
are used as reference targets for the radiometric calibration.
During the preprocessing step, spectral information for the
same location may include identical characteristics even
though partial noise data are presented.

3.2. Generation of Synthetically Fused Images. Synthetically
fused images are generated based on the cross-sharpening
methodology that was first developed forVHR satellite-based
multitemporal data to minimize spatial dissimilarities while
preserving spectral distortion [33]. A general pansharpening
algorithm for VHR images is applied to obtain a high-
spatial-resolution multispectral image using high-spatial-
resolution panchromatic and low-spatial-resolution multi-
spectral images acquired at the same time and at the same
sensor position. The cross-sharpening algorithm is a modi-
fied version of the algorithm of Chen et al. [33, 34]. Cross-
sharpened images are effective for minimizing change-detec-
tion errors caused by geometric displacement and spectral
variation, including the noise in multitemporal images [33].
The cross-sharpening algorithm uses panchromatic andmul-
tispectral datasets acquired at different times and at different
sensor positions. However, general airborne hyperspectral
datasets do not include high-spatial-resolution panchromatic
data. Therefore, to apply the cross-sharpening algorithm to
the hyperspectral dataset, we generate a synthetic dataset with
high-spatial-resolutionmultispectral images and low-spatial-
resolution hyperspectral images and then employ a block-
based fusion algorithm for sharpening the hyperspectral

images using the multispectral images. Initially, the hyper-
spectral imagery obtained from CASI sensor is grouped in
three blocks: 413.4–585.9 nm (corresponding to bands 1–13 of
the hyperspectral images from CASI), 600.3–686.4 nm (cor-
responding to bands 14–20 of the hyperspectral images from
CASI), and 700.7–1044.9 nm (corresponding to bands 21–45
of the hyperspectral images from CASI). Then, we generate
a synthetic dataset with high-spatial-resolution multispectral
images and low-spatial-resolution hyperspectral images cor-
responding to each block [35, 36]. Here, HSℎ𝑡

1

and HSℎ𝑡
2

are
the original hyperspectral images with high spatial resolu-
tions before the change (time 𝑡1) and after the change
(time 𝑡2), respectively. The workflow for the synthetic dataset
generation is shown in Figure 4.

Themultispectral data with high spatial resolution (MSℎ𝑡
1

)
at time 𝑡1 are obtained by spectrally degrading HSℎ𝑡

1

by
averaging all bands in each block of the hyperspectral image
[37]. Then, hyperspectral data with low spatial resolution(HS𝑙𝑡

1

) are created by downscaling HSℎ𝑡
1

via a Gaussian point
spread function (PSF) [38]. In the downscaling process, the
original hyperspectral data with 0.5m spatial resolution are
downscaled to 1m spatial resolution. By applying this process
to HSℎ𝑡

2

, we obtain two synthetic multitemporal datasets,
MSℎ𝑡

2

and HS𝑙𝑡
2

. After the synthetic multitemporal images are
generated, a cross-sharpening algorithm is applied.The cross-
sharpening method is defined as special image fusion that is
accomplished using hyperspectral and multispectral images
obtained at the same or at different times using [35]
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𝑓 (MSℎ𝑡
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, (4)

where 𝑓 is the specific fusion algorithm and 𝐹ℎ𝑚𝑛 is the syn-
thetically fused image with high spatial resolution generated
using themultispectral image at time𝑚 and the hyperspectral
image at time 𝑛. To generate the cross-sharpened hyperspec-
tral image, we employ a block-based fusion algorithm using
a multispectral band corresponding to the range of wave-
lengths of hyperspectral bands [35, 36, 39]. In contrast to typ-
ical fusion processing with multispectral and panchromatic
data, block-based fusion algorithm considers the multispec-
tral bands as a panchromatic band and hyperspectral bands
as multispectral bands. Each multispectral band is regarded
as the panchromatic image, and the corresponding hyper-
spectral bands are considered the multispectral dataset. As
mentioned above, we divide the wavelength range into three
blocks. Accordingly, the multispectral image MSℎ𝑡

1

is com-
posed of three bands, MSℎ(1)𝑡

1

, MSℎ(2)𝑡
1

, and MSℎ(3)𝑡
1

, and each
band of MSℎ𝑡

1

is regarded as a panchromatic image for pan-
sharpening. The hyperspectral image HS𝑙𝑡

