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Background: The use of surface recordings to assess atrial fibrillation (AF) complexity is

still limited in clinical practice. We propose a noninvasive tool to quantify AF complexity

from body surface potential maps (BSPMs) that could be used to choose patients who

are eligible for AF ablation and assess therapy impact.

Methods: BSPMs (mean duration: 7 ± 4 s) were recorded with a 252-lead vest in

97 persistent AF patients (80 male, 64 ± 11 years, duration 9.6 ± 10.4 months)

before undergoing catheter ablation. Baseline cycle length (CL) was measured in the left

atrial appendage. The procedural endpoint was AF termination. The ablation strategy

impact was defined in terms of number of regions ablated, radiofrequency delivery

time to achieve AF termination, and acute outcome. The atrial fibrillatory wave signal

extracted from BSPMs was divided in 0.5-s consecutive segments, each projected on

a 3D subspace determined through principal component analysis (PCA) in the current

frame. We introduced the nondipolar component index (NDI) that quantifies the fraction

of energy retained after subtracting an equivalent PCA dipolar approximation of heart

electrical activity. AF complexity was assessed by the NDI averaged over the entire

recording and compared to ablation strategy.

Results: AF terminated in 77 patients (79%), whose baseline AF CL was 177 ± 40ms,

whereas it was 157± 26ms in patients with unsuccessful ablation outcome (p= 0.0586).

Mean radiofrequency emission duration was 35 ± 21min; 4 ± 2 regions were targeted.

Long-lasting AF patients (≥12 months) exhibited higher complexity, with higher NDI

values (≥12 months: 0.12 ± 0.04 vs. <12 months: 0.09 ± 0.03, p < 0.01) and short

CLs (<160 ms: 0.12 ± 0.03 vs. between 160 and 180 ms: 0.10 ± 0.03 vs. >180 ms:

0.09 ± 0.03, p < 0.01). More organized AF as measured by lower NDI was associated

with successful ablation outcome (termination: 0.10 ± 0.03 vs. no termination:
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0.12 ± 0.04, p < 0.01), shorter procedures (<30 min: 0.09 ± 0.04 vs. ≥30 min: 0.11

± 0.03, p < 0.001) and fewer ablation targets (<4: 0.09 ± 0.03 vs. ≥4: 0.11 ± 0.04,

p < 0.01).

Conclusions: AF complexity can be noninvasively quantified by PCA in BSPMs and

correlates with ablation outcome and AF pathophysiology.

Keywords: atrial fibrillation, catheter ablation, body surface potential maps, principal component analysis, atrial

fibrillation complexity

INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia,
and it is associated with an increased risk of stroke, heart failure,
and mortality (Kirchhof et al., 2016). Despite the apparently
random and uncoordinated electrical wavefronts propagating
through the atria (Moe, 1962), several studies have confirmed
the presence of intrinsic organization of atrial activations during
AF, whose triggering and maintenance may be explained by
some underlying, deterministic mechanisms (Schricker et al.,
2014), involving multiple atrial wavelets and re-entrant sources
(Allessie et al., 1977; Konings et al., 1994; Pandit and Jalife, 2013;
Haissaguerre et al., 2014). Complexity of the atrial substrate is
strictly correlated with the evolutionary nature of AF, and it
tends to increase in more severe, persistent forms of this disease
(Wijffels et al., 1995). Despite the increasing use of catheter
ablation (CA) to treat persistent and chronic AF patients, its
results are not satisfactory yet and extremely disparate due to the
variety of ablation approaches currently adopted (Verma et al.,
2015).

Even though AF electrophysiological complexity can be
assessed using invasive direct contact mapping, there is an
increasing interest in noninvasive methodologies as well, due
to the immediate availability of cardiac body surface potentials
in clinical daily practice (Lankveld et al., 2014) and their
proven ability to predict the outcome of AF cardioversion or
ablation and help identify positive responders to therapy. Most
of the complexity ECG measures investigated so far have been
determined both in the frequency [e.g., dominant frequency,
DF (Bollmann et al., 2003)] and the time domain [fibrillatory
wave amplitude (Nault et al., 2009; Cheng et al., 2013), sample
entropy (Alcaraz et al., 2011), AF cycle length (CL, Matsuo
et al., 2009)]. Correlation between several markers of complexity
from standard electrocardiogram (ECG) and invasive measures
of AF complexity from high density epicardial mapping has
been systematically investigated in Bonizzi et al. (2014). Spectral
measures of spatiotemporal organization computed from surface

Abbreviations: AAD, antiarrhythmic drugs; AF, atrial fibrillation; ANOVA, one-

way analysis of variance; AUC, area under curve; BSPM, body surface potential

map; CA, catheter ablation; CL, cycle length; DCC, electrical cardioversion;

DF, dominant frequency; ECG, electrocardiogram; EGM, electrogram; LA, ,left

atrium; LAA, left atrial appendage; LR, logistic regression; NA, not applicable;

NDI, nondipolar component index; NMSE, normalized mean square error; NRI,

net reclassification improvement; ns, not significant; PCA, principal component

analysis; RA, right atrium; ROC, receiver operating characteristic; std, standard

deviation.

ECG were able to discriminate between persistent and long-
standing AF (Uldry et al., 2012). Atrial complexity indices
from ECG could also predict sinus rhythm (SR) maintenance
in patients undergoing electrical cardioversion, either alone
(Lankveld et al., 2016a) or in combination with other clinical
parameters (Zeemering et al., 2017). An optimal set of ECG
descriptors of AF complexity has also been determined in
Lankveld et al. (2016b), and it was shown to be predictive of CA
outcome.

The main limitation of the aforementioned methods is
that most of them were applied to single or pairs of ECG
leads [typically V1, exhibiting the highest atrial-to-ventricular
amplitude ratio (Petrutiu et al., 2006), or the precordial leads],
thus the spatial diversity of multilead recordings was not fully
exploited. Furthermore, frequency domain measures of AF
complexity may be inaccurate if they are assessed in short ECG
recordings or if QRST cancelation is not properly performed.
This background justifies the interest in exploiting the spatial
diversity of multilead recordings to assess the complexity of the
AF wavefront propagation.

A multilead characterization of AF spatiotemporal
organization in body surface potential maps (BSPMs) has
been proposed in Bonizzi et al. (2010), where it was quantified
as a function of the error of signal estimation by principal
component analysis (PCA). Despite the relevance of these
results and the proven superiority of this methodology over
standard single-lead analysis, its ability to guide AF therapy
and its applicability to a real clinical scenario were not verified
in that study. In Di Marco et al. (2012), AF spatial complexity
was defined in terms of the residual cumulative variance of the
three dominant PCA sources and correlated with its spectral
variability overs BSPM electrodes. However, body surface
cardiac activity characterization has not been correlated with
the properties of the underlying atrial substrate nor correlated
with AF treatment strategy. Multilead measures of atrial signal
amplitude (Meo et al., 2013a) and spatiotemporal variability
(Meo et al., 2013b) obtained by PCA proved to be predictive
of CA outcome. Nevertheless, the lack of comparison with
intracardiac recordings hampered their validation as indices of
AF complexity.

This study takes a step from this research and puts forward
a noninvasive PCA-based approach for the quantification of
AF spatiotemporal complexity. Additionally, in Meo et al.
(2017) some PCA-derived parameters were developed to predict
changes in body surface complexity during ventricular fibrillation
episodes. In this study, a similar methodology is proposed
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to quantify the spatiotemporal organization of AF wavefront
propagation pattern as measured on body surface potentials. The
approach proposed not only provides some insights about AF
chronification reflecting the severity of the alterations of the atrial
substrate, but it also predicts CA outcome and correlates with
procedural characteristics.

