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Abstract 30 

Background: Current ablation therapy for atrial fibrillation is sub-optimal and long-term 31 

response is challenging to predict. Clinical trials identify bedside properties that provide only 32 

modest prediction of long-term response in populations, while patient-specific models in 33 

small cohorts primarily explain acute response to ablation. We aimed to predict long-term 34 

atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to 35 

complement biophysical simulations by encoding more inter-individual variability. 36 

Methods: Patient-specific models were constructed for 100 atrial fibrillation patients (43 37 

paroxysmal, 41 persistent, 16 long-standing persistent), undergoing first ablation. Patients 38 

were followed for 1-year using ambulatory ECG monitoring. Each patient-specific 39 

biophysical model combined differing fibrosis patterns, fibre orientation maps, electrical 40 

properties and ablation patterns to capture uncertainty in atrial properties and to test the 41 

ability of the tissue to sustain fibrillation. These simulation stress tests of different model 42 

variants were post-processed to calculate atrial fibrillation simulation metrics. Machine 43 

learning classifiers were trained to predict atrial fibrillation recurrence using features from the 44 

patient history, imaging and atrial fibrillation simulation metrics.  45 

Results: We performed 1100 atrial fibrillation ablation simulations across 100 patient-46 

specific models.  Models based on simulation stress tests alone showed a maximum accuracy 47 

of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging 48 

and simulation stress tests (average ten-fold cross-validation area under the curve 0.85 ± 0.09, 49 

recall 0.80 ± 0.13, precision 0.74 ± 0.13) outperformed those trained to history and imaging 50 

(area under the curve 0.66 ± 0.17), or history alone (area under the curve 0.61 ± 0.14).  51 

Conclusion: A novel computational pipeline accurately predicted long-term atrial fibrillation 52 

recurrence in individual patients by combining outcome data with patient-specific acute 53 



simulation response. This technique could help to personalise selection for atrial fibrillation 54 

ablation. 55 

 56 
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 59 

Non-standard Abbreviations and Acronyms: 60 

BB: beta-blockers 61 

CCB: calcium channel blockers 62 

CT: computed tomography 63 

CV: conduction velocity 64 

DT-MRI: diffusion tensor magnetic resonance imaging 65 

IIR: image intensity ratio  66 

LA-PV: left atrial – pulmonary vein  67 

LGE-MRI: late-gadolinium enhancement magnetic resonance imaging 68 

PS: phase singularity  69 

PVI: pulmonary vein isolation 70 

ROC AUC: receiver operating characteristic area under the curve 71 

TGF-ß1: transforming growth factor beta-1  72 

 73 

Introduction:  74 

Radiofrequency catheter ablation therapy is recommended in symptomatic drug refractory 75 

atrial fibrillation patients. Atrial fibrillation ablation therapy ranges from pulmonary vein 76 

isolation to more extensive ablation strategies consisting of pulmonary vein isolation together 77 

with multiple additional lesions. Atrial fibrillation patients represent a diverse population 78 



requiring a range of different treatment approaches; no single approach is right for all 79 

patients, with suboptimal success from pulmonary vein isolation of 55-75% at 1.5 years 1. 80 

Identifying a priori optimal ablation approaches for individual patients has the potential to 81 

improve safety, inform patient selection, and decrease time and cost for procedures. 82 

 83 

Large clinical trials evaluate standard ablation strategies to provide evidence on long-term 84 

treatment efficacy for the average patient in a cohort, and to derive risk scores for estimating 85 

a patient's risk of atrial fibrillation recurrence 2, 3, 4, 5. However, such trials have provided only 86 

modest prediction using demographic information, imaging metrics 4, acute atrial fibrillation 87 

termination 6 or in multivariate regression analysis.  Moreover, it is not clear how to apply 88 

these population data to an individual patient. As an emerging approach, patient-specific 89 

biophysical modelling studies enable simulation and comparison of multiple ablation 90 

approaches in a single patient 7, 8, 9 but have largely been applied to small cohorts of relatively 91 

homogeneous patients 10 and it is unclear how to generalize such models for general clinical 92 

use.  93 

 94 

We developed a novel computational approach to predict long-term response after ablation in 95 

large cohorts, by using machine learning to combine patient-specific models of atrial 96 

fibrillation, derived metrics of atrial fibrillation physiology, clinical demographics and 97 

imaging data. We captured unknowns in patient properties such as type of fibrotic 98 

remodelling, fibre field and electrical properties by performing a series of simulation model 99 

