
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2016

Radial Basis Functions: Biomedical Applications
and Parallelization
Ke Liu
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Liu, Ke, "Radial Basis Functions: Biomedical Applications and Parallelization" (2016). Theses and Dissertations. 1382.
https://dc.uwm.edu/etd/1382

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1382?utm_source=dc.uwm.edu%2Fetd%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

RADIAL BASIS FUNCTIONS: BIOMEDICAL

APPLICATIONS AND PARALLELIZATION

by

Ke Liu

A Dissertation Submitted in

Partial Fulfilment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

December 2016

ii

ABSTRACT

RADIAL BASIS FUNCTIONS: BIOMEDICAL APPLICATIONS AND

PARALLELIZATION

by

Ke Liu

The University of Wisconsin-Milwaukee, 2016

Under the Supervision of Professor Zeyun Yu

Radial basis function (RBF) is a real-valued function whose values depend only on the distances

between an interpolation point and a set of user-specified points called centers. RBF

interpolation is one of the primary methods to reconstruct functions from multi-dimensional

scattered data. Its abilities to generalize arbitrary space dimensions and to provide spectral

accuracy have made it particularly popular in different application areas, including but not

limited to: finding numerical solutions of partial differential equations (PDEs), image processing,

computer vision and graphics, deep learning and neural networks, etc.

The present thesis discusses three applications of RBF interpolation in biomedical engineering

areas: (1) Calcium dynamics modeling, in which we numerically solve a set of PDEs by using

meshless numerical methods and RBF-based interpolation techniques; (2) Image restoration and

transformation, where an image is restored from its triangular mesh representation or

transformed under translation, rotation, and scaling, etc. from its original form; (3) Porous

structure design, in which the RBF interpolation used to reconstruct a 3D volume containing

iii

porous structures from a set of regularly or randomly placed points inside a user-provided

surface shape. All these three applications have been investigated and their effectiveness has

been supported with numerous experimental results. In particular, we innovatively utilize

anisotropic distance metrics to define the distance in RBF interpolation and apply them to the

aforementioned second and third applications, which show significant improvement in

preserving image features or capturing connected porous structures over the isotropic distance-

based RBF method.

Beside the algorithm designs and their applications in biomedical areas, we also explore several

common parallelization techniques (including OpenMP and CUDA-based GPU programming) to

accelerate the performance of the present algorithms. In particular, we analyze how parallel

programming can help RBF interpolation to speed up the meshless PDE solver as well as image

processing. While RBF has been widely used in various science and engineering fields, the

current thesis is expected to trigger some more interest from computational scientists or students

into this fast-growing area and specifically apply these techniques to biomedical problems such

as the ones investigated in the present work.

iv

© Copyright by Ke Liu, 2016

All Rights Reserved

v

TABLE OF CONTENTS

Chapter 1 Introduction ... 1

1.1 Radial Basis Function (RBF) ... 1

1.1.1 Definition .. 1

1.1.2 Applications .. 3

1.1.3 Pros and Cons ... 9

1.2 Parallel Computing ... 10

1.2.1 Architecture Perspective ... 10

1.2.2 Memory Perspective ... 11

1.2.3 Current Trends .. 14

1.3 Thesis Objectives ... 17

Chapter 2 Modeling of Calcium Dynamics ... 18

2.1 Introduction .. 18

2.2 Mathematical Models and Meshless Numerical Methods ... 19

2.2.1 Governing Equations .. 19

2.2.2 Geometric Model Considered ... 20

2.2.3 Space Discretization (LRBFCM) .. 21

2.3 Results and Discussion ... 23

Chapter 3 Anisotropic Image Restoration and Transformation... 25

vi

3.1 Introduction .. 25

3.2 Anisotropic Image Restoration... 31

3.2.1 Adaptive Mesh Generation from Images .. 32

3.2.2 Radial Basis Function (RBF) Interpolation .. 34

3.2.3 Anisotropic Radial Basis Function (ARBF) Interpolation...................................... 36

3.2.4 Algorithms .. 37

3.3 Anisotropic Image Transformations... 39

3.3.1 Isotropic Image Transformations .. 39

3.3.2 Anisotropic Image Scaling .. 41

3.4 Results and Discussion ... 43

3.5 Conclusions .. 46

Chapter 4 Porous Structure Design in Tissue Engineering ... 53

4.1 Introduction .. 53

4.2 Prior Works .. 55

4.3 Methods .. 58

4.3.1 Radial Basis Function (RBF) Based Construction.. 58

4.3.2 Anisotropic Radial Basis Function (ARBF) Interpolation...................................... 59

4.3.3 Algorithms .. 61

4.4 Results and Discussion ... 62

4.5 Conclusions .. 66

vii

Chapter 5 Parallelization ... 68

5.1 Introduction to GPGPU .. 68

5.2 Parallelization of Modeling of Calcium Dynamics .. 68

5.2.1 Parallelization with OpenMP .. 69

5.2.2 Parallelization with GPU .. 69

5.2.3 Experiment Environment .. 73

5.2.4 Results and Discussion ... 73

5.3 Parallelization of Image Restoration with GPU ... 76

5.3.1 Methods... 76

5.3.2 Results and Discussion ... 76

Chapter 6 Conclusions and Future Works ... 79

6.1 Thesis Summary ... 79

6.2 Future Directions .. 79

6.2.1 Applications of Radial Basis Function Networks ... 79

6.2.2 Porous Structure .. 79

BIBLIOGRAPHY ... 81

APPENDEX: PUBLICATIONS ... 104

CURRICULUM VITAE ... 105

viii

LIST OF FIGURES

1.1 Figure 1 Gaussian basis function. (a) Shape of Gaussian basis function in 1D. c is the center.

(b) Shape of Gaussian basis function in 2D..2

1.1 Figure 2 RBF support domains. (a) Compact support. (b) Non-compact support.................3

1.1 Figure 3 Discretization using meshless method: nodes, domains of influence (in circle

shape). Blue line illustrates problem domain. Red dots illustrate nodes. Grey circle

illustrates the influence of local domain Ω𝐼.(Courtesy of [38])...4

1.1 Figure 4 Surface reconstruction from point cloud. Left is the point cloud as input. Right is

the reconstructed surface. (Courtesy of [45])..7

1.1 Figure 5 The traditional radial basis function network. 𝒙 = {𝑥𝑖}𝑖=1
𝑛 is the input. 𝒉 =

{ℎ𝑗}
𝑗=1

𝑚
 are basis functions. The output 𝑓(𝒙) is the linear combination of weights 𝒘 =

{𝑤𝑗}
𝑗=1

𝑚
. (Courtesy of [46])...8

1.2 Figure 6 Illustration of instruction-level parallelism. (a) 5-stage pipeline RISC processor.

(b) 5-stage pipelined superscalar processor. (Courtesy of [58])..11

1.2 Figure 7 Different types of memory models of parallel computing. (a) Execution sequence

of shared memory model. Different colors illustrates different threads. (b) Shared memory

model. (c) Distributed memory model. (d) Execution sequence of one of heterogeneous

memory models. (Courtesy of [59] [60])..13

ix

2.2 Figure 8 (a) The model considered in current study, containing the t-tubule (blue),

surrounding half sarcomere (red), and external cell membrane (green). (unit: 𝜇𝑚). (b) Flow

chart of the meshless algorithm for modeling of calcium dynamics...................................22

2.3 Figure 9 Results of calcium dynamics. Vertical coordinate illustrates concentrations in 𝜇𝑀.

(a) Concentration of Ca over time. (b) Concentration of Fluo over time. (c) Concentration

of ATP over time. (d) Concentration of Cal over time. (e) Concentration of TN over time.24

3.2 Figure 10 Example of interpolation. (a) Interpolation by vertices. Green dots are vertices

defined on feature. Blue dots are vertices defined on feature edge. (b) Interpolation by faces.

Green dots are face centers. Blue dots are face centers used for interpolation of the

intensities of pixels enclosed by the blue triangle...34

3.2 Figure 11 Interpolation schemes. (a) Isotropic RBF interpolation. (b) Anisotropic RBF

interpolation. (c) Eigenvectors on an edge pixel. e1 shows the normal direction. e2 shows

the tangent direction...35

3.3 Figure 12 Resampling of original image (M × N) to target image (X × Y). As the gray

triangle shows, every triangle in target image keeps the shape unchanged but has larger

sampling density...41

3.4 Figure 13 Summary of restoration of Lena. (a) Original Lena image. (b) Result of piecewise

interpolation. (c) Result of vertex-based iso-RBF interpolation. (d) Result of triangle-based

iso-RBF interpolation. (e) Result of triangle-based ARBF interpolation using MQ basis. (f)

Result of triangle-based ARBF interpolation using IMQ basis...44

x

3.4 Figure 14 Details of Lena. (a) Original Lena image. (b) Generated mesh of (a). (c) Result

of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a)

- (c), respectively..47

3.4 Figure 15 Details of brain MRI. (a) Original brain MRI. (b) Generated mesh of (a). (c)

Result of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views

of (a) - (c), respectively...48

3.4 Figure 16 Details of breast MRI. (a) Original breast MRI. (b) Generated mesh of (a). (c)

Result of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views

of (a) - (c), respectively...49

3.4 Figure 17 Details of CT-scanned image of heart. (a) Original heart image. (b) Generated

mesh of (a). (c) Result of triangle-based ARBF interpolation using MQ basis. (d) - (f) are

zoomed-in views of (a) - (c), respectively...50

3.4 Figure 18 Isotropic image translation and rotation. After transformation, image dimensions

are unchanged. (a) Image translated to another coordinates. Three red circles indicates

image features before and after translation. (b) Left: original image. Right: image rotated

45°..51

3.4 Figure 19 Super-resolution results of biomedical images. Results are rescaled for display.

Red boxes show the zoom-in areas. (a) is the original brain MRI. (b) is the zoom-in part of

(a). (c) is ARBF-5X SR result and (d) is bicubic-5X SR result. (e) is the original CT-

scanned heart artery image. (f) is the zoom-in part of (e). (g) is ARBF-5X SR result. (h) is

bicubic-5X SR result. (i) is the original breast MRI. (j) is zoom-in part of (i). (k) is ARBF-

5X SR result. (l) is bicubic-5X SR result..52

xi

4.3 Figure 20 Values assigned to mesh nodes. Red dots represent value of 1. Blue dots

represent value of -1. In 3D meshes, interior dots are represented by lighter colors. (a)

Sample 2D triangle mesh. Note both edge and triangle centers are given values -1. (b)

Sample 3D tetrahedron mesh. Small triangle represent tetrahedron centers. (c) Sample 3D

hexahedron mesh. Small triangle represent hexahedron centers...58

4.3 Figure 21 2D interpolation schemes. 𝑥 is the pixel to be interpolated. Dashed circle (for

RBF) or ellipses (for anisotropic RBF) are support domains of underlying basis functions.

(a) RBF interpolation. (b) Anisotropic RBF interpolation………………………………..59

4.3 Figure 22 Cases to calculate anisotropic distance. (a) Point x is on line segment (a,b). (b)

Point x and line segment (a,b) form an acute triangle then distance is defined as the length

of ‖𝑥𝑥′‖. (c) Point x and line segment (a,b) form an obtuse triangle. (d) Distance between

line segment (a,b) and (c,d)...60

4.4 Figure 23 Results based on tetrahedron meshes. (a) Scaffold based on single tetrahedron.

(b) Input icosahedron mesh (formed by 20 tetrahedrons). (c) Scaffold using (b) as input...63

4.4 Figure 24 Results based on hexahedron meshes. (a) Scaffold based on single hexahedron.

(b) Scaffold based on 8 hexahedrons arranged to form a large cube. (c) Scaffold based on

4 hexahedrons arranged to form a rod shape...63

4.4 Figure 25 Results taken by different iso-values. (a) - (d) are results taken by increasing iso-

values...64

4.4 Figure 26 Results obtained by using different basis functions in ARBF interpolation. Shape

parameter is 0.1 for all results. (a) Result interpolated by multiquadrics (MQ) basis. b)

xii

Result interpolated by inverse multiquadrics (IMQ) basis. (c) Result interpolated by

Gaussian basis. (d) Result interpolated by thin plate spline (TPS) basis.............................65

4.4 Figure 27 Experimental results. (a) Result interpolated by isotropic RBF and based on a

2D triangle mesh. (b-d) Results based on hexahedron meshes with disturbance.................66

4.4 Figure 28 Porous structure obtained by TPMS method. (a) Structure obtained by P-type

function. (b) Structure obtained by D-type function. (c) Structure obtained by G-type

function. (d) Structure obtained by IWP-type function...67

5.2 Figure 29 Column 1 shows the average concentrations of Ca2+, mobile and stationary

buffers for point set 2 (30,807 points) in three implementations, namely, serial, OpenMP

and CUDA. Note that the concentrations of the three versions are almost identical. Column

2 shows the average relative errors of point set 2 (30,807 points), as compared to the serial

execution. Column 3 shows the average relative errors of point set 3 (234,921 points), as

compared to the serial execution...75

xiii

LIST OF TABLES

3.3 Table 1 Summary of the Lena image (Figure 13)…………………………………………46

3.3 Table 2 Summary of the three medical images (Figure 15, Figure 16, Figure 17)………...46

4.1 Table 3 Category of methods to design porous scaffolds in tissue engineering...................54

4.3 Table 4 Type of distances used in porous structure construction..61

5.2 Table 5 Running time of Serial, OpenMP, CUDA implementations on 3 point sets (unit:

seconds)…………………………………………………………………………………..76

5.3 Table 6 Execution time of image restoration. Results are the almost identical for block size

of 128, 256 and 512..77

xiv

ACKNOWLEDGEMENTS

First, I would sincerely express my gratitude to my advisor, Professor Zeyun Yu, to the continuous

support and guide to my Ph.D. study and research, for his patience, motivation, and vast knowledge.

His insightful thoughts and advice helped me a lot during the time of research and writing of this

thesis.

Besides my advisor, I would very much like to thank all my thesis committee members: Professor

Guangwu Xu, Professor Tian Zhao, Professor Lei Wang, and Professor Roshan D'Souza, for their

valuable comments and encouragement.

My sincere thank also goes to Jason Bacon, who provided me access to the research cluster at UW-

Milwaukee, and gave me instructions to use the cluster. Without his precious support, it would not

be possible to conduct this research.

Last but not least, I would like to thank my family for their spiritual support throughout writing

my PhD thesis and my life in general.

1

Chapter 1 Introduction

1.1 Radial Basis Function (RBF)

1.1.1 Definition

Radial Basis Function (RBF) is a real-valued function whose value depends only on the distance

from two points in multi-dimensional space. One of these points is called the center, which could

be the origin or alternatively some other point in this space. RBF interpolation is one of the primary

methods to analyze multi-dimensional scattered data. Its abilities to generalize arbitrary space

dimensions and to provide spectral accuracy have made it particular popular in different types of

applications. Some of the applications include function approximation, numerical solutions of

partial differential equations, computer vision and neural networks, etc.

RBF is formally defined as ϕ(𝑟) = ϕ(‖𝑟‖). Any function ϕ that satisfies the property ϕ(𝑟) =

ϕ(‖𝑟‖) is a radial function. Norm usually is defined as the Euclidean norm but other distance

functions like taxicab metric or Łukaszyk–Karmowski metric are also used to define the norm in

some applications. Let r = ‖𝒙 − 𝒙𝑖‖ (𝒙𝑖 is center), c be a constant called shape parameter (or free

parameter in some literatures), commonly used types of radial basis functions include

 Gaussian: ϕ(𝑟) = 𝑒−(𝑐𝑟)2

 Multiquadric (MQ): ϕ(𝑟) = √𝑟2 + 𝑐2

 Inverse multiquadric (IMQ): ϕ(𝑟) =
1

𝑟2+𝑐2

 Thin plate spline (TPS): ϕ(𝑟) = 𝑟2ln (𝑟)

The shape parameter plays an important role for the accuracy but how to choose the value is still

an open research topic. Most researchers choose the value by trial and error or some other ad hoc

2

means. Literatures [1] [2] [3] [4] [5] [6] [7]provides more details about choosing the value for

shape parameter. Figure 1 shows the shape of Gaussian basis function. Every radial basis function

has a support range, which is the footprint of the basis function. There are two types of support.

Compact support or finite support: function value is zero outside of certain interval. Non-compact

support or infinite support: there is no interval to limit the function values. Function value goes to

infinite as the range goes to infinite. Figure 2 shows the two types of support domains.

RBFs are typically used to construct function approximations defined on scattered multi-

dimensional data of the form

u(𝒙) = ∑ 𝑤𝑖𝜙(‖𝒙 − 𝒙𝑖‖)

𝑁

𝑖=1

 (1)

where u(𝒙) is the approximated function that represented as a weighted sum of N radial basis

functions. Each basis function is associated with a different center 𝒙i and weight 𝑤i. The weights

Figure 1 Gaussian basis function. (a) Shape of Gaussian basis function in 1D. c is the center. (b) Shape of

Gaussian basis function in 2D.

3

can be determined by solving linear equations. Let u𝑖 = u(𝑥𝑖), by (1), the weights 𝑤i can be

solved by

[
𝜙11 ⋯ 𝜙1𝑁

⋮ ⋱ ⋮
𝜙𝑁1 ⋯ 𝜙𝑁𝑁

] [

𝑤1

⋮
𝑤𝑁

] = [

𝑢1

⋮
𝑢𝑁

] (2)

where 𝜙ji = 𝜙(𝒙𝑗 − 𝒙𝑖) . Once the unknown weights 𝑤i are solved, function values can be

evaluated by (1). Besides by solving the linear equations in (2), the unknown weights 𝑤i can

also be solved by other matrix methods like linear least squares.

This approximation scheme is particularly useful in time series prediction, control of nonlinear

systems having sufficiently simple chaotic behavior, and 3D reconstruction in computer graphics.

1.1.2 Applications

1.1.2.1 Numeric Simulation

Recent development of computer technology has made it possible to simulate a number of complex

natural phenomena in experiments. In these experiments, partial differential equations (PDEs) with

initial and boundary conditions are important tools to describe many mathematical models. For

Figure 2 RBF support domains. (a) Compact support. (b) Non-compact support.

4

complex PDEs, analytic solutions are usually too complex, even impossible to obtain. Therefore,

numerical solutions as an approximation of analytical solutions are instead the goal to obtain in

practice. Many numerical methods have been developed to solve PDEs. Some classical methods

that solve PDEs numerically based on polynomial interpolation are finite difference method

(FDM), finite element method (FEM), finite volume method (FVM) and pseudo-spectral methods.

These methods solve a set of linear equations which are constructed after the analysis of the entire

problem domain is analyzed and divided into elements or meshes.

Although these polynomial based methods are very effective to solve certain types of PDEs in

many fields, they have limitations too, mostly because of the mesh-based interpolation. Distorted

or low quality meshes lead to higher errors and necessitate remeshing, which is a task consuming

both time and human labor and often is not guaranteed to be feasible in timely manner in complex

3D geometries. Moreover, the underlying mesh-based structure makes them not well suited to

solve problems with discontinuity boundaries. A way to deal with discontinuities is remeshing or

discontinuous enrichment. Alternatively, the extended finite element method (XFEM) [8] [9] [10]

Figure 3 Discretization using meshless method: nodes, domains of influence (in circle

shape). Blue line illustrates problem domain. Red dots illustrate nodes. Grey circle

illustrates the influence of local domain Ω𝐼 .(Courtesy of [38]).