METHODS

Study Population
A group of 97 persistent AF patients was enrolled in
this study. Their baseline characteristics are reported in
Table 1.

This study was carried out in accordance with the
recommendations of the protocol CARRY, ID-RCB: 2015-
A00401-48, Comité de Protection des Personnes Sud-Ouest
et Outre Mer III. The protocol was approved by the Comité
de Protection des Personnes Sud-Ouest et Outre Mer III. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

BSPM Acquisition and Preprocessing
BSPMs were recorded with a 252-lead vest (CardioInsight,
Medtronic, MN) in AF patients before undergoing CA at a
sampling frequency of 1 kHz. Mean duration of the signals
was 7 ± 4 s. TQ intervals were segmented from BSPMs with
long ventricular pauses (≥ 1 s), either spontaneous or induced

TABLE 1 | Study population characteristics.

n = 97

Sex, male, n (%) 80 (82)

Age, mean ± std, years 64 ± 11

Hypertension, n (%) 42 (42)

Diabetes mellitus, n (%) 10 (17)

Embolic events, n (%) 8 (8)

Structural heart disease, n (%) 61 (62)

Ischemic, n (%) 10 (10)

Valvular, n (%) 6 (6)

Hypertrophic, n (%) 8 (8)

Dilated, n (%) 35 (36)

Other, n (%) 2 (2)

Left ventricular ejection fraction, mean ± std, % 52 ± 13

LA diameter, parasternal long axis, mm 48 ± 7

LA Area, mm2 26 ± 6

Patients presenting in AF, AF duration, months 9.6 ± 10.2

< 12 months 74 (76)

≥ 12 months 23 (24)

Patient presenting in SR, n (%) 48 (49)

Patients with more than 1 DCC, n (%) 54 (56)

Number of AADs before CA, mean ± std 2 ± 1

Patients on amiodarone before CA, n (%) 40 (41)

Baseline characteristics of the AF population; std, standard deviation; DCC, electrical

cardioversion; AAD, antiarrhythmic drugs.

by diltiazem. Since the outcome of the data decomposition
techniques applied in this study was not affected by the
specific temporal location of each signal sample, TQ intervals
could be concatenated and mean-centered to form the atrial
activity signal. Baseline wandering was removed using the
median estimation method (Sörnmo and Laguna, 2005). Atrial
fibrillatory wave (f-wave) signals were arranged as a L × N
matrix Y =

[

y (1) . . . y (N)
]

∈ R
L× N , where L = 252

is the number of BSPM leads, and N the number of samples.
Electrodes with excessive noise level were discarded after signal
visual inspection, thus in certain cases less than L electrodes
were retained. A representative f-wave signal is reported in
Figure 1.

Electrophysiological Atrial Mapping
Intracardiac electrograms (EGMs) were continuously recorded
through a computer-based digital amplifier/recorder system
(Labsystem Pro, Bard Electrophysiology). Baseline CL was
measured in the left atrial appendage (LAA), and monitored
during the procedure to assess local CA impact. For AF
electrophysiological study, we used a 20-pole steerable mapping
catheter with a five-branched star design (1-mm electrodes
separated by 4-mm interelectrode spacing) spanning a surface
with a diameter of 3.5 cm (PentaRay, Biosense-Webster). A
steerable decapolar catheter (5-mm interelectrode spacing,
Xtrem, Sorin Medical, Montrouge, France) was also positioned
in the coronary sinus.

CA Protocol
For the sake of the ablation strategy analysis, the computed
tomography–reconstructed biatrial anatomy was divided into 7
regions (Figure 2).

The ablation was sequentially performed in the LA in the
decreasing order of arrhythmogenic activity as estimated through
noninvasive phase mapping (Haissaguerre et al., 2014) until AF
terminated. Briefly, the acquisition system described in section
Electrophysiological Atrial Mapping enabled the estimation of
unipolar epicardial EGMs from body surface signals. Color-
coded phase maps were derived from EGM phase signals by
plotting the instantaneous phase values on personalized 3D
biatrial geometry, which was previously reconstructed through
CT scan in each patient. Surrogates of the depolarization and
repolarization wavefronts were computed from the isophase
values, equal to π/2 and –π/2, respectively. CA targets were
identified in correspondence to phase singularity points, around
which phase spanned the entire range between the two
aforementioned values, as they identify AF reentrant sources
(Jalife, 2003). The AF wavefront sequences detected were
accumulated in a single spatiotemporal density map, displaying
the distribution of active driver zones and passive conduction
areas. AF drivers were classified as focal, when centrifugal
activation originated from a point or an area, or reentrant,
when at least 1 complete wave rotation around a center
on phase progression could be tracked. Right atrium (RA)
was also inspected and targeted if AF could not terminate
after LA ablation. An irrigated-tip quadripolar catheter with a
distal 3.5-mm tip and three 1-mm proximal electrodes with
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FIGURE 1 | A representative example of f-wave signal extracted from a BSPM recording in an AF patient (lead 1). Concatenated, preprocessed TQ intervals are

separated by dashed, red, vertical lines.

FIGURE 2 | Biatrial schematic representation: 1, left pulmonary veins and

LAA; 2, right pulmonary veins and posterior interatrial groove; 3, inferior and

posterior left atrium; 4, upper half of right atrium and appendage; 5, lower half

of right atrium; 6, anterior left atrium and roof; 7, anterior interatrial groove.

interelectrode distance of 2, 5, and 2mm (Thermocool, Biosense-
Webster) was used for AF ablation. The procedural endpoint
was AF termination, i.e., conversion of AF either to SR or to
intermediate atrial tachycardia (AT). AF CL was determined
simultaneously in the RA with the mapping catheter and in the
LAA with the ablation catheter, before and after ablation of each
region, by automatically averaging 30 consecutive cycles (Bard
Electrophysiology). If AF termination could not be achieved by
CA, electrical cardioversion was performed.

Theoretical Basis of PCA
We investigated whether we could measure AF complexity as a
function of the ability of PCA to compress the input BSPM signal
into a few components while retaining the maximum amount of
information as measured by variance. To this end, BSPMs were
divided inNs = 500-ms segments, and in each frame (s) singular
value decomposition of the input data Y(s) was performed as in
Bonizzi et al. (2010); Meo et al. (2013a,b, 2017):

Y(s) = USVT

Where U and V represent the left and right singular vectors of
Y(s) respectively, and the diagonal matrix S contains the singular
values σl, l = 1, . . . , L, each associated with the principal
components (PCs) X(s), which are mutually uncorrelated and
linked with the BSPM observations through the linear relation:

Y(s) = M(s)X(s)

WhereM(s) = US/
√
Ns represents the PCA transfer matrix. PCs

are computed and ordered so that the first few retain most of the
variance present in the input signals.

Measuring AF Spatiotemporal Complexity
In line with (Bonizzi et al., 2010; Di Marco et al., 2012), we used
the distance between the input BSPM signal and its rank-3 PCA
approximation to measure AF organization. Since heart electrical
activity on surface recordings can be well approximated by an
electric dipole (Holt et al., 1969) and most of the body surface
potential energy can be adequately characterized by the first 3 PCs
(Lux et al., 1981), we hypothesized that organized atrial activity
could be accurately retained by a 3D subspace as spanned by the

first 3 columns of the PCAmixing matrixM
(s)
3 . By contrast, more

complex and unpredictable patterns will require a higher number
of PCs to be described with sufficient accuracy, therefore the
subspace chosen will yield a higher PCA reconstruction error.We
introduced the nondipolar component index (NDI) to quantify
the residual amount of energy which was retained by the PCA
eigenvalues σl, l = 4, . . . , L, outside the projection subspace

spanned by the columnsM
(s)
3 :

NDI = 1−
∑3

l=1 σl
∑L

l=1 σl
.