variant stress tests to evaluate the susceptibility of the atrial substrate to sustained atrial 100 

fibrillation. In this work we aimed to (1) generate comprehensive patient-specific atrial 101 

fibrillation signatures from multiple biophysical simulation model variant stress tests for a 102 



cohort of 100 patients, and (2) train a machine learning classifier to predict long-term 103 

ablation outcome from this patient-specific signature. 104 

 105 

Methods 106 

The Methods are briefly described here with full details in the Supplemental Materials. We 107 

have irreversibly anonymised the 100 models and made these available at 108 

https://cemrg.com/models.html.  109 

 110 

Patient cohort 111 

Cardiac magnetic resonance imaging data were processed for 43 paroxysmal atrial 112 

fibrillation, 41 persistent atrial fibrillation and 16 long-standing persistent atrial fibrillation 113 

patients undergoing imaging at St Thomas' Hospital to create a total of 100 patient-specific 114 

models. Ethical approval was granted by the regional ethics committee (17/LO/0150 and 115 

15/LO/1803) and subjects gave informed consent. The inclusion criteria for this study were 116 

first time atrial fibrillation ablation patients with no previous left atrial ablation who had 117 

LGE-MRI performed at the clinician’s discretion for pre-procedural planning. At St Thomas’ 118 

Hospital, ablation treatment is indicated for patients with symptoms of atrial fibrillation who 119 

have failed a single anti-arrhythmic agent.  These patients underwent first-time catheter 120 

ablation therapy for atrial fibrillation, which consisted of pulmonary vein isolation alone, or 121 

with the addition of ablation lines (mitral or roof) and/or posterior box isolation ablation 11. 122 

Patients were followed up for 1 year after their ablation procedure as per routine assessment 123 

at our institution. This consisted of 2-4 appointments over the year with AF symptom 124 

assessment, 12-lead ECG recordings and ambulatory monitoring on the basis of patient 125 

symptoms. Atrial fibrillation recurrence was assessed following a three-month blanking 126 



period. Table 1 details patient demographics, ablation therapy approach and anti-arrhythmic 127 

drug therapy, analysed by atrial fibrillation recurrence.  128 

  129 

The schematic in Figure 1 shows an overview of the methodology used for predicting 130 

clinical outcome by combining patient-specific biophysical simulation stress tests and 131 

population data through machine learning techniques.  132 

 133 

Simulated atrial fibrillation model variant stress tests 134 

Models were constructed using the steps given in the Supplemental Materials (in Sections: 135 

Construction of patient specific models; Fibrotic remodelling methodology; Atrial fibrillation 136 

induction protocols; Modelling of ablation lesion sets; Post-processing atrial fibrillation 137 

simulations and calculating structural and electrical metrics). Simulation model variant 138 

stress tests were designed to probe the uncertainty in atrial properties and test the ability of 139 

the substrate to sustain atrial fibrillation before and after varying ablation lesion sets. Acute 140 

response to simulated ablation was tested for eleven different simulation set-ups shown in 141 

Figure 2. The baseline set-up - shown in the light blue box and numbered (1) in Figure 2 - 142 

included combination fibrotic remodelling (interstitial fibrosis with conductivity and ionic 143 

changes) together with the baseline choice for the following properties: DT-MRI fibre field, 144 

pulmonary vein isolation lesion set, atrial fibrillation initiation map, and effective refractory 145 

period. To evaluate the effects of uncertainty in each component of the atrial substrate 146 

separately, we varied the properties of the baseline atrial model individually, while leaving 147 

the other properties of the model fixed at the baseline values. The properties we varied were 148 

the type of fibrotic remodelling (tests 1-4); the DTMRI fibre map (5-6); the ablation lesion 149 

size (7); the initiation protocol (8-9); the electrical properties (10-11). Pre-ablation arrhythmia 150 

simulations (15s) were analysed for set-ups (1-4); post-ablation arrhythmia simulations (2s) 151 



were analysed for set-ups (1-11). More details on each set-up are given in the Supplemental 152 

Materials (in Section: Simulated atrial fibrillation model variant stress tests). 153 

 154 

Machine learning classifiers to predict atrial fibrillation recurrence on long-term follow 155 

up 156 

Machine learning classifiers were trained to map clinical data to long-term outcome. 157 

