99 research outputs found

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Radial Basis Functions: Biomedical Applications and Parallelization

    Get PDF
    Radial basis function (RBF) is a real-valued function whose values depend only on the distances between an interpolation point and a set of user-specified points called centers. RBF interpolation is one of the primary methods to reconstruct functions from multi-dimensional scattered data. Its abilities to generalize arbitrary space dimensions and to provide spectral accuracy have made it particularly popular in different application areas, including but not limited to: finding numerical solutions of partial differential equations (PDEs), image processing, computer vision and graphics, deep learning and neural networks, etc. The present thesis discusses three applications of RBF interpolation in biomedical engineering areas: (1) Calcium dynamics modeling, in which we numerically solve a set of PDEs by using meshless numerical methods and RBF-based interpolation techniques; (2) Image restoration and transformation, where an image is restored from its triangular mesh representation or transformed under translation, rotation, and scaling, etc. from its original form; (3) Porous structure design, in which the RBF interpolation used to reconstruct a 3D volume containing porous structures from a set of regularly or randomly placed points inside a user-provided surface shape. All these three applications have been investigated and their effectiveness has been supported with numerous experimental results. In particular, we innovatively utilize anisotropic distance metrics to define the distance in RBF interpolation and apply them to the aforementioned second and third applications, which show significant improvement in preserving image features or capturing connected porous structures over the isotropic distance-based RBF method. Beside the algorithm designs and their applications in biomedical areas, we also explore several common parallelization techniques (including OpenMP and CUDA-based GPU programming) to accelerate the performance of the present algorithms. In particular, we analyze how parallel programming can help RBF interpolation to speed up the meshless PDE solver as well as image processing. While RBF has been widely used in various science and engineering fields, the current thesis is expected to trigger some more interest from computational scientists or students into this fast-growing area and specifically apply these techniques to biomedical problems such as the ones investigated in the present work

    Castell: a heterogeneous cmp architecture scalable to hundreds of processors

    Get PDF
    Technology improvements and power constrains have taken multicore architectures to dominate microprocessor designs over uniprocessors. At the same time, accelerator based architectures have shown that heterogeneous multicores are very efficient and can provide high throughput for parallel applications, but with a high-programming effort. We propose Castell a scalable chip multiprocessor architecture that can be programmed as uniprocessors, and provides the high throughput of accelerator-based architectures. Castell relies on task-based programming models that simplify software development. These models use a runtime system that dynamically finds, schedules, and adds hardware-specific features to parallel tasks. One of these features is DMA transfers to overlap computation and data movement, which is known as double buffering. This feature allows applications on Castell to tolerate large memory latencies and lets us design the memory system focusing on memory bandwidth. In addition to provide programmability and the design of the memory system, we have used a hierarchical NoC and added a synchronization module. The NoC design distributes memory traffic efficiently to allow the architecture to scale. The synchronization module is a consequence of the large performance degradation of application for large synchronization latencies. Castell is mainly an architecture framework that enables the definition of domain-specific implementations, fine-tuned to a particular problem or application. So far, Castell has been successfully used to propose heterogeneous multicore architectures for scientific kernels, video decoding (using H.264), and protein sequence alignment (using Smith-Waterman and clustalW). It has also been used to explore a number of architecture optimizations such as enhanced DMA controllers, and architecture support for task-based programming models. ii

    Parallelism and the software-hardware interface in embedded systems

    Get PDF
    This thesis by publications addresses issues in the architecture and microarchitecture of next generation, high performance streaming Systems-on-Chip through quantifying the most important forms of parallelism in current and emerging embedded system workloads. The work consists of three major research tracks, relating to data level parallelism, thread level parallelism and the software-hardware interface which together reflect the research interests of the author as they have been formed in the last nine years. Published works confirm that parallelism at the data level is widely accepted as the most important performance leverage for the efficient execution of embedded media and telecom applications and has been exploited via a number of approaches the most efficient being vectorlSIMD architectures. A further, complementary and substantial form of parallelism exists at the thread level but this has not been researched to the same extent in the context of embedded workloads. For the efficient execution of such applications, exploitation of both forms of parallelism is of paramount importance. This calls for a new architectural approach in the software-hardware interface as its rigidity, manifested in all desktop-based and the majority of embedded CPU's, directly affects the performance ofvectorized, threaded codes. The author advocates a holistic, mature approach where parallelism is extracted via automatic means while at the same time, the traditionally rigid hardware-software interface is optimized to match the temporal and spatial behaviour of the embedded workload. This ultimate goal calls for the precise study of these forms of parallelism for a number of applications executing on theoretical models such as instruction set simulators and parallel RAM machines as well as the development of highly parametric microarchitectural frameworks to encapSUlate that functionality.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    High-performance and hardware-aware computing: proceedings of the first International Workshop on New Frontiers in High-performance and Hardware-aware Computing (HipHaC\u2708)