The global NDI parameter was determined as the average of all
the values computed in each frame and served as a marker of AF
complexity, with higher values denoting more disorganized and
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irregular signal waveforms. To increase statistical confidence, we
required a minimum BSPM duration of 1 s so as to compute the
NDI as the average of at least 2 values in the examined recording.

Comparison With Patient’s Clinical
Characteristics
From previous studies (Rostock et al., 2011; Scherr et al., 2015) it
is known that some clinical parameters are predictive of favorable
CA outcomes, such as a shorter AF duration and smaller LA size.
As a consequence, the proposed signal processing methodology
has been compared to themaximum continuous AF duration and
LA area measured with transesophageal echocardiography.

Comparison With Other Descriptors of AF
Complexity on Surface Recordings
Our multilead approach has been compared with some
traditional single-lead markers of AF organization from surface
recordings. To this end, NDI was also computed on a subset
of BSPM electrodes at the locations of standard ECG leads and
denoted NDIECG, in order to verify whether this ensemble of
electrodes could equally allow for a thorough characterization of
AF spatiotemporal organization. As in Meo et al. (2013a), leads
III and augmented leads aVR, aVL, and aVF were not included
as they are linearly dependent on the other frontal leads. In
order to verify whether any additional information could derived
from posterior BSPM leads, alternative ECG lead placement
configurations were also tested. Accordingly, we assessed NDI
in the optimized atrial cardiogram (OACG) system proposed in
Ihara et al. (2007); van Oosterom et al. (2007), including five of
the standard ECG leads (I, II, III, V1, and V4), three electrodes
on the chest (V1S, above V1; V2RS, at the right of V1S; VLC,
below the left clavicle), and a posterior one (V1P, at the same
level as V1), for a total of nine electrodes. NDI computation was
also performed in the extended ECG described in Petrutiu et al.
(2009), consisting of 15 leads, i.e., the standard 12 ECG leads and
three posterior leads V7, V8, and V9, which are placed below the
left scapula, at the same level as V6, and are considered to better
reflect LA activity than conventional precordial leads.

In keeping with (Nault et al., 2009; Cheng et al., 2013), f-wave
amplitude AV1 was computed in V1 using a custom algorithm
described in Meo et al. (2013a) and based on the interpolation of
atrial signal local extrema through polynomial envelopes. In the
same ECG lead AF CL was also considered as in Matsuo et al.
(2009). Local maxima above a voltage threshold equal to 0.01 mV
were automatically detected based on derivative sign change and
a global marker CLV1 was obtained by averaging all CLs longer
than 90 ms, so as to reject the influence of spurious local extrema.

Somemultileadmethods were also investigated and compared
to our approach. As in Bonizzi et al. (2010), the normalized
mean square error (NMSE) between the input BSPM signal
and its rank-3 PCA reconstruction was determined in V1 and
denoted NMSE3; the same tuning parameters suggested in
that study were set. A multilead extension of this parameter
introduced in Meo et al. (2013b) was also considered, and AF
complexity was quantified as a weighted mean on NMSE values
determined in multiple electrodes in the original signal and

denoted WNMSEBSPM. Finally, a multilead characterization of
f-wave amplitude as illustrated in Meo et al. (2013a) was also
applied to our AF database, and a median descriptor of atrial
amplitude of the rank-1 PCA estimation extracted from the input
ECG was computed (ABSPM). All the BSPM-derived parameters
of AF organization were also computed in the other ECG
configuration previously described, thus yielding WNMSEECG
and AECG for the 12-lead ECG counterpart of WNMSEBSPM
and ABSPM, WNMSEOACG and AOACG in the OACG system,
and WNMSEECG15 and AECG15 in the extended 15-lead ECG,
respectively.

Evaluation of the Clinical Value of AF
Complexity Markers
Body surface AF complexity was linked to the NDI and compared
to patient’s pathophysiology, meant in terms of characteristics
of the underlying atrial substrate and severity of disease.
Accordingly, we investigated whether rapid AF activities as
measured on the baseline CL would reflect on the surface and
correlate with NDI, as intracardiac AF CL is regarded as a
surrogate of local refractory periods (Kim et al., 1996) and
shortens with maintenance of the arrhythmia. Additionally, the
relation between the proposed noninvasive index and continuous
AF duration was examined. Longer AF duration was proven to
be associated with a higher number of atrial AF driving sources,
both focal and rotational (Lim et al., 2017), and a more complex
substrate, i.e., a higher number of activation wavefronts and
breakthrough waves, electrical dissociation, slower conduction
and higher fractionation (De Groot et al., 2010; Lau et al.,
2017). Accordingly, we hypothesized that higher NDI should be
observed in long-lasting AF patients (≥12 months, 23 patients)
rather than in persistent forms (<12 months, 74 patients).

Our PCA-based feature was also compared to the ablation
strategy. We assumed that more severe AF forms will be more
difficult to be treated, as not only the number of driving sources
will be higher, but they will also appear in a higher number of
sites (Haissaguerre et al., 2014; Lim et al., 2017). Therefore, we
expected that CA procedures will be longer (>30min) in terms
of the amount of radiofrequency energy emission required for
tissue cauterization and a higher number of atrial regions (≥4)
will have to be targeted to accomplish CA successfully. Moreover,
acute AF termination is considered less likely to be achieved.

The same analysis was led for the markers of AF organization
reported in section Comparison With Other Descriptors of AF
Complexity on Surface Recordings.

Statistical Analysis and Classification
Performance Assessment
All continuous variables were expressed as mean ± standard
deviation. Parameters’ distribution was checked using a Lilliefors
test. For normally distributed data, intergroup differences were
verified by an unpaired Student’s t-test with Welch’s correction
for unequal group variances and sizes. Otherwise, a Wilcoxon’s
rank sum test was applied. For multivariate comparisons, one-
way analysis of variance (ANOVA) was applied to normally
distributed data, otherwise a Kruskall-Wallis test was used.
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Statistical tests were considered significant if their p-value was
below 0.05.

We reported the area under the curve (AUC) output by
the receiver operating characteristic (ROC) analysis as an index
of univariate prediction performance for all AF complexity
parameters. Additionally, the rates of correct detections per
group were expressed in terms of the sensitivity and the
specificity (i.e., the fraction of true positive and true negative
cases correctly identified, respectively) associated with the
optimal cutoff. Accordingly, CA procedures performed in long-
lasting AF patients, with longer ablation time and a higher
number of atrial targets were associated with higher AF
complexity and therefore referred to as positive cases, whereas
persistent AF forms and less extensive ablations (in terms of
radiofrequency energy emission duration and number of regions)
were regarded as negative cases.

