503 research outputs found

    Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation

    Get PDF
    Background Non-invasive tools to help identify patients likely to benefit from catheter ablation (CA) of atrial fibrillation (AF) would facilitate personalised treatment planning. Aim To investigate atrial waveform organisation through recurrence plot indices (RPI) and their ability to predict CA outcome. Methods One minute 12-lead ECG was recorded before CA from 62 patients with AF (32 paroxysmal AF; 45 men; age 57±10 years). Organisation of atrial waveforms from i) TQ intervals in V1 and ii) QRST suppressed continuous AF waveforms (CAFW), were quantified using RPI: percentage recurrence (PR), percentage determinism (PD), entropy of recurrence (ER). Ability to predict acute (terminating vs. non-terminating AF), 3-month and 6-month postoperative outcome (AF vs. AF free) were assessed. Results RPI either by TQ or CAFW analysis did not change significantly with acute outcome. Patients arrhythmia-free at 6-month follow-up had higher organisation in TQ intervals by PD (

    Estimation of Atrial Electrical Complexity during Atrial Fibrillation by Solving the Inverse Problem of Electrocardiography

    Full text link
    Tesis por compendio[ES] La fibrilación auricular (FA) es la arritmia más prevalente en el mundo y está asociada con una elevada morbilidad, mortalidad y costes sanitarios. A pesar de los avances en opciones de tratamiento farmacológico y terapia de ablación, el manejo de la FA todavía tiene margen de mejora. La imagen electrocardiográfica (ECGI) se ha destacado como un prometedor método no invasivo para evaluar la electrofisiología cardíaca y guiar las decisiones terapéuticas en casos de fibrilación auricular. No obstante, el ECGI se enfrenta a desafíos como la necesidad de resolver de manera precisa el denominado problema inverso de la electrocardiografía y de optimizar la calidad de las reconstrucciones de ECGI. Además, la integración del ECGI en los procesos clínicos rutinarios sigue siendo un reto, en gran medida debido a los costos que supone la necesidad de imágenes cardíacas. Por ello, los objetivos principales de esta tesis doctoral son impulsar la tecnología ECGI mediante la determinación de sus requisitos técnicos mínimos y la mejora de las metodologías existentes para obtener señales de ECGI precisas. Asimismo, buscamos evaluar la capacidad de ECGI para cuantificar de forma no invasiva la complejidad de la FA. Para lograr estos objetivos, se han llevado a cabo diversos estudios a lo largo de la tesis, desde el perfeccionamiento del ECGI hasta la evaluación de la FA utilizando esta tecnología. En primer lugar, se han estudiado los requisitos geométricos y de señal del problema inverso mediante el estudio de los efectos de la densidad de la malla del torso y la distribución de electrodos en la precisión del ECGI, lo que ha conducido a la identificación del número mínimo de nodos y su distribución en la malla del torso. Además, hemos identificado que para obtener señales de ECGI de alta calidad, es crucial la correcta disposición de los electrodos en la malla del torso reconstruido. Asimismo, se ha definido y evaluado una nueva metodología de ECGI sin necesidad de usar técnicas de imagen cardiaca. Para ello, hemos comparado métricas derivadas del ECGI calculadas con la geometría original del corazón de los pacientes con las métricas medidas en diferentes geometrías cardíacas. Nuestros resultados han mostrado que el ECGI sin necesidad de imágenes cardíacas es efectivo para la correcta cuantificación y localización de los patrones y zonas que mantienen la FA. En paralelo, hemos optimizado la regularización de Tikhonov de orden cero actual y la optimización de la curva L para el cálculo de las señales ECGI, investigando cómo el ruido eléctrico y las incertidumbres geométricas influyen en la regularización. A partir de ello, propusimos un nuevo criterio que realza la precisión de las soluciones de ECGI en escenarios con incertidumbre debido a condiciones de señal no ideales. En segundo lugar, en esta tesis doctoral, se han llevado a cabo múltiples análisis relativos a diferentes metodologías de procesado de señales y obtención métricas derivadas del ECGI con el fin de caracterizar mejor el sustrato cardíaco y la actividad reentrante en las señales de ECGI de pacientes con FA. Con el objetivo de obtener una comprensión más profunda de los mecanismos electrofisiológicos subyacentes a la FA, hemos establecido la estrategia de filtrado óptima para extraer patrones reentrantes específicos del paciente y métricas derivadas de señales ECGI. Además, hemos investigado la reproducibilidad de los mapas de reentradas derivados de las señales de ECGI y hemos encontrado su relación con el éxito de la ablación de venas pulmonares (PVI). Nuestros resultados han mostrado que una mayor reproducibilidad en los patrones reentrantes de FA detectados con ECGI está relacionada con el éxito de la PVI, creando una metodología para estratificar a los pacientes con FA antes de los procedimientos de ablación.[CA] La fibril·lació auricular (FA) és l'arrítmia més prevalent al món i està associada amb una elevada morbiditat, mortalitat i costos sanitaris. Malgrat els avanços en opcions de tractament farmacològic i teràpies d'ablació, el maneig de la FA encara té marge de millora. La imatge electrocardiogràfica (ECGI) s'ha destacat com un prometedor mètode no invasiu per a avaluar l'electrofisiologia cardíaca i guiar les decisions terapèutiques en casos de fibril·lació auricular. No obstant això, l'ECGI s'enfronta a desafiaments com la necessitat de resoldre de manera precisa el denominat problema invers de la electrocardiografia i d'optimitzar la qualitat de les reconstruccions de ECGI. A més, la integració del ECGI en els processos clínics rutinaris continua sent un repte, en gran manera a causa dels costos que suposa la necessitat d'imatges cardíaques. Per això, els objectius principals d'aquesta tesi doctoral són impulsar la tecnologia de l'ECGI mitjançant la determinació dels seus requisits tècnics mínims i la millora de les metodologies existents per obtenir senyals d'ECGI precises. A més, busquem avaluar la capacitat de l'ECGI per quantificar de forma no invasiva la complexitat de la FA. Per a aconseguir aquests objectius, s'han dut a terme diversos estudis al llarg de la tesi, des