5

[11] enriches the approximation space so that both strong and weak discontinuities can be captured.

However, the involved difficulties of mesh-based interpolation are not only remeshing but also

transiting problem states from old mesh to new mesh. Impact/penetration problem,

explosion/fragmentation problem, flow pass obstacles problem, fluid-structure interaction problem

and some biomedical simulations like the simulation and analysis of particular particles in

cardiomyocytes during excitation and contraction are extremely difficult using the traditional

methods introduced above.

RBF based methods, however, do not suffer from the adaptive remeshing procedures and the

approximation is built from nodes only. Thus they belong to a category of methods called meshless

methods or meshfree methods. Meshless methods are good at achieving exponential convergence

rates on problems where traditional methods have difficulties or fail to solve. By constructing a

univariate function with Euclidean norm, meshless methods turn a multi-dimensional problem into

a one dimensional problem. One of the earliest meshless methods is the smooth particle

hydrodynamics (SPH) method proposed by Lucy [12] and Gingold and Monaghan [13]. It was

proposed to solve problems in astrophysics. Libersky et al. [14] were the first to apply SPH in solid

mechanics. Other improved SPH methods are proposed as well [15] [16] [17] [18] [19]. In 1990s

other weak form based methods were developed while SPH and their improved versions were

based on strong form. One of the earliest meshless methods based on global weak form is the

element-free Galerkin (EFG) method [20]. One year later, reproducing kernel particle method

(RKPM) was developed in wavelets [21]. In contrast to EFG and RKPM methods which use

intrinsic basis, other methods are developed to use extrinsic basis and the concept of partition of

unity (PU). The extrinsic basis was used to increase the approximation order. Melenk and Babuska

[22] proposed partition of unity finite element method (PUFEM) based on the similarity of

6

meshless method and FEM. This method is very similar to hp-cloud method which employs

elements of variable size (h) and polynomial degree (p).

All meshless methods introduced above are based on global weak form of PDEs. Another type of

meshless methods are based on local weak forms. The most popular method of this type is the

meshless local Petrov-Galerkin (MLPG) method [23]. The main difference between MLPG and

global weak form based methods such EFG and RKPM is that local weak form is generated on

overlapping local subdomains, on which the integration is carried out. Another well-known

method which is called moving point method is mainly applied in fluid mechanics [24] [25] [26].

Because there is no mesh, tool like k-dimensional tree (KD-Tree) is usually used to divide the

space and find neighboring nodes during the construction of linear systems. As a result, instead of

solving a large linear system, many smaller linear systems are solved. By solving problems in

collocation fashion, which is more flexible than global methods, local RBF methods can construct

more stable linear systems and are easier to implement. Literatures [1] [27] [23] [28] [29] [30] [31]

[32] [33] [34] [35] [36] [37] [38] illustrate the efficacy and popularity of meshless methods in

numerical areas. Giordano et al. proposes an RBF optimization method in hydrolysis area [39].

Figure 3 (courtesy of [38]) illustrates how meshless methods discretize problem domain. Red dots

illustrate nodes whose values are used to approximate. Blue line illustrates problem boundary.

Grey circle illustrates the influence of a subdomain.

1.1.2.2 Surface Reconstruction

RBFs find their usage in computer graphics fields as well such as surface or object reconstruction

from point cloud, mesh repair, image registration, and field visualization in 2D or 3D, etc.

Interpolating meshes with holes and reconstructing surfaces from point cloud are ubiquitous

problems in computer graphics and computer aided design (CAD) areas. Because RBFs are

7

polyharmonic and fast to be fitted and evaluated, smooth surface or object can be reconstructed

from point cloud in large amount (in millions). The smooth blending of surfaces ensures a manifold

can be constructed and thus manufacturable, which is related to many problems in CAD.

Smoothing and remeshing existing noisy surfaces are also important problems in both computer

graphics and CAD. These problems are considered independent problems in most cases and

receive much attentions [40]. RBFs have been used to reconstruct surfaces by Carr et al. [41],

Savchenko [42], Turk and O’Brien [43] [44]. These works are limited to small problems by their

𝑂(𝑁2) storage and 𝑂(𝑁3) arithmetic operations. By reducing the number of RBF centers used, a

fast fitting and evaluation method is proposed by Carr et al. [45]. Figure 4 (courtesy of [45])

illustrates the problem of surface reconstruction from point cloud.

1.1.2.3 Artificial Neural Networks

RBFs are very useful in artificial neural networks as embodied in current versions of feedforward

neural networks as well. A number of RBFs are organized together to form a network, called radial

Figure 4 Surface reconstruction from point cloud. Left is the point cloud as

input. Right is the reconstructed surface. (Courtesy of [45]).

8

basis function network (RBFN). The traditional RBFN is illustrated in Figure 5 (courtesy of [46]).

RBFN is mostly used for data forecasting, data mining and data classification in artificial

intelligence area. RBFs in neural networks are explained in depth [47]. In 1980s, Broomhead and

Lowe [48] are one of the earlies using networks to interpolate quantitatively. RBFs become popular

in neural networks in 1990s. Girosi extend RBFs [49] and use them in artificial intelligence (AI)

field. Varvark used elliptical RBFs to enhance neural networks [50]. Fernández-Navarro proposed

a method using new basis funtion (q-Gaussian basis function) in binary classification [51].

Raitoharju et al proposed a method to train RBFN for classification [52]. Maglogiannis et al. used

RBFN in classification and recognition in microscopic images [53]. Keramitsoglou et al. used

RBFN to classify very high spatial resolution satellite image [54]. Sermpinis et al proposed a RBF-

based method to forecast and optimize foreign exchange rates [55]. Sideratos and Hatziargyriou

used RBFN in wind power forecasting [56]. Guo et al. proposed a forecasting model combing

RBFN and 2D principal component analysis (PCA) in stock market [57]. Recently developed

Figure 5 The traditional radial basis function network. 𝒙 = {𝑥𝑖}𝑖=1
𝑛 is the input. 𝒉 = {ℎ𝑗}

𝑗=1

𝑚
 are

basis functions. The output 𝑓(𝒙) is the linear combination of weights 𝒘 = {𝑤𝑗}
𝑗=1

𝑚
. (Courtesy of

[46]).

9

RBFN algorithms incorporating compact-support RBF greatly increase the performance in training

process.

1.1.3 Pros and Cons

The major advantages using RBF to solve PDEs (meshless methods) are 1) meshless methods have

similar h-adaptivity compared to mesh-based methods, 2) it is much easier to handle problems

with moving discontinuities such as crack propagation, shear bands and phase transformation, 3)

more robust solution of problems with large deformation domains can be obtained, 4) higher-order

basis function can be used to obtain smoother solutions, 5) solution can be interpolated globally

or locally, which provides flexibility and 6) no cost of remeshing or mesh alignment. The chief

drawbacks to the use of meshless methods primarily is related to the choice of shape parameters,

which remains as an open research topic. Improper choice of shape parameter may produce

unstable solution with large errors.

RBFs are particularly suited to fitting surfaces to non-uniformly distributed point clouds and partial

meshed with irregular holes because of their independently polyharmonic smooth interpolation

characteristics. Moreover, by using RBFs a fast fitting and evaluation approach can be applied to

represent complicated objects of arbitrary topology with large data sets such as medical imaging

and geophysical data. However, like any global models, RBFs have the drawbacks as well when

manipulation of part of that model is required. In this case, the decomposition of a global RBF

representation into a piecewise mesh of implicit surface patches is required.

Because RBFN has one hidden layer, which differs from multi-layer perception (MLP), RBFN is

more robust in data prediction. RBFN have the advantages of easy design, good generalization,

strong fault tolerance to noisy input data, and self-learning ability. These properties make RBFN

an ideal tool in data forecasting, data classification, and machine learning. RBFN is able to produce

10

smoother surface, more stable and provide better generalization comparing to traditional neural

networks.

1.2 Parallel Computing

As RBF applications develop rapidly, more and more data is involved, which poses great challenge

on computation. Traditional serial algorithms are no longer satisfactory for the high cost of

computational time. A natural solution is using multiple processors, operating on the principle that

large problems can be divided into smaller ones, which are then solved concurrently. Parallel

computing can be classified from different views. The following sections describe the categories

of parallel computing techniques in different perspectives.

1.2.1 Architecture Perspective

In computer architecture perspective, from lower level to higher level, there are bit-level

parallelism, instruction-level parallelism and task-level parallelism [58]. Bit-level parallelism

relates to the computer word size. Increasing the word size (the length of bits a processor can fetch

and process in single processor cycle) can reduce the number of processor cycles. The word size

is increasing from 4-bit to 8-bit, 16-bit, 32-bit and now 64-bit. Instruction-level parallelism relates

to reordering and combining instructions stages into groups. Modern processors uses multi-stage

instruction pipelining to process multiple instructions at single stage and superscalar to issue

multiple instructions at a time. A typical processor of this type is the RISC processor. Figure 6

shows a five-stage pipelining RISC processor and pipelined superscalar processor. Task-level

parallelism decompose a task into sub-tasks and dispatches each sub-task to a processor for

execution. Thus these sub-tasks are executed simultaneously. Some task-level parallel jobs need

to exchange information among these sub-tasks to get final result. A commonly used task-level

parallelism scheme is map-reduce. In this scheme, the original problem is first decomposed into

11

many smaller sub-problems (the “map” step). Then solve them simultaneously. At last, all partial

results will be combined to get the final result (the “reduce” step).

1.2.2 Memory Perspective

Another popular classification of parallel computing is known as Flynn’s taxonomy, created by

Michael J. Flynn. This classification focuses on instruction and data, thus deriving four types.

Single-instruction-single-data (SISD) programs are the same as sequential programs. Single-

instruction-multiple-data (SIMD) programs perform the same operation on large dataset. Multiple-

instruction-single-data (MISD) programs are uncommon and are mainly designed in redundant

systems. Multiple-instruction-multiple-data (MIMD) programs can perform multiple operations

on multiple datasets and are the most commonly used.

From the memory usage perspective, there are three popular parallel models. Shared-memory

model uses single memory address space and usually is implemented by multi-threading

Figure 6 Illustration of instruction-level parallelism. (a) 5-stage pipeline RISC processor. (b) 5-

stage pipelined superscalar processor. (Courtesy of [58]).

12

programming. Exchanging data is very easy since the memory is shared among processors.

Distributed-memory model uses memory on multiple machines. Each machine has its own

memory address space. Data exchange is achieved by sending and receiving messages.

Heterogeneous memory model uses additional accelerator(s) called device(s) besides the CPU.

The first accelerator is floating-point co-processor, which is designed for high-speed floating-point

calculation. The most popular accelerator nowadays is the GPU. In this model, programs have to

transfer data to the device(s), then start the device(s) for calculation, and finally get result from the

device(s). Each model has its advantages and drawbacks. Shared-memory model is easier to

implement and is more efficient comparing to distributed-memory model when the same number

of processors are used. The main drawback of shared-memory is lack of scalability. Because the

memory space is shared via system bus, all processors have to exist on a single machine. However,

it is extremely difficult to continue shrinking the sizes of transistors and solve the heating problem

while the chip is working to put more and more cores on a single chip, the number of cores on a

chip is limited. In recent years, the number of cores on a single chip does not exceed 32. The

distributed-memory model solves this problem by utilizing multiple machines. But, as the number

of cores utilized is increasing, the message exchanging becomes more and more complicated so

eventually, the cost of communication will dominate the overall computation time. Heterogeneous

memory model takes advantage of dedicated, problem-specific device thus it has high

computational efficiency. But the device causes additional program complication and incurs the

cost of data transfer between the processors and device.

Figure 7 (courtesy of [59] [60]) illustrates these three memory models introduced above. Figure 7

(a) illustrates typical execution of shared memory model. Execution of program starts from master

13

thread. Before the master thread enters a parallel region, the master thread spawns other threads.

Inside parallel region, multiple threads execute in parallel. After parallel region, spawned threads

have to be synchronized with master thread and then destroyed. Then the master thread is the only

Figure 7 Different types of memory models of parallel computing. (a) Execution sequence of shared memory model.

Different colors illustrates different threads. (b) Shared memory model. (c) Distributed memory model. (d)

Execution sequence of one of heterogeneous memory models. (Courtesy of [59] [60]).

14

thread that is in execution until next parallel region is encountered. Figure 7 (b) illustrates a shared

memory model with 4 processors. As introduced above, the memory address space is shared

among the 4 processors. Figure 7 (c) illustrates a distributed memory model with 4 hosts inter-

connected as a circular topology. Each host has an individual memory and 4 processors. Inside the

host, the memory is shared with 4 processors. However, memory is inaccessible among hosts. If a

host wants to access information in another host’s memory, it has to send a message to the

destination host. Figure 7 (d) illustrates the execution of one type of heterogeneous memory

models, namely, compute unified device architecture (CUDA). Left of figure shows the execution.

Parallel code is encapsulated in kernel functions which will be called when parallel execution

points are reached. Right of figure illustrates how threads are grouped into blocks and grid. Details

of CUDA will be introduced in Section 5.1.

1.2.3 Current Trends

Computing architectures evolved significantly in the last decade. There are many improvements

happened across the whole spectrum of architectures ranging from individual processors to

geographically distributed systems.

In the last decade, word size of a single processor has been increased from 16-bit to 64-bit in

general processor. Some processors designed for special purposes such as gaming, video editing,

encryption/decryption, the word size is even larger, usually ranges from 128-bit to 512-bit.

In 2002, Intel introduced the Hyper-threading (HT) technology [61], which enables a processor to

store two architecture states at the same time in a single execution unit. When an execution

instruction of a program is suspended for some reason, execution instruction of the other program

can be executed. This technology makes a single physical execution unit appear to be two “logical”

execution units. The Operating System can therefore see two virtual processors and schedule two

15

independent threads at the same time. The execution speed is increased due to the more efficient

use of the shared execution unit.

The improvements of lithography not only reduces the heating of processor, but also is able to

miniaturize the chip size, which make it possible to put multiple execution units (called “cores”)

on the same processor die. The multi-core processors can actually execute multiple instructions at

the same time. In recent years, multi-core processors gradually become ubiquitous, being found

on devices ranging from high-end servers to tablets and smartphones. CPUs with tens or hundreds

of processors are already available [62]. Current desktop processors are often multi-core designed

and combined with HT technology. These multi-core processors are homogeneous shared-memory

architectures that all cores are identical to each other. Such system is also called symmetric multi-

processor (SMP) system.

A natural thought of improving computational power is connecting multiple SMPs by low-latency

networks. Processors of one SMP cannot access memories on other SMPs. In other word,

memories are distributed across these SMPs. SMPs communicate with each other through sending

and receiving messages. The distributed system is highly extensible.

Not all computing systems are symmetric. Asymmetric or heterogeneous multi-core systems also

exist. An example is the Cell Broadband Engine [63], which contains two PowerPC cores and

additional vector units called Synergistic Processing Elements (SPE). Each SPE has a

programmable vector co-processor with a separate instruction set and local memory. Other widely

used heterogeneous multi-core systems include general purpose graphic processing unit (GPGPU)

[64]. The GPGPU is a massively parallel device that contains thousands of simple execution units

connected to a shared memory. For this reason, the GPGPU is often called many-core processors.

Because the RAM chips do not provide enough bandwidth to all cores at the maximum speed, the

16

memory is organized in a complex hierarchy. GPGPU is usually manufactured as a separate GPU

cards that can be inserted into a host computer and work under the control of host CPU. During

execution, after host CPU launches and initializes the GPU, data is sent to the device memory on

the GPU through buses. After computation, results are fetched back to host memory and the GPU

is shutdown.

The hardware of modern multi-core processors are highly complex. This complexity cannot be

ignored and instead it has to be carefully treated and exploited while programming to fully take

advantages of new hardware features. Writing efficient parallel applications for multi-core and

many-core processors requires detailed knowledge of the processor internals and proper

coordination of communications and computations across available cores.

With software designed for distributed processing including distributed Operating System, task

scheduling software, data persistence software, distributed file systems provided, geographically

distributed systems can form a larger computing systems called Cloud Computing. Cloud

computing is a model that enables on-demand remote access to a shared pool of resources.

Different cloud service models are identified by the type of resources provided. In software as a

service (SaaS) clouds, users access application services running in the cloud infrastructure.

“Google Apps” is an example of SaaS cloud. A platform as a service (PaaS) clouds provide tools

such programming languages and libraries to develop programs and a hosting environment for

applications developed by cloud users. AppEngine provided by Google, Azure provided by

Microsoft, and Elastic Beanstalk provided by Amazon are examples of PaaS cloud. Infrastructure

as a service (IaaS) clouds provide low-level computing services such as processing, storage, and

networks that users can run any applications including Operating Systems. Amazon Web Service

17

is an example of IaaS. Details of distributed and cloud computing services and their limitations

can be found in [65]

1.3 Thesis Objectives

This project has two major objectives:

 Discuss three applications of RBFs. In this work, the following applications are discussed

and implemented:

o Modeling of calcium dynamics in in cardiac myocytes. This application needs to

solve a system of nonlinear partial differential equations (PDEs) over a time series.

This is accomplished by RBF interpolation.

o Image restoration and transformation. In this application, a variation of RBF

interpolation called anisotropic RBF interpolation is used to preserve image

features while restoring image from triangular mesh. Isotropic image translation,

rotation and anisotropic image upscaling (also called image super-resolution) are

researched and implemented.

o Porous structure construction. In this application, a porous structure is constructed

from volumetric meshes (tetrahedron or hexahedron mesh). Firstly, anisotropic

RBF is used to interpolate internal voxels of structure. Secondly, an iso-surface is

taken to obtain the final structure.

 Investigate parallelization of calcium dynamics application using a shared memory model

(OpenMP), and a heterogeneous memory model (CUDA). Explore different parallel

optimization techniques to reach the peak performance as close as possible. Investigate

CUDA parallelization of image restoration application. In both applications, factors that

affect performance as well as pros and cons are discussed.

18

Chapter 2 Modeling of Calcium Dynamics

2.1 Introduction

Heart failure has been one of the leading causes of human deaths in many countries including the

United States. The prevalence of this disease is largely due to lack of accurate understanding of

excitation-contraction (E-C) coupling in cardiomyocytes [66] [67] [68]. For its central role in E-C

coupling, modeling Ca2+ release and concentration change has been an active research area. This

chapter investigates spatial-temporal variations of intra-cellular calcium concentration at cellular

and sub-cellular levels. At these scales, deterministic methods utilizing partial differential

equations (PDEs) are more appropriate than stochastic methods [69] [70]. The local radial basis

function collocation method (LRBFCM) developed by Sarler and Vertnik [5] has been applied to

solving the PDEs in earlier work [1]. This meshless method eliminates the generation of meshes,

as commonly required in finite element methods. However, the computational costs of such

simulations are very high, especially when realistic geometries are considered. To this end, the

main contribution of the present work is to reduce the computational time by employing modern

parallel computing techniques and make comparisons between the different approaches on the

specific simulation problem for numerical simulations of calcium dynamics in cardiac myocytes.