Finally, we verified whether the evaluation of AF ablation
impact (in terms of procedure outcome, duration and number
of targets) based on patient’s clinical data only could benefit from
the integration of information about AF complexity as quantified
by the aforementioned indices. Accordingly, a subset of data
was used for training, whereas the other samples formed the
validation set. To evaluate the ability of the multivariate features
to predict ablation outcome and the number of ablated atrial
sites, features from 77 patients were included in the training,
whereas the remaining ones were used for validation. By contrast,
since AF ablation duration had beenmeasured only for successful
procedures, smaller datasets were considered accordingly (62
training samples and 15 validation samples). Only markers of
AF complexity highlighting statistically significant intergroup
differences (p-value ≤ 0.05) were investigated. Patient’s clinical
data included: age, AF duration, LA area, LVEF. As in Lankveld
et al. (2016b); Zeemering et al. (2017), multivariate prediction
models combining clinical data (FCLIN) and each of the retained
signal complexity parameters (FCLIN+SIG) were built by logistic
regression (LR); 15-fold cross validation was performed in
order to get an unbiased evaluation of a model fit on the
training dataset. The output model was then applied to the
validation set to determine the LR probability estimates and
assign them to the related category. Prediction performance
in the training and validation phase was assessed by ROC
analysis as for the univariate parameters. Training and validation
of classification models were first performed on multivariate
features depending on patient’s clinical information only (FCLIN).
The same procedure was applied again to multivariate classifiers
obtained by integrating clinical data with the parameter of
signal complexity under exam (FCLIN+SIG). Classification models
based on clinical data only were trained, tested and re-evaluated
each time a signal complexity feature was examined, so as
to specifically investigate the effect of the presence/absence
of each measure of AF complexity and ensure a consistent
comparison between classification scores always on the same
datasets, especially in case of missing data. The predictive
accuracy of AF duration was tested using the same methodology
as well and compared with the clinical set of variables FCLIN∗

(including patient’s age, LA area and LVEF). The improvement
in classification accuracy provided by the integration of the

signal-derived parameter was evaluated in terms of the net
reclassification index (NRI), which is defined as the sum of
the net percentages of correctly reclassified samples in the
categories of interest (Pencina et al., 2008). Null NRI values
denote the absence of improvement in the classification by
adding a new variable. The null hypothesis NRI=0 was verified
by a z-test and considered statistically significant if p-value
was <0.05.

RESULTS

Electrophysiological Mapping and Ablation
Baseline AF CL was 178 ± 55ms. It was shorter than 160ms
in 33 patients, between 160 and 180ms in 15 patients, and
longer than 180ms in the remaining ones. LA area was 26
± 6 cm2. Out of 97 patients, 17 of them underwent a redo
ablation (17%). AF induction was performed in 48 patients (49%)
prior to CA. AF converted to SR in 27 patients, to AT in 50
patients (global AF termination rate: 79%). Intracardiac AF CL
was 177 ± 40ms in AF-free patients, whereas it was 157 ±
26ms for failed procedures (p= 0.0586). Mean ablation duration
was 35 ± 21min (<30min in 38 out of 97 patients) and 4
± 2 regions (between 1 and 3 sites in 36 AF patients) were
targeted by CA. BSPM recordings acquired in 3 subjects were
discarded from our analysis as their duration was below our
requirements.

Assessment of AF Complexity in Body
Surface Potentials
Results related to the analysis of the relation between the BSPM
indices of AF organization and intracardiac AF CL are shown in
Figure 3.

A significantly inverse correlation between the NDI and
the CL measured in the LAA was demonstrated, with high
complexity values observed in very advanced AF forms (AF
CL<160ms) and progressively decreasing in less severe cases.
Similar results could be retrieved in the alternative OACG lead
configuration. A significantly direct correlation with intracardiac
CL was remarked for CLV1 instead, i.e., higher body surface
complexity as quantified by high NDI values reflected faster
activations of the atrial substrate. Higher values of the multilead
index of AF complexity WNMSEOACG were also associated with
more rapid intracardiac AF CL.

Statistical analysis outcome for the signal features
assessed in persistent and long-lasting AF cases is shown in
Figure 4.

LA surface did not highlight significant differences between
the two groups of patients (persistent AF: 27 ± 6 cm2; long-
lasting AF: 25 ± 7 cm2, p = 0.38). NDI computed from BSPMs
was the only one parameter highlighting significantly higher
signal disorganization in more advanced AF forms, which were
more accurately discriminated by the parameter according to the
ROC analysis, as shown in Table 2.

The impact of AF complexity on the procedural time was
quantified in Table 3.

Significantly low NDI values characterized shorter CA
procedures, whereas higher complexity was measured by the
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FIGURE 3 | Noninvasive markers of AF complexity and AF CL: correlation of surface signal features with AF disease chronification based on atrial AF CL. (A) The NDI

index measured in BSPMs (NDI, left) and the standard ECG subset (NDIECG, right). (B) Clinical measures of cardiac activity: AF duration (left) and LA area (right). (C)

Single-lead descriptors of atrial amplitude (AV1, left), surface CL (CLV1, middle) and PCA estimation error (NMSE3, right) in V1. (D) Multilead PCA reconstruction error

(WNMSEBSPM, left) and f-wave amplitude (ABSPM, right) computed in BSPMs and in the standard ECG subset (WNMSEECG and AECG). (E) Multilead PCA

reconstruction error (WNMSEOACG, left) and f-wave amplitude (AOACG, right) computed in the modified OACG system and in the extended 15-lead ECG

(WNMSEECG15 and AECG15). *p < 0.05 vs. <160ms; ns, not significant; a.u., arbitrary units.
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FIGURE 4 | Noninvasive markers of AF complexity and continuous AF duration: correlation of surface signal features with AF disease chronification based on the

duration of the last continuous episode. (A) The NDI index measured in BSPMs (NDI, left) and the standard ECG subset (NDIECG, right). (B) Single-lead descriptors of

atrial amplitude (AV1, left), surface CL (CLV1, middle) and PCA estimation error (NMSE3, right) in V1. (C) Multilead PCA reconstruction error (WNMSEBSPM, left) and

f-wave amplitude (ABSPM, right) computed in BSPMs and in the standard ECG subset (WNMSEECG and AECG). (D) Multilead PCA reconstruction error

(WNMSEOACG, left) and f-wave amplitude (AOACG, right) computed in the modified OACG system and in the extended 15-lead ECG (WNMSEECG15 and AECG15).

*p < 0.05 vs. persistent AF; ns, not significant; a.u., arbitrary units.

index in longer ablations. Similarly, NDIECG15 put more
disorganized signal waveforms from the modified 15-lead ECG
in relation to longer procedural time. Finally, the multilead
assessment of f-wave amplitude in the same ECG lead system
underlined statistically significant differences between the groups
examined, even if it unexpectedly correlated lower amplitude
values with shorter CA. Among all multilead descriptors of AF

complexity, NDI assessed in BSPMs was the only one exhibiting
a high predictive power as well, as confirmed by the ROC analysis
in Table 4.

By contrast, NDIECG15 was characterized by low predictive
accuracy as proven by the ROC analysis. Long-lasting AF patients
also underwent significantly longer CA procedures, although
the predictive value of AF duration was quite low. Surface CL
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TABLE 2 | ROC analysis of the AF complexity features and AF duration.

AUC [%] Sensitivity [%] Specificity [%]

NDI [a.u] 70 55 79

LA area [cm2] 59 36 79

AV1 [mV] 52 55 60

CLV1 [ms] 60 45 82

NMSE3 [%] 51 55 60

WNMSEBSPM [%] 58 86 42

ABSPM [mV] 59 91 30

NDIECG [a.u] 63 58 84

WNMSEECG [%] 58 55 68

AECG [mV] 54 58 64

NDIOACG [a.u] 59 37 90

WNMSEOACG [%] 57 47 69

AOACG [mV] 58 79 48

NDIECG15 [a.u] 65 63 76

WNMSEECG15 [%] 56 95 24

AECG15 [mV] 61 42 85

Assessment of the ability of the AF organization markers to discriminate between

persistent and long-lasting AF patients. Sensitivity and specificity indicate the rate of

correct detections in the long-lasting and persistent AF patients’ groups, respectively.

Results for the parameters with the highest classification performance (AUC≥70%) are
highlighted in boldface. AUC, area under curve; a.u., arbitrary units.

CLV1 was also significantly shorter in patients requiring longer
CA procedures, and ROC analysis yielded predictive results as
well. Unexpectedly, the multilead marker of f-wave amplitude
AECG was significantly higher in patients undergoing longer
CA procedures. The same results were output by AECG15 in
the extended 15-lead ECG set. However, in both cases the
ROC analysis underlined low predictive performance, due to the
inability to correctly identify long CA procedures based on AF
complexity content.