del perfeccionament de l'ECGI fins a l'avaluació de la FA utilitzant aquesta tecnologia. En primer lloc, hem estudiat els requisits geomètrics i de senyal del problema invers mitjançant l'estudi dels efectes de la densitat de la malla del tors i la distribució d'elèctrodes en la precisió de l'ECGI, el que ha conduït a la identificació del nombre mínim de nodes i la seva distribució en la malla del tors. A més, hem identificat que per obtindre senyals d'ECGI d'alta qualitat, és crucial la correcta disposició dels elèctrodes en la malla del tors reconstruïda. També s'ha definit i avaluat una nova metodologia d'ECGI sense necessitat d'utilitzar tècniques d'imatge cardíaca. Per a això, hem comparat mètriques derivades de l'ECGI calculades amb la geometria original del cor dels pacients amb les mètriques mesurades en diferents geometries cardíaques. Els nostres resultats han mostrat que l'ECGI sense necessitat d'imatges cardíaques és efectiu per a la correcta quantificació i localització dels patrons i zones que mantenen la FA. Paral·lelament, hem optimitzat la regularització de Tikhonov d'ordre zero actual i l'optimització de la corba L per al càlcul de les senyals d'ECGI, investigant com el soroll elèctric i les incerteses geomètriques influeixen en la regularització. Addicionalment, vam proposar un nou criteri que reforça la precisió de les solucions d'ECGI en escenaris amb incertesa degut a condicions de senyal no ideals. En segon lloc, en aquesta tesi doctoral, s'han dut a terme múltiples anàlisis relatius a diferents metodologies de processament de senyals i obtenció de mètriques derivades de l'ECGI amb l'objectiu de caracteritzar millor el substrat cardíac i l'activitat reentrant en les senyals d'ECGI de pacients amb FA. Amb l'objectiu d'obtindre una comprensió més profunda dels mecanismes electrofisiològics subjacents a la FA, hem establert l'estratègia de filtrat òptima per extreure patrons reentrants específics del pacient i mètriques derivades de senyals ECGI. A més, hem investigat la reproductibilitat dels mapes de reentrades derivats de les senyals d'ECGI i hem trobat la seva relació amb l'èxit de l'ablació de venes pulmonars (PVI). Els nostres resultats han mostrat que una major reproductibilitat en els patrons reentrants de FA detectats amb ECGI està relacionada amb l'èxit de la PVI, creant una metodologia per estratificar els pacients amb FA abans dels procediments d'ablació.[EN] Atrial fibrillation (AF) is the most prevalent arrhythmia in the world and is associated with significant morbidity, mortality, and healthcare costs. Despite advancements in pharmaceutical treatment alternatives and ablation therapy, AF management remains suboptimal. Electrocardiographic Imaging (ECGI) has emerged as a promising non-invasive method for assessing cardiac electrophysiology and guiding therapeutic decisions in atrial fibrillation. However, ECGI faces challenges in dealing with accurately resolving the ill-posed inverse problem of electrocardiography and optimizing the quality of ECGI reconstructions. Additionally, the integration of ECGI into clinical workflows is still a challenge that is hindered by the associated costs arising from the need for cardiac imaging. For this purpose, the main objectives of this PhD thesis are to advance ECGI technology by determining the minimal technical requirements and refining existing methodologies for acquiring accurate ECGI signals. In addition, we aim to assess the capacity of ECGI for noninvasively quantifying AF complexity. To fulfill these objectives, several studies were developed throughout the thesis, advancing from ECGI enhancement to AF evaluation using ECGI. Firstly, geometric and signal requirements of the inverse problem were addressed by studying the effects of torso mesh density and electrode distribution on ECGI accuracy, leading to the identification of the minimal number of nodes and their distribution on the torso mesh. Besides, we identified that the correct location of the electrodes on the reconstructed torso mesh is critical for the accurate ECGI signal obtention. Additionally, a new methodology of imageless ECGI was defined and assessed by comparing ECGI-derived drivers computed with the original heart geometry of the patients to the drivers measured in different heart geometries. Our results showed the ability of imageless ECGI to the correct quantification and location of atrial fibrillation drivers, validating the use of ECGI without the need for cardiac imaging. Also, the current state of-the-art zero-order Tikhonov regularization and L-curve optimization for computing ECGI signals were improved by investigating the impact of electrical noise and geometrical uncertainties on the regularization. We proposed a new criterion that enhances the accuracy and reliability of ECGI solutions in situations with uncertainty from unfavorable signal conditions. Secondly, in this PhD thesis, several analyses, signal processing methodologies, and ECGIderived metrics were investigated to better characterize the cardiac substrate and reentrant activity in ECGI signals from AF patients. With the objective of obtaining a deeper understanding of the electrophysiological mechanisms underlying AF, we established the optimal filtering strategy to extract patient-specific reentrant patterns and derived metrics in ECGI signals. Furthermore, we investigated the reproducibility of the obtained ECGI-reentrant maps and linked them to the success of PVI ablation. Our results showed that higher reproducibility on AF drivers detected with ECGI is linked with the success of PVI, creating a proof-of-concept mechanism for stratifying AF patients prior to ablation procedures.This work was supported by: Instituto de Salud Carlos III, and Ministerio de Ciencia e Innovación (supported by FEDER Fondo Europeo de Desarrollo Regional DIDIMO PLEC2021- 007614, ESSENCE PID2020-119364RB-I00, and RYC2018- 024346B-750), EIT Health (Activity code SAVE-COR 220385, EIT Health is supported by EIT, a body of the European Union) and Generalitat Valenciana Conselleria d’Educació, Investigació, Cultura i Esport (ACIF/2020/265 and BEFPI/2021/062).Molero Alabau, R. (2023). Estimation of Atrial Electrical Complexity during Atrial Fibrillation by Solving the Inverse Problem of Electrocardiography [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/199029Compendi