Traditional techniques on parallel computing are MPI (Message Passing Interface) and OpenMP.

MPI is a distributed-memory architecture that communicates between different machines by

sending and receiving messages. OpenMP, on the other hand, is a shared-memory architecture and

works on a single machine with multiple processors. Computation on graphics processing units

(GPUs) is a new parallel methodology, which has become increasingly popular in recent years. It

is a heterogeneous-memory architecture and uses graphic cards as co-processors. Modern GPUs

19

have thousands of cores, which makes it well suited for large-scale data parallelism. There are

three programming models on GPUs, namely, Open Computing Language (OpenCL), Compute

Unified Device Architecture (CUDA), and DirectCompute. Among these models, CUDA is the

most user-friendly and widely used, thus we decided to use CUDA in present work. In this

experiments, the computational performance and simulation accuracy of the serial version of the

algorithm are compared to both OpenMP (with 4 cores) and GPU-CUDA implementations.

2.2 Mathematical Models and Meshless Numerical Methods

2.2.1 Governing Equations

To model calcium dynamics in cardiac myocytes, the following nonlinear reaction-diffusion

equations, modified from [71], are considered:

𝜕[𝐶𝑎2+]𝑖

𝜕𝑡
= 𝐷𝐶𝑎∇2[𝐶𝑎2+]𝑖 − ∑ 𝑅𝐵𝑚

3

𝑚=1

− 𝑅𝐵𝑠
, 𝑖𝑛 Ω (3)

𝜕[𝐶𝑎𝐵𝑚]

𝜕𝑡
= 𝐷𝐶𝑎𝐵𝑚

∇2[𝐶𝑎𝐵𝑚] + 𝑅𝐵𝑚
, 𝑖𝑛 Ω, 𝑚 = 1, 2, 3 (4)

𝜕[𝐶𝑎𝐵𝑠]

𝜕𝑡
= 𝑅𝐵𝑠

, 𝑖𝑛 Ω (5)

𝜕[𝐶𝑎2+]𝑖

𝜕𝑡
= 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, 𝑜𝑛 𝜕Ω (6)

where Ω is the interior of cell and 𝜕Ω is the cell surface and t-tubule membrane. In [71], the

calcium flux term 𝐽𝐶𝑎𝑓𝑙𝑢𝑥 is defined in the entire domain, although it always takes a zero value at

internal nodes. In this work, however, this term is explicitly defined only on the boundary 𝜕Ω.

Therefore, instead of merging the calcium flux term in the first equation, we have an additional

equation (6).

20

The initial conditions (resting states) used are as follows: [𝐶𝑎2+]𝑖 = 0.10𝜇𝑀, [𝐶𝑎𝐵1] = 11.92𝜇𝑀,

[𝐶𝑎𝐵2] = 0.97𝜇𝑀 , [𝐶𝑎𝐵3] = 0.13𝜇𝑀 , [𝐶𝑎𝐵𝑠] = 6.36𝜇𝑀 . Note that this model and methods

examine a portion of the cell, in which reflective boundary conditions are applied during numerical

simulation on the part of 𝜕Ω where it is not the cell surface or t-tubule membrane. The reactions

between Ca2+ and buffers are given by

𝑅𝐵𝑚
= 𝑘+

𝑚([𝐵𝑚] − [𝐶𝑎𝐵𝑚]) ⋅ [𝐶𝑎2+]𝑖 − 𝑘−
𝑚[𝐶𝑎𝐵𝑚], 𝑚 = 1, 2, 3 (7)

𝑅𝐵𝑠
= 𝑘+

𝑠 ([𝐵𝑠] − [𝐶𝑎𝐵𝑠]) ⋅ [𝐶𝑎2+]𝑖 − 𝑘−
𝑠 [𝐶𝑎𝐵𝑠] (8)

In our model, three types of mobile Ca2+ buffers (Fluo-3, ATP, and calmodulin, denoted by

𝐵𝑚, 𝑚 = 1, 2, 3) and one type of stationary Ca2+ buffer (troponin, denoted by 𝐵𝑠) are considered.

Their concentrations are denoted by [𝐶𝑎𝐵𝑚], 𝑚 = 1, 2, 3, [𝐶𝑎𝐵𝑠] respectively. At the resting

(initial) state, all buffers were distributed uniformly throughout the cytosol but not on the cell

membrane. The resting concentrations of mobile and stationary buffers satisfy equilibrium

conditions (i.e. 𝑅𝐵𝑚
= 𝑅𝐵𝑠

= 0) [66]. The initial concentrations of buffers are calculated in

equilibrium with the resting Ca2+ concentration, 0.1𝜇𝑀. The total Ca2+ flux, 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, on the surface

membrane is defined in [66] where Ca2+ influx / efflux through L-type calcium channels (LCCs) ,

sodium-calcium exchangers (NCXs), Ca2+ pumps and background leaks are included. 𝐽𝐶𝑎𝑓𝑙𝑢𝑥

throughout the cell surface membrane and the surface of t-tubules is defined as follows: 𝐽𝐶𝑎𝑓𝑙𝑢𝑥 =

𝐽𝐶𝑎 + 𝐽𝑁𝐶𝑋 − 𝐽𝑝𝐶𝑎 + 𝐽𝐶𝑎𝑏, where 𝐽𝐶𝑎 is the total LCC Ca2+ influx; 𝐽𝑁𝐶𝑋 is the total NCX Ca2+ influx;

𝐽𝑝𝐶𝑎 is the total Ca2+ pump efflux; and 𝐽𝐶𝑎𝑏 is the total background Ca2+ leak influx.

2.2.2 Geometric Model Considered

According to [72], [73], [74], a ventricular myocytes may be simplified as repeated structural units

consisting of a single t-tubule and its surrounding half sarcomeres. The surrounding half

21

sarcomeres are modeled as a cube-shaped box with dimension of 2𝜇𝑚 × 2𝜇𝑚 × 7𝜇𝑚, enclosing

a t-tubule with dimension of 0.2𝜇𝑚 × 0.2𝜇𝑚 × 6.8𝜇𝑚. The t-tubule is assumed to be a tiny cube

located vertically in the center of sarcomeres, as shown on Figure 8 (a).

2.2.3 Space Discretization (LRBFCM)

The time domain in the system of reaction-diffusion equations is discretized uniformly and

explicitly. Thus, the Laplacian term needs to be approximated in each equation with certain spatial

discretization. The LRBFCM is used to approximate the Laplacian term ∇2𝑢(𝒙, 𝑡) in (3), (4).

One may refer to [66] [75] [76]for details. The main idea of LRBFCM is that the collocation can

be done on overlapping local domains, yielding many systems of equations with small matrices

instead of a single large matrix. The size of the collocation matrices depends on the number of

nodes in the local domains.

Briefly speaking, ∇2𝑢(𝒙, 𝑡) at each node 𝒙𝑖, 𝑖 = 1, 2, ⋯ , 𝑁, is approximated by its neighbors. The

local domain Ω𝑖 associated with 𝒙𝑖 can be created using the n-nearest neighbors to 𝒙𝑖 including

itself, i.e. {𝒙𝑘
[𝑖]

}
𝑁

𝑘=1
⊂ Ω𝑖. In this work, the number of points in each local domain is fixed at 𝑛 =

7. To approximate ∇2𝑢(𝒙𝑖, 𝑡), 𝑢(𝒙𝑖, 𝑡) is interpolated on Ω𝑖 by using RBF 𝜙(𝑟) as follows:

𝑢 (𝒙𝑗
[𝑖]

, 𝑡) = ∑ 𝑤𝑘
[𝑖]

⋅ 𝜙 (‖𝒙𝑗
[𝑖]

− 𝒙𝑘
[𝑖]

‖)

𝑛

𝑘=1

, 𝑗 = 1, 2, ⋯ , 𝑛 (9)

22

where the weights 𝑤𝑘
[𝑖]

 are unknown but can be solved by (2). In current work, the multiquadrics

(MQ) basis function is used although other radial functions can be used as basis functions as well.

The shape parameter 𝑐 = 300 is used in order to achieve fast convergence.

Based on (3), (4) the calcium influx 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, reactions 𝑅𝐵𝑚
, 𝑚 = 1, 2, 3, 𝑠 and Laplacian term

∇2[𝐶𝑎2+]𝑖 need to be approximated. Because the points we used are fixed in the given geometric

space over time, the Laplacian weights 𝑤𝑘
[𝑖]

 are constants for each point and thus can be pre-

calculated. However, the 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, 𝑅𝐵𝑚
, 𝑚 = 1, 2, 3, 𝑠 and ∇2[𝐶𝑎2+]𝑖 will be updated in each time

step. Figure 8 (b) shows the algorithm. In general, the numerical solution is found iteratively. At

the end of each iteration, a result is tested against a pre-defined criteria. The iteration continues

until a result satisfies the given criteria (converged).

Figure 8 (a) The model considered in current study, containing the t-tubule (blue), surrounding half

sarcomere (red), and external cell membrane (green). (unit: 𝜇𝑚). (b) Flow chart of the meshless

algorithm for modeling of calcium dynamics.

23

2.3 Results and Discussion

The geometric model shown in Figure 8 (a) is considered to simulate calcium dynamics and

compare the performances of OpenMP, GPU and serial implementations. The model is discretized

in three resolutions: Set 1 contains a total of 3,969 points (including 136 T-Tubule points and 80

cell membrane points) with a node distance of 0.2𝜇𝑚. Set 2 contains a total of 30,807 points

(including 545 T-Tubule points and 360 cell membrane points) with a node distance of 0.1𝜇𝑚. Set

3 contains a total of 234,921 points (including 2,185 T-Tubule points and 1,512 cell membrane

points) with a node distance of 0.05𝜇𝑚. The time steps for the three cases are 8𝑒−3 𝑚𝑠, 4𝑒−3 𝑚𝑠

and 1𝑒−3 𝑚𝑠 respectively to make the PDEs converge. The total time simulated is 400 𝑚𝑠.

Figure 9 shows the numerical results. Concentrations of Ca, Fluo, ATP, Cal, and TN are shown in

(a) – (e) respectively. Unit for all concentrations is 𝜇𝑀.

24

Figure 9 Results of calcium dynamics. Vertical coordinate illustrates concentrations in 𝜇𝑀. (a) Concentration of

Ca over time. (b) Concentration of Fluo over time. (c) Concentration of ATP over time. (d) Concentration of Cal

over time. (e) Concentration of TN over time.

25

Chapter 3 Anisotropic Image Restoration and Transformation

3.1 Introduction

Image restoration is the operation of converting noisy or corrupted image to the clean original

image. Corruption may appear because of motion blur, noise, and camera misfocus, etc. A similar

operation is the image enhancement. But image enhancement emphasizes on features of the image

to make it visually improved to viewers, but does not necessarily produce realistic data. Image

restoration, however, uses a priori model to produce an image.

Modern imaging technologies often digitize an image into a uniform array of pixels (or voxels in

3D). A natural thought is using these pixels to restore an image. But with uniformly sampling, the

sampling density is inevitably too high in regions where intensities change slowly and too low in

regions whose intensities change rapidly. Despite the ease of use in both hardware and software

developments, uniformly-digitized images often pose challenges in data storage and transmission,

as well as image processing, especially in 3D medical images that have been consistently and

significantly grown in size in recent years. Evolving from previously commonly-used uniform

sampling, non-uniform sampling and adaptive mesh triangulation of an image has become an

active research area in image processing. Image triangulation involves partitioning an image into

a collection of non-overlapping small triangles called mesh elements (also called faces or triangles).

This procedure often serves as an image coding method, meaning that an image in pixels is

compressed by using a number of “super-pixels”. This method is a compact way to represent

images for effective data storage and transmission, and also an efficient way to process and

visualize images, especially for 3D images where the number of voxels can be extremely large. In

addition, the resulting mesh edges are expected to be well aligned with image features (edges or

26

corners) in order to maintain a faithful restoration of the original image. Mesh modeling of an

image has many applications like porous structure design in tissue engineering [77], image

compression [78] [79] [80] [81], motion tracking and compensation [82] [83] [84] [85] [86] [87]

image processing by geometric manipulation [88], medical image processing [89] [90] [91] [92],

feature detection [93], pattern recognition [94], computer vision [95] [96], restoration [97],

tomographic reconstruction [98], interpolation [99] [100] [101], image/video coding [102] [103]

[104] [105] [106] [107], video modeling [108], image retargeting [109] and registration [110] [111]

[112].

A common procedure of image triangulation consists of two steps: 1) generating mesh nodes

(vertices) by choosing a set of sampling points defined in the image domain, and 2) connecting

these mesh nodes by Delaunay triangulation [113]. Delaunay triangulation is a geometric operator

and can avoid long and thin triangles that often lead to poor approximations. The selection of

sampling nodes, however, is data-dependent, where the connectivity of the triangulation depends

on the data set, based on which the mesh nodes are generated. Depending on how to generate mesh

nodes, there are two categories of the image triangulation. The first one places mesh nodes inside

the image features but near both sides of feature edges. So the triangulated images of this category

show double-layer vertices at both sides of feature edges. The second category places mesh nodes

directly at the feature edges, thus there are only single-layer vertices defined right on feature edges.

Yang et al. [114] employed Floyd-Steinberg error-diffusion (ED) algorithm to place mesh nodes

so that their spatial density varies according to the local image content. As a result, the triangulated

images fall into category I. Adams [115] employed greedy-point removal (GPR) and error-

diffusion scheme together to achieve meshes of quality comparable to the original GPR scheme

but at a much lower computational and memory complexities. With the conjunction of smoothing

27

operators, this method produces image triangulation of category I. Adams also proposed a

framework in [116] for mesh generation by fixing various degrees of freedom available within that

framework. This method performs extremely well and produces meshes of higher quality than the

GPR method, and is considered as a method of category I as well. By contrast, Li et al. [117]

proposed a modified version of Rippa [118] and Garland-Heckbert (GH) [119] frameworks which

can generate single-layer mesh nodes on edges, and this framework generates triangulated images

of category II. Another method of this category was proposed by Tu et al. [120], based on

constrained Delaunay triangulations. In this method, the approximating function is not required to

be continuous everywhere but with discontinuities being permitted across constrained edges of

triangles in triangulation.

Both categories of image triangulation generated by the methods mentioned above have their

advantages and disadvantages. For the first category (double-layer vertices), the quality of image

restoration is usually better because all vertices are well defined on images features thus the

intensities of pixels during image restoration process will not be affected by edges. As a result, the

edges in the recovered images are sharp and the Peak Signal-to-Noise Ratio (PSNR) is usually

higher. While the restoration quality of methods in category I is high enough for subjective quality

testing, the two layers must be very close to each other in order to have well-defined and sharp

image edges. A consequence of this is that the resulting meshes can easily contain lots of thin and

long triangles between the two layers, which could cause large approximation errors when the

meshes are used for numerical analysis (like finite element analysis). Additionally, in many

applications, the direct communication between different materials should be maintained, meaning

that no “cushion” layer between materials should be introduced in the meshes. Moreover, using

two layers of mesh vertices usually has more storage cost, resulting more memory space to be used

28

and more time to transmit it over the network. Methods of category II avoid the small triangles

and also the “cushion” layer problem, thus the mesh quality is usually better if proper steps are

taken. However, the vertices are defined on feature edges, where the nodal intensities are

ambiguously defined. That is, the intensity of an edge pixel will be contributed by both sides of

the image edge. As will be shown in the experiments, the restored images often suffer from blurred

and distorted feature edges if it is not properly addressed.

Because the image restoration method in this project is a single step in image processing, the same

mesh will be used for numerical analysis in the future thus a method that lies in the second category

(single-layer approaches) is more interested for this project because the obvious limitation of

methods of category I. However, in order to address the blurring and distortion problems often

seen in existing approaches in this category, a method based on the radial basis function (RBF)

interpolation is proposed with the following improvements: 1) rather than considering only the

Euclidean distances between vertices, this method also takes into consideration the image local

orientations, yielding an anisotropic radial basis function (ARBF) and 2) this method does not use

intensities of vertices directly, but instead utilize the intensities of triangles to eliminate the

uncertainty of nodal intensities on feature edges.

This method provides a new approach to restore image from triangular mesh. Because triangular

mesh representations of images have much fewer nodes (sampling rates are often as low as 5% -

6%) defined, storage, transmission, and image operations like smoothing, sharpening, etc. will be

much faster at the mesh domain instead of pixel domain. Also, this proposed method can be used

to visual verification for image operations done in mesh domain.

Image transformation is a function that takes an image as its input and produces an image as its

output. The input and output image may appear similar but having different interpretations or

29

entirely different, depending on the transform chosen. These transforms can be performed in

spatial domain or frequency domain. Examples of image transformation includes Fourier

transform, principal component analysis (PCA) and various spatial filters. Like geometric

transformation in computer graphics field, image transformation in spatial domain includes

translation, rotation and scaling. Translation of an image means move an image to another location

in coordinates system. Its implementation is simple that only an offset is added to the location of

every pixel of the image. The output of image translation produces images with the same size and

intensity as input image but different coordinates. Image rotation produces images with the same

size, but rotated an angle around a given position comparing to the input image. Its implementation

is also not complicated that a rotation matrix is multiplied to the location of every pixel of the

image. One can use this operation to rotate and flip an image.

Both translation and rotation are called rigid-body transformations (the image dimension is

unchanged after transformation). Image scaling, however, changes image dimension after

transformation. Image scaling relates image enlargement (upscaling) and shrinkage (downscaling).

Interpolation techniques like bilinear, bi-cubic and nearest-neighbors are often used in its

implementation.

High resolution images or videos are usually desired in most digital imaging applications for two

principal areas: improvement of pictorial information for human perception and automatic

machine interpretation. There are five types of digital image resolution: pixel resolution, spatial

resolution, spectral resolution, temporal resolution and radiometric resolution. This paper

concentrates on spatial resolution. From spatial resolution perspective, digital images are

comprised of many regularly aligned small elements called pixels. Two approaches can be applied

to increase spatial resolution. The first one is using better imaging sensors like charge-coupled

30

device (CCD) or complementary metal-oxide-semiconductor (CMOS). But there is a limit on this

approach because of the hardware cost and physical constraints. The other one is image super-

resolution (SR).

Image super-resolution (SR) are techniques that construct high-resolution (HR) image(s) from

low-resolution (LR) image(s). The basic idea is to combine multiple LR frames to generate a HR

image. This paper focuses on another closely related technique - single image interpolation, which

can often be used to increase the image size. Feature preserving image interpolation is an active

area in the image processing. Many methods have been proposed in the past decades to tackle this

problem [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133].