In Table 5 we illustrated the relation between AF complexity
and CA effectiveness, expressed in terms of the number of atrial
regions to be ablated to achieve the procedural endpoint.

Also in this case, CA procedures requiring a lower number of
targets to terminate AF characterizedmore organized waveforms,
quantified by significantly lower NDI and higher CLV1 values.
Nevertheless, both indices were characterized by low predictive
accuracy, as confirmed by the ROC analysis in Table 6. Longer
AF duration was also predictive of a more extensive ablation.

Finally, in Figure 5 the ability of the BSPM indices to assess
short-term CA outcome was examined. Low NDI values were
predictive of procedural AF termination, whereas AF forms
which were less likely to be successfully converted to other
rhythms by CA presented higher disorganization, quantified by
higher NDI.

CA outcome prediction performance was assessed by ROC
analysis in Table 7.

It yielded AUC = 69%, sensitivity = 70%, specificity = 67%
for NDI. Moreover, patients with longer AF episodes were
significantly less likely to experience procedural success. AF
termination by CA was also predicted by significantly higher f-
wave amplitude, quantified by higher ABSPM values, but with a
poor ROC analysis outcome. The multilead BSPM descriptors

TABLE 3 | Noninvasive markers of AF complexity and ablation time.

Ablation time

(≤ 30 min)

Ablation time

(> 30 min)

p-value

NDI [a.u] 0.086 ± 0.036 0.107 ± 0.032 0.0009

AF duration [months] 5.9 ± 6.0 9.2 ± 8.7 0.030

LA area [cm2] 26 ± 6 26 ± 7 0.65

AV1 [mV] 0.022 ± 0.015 0.032 ± 0.023 0.063

CLV1 [ms] 168 ± 34 145 ± 32 0.002

NMSE3 [%] 23.4 ± 17.7 25.2 ± 19.4 0.71

WNMSEBSPM [%] 42.4 ± 26.0 53.8 ± 26.3 0.064

ABSPM [mV] 0.013 ± 0.006 0.012 ± 0.005 0.81

NDIECG [a.u] 0.047 ± 0.016 0.055 ± 0.023 0.26

WNMSEECG [%] 42.4 ± 25.3 46.8 ± 24.0 0.49

AECG [mV] 0.010 ± 0.006 0.015 ± 0.008 0.017

NDIOACG [a.u] 0.051 ± 0.022 0.060 ± 0.025 0.15

WNMSEOACG [%] 49.6 ± 27.6 48.0 ± 25.5 0.72

AOACG [mV] 0.010 ± 0.0006 0.013 ± 0.007 0.11

NDIECG15 [a.u] 0.058 ± 0.019 0.071 ± 0.029 0.043

WNMSEECG15 [%] 55.6 ± 25.0 55.3 ± 26.6 0.80

AECG15 [mV] 0.009 ± 0.004 0.013 ± 0.007 0.025

Correlation of body surface signal features with the duration of radiofrequency emission

duration to achieve procedural AF termination; p values in boldface are statistically

significant; a.u., arbitrary units.

of AF organization were also computed in the modified
configurations of the standard 12-lead ECG, and the statistical
analysis results were shown together with the aforementioned
parameters. Nevertheless, overall those parameters did not yield
significant results (p > 0.05).

We also evaluated the classification accuracy of each of
the examined AF complexity markers in combination with AF
patients’ clinical information.

In Table 8 the ability of multivariate classifiers to distinguish
between short and long CA procedures was reported.

Clinical indices alone could not effectively discriminate
ablation interventions based on their duration. Adding an
AF complexity marker considerably improved the classification
accuracy in the validation set in terms of AUC more clearly
than in the training set for the univariate AF CL CLV1
and the multivariate descriptors of amplitude assessed in
the full set of BSPM electrodes (ABSPM) and in the 15-
lead ECG subset (AECG15). Similar findings were made for
the NDI assessed in the same lead configuration (NDIECG15),
but these results could not be reproduced on the original
BSPM lead configuration. However, the degree of improvement
of classification performance as assessed by the NRI was
not statistically significant for any of these multivariate
features.

In Table 9 the ability of the multivariate classifiers to
characterizemore extensive ablation interventions in terms of the
number of procedural targets was investigated.

Classification accuracy based on clinical data was improved
by the introduction of the NDI marker in the validation set
(AUC=86%, sensitivity=86%, specificity=83%). Similarly, CA
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TABLE 4 | ROC analysis of the AF complexity features and ablation time.

AUC [%] Sensitivity [%] Specificity [%]

NDI [a.u] 72 71 78

AF duration [months] 64 28 97

LA area [cm2] 53 51 66

AV1 [mV] 64 61 73

CLV1 [ms] 73 74 70

NMSE3 [%] 53 35 83

WNMSEBSPM [%] 63 79 47

ABSPM [mV] 52 44 71

NDIECG [a.u] 59 63 61

WNMSEECG [%] 56 48 70

AECG [mV] 68 57 79

NDIOACG [a.u] 61 43 82

WNMSEOACG [%] 53 90 29

AOACG [mV] 61 37 89

NDIECG15 [a.u] 65 70 61

WNMSEECG15 [%] 52 23 93

AECG15 [mV] 67 47 86

Assessment of the ability of the AF organization descriptors to distinguish between short

and long AF ablation procedures. Sensitivity and specificity indicate the percentage

of interventions correctly identified by the signal features based on the duration of

radiofrequency emission duration to AF termination, i.e., longer/shorter than 30 min,

respectively. Results for the parameters with the highest classification performance

(AUC≥70%) are highlighted in boldface. AUC, area under curve; a.u., arbitrary units.

procedures could be better discriminated based on the number
of ablated atrial regions by adding CLV1. By contrast, no benefits
were provided by information about AF duration. Overall, none
of these changes was statistically significant according to NRI
analysis.

Finally, in Table 10 the classification performance of
multidimensional predictors of CA outcome was shown.

As in the previous case, prediction accuracy in the
validation phase was higher when NDI was also included
into the classification model (AUC=70%, sensitivity=100%,
specificity=50%). Similar remarks could be made for the single-
lead CL CLV1. Information provided by AF duration to the
classification model was poor instead, both in the training and
the validation phase. However, also in this case changes in the
classification scores as measured by the NRI were not statistically
significant.

DISCUSSION

In this study we proposed a noninvasive PCA-based approach
to evaluate AF complexity in BSPMs, which can be accurately
characterized even in very short recordings (<10 s in our
database). The algorithm overcomes limitations of QRST
cancelation, which may be affected by R peak misalignment or
sudden changes in signal voltage, thus minimizing the influence
of residual ventricular far field. Indeed, since PCA assumptions
rely on signal second-order statistics at zero time lag, i.e., the
coherence between consecutive samples is neglected, the use

TABLE 5 | Noninvasive markers of AF complexity and number of CA targets.

