13,037 research outputs found

    Solution methods for the tray optimization problem

    Get PDF
    In order to perform medical surgeries, hospitals keep large inventories of surgical in- struments. These instruments need to be sterilized before each surgery. Typically the instruments are kept in trays. Multiple trays may be required for a single surgery, while a single tray may contain instruments that are required for multiple surgical procedures. The tray optimization problem (TOP) consists of three main decisions: (i) the assignment of instruments to trays, (ii) the assignment of trays to surgeries, and (iii) the number of trays to keep in inventory. The TOP decisions have to be made such that total operating costs are minimized and such that for every surgery sufficient instruments are available. This paper presents and evaluates several exact and heuristic solution methods for the TOP. We compare solution methods on computation time and solution quality. Moreover, we conduct simulations to evaluate the performance of the solutions in the long run. The novel methods that are provided are the first methods that are capable of solving instances of realistic size. The most promising method consists of a highly scalable advanced greedy algorithm. Our results indicate that the outcomes of this method are, on average, very close to the outcomes of the other methods investigated, while it may be easily applied by (large) hospitals. The findings are robust with respect to fluctuations in long term OR schedules

    A "MINLP" Formulation for Optimal Design of a Catalytic Distillation Column Based on a Generic Non Equilibrium Model

    Get PDF
    This contribution proposes a Mixed Integer Non Linear Programming (MINLP) formulation for optimal design of a catalytic distillation column based on a generic nonequilibrium model (NEQ). The solution strategy for the global optimization combines Simulated Annealing (SA) and Sequential Quadratic Programming (SQP) in order to minimize the objective function. The solution of this MINLP problem yields the optimal values for the temperature, composition and flow rate profiles, tray geometry, column diameter, reflux ratio, reboiler duty, feed tray location, number of trays and catalytic stage location. Hydraulic constraints (entrainment flooding, down-flow flooding, weeping-dumpling) are also considered. For the example, the production of ETBE (Ethyl tert-butyl ether) is presented here

    Admissible Velocity Propagation : Beyond Quasi-Static Path Planning for High-Dimensional Robots

    Full text link
    Path-velocity decomposition is an intuitive yet powerful approach to address the complexity of kinodynamic motion planning. The difficult trajectory planning problem is solved in two separate, simpler, steps: first, find a path in the configuration space that satisfies the geometric constraints (path planning), and second, find a time-parameterization of that path satisfying the kinodynamic constraints. A fundamental requirement is that the path found in the first step should be time-parameterizable. Most existing works fulfill this requirement by enforcing quasi-static constraints in the path planning step, resulting in an important loss in completeness. We propose a method that enables path-velocity decomposition to discover truly dynamic motions, i.e. motions that are not quasi-statically executable. At the heart of the proposed method is a new algorithm -- Admissible Velocity Propagation -- which, given a path and an interval of reachable velocities at the beginning of that path, computes exactly and efficiently the interval of all the velocities the system can reach after traversing the path while respecting the system kinodynamic constraints. Combining this algorithm with usual sampling-based planners then gives rise to a family of new trajectory planners that can appropriately handle kinodynamic constraints while retaining the advantages associated with path-velocity decomposition. We demonstrate the efficiency of the proposed method on some difficult kinodynamic planning problems, where, in particular, quasi-static methods are guaranteed to fail.Comment: 43 pages, 14 figure

    Integrating process design and control: An application of optimal control to chemical processes

    Get PDF
    In this paper, the optimal design of process systems generically used in chemical industries is studied. The closely coupled nature of optimal design specification of the equipment, the determination of the optimal process parameters in steady-state, moreover, some issues of the application of optimal control is shown. The solution of the overall optimization problem including (i) optimal design of the equipment and (ii) specification of its optimal control strategy can be found relying on two different design concepts, namely, on the conventionally used sequential or, on the newly emerged simultaneous design approaches. This paper gives the theoretical background of the ideas and presents a comparative summary of the approaches. The two approaches are contrasted to each other in which the effects of the interaction of optimal process design and optimal control is highlighted. A new simultaneous optimization procedure providing economic and operability benefits over the traditional stand-alone approach is proposed. The applicability of the idea is demonstrated by means of a design study carried out for optimal design of a coaxial heat exchanger and a reactive distillation column for the synthesis of ethyl tert butyl ether (ETBE), relying on the benefits of the utilization of optimal control

    Effect of various processing parameters on the quality of papaya fruit tea

    Get PDF
    Exotic fruits from which drinks are ma de in most tropical countries are so abundant and such in a great variety, that it would probably be impossible for people to sample all of them, but they worth a try. Some of the great varieties of fruits used in drinks are bananas, guavas, papayas, oranges, pineapples, grapes, mangoes, watermelon, coconuts, longans, rambutans, strawberries, lime and tamarind

    Heterogeneous Batch Distillation Processes: Real System Optimisation

    Get PDF
    In this paper, optimisation of batch distillation processes is considered. It deals with real systems with rigorous simulation of the processes through the resolution full MESH differential algebraic equations. Specific software architecture is developed, based on the BatchColumn® simulator and on both SQP and GA numerical algorithms, and is able to optimise sequential batch columns as long as the column transitions are set. The efficiency of the proposed optimisation tool is illustrated by two case studies. The first one concerns heterogeneous batch solvent recovery in a single distillation column and shows that significant economical gains are obtained along with improved process conditions. Case two concerns the optimisation of two sequential homogeneous batch distillation columns and demonstrates the capacity to optimize several sequential dynamic different processes. For such multiobjective complex problems, GA is preferred to SQP that is able to improve specific GA solutions

    Modelling of a dynamic multiphase flash: the positive flash. Application to the calculation of ternary diagrams

    Get PDF
    A general and polyvalent model for the dynamic simulation of a vapor, liquid, liquid-liquid, vapor-liquid or vapor-liquid-liquid stage is proposed. This model is based on the -method introduced as a minimization problem by Han & Rangaiah (1998) for steady-state simulation. They suggested modifying the mole fraction summation such that the same set of governing equations becomes valid for all phase regions. Thanks to judicious additional switch equations, the -formulation is extended to dynamic simulation and the minimization problem is transformed into a set of differential algebraic equations (DAE). Validation of the model consists in testing its capacity to overcome phase number changes and to be able to solve several problems with the same set of equations: calculation of heterogeneous residue curves, azeotropic points and distillation boundaries in ternary diagrams

    Monitoring of the primary drying of a lyophilization process in vials

    Get PDF
    An innovative and modular system (LyoMonitor) for monitoring the primary drying of a lyophilization process in vials is illustrated: it integrates some commercial devices (pressure gauges, moisture sensor and mass spectrometer), an innovative balance and a manometric temperature measurement system based on an improved algorithm (DPE) to estimate sublimating interface temperature and position, product temperature profile, heat and mass transfer coefficients. A soft-sensor using a multipoint wireless thermometer can also estimate the previous parameters in a large number of vials. The performances of the previous devices for the determination of the end of the primary drying are compared. Finally, all these sensors can be used for control purposes and for the optimization of the process recipe; the use of DPE in a control loop will be shown as an exampl

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201
    corecore