Nearest neighbor and bilinear interpolation are two simple methods for image interpolation, which

are of order 0 and 1, respectively [121]. Despite their simplicity and very low computational cost,

these methods suffer from severe blocky artifacts as well as blurring and ringing artifacts near the

edges. Although better performance can be achieved by using higher order splines, oscillatory

edges and ringing artifacts still exist in higher order spline methods [134]. The main reason is that

these methods are intensity-based but not feature-based. They do not consider factors other than

intensity. As the final recipient of any image processing, human visual system is very feature-

sensitive. These features are mostly edges and corners within the image thus the sharpness is also

of high importance. Radial basis function interpolation incorporates intensity and location

information so it performs better than those intensity-based methods. However, because the

Euclidean distance it uses is isotropic regardless of image features, blurring artifacts are often

found in RBF interpolated result. Anisotropic radial basis function (ARBF) interpolation solves

this drawback by using anisotropic distance. For the interpolated point, contributions of neighbors

are calculated by adaptive distance [135]. This chapter discusses a new image super-resolution

31

method based on ARBF. Moreover, this method operates on triangular meshes instead of pixels

for several advantages.

Triangulated image is comprised of many nodes (called vertices) and triangles (called faces).

Traditionally, pixel-based interpolation is very popular for single-image SR problems because it

is intuitive and easy to implement. Because triangular mesh of a digital image has much less

vertices and faces comparing to the number of pixels, it provides a compressive representation of

an image. Image operations like smoothing, denoising, etc. based on triangular mesh requires less

time and memory space to compute, store and transmit. Triangulate image adaptively is desired

because it generates many small triangles near the curve and corners and few large triangles on

non-feature area. Thus it provides a good accuracy while keeps the number of triangles relatively

small.

The remainder of this chapter is organized as the following. Section 3.2.1 briefly summarizes the

mesh generation method. Section 3.2.2 introduces image restoration using traditional isotropic

RBF interpolation. The more accurate image restoration is presented in Section 3.2.3. Section 3.2.4

shows the detailed algorithm of this method. The image super-resolution (SR) techniques used in

this Section 3.3 are explained in Section 3.3.2. Finally, Section 3.4 shows the experimental results

and discussions. Section 3.5 concludes this chapter.

3.2 Anisotropic Image Restoration

While mesh generation from images is not the main focus of this chapter, a brief summary of this

step is given just for completion of the present work. Then more details of traditional (isotropic)

radial basis function (RBF) interpolation is introduced, followed by the anisotropic RBF-based

32

interpolation for image restoration from meshes. The details of the implementation algorithm is

given below as well.

3.2.1 Adaptive Mesh Generation from Images

A series of algorithms are used to generate high quality, feature-sensitive, and adaptive meshes

from a given image. Firstly, three kinds of the sample points (namely, Canny's points, halftoning

points, and uniform points) are generated. Secondly, a triangular mesh is generated from these

points by using constrained Delaunay triangulation. The Canny's edge detector is employed to

guarantee that important image features are preserved in the meshes. A halftoning-based sampling

strategy is adopted to provide feature-sensitive and adaptive point distributions in the image

domain. Finally, a Delaunay-triangulation is used to generate initial quality triangulation of the

image. These steps are briefly summarized below.

 Canny Sample Points Image edges are important features in an image and need to

be preserved in the obtained meshes. Canny edge detector is a well-known method to deal

with boundary extraction. In this chapter, Canny edge detector is used to generate the initial

Canny edge points and they are strictly attached to the boundary of the features of the

image. However, the initial Canny edge points are too dense to yield quality meshes if all

these edges are used as mesh nodes. In this method, the curvature information of every

Canny's edge point is taken into account and the Principal Component Analysis (PCA) is

used to determine the sampling density. The PCA method can detect the overall attribute

of the neighbors of a certain size by a statistical way. After the PCA sampling, tiny features

and features with high curvature have dense sample points and big features or features with

straight lines have sparse sample points.

33

 Halftoning Sample Points The edge points generated by the Canny edge detector

described above can only capture pixels on or near the image edges. In order to have a

decent initial mesh, one has to scatter some more points in the non-edge regions of the

image. The halftoning sample points are adopted based on the approach described in [114].

This method generates the sample points using the second derivatives of an image, where

most of the sample points are placed near the image features (edges).

 Uniform Sample Points Although the halftoning sample points can cover most non-

edge regions of the image, it is possible that no point (either Canny or halftoning) is found

in regions of almost constant intensities. Therefore some points need to be generated

uniformly to cover the rest of the images where the first two types of sample points are not

located. A point (𝑥, 𝑦) is said to be a valid uniform sample point if no Canny's or halftoning

points are found in its neighborhood in a fixed distance.

 Mesh Generation via Constrained Delaunay Triangulation The sample points

found above are used to generate the triangular mesh for a given image by using the

Delaunay triangulation. A popular open source software Triangle [136] is employed for

Delaunay triangulation. In order to guarantee the obtained meshes being well aligned with

image edge features, a set of line segments are filled in Triangle as additional constraints

formed by connecting the Canny's sample points along the detected Canny's edges. With

all the described strategies combined, high quality, feature-sensitive, and adaptive meshes

are generated from a given grayscale image. Some meshing examples will be shown in the

results section below.

34

3.2.2 Radial Basis Function (RBF) Interpolation

Image restoration is all about restoration intensities of every pixel of the image. As Section 3.1

explained, in this application, triangular mesh representation of an image is used to determine the

intensities of pixels of the image by interpolation.

One question about restoring image from triangular meshes is: what intensities should be used,

intensities on vertices or intensities on faces? In the mesh generation approach described above,

many vertices are placed on image edges. These vertices are good to capture image gradients (or

orientations) but not for image intensities because there is an ambiguity in assigning intensity to a

node defined on an edge, as illustrated for blue nodes in Figure 10 (a). Obviously, a very small

change (or error) on the location of blues nodes would make a big interpolation difference if the

mesh vertices are used as the nodal values in RBFs. A better way is to use face centers as the nodal

values for RBF interpolations, which can eliminate the ambiguity and is less sensitive to mesh

Figure 10 Example of interpolation. (a) Interpolation by vertices. Green dots are vertices defined on

feature. Blue dots are vertices defined on feature edge. (b) Interpolation by faces. Green dots are face

centers. Blue dots are face centers used for interpolation of the intensities of pixels enclosed by the blue

triangle.

35

errors. Figure 10 (b) shows this idea, where the face centers are more robust to the location changes

of mesh vertices. Results of vertex-based RBF interpolation and triangle-based RBF interpolation

can be found in Figure 13 (c) and Figure 13 (d) in Section 3.3. Taking the intensities of triangles

as input, the weights can be solved by (2).

Although using face centers performs better than the vertex-based RBF interpolation, the

traditional RBF is isotropic in the sense that only the geometric distance information is considered,

which often causes blurring and distortion artifacts as can be seen in Figure 13 (d). To capture the

anisotropicity of the image features, the direction of image edges has to be considered as well.

Otherwise, nodes across feature edges may have strong influence on the pixel being interpolated.

Figure 11 (a) shows the cause of the blurred edge problem. x is the pixel whose intensity needs to

be calculated. The intensities on nodes x1 and x2 are two of the neighbors used for interpolation.

The weights of them are determined only by the Euclidean distance to x based on the definition of

traditional RBF. However, x1 is on the other side of the feature edge, so it should have much less

influence on x than x2. The isotropic RBF has a hyper-spherical support domain which cannot

satisfy this data-dependent requirement. Thus the intensity on x is blurred by x1. By contrast,

Figure 11 Interpolation schemes. (a) Isotropic RBF interpolation. (b) Anisotropic RBF interpolation. (c)

Eigenvectors on an edge pixel. e1 shows the normal direction. e2 shows the tangent direction.

36

Figure 11 (b) shows the anisotropic RBF (ARBF) interpolation. The support domain of ARBF is

a hyper-ellipsoid. By choosing proper shape parameter, the support domain could rule out the

interfering node x1 , or give insignificant weight to node x1 . Thus the blurring effect will be

eliminated and sharp features can be well retained. Section 3.2.3 elaborates on the detail of

designing anisotropic radial basis functions for image restoration.

3.2.3 Anisotropic Radial Basis Function (ARBF) Interpolation

The main difference between the isotropic and anisotropic RBFs is the definition of distance

metrics used. As in [135], the anisotropic RBF is defined as follows:

Definition 1. Given N distinct points 𝑋 = {𝒙𝑗 ∈ ℝ𝑑}
𝑗=1,⋯,𝑁

 and a 𝑑 × 𝑑 positive definite matrix

T, the anisotropic radial basis function associated with a radial basis function 𝛷𝑗(∙) =

𝜙 (‖∙ −𝒙𝑗‖
2

) is defined by

𝛷𝑻,𝑗(∙) = 𝜙 (‖∙ −𝒙𝑗‖
𝑻

) (10)

where ‖𝒙‖𝑻 = 𝒙𝑇𝑻𝒙.

The support domain of ARBF is hyper-ellipsoid instead of a hyper-sphere in traditional RBF. Its

center is 𝒙𝑗, associated with the quadratic form (𝒙 − 𝒙𝑗)
𝑇

(𝒙 − 𝒙𝑗). Interested readers can refer to

[137] [138] for more details of ARBF.

To construct the metric T, the image structure tensor is used

𝐺𝜎 ∗ [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2]

37

where 𝐺𝜎 is the Gaussian smooth operator, and [
𝐼𝑥

𝐼𝑦
] is the image gradient at a pixel. Two

eigenvectors e1 and e2 are the normal and tangent directions of the edge, respectively, as shown

in Figure 11 (c). The corresponding eigenvalues are λ1 and λ2. The anisotropic metric is defined

by

𝐓 = [𝑒1 𝑒2] [
𝜆1 0
0 𝜆2

] [
𝑒1

𝑇

𝑒2
𝑇] (11)

Similar to the isotropic RBF but with a modified distance metric, the ARBF image interpolation

problem becomes

u(𝒙) = ∑ 𝑤𝑖
′𝜙(‖𝒙 − 𝒙𝑖‖𝑻)

𝑁

𝑖=1

 (12)

Please note that the matrix in (2) should also be updated accordingly with the new distance metric

T. Therefore, the new set of weights 𝑤i
′ would be different from the weights 𝑤i in the isotropic

RBF interpolation.

3.2.4 Algorithms

The following algorithm shows the steps of the proposed approach for image restoration from

triangular meshes. The major step is the ARBF interpolation which comprises two sub-steps. First,

the weight coefficients are solved by using the new distance metric T. As stated in section 3.2.2,

this is done by taking intensities at triangle centers. Then the weights are applied to (12) to restore

the intensity of each pixel. More details are explained in [139]

Algorithm: Image Reconstruction

ImageReconstruction()

{

38

 // read image mesh

 loadMesh();

 // calculate intensities for each triangle center

 calculateTriangleCenters();

 // find the neighboring vertices and triangles for

 // each node

 findNeighbors();

 // rescale eigenvalues in equation (11)

 calculateEigenvalues();

 // calculate metric T in equation (11)

 computeMetrics();

 // do the ARBF interpolation in equation (12)

 ARBFInterpolation();

 // output result

 printResult();

}

ARBFInterpolation()

{

 for (every triangle centers)

 solveCoefficients();

 end

 for (every triangles)

 for (every pixel in current triangle)

 applyCoefficientsToInterpolation();

 end

 end

39

}

3.3 Anisotropic Image Transformations

3.3.1 Isotropic Image Transformations

The coordinates of pixels of target image basically are linear transformations of coordinates of the

original image. Mathematically, image translation can be implemented by adding an offset

(translation vector) to original coordinates of image pixels. Written in matrix form as 𝑃′ = 𝑃 + 𝑇,

where 𝑃′ is the translated image coordinates, 𝑃 = [𝑥, 𝑦]𝑇 is the original coordinates, 𝑇 = [𝑡𝑥, 𝑡𝑦]
𝑇

is the offset. But translation is an affine transformation with no fixed points. Matrix multiplication

always have the origin as a fixed point. So the homogeneous coordinates can be used to represent

a translation of a vector space with matrix multiplication. Using homogeneous coordinate as a

workaround, image translation can be written in matrix multiplication 𝑃′ = 𝑇(𝑡𝑥, 𝑡𝑦) ⋅ 𝑃. In detail,

this equation can be written as

[
𝑥′

𝑦′

1

] = [
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

] ⋅ [
𝑥
𝑦
1

] (13)

To perform image rotation, a rotation angle 𝜃 and a position (rotation point or pivot point) (𝑥𝑟 , 𝑦𝑟)

need to be specified. Positive 𝜃 defines a counterclockwise rotation and negative 𝜃 defines a

clockwise rotation. Mathematically, assuming the origin is the pivot point, image rotation can be

defined as 𝑃′ = 𝑅 ⋅ 𝑃, where 𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]. For arbitrary pivot point, the pivot point can

be move to the origin along with the image, then the rotation is performed and finally the pivot

point is translated back to previous coordinates along with the image. Similar to image translation,

image rotation can be written in matrix multiplication form represented by homogeneous

coordinates as 𝑃′ = 𝑅(𝜃) ⋅ 𝑃. In detail, this equation can be written as

40

[
𝑥′

𝑦′

1

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] ⋅ [

𝑥
𝑦
1

] (14)

Unlike translation and rotation, image scaling is not rigid-body transformation and changes the

image dimension, with respect to the origin. To perform image scaling, scaling factors (𝑠𝑥, 𝑠𝑦) and

a fixed point need to be specified. Mathematically, image scaling with respect to the origin can be

defined as 𝑃′ = 𝑆 ⋅ 𝑃, where 𝑆 = [
𝑠𝑥 0
0 𝑠𝑦

]. For arbitrary fixed point scaling, the fixed point can

be moved to the origin along with the image, then the scaling is performed and finally the fixed

point is translated back to previous coordinates along with the image. There are several cases to

discuss. Case 1: if 𝑠𝑥 < 1 𝑎𝑛𝑑 𝑠𝑦 < 1, image dimension is reduced (downscaling). Case 2: if 𝑠𝑥 =

1 𝑎𝑛𝑑 𝑠𝑦 = 1, image dimension is unchanged. Case 3: if 𝑠𝑥 > 1 𝑎𝑛𝑑 𝑠𝑦 > 1, image dimension is

increased (upscaling). Case 4: if 𝑠𝑥 = 𝑠𝑦, scaling is uniform. Case 5: if 𝑠𝑥 ≠ 𝑠𝑦, scaling is different.

Case 6: if 𝑠𝑥 𝑜𝑟 𝑠𝑦 is negative, the image is not only resized, but also its coordinates are reflected

about the coordinate axes. Similar to rigid-body transformation introduced above, image scaling

can be written in matrix multiplication form represented by homogeneous coordinates as 𝑃′ =

𝑆(𝑠𝑥, 𝑠𝑦) ⋅ 𝑃. In detail, this equation can be written as

[
𝑥′

𝑦′

1

] = [
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

] ⋅ [
𝑥
𝑦
1

] (15)

In practice, image could be transformed according to a given transformation sequence. Instead of

perform transformation at every stage, transformations can be composited to a single stage to get

better performance. For example, if an image needs 3 transformations: 𝑃′ = 𝑀3 ⋅ 𝑀2 ⋅ 𝑀1 ⋅ 𝑃. The

composite transformation can be written as matrix multiplication 𝑃′ = 𝑀 ⋅ 𝑃, where 𝑀 = 𝑀3 ⋅

𝑀2 ⋅ 𝑀1.

41

The image transformations (translation, rotation and scaling) introduced above are all isotropic.

Because translation and rotation are rigid-body transformations, they do not change image features.

Image scaling, however, change image dimensions after transformation, which will blur image

features because isotropic scaling only considers the coordinates of pixels and thus is not feature-

sensitive. To better preserve image features, anisotropic scaling is required.

3.3.2 Anisotropic Image Scaling

Based on this, the interpolated image is resampled according to the new dimension. Figure 12

shows this idea. Gray triangle which is currently considered in original image (smaller on the left)

is mapped onto the target image (larger on the right). Each triangle in the enlarged image contains

more pixels. Intensities of pixels in each triangle are determined by ARBF interpolation described

in section 3.2.3. Unlike traditional interpolation on pixels, our proposed SR method uses triangle-

Figure 12 Resampling of original image (M × N) to target image (X × Y). As the gray

triangle shows, every triangle in target image keeps the shape unchanged but has larger

sampling density.

42

based interpolation. The following algorithm shows the full process. The first step is triangulating

the input image to generate the triangular mesh described in section 3.2.1 and calculating

eigenvalues and corresponding eigenvectors defined on vertices. Then calculate intensity,

eigenvalues and corresponding eigenvectors of each triangle (represented by triangle center) by

taking average of three vertices of current triangle. The neighborhood of vertices and triangles

need to be determined for calculating anisotropic metric. The eigenvalues of triangles are rescaled

according to [138]. The eigenvalues and eigenvectors of triangles are then used for calculating

anisotropic metric mentioned above. The interpolation is performed on triangles one by one.

During the interpolation, the current triangle is first resampled to contain more pixels, then ARBF

interpolation method is used when interpolate each pixel.

The formal algorithm is described below:

ALGORITHM: Image Super-resolution

INPUT: original image

OUTPUT: enlarged image

ImageSuperresolution() {

 // image triangulation described in section 3.2.1

 triangulate();

 // calculate intensities for each triangle center

 calculateTriangleCenters();

 // find neighboring vertices and triangles for nodes

 findNeighbors();

 // rescale eigenvalues

 calculateEigenvalues();

 // calculate anisotropic metric

 computeMetrics();

43

 // do the ARBF interpolation

 ARBFInterpolation();

 // output result

 printResult();

}

ARBFInterpolation() {

 for (every triangle) {

 solveCoefficients();

 resampling();

 for (every pixel in current triangle)

 interpolate();

 }

}

3.4 Results and Discussion

Numerous experiments have been conducted on publicly available images by using the proposed

approaches and the image restoration results are all promising. Due to the space limit, only the

well-known “Lena” image and three medical images of different sizes are considered. Figure 13

(a) is the original Lena image of size 256 × 256 pixels. Figure 13 (b) is the result of assigning a

constant intensity to all pixels in a mesh triangle (so-called piecewise interpolation). Obviously

this result shows heavy mosaic effect. Figure 13 (c) is the result of iso-RBF interpolation using

intensities on vertices. As previously stated on section 3.2.2 the ambiguity of intensities on vertices

blurred the result. Figure 13 (d) is the result of iso-RBF interpolation using intensities on triangle

centers. In this case, there is no ambiguity of intensities. So the result is much better comparing to

Figure 13 (c). However, the feature edges are still blurred and some distortions are clearly seen

44

because of the lack of directional information used in isotropic RBF. Figure 13 (e) is the result of

ARBF interpolation using intensities on triangle centers with multi-quadrics (MQ) basis function.

The result is much better thanks to a modified distance metric that incorporates both geometric

distances and data-dependent feature orientations. Figure 13 (f) is similar to Figure 13 (e), except

that the basis function is inverse multi-quadrics (IMQ). Other basis functions like Gaussian and

Thin-Plate-Spline (TPS) are also tested. However, it is hard to find a proper shape parameter to

get a reasonable result for Gaussian, and the TPS basis does not converge.