Number of CA

targets (<4)

Number of CA

targets (≥4)

p-value

NDI [a.u] 0.086 ± 0.030 0.111 ± 0.037 0.002

AF duration [months] 4.6 ± 3.4 12.6 ± 13.1 <0.0001

LA area [cm2] 27 ± 6 26 ± 6 0.56

AV1 [mV] 0.024 ± 0.016 0.030 ± 0.024 0.27

CLV1 [ms] 167 ± 35 147 ± 29 0.007

NMSE3 [%] 21.8 ± 18.0 24.4 ± 18.5 0.54

WNMSEBSPM [%] 43.3 ± 27.6 52.8 ± 24.7 0.065

ABSPM [mV] 0.012 ± 0.006 0.011 ± 0.005 0.32

NDIECG [a.u] 0.048 ± 0.019 0.055 ± 0.022 0.18

WNMSEECG [%] 39.1 ± 24.9 46±59 , 23.4 0.49

AECG [mV] 0.011 ± 0.006 0.013 ± 0.008 0.26

NDIOACG [a.u] 0.054 ± 0.027 0.059 ± 0.022 0.18

WNMSEOACG [%] 46.9 ± 29.1 50.8 ± 24.1 0.62

AOACG [mV] 0.012 ± 0.006 0.0012 ± 0.007 0.71

NDIECG15 [a.u] 0.059 ± 0.021 0.071 ± 0.029 0.11

WNMSEECG15 [%] 51.7 ± 26.2 57.4 ± 22.9 0.75

AECG15 [mV] 0.010 ± 0.005 0.011 ± 0.006 0.63

Correlation of BSPM features with the number of atrial sites ablated to achieve procedural

AF termination; p values in boldface are statistically significant; a.u., arbitrary units.

of temporally consecutive samples is not necessary (Bonizzi
et al., 2010). Furthermore, it does not require any a priori
selection of specific electrodes, as it automatically condenses
the most relevant signal information into a few components
based on its energy content. In addition, apart from the duration
of the signal to be processed, no further tuning parameters
need to be set, thus making this tool easier to be implemented
and integrated to AF complexity analysis than other indices
from the state of the art, e.g., sample entropy (Alcaraz et al.,
2011). Our methodology provided relevant insights into the
characteristics of AF disease and substrate and correlated with
CA strategy.

Surface AF Complexity and Characteristics
of AF Disease and Substrate
The proposed methodology can quantify AF organization
in surface recordings and correlate it to the underlying
electrophysiological substrate.

A decreasing trend of NDI as a function of AF CL was
observed, and more rapid local activities in the atria reflected on
higher complexity on body surface.

Similar evidence was found for CLV1, thus proving a direct
correlation between the invasive measure of the atrial fibrillatory
rate and the surface electrical activity, which was previously
demonstrated in (Matsuo et al., 2009) as well.

By contrast, no significant correlation between continuous
AF duration and body surface complexity. Indeed, this clinical
parameter may not reliably reflect the properties of the
underlying atrial substrate, as it is often difficult to determine,
unless continuous long-term ECG monitoring is performed
(Ciconte et al., 2017). However, this approach would not be
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TABLE 6 | ROC analysis of the AF complexity features and number of CA targets.

AUC [%] Sensitivity [%] Specificity [%]

NDI [a.u] 69 67 71

AF duration [months] 75 64 75

LA area [cm2] 54 67 45

AV1 [mV] 58 54 64

CLV1 [ms] 68 85 39

NMSE3 [%] 54 35 82

WNMSEBSPM [%] 61 88 38

ABSPM [mV] 56 23 92

NDIECG [a.u] 59 37 92

WNMSEECG [%] 59 69 50

AECG [mV] 58 80 38

NDIOACG [a.u] 59 47 77

WNMSEOACG [%] 53 82 35

AOACG [mV] 53 86 31

NDIECG15 [a.u] 61 37 88

WNMSEECG15 [%] 56 74 42

AECG15 [mV] 53 92 19

Assessment of the ability of the AF organization descriptors to identify extensive ablation

procedures in terms of the number of atrial sites targeted to achieve AF termination.

Sensitivity and specificity indicate the percentage of procedures correctly classified by

the signal features based on the number of ablation targets, i.e., more/less than 4

sites, respectively. Results for the parameters with the highest classification performance

(AUC≥70%) are highlighted in boldface. AUC, area under curve; a.u., arbitrary units.

helpful in asymptomatic AF patients (Ahmad and Kirchhof,
2013), whose diagnosis is still challenging. Paradoxically, current
guidelines increasingly tend not to distinguish between the
prognostic implications of paroxysmal vs. long-standing AF
(Calkins et al., 2012). Some studies demonstrated that patients
with similar clinical characteristics (including AF history) may
present very different substrates (Kottkamp, 2013) and even
some paroxysmal AF forms may be due to sources other than
those in the pulmonary veins (Sanchez-Quintana et al., 2012).
Nevertheless, the relation between number of AF driving sources
and disease duration has been shown elsewhere (Lim et al., 2017),
thus making it harder to reach a consensus about the role of AF
duration as a marker of complexity.

Higher complexity was measured by higher NDI in patients
with longer AF episode duration, which may result from a
longer electrical remodeling of the atrial substrate, due to disease
progression (Lau et al., 2017) and the onset of multiple sources
located even outside the pulmonary vein areas (Lim et al., 2017).
The strength of this correlation was also supported by the ROC
analysis, confirming the ability of the proposed index to assess
atrial activity rate based on body surface signal complexity.

Surprisingly, longer AF duration and larger LA area did not
show any evident correlation with faster AF CLs, in contrast with
evidence reported in Ammar et al. (2014). However, the same
study claims that variations in intracardiac CL depend both on
other patient’s clinical characteristics, including age and other
comorbidities, and external factors, such as pharmacological
interventions, thus this finding should be investigated in a
broader context.

Body surface measures of f-wave amplitude could not
significantly reflect the properties of the AF wavefront
propagation in terms of CL. Moreover, all amplitude features
did not exhibit any significant correlation with AF duration.
While some studies have discovered a correlation between
atrial amplitude and AF duration and echocardiographic
characteristics (Yamamoto et al., 2005), in Nault et al. (2009)
and other more recent studies that finding was impossible to
reproduce, thus confirming the divergence between results
reported in literature.

Indices of complexity based on PCA reconstruction error
(i.e., NMSE3 and WNMSEBSPM) could not effectively quantify
the degree of AF chronification. In contrast with our intuition,
higher PCA projection errors did not significantly reflect faster
intracardiac AF activation. Additionally, the accuracy of PCA
estimation was not significantly lower in long-lasting AF patients.
This may be partially explained by the use of the setting proposed
in the related reference studies, which may be not suitable
for our signal database. Furthermore, those parameters rather
aimed to quantify the degree of stationarity and repetitiveness
of atrial components across the electrodes, which may not be
sufficiently evident in short recordings as those examined in our
study.

Surface AF Complexity and CA Strategy
Our PCA-derived parameter could also quantify the impact
of AF complexity on the CA therapy strategy. Indeed, higher
complexity was underlined by NDI in surface recordings
in patients undergoing shorter ablation procedures, and
the univariate ROC analysis corroborated the ability of the
index to accurately distinguish between interventions of
different duration based on the signal complexity information.
Furthermore, a lower number of atrial targets and higher
procedural success probability were associated with more
complex AF waveforms, despite the weaker predictive
performance. By contrast, more disorganized AF forms
were less likely to be successfully converted to other rhythms by
CA, and they generally required longer interventions and a more
extensive cauterization of atrial tissue.

Continuous AF duration proved to be a significant univariate
predictor of CA outcome, and long-lasting cases overall required
a more extensive ablation, in line with previous research (Scherr
et al., 2009; Rostock et al., 2011). Despite this performance,
it is essential to keep in mind some of the aforementioned
limitations of AF duration, e.g., the potentially inaccurate
evaluation of its value in certain patients, or the lack of
correlation with the atrial substrate, which may lead to an
erroneous evaluation of the ablation strategy, thus corroborating
the added descriptive value from cardiac signal processing
parameters. Conversely, LA surface did not show any relevant
correlation with CA strategy and effectiveness. This finding
may appear in contrast with current literature (Zhuang et al.,
2012; Scherr et al., 2015). Nevertheless, as pointed out in Hoit
(2014), despite current recommendations for LA size assessment,
clinical studies report a wide variety of 1-dimensional linear and
2D area measurements, which may lead to contrasting results
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FIGURE 5 | Noninvasive markers of AF complexity and CA outcome: correlation of BSPM features with the acute CA outcome. (A) The NDI index measured in

BSPMs (NDI, left) and the standard ECG subset (NDIECG, right). (B) Clinical measures of cardiac activity: AF duration (left) and LA area (right). (C) Single-lead

descriptors of atrial amplitude (AV1, left), surface CL (CLV1, middle) and PCA estimation error (NMSE3, right) in V1. (D) Multilead PCA reconstruction error

(WNMSEBSPM, left) and f-wave amplitude (ABSPM, right) computed in BSPMs and in the standard ECG subset (WNMSEECG and AECG). (E) Multilead PCA

reconstruction error (WNMSEOACG, left) and f-wave amplitude (AOACG, right) computed in the modified OACG system and in the extended 15-lead ECG

(WNMSEECG15 and AECG15). *p < 0.05 vs. AF termination; ns, not significant; a.u., arbitrary units.
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TABLE 7 | ROC analysis of the AF complexity features and CA outcome.