    Noninvasive Assessment of Atrial Fibrillation Complexity in Relation to Ablation Characteristics and Outcome

    Get PDF
    Background: The use of surface recordings to assess atrial fibrillation (AF) complexity is still limited in clinical practice. We propose a noninvasive tool to quantify AF complexity from body surface potential maps (BSPMs) that could be used to choose patients who are eligible for AF ablation and assess therapy impact.Methods: BSPMs (mean duration: 7 ± 4 s) were recorded with a 252-lead vest in 97 persistent AF patients (80 male, 64 ± 11 years, duration 9.6 ± 10.4 months) before undergoing catheter ablation. Baseline cycle length (CL) was measured in the left atrial appendage. The procedural endpoint was AF termination. The ablation strategy impact was defined in terms of number of regions ablated, radiofrequency delivery time to achieve AF termination, and acute outcome. The atrial fibrillatory wave signal extracted from BSPMs was divided in 0.5-s consecutive segments, each projected on a 3D subspace determined through principal component analysis (PCA) in the current frame. We introduced the nondipolar component index (NDI) that quantifies the fraction of energy retained after subtracting an equivalent PCA dipolar approximation of heart electrical activity. AF complexity was assessed by the NDI averaged over the entire recording and compared to ablation strategy.Results: AF terminated in 77 patients (79%), whose baseline AF CL was 177 ± 40 ms, whereas it was 157 ± 26 ms in patients with unsuccessful ablation outcome (p = 0.0586). Mean radiofrequency emission duration was 35 ± 21 min; 4 ± 2 regions were targeted. Long-lasting AF patients (≥12 months) exhibited higher complexity, with higher NDI values (≥12 months: 0.12 ± 0.04 vs. <12 months: 0.09 ± 0.03, p < 0.01) and short CLs (<160 ms: 0.12 ± 0.03 vs. between 160 and 180 ms: 0.10 ± 0.03 vs. >180 ms: 0.09 ± 0.03, p < 0.01). More organized AF as measured by lower NDI was associated with successful ablation outcome (termination: 0.10 ± 0.03 vs. no termination: 0.12 ± 0.04, p < 0.01), shorter procedures (<30 min: 0.09 ± 0.04 vs. ≥30 min: 0.11 ± 0.03, p < 0.001) and fewer ablation targets (<4: 0.09 ± 0.03 vs. ≥4: 0.11 ± 0.04, p < 0.01).Conclusions: AF complexity can be noninvasively quantified by PCA in BSPMs and correlates with ablation outcome and AF pathophysiology

    Catheter ablation in patients with atrial fibrillation : mapping refinements, outcome prediction and effect on quality of life