Figure 13 Summary of restoration of Lena. (a) Original Lena image. (b) Result of piecewise interpolation. (c)

Result of vertex-based iso-RBF interpolation. (d) Result of triangle-based iso-RBF interpolation. (e) Result of

triangle-based ARBF interpolation using MQ basis. (f) Result of triangle-based ARBF interpolation using IMQ

basis.

45

More details of the Lena experiment are shown in Figure 14. Figure 14 (a) is the original Lena

image, the same as Figure 13 (a). Figure 14 (b) is the mesh generated by the method outlined in

section 3.2.1. Figure 14 (c) is the recovered image, which is the same as Figure 13 (e). To visually

see the generated mesh and compare the difference between the original and restored images,

Figure 14 (d) - (f) are the zoomed-in views of Figure 14 (a) - (c), respectively. As the results show,

the mesh quality is high enough for subsequent numerical analysis and the recovered image is very

close to the original one. As a matter of fact, the restored image looks smoother due to the smooth

radial basis functions used, and the sharp edge features are well preserved. Figure 15 shows the

original brain MRI, its generated mesh, and the result of ARBF interpolation using intensities on

triangle centers with the MQ basis function. The zoomed-in views show the quality of mesh and

restoration as well. Figure 16 shows another MRI experiment of breast. Figure 17 shows a CT-

scanning experiment. From all these examples, one can see the effectiveness of this approach for

image mesh generation and feature-preserving restoration.

To give quantitative evaluation of the restored images, we use the widely-used peak signal-to-

noise ratio (PSNR) as defined below:

𝑃𝑆𝑁𝑅 = 20 ∗ log10 (
255

𝑅𝑀𝑆𝐸
)

𝑅𝑀𝑆𝐸 = √
∑ ∑ [𝑂(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]𝑁

𝑗=1
2𝑀

𝑖=1

𝑀 ∗ 𝑁

where M and N are the dimensions of the image. 𝑂(𝑖, 𝑗) is the original intensity at pixel (𝑖, 𝑗) and

𝐼(𝑖, 𝑗) is the interpolated intensity at (𝑖, 𝑗). Table 1 gives a summary of the Lena image using

different restoration approaches. The compression ratio in the table means the ratio of the number

of vertices in the mesh vs. the number of pixels in the original image. The restored image with the

46

anisotropic RBF interpolation gives the best PSNR which conforms to the visual result. Table 2

summarizes the other three data sets, where the running time of image restoration for each case is

included and measured on a 2.5 GHz i5-3210m CPU and 2 GB RAM. The proposed algorithms

were implemented in C language and will be released to the public.

Lena (256 × 256, compression ratio is 6%) PSNR (db) Shape Parameter

Piecewise Interpolation 22.9703 0.5

Triangle-based ISO-RBF Interpolation 26.7367 0.5

Triangle-based ARBF Interpolation (MQ) 28.2088 0.5

Triangle-based ARBF Interpolation (IMQ) 27.1836 1.8

Table 1 Summary of the Lena image (Figure 13)

Data Size Compression

Ratio

PSNR(db) Shape

Parameter

Time

(sec.)

Brain 285 × 341 6% 15.7058 0.5 0.41

Breast 512 × 512 5% 11.8763 0.5 1.10

Heart 356 × 396 5% 10.5208 0.5 0.63

Table 2 Summary of the three medical images (Figure 15, Figure 16, Figure 17)

3.5 Conclusions

This chapter describes a nonlinear interpolation method by using anisotropic radial basis functions

and structure tensor driven metrics. Using the ARBF interpolation, an original image can be stored

and processed in the mesh format with some nice advantages including less storage requirement,

faster transmission speed, and more efficient image processing due to the significantly reduced

number of mesh nodes as opposed to the number of pixels in the original image. The generated

meshes, after some post-processing such as mesh-based segmentation, can be readily used for

further numerical analysis. The present image restoration algorithm provides an effective way to

47

restore the image with an arbitrary super-resolution from a mesh representation, serving as a

decoding algorithm for the mesh-based image coding technique. The anisotropic RBF algorithm

can be used as a de-blurring process as well with sharp features well preserved in the images.

As the image restoration algorithm shows, the time complexity of the function

ARBFInterpolation() is 𝑂(𝑚 × 𝑛), where 𝑚 is the number of triangles and 𝑛 is the number

of pixels inside a triangle. In case of 3D images or very large 2D images, the running time could

Figure 14 Details of Lena. (a) Original Lena image. (b) Generated mesh of (a). (c) Result of triangle-based

ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c), respectively.

48

be very expensive. One of our further investigations would be the parallel implementation of the

proposed algorithm using GPU programming. Fortunately the present method is very

straightforward to parallelize. Additionally we are also interested in the mesh-based image

segmentation by using the adaptive meshes generated from the original images, and in applying

the segmented meshes to image-based numerical analysis.

Figure 18 shows isotropic image translation and rotation. As introduced in Section 3.3.1, image

translation and rotation are rigid-body transformations and do not change image dimensions. Three

Figure 15 Details of brain MRI. (a) Original brain MRI. (b) Generated mesh of (a). (c) Result of triangle-based

ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c), respectively.

49

image features are highlighted in Figure 18 (a) to show the translation clearly. Figure 18 (b) shows

image rotated 45° respect to the origin.

Numerous experiments are conducted on biomedical images using this approach and the SR results

are all promising. All results are enlarged by 2X, 3.5X, 5X for comparison using the shape

parameter 0.5. This chapter only shows three experimental results and 5X enlargement.

Figure 16 Details of breast MRI. (a) Original breast MRI. (b) Generated mesh of (a). (c) Result

of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c),

respectively.

50

Figure 19 shows three biomedical images and the zoom-in areas of original, ARBF-5X enlarged,

bicubic-5X enlarged results. The brain image is of size 285 × 341 and its triangular mesh has 5%

sampling rate. The heart artery image is of size 356 × 396 and its triangular mesh has 4%

sampling rate. The breast image is of size 512 × 512 and its triangular mesh has 4% sampling rate.

As illustrated in Figure 19, while bicubic interpolation keeps the noises, the proposed method

generates smoother images and sharper edges because of the following reasons: 1) during the

triangulation, noisy pixels belongs to a triangle. Because this method uses intensity of triangle

center, which is the average of three vertices, the noisy pixel contributes much less than other

Figure 17 Details of CT-scanned image of heart. (a) Original heart image. (b) Generated mesh of (a). (c)

Result of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c),

respectively.

51

pixel-based interpolation methods. 2) the anisotropic distance described in Section 3.2.3 largely

reduces the contribution of triangles located on other side of feature edges. These results are

obtained by first performing 5X different SR interpolations, then use bicubic interpolation to return

to original size. As the experiments shown, the proposed method uses mesh nodes whose amount

are only 4%–5% of original pixels can produce enlarged smoothed images of visually satisfactory.

However, since the proposed method is based on triangular mesh interpolation, the SR result is

largely determined by the mesh quality. Moreover, unlike multi-frame SR approach, single image

interpolation approach does not have additional information provided thus the quality of the

Figure 18 Isotropic image translation and rotation. After transformation, image dimensions are unchanged. (a)

Image translated to another coordinates. Three red circles indicates image features before and after translation.

(b) Left: original image. Right: image rotated 45°.

52

interpolation is very much limited by the original image and the lost frequency components cannot

be recovered.

Figure 19 Super-resolution results of biomedical images. Results are rescaled for display. Red boxes show the

zoom-in areas. (a) is the original brain MRI. (b) is the zoom-in part of (a). (c) is ARBF-5X SR result and (d) is

bicubic-5X SR result. (e) is the original CT-scanned heart artery image. (f) is the zoom-in part of (e). (g) is

ARBF-5X SR result. (h) is bicubic-5X SR result. (i) is the original breast MRI. (j) is zoom-in part of (i). (k) is

ARBF-5X SR result. (l) is bicubic-5X SR result.

53

Chapter 4 Porous Structure Design in Tissue Engineering

4.1 Introduction

In order to improve biological tissues, tissue engineering (TE) which uses a scaffold to form new

tissues for a medical purpose has a wide range of applications. Part of the applications in practice

are repairing or replacing portion of or whole tissues and performing specific biochemical

functions. Because of the inherent ability to produce customized porous scaffolds with different

required architectures, the development of additive manufacturing (AM) techniques during last

decade greatly improves tissue engineering. The latest ASTM standards defines AM as "a process

of joining materials to make objects from three-dimensional (3D) model data, usually layer upon

layer, as opposed to subtractive manufacturing methodologies" [140]. More specifically, additive

manufacturing starts from a 3D computer model and builds the final product by the addition of

material, usually from a layer-by-layer fashion. This is a new manufacturing techniques comparing

to conventional subtractive processes which removes material from a 3D block. Commercial AM

techniques to fabricate scaffolds for tissue engineering applications include selective laser

sintering (SLS), stereo-lithography (SLA), fused deposition modeling (FDM), precision extrusion

deposition (PED) and 3D printing (3DP). Interested readers can refer to [141] [142] [143] for

details of these techniques.

Because native tissues are inherently heterogeneous and often have complex physiological

architectures, literature, in practice, is primarily focused on the manufacturing of models which

are simplified but functionally equivalent to the tissue to be repaired in terms of porosity and

mechanical properties. Two types of porous scaff olds, namely regular porous scaff olds and

irregular porous scaff olds, can be designed to achieve this goal. Numerous methodologies are

54

proposed and categorized to fabricate these two types of scaff olds [144]. Table 3 categorizes these

methods.

Type of Scaffolds Methods

Regular porous scaffolds CAD-based methods

Image-based methods

Implicit surface modeling (ISM)

Space-filling curves

Irregular porous

scaffolds

An optimization method proposed by [145]

Stochastic methods using Voronoi models [146] [147]

A hybrid Voronoi-spline method [148]

Methods using volumetric meshes [149]

Table 3 Category of methods to design porous scaffolds in tissue engineering.

Periodic porous structures have a limitation that slight local modifications can aff ect the entire

structure globally. Our proposed method provides a new implicit approach to generate porous

tissue scaff old through volumetric mesh. Thus scaffold architectures can be adjusted by only

modifying the mesh. Our proposed method has three major advantages over other implicit methods

like TPMS-based ones. Firstly, local modifications of pore shape, size or distribution is achieved

by changing local mesh accordingly, which is easy because there are only geometric changes in

the mesh. Secondly, our method is flexible to simulate heterogeneities and discontinuities in

natural tissue structures by using purposely-designed mesh as input. Depending on the features of

tissue structure, meshes with diff erent type (such as tetrahedron mesh and hexahedron mesh), size

and density can be used to represent these characteristics. With diff erent meshes as input, our

method is able to build diff erent tissue scaff olds with slight modifications in algorithms. Thirdly,

unlike many implicit methods need post-actions like Boolean operations to get the final pieces

built, the only post-action in our method is taking iso-surfaces, which is easier, faster and more

55

flexible that user can get diff erent scaff old architectures by taking diff erent iso-values. In general,

our method is superior in flexibility and easy to implement.

The rest of this chapter is organized as the following. Section 4.2 summarizes progresses so far of

methods categorized in Table 3. Section 4.3.1 introduces porous scaff old reconstruction using

conventional RBF interpolation. The proposed scaff old reconstruction is presented in Section

4.3.2. Section 4.3.3 shows the overall algorithms of our proposed method. Finally, Section 4.4

shows some experimental results and discussions. Section 4.5 concludes this chapter.

4.2 Prior Works

CAD-based methods, such as constructive solid geometry (CSG) and boundary representation (B-

Rep), are used to design regular porous scaffolds. CSG-based tools combine standard solid

primitives (cylinders, spheres or cubes) through Boolean operations (e.g. intersection) to design

and represent complex models. B-Rep tools describe the solid cell through its boundaries by a set

of vertices, edges and loops without explicitly specify relations among them. So a preliminary

check is required to verify there are no gaps or overlaps among the boundaries [150]. However, as

objects become large or their internal architectures become more complex, their size increases

dramatically hence it is hard or impossible to visualize and manipulate them. To overcome this

limitation of most CAD-based tools, different solid cells with more bio-inspired features have been

introduced [151] [152].

Image-based methods combine imaging, image processing and free-form fabrication techniques to

simplify scaffold design. Scaffolds can be described by 3D binary images (i.e. voxel values are

Boolean and correspond to "solid" and "void"). Image-based methods produce scaffolds by taking

the intersection of two 3D binary images, one representing the shape to be reproduced, and the

56

other consisting of stacking of a binary unit cell. Empirically derived geometries are created in the

unit cell with basic geometric shapes (cylinders, spheres) to represent regular pores within a

scaffold. Randomly arranged pores can be obtained by the use of a random number generator to

set voxel state. The topological optimization algorithms has been proved pivotal to obtain scaffolds

in image-based methods [153] [154].

Implicit surface modeling is highly flexible and describes scaffold architecture by a single

mathematical equation, with freedom to introduce different pore shapes, pore size gradients.

Recently, a large class of periodic minimal surfaces methods such as triply periodic minimal

surfaces (TPMS) have become attractive for the design of biomorphic scaffold architectures. An

early attempt of using TPMS-based method to control tissue fabrication is presented by [155].

TPMSs like Schwartz's Primitive (type P), Schwartz's Diamond (type D) and Schoen's Gyroid

(type G) are demonstrated their efficacy in high-precision fabrication of TPMS-based scaffolds

[156] [157] [158]. However, all aforementioned works are limited to simple cubic or cylindrical

outer shape. An improved method for constructing a pore network within an arbitrary complex

anatomical model has been developed and successively optimized by Yoo et al. [159] [160]. In

general, the TPMS methodologies, combining the advantages of both traditional CSG and image-

based methods, are computationally efficient for modeling and fabrication of scaffolds.

Space-filling curves methodologies coupled to extrusion-based techniques. Such techniques

consist of the extrusion of a micro-diameter polymeric filament terminating with a nozzle having

an orifice diameter in the hundreds of microns range. The fabrication process involves the

deposition of polymeric layers, which adhere to each other by heating temperature while retaining

their shape. This process leads to regular repetition of identical pores. Thus these geometries have

been named honeycomb-like patterns [161]. More complex patterns can be obtained by changing

57

the deposition angle between adjacent layers. An alternative approach to design scaffold is using

fractal space-filling curves, which can be mathematically generated by starting with a simple

pattern that grows through the recursive rules.

Periodic porous structures have several advantages. They are easier to model and their structural

properties are possible to predicate. Their disadvantages lie in the difficulty of controlling the pore

shape, size and distribution since slight modification of the unit cell will pose global changes to

the entire structure. Moreover, current CAD tools are not suitable to reproduce the complex natural

structures. In scaffold with variational porous architectures, discontinuities of deposition path

planning are often found at the interface of two adjacent regions [162]. To design such scaffold

architecture, Khoda et al. implemented an optimization method [145]. Stochastic and Voronoi

models have been used to generate random pores in scaffold design as well. Heterogeneous pores

distributed according to a given porosity level are generated by stochastic methods in scaffold

design [146] [147]. To overcome the limitation of only simple spheres can be used to represent

pores, a hybrid Voronoi-spline representation combined with a random colloid-aggregation model

is proposed [148]. The proposed method has been extended to implement graded pore sizes and

pore distributions [163]. Volumetric mesh generators derived from finite element tools are used to

create heterogeneous porosity within a solid model as well [149].

58

4.3 Methods

4.3.1 Radial Basis Function (RBF) Based Construction

In general, using the method mentioned in this chapter to construct a porous structure involves the

following steps: 1) assign values to mesh nodes systematically to get ready for interpolation; 2) do

RBF/ARBF interpolation; 3) iso-surface thresholding. After interpolation, iso-surfaces are taken

on the interpolated piece to create porous architecture. In detail, for both 2D and 3D meshes, mesh

vertices are given values 1. For 2D meshes, edge centers and tile (triangle or quadrangle) centers

are given values -1. For 3D meshes, face centers and sub-volume (tetrahedron or hexahedron)

centers are given values -1. Figure 20 (a-c) shows a sample 2D triangle mesh, a 3D tetrahedron

mesh and a 3D hexahedron mesh with assigned values, respectively. For simplicity of drawing,

2D RBF interpolation scheme is illustrated by Figure 21 (a).

Conventional RBF seems viable to construct porous scaff olds. However, since RBF is isotropic in

the sense that only geometrical distance is considered, the support domains of underlying basis

Figure 20 Values assigned to mesh nodes. Red dots represent value of 1. Blue dots represent value of

-1. In 3D meshes, interior dots are represented by lighter colors. (a) Sample 2D triangle mesh. Note

both edge and triangle centers are given values -1. (b) Sample 3D tetrahedron mesh. Small triangle

represent tetrahedron centers. (c) Sample 3D hexahedron mesh. Small triangle represent hexahedron

centers.

59

function always tend to be circular (in 2D) or spherical (in 3D), which sets an limitation to the

customization of the internal architecture, especially for complex tissue scaff olds. Therefore,

conventional RBF is only viable to generate simple architectures. Openings in desired scaff old

architecture should start from sub-volume center and grows towards pores on structure surface.

Given the condition that the face centers and sub-volume centers are assigned of value -1, the

interpolated voxels should have values close to -1. Therefore, the internal opening directions have

to be considered during interpolation and the shape of support domain should thus be anisotropic.

4.3.2 Anisotropic Radial Basis Function (ARBF) Interpolation

Comparing to image restoration application introduced in Section Chapter 3, the main diff erence

between anisotropic RBF in image restoration application and in this work is the definition of

distance used. Given N distinct line segments 𝐿 = {𝐿𝑗}
𝑗=1,…,𝑁

 the anisotropic radial basis function

is defined by

Figure 21 2D interpolation schemes. 𝑥 is the pixel to be interpolated. Dashed circle (for RBF) or

ellipses (for anisotropic RBF) are support domains of underlying basis functions. (a) RBF

interpolation. (b) Anisotropic RBF interpolation

60

Φ𝐿,𝑗(∙) ≔ 𝜙 (‖∙ −𝑙𝑗‖
𝐿

) (16)

where ‖𝑥‖𝐿 is defined as the distance between any arbitrary point and a line segment or the

distance between two line segments.

To calculate the distance between point x and line segment (a,b), there are three cases to consider.

For case 1, if point x is on the line segment (a,b), distance is 0. For case 2, if point x, and (a,b)

form an acute triangle, the distance is defined as the length of x’s projection to (a,b). For case 3, if

x, and (a,b) form an obtuse triangle, the distance is defined as 𝑚𝑖𝑛{‖𝑥𝑎‖, ‖𝑥𝑏‖}. Figure 22 (a-c)

illustrates the three cases.

The distance between any two arbitrary line segments (a,b) and (c,d) is defined as

𝑚𝑖𝑛{‖𝑎𝑐‖, ‖𝑎𝑑‖, ‖𝑏𝑐‖, ‖𝑏𝑑‖}. Figure 22 (d) illustrates this case. Table 4 summaries these types

of distances described above.

Figure 22 Cases to calculate anisotropic distance. (a) Point x is on line segment (a,b). (b) Point x and line

segment (a,b) form an acute triangle then distance is defined as the length of ‖𝑥𝑥′‖. (c) Point x and line

segment (a,b) form an obtuse triangle. (d) Distance between line segment (a,b) and (c,d).