1

is also partitioned
as three hyperspectral images HS𝑙(1)𝑡

1

, HS𝑙(2)𝑡
1

, and HS𝑙(3)𝑡
1

,
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Figure 4: Workflow of the synthetic multitemporal dataset generation corresponding to each block of hyperspectral imagery.
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corresponding to the wavelength of each band of MSℎ𝑡
1

. The
pansharpening algorithm is applied using generated pan-
chromatic and partitioned hyperspectral images. After apply-
ing the block-based pansharpening approach, fused multi-
spectral bands of each block are integrated as 𝐹ℎ𝑡

1
𝑡
1

. Figure 5
represents the workflow of block-based fusion using multi-
spectral bands MSℎ𝑡

1

and hyperspectral bands HS𝑙𝑡
1

.
In the case of the pansharpening algorithm, we use the

Gram-Schmidt (GS) method, which is a representative and

efficient pansharpening algorithm [40]. In (1)–(4), the spatial
resolution, the number of bands, and spectral wavelength
of the synthetically fused images are equivalent to those of
the original hyperspectral image. In addition, fused images
corresponding to the same multispectral images have similar
spatial characteristics, indicating that some of the geometric
errors in the change detection can be minimized using a pair
of fused images with similar spatial information. Figure 6
shows an example in which the geometric error is minimized
in the synthetically fused images. The spatial characteristics
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Figure 6: Example of an image fusion result using synthetic hyperspectral images: (a) 𝐹ℎ𝑡1𝑡1 , (b) 𝐹ℎ𝑡2𝑡2 , and (c) 𝐹ℎ𝑡1𝑡2 .

of 𝐹ℎ𝑡
1
𝑡
1

in the tiled roof of the house are more similar to 𝐹ℎ𝑡
1
𝑡
2

than to 𝐹ℎ𝑡
2
𝑡
2

.

3.3. Spectral Similarity Measure for Detecting Change. In this
study, two representative normalized spectral measures are
used. First, the spectral angle distance (SAD)measure is used
to calculate the spectral similarity between the spectra of
two pixels in the originalmultitemporal hyperspectral images
[41]. We assume that 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐿) is a spectrum of
the reference data and that 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝐿) is a spectrum
of the target data in a hyperspectral dataset with L bands.
According to these spectral vectors, SAD is calculated as
follows:

SAD (𝑥, 𝑦) = cos−1 ( ⟨𝑥, 𝑦⟩‖𝑥‖ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩) , (5)

where ⟨𝑥, 𝑦⟩ represents the inner product between the two
spectrum vectors and ‖𝑥‖ and ‖𝑦‖ represent the magnitudes
of spectra 𝑥 and 𝑦, respectively. The SAD range is [0-1].

Having obtained the SAD measure, the Euclidean dis-
tance (ED) is also used to measure the spectral dissimilarity
between the pixels. The ED, a representative similarity dis-
tance measure, is defined as the square root of the sum of the
squared differences between the corresponding spectra. The
ED between two spectra is expressed as

ED (𝑥, 𝑦) = [ 1𝐿 − 1
𝐿∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2]
1/2

. (6)

The ED is mathematically simple, conducive for rapid pro-
cessing, and sensitive to the absolute reflectance values.
In addition, the values are not normalized. Therefore, the
values of ED between the two spectra are normalized by the
magnitude of the spectral vector as follows:

ÊD = ED − EDmin
EDmax − EDmin

, (7)

where EDmax and EDmin are the maximum and minimum
values of the calculated ED, respectively. According to (7), the
ED value can be normalized as [0-1].

3.4. Unsupervised Change Detection Using a Derivative Spec-
tral Profile. When change detection between 𝐹ℎ𝑡

1
𝑡
1

and 𝐹ℎ𝑡
2
𝑡
2

of (1)-(2) is applied based on SAD and ED measures, some
unchanged areasmay be identified as changed areas given the
dissimilarity of the geometric and radiometric characteristics
of the features. However, as noted in Section 3.2, the synthet-
ically fused image 𝐹ℎ𝑡

1
𝑡
2

has a tendency to adhere to the spatial
properties of the multispectral image at time 1 (MSℎ𝑡

1

) and to
adhere to the spectral properties of the hyperspectral image at
time 2 (HS𝑙𝑡

2

). Therefore, if the fused image 𝐹ℎ𝑡
1
𝑡
2

is used with
the fused image at time 1, that is, 𝐹ℎ𝑡

1
𝑡
1

, for change detection,
then the errors from the geometric difference between the
two images are minimized while maintaining the spectral
difference between the two sets of data. This characteristic
is more significant in the derivative pixel spectra [42].
Figure 7 illustrates the spectral profile (Figure 7(b)) and
second-derivative spectral profile (Figure 7(c)) of the pixel
that is actually changed (Figure 7(a)), corresponding to a
camouflage net that exists only at time 1. Comparing the
second-derivative spectral profiles of fused images 𝐹ℎ𝑡

1
𝑡
1

and
𝐹ℎ𝑡

2
𝑡
2

, we find that 𝐹ℎ𝑡
1
𝑡
2

exhibits a high profile variation, which
is beneficial for the identification of the changed region.