    Get PDF
    The HipHaC workshop aims at combining new aspects of parallel, heterogeneous, and reconfigurable microprocessor technologies with concepts of high-performance computing and, particularly, numerical solution methods. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all levels are taken into account in a holistic approach

    Raising the level of abstraction : simulation of large chip multiprocessors running multithreaded applications

    Get PDF
    The number of transistors on an integrated circuit keeps doubling every two years. This increasing number of transistors is used to integrate more processing cores on the same chip. However, due to power density and ILP diminishing returns, the single-thread performance of such processing cores does not double every two years, but doubles every three years and a half. Computer architecture research is mainly driven by simulation. In computer architecture simulators, the complexity of the simulated machine increases with the number of available transistors. The more transistors, the more cores, the more complex is the model. However, the performance of computer architecture simulators depends on the single-thread performance of the host machine and, as we mentioned before, this is not doubling every two years but every three years and a half. This increasing difference between the complexity of the simulated machine and simulation speed is what we call the simulation speed gap. Because of the simulation speed gap, computer architecture simulators are increasingly slow. The simulation of a reference benchmark may take several weeks or even months. Researchers are concious of this problem and have been proposing techniques to reduce simulation time. These techniques include the use of reduced application input sets, sampled simulation and parallelization. Another technique to reduce simulation time is raising the level of abstraction of the simulated model. In this thesis we advocate for this approach. First, we decide to use trace-driven simulation because it does not require to provide functional simulation, and thus, allows to raise the level of abstraction beyond the instruction-stream representation. However, trace-driven simulation has several limitations, the most important being the inability to reproduce the dynamic behavior of multithreaded applications. In this thesis we propose a simulation methodology that employs a trace-driven simulator together with a runtime sytem that allows the proper simulation of multithreaded applications by reproducing the timing-dependent dynamic behavior at simulation time. Having this methodology, we evaluate the use of multiple levels of abstraction to reduce simulation time, from a high-speed application-level simulation mode to a detailed instruction-level mode. We provide a comprehensive evaluation of the impact in accuracy and simulation speed of these abstraction levels and also show their applicability and usefulness depending on the target evaluations. We also compare these levels of abstraction with the existing ones in popular computer architecture simulators. Also, we validate the highest abstraction level against a real machine. One of the interesting levels of abstraction for the simulation of multi-cores is the memory mode. This simulation mode is able to model the performanceof a superscalar out-of-order core using memory-access traces. At this level of abstraction, previous works have used filtered traces that do not include L1 hits, and allow to simulate only L2 misses for single-core simulations. However, simulating multithreaded applications using filtered traces as in previous works has inherent inaccuracies. We propose a technique to reduce such inaccuracies and evaluate the speed-up, applicability, and usefulness of memory-level simulation. All in all, this thesis contributes to knowledge with techniques for the simulation of chip multiprocessors with hundreds of cores using traces. It states and evaluates the trade-offs of using varying degress of abstraction in terms of accuracy and simulation speed