Specifically, classifiers were trained to predict binary clinical atrial fibrillation recurrence for 158 

three clinical datasets: (a) simulation, imaging and patient history, (b) imaging and patient 159 

history, (c) patient history alone. Further details on the metrics included in each classifier are 160 

given in the Supplemental Methods.  161 

 162 

Statistical Analysis  163 

For each dataset (a)-(c), the following machine learning classifiers were compared: K nearest 164 

neighbours, support vector machine, random forest and logistic regression. Each classifier 165 

was trained to each dataset either with or without principal component analysis pre-166 

processing, with the number of components chosen to retain 95% of the variance. The 167 

accuracy, recall, precision and receiver operating characteristic area under the curve values 168 

were compared for each combination of dataset and classifier, with and without principal 169 

component analysis.  For each dataset (a)-(c), the classifier with the largest receiver operating 170 

characteristic area under the curve value was selected. Further details are given in the 171 

Supplemental Methods.    172 

 173 

 174 

 175 

 176 



Results: 177 

Cohort properties 178 

Follow-up data were available for 99 of the 100 cases. AF recurred in the first year after 179 

ablation (following a three-month blanking period) for 34 of the patients, with a mean 180 

recurrence time of 189 ± 95 days.  None of the clinical metrics considered were significantly 181 

different between cases with or without arrhythmia recurrence (see Table 1).  182 

 183 

Imaging metrics related to atrial fibrillation recurrence 184 

The average visual fibrosis score was higher for the atrial fibrillation recurrence group, but 185 

this did not reach significance (p=0.169). Figure 3 shows that, when defining fibrotic regions 186 

with an image intensity ratio threshold of 1.22, the calculated imaging metrics were not 187 

significantly different between the groups with and without atrial fibrillation recurrence. 188 

These include: (A) total atrial surface area (152.0 ± 30.5 vs 154.8 ± 27.2 cm2, p=0.55), (B) 189 

pulmonary vein surface area (27.8 ± 8.6 vs 28.2 ± 7.0 cm2, p=0.58), (C) fibrosis surface area 190 

(32.4 ± 24.2 vs 31.9 ± 22.0cm2, p=0.94), (D) area of fibrosis in the pulmonary veins (8.6 ± 191 

6.3 vs 6.3 ± 6.6cm2, p=0.72). The median fibrosis surface areas by visual fibrosis category 192 

were as follows: healthy 23.7cm2, mild 18.2cm2, moderate 33.1cm2 and severe 41.6cm2.  193 

 194 

Relating acute atrial fibrillation termination by simulated ablation to long-term 195 

recurrence 196 

Prediction accuracy of the single acute simulation stress tests for predicting long-term clinical 197 

atrial fibrillation recurrence was in the range: 0.38 – 0.63 (using a threshold dominant 198 

frequency of 4.7Hz to define simulations with atrial fibrillation). Figure 4 shows 199 

transmembrane potential maps 2 seconds after pulmonary vein isolation ablation for the 200 

interstitial fibrosis set-up (simulation stress test set-up number 3): 40/65 cases of no clinical 201 



recurrence were classified correctly, and 20/34 cases of clinical recurrence were classified 202 

correctly using the acute simulation outcome.  203 

 204 

In general, acute simulation outcome stress tests did not differentiate between clinical 205 

outcomes. Supplemental Table I gives all the simulation metrics by group (without or with 206 

clinical atrial fibrillation recurrence). The table first lists properties of the 15s atrial 207 

fibrillation simulations before pulmonary vein isolation was applied for the different fibrosis 208 

type set-ups 1-4, as follows: mean number of phase singularities, phase singularity area and 209 

pulmonary vein phase singularity area. These are followed by the outcome variables given as 210 

dominant frequency (atrial rate) for the simulations in the 2 seconds after pulmonary vein 211 

isolation was applied for set-ups 1-11. For dominant frequency, there was a trend between 212 

groups without and with atrial fibrillation recurrence for simulations including interstitial 213 

fibrosis (set-up number 3: 2.6±2.5Hz vs 3.4±2.3Hz, p=0.11) and no fibrotic remodelling (set-214 

up number 4: 3.2±2.5Hz vs 4.1±2.1Hz, p=0.095). Other simulation metrics were not 215 

significantly different.   216 

 217 

Prediction of atrial fibrillation recurrence by combining population data and patient-218 

specific modelling 219 

Figure 5 shows receiver operating characteristic curves for optimal classifiers constructed 220 

from (A) simulation, imaging and patient history data, (B) imaging and patient history data, 221 

(C) patient history data.  222 

 223 

For the simulation, imaging and patient history classifier (Figure 5 (A)), the optimal 224 

classifier was support vector machine with principal component analysis:  ROC AUC 0.85 ± 225 