AUC [%] Sensitivity [%] Specificity [%]

NDI [a.u] 69 70 67

AF duration [months] 70 55 87

LA area [cm2] 51 65 53

AV1 [mV] 51 84 33

CLV1 [ms] 52 37 75

NMSE3 [%] 56 32 85

WNMSEBSPM [%] 57 95 26

ABSPM [mV] 67 85 40

NDIECG [a.u] 56 37 81

WNMSEECG [%] 53 63 49

AECG [mV] 51 84 33

NDIOACG [a.u] 57 37 88

WNMSEOACG [%] 52 63 52

AOACG [mV] 50 98 24

NDIECG15 [a.u] 58 47 85

WNMSEECG15 [%] 51 95 26

AECG15 [mV] 54 84 33

Assessment of the ability of the AF organization descriptors to predict AF termination

by CA. Sensitivity and specificity indicate the rate of detection of successful and failed

ablation procedures, respectively. Results for the parameters with the highest classification

performance (AUC≥70%) are highlighted in boldface. AUC, area under curve; a.u.,

arbitrary units.

and a make it harder to understand the clinical value of this
parameter.

Preprocedural CL measured in lead V1 (CLV1) also appeared
longer in ablations characterized by a lower number of candidate
atrial sites for CA and with lower amount of radiofrequency
energy emission. In keeping with (Matsuo et al., 2009), this
finding suggests that CA results are not caused by operator
bias, but by an increased complexity of AF substrate, and it is
corroborated by ROC analysis as well. However, the index was
not predictive of acute AF termination by CA, in contrast with
results presented in Matsuo et al. (2009).

Acute CA outcome was significantly predicted by the
multilead amplitude feature ABSPM, which is consistent with
results described in Meo et al. (2013a), despite the weak
predictive performance. By contrast, its single-lead counterpart
AV1 did not significantly discriminate between successful and
failing CA procedures, which is in contradiction with evidence
shown in Nault et al. (2009). However, as pointed out in the same
study, f-wave amplitude measure is highly dependent on ECG
acquisition modalities and it is sensitive to external artifacts, thus
results reported by clinical studies are quite disparate and difficult
to interpret.

Multilead PCA-based descriptors of AF organization NMSE3
and WNMSEBSPM could not significantly quantify the impact
of atrial substrate complexity on AF ablation characteristics. As
explained in section Surface AF Complexity and Characteristics
of AF Disease and Substrate, a potential explanation of their weak
predictive performance can be the impossibility to assess the
spatiotemporal variability of the atrial signal pattern in very short
signals. Nevertheless, this remark should be verified by additional
experiments.

Benefits From the Spatial Variability of
Multilead Recordings
All the multilead PCA-based descriptors of AF complexity
obtained in BSPMs were also computed in an equivalent
set of electrodes of the standard 12-lead ECG, thus yielding
NDIECG, WNMSEECG and AECG, and the same statistical
analysis was performed. Similarly, alternative body surface lead
configurations were tested, i.e., the OACG system developed in
Ihara et al. (2007); van Oosterom et al. (2007) and the extended
15-lead ECG system examined in Petrutiu et al. (2009), with the
AF complexity markers denoted as NDIOACG, WNMSEOACG and
AOACG and NDIECG15, WNMSEECG15, AECG15, respectively.

No index from 12-led ECG did significantly correlate
neither with atrial substrate properties during AF nor with CA
procedure characteristics and outcome. This may be due to
the inability of standard ECG to sufficiently capture the spatial
variability of AF pattern wavefront, which can be instead more
accurately characterized in larger sets of electrodes. Indeed, slight
improvements in this characterization were observed in the
OACG system, thus confirming the benefits of the analysis of the
cardiac electrical activity in additional leads.

The relation between body surface complexity as measured
by WNMSEOACG and intracardiac AF CL in the OACG subset
was also significant, but not strictly decreasing as for the
aforementioned measures of AF organization, thus further
investigation should be performed in the assessment of this
quantitative relation. These results underlined the added value of
the posterior OACG lead, which is assumed to better characterize
LA activity, due to its proximity to lead M of Frank’s vector lead
system (Ihara et al., 2007). However, amore strategic and effective
ECG lead placement configuration should be investigated in
more detail in order to increase the predictive power of the
related AF organization measures.

BSPM capability of providing a more comprehensive view
of surface cardiac electrical activity has been previously
demonstrated for ventricular electrical disorders (Robinson et al.,
2009), and advances in diagnosis and therapy of supraventricular
arrhythmias have been obtained as well, thanks to the more
reliable identification of arrhythmogenic sources driving and
sustaining the pathological rhythm (SippensGroenewegen et al.,
2004; Haissaguerre et al., 2013; Yamashita et al., 2015), thus
corroborating the clinical value of BSPM analysis.

Concerning the CA strategy, the NDI determined from
the extended 15-lead ECG proposed in Petrutiu et al. (2009)
correlated higher body surface complexity with prolonged
ablation procedures, thus demonstrating that relevant insights
into AF therapy can be better provided by additional leads
reflecting the underlying LA activity on body surface (i.e., V7, V8,

and V9) rather than conventional precordial leads, in particular
V1, which is closer to RA (Holm et al., 1998).

The multilead index of f-wave amplitude AECG associated
higher values with longer procedures, despite the poor outcome
of the predictive accuracy analysis. Similar results were reported
for the same parameter computed from the extended 15-lead
ECG. This finding may appear in contrast with our clinical
intuition, which correlates higher atrial amplitude with a more
homogeneous and organized wavefront of tissue depolarization.
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However, similar evidence was also found in Zeemering et al.
(2017), pointing out that higher f-wave amplitude may predict
AF recurrence after pharmacological cardioversion. Due to the
difficult interpretability of the physiological background, such
aspects deserve more detailed investigation.

Assessment of AF Ablation Impact in a
Multivariate Framework
The ability of clinical parameters alone to predict CA
effectiveness and predict larger CA interventions (in terms of
procedural time and targets) was overall limited, in line with
previous research (Lankveld et al., 2016b; Zeemering et al., 2017).
As pointed out in those studies, information about patient’s
clinical background may be incomplete or imprecise. Parameters
such as AF duration may be difficult to evaluate in some patients
due to the asymptomatic or slightly symptomatic nature of
some AF episodes (Lankveld et al., 2016b), thus justifying the
need for the introduction of more objective, quantitative indices
which can be noninvasively quantified from body surface cardiac
signals. Moreover, while clinical parameters from patient’s history
can give an overview of AF disease severity before CA, they
cannot offer any additional information during the procedure
itself, e.g., between two consecutive sets of lesions, or before/after
pulmonary vein isolation (unpublished data). By contrast, BSPMs
can be acquired at any moment of the intervention, thus enabling
a more flexible and dynamic re-evaluation of body surface AF
organization and a providing a more precise indication of CA
intermediate effect on arrhythmia complexity.