Therefore, the SAD and ED measures are integrated
to generate a new similarity distance (integrated similarity
distance, ISD) based on the combination of the original and
derivative spectral profiles of the synthetically fused images.
The ISD is defined as

ISD = SAD (𝐹ℎ𝑡
1
𝑡
1

, 𝐹ℎ𝑡
2
𝑡
2

)
∗min (ÊD (𝐹󸀠󸀠ℎ𝑡

1
𝑡
1

, 𝐹󸀠󸀠ℎ𝑡
1
𝑡
2

) , ÊD (𝐹󸀠󸀠ℎ𝑡
2
𝑡
2

, 𝐹󸀠󸀠ℎ𝑡
2
𝑡
1

)) , (8)

where 𝐹󸀠󸀠 is the second-derivative spectral profile, min is the
minimum value, and ∗ is the convolution filter. If a pixel
has a larger ISD value than a predefined threshold, it is
determined to be a changed pixel. In the evaluation of the
original spectral profile, SAD measurements between two
hyperspectral datasets tend to exhibit different spectral and
spatial characteristics. However, these results may include
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Figure 7: Spectral property comparison of fused images for detecting changed areas: (a) sample target of fused images 𝐹ℎ𝑡1𝑡1 , 𝐹ℎ𝑡2𝑡2 , and 𝐹ℎ𝑡1𝑡2 ,
(b) spectral profile of pixel values, and (c) spectral profile of the second-derivative pixel values (black line: 𝐹ℎ𝑡1𝑡1 , red dot line: 𝐹ℎ𝑡2𝑡2 , and blue
dot line: 𝐹ℎ𝑡1𝑡2 ).

false-positive regions of change detection. The ED of the
derivative spectral profile between the synthetically fused
image pair demonstrates similar spatial characteristics; thus,
we calculated the ED through second-derivative spectral
profiles of the hyperspectral data. In particular, the overall
information acquired from the synthetic image fusion pairs
((𝐹ℎ𝑡

1
𝑡
1

, 𝐹ℎ𝑡
1
𝑡
2

) and (𝐹ℎ𝑡
2
𝑡
2

, 𝐹ℎ𝑡
2
𝑡
1

)) is used for change detection to
optimize the accuracy of the change-detection results.

4. Results and Discussion

4.1. Change-Detection Results. To estimate the performance
of the proposed ISD measure, various unsupervised state-of-
the-art change-detection algorithms are applied. The mag-
nitude of the change vector (Euclidean distance of CVA
or CVAED) and the spectral information divergence (SID)
similarity measures are applied to detect the changed area

[24, 41]. Subspace-based change-detection (SCD) algorithms,
that is, original SCD, adaptive SCD (ASCD), and local SCD
(LSCD), are also employed [26]. ASCD and LSCD are applied
to estimate the effects of varying sensor positions or mis-
registration between the multitemporal hyperspectral data.
Finally, IR-MAD is chosen as the change-detection algorithm
for quantitative estimations because it is frequently cited as
a representative unsupervised change-detection algorithm.
In the case of ASCD and LSCD, a window size of 3 ×3 is selected while considering the size of the camouflage
nets at the test site. To apply IR-MAD, PCA is applied as
preprocessing for dimensionality reduction, and the top five
principal components, including approximately 99% of the
information, are used for calculating IR-MAD.