61

Types of Distance Definition Description

x to mesh nodes 𝑑 = ‖⋅ −𝑥‖ Conventional Euclidean distance

x to line segment (a, b) 𝑑 = 0 Case 1: x is on (a, b)

𝑑 = ‖𝑥𝑥′‖ Case 2: x and (a, b) form an

acute triangle. x’ is the projection

of x on (a, b)

𝑑 = 𝑚𝑖𝑛{‖𝑥𝑎‖, ‖𝑥𝑏‖} Case 3: x and (a, b) form an

obtuse triangle

line segment (a, b) to

line segment (c, d)
𝑑 = 𝑚𝑖𝑛{‖𝑎𝑐‖, ‖𝑎𝑑‖, ‖𝑏𝑐‖, ‖𝑏𝑑‖} Distance between two line

segments

Table 4 Type of distances used in porous structure construction.

4.3.3 Algorithms

The following algorithm illustrates major steps to build porous structure from triangular (2D),

tetrahedron and hexahedron (3D) meshes. The primary step is ARBF interpolation which consists

of three sub-steps. Firstly, values are assigned to mesh nodes as explained in Section 4.3.1 to build

the matrix. Secondly, the weight coefficients are solved by using the new distance definition

explained in Section 4.3.2. Thirdly, the weights are used to interpolate the value at each voxel.

After the piece is interpolated, an iso-surface is chosen and applied to get the final porous scaff old.

Algorithm: Porous Scaffold Construction

ConstructPorousScaffold()

{

 loadMesh(); // read mesh

 ARBFInterpolation(); // do the ARBF interpolation

 marchCube(); // take iso-surface

 exportResult(); // print result

}

ARBFInterpolation()

62

{

assignMeshValues(); // assign mesh nodes and build matrix

solveCoefficients(); // solve unknown weights

applyCoefficientsToInterpolation(); // do the actual

interpolation

}

4.4 Results and Discussion

This section includes results of scaff old shapes using diff erent types of meshes and shows several

experimental results. Figure 23 (a) shows a scaffold obtained from single tetrahedron. The opening

grows from tetrahedron center toward the four triangle centers. Figure 23 (b) illustrates an

icosahedron mesh comprised of 20 tetrahedrons. Figure 23 (c) shows the scaffold interpolated from

Figure 23 (b). Figure 24 (a) shows a scaffold obtained from single hexahedron. Figure 24 (b) shows

a scaffold obtained from a block-shape hexahedron mesh which is comprised of 8 smaller

hexahedrons. Figure 24 (c) shows a scaffold obtained from a rod-shape hexahedron mesh which

is comprised of 4 smaller hexahedrons. Input meshes for these results are regular so the final

scaffolds are regular as well. The results are interpolated by ARBF interpolation introduced above

using inverse multiquadrics (IMQ) as basis function and shape parameter of value 0.1. After

interpolation, a proper iso-value is applied to the interpolated piece to show the final porous

63

structure. Because the input meshes are regular, the output structures tend to be regular as well.

Iso-values can be adjusted to get structure of different size of pores. Results of different iso-values

are included in Figure 25. As the figure shows, size of pores increase as the iso-values increases.

So after interpolation, choosing a proper iso-value is required to obtain the desired porous structure.

Besides iso-values, basis function can also affect the porous architecture in terms of mostly the

size and shape of pores. Because the shape of basis functions are different, when the final piece is

Figure 23 Results based on tetrahedron meshes. (a) Scaff old based on single tetrahedron. (b) Input

icosahedron mesh (formed by 20 tetrahedrons). (c) Scaff old using (b) as input.

Figure 24 Results based on hexahedron meshes. (a) Scaff old based on single hexahedron. (b)

Scaff old based on 8 hexahedrons arranged to form a large cube. (c) Scaff old based on 4 hexahedrons

arranged to form a rod shape.

64

interpolated, different voxels are included in their support domains. Interpolated results using

different basis functions are included in Figure 26. To compare isotropic RBF interpolation and

anisotropic RBF interpolation, a 2D isotropic RBF interpolated result (Figure 27 (a)) is also

included. As explained before, because basis functions in isotropic RBF have circular support

domains, the circle-shape artifacts can be seen in the result. Additionally, interpolation results

based on disturbed meshes are also investigated and shown in Figure 27 (b-d). These disturbed

Figure 25 Results taken by diff erent iso-values. (a) - (d) are results taken by increasing iso-

values.

65

meshes are generated by moving some mesh vertices in random direction. As the results shown,

disturbed porous structures can be obtained from disturbed meshes. Therefore, adding disturbance

is a viable way to construct porous structure with randomness, which is very useful to construct

tissues with complex physiological architectures. Finally, as a contrast, TPMS results are also

included in Figure 28.

Figure 26 Results obtained by using different basis functions in ARBF interpolation.

Shape parameter is 0.1 for all results. (a) Result interpolated by multiquadrics (MQ)

basis. b) Result interpolated by inverse multiquadrics (IMQ) basis. (c) Result

interpolated by Gaussian basis. (d) Result interpolated by thin plate spline (TPS)

basis.

66

4.5 Conclusions

In practical, constructed scaffold may be very complicated to simulate complex physiological

tissue architecture in terms of equivalent internal connectivity and mass transportation. Periodic

porous structure cannot meet this challenge satisfactorily. Our proposed method uses volumetric

mesh as input which can be very complex – thanks to modern mesh modeling techniques. Thus,

Figure 27 Experimental results. (a) Result interpolated by isotropic RBF and based on a 2D

triangle mesh. (b-d) Results based on hexahedron meshes with disturbance.

67

using complex mesh as input, our proposed method is able to construct complicated porous

scaffold structures to meet this challenge. Moreover, modifications to the final structure can be

achieved by common mesh operations or changing iso-value, which makes our method very

flexible comparing to other period porous manufacturing techniques (like implicit surface

methods). Finally, implementation of our proposed method is easy and computational cost is low

because the core algorithm of interpolation is calculating distances and solving unknown weights.

There are a lot of mature and fast linear algebra libraries available to use.

In the future, this method will be tested with adaptive meshes which represent porous architectures

with heterogeneous and discontinuous structures. Moreover, a criteria to measure final scaffold

will be developed to further test the efficacy and efficiency of this method.

Figure 28 Porous structure obtained by TPMS method. (a) Structure obtained by P-type function.

(b) Structure obtained by D-type function. (c) Structure obtained by G-type function. (d)

Structure obtained by IWP-type function.

68

Chapter 5 Parallelization

5.1 Introduction to GPGPU

In recent years, General-Purpose computing on Graphic Processing Unit (GPGPU) emerges as a

new way to parallelize programs. There are three unique advantages of GPU, making it a very

promising accelerator in computation. Firstly, GPU has large number of execution units (EUs).

Usually hundreds, even thousands EUs exist on single chip, comparing to 2 or 8 EUs on CPU.

Secondly, threads on GPU are very light-weighted that there are almost no cost on creating,

destroying and switching threads. Therefore, it is possible to decompose the problem into hundreds

of thousands, even millions sub-problems and mapping them onto the same number of threads.

This is not possible because threads on CPU (including kernel threads and user threads) are heavy-

weighted. There are large thread-contexts (hardware registers, kernel stacks, etc.) have to be saved

when threads are switching out of execution and restored when they are switched back. Given that

fact, the number of threads is usually limited by the number of EUs on CPU. Typical GPU can

accelerate a program execution up to 20X - 100X faster. Thirdly, the price of GPU is cheap

comparing to price of CPUs having similar computational power. A dedicated cluster is

prohibitively expensive to most of researchers. Their price usually starts from 100K US dollars.

Although there are some institute-owned clusters available, not every research can get access on

them and the access availability is not guaranteed. A middle-level GPU however, costs only $100

- $300, making it a readily affordable device and once purchased, it is owned by the researcher.

5.2 Parallelization of Modeling of Calcium Dynamics

Section 5.2.3 listed the hardware and software environment for calcium dynamics experiment.

This section discusses the implementation details.

69

5.2.1 Parallelization with OpenMP

Because the calculations of Laplacian terms are most time-consuming in the algorithm (see Figure

8 (b)), OpenMP is used to parallelize this step. The Laplacian terms have to be calculated for every

point in the domain. OpenMP automatically divides the calculations into multiple chunks (4

chunks in this experiments because a quadcore CPU is used). Then it forks multiple threads and

each thread calculates one chunk of work load. All threads execute the same algorithm but with

different data. This is called data-parallelism. At the end of this step, all partial results are merged

automatically and these working threads are synchronized implicitly. Because the overhead of

thread-forking and thread-joining is larger than the advantages they can provide in other steps in

the algorithm, OpenMP is not applied to other steps in the algorithm.

5.2.2 Parallelization with GPU

CUDA is an implementation of heterogeneous programming involving CPU (called host) and GPU

(called device). The functions executed on GPU are called kernel functions. The execution starts

with the serial host. When a kernel function is launched, the execution switches to the device

(GPU), where a large number of threads are initiated to take advantage of abundant data parallelism.

All the working threads in a kernel are organized in groups called thread blocks. When the kernel

finishes executing, the control returns back to the host and the serial execution continues on the

host until the next kernel launches or program terminates [164]. While the GPU is computing,

CPU is available to do other tasks. In this implementation, however, CPU is simply waiting for

the GPU to finish. The thread-switching on GPU has almost no overhead, so CUDA is able to

create a one-to-one mapping between data points and threads. If the number of threads created is

more than the number of CUDA cores available, they are scheduled to execute in batches. In

execution, the number of scheduled threads is determined by several factors, including the number

70

of CUDA cores available, the number of registers available, and the capacity of on-chip shared-

memory. To achieve the best performance, a brief summary of some special techniques are

considered in this implementation.

5.2.2.1 Use of Shared Memory

Because CUDA has thousands of threads running in parallel, the reads and writes to the off-chip

device memory (called global memory) tend to have a memory bandwidth contention, which can

significantly lower the performance. Threads in the same block, however, can share data in a small

on-chip memory (called shared-memory). In this experiment, the calculation of Laplacian terms

needs to read Laplacian coefficients and Ca2+ or 𝐶𝑎𝐵𝑚, 𝑚 = 1, 2, 3 concentrations at neighboring

points. To alleviate the global memory bandwidth contention, these variables are loaded into

shared-memory once at the beginning of this step instead of multiple reads when needed. If the

neighboring coefficients and concentrations are in the same block as the current point, they are

fetched from shared-memory. Otherwise, they are loaded from global memory. The calculation of

Laplacian terms is implemented as a kernel function. Unlike the global memory, however, the

contents of shared-memory is not persistable across kernels. So at the end of this step, results have

to be synchronized back to global memory for next kernel launches.

5.2.2.2 Reordering of Data Points

To increase the hit of shared-memory, we need to find a way to maximize the possibility that a

point and its neighbors are all in the same block. If they are not in the same block, their coefficients

and concentrations have to be loaded from global memory, which lowers the performance due to

the global memory bandwidth contention. The number of thread blocks used is rounded up to

⌈
number of points in a dataset

number of threads per block
⌉. Section 5.2.2.5 discusses details of block dimensions. When reading

points, points in geometry are reorganized and grouped into many cells (blocks). The points in a

71

block are grouped roughly in a cubic region such that the points and their neighbors are likely to

be in the same block.

5.2.2.3 Use of Constant and Texture Memories

As stated in Section 5.1, the reads and writes of global memory have memory bandwidth

contention. The constant and texture memories have built-in caches. When a program reads the

same value more than once, it actually reads it from the cache, which eliminates the bandwidth

problem. Constant and texture memories are read-only and constant memory is very small (only

64 KB shared by all stream-multiprocessors). There are dozens of constant arguments (refer to [1])

in constant memory. Texture memory shows a higher performance when data are localized with

each other. Therefore, the neighborhood information found by the kd-tree is saved in texture

memory.

5.2.2.4 Unrolling Loops

When dealing with iterations, programs on CPU use loops with specific components like

programming counter, instruction decoder, etc. However, CUDA cores are simplified to have ALU

(arithmetic-logic unit) only. Thus executing loops in CUDA is slower than CPU. If one can unroll

a loop by storing involved variables into multiple registers instead of using one register and refresh

that register at every iteration, the compiler can decode the instructions more efficiently and

generate faster code. However, since the number of registers available is limited (GeForce GTX

560 Ti has 8 multiprocessors and each has 32,768 registers), the growing usage of registers could

decrease the number of threads scheduled to execute and thus lowers the device occupancy. Device

occupancy is determined by the equation
number of threads scheduled

warp size
, where the warp size is 32 in

current CUDA-enabled GPUs. One may refer to [164] for more details. In this implementation,

when unrolling loops increases the number of registers used by a single thread to 27, the device

72

occupancy decreased from 50% to 33.3%. So there is a balance of increased code efficiency and

decreased device occupancy. Whether to use this technique is really a case-by-case scenario. In

this experiment, using this technique can improve the performance by about 10% in calculation of

Laplacians.

5.2.2.5 Global Synchronization

Unlike the CPU, CUDA threads are scheduled to execute in batches. At a point requiring

concentrations at neighboring points, it is likely that the threads responsible for the neighboring

points are not executed yet and thus the neighboring concentrations are not updated. To cope with

this situation, threads in GPU have to be synchronized. Unfortunately in the current GPU design,

a kernel function can only synchronize threads in the same block. To synchronize threads in

different blocks (global synchronization), a kernel function has to be split into smaller ones. In this

algorithm, every step (see the 6 boxes on the right-hand side of Figure 8 (b)) is implemented as a

kernel, yielding a total of 6 kernels. These kernels use different thread block dimensions in order

to achieve maximum device occupancy. Because calculating Ca2+ flux and reaction terms does

not require neighboring concentrations, a relatively small block size (128 threads per block) is

used so that each thread can use more registers and shared-memory. Ca2+ flux is calculated on T-

Tubule and cell membrane with a 58.3% device occupancy. Reaction terms are calculated on

interior points with a 66.7% device occupancy. In applying reflective boundary condition,

calculating Laplacian terms and calculating average concentration, shared-memory are used as

high-speed cache. A large block size (512 threads per block) is used to increase the possibility of

shared-memory hit. Reflective boundary condition is applied at boundary points at a 100% device

occupancy. Laplacian terms and average concentrations are calculated at all points with a 33.3%

73

and 100% device occupancy respectively. At the end of each step, results are synchronized into

global memory.

5.2.3 Experiment Environment

In this application, OpenMP and GPU are used to speed up the simulation and their performances

are compared with the serial implementation. The CPU-based experiments (serial and OpenMP)

are performed on a Dell Precision T7400 workstation with two quad-cores of 3.0 GHz Intel Xeon

X5472 processors and 16 GB memory, a RedHat platform of kernel version 2.6.18-308.4.1.el5,

and a GCC compiler of version 4.4.7. The serial experiment uses a single core and the OpenMP

experiment uses four cores. The GPU-based experiments are performed on a Dell Precision T3500

workstation with a NVIDIA GeForce GTX 560 Ti, 2 GB device memory, and a CentOS 6.4

platform of kernel version 2.6.32-358.14.1.el6.x86_64. The NVIDIA graphic card driver has a

version of 319.32. Details of implementation are discussed in section 5.2.

5.2.4 Results and Discussion

Column 1 in Figure 29 shows the average concentrations of Ca2+, mobile and stationary buffers in

three implementations, namely, serial, OpenMP and CUDA, per the legend displayed below the

figure. Column 2 and Column 3 show their average relative errors compared to the serial

implementation for point sets 2 and 3, respectively. Because an analytical solution does not exist

for such a complicated mathematical model (see equations (3), (4), (5), (6)), we have used

the numerical simulation from the serial LRBFCM approach [1] as the ground truth for comparison,

which had been shown to agree with the finite element-based simulation [71] and with the available

experiments as well. The errors in column 2 and column 3 show that OpenMP has exactly the same

simulation results as the serial version. The CUDA result shows up to 0.5% relative error for the

medium model (column 2) and 0.2% relative error for the large model (column 3). A close

74

inspection discovers that the errors are partly caused by the fact that the GPU treats floating-point

numbers differently from the CPU. The error curves also show that, as the number of points

increases, the accuracy of CUDA implementation also increases.

Table 5 shows the running time of serial, OpenMP and CUDA on the three point sets. For a small

model (set 1), OpenMP has the lowest performance because the overhead of multithreading is

larger than the gains. CUDA has a better performance but only 3.66X faster than serial’s speed.

For a medium size of model (set 2), OpenMP and CUDA show 1.20X and 10.10X performance

increases respectively comparing to serial implementation. For large model (set 3), OpenMP

shows 1.5X performance increase and CUDA shows 19.82X performance increase. Apparently

the GPU shows a great performance boost and is very promising in data parallelism because of a

large number of cores available on GPUs.

However, GPU cores have simpler circuits compared to CPU cores and require special techniques

like instruction-level optimization to get the best performance boost. Moreover, simpler circuits

also restrict the applications of GPUs to tasks like data parallelism. The small device memory

(usually 1 to 4 GB) also limits the amount of data a GPU can process simultaneously. For large

input data, it is necessary to divide the data into multiple parts so that each part can be fitted into

the device memory.

75

Number of Points Serial OpenMP (4 cores) CUDA

Point set 1 (3,969 points) 26.17 28.21 7.15

Point set 2 (30,807 points) 504.52 419.95 49.94

Figure 29 Column 1 shows the average concentrations of Ca2+, mobile and stationary buffers for point set 2 (30,807

points) in three implementations, namely, serial, OpenMP and CUDA. Note that the concentrations of the three

versions are almost identical. Column 2 shows the average relative errors of point set 2 (30,807 points), as compared

to the serial execution. Column 3 shows the average relative errors of point set 3 (234,921 points), as compared to

the serial execution.

76

Point set 3 (234,921 points) 26893.21 17974.51 1356.85

Table 5 Running time of Serial, OpenMP, CUDA implementations on 3 point sets (unit: seconds)

5.3 Parallelization of Image Restoration with GPU

5.3.1 Methods

When implement the ARBF interpolation algorithm, CUDA is considered and experimented as a

way to speed-up performance. The most time-consuming step of algorithm introduced in Section

3.2.4 is the ARBF interpolation. This step takes about 95.5% of total execution time of the

algorithm. So naturally, this is the step needs to be parallelized.

In algorithm, the intensity of pixel in a given triangle is interpolated by the neighbors of that

triangle. Blue dots in Figure 10 (b) illustrate this idea. The neighborhood size can be varied. In this

work, 1-ring and 2-ring neighborhood are considered. The neighborhood of triangles is calculated

before interpolation. The intensities of pixels are interpolated in a triangle-by-triangle fashion. In

detail, triangles are iterated through and for each iteration, all pixels are interpolated by another

nested loop. In this work, the outer loop of triangles are parallelized by CUDA, which means each

triangle considered is mapped to a thread. Therefore, all triangles are able to be interpolated

simultaneously.

5.3.2 Results and Discussion

One interesting thing is that the results do not depend on thread block size. After experiment with

thread block size of 128, 256 and 512, the results are almost identical. Table 6 shows the

experimental results.