    Simulation methodologies for future large-scale parallel systems

    Get PDF
    Since the early 2000s, computer systems have seen a transition from single-core to multi-core systems. While single-core systems included only one processor core on a chip, current multi-core processors include up to tens of cores on a single chip, a trend which is likely to continue in the future. Today, multi-core processors are ubiquitous. They are used in all classes of computing systems, ranging from low-cost mobile phones to high-end High-Performance Computing (HPC) systems. Designing future multi-core systems is a major challenge [12]. The primary design tool used by computer architects in academia and industry is architectural simulation. Simulating a computer system executing a program is typically several orders of magnitude slower than running the program on a real system. Therefore, new techniques are needed to speed up simulation and allow the exploration of large design spaces in a reasonable amount of time. One way of increasing simulation speed is sampling. Sampling reduces simulation time by simulating only a representative subset of a program in detail. In this thesis, we present a workload analysis of a set of task-based programs. We then use the insights from this study to propose TaskPoint, a sampled simulation methodology for task-based programs. Task-based programming models can reduce the synchronization costs of parallel programs on multi-core systems and are becoming increasingly important. Finally, we present MUSA, a simulation methodology for simulating applications running on thousands of cores on a hybrid, distributed shared-memory system. The simulation time required for simulation with MUSA is comparable to the time needed for native execution of the simulated program on a production HPC system. The techniques developed in the scope of this thesis permit researchers and engineers working in computer architecture to simulate large workloads, which were infeasible to simulate in the past. Our work enables architectural research in the fields of future large-scale shared-memory and hybrid, distributed shared-memory systems.Des dels principis dels anys 2000, els sistemes d'ordinadors han experimentat una transició de sistemes d'un sol nucli a sistemes de múltiples nuclis. Mentre els sistemes d'un sol nucli incloïen només un nucli en un xip, els sistemes actuals de múltiples nuclis n'inclouen desenes, una tendència que probablement continuarà en el futur. Avui en dia, els processadors de múltiples nuclis són omnipresents. Es fan servir en totes les classes de sistemes de computació, de telèfons mòbils de baix cost fins a sistemes de computació d'alt rendiment. Dissenyar els futurs sistemes de múltiples nuclis és un repte important. L'eina principal usada pels arquitectes de computadors, tant a l'acadèmia com a la indústria, és la simulació. Simular un ordinador executant un programa típicament és múltiples ordres de magnitud més lent que executar el mateix programa en un sistema real. Per tant, es necessiten noves tècniques per accelerar la simulació i permetre l'exploració de grans espais de disseny en un temps raonable. Una manera d'accelerar la velocitat de simulació és la simulació mostrejada. La simulació mostrejada redueix el temps de simulació simulant en detall només un subconjunt representatiu d¿un programa. En aquesta tesi es presenta una anàlisi de rendiment d'una col·lecció de programes basats en tasques. Com a resultat d'aquesta anàlisi, proposem TaskPoint, una metodologia de simulació mostrejada per programes basats en tasques. Els models de programació basats en tasques poden reduir els costos de sincronització de programes paral·lels executats en sistemes de múltiples nuclis i actualment estan guanyant importància. Finalment, presentem MUSA, una metodologia de simulació per simular aplicacions executant-se en milers de nuclis d'un sistema híbrid, que consisteix en nodes de memòria compartida que formen un sistema de memòria distribuïda. El temps que requereixen les simulacions amb MUSA és comparable amb el temps que triga l'execució nativa en un sistema d'alt rendiment en producció. Les tècniques desenvolupades al llarg d'aquesta tesi permeten simular execucions de programes que abans no eren viables, tant als investigadors com als enginyers que treballen en l'arquitectura de computadors. Per tant, aquest treball habilita futura recerca en el camp d'arquitectura de sistemes de memòria compartida o distribuïda, o bé de sistemes híbrids, a gran escala.A principios de los años 2000, los sistemas de ordenadores experimentaron una transición de sistemas con un núcleo a sistemas con múltiples núcleos. Mientras los sistemas single-core incluían un sólo núcleo, los sistemas multi-core incluyen decenas de núcleos en el mismo chip, una tendencia que probablemente continuará en el futuro. Hoy en día, los procesadores multi-core son omnipresentes. Se utilizan en todas las clases de sistemas de computación, de teléfonos móviles de bajo coste hasta sistemas de alto rendimiento. Diseñar sistemas multi-core del futuro es un reto importante. La herramienta principal usada por arquitectos de computadores, tanto en la academia como en la industria, es la simulación. Simular un computador ejecutando un programa típicamente es múltiples ordenes de magnitud más lento que ejecutar el mismo programa en un sistema real. Por ese motivo se necesitan nuevas técnicas para acelerar la simulación y permitir la exploración de grandes espacios de diseño dentro de un tiempo razonable. Una manera de aumentar la velocidad de simulación es la simulación muestreada. La simulación muestreada reduce el tiempo de simulación simulando en detalle sólo un subconjunto representativo de la ejecución entera de un programa. En esta tesis presentamos un análisis de rendimiento de una colección de programas basados en tareas. Como resultado de este análisis presentamos TaskPoint, una metodología de simulación muestreada para programas basados en tareas. Los modelos de programación basados en tareas pueden reducir los costes de sincronización de programas paralelos ejecutados en sistemas multi-core y actualmente están ganando importancia. Finalmente, presentamos MUSA, una metodología para simular aplicaciones ejecutadas en miles de núcleos de un sistema híbrido, compuesto de nodos de memoria compartida que forman un sistema de memoria distribuida. El tiempo de simulación que requieren las simulaciones con MUSA es comparable con el tiempo necesario para la ejecución del programa simulado en un sistema de alto rendimiento en producción. Las técnicas desarolladas al largo de esta tesis permiten a los investigadores e ingenieros trabajando en la arquitectura de computadores simular ejecuciones largas, que antes no se podían simular. Nuestro trabajo facilita nuevos caminos de investigación en los campos de sistemas de memoria compartida o distribuida y en sistemas híbridos

    ACADEMIC HANDBOOK (UNDERGRADUATE) COLLEGE OF ENGINEERING (CoE)

    Get PDF

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Enhanced applicability of loop transformations

    Get PDF
    • …
    corecore