Each change-detection result map is calculated from two
corresponding hyperspectral datasets and then normalized
over a range of [0-1]. Figure 8 presents the calculated results
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Figure 8: Comparison of the change-detection results: (a) reference hyperspectral image, (b) target hyperspectral image, (c) ground-truth
image, (d) result using the CVAED, (e) result using the SID, (f) result using the SCD, (g) result using the ASCD, (h) result using the LSCD,
(i) result using the IR-MAD, and (j) result using the proposed algorithm.

of the state-of-the-art and proposed methods; these are
displayed using a gamma correction. The change-detection
results obtained from the CVAED (Figure 8(d)) have higher
values in the mountains than the other change-detection
algorithms. The estimated results using SID (Figure 8(e))
and SCD-based algorithms (Figures 8(f)–8(g)) show highly
dissimilar values in the ginseng field in the lower part of the
site. In the case of ASCD and LSCD, some unchanged areas
of edge or linear features were efficiently removed relative to
the result obtained by SCD. However, small changed areas
that have similar size with the sliding window represent lower
values than other unchanged areas because these changed
areas are blurred by the effect of local processing based on
the moving window of ASCD and LSCD. In addition, the
proposed algorithm (Figure 8(j)) shows more distinguish-
able and contrasting values over the camouflage nets and
artificial turf relative to the results obtained using other
change-detectionmethods, including the IR-MAD algorithm
(Figure 8(i)), even though the result obtained by the IR-MAD

shows better quality of change-detection output than that of
the other existing algorithms.

The change-detection results can be quantitatively eval-
uated by estimating the receiver operating characteristic
(ROC) curve andby evaluating the binary changemapusing a
thresholding technique. The ROC curve provides a graphical
plot for the estimating the performance and selecting an
optimal model from the class distribution [26, 43, 44].
The ROC curve is composed of the cumulative distribution
function of the detection rate versus that of the false-alarm
rate. From the curve, an appropriate threshold for separating
changed and unchanged areas can be selected. Using the ROC
curve, the area under the curve (AUC) can be calculated.
The AUC describes the probability that the change-detection
algorithm will rank a randomly chosen positive data point
higher than a randomly chosen negative data point [44].
Figure 9 shows the ROC curves corresponding to each
algorithm, showing that the proposed algorithm can detect
changed regions better than the other methods regardless
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Figure 9: ROC curves corresponding to each similarity measure for
change detection.

Table 2: AUC values corresponding to each similarity measure for
change detection.

Method AUC value
CVAED 0.7776
SID 0.7112
SCD 0.8628
ASCD 0.7153
LSCD 0.6385
IR-MAD 0.9562
Proposed algorithm 0.9776

of the threshold used for the unsupervised change-detection
process. Poor results of ASCD and LSCD relative to the SCD
result are due to the blurring effect of the process based on
a sliding window, as shown in Figures 8(g) and 8(h). IR-
MAD shows a higher value than the other existing algorithms
but requires the use of a dimensionality reduction process.
Moreover, the AUC by IR-MAD is lower than that obtained
using the proposed algorithm.The efficiency of our algorithm
can be proven based on its high AUC value without the use of
dimensionality reduction techniques such as PCA and MNF,
as shown in Table 2. The ROC analysis indicates that the
proposed method can optimize the change-detection results
while minimizing the false-alarm rate.

An automatic thresholding technique is applied based
on the unsupervised change-detection results presented in
Figure 8. The threshold determination is based on Rosin’s
threshold algorithm [45]. Rosin’s threshold, which is a rep-
resentative unimodal threshold, assumes that the histogram
of the similarity distance image is a proportional unimodal
function and that a nonchanged class of pixels (e.g., the back-
ground) is considerably larger than the changed class of the
pixels in the image. Rosin’s threshold fits a straight line from
the peak of the histogram. Then, the point of the maximum
deviation between the line and the histogram curve is selected
as the threshold. Using the estimated threshold values, we

extract the binary images corresponding to the changed area.
After the thresholding, a 3-by-3 median filter is applied to
consider the minimum size of the changed regions.