Characterization of protracted CA procedures was improved
by the introduction of multilead f-wave amplitude, thus
corroborating its ability to reflect the degree of heterogeneity
of the AF wavefront propagation through the underlying atrial
substrate (De Groot et al., 2010). Similarly, single-lead surface
CL in V1 also contributed to increase classification accuracy, thus
confirming that the degree of complexity of endocardial atrial
activation during AF can be reflected on body surface potentials
(Matsuo et al., 2009) and may require longer CA interventions
to organize the arrhythmia. NDI assessed in the extended 15-
lead ECG, but not in the entire BSPM lead set, equally helped
improving the classification performance of clinical parameters,
suggesting that in this framework the correlation between body
surface AF organization and the duration of the CA procedure
may come from specific anatomical locations only.

CA interventions requiring a higher number of lesions
were also more accurately described in a multidimensional
classification framework when NDI was integrated with patient’s
clinical characteristics, as confirmed by the ROC analysis. This
result may be explained by the presence of a higher number of
AF driving sources, located in multiple atrial locations (Lim et al.,
2017), thus requiring the operator to target a higher number of
atrial regions to terminate AF. Similar evidence was reported for
the AF CL in V1, hinting at a relation between AF firing rate and
the extent of its spatial distribution over atrial tissue.

CA outcome prediction was improved by combining clinical
data with NDI, thus linking body surface AF organization as
estimated by our marker with ablation therapy effectiveness. The
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results obtained were comparable with those reported in previous
studies (Lankveld et al., 2016b; Zeemering et al., 2017) and
underlined the relevance of body surface complexity as a marker
of ablation therapy impact. Also f-wave amplitude contributed
to increase multidimensional classification accuracy, as proved
elsewhere (Lankveld et al., 2016b; Zeemering et al., 2017).

Surprisingly, even though we observed some improvements
in classification performance as quantified by ROC analysis and
we obtained results similar to those shown in other studies,
the changes observed when combining clinical and signal
features overall were not statistically significant according to the
NRI analysis. No benefit was provided by the integration of
information related to body surface AF organization, regardless
of the descriptor chosen. This issue may originate from multiple
factors. First, it may be due to the choice of the classification
model, which may be not appropriate for our dataset, therefore
other classifiers should be investigated in future works. Secondly,
the accuracy of some multidimensional predictors may have
been limited by the reduced number of training observations in
relation to the classifier’s dimension, in particular when dealing
with the analysis of CA duration or with missing feature values,
which could have led to biased estimates. Furthermore, the
absence of improvements in classification accuracy (at least with
regard to the NRI analysis) may be explained by an inappropriate
selection of AF organization markers. In Zeemering et al. (2017),
indices of f-wave amplitude and DF estimated in specific ECG
leads were automatically selected via elastic net regularization
and combined with patient’s weight and right atrial volume.
These results suggest that: (1) more than one signal feature
may be required to better characterize the descriptive power of
AF complexity; (2) contributions from specific BSPM leads (or
subsets of leads) may be more relevant to the classification model
than those provided by other electrodes. On the other hand,
these models may have included parameters whose physiological
interpretation may be less clear. For instance, in Lankveld
et al. (2016b), simultaneous analysis of AF duration and single-
lead f-wave amplitude (in V6) was predictive of CA outcome.
However, lead V1 usually exhibits the maximum ratio of atrial
to ventricular amplitude (Petrutiu et al., 2006), therefore those
findings are more difficult to justify and apply to a real clinical
scenario. Finally, the NRI metric itself may not be suitable for
the comparison between two classification models, especially if
they do not fit the training datasets accurately (Pepe et al., 2015).
Furthermore, since the assessment of NRI significance proposed
by Pencina et al. (2008) has never been systematically validated
(Kerr et al., 2014), further metrics should be investigated to
validate NRI results.

Limitations and Perspectives
The diversity of the criteria used for AF complexity definition
and clinical CA protocols and endpoints made the comparison
between parameters from current literature more challenging.
While a more systematic overview of classical descriptors of AF
spatiotemporal organization has been attempted (Bonizzi et al.,
2014; Lankveld et al., 2014), the integration of such contributions
to clinical practice is still an open issue, and the predictive
accuracy of most of the univariate indices examined needs to be
improved.

To this end, we tested whether our understanding of AF
characteristics and therapy management could benefit from
combining patient’s clinical characteristics and signal complexity
features. However, as pointed out in section Assessment of AF
Ablation Impact in a Multivariate Framework, the evaluation of
multidimensional classifiers may be limited by several factors,
including the limited number of observations, the choice of
the classification model and the complexity indices, and the
metrics used for model comparison. Even though our study
offers some relevant insights into AF multidimensional analysis,
several aspects should be investigated with more attention in
future works, in particular the type of signal features and
the BSPM leads to be selected, potentially through automatic
algorithms, as well as the introduction of information coming
from other imaging systems, such as fibrosis distribution assessed
by magnetic resonance (Jadidi et al., 2013).

The correlation between the examined indices of AF
pathophysiology and impact of the CA strategy and AF duration
could not be significantly quantified by a pairwise Pearson’s linear
analysis neither in our study nor by other groups (Ammar et al.,
2014). This limitation also justifies the choice to discriminate
between persistent and long-lasting AF patients according to
the definition provided in Calkins et al. (2012) and regard AF
duration as a dichotomous variable rather than continuous, since
none of the descriptors of AF organization linearly correlated
with this clinical parameter.

Secondly, frequency measures of AF organization were not
explored in our comparative analysis, due to the impossibility
to retrieve the original BSPMs from the acquisition system, as
TQ interval segmentation is performed at the moment of the
ablation procedure. To this end, we examined the AF CL in lead
V1, which was demonstrated to correlate with the intracardiac
atrial fibrillatory rate in Matsuo et al. (2009). While in that study
thismeasure wasmanually assessed in standard ECG, in our work
we introduced an algorithm for the automatic computation of the
rate of atrial signal local extrema, which may be sensitive to the
presence of artifacts and spurious peaks if proper settings as those
described in section Comparison With Other Descriptors of AF
Complexity on Surface Recordings are not applied.

Some BSPM electrodes may present artifacts due to patient’s
breathing or mechanical motion. As a consequence, all signals
have been visually inspected and electrodes with too high levels
of noise were discarded.

The assumption that more complex AF forms require the
operator to target a higher number of atrial sites is supported
by previous clinical studies claiming that in advanced AF
forms the density of driving sources over atrial tissue tends
to be higher, thus covering more sites (Lim et al., 2017).
However, this should be confirmed by phase mapping analysis
as well.

The ability of the AF complexity parameters to predict
long-term CA outcome has not been investigated due to the
unavailability of such information for some patients at the
moment of the study, and it therefore represents an open
perspective of this research.

Furthermore, it may be clinically relevant to assess changes
in complexity in BSPMs within the CA procedure and between
intermediate steps (for instance, after pulmonary vein isolation),

Frontiers in Physiology | www.frontiersin.org 16 July 2018 | Volume 9 | Article 929

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Meo et al. AF complexity

so as to understand whether modifications of atrial substrate by
CA immediately reflect on surface electrical activity.

Future research also includes the investigation of the relation
between body surface complexity and AF termination sites. This
task may present some challenges, in particular in relation to the
identification of the most suitable electrodes to be associated with
the atrial regions of interest.

Finally, the application of our noninvasive methodology to
other types of AF therapy (e.g., electrical cardioversion) may help
improve their management.

CONCLUSIONS

This research put forward a tool for the quantification
of AF organization by PCA of multilead BSPMs. Our
analysis underlined a significant correlation of such noninvasive
information with AF chronification and CA practice. This
methodology can provide relevant insights into AF substrate
characterization from the body surface ablation therapy.
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