77

Further profiling shows that two factors negatively impact the performance. Firstly, the cost of

thread synchronization is high for every thread block. Because the size of neighborhood of each

triangle is different, some thread requires more time to finish computation. On logic level, CUDA

schedules execution by thread blocks. A thread block is scheduled in execution and has to be

scheduled out at the same time. In detail on hardware level, threads are organized by warps, each

of which has the size of 32. This means a batch of 32 threads has to be scheduled in and out of

execution at the same instruction time. Different sizes of neighborhood require different execution

time of threads. So threads with shorter execution time have to wait threads with longer execution

time to be scheduled out of execution.

Data

(image size)

Serial Time

(sec.)

CUDA

Time (sec.)

Maximum Device

Occupancy

Speed-up

Brain (285 × 341) 7.56 2.85 33.3% 2.65X

Heart (356 × 396) 9.16 3.45 33.3% 2.66X

Breast (512 × 512) 17.43 6.81 33.3% 2.56X

Table 6 Execution time of image restoration. Results are the almost identical for block size of 128, 256 and 512.

Secondly, on-chip shared memory size also limits the number of threads that can be accommodated

in a stream-multiprocessor (SMs). When threads are scheduled to execution, the scheduler decides

how many thread blocks (and the threads in thread blocks) can be scheduled to execution based on

various factors, such as compute capability of the device, size of shared memory, size of constant

memory, the number of registers available on SM. The device used in this experiment can

accommodate 1536 threads per SM but only have shared memory of size 48KB, which is the

bottleneck. Therefore, only 33.3% of threads can be scheduled to execution for each SM. Different

image data is experimented and the maximum device occupancy is the same. An attempt to solve

this issue is reducing the number of threads in thread blocks. Different thread block dimensions

78

are used, namely, 128, 256, 512. Shared memory limitation mitigates, but the number of registers

available (65,535 for the device used) quickly becomes another limitation to increase the

maximum device occupancy. In sum, the maximum device occupancy remains at 33.3%. Further

investigation shows that the intrinsic logic of code implemented is the reason of so many registers

are used.

Due to the two reasons discussed above, the GPU acceleration for image restoration is not so

effective, comparing to the modeling of calcium dynamics application. In calcium dynamic

modeling, the size of neighborhood for each point is a constant and hardware limitation is relatively

low. Therefore the maximum device occupancy in calcium dynamic modeling is much higher

(88.5%) and the acceleration is more effective (20X faster).

79

Chapter 6 Conclusions and Future Works

6.1 Thesis Summary

As the aforementioned applications proved, RBF is a powerful tool to reconstruct unknown

function from multi-dimensional scattered data in biomedical area. Additionally, significant

improvement in preserving image features and capturing connected porous structures over the

original isotropic distance can be achieved by utilizing anisotropic distance metrics.

OpenMP and CUDA-based GPU programming are effective and efficient techniques to accelerate

the performance of meshless PDE solver. However, as discussed in image restoration application,

some intrinsic issues of algorithm such as varying sizes of neighborhood and hardware limitation

like the number of registers and the size of shared memory can pose negative impacts on the

efficiency of GPU parallelization.

6.2 Future Directions

In addition to the three applications and parallelization techniques discussed above, RBF can be

used in wider areas and other parallel methods can be applied in current applications.

6.2.1 Applications of Radial Basis Function Networks

In the future, applications utilizing RBFN in deep learning area will be investigated. Current

neural networks have multiple decision layers and complex to implement. RBFN, on the other

hand, has only single layer thus is easier to implement but still effective to make decisions.

6.2.2 Porous Structure

The porous structures design application in thesis can also be extended and investigated further

in several aspects.

80

6.2.2.1 Independent of Mesh

Current porous structures are constructed based on volumetric mesh, more specifically,

tetrahedron meshes and hexahedron meshes. Although as proved above, mesh-based

reconstruction algorithm is effective and has many advantages, there are disadvantages as well.

One major drawback is the mesh itself. To use this algorithm, a mesh has to be generated and

supplied. Mesh generation and the following optimization are processes consuming large time

and human labor. Getting rid of meshes and using only a set of discrete points is a favorable

improvement in the future.

6.2.2.2 Functionally Graded Porous Structure

Current porous structure design algorithm uses uniformly distributed mesh nodes, which is

effective to construct structures with uniform porosities and distributions. However, natural bio-

materials do not expose such architectures. Functionally graded materials (FGM) have been

extensively proved to be effective in terms of transmitting matters in the past decades. In the

future, a new approach to model porous structures with graded porosities and distributions will

be designed.

6.2.2.3 Parallel Porous Structure

Parallel programming techniques are not applied to current porous structure design algorithm.

Although the performance of current algorithm is acceptable, it may become unacceptable if

more complex inputs are involved. OpenMP and CUDA will be applied to optimize the

performance of current algorithm.

81

BIBLIOGRAPHY

[1] G. Yao and Z. Yu, "A localized meshless approach for modeling spatial-temporal calcium

dynamics in ventricular myocytes," International Journal for Numerical Methods in

Biomedical Engineering, vol. 28, no. 2, pp. 187-204, 2012.

[2] G. Kosec and B. Sarler, "Local RBF collocation method for darcy flow," Computer

Modeling in Engineering and Sciences, vol. 25, no. 3, pp. 197-208, 2008.

[3] B. Sarler and R. Vertnik, "Meshfree explicit local radial basis function collocation method

for diffusion problems," Computers and Mathematics with Applications, vol. 51, no. 8,

pp. 1269-1282, 2006.

[4] R. Vertnik and B. Sarler, "Meshless local radial basis function collocation method for

convective-diffusive solidliquid phase change problems," International Journal of

Numerical Methods for Heat and Fluid Flow, vol. 16, no. 5, pp. 617-640, 2006.

[5] R. Vertnik and B. Sarler, "Solution of incompressible turbulent flow by a mesh-free

method," Computer Modeling in Engineering and Sciences, vol. 44, no. 1, pp. 65-95,

2009.

[6] G. E. Fasshauer and J. G. Zhang, "On choosing “optimal” shape parameters for RBF

approximation," Numerical Algorithms, vol. 45, no. 1-4, pp. 345-368, 2007.

82

[7] J. Wang and G. Liu, "On the optimal shape parameters of radial basis functions used for

2-d meshless methods," Computer Methods in Applied Mechanics and Engineering, vol.

191, pp. 2611-2630, 2002.

[8] T. Belytschko and T. Black, "Elastic crack growth in finite elements with minimal

remeshing.," International Journal for Numerical Methods in Engineering, vol. 45, no. 5,

pp. 503-620, 1999.

[9] S. Bordas, J. Conley, B. Moran, J. Gray and E. Nichols, "A simulation-based design

paradigm for complex cast components," Engineering with Computers, vol. 23, no. 1, pp.

25-37, 2007.

[10] S. Bordas and B. Moran, "Enriched finite elements and level sets for damage tolerance

assessment of complex structures.," Engineering Fracture Mechanics, vol. 73, no. 9, pp.

1176-1201, 2006.

[11] S. Bordas, V. Nguyen, C. Dunant, H. Nguyen-Dang and A. Guidoum, "An extended finite

element library," International Journal for Numerical Methods in Engineering, vol. 71,

pp. 703-732, 2008.

[12] L. Lucy, "A numerical approach to the testing of the fission hypothesis," Astronomical

Journal, vol. 82, pp. 1013-1024, 1977.

[13] R. Gingold and J. Monaghan, "Smoothed particle hydrodynamics - Theory and

application to non-spherical stars.," Monthly Notices of the Royal Astronomical Society,

vol. 181, pp. 375-389, 1977.

83

[14] L. Libersky, A. Petschek, T. Carney, J. Hipp and F. Allahdadi, "High Strain Lagrangian

Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response.,"

Journal of Computational Physics, vol. 109, no. 1, pp. 67-75, 1993.

[15] T. Belytschko, K. Y., D. Organ, M. Fleming and P. Krysl, "Meshless methods: An

overview and recent developments.," Computer Methods in Applied Mechanics and

Engineering, vol. 139, no. 1-4, pp. 3-47, 1996.

[16] J. Bonet and S. Kulasegaram, "Correction and stabilization of smooth particle

hydrodynamics methods with applications in metal forming simulations," International

Journal for Numerical Methods in Engineering, vol. 47, no. 6, pp. 1083-1240, 2000.

[17] J. Bonet and T. Lok, "Variational and momentum preservation aspects of smooth particle

hydrodynamic formulations.," Computer Methods in Applied Mechanics and Engineering,

vol. 180, no. 1-2, pp. 97-115, 1999.

[18] G. Johnson and S. Beissel, "Normalized smoothing functions for sph impact

computations.," International Journal for Numerical Methods in Engineering, vol. 39, no.

16, pp. 2695-2864, 1996.

[19] G. Johnson, S. Beissel and R. Stryk, "A generalized particle algorithm for high velocity

impact computations.," Computational Mechanics, vol. 25, no. 2, pp. 245-256, 2000.

[20] T. Belytschko, Y. Lu and L. Gu, "Element-free Galerkin methods.," International Journal

for Numerical Methods in Engineering, vol. 37, no. 2, pp. 181-358, 1994.

84

[21] W. Liu, S. Jun and Y. Zhang, "Reproducing kernel particle methods.," International

Journal for Numerical Methods in Engineering, vol. 20, pp. 1081-1106, 1995.

[22] J. Melenk and B. I. , "The partition of unity finite element method: Basic theory and

applications.," Computer Methods in Applied Mechanics and Engineering, vol. 139, no. 1-

4, pp. 289-314, 1996.

[23] S. Atluri and S. Shen, "The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple

& Less-costly Alternative to the Finite Element and Boundary Element Methods.,"

Computer Modeling in Engineering and Sciences, vol. 3, no. 1, 2002.

[24] R. Loehner, C. Sacco and E. Onate, "A finite point method for compressible flow.,"

International Journal of Numerical Methods in Engineering, vol. 53, pp. 1765-1779,

2002.

[25] E. Onate and S. Idelsohn, "A mesh-free finite point method for advective-diffusive

transport and fluid flow problems.," Computational Mechanics, vol. 21, no. 4, pp. 283-

292, 1998.

[26] E. Onate, S. Idelsohn, O. Zienkievicz and R. Taylor, "finite point method in

computational mechanics: applications to convective transport and fluid flow.,"

International Journal for Numerical Methods in Engineering, vol. 39, no. 22, pp. 3761-

3931, 1996.

[27] S. Atluri, The Meshless Method (MLPG) for Domain & BIE Discretizations., Tech

Science Press, 2004.

85

[28] Y. Chen, J. Lee and A. Eskandarian, Meshless Methods in Solid Mechanics., Springer,

2006.

[29] A. Ferreira, E. Kansa, G. Fasshauer and V. Leito, Progress on Meshless Methods.,

Springer, 2008.

[30] M. Griebel and M. Schweitzer, Meshfree Methods for Partial Differential Equations.,

Springer, 2002.

[31] M. Griebel and M. Schweitzer, Meshfree Methods for Partial Differential Equations II.,

Springer, 2005.

[32] M. Griebel and M. Schweitzer, Meshfree Methods for Partial Differential Equations III.,

Springer, 2006.

[33] M. Griebel and M. Schweitzer, Meshfree Methods for Partial Differential Equations IV.,

Springer, 2008.

[34] V. Leito, C. Alves and C. Durate, Advances in Meshfree Techniques., Springer, 2007.

[35] G. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method., CRC Press,

2002.

[36] G. Liu and Y. Gu, An Introduction to Meshfree Methods and Their Programming.,

Springer, 2005.

[37] J. Sladek and V. Sladek, Advances in Meshless Methods., Tech Science Press, 2006.

86

[38] V. Nguyena, T. Rabczuk, S. Bordas and M. Duflot, "Meshless methods: A review and

computer implementation aspects.," Mathematics and Computers in Simulation, vol. 79,

pp. 763-813, 2008.

[39] C. Giordano, J. Beccaria, C. Goicoechea and C. Olivieri, "Optimization of the hydrolysis

of lignocellulosic residues by using radial basis functions modeling and particle swarm

optimization," Biochemical Engineering Journal, vol. 80, pp. 1-9, 2013.

[40] F. Bernardini, C. Bajaj, J. Chen and D. Schikore, "Automatical reconstruction of 3D CAD

models from digital scans.," International Journal of Computational Geometry &

Applications, vol. 9, no. 4, 1999.

[41] J. Carr, W. Fright and R. Beatson, "Surface interpolation with radial basis functions for

medical imaging.," IEEE Transactions of Medical Imaging, vol. 16, no. 1, pp. 96-107,

1997.

[42] V. Savchenko, A. Pasko, O. Okunev and T. Kunii, "Function Representation of Solids

Reconstructed from Scattered Surface Points and Contours.," Computer Graphics Forum,

vol. 14, no. 4, pp. 181-188, 1995.

[43] G. Turk and J. O’Brien, "Shape transformation using variational implicit surfaces.," in

SIGGRAPH’99, 1999.

[44] G. Turk and J. O’Brien, "Variational implicit surfaces.," Georgia Institute of Technology,

1999.

87

[45] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum and T. Evans,

"Reconstruction and representation of 3D objects with radial basis functions.," in

SIGGRAPH '01, 2001.

[46] Wikipedia, "Wikipedia," [Online]. Available:

http://www.anc.ed.ac.uk/rbf/intro/node8.html.

[47] M. Madan, J. Liang and H. Noriyasu, Radial Basis Function Neural Networks, Hoboken,

NJ, USA: John Wiley & Sons, Inc., 2005.

[48] D. Broomhead and D. Lowe, "M ultivar iable Functional Interpolation and Adaptive

Networks," Complex Systems, vol. 2, pp. 321-335, 1988.

[49] F. Girosi, "Some extensions of radial basis functions and their applications in artificial

intelligence.," Computers and Mathematics with Applications, vol. 24, no. 12, pp. 61-80,

1992.

[50] M. Varvak, "Ellipsoidal/radial basis functions neural networks enhanced with the

Rvachev function method in application problems.," Engineering Applications of

Artificial Intelligence, vol. 38, pp. 111-121, 2015.

[51] F. Fernández-Navarro, C. Hervás-Martínez, P. Gutiérrez, J. Peña-Barragán and F. López-

Granados, "Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks

with a Hybrid Algorithm for binary classification.," Neurocomputing, vol. 75, no. 1, pp.

123-134, 2012.

88

[52] R. J., S. Kiranyaz and M. Gabbouj, "Training Radial Basis Function Neural Networks for

Classification via Class-Specific Clustering.," IEEE Transactions on Neural Networks

and Learning Systems , vol. 27, no. 12, pp. 2458-2471, 2015.

[53] I. Maglogiannis, H. Sarimveis, C. Kiranoudis, A. Chatziioannou, N. Oikonomou and V.

Aidinis, "Radial Basis Function Neural Networks Classification for the Recognition of

Idiopathic Pulmonary Fibrosis in Microscopic Images," IEEE Transactions on

Information Technology in Biomedicine, vol. 12, no. 1, pp. 42-54, 2008.

[54] I. Keramitsoglou, H. Sarimveis, C. Kiranoudis and N. Sifakis, "Radial basis function

neural networks classification using very high spatial resolution satellite imagery: an

application to the habitat area of Lake Kerkini (Greece).," International Journal of

Remote Sensing, vol. 26, no. 9, pp. 1861-1880, 2005.

[55] G. Sermpinis, K. Theofilatos, A. Karathanasopoulos, E. Georgopoulos and C. Dunis,

"Forecasting foreign exchange rates with adaptive neural networks using radial-basis

functions and Particle Swarm Optimization," European Journal of Operational Research,

vol. 225, no. 3, pp. 528-540, 2013.

[56] G. Sideratos and N. Hatziargyriou, "Probabilistic Wind Power Forecasting Using Radial

Basis Function Neural Networks.," IEEE Transactions on Power Systems, vol. 27, no. 4,

pp. 1788-1796, 2012.

[57] Z. Guo, H. Wang, J. Yang and D. Miller, "A Stock Market Forecasting Model Combining

Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis

Function Neural Network," PLoS ONE, vol. 10, no. 4, pp. 1-19, 2015.

89

[58] Wikipedia, "Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/Parallel_computing#Bit-level_parallelism.

[59] L. L. N. L. Blaise Barney, "OpenMP," [Online]. Available:

https://computing.llnl.gov/tutorials/openMP/.

[60] Nvidia, "CUDA C Programming Guide," [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[61] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, A. Miller and M. Upton, " Hyper-

threading technology architecture and microarchitecture.," Intel Technology Journal, vol.

06, no. 01, 2002.

[62] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L.

Bao, J. Brown, M. Mattina, M. CC., C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N.

Fairbanks, D. Khan, F. Montenegro, J. Stickney and J. Zook, "TILE64 processor: a 64-

core SoC with mesh interconnect.," in IEEE International Solid-State Circuits

Conference, 2008.

[63] M. Gschwind, "Chip multiprocessing and the cell broadband engine.," in Proceedings of

the 3rd Conference on Computing Frontiers, CF ’06, ACM, New York, USA, 2006.

[64] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone and J. Phillips, "GPU Computing,"

Proceedings of the IEEE , vol. 96, no. 5, pp. 879-899, 2008.

90

[65] G. D’Angelo and M. Marzolla, "New trends in parallel and distributed simulation: From

many-cores to Cloud Computing.," Simulation Modelling Practice and Theory, vol. 49,

pp. 320-335, 2014.

[66] D. M. Bers, "Calcium cycling and signaling in cardiac myocytes," Annual Review of

Physiology, vol. 70, pp. 23-49, 2008.

[67] D. M. Bers, "Cardiac excitation-contraction coupling," Nature, vol. 415, no. 6868, pp.

198-205, 2002.

[68] A. Michailova, F. DelPrincipe, M. Egger and E. Niggli, "Spatiotemporal features of Ca2+

buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum,"

Biophysical Journal, vol. 83, no. 6, pp. 3134-3151, 2002.

[69] X. Koh, B. Srinivasan, H. S. Ching and A. Levchenko, "A 3D monte-carlo analysis of the

role of dyadic space geometry in spark generation," Biophysical Journal, vol. 90, no. 6,

pp. 1999-2014, 2006.

[70] L. T. Izu, S. A. Means, J. N. Shadid, Y. Chen-Izu and C. W. Balke, "Interplay of

ryanodine receptor distribution and calcium dynamics," Biophysical Journal, vol. 91, no.

1, pp. 95-112, 2006.

[71] S. Lu, A. Michailova, J. Saucerman, Y. Cheng, Z. Yu, R. Bank, T. Kaiser, W. Li, M.

Holst, J. McCammon, T. Hayashi, P. Arzberger, A. McCulloch, Y. Cheng and M.

Hoshijima, "Multiscale modeling in rodent ventricular myocytes," Engineering in

Medicine and Biology Magazine IEEE, vol. 28, pp. 46-57, 2009.

91

[72] C. Soeller and M. B. Cannell, "Examination of the transverse tubular system in living

cardiac rat myocytes by 2-photon microscopy and digital image processing techniques,"

Circulation Research, vol. 84, no. 3, pp. 266-275, 1999.