0.09, accuracy 0.74 ± 0.13, recall 0.80 ± 0.12, and precision 0.72 ± 0.15. Other classifiers 226 



ROC AUC values were as follows: K nearest neighbour 0.85 ± 0.09, random forest 0.77 ± 227 

0.14, and logistic regression 0.59 ± 0.12. 228 

 229 

Conversely, less inclusive classifiers were less predictive. Figure 5B shows results for the 230 

imaging and patient history classifier; the optimal classifier in this case was K nearest 231 

neighbour with principal component analysis: ROC AUC 0.66 ± 0.17, accuracy 0.68 ± 0.07, 232 

recall 0.57 ± 0.34, and precision 0.58 ± 0.38. For the patient history classifier shown in 233 

Figure 5 (C), the random forest classifier was optimal: ROC AUC 0.61 ± 0.14, accuracy 0.64 234 

± 0.14, recall 0.46 ± 0.24, and precision 0.46 ± 0.28.  235 

 236 

Discussion 237 

Main findings 238 

We present a novel personalized digital approach that predicted response to atrial fibrillation 239 

ablation in individual patients when patient-specific geometry and simulations were 240 

combined with clinical data. The foundation for this approach demonstrates a novel 241 

computational pipeline which can be tuned to individual patient features, which takes into 242 

account likely physiological interactions between clinical demographics and the natural 243 

history of atrial fibrillation post ablation, and which can be readily scaled to personalize 244 

therapy. Notably, we found that predicting atrial fibrillation ablation response was suboptimal 245 

based on patient history or imaging data alone. Adding patient-specific simulations 246 

significantly improved prediction accuracy. This is the largest atrial fibrillation simulation 247 

study to date, demonstrating that patient specific simulation can be scaled to generate virtual 248 

cohorts that can predict patient-level outcomes, and could potentially be used to design 249 

optimal procedures for each individual a priori. 250 

 251 



Comparison with other imaging predictors of atrial fibrillation recurrence 252 

Translating from average results to predictions for individual patients using standard risk 253 

scores is challenging. Previous studies have assessed the utility of anatomical and imaging 254 

metrics calculated from populations of images for predicting atrial fibrillation recurrence. For 255 

example, the Delayed-Enhancement MRI Determinant of Successful Radiofrequency 256 

Catheter Ablation of Atrial Fibrillation (DECAAF) clinical trial indicated that the degree of 257 

atrial late gadolinium enhancement was independently associated with atrial fibrillation 258 

recurrence following catheter ablation in a cohort of 260 patients 12. We did not find this in 259 

our study; however, we used a smaller cohort with both paroxysmal and persistent atrial 260 

fibrillation patients. For anatomical metric analysis, Varela et al analysed left atrial anatomy 261 

from MRI across a cohort of 144 patients to predict atrial fibrillation recurrence using vertical 262 

asymmetry together with left atrial sphericity to give an area under the ROC curve of 0.71 2. 263 

Bratt et al demonstrated that atrial volume is a good predictor of atrial fibrillation recurrence, 264 

with an ROC AUC of 0.77 3. They automatically segmented the left atrial body from CT 265 

scans using deep learning and showed that atrial volume is an independent predictor of atrial 266 

fibrillation, with an age-adjusted relative risk of 2.9 3. Costa et al. showed that left atrial 267 

volume is more important than atrial fibrillation type for predicting atrial fibrillation 268 

recurrence following pulmonary vein isolation 4.  In contrast to these studies, Ebersberger et 269 

al showed no association between pulmonary vein properties or left atrial anatomical or 270 

functional properties measured on CT and early atrial fibrillation recurrence at 3-4 months 271 

post-ablation 13. Our study also found that simple imaging metrics are not predictive of atrial 272 

fibrillation recurrence. However, we did not include vertical asymmetry or volume in this 273 

assessment, and we used MRI rather than CT data 14.  274 

 275 



CT data also provides information on epicardial adipose tissue content, which may affect 276 

atrial fibrillation maintenance.  Nalliah et al investigated the mechanisms for how epicardial 277 

adipose tissue affects atrial fibrillation, showing that higher adipose tissue is associated with 278 

slower conduction, higher degrees of electrogram fractionation, increased fibrosis and 279 

increased lateralisation of connexin40 gap junctional protein 15. Further to this, El Mahdiui 280 

and Simon et al found that posterior left atrial adipose tissue attenuation is predictive of atrial 281 

fibrillation recurrence post ablation 5. 282 

 283 

Comparison with other simulation predictors of atrial fibrillation recurrence 284 