    Get PDF
    PhD ThesisChapter 1 presents a literature review, focused primarily on the pathophysiology and management of atrial fibrillation (AF). Chapter 2 examines correlations between the dominant frequency of AF - calculated using principal component analysis from a modified surface 12-lead ECG (which included posterior leads), a standard 12-lead ECG and intracardiac recordings from both atria. The inclusion of posterior leads did not improve correlation with left atrial activity because of the dominance of lead V1 in both ECG configurations. Chapter 3 explores whether acute and 12-month outcome following catheter ablation for AF can be predicted beforehand from clinical and surface AF waveform parameters. Multivariate risk scores combining these parameters can predict arrhythmia outcome following ablation, and could therefore be used to identify those most likely to benefit from this therapy. Chapter 4 examines the effect of catheter ablation on AF symptoms and quality of life (QoL). AF symptom and QoL scores improved significantly in patients who maintained sinus rhythm after ablation but did not change in those with recurrent AF. AF-specific QoL scales are more responsive to change and correlate better with ablation outcome. Chapter 5 examines inter-atrial frequency gradients in patients with persistent AF using multipolar contact mapping. A right-to-left atrial frequency gradient was found in a quarter of the patients studied, implying that their arrhythmia was being maintained by high frequency sources in the right rather than the left atrium. Chapter 6 examines whether targeting high frequency and highly repetitive complex fractionated atrial electrogram sites, identified using multipolar contact mapping during persistent AF, resulted in arrhythmia termination and maintenance of sinus rhythm long-term. The utility of administering flecainide to distinguish critical from bystander AF sites was also investigated. Flecainide did not help refine ablation targets and 12-month outcome after targeting these sites was not superior to other ablation strategies

    Computer-Aided Clinical Decision Support Systems for Atrial Fibrillation

    Get PDF
    Clinical decision support systems (clinical DSSs) are widely used today for various clinical applications such as diagnosis, treatment, and recovery. Clinical DSS aims to enhance the end‐to‐end therapy management for the doctors, and also helps to provide improved experience for patients during each phase of the therapy. The goal of this chapter is to provide an insight into the clinical DSS associated with the highly prevalent heart rhythm disorder, atrial fibrillation (AF). The use of clinical DSS in AF management is ubiquitous, starting from detection of AF through sophisticated electrophysiology treatment procedures, all the way to monitoring the patient\u27s health during follow‐ups. Most of the software associated with AF DSS are developed based on signal processing, image processing, and artificial intelligence techniques. The chapter begins with a brief description of DSS in general and then introduces DSS that are used for various clinical applications. The chapter continues with a background on AF and some relevant mechanisms. Finally, a couple of clinical DSS used today in regard with AF are discussed, along with some proposed methods for potential implementation of clinical DSS for detection of AF, prediction of an AF treatment outcome, and localization of AF targets during a treatment procedure

    Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications

    Get PDF
    [EN] Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.This study received financial support from the Hein Wellens Fonds, the Cardiovascular Research and Training Institute (CVRTI), the Nora Eccles Treadwell Foundation, the National Institute of General Medical Sciences of the National Institutes of Health (P41GM103545), the National Institutes of Health (NIH HL080093), the French government as part of the Investments of the Future program managed by the National Research Agency (ANR-10-IAHU-04), from the VEGA Grant Agency in Slovakia (2/0071/16), from the Slovak Research and Development Agency (APVV-14-0875), the Fondo Europeo de Desarrollo Regional (FEDER), the Instituto de Salud Carlos III (PI17/01106) and from Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (AICO/2018/267) and NIH grant (HL125998) and National Science Foundation (ACI-1350374).Cluitmans, M.; Brooks, D.; Macleod, RS.; Dossel, O.; Guillem Sánchez, MS.; Van Dam, P.; Svehlikova, J.... (2018). Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.01305S9Andrews, C. M., Srinivasan, N. T., Rosmini, S., Bulluck, H., Orini, M., Jenkins, S., … Rudy, Y. (2017). Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging. Circulation: Arrhythmia and Electrophysiology, 10(7). doi:10.1161/circep.116.005105Aras, K., Good, W., Tate, J., Burton, B., Brooks, D., Coll-Font, J., … MacLeod, R. (2015). Experimental Data and Geometric Analysis Repository—EDGAR. Journal of Electrocardiology, 48(6), 975-981. doi:10.1016/j.jelectrocard.2015.08.008Austen, W., Edwards, J., Frye, R., Gensini, G., Gott, V., Griffith, L., … Roe, B. (1975). A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation, 51(4), 5-40. doi:10.1161/01.cir.51.4.5Bayley, R. H., & Berry, P. M. (1962). The electrical field produced by the eccentric current dipole in the nonhomogeneous conductor. American Heart Journal, 63(6), 808-820. doi:10.1016/0002-8703(62)90065-0Bear, L. R., Huntjens, P. R., Walton, R. D., Bernus, O., Coronel, R., & Dubois, R. (2018). Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm, 15(7), 1058-1069. doi:10.1016/j.hrthm.2018.02.024Bear, L. R., LeGrice, I. J., Sands, G. B., Lever, N. A., Loiselle, D. S., Paterson, D. J., … Smaill, B. H. (2018). How Accurate Is Inverse Electrocardiographic Mapping? Circulation: Arrhythmia and Electrophysiology, 11(5). doi:10.1161/circep.117.006108Berger, T., Fischer, G., Pfeifer, B., Modre, R., Hanser, F., Trieb, T., … Hintringer, F. (2006). Single-Beat Noninvasive Imaging of Cardiac Electrophysiology of Ventricular Pre-Excitation. Journal of the American College of Cardiology, 48(10), 2045-2052. doi:10.1016/j.jacc.2006.08.019Berger, T., Pfeifer, B., Hanser, F. F., Hintringer, F., Fischer, G., Netzer, M., … Seger, M. (2011). Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT. PLoS ONE, 6(1), e16255. doi:10.1371/journal.pone.0016255Dubois, R., Pashaei, A., Duchateau, J., & Vigmond, E. (2016). Evaluation of Combined Noninvasive Electrocardiographic Imaging and Phase Mapping approach for Atrial Fibrillation: A Simulation Study. 2016 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2016.037-540Duchateau, J., Potse, M., & Dubois, R. (2017). Spatially Coherent Activation Maps for Electrocardiographic Imaging. IEEE Transactions on Biomedical Engineering, 64(5), 1149-1156. doi:10.1109/tbme.2016.2593003Erem, B., Brooks, D. H., van Dam, P. M., Stinstra, J. G., & MacLeod, R. S. (2011). Spatiotemporal estimation of activation times of fractionated ECGs on complex heart surfaces. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091455Erem, B., van Dam, P. M., & Brooks, D. H. (2014). Identifying Model Inaccuracies and Solution Uncertainties in Noninvasive Activation-Based Imaging of Cardiac Excitation Using Convex Relaxation. IEEE Transactions on Medical Imaging, 33(4), 902-912. doi:10.1109/tmi.2014.2297952Erkapic, D., & Neumann, T. (2015). Ablation of Premature Ventricular Complexes Exclusively Guided by Three-Dimensional Noninvasive Mapping. Cardiac Electrophysiology Clinics, 7(1), 109-115. doi:10.1016/j.ccep.2014.11.010Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Faes, L., & Ravelli, F. (2007). A morphology-based approach to the evaluation of atrial fibrillation organization. IEEE Engineering in Medicine and Biology Magazine, 26(4), 59-67. doi:10.1109/memb.2007.384097Fitzpatrick, A. P., Gonzales, R. P., Lesh, M. D., odin, G. W., Lee, R. J., & Scheinman, M. M. (1994). New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. Journal of the American College of Cardiology, 23(1), 107-116. doi:10.1016/0735-1097(94)90508-8Geselowitz, D. B. (1989). On the theory of the electrocardiogram. Proceedings of the IEEE, 77(6), 857-876. doi:10.1109/5.29327Geselowitz, D. B. (1992). Description of cardiac sources in anisotropic cardiac muscle. Journal of Electrocardiology, 25, 65-67. doi:10.1016/0022-0736(92)90063-6Ghanem, R. N., Jia, P., Ramanathan, C., Ryu, K., Markowitz, A., & Rudy, Y. (2005). Noninvasive Electrocardiographic Imaging (ECGI): Comparison to intraoperative mapping in patients. Heart Rhythm, 2(4), 339-354. doi:10.1016/j.hrthm.2004.12.022Ghosh, S., Rhee, E. K., Avari, J. N., Woodard, P. K., & Rudy, Y. (2008). Cardiac Memory in Patients With Wolff-Parkinson-White Syndrome. Circulation, 118(9), 907-915. doi:10.1161/circulationaha.108.781658Ghosh, S., Silva, J. N. A., Canham, R. M., Bowman, T. M., Zhang, J., Rhee, E. K., … Rudy, Y. (2011). Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm, 8(5), 692-699. doi:10.1016/j.hrthm.2011.01.017Grace, A., Verma, A., & Willems, S. (2017). Dipole Density Mapping of Atrial Fibrillation. European Heart Journal, 38(1), 5-9. doi:10.1093/eurheartj/ehw585Dorset, D. L. (1996). Electron crystallography. Acta Crystallographica Section B Structural Science, 52(5), 753-769. doi:10.1107/s0108768196005599Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421HAISSAGUERRE, M., HOCINI, M., SHAH, A. J., DERVAL, N., SACHER, F., JAIS, P., & DUBOIS, R. (2013). Noninvasive Panoramic Mapping of Human Atrial Fibrillation Mechanisms: A Feasibility Report. Journal of Cardiovascular Electrophysiology, 24(6), 711-717. doi:10.1111/jce.12075Han, C., Pogwizd, S. M., Killingsworth, C. R., & He, B. (2011). Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm, 8(8), 1266-1272. doi:10.1016/j.hrthm.2011.03.014Bin He, Guanglin Li, & Xin Zhang. (2003). Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Transactions on Biomedical Engineering, 50(10), 1190-1202. doi:10.1109/tbme.2003.817637Bin He, & Dongsheng Wu. (2001). Imaging and visualization of 3-D cardiac electric activity. IEEE Transactions on Information Technology in Biomedicine, 5(3), 181-186. doi:10.1109/4233.945288Horáček, B. M., Sapp, J. L., Penney, C. J., Warren, J. W., & Wang, J. J. (2011). Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia. Journal of Electrocardiology, 44(6), 707-712. doi:10.1016/j.jelectrocard.2011.08.009Horáček, B. M., Wang, L., Dawoud, F., Xu, J., & Sapp, J. L. (2015). Noninvasive electrocardiographic imaging of chronic myocardial infarct scar. Journal of Electrocardiology, 48(6), 952-958. doi:10.1016/j.jelectrocard.2015.08.035Jamil-Copley, S., Vergara, P., Carbucicchio, C., Linton, N., Koa-Wing, M., Luther, V., … Kanagaratnam, P. (2015). Application of Ripple Mapping to Visualize Slow Conduction Channels Within the Infarct-Related Left Ventricular Scar. Circulation: Arrhythmia and Electrophysiology, 8(1), 76-86. doi:10.1161/circep.114.001827Janssen, A. M., Potyagaylo, D., Dössel, O., & Oostendorp, T. F. (2017). Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart. Medical & Biological Engineering & Computing, 56(6), 1013-1025. doi:10.1007/s11517-017-1715-xKnecht, S., Sohal, M., Deisenhofer, I., Albenque, J.-P., Arentz, T., Neumann, T., … Rostock, T. (2017). Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. EP Europace, 19(8), 1302-1309. doi:10.1093/europace/euw168Kuck, K.-H., Schaumann, A., Eckardt, L., Willems, S., Ventura, R., Delacrétaz, E., … Hansen, P. S. (2010). Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. The Lancet, 375(9708), 31-40. doi:10.1016/s0140-6736(09)61755-4Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660Leong, K. M. W., Ng, F. S., Yao, C., Roney, C., Taraborrelli, P., Linton, N. W. F., … Varnava, A. M. (2017). ST-Elevation Magnitude Correlates With Right Ventricular Outflow Tract Conduction Delay in Type I Brugada ECG. Circulation: Arrhythmia and Electrophysiology, 10(10). doi:10.1161/circep.117.005107Chenguang Liu, Eggen, M. D., Swingen, C. M., Iaizzo, P. A., & Bin He. (2012). Noninvasive Mapping of Transmural Potentials During Activation in Swine Hearts From Body Surface Electrocardiograms. IEEE Transactions on Medical Imaging, 31(9), 1777-1785. doi:10.1109/tmi.2012.2202914MacLeod, R. S., Ni, Q., Punske, B., Ershler, P. R., Yilmaz, B., & Taccardi, B. (2000). Effects of heart position on the body-surface electrocardiogram. Journal of Electrocardiology, 33, 229-237. doi:10.1054/jelc.2000.20357Metzner, A., Wissner, E., Tsyganov, A., Kalinin, V., Schlüter, M., Lemes, C., … Kuck, K.-H. (2017). Noninvasive phase mapping of persistent atrial fibrillation in humans: Comparison with invasive catheter mapping. Annals of Noninvasive Electrocardiology, 23(4), e12527. doi:10.1111/anec.12527Modre, R., Tilg, B., Fischer, G., Hanser, F., Messnarz, B., Seger, M., … Roithinger, F. X. (2003). Atrial Noninvasive Activation Mapping of Paced Rhythm Data. Journal of Cardiovascular Electrophysiology, 14(7), 712-719. doi:10.1046/j.1540-8167.2003.02558.xNarayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.xOosterhoff, P., Meijborg, V. M. F., van Dam, P. M., van Dessel, P. F. H. M., Belterman, C. N. W., Streekstra, G. J., … Oostendorp, T. F. (2016). Experimental Validation of Noninvasive Epicardial and Endocardial Activation Imaging. Circulation: Arrhythmia and Electrophysiology, 9(8). doi:10.1161/circep.116.004104Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1997). Noninvasive Electrocardiographic Imaging. Circulation, 96(3), 1012-1024. doi:10.1161/01.cir.96.3.1012Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1998). Electrocardiographic Imaging. Circulation, 97(15), 1496-1507. doi:10.1161/01.cir.97.15.1496PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931Ploux, S., Lumens, J., Whinnett, Z., Montaudon, M., Strom, M., Ramanathan, C., … Bordachar, P. (2013). Noninvasive Electrocardiographic Mapping to Improve Patient Selection for Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 61(24), 2435-2443. doi:10.1016/j.jacc.2013.01.093Potyagaylo, D., Segel, M., Schulze, W. H. W., & Dössel, O. (2013). Noninvasive Localization of Ectopic Foci: A New Optimization Approach for Simultaneous Reconstruction of Transmembrane Voltages and Epicardial Potentials. Lecture Notes in Computer Science, 166-173. doi:10.1007/978-3-642-38899-6_20Punshchykova, O., Švehlíková, J., Tyšler, M., Grünes, R., Sedova, K., Osmančík, P., … Kneppo, P. (2016). Influence