[73] M. Pasek, F. Brette, A. Nelson, C. Pearce, A. Qaiser, C. Orchard and G. Christe,

"Quantification of t-tubule area and protein distribution in rat cardiac ventricular

myocytes," Progress in Biophysics and Molecular Biology, vol. 96, no. 1-3, pp. 244-257,

2008.

[74] R. Hinch, J. L. Greenstein, A. J. Tanskanen, L. Xu and R. Winslow, "A simplified local

control model of calciuminduced calcium release in cardiac ventricular myocytes,"

Biophysical Journal, vol. 87, no. 6, pp. 3723-3736, 2004.

[75] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Singapore: World

Scientific Press, 2007.

[76] E. Divo and A. Kassab, "An efficient localized RBF meshless method for fluid flow and

conjugate hear transfer," ASME Journal of Heat Transfer, vol. 129, pp. 124-136, 2007.

[77] K. Liu, G. Ye and Z. Yu, "Porous Sturcture Design in Tissue Engineering Using

Anisotropic Radial Basis Function.," in arXiv:1612.01944 [cs.GR], 2016.

[78] K. Aizawa and T. Huang, "Model-based image coding: advanced video coding techniques

for very low bit-rate applications," in Proceedings of the IEEE, 1995.

92

[79] H. Benoit-Cattin, P. Joachimsmann, A. Planat, S. Valette, A. Baskurt and R. Prost,

"Active mesh texture coding based on warping and DCT," in IEEE International

Conference on Image Processing, Kobe, Japan, 1999.

[80] F. Davoine, M. Antonini, J. Chassery and M. Barlaud, "Fractal image compression based

on Delaunay triangulation and vector quantization," IEEE Transactions on Image

Processing, vol. 5, pp. 338-346, 1996.

[81] L. Demaret, G. Robert, N. Laurent and A. Buisson, "Scalable image coder mixing DCT

and triangular meshes," in IEEE International Conference on Image Processing,

Vancouver, BC, Canada, 2000.

[82] Y. Altunbasak and A. Tekalp, "Closed-form connectivity-preserving solutions for motion

compensation using 2-d meshes," IEEE Transactions on Image Processing, vol. 6, no.

533, pp. 1255-1269, 1997.

[83] P. Hsu, K. Liu and T. Chen, "A low bit-rate video codec based on two-dimensional mesh

motion compensation with adaptive interpolation," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 11, pp. 111-117, 2001.

[84] G. Marquant, S. Pateux and C. Labit, "Mesh and "crack lines": application to object--

based motion estimation and higher scalability," in IEEE International Conference on

Image Processing, Vancouver, BC, Canada, 2000.

[85] A. Nosratinia, "New kernels for fast mesh-based motion estimation," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 11, pp. 40-51, 2001.

93

[86] C. Toklu, A. Tekalp and A. Erdem, "Semi-automatic video object segmentation in the

presence of occlusion," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 10, pp. 624-629, 2000.

[87] Y. Wang and O. Lee, "Active mesh - a feature seeking and tracking image sequence

representation scheme," IEEE Transactions on Image Processing, vol. 3, pp. 610-624,

1994.

[88] M. Garcia and B. Vintimilla, "Acceleration of filtering and enhancement operations

through geometric processing of gray-level images," in IEEE International Conference on

Image Processing, Vancouver, BC, Canada, 2000.

[89] A. Singh, D. Terzopoulos and D. Goldgof, Deformable models in medical image analysis,

IEEE Computer Society Press, 1998.

[90] A. Baghaie, R. D'souza and Z. Yu, "Application of Independent Component Analysis

techniques in speckle noise reduction of retinal OCT images.," Optik-International

Journal for Light and Electron Optics, vol. 127, no. 15, pp. 5783-5791, 2016.

[91] A. Baghaie, "Markov Random Field Model-Based Salt and Pepper Noise Removal.," in

arXiv preprint arXiv:1609.06341, 2016.

[92] A. Baghaie and Z. Yu, "Curvature-based registration for slice interpolation of medical

images.," in International Symposium Computational Modeling of Objects Represented in

Images, 2014.

94

[93] S. Coleman, B. Scotney and M. Herron, "Image feature detection on content-based

meshes," in Proceedings of IEEE International Conference on Image Processing, 2002.

[94] M. Petrou, R. Piroddi and A. Talebpour, "Texture recognition from sparsely and

irregularly sampled data," Computer Vision and Image Understanding, vol. 102, pp. 95-

104, 2006.

[95] M. Sarkis and K. Diepold, "A fast solution to the approximation of 3-D scattered point

data from stereo images using triangular meshes," in Proceedings of IEEE-RAS

International Conference on Humanoid Robots, Pittsburgh, PA, USA, 2007.

[96] A. Baghaie, R. D'souza and Z. Yu, "Dense correspondence and optical flow estimation

using gabor, schmid and steerable descriptors.," in International Symposium on Visual

Computing, 2015.

[97] J. Brankov, Y. Yang and N. Galatsanos, "Image restoration using content-adaptive mesh

modeling," in Proceedings of IEEE International Conference on Image Processing, 2003.

[98] J. Brankov, Y. Yang and M. Wernick, "Tomographic image reconstruction based on a

content-adaptive mesh model," IEEE Transactions on Medical Imaging, vol. 23, pp. 202-

212, 2004.

[99] D. Su and P. Willis, "Demosaicing of color images using pixel level data-dependent

triangulation," in Proceedings of Theory and Practice of Computer Graphics, 2003.

[100] D. Su and P. Willis, "Image interpolation by pixel-level data-dependent triangulation," in

Computer Graphics Forum, 2004.

95

[101] A. Baghaie and Z. Yu, "Structure tensor based image interpolation method.," AEU-

international Journal of Electronics and Communications, vol. 69, no. 2, pp. 515-522,

2015.

[102] M. Adams, "An efficient progressive coding method for arbitrarily-sampled image," IEEE

Signal Processing Letters, vol. 15, pp. 629-632, 2008.

[103] M. Adams, "Progressive lossy-to-lossless coding of arbitrarily-sampled image data using

the modified scattered data coding method," in Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 2009.

[104] K. Hung and C. Chang, "New irregular sampling coding method for transmitting images

progressively," IEEE Proceedings of Vision, Image and Signal Processing, vol. 150, pp.

44-50, 2003.

[105] P. Lechat, H. Sanson and L. Labelle, "Image approximation by minimization of a

geometric distance applied to a 3-D finite elements based model," in Proceedings of IEEE

International Conference on Image Processing, 1997.

[106] G. Ramponi and S. Carrato, "An adaptive irregular sampling algorithm and its application

to image coding," Image and Vision Computing, vol. 19, pp. 451-460, 2001.

[107] Y. Wang, O. Lee and A. Vetro, "Use of 2-D deformable mesh structures for video coding,

part II - the analysis problem and a region-based coder employing an active mesh

representation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 6,

pp. 647-659, 1996.

96

[108] J. Chen, S. Paris, J. Wang, W. Matusik, M. Cohen and F. Durand, "The video mesh: A

data structure for image-based three-dimensional video editing," in IEEE International

Conference on Computational Photography (ICCP), Pittsburgh, PA, USA, 2011.

[109] Y. Guo, F. Liu, J. Shi, Z. Zhou and M. Gleicher, "Image retargeting using mesh

parametrization," IEEE Transactions on Multimedia, vol. 11, pp. 856-867, 2009.

[110] A. Baghaie, R. D'souza and Z. Yu, "Sparse and low rank decomposition based batch

image alignment for speckle reduction of retinal OCT images," in IEEE 12th

International Symposium on Biomedical Imaging (ISBI), 2015.

[111] A. Y. Z. Baghaie and D. R., "State-of-the-art in retinal optical coherence tomography

image analysis.," Quantitative imaging in medicine and surgery, vol. 5, no. 4, p. 603,

2015.

[112] A. Baghaie, Z. Yu and R. D'souza, "Fast mesh-based medical image registration.," in

International Symposium on Visual Computing, 2014.

[113] B. Delaunay, "Sur la sphere vide," Classe des Science Mathematics et Naturelle, vol. 7,

pp. 793-800, 1934.

[114] Y. Yang, N. Miles and G. Jovan, "A fast approach for accurate content-adaptive mesh

generation," IEEE Transactions on Image Processing, vol. 12, pp. 866-881, 2003.

[115] M. Adams, "A flexible content-adaptive mesh-generation strategy for image

representation," IEEE Transactions on Image Processing, vol. 20, pp. 2414-2427, 2011.

97

[116] M. Adams, "A highly-effective incremental/decremental Delaunay mesh-generation

strategy for image representation," IEEE Transactions on Signal Processing, vol. 93, pp.

749-764, 2013.

[117] P. Li and M. Adams, "A tuned mesh-generation strategy for image representation based

on data-dependent triangulation," IEEE Transactions on Image Processing, vol. 22, pp.

2004-2018, 2013.

[118] S. Rippa, "Adaptive approximation by piecewise linear polynomials on triangulations of

subsets of scattered data," SIAM Journal on Scientific and Statistical Computing, vol. 13,

pp. 1123-1141, 1992.

[119] M. Garland and P. Heckbert, "Fast polygonal approximation of terrains and height fields,"

Technical Report CMU-CS-95-181, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, USA, 1995.

[120] X. Tu and M. Adams, "Improved mesh models of images through the explicit

representation of discontinuities," Canadian Journal of Electrical and Computer

Engineering, vol. 36, pp. 78-86, 2013.

[121] T. Blu, P. Thevenaz and M. Unser, "Linear interpolation revitalized," IEEE Transactions

on Image Processing, vol. 13, no. 5, pp. 710-719, 2004.

[122] N. Asuni and A. Giachetti, "Accuracy improvements and artifacts removal in edge based

image interpolation," in VISAPP (1), 2008.

98

[123] A. Giachetti and N. Asuni, "Fast artifacts-free image interpolation," in British Machine

Vision Conference, 2008.

[124] Y. Cha and S. Kim, "The error-amended sharp edge (EASE) scheme for image zooming,"

IEEE Transactions on Image Processing, vol. 16, no. 6, pp. 1496-1505, 2007.

[125] D. Zhou, W. Dong and X. Shen, "Image zooming using directional cubic convolution

interpolation," IET Image Processing, vol. 6, no. 6, pp. 627-634, 2012.

[126] J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim and S. J. Ko, "A novel image interpolation

method using the bilateral filter," IEEE Transactions on Consumer Electronics, vol. 56,

no. 1, pp. 175-181, 2010.

[127] J. W. Han, J. H. Kim, S. Sull and S. J. Ko, "New edge-adaptive image interpolation using

anisotropic Gaussian filters," Digit Signal Processing, vol. 23, no. 1, pp. 110-117, 2013.

[128] X. Zhang and X. Wu, "Image interpolation by adaptive 2-D autoregressive modeling and

soft-decision estimation," IEEE Transactions on Image Processing, vol. 17, no. 6, pp.

887-896, 2008.

[129] W. Z. Shao and Z. H. Wei, "Edge-and-corner preserving regularization for image

interpolation and reconstruction," Image and Vision Computing, vol. 26, no. 12, pp. 1591-

1606, 2008.

[130] S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam and F. E. Abd El-Samie,

"Efficient implementation of image interpolation as an inverse problem," Digital Signal

Processing, vol. 15, no. 2, pp. 137-152, 2005.

99

[131] X. Liu, D. Zhao, R. Xiong, S. Ma, W. Gao and H. Sun, "Image interpolation via

regularized local linear regression," IEEE Transactions on Image Processing, vol. 20, no.

12, pp. 3455-3469, 2011.

[132] J. Weickert, Anisotropic diffusion in image processing, Teubner Stuttgart, 1998.

[133] Z. Wang and A. C. Bovik, "Modern image quality assessment," Synthesis lectures on

image, video, and multimedia processing, vol. 2, no. 1, pp. 1-156, 2006.

[134] P. Thevenaz, T. Blu and M. Unser, "Interpolation revisited," IEEE Transactions on

Medical Imaging, vol. 19, no. 7, pp. 739-758, 2000.

[135] G. Casciola, L. Montefusco and S. Morigi, "Edge-driven image interpolation using

adaptive anisotropic radial basis functions," Journal of Mathematical Imaging and Vision,

vol. 36, pp. 125-139, 2010.

[136] J. Shewchuk, "Triangle: A two-dimensional quality mesh generator and Delaunay

triangulator," 2005. [Online]. Available: http://www.cs.cmu.edu/quake/triangle.html.

[137] G. Casciola, D. Lazzaro, L. Montefusco and S. Morigi, "Shape preserving surface

reconstruction using locally anisotropic RBF interpolants," Computers & Mathematics

with Applications, vol. 51, pp. 1185-1198, 2006.

[138] G. Casciola, L. Montefusco and S. Morigi, "The regularizing properties of anisotropic

radial basis functions," Applied Mathematics and Computation, vol. 190, pp. 1050-1062,

2007.

100

[139] L. Ke, X. Ming and Y. Zeyun, "Feature-Preserving Image Restoration from Adaptive

Triangular Meshes," Computer Vision - ACCV 2014 Workshops, vol. 9009, pp. 31-46,

2014.

[140] I. ASTM, "ASTM F2792-10: standard terminology for additive manufacturing

technologies," in ASTM International, West Conshohocken, PA, 2010.

[141] F. Melchels, M. Domingos, T. Klein, J. Malda, P. Bartolo and D. Hutmacher, "Additive

manufacturing of tissues and organs.," Progress in Polymer Science, vol. 37, pp. 1079-

1104, 2010.

[142] P. Bartolo, H. Almeida and T. Laoui, "Rapid prototyping and manufacturing for tissue

engineering scaffolds," International Journal of Computer Applications in Technology,

vol. 36, pp. 1-9, 2009.

[143] S. Peltola, F. Melchels, D. Grijpma and M. Kellomaki, "A review of rapid prototyping

techniques for tissue engineering purposes," Annals of Medicine , vol. 40, pp. 268-280,

2008.

[144] S. Giannitelli, D. Accoto, M. Trombetta and A. Rainer, "Current trends in the design of

scaffolds for computer-aided tissue engineering," Acta Biomaterialia, vol. 10, pp. 580-

594, 2014.

[145] A. Khoda, I. Ozbolat and B. Koc, "Engineered tissue scaffolds with variational porous

architecture.," Journal of Biomechanical Engineering, vol. 133, p. 011001, 2011.

101

[146] C. Schroeder, W. Regli, A. Shokoufandeh and W. Sun, "Computer-aided design of porous

artifacts.," Computer-Aided Design, vol. 37, pp. 339-353, 2005.

[147] S. Sogutlu and B. Koc, "Stochatic modeling of tissue engineering scaffolds with varying

porosity levels.," Compute-Aided Design & Applications, vol. 4, pp. 661-670, 2007.

[148] D. Schaefer and K. Keefer, "Structure of random porous materials: silica aerogel.,"

Physical Review Letters, vol. 56, pp. 2199-2202, 1986.

[149] F. Melchels, P. Wiggenhauser, D. Warne, M. Barry, F. Ong, W. Chong and e. al.,

"CAD/CAM-assisted breast reconstruction.," Biofabrication, vol. 3, p. 034114, 2011.

[150] W. Chiu, Y. Yeung and K. Yu, "Toolpath generation for layer manufacturing of fractal

objects.," Rapid Prototyping Journal, vol. 12, pp. 214-221, 2006.

[151] W. Sun, B. Starly, J. Nam and A. Darling, "Bio-CAD modeling and its applications in

computer-aided tissue engineeing.," Computer-Aided Design, vol. 37, pp. 1097-1114,

2005.

[152] B. Bucklen, W. Wettergreen, E. Yuksel and M. Liebschner, "Bone-derived CAD library

for assembly of scaffolds in computer-aided tissue engineering.," Virtual and Physical

Prototyping, vol. 3, pp. 13-23, 2008.

[153] S. Hollister, R. Maddonx and J. Taboas, "Optimal design and fabrication of scaffolds to

mimic tissue properties and satisfy biological constraints.," Biomaterials, vol. 23, pp.

4095-4103, 2002.

102

[154] S. Hollister, "Porous scaffold design for tissue engineering.," Nature Materials, vol. 4, pp.

518-524, 2005.

[155] S. Rajagopalan and R. Robb, "Schwarz meets Schwann: design fabrication of biomorphic

and durataxic tissue engineering scaffolds.," Medical Image Analysis, vol. 10, pp. 693-

712, 2006.

[156] T. Seck, F. Melchels, J. Feijen and D. Grijpma, "Designed biodegradable hydrogel

structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-

based resins.," Journal of Controlled Release, vol. 148, pp. 34-41, 2010.

[157] F. Melchels, J. Feijen and D. Grijpma, "A poly(d, l-lactide) resin for the preparation of

tissue engineering scaffolds by stereolithography.," Biomaterials, vol. 30, pp. 3801-3809,

2009.

[158] L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. Grijpma and J. Seppala, "Preparation

of poly(e-caprolactone)-based tissue engineering scaffolds by stereolithography.," Acta

Biomaterialia, vol. 7, pp. 3850-3856, 2011.

[159] D.-J. Yoo, "Computer-aided porous scaffold design for tissue engineering using triply

periodic minimal surfaces.," International Journal of Precision Engineering and

Manufacturing, vol. 12, pp. 61-71, 2011.

[160] D.-J. Yoo, "Porous scaffold design using the distance field and triply periodic minimal

surface models.," Biomaterials, vol. 32, pp. 7741-7754, 2011.

103

[161] I. Zein, D. Hutmacher, K. Tan and S. Teoh, "Fused deposition modeling of novel scaffold

architectures for tissue engineering applications.," Biomaterials, vol. 23, pp. 1169-1185,

2002.

[162] S. Kalita, "Development of controlled porosity polymer-ceramic composite scaffolds via

fused deposition modeling.," Materials Science and Engineering, vol. 23, pp. 611-620,

2003.

[163] X. Kou and S. Tan, "Microstructural modeling of functionally graded materials using

stochastic Voronoi diagram and B-spline representations.," International Journal of

Computer Integrated Manufacturing, vol. 25, pp. 177-188, 2012.

[164] D. B. Kirk and W. Hwu, Programming massively parallel processors: a hands-on

approach, Burlington, MA, USA: Elsevier Inc., 2010.

104

APPENDEX: PUBLICATIONS

 K. Liu, G. Yao, Z. Yu, “Parallel Acceleration for Modeling of Calcium Dynamics in

Cardiac Myocytes”, Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 1417-1424,

2014

 K. Liu, M. Xu, Z. Yu, “Feature-Preserving Image Restoration from Adaptive Triangular

Meshes”, Computer Vision - ACCV 2014 Workshops, vol. 9009, pp. 31-46, 2014.

 [In submission] K. Liu, Y. Guo, Z. Yu, “Porous Structure Design in Tissue Engineering

Using Anisotropic Radial Basis Function”, arXiv:1612.01944 [cs.GR], 2016

105

CURRICULUM VITAE

106

Ke Liu

Computer Science Department of University of Wisconsin Milwaukee

Advisor: Professor, Dr. Zeyun