Shade et al combined modelling and machine learning to predict atrial fibrillation recurrence 285 

in a cohort of 32 paroxysmal atrial fibrillation patients 10. This study extends their elegant 286 

work by testing a range of unknowns in the substrate, enabling a greater degree of 287 

personalization through a simulation stress test approach, and by testing the effects of 288 

ablation approach, in a larger cohort of less homogeneous paroxysmal and persistent atrial 289 

fibrillation patients. The simulation stress test approach used in our study is analogous to a 290 

rigorous clinical test of post pulmonary vein isolation atrial fibrillation inducibility, which 291 

provided high specificity for atrial fibrillation recurrence in a large meta-analysis 16 although 292 

it is difficult to apply due to practical constraints. We used a technique of initiating re-entry 293 

through seeding phase singularities in multiple different locations. We applied this technique 294 

to initiate atrial fibrillation in set-ups 1-4 before ablation, and also to test inducibility after 295 

pulmonary vein isolation for set-ups 1-11. This technique is more computationally efficient 296 

but may be less clinically realistic than the initiation technique of rapid pacing from multiple 297 

locations performed by Boyle et al 9 .  Recently, Azzolin et al. proposed a technique that 298 

paces at the end of the effective refractory period to initiate atrial fibrillation and compared 299 

this to rapid pacing or using a phase distribution method to show that their method induced a 300 



larger variety of re-entry scenarios, with a marginal increase in simulation time 17. More 301 

extensive inducibility testing protocols, such as those proposed by Boyle et al. and Azzolin et 302 

al., could be used to identify further re-entry areas and as additional features for the 303 

classifiers, which may increase the predictive accuracy 9,17.     304 

 305 

Limitations 306 

There are multiple factors we did not include in the simulation model including the effects of 307 

ectopic beats on arrhythmia recurrence.  We did not model the pulmonary vein isolation 308 

ablation lesions applied clinically, but rather simulated these lesions as wide area 309 

circumferential ablation at a fixed distance from the left atrial/ pulmonary vein junctions. 310 

Further, these lesion sets may be incomplete with gaps of surviving or recovered tissue, 311 

which would affect acute simulation outcome. We only simulated pulmonary vein isolation 312 

and did not include patient-specific lesion sets. We considered follow-up data for one-year 313 

post ablation only. The choice of image intensity threshold used for modelling scar will 314 

influence the imaging and simulation metrics. We used rule-based calibration of conduction 315 

velocity based on image intensities, but there is uncertainty associated with this prediction. 316 

We do not have validation of this rule-based inclusion of patient-specific electrophysiology 317 

across the dataset used in the current study18. We only included the left atrium in our 318 

simulations; however, performing biatrial simulations 19–21 may improve the predictive 319 

accuracy of the classifier. Adding features derived from the 12-lead ECG provides additional 320 

information on the atria and could further improve the classifier 7. Overall, further work is 321 

required to choose the optimal simulation stress test set-up. The optimal classifier properties 322 

for screening for likely atrial fibrillation recurrence will be considered in future studies.  323 

 324 

 325 



Conclusion 326 

We present a novel computational pipeline that accurately predicted atrial fibrillation 327 

recurrence following ablation therapy in individual patients by combining outcome data with 328 

patient-specific acute simulation response. This technique could help to personalise selection 329 

for atrial fibrillation ablation and could be evaluated through a prospective clinical trial. 330 
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Table: 530 

 531 

Table 1: Clinical metrics analysed by atrial fibrillation recurrence. Results are given as 532 

the mean with the standard deviation in brackets (BMI – CHA2DS2-VASc), or number with 533 

the percentage in brackets (female gender – rate control). Abbreviations are as follows: PVI: 534 

Grouped by AF recurrence 
 

No AF recurrence AF recurs 
P-
Value 

n  65 34  

BMI  29.1 (4.6) 28.2 (4.9) 0.391 
LVEF  59.7 (7.2) 57.0 (8.4) 0.116 
Age at ablation  61.3 (9.0) 58.8 (13.1) 0.315 
CHA2DS2-VASc  1.4 (1.4) 1.2 (1.3) 0.638 
Female gender  21 (32.3) 7 (20.6) 0.320 
Congestive Heart Failure  8 (12.3) 3 (8.8) 0.744 
Hypertension  19 (29.2) 13 (38.2) 0.494 
Diabetes  5 (7.7) 1 (2.9) 0.661 
History of Stroke/TIA  3 (4.6) 2 (5.9) 0.445 
Coronary Disease  6 (9.2) 4 (11.8) 0.733 
AF type paroxysmal 29 (44.6) 13 (38.2) 0.712 

 persistent 25 (38.5) 16 (47.1)  
 long-standing 11 (16.9) 5 (14.7)  