Figure 10 depicts the change-detection results using the
existing and proposed algorithms with automatic threshold-
ing for unsupervised change detection. Figure 11 presents the
magnified results near the targets for a visual assessment. As
shown in Figures 10(a) and 11(c), ground-truth data are gener-
ated, including a total of 863 changed pixels. Referring to the
change-detection results using CVAED, the nearly changed
regions are represented as nonchanged areas (Figure 10(b)).
The change-detection results based on the SID- and SCD-
based algorithms are presented in Figures 10(c)–10(f). In
these results, the actual changed regions, for example, the
camouflage net and the artificial turf in the middle of the
site and the ginseng field in the lower part of the site, are
detected as changed areas. This result is attributed to the
inclined canvas on the ginseng field, which exhibits varying
radiometric and spatial properties based on the off-nadir
angles of the given scene.Thus, many false alarms arise in the
change-detection results. In addition, the region correspond-
ing to the brown camouflage net that has spectral properties
similar to the neighboring pixels is not detected as a changed
region. In the results of the IR-MAD algorithm, the artificial
turf and certain building roofs (left side of Figure 10(a)) are
not detected as changed areas. The result of the proposed
algorithm integrated by convoluting the similarity measures
between the synthetically fused images is presented in Fig-
ure 10(h).The ginseng field is considered to be an unchanged
area, whereas the camouflage net and artificial turf regions
are effectively detected as changed areas (Figure 11(j)) relative
to the IR-MAD result (Figure 11(i)). However, in all cases, the
small targets of the camouflage net are not detected due to
the limited spatial resolution of the data. With the exception
of the small targets, all of the changed regions are detected
using the proposed algorithm, and some regions that did not
actually change are also detected. These errors are attributed
to the atmospheric correction and weather conditions. As
shown in Figure 10(b), cloud shadows occurred on the right
side of the datasets. Thus, some change-detection errors
occurred based on these areas. To quantitatively evaluate
the change-detection results, the detected changes, overall
accuracy, completeness, correctness, and false-alarm rate are
calculated based on the ground-truth data. Evaluation factors
are estimated with the number of pixels, and the results are
presented in Table 3. The change-detection result based on
the proposed algorithm shows higher completeness than the
results of the existing algorithms. Therefore, our algorithm
detected the highest portion of the actually changed areas.
The CVAED, IR-MAD, and proposed algorithms showed
better overall accuracy, correctness, and false-alarm rates
than the SID- and SCD-based algorithms. However, the high
correctness and low false-alarm rates of the CVAED and IR-
MAD results indicate that these algorithms could not ade-
quately detect the changed areas, in contrast to the proposed
algorithm.Therefore, we conclude that our algorithm detects
changed areas efficiently and minimizes the overall error in
the change detectionwithout the use of dimensionality reduc-
tion.
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Figure 10: Comparison of the change-detectionmaps: (a) ground-truth image, (b) result using the CVAED, (c) result using the SID, (d) result
using the SCD, (e) result using the ASCD, (f) result using the LSCD, (g) result using the IR-MAD, and (h) result using the proposed algorithm.

Table 3: Accuracy of the change-detection maps using the existing and proposed algorithms.

Overall accuracy Completeness Correctness False-alarm rate
CVAED 0.995 0.154 0.109 0.003
SID 0.905 0.184 0.005 0.093
SCD 0.899 0.538 0.012 0.100
ASCD 0.912 0.328 0.009 0.087
LSCD 0.917 0.152 0.004 0.081
IR-MAD 0.991 0.461 0.127 0.007
Proposed algorithm 0.983 0.768 0.097 0.017

5. Conclusions

In this study, we proposed a novel algorithm appropriate for
detecting changes in hyperspectral data without the dimen-
sionality reduction step that can lose specific information of
the data. Synthetically fused images that preserve spectral
differences while minimizing the spatial differences between
the two images acquired at different times were used for the
change-detection procedure. Based on the proposed simi-
larity distance and the application of the second-derivative
spectral profiles of pixels, most of the changed regions,
except for certain small targets, were effectively detected.
The change-detection results using our algorithm showed the
highest AUC value relative to the results from the other state-
of-the-art algorithms. The high AUC value indicates that the
change-detection result can be optimized while minimizing
the false-alarm rate. In the case of the evaluation from the
binary change-detection map, the CVAED and IR-MAD

methods showed higher overall accuracies of the change-
detection results than that of the proposed approach. These
results arose due to the higher correctness and false-alarm
rates of these methods. The proposed method produced
the highest completeness values, implying that the proposed
algorithm detected the largest portion of truly changed areas.
Therefore, we conclude that our methodology can be used
to detect subtle changes in hyperspectral data acquired at
different times using the properties of the derivative spectral
profiles in pixels.

However, certain regions that were not changed between
the two data were incorrectly detected due to the spectral
dissimilarity caused by atmospheric effects and cloud shad-
ows. Moreover, small targets were also not detected due to
the limited spatial resolution of the acquired hyperspectral
data.This problemwill be addressed in our future work using
various hyperspectral data together with modifications of the
similarity distance measure.
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Figure 11: Comparison of the magnified change-detection maps: (a) reference hyperspectral image, (b) target hyperspectral image, (c)
ground-truth image, (d) result using the CVAED, (e) result using the SID, (f) result using the SCD, (g) result using the ASCD, (h) result
using the LSCD, (i) result using the IR-MAD, and (j) result using the proposed algorithm.
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