of Torso Model Complexity on the Noninvasive Localization of Ectopic Ventricular Activity. Measurement Science Review, 16(2), 96-102. doi:10.1515/msr-2016-0013RAMANATHAN, C., & RUDY, Y. (2001). Electrocardiographic Imaging: II. Effect of Torso Inhomogeneities on Noninvasive Reconstruction of Epicardial Potentials, Electrograms, and Isochrones. Journal of Cardiovascular Electrophysiology, 12(2), 241-252. doi:10.1046/j.1540-8167.2001.00241.xReddy, V. Y., Reynolds, M. R., Neuzil, P., Richardson, A. W., Taborsky, M., Jongnarangsin, K., … Josephson, M. E. (2007). Prophylactic Catheter Ablation for the Prevention of Defibrillator Therapy. New England Journal of Medicine, 357(26), 2657-2665. doi:10.1056/nejmoa065457Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008ROTEN, L., PEDERSEN, M., PASCALE, P., SHAH, A., ELIAUTOU, S., SCHERR, D., … HAÏSSAGUERRE, M. (2012). Noninvasive Electrocardiographic Mapping for Prediction of Tachycardia Mechanism and Origin of Atrial Tachycardia Following Bilateral Pulmonary Transplantation. Journal of Cardiovascular Electrophysiology, 23(5), 553-555. doi:10.1111/j.1540-8167.2011.02250.xRudy, Y. (2013). Noninvasive Electrocardiographic Imaging of Arrhythmogenic Substrates in Humans. Circulation Research, 112(5), 863-874. doi:10.1161/circresaha.112.279315Ghosh, S., Avari, J. N., Rhee, E. K., Woodard, P. K., & Rudy, Y. (2008). Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm, 5(6), 857-860. doi:10.1016/j.hrthm.2008.03.011Rudy, Y., Plonsey, R., & Liebman, J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44(1), 104-111. doi:10.1161/01.res.44.1.104SALINET, J. L., TUAN, J. H., SANDILANDS, A. J., STAFFORD, P. J., SCHLINDWEIN, F. S., & NG, G. A. (2013). Distinctive Patterns of Dominant Frequency Trajectory Behavior in Drug-Refractory Persistent Atrial Fibrillation: Preliminary Characterization of Spatiotemporal Instability. Journal of Cardiovascular Electrophysiology, 25(4), 371-379. doi:10.1111/jce.12331Dalu, Y. (1978). Relating the multipole moments of the heart to activated parts of the epicardium and endocardium. Annals of Biomedical Engineering, 6(4), 492-505. doi:10.1007/bf02584552Sánchez, C., Bueno-Orovio, A., Pueyo, E., & Rodríguez, B. (2017). Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Frontiers in Bioengineering and Biotechnology, 5. doi:10.3389/fbioe.2017.00029Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011Sapp, J. L., Bar-Tal, M., Howes, A. J., Toma, J. E., El-Damaty, A., Warren, J. W., … Horáček, B. M. (2017). Real-Time Localization of Ventricular Tachycardia Origin From the 12-Lead Electrocardiogram. JACC: Clinical Electrophysiology, 3(7), 687-699. doi:10.1016/j.jacep.2017.02.024Sapp, J. L., Dawoud, F., Clements, J. C., & Horáček, B. M. (2012). Inverse Solution Mapping of Epicardial Potentials. Circulation: Arrhythmia and Electrophysiology, 5(5), 1001-1009. doi:10.1161/circep.111.970160Sapp, J. L., Wells, G. A., Parkash, R., Stevenson, W. G., Blier, L., Sarrazin, J.-F., … Tang, A. S. L. (2016). Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. New England Journal of Medicine, 375(2), 111-121. doi:10.1056/nejmoa1513614Schulze, W. H. W., Chen, Z., Relan, J., Potyagaylo, D., Krueger, M. W., Karim, R., … Dössel, O. (2016). ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone. Medical & Biological Engineering & Computing, 55(6), 979-990. doi:10.1007/s11517-016-1566-xShah, D. C., Jaïs, P., Haïssaguerre, M., Chouairi, S., Takahashi, A., Hocini, M., … Clémenty, J. (1997). Three-dimensional Mapping of the Common Atrial Flutter Circuit in the Right Atrium. Circulation, 96(11), 3904-3912. doi:10.1161/01.cir.96.11.3904Shome, S., & Macleod, R. (s. f.). Simultaneous High-Resolution Electrical Imaging of Endocardial, Epicardial and Torso-Tank Surfaces Under Varying Cardiac Metabolic Load and Coronary Flow. Lecture Notes in Computer Science, 320-329. doi:10.1007/978-3-540-72907-5_33SIMMS, H. D., & GESELOWITZ, D. B. (1995). Computation of Heart Surface Potentials Using the Surface Source Model. Journal of Cardiovascular Electrophysiology, 6(7), 522-531. doi:10.1111/j.1540-8167.1995.tb00425.xSvehlikova, J., Teplan, M., & Tysler, M. (2018). Geometrical constraint of sources in noninvasive localization of premature ventricular contractions. Journal of Electrocardiology, 51(3), 370-377. doi:10.1016/j.jelectrocard.2018.02.013Tsyganov, A., Wissner, E., Metzner, A., Mironovich, S., Chaykovskaya, M., Kalinin, V., … Kuck, K.-H. (2018). Mapping of ventricular arrhythmias using a novel noninvasive epicardial and endocardial electrophysiology system. Journal of Electrocardiology, 51(1), 92-98. doi:10.1016/j.jelectrocard.2017.07.018Umapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., & Nanthakumar, K. (2010). Phase Mapping of Cardiac Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 105-114. doi:10.1161/circep.110.853804Van Dam, P. M., Oostendorp, T. F., Linnenbank, A. C., & van Oosterom, A. (2009). Non-Invasive Imaging of Cardiac Activation and Recovery. Annals of Biomedical Engineering, 37(9), 1739-1756. doi:10.1007/s10439-009-9747-5Van Oosterom, A. (2001). Genesis of the T wave as based on an equivalent surface source model. Journal of Electrocardiology, 34(4), 217-227. doi:10.1054/jelc.2001.28896Van Oosterom, A. (2002). Solidifying the solid angle. Journal of Electrocardiology, 35(4), 181-192. doi:10.1054/jelc.2002.37176Van Oosterom, A. (2004). ECGSIM: an interactive tool for stu

    Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models.

    Get PDF
    BACKGROUND: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while patient-specific models in small cohorts primarily explain acute response to ablation. We aimed to predict long-term atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to complement biophysical simulations by encoding more interindividual variability. METHODS: Patient-specific models were constructed for 100 atrial fibrillation patients (43 paroxysmal, 41 persistent, and 16 long-standing persistent), undergoing first ablation. Patients were followed for 1 year using ambulatory ECG monitoring. Each patient-specific biophysical model combined differing fibrosis patterns, fiber orientation maps, electrical properties, and ablation patterns to capture uncertainty in atrial properties and to test the ability of the tissue to sustain fibrillation. These simulation stress tests of different model variants were postprocessed to calculate atrial fibrillation simulation metrics. Machine learning classifiers were trained to predict atrial fibrillation recurrence using features from the patient history, imaging, and atrial fibrillation simulation metrics. RESULTS: We performed 1100 atrial fibrillation ablation simulations across 100 patient-specific models. Models based on simulation stress tests alone showed a maximum accuracy of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging, and simulation stress tests (average 10-fold cross-validation area under the curve, 0.85±0.09; recall, 0.80±0.13; precision, 0.74±0.13) outperformed those trained to history and imaging (area under the curve, 0.66±0.17) or history alone (area under the curve, 0.61±0.14). CONCLUSION: A novel computational pipeline accurately predicted long-term atrial fibrillation recurrence in individual patients by combining outcome data with patient-specific acute simulation response. This technique could help to personalize selection for atrial fibrillation ablation

    Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation

    Full text link
    [EN] European Society of Cardiology guidelines recommend electrical cardioversion (ECV) as a rhythm control strategy in persistent atrial fibrillation (AF). Although ECV initially restores sinus rhythm (SR) in almost every patient, mid- and long-term AF recurrence rates are high, so that additional research is needed to anticipate ECV outcome and rationalize the management of AF patients. Although indices characterizing fibrillatory (f -) waves from surface lead V1, such as dominant frequency (DF), amplitude (FWA), and entropy, have reported good results, they discard the spatial information from the remaining leads. Hence, this work explores whether a multidimensional characterization approach of these parameters can improve ECV outcome prediction. The obtained results have shown that multidimensional FWA reported more balanced values of sensitivity and specificity, although the discriminant ability was similar in both cases. For DF, a similar outcome was also obtained. In contrast, multivariate entropy overcome discriminant ability of its univariate version by 5%, rightly anticipating result in more than 80% of ECV cases. Therefore, multidimensional entropy analysis seems to be able to quantify novel dynamics in the f-waves, which lead to a better ECV outcome predictionThis research was funded by the projects DPI2017-83952C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from "Junta de Castilla La Mancha" and AICO/2019/036 from "Generalitat Valenciana"Cirugeda, EM.; Calero, S.; Plancha, E.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.377S1
    corecore