Ablation type PVI only 41 (63.1) 15 (44.1) 0.212 
 PVI + lines 3 (4.6) 1 (2.9)  
 PVI + box 17 (26.2) 16 (47.1)  
 PVI + box + lines 4 (6.2) 2 (5.9)  

Rhythm Control Amiodarone 13 (20.0) 7 (20.6) 0.511 
 Flecainide 8 (12.3) 7 (20.6)  
 Sotalol 2 (3.1) 3 (8.8)  
 None 29 (44.6) 13 (38.2)  
 Unknown 13 (20.0) 4 (11.8)  

Rate Control Beta-blockers 23 (35.4) 17 (50.0) 0.556 
 Calcium Channel Blockers 5 (7.7) 1 (2.9)  
 Digoxin 2 (3.1)   
 BB + CCB 3 (4.6) 1 (2.9)  
 BB + Digoxin 2 (3.1)   
 CCB + Digoxin 1 (1.5)   
 None 16 (24.6) 11 (32.4)  
 Unknown 13 (20.0) 4 (11.8)  



pulmonary vein isolation; BB: beta-blockers; CCB: calcium channel blockers. P-values refer 535 

to t-test or chi-squared test results.  536 

 537 

Figure Legends:  538 

Figure 1: Schematic methodology for using machine learning to combine biophysical 539 

simulation stress tests for acute simulation responses with population data to predict long-540 

term atrial fibrillation recurrence. 541 

Clinical imaging data were used to construct a cohort of patient-specific models. Biophysical 542 

simulation stress tests with different types of fibrosis, fibre maps, atrial fibrillation induction 543 

protocols, effective refractory period (ERP) values and pulmonary vein isolation (PVI) sizes 544 

were used to test atrial fibrillation inducibility. These simulation stress test metrics were 545 

combined with imaging and patient history metrics to produce a patient-specific signature. 546 

This was repeated to produce a population of models. Machine learning classifiers were 547 

trained across this population to predict clinical outcome from patient-specific signature. 548 

Classifiers used either (A) simulation, imaging and patient history metrics, (B) imaging and 549 

patient history metrics or (C) patient history metrics.  550 

 551 

Figure 2: Simulation model variant stress tests.  552 

The choices indicated by the light blue background represent the baseline model. Other set-553 

ups include the baseline model set-up with a variation in one of the following model features: 554 

(set-ups: 2-4) fibrosis type, (5-6) DT-MRI fibre maps, (7) pulmonary vein isolation size, (8-9) 555 

atrial fibrillation initiation map, (10-11) effective refractory period (ERP) values.  556 

 557 

Figure 3: Simple imaging metrics do not vary with atrial fibrillation recurrence. 558 

(A) Total surface area (p=0.55).  559 



(B) Pulmonary vein surface area (p=0.58).  560 

(C) Total fibrosis surface area (thresholded at image intensity ratio >1.22, p=0.94).  561 

(D) Total fibrosis surface area in the pulmonary vein regions (p=0.72).  562 

 563 

Figure 4: Acute response to pulmonary vein isolation ablation for simulations 564 

incorporating interstitial fibrosis grouped by clinical atrial fibrillation recurrence. 565 

Transmembrane potential plots are shown 2 seconds after pulmonary vein isolation ablation 566 

for the interstitial fibrosis simulation set-up. The first 65 cases had no clinical atrial 567 

fibrillation recurrence, while the bottom 34 had atrial fibrillation recurrence. The 568 

background colour indicates whether acute simulation response was considered successful 569 

(termination to sinus rhythm or organised non-fibrillatory rhythms) in white, or atrial 570 

fibrillation is sustained in grey.    571 

 572 

Figure 5: Receiver operating characteristic curves for simulation, imaging and patient 573 

history classifiers. Receiver operating characteristic curves for classifiers constructed from: 574 

(A) simulation, imaging and patient history data (support vector machine classifier), (B) 575 

imaging and patient history data (K nearest neighbour classifier), (C) patient history data 576 

alone (random forest classifier). The grey area indicates ± 1 standard deviation calculated 577 

from ten-fold cross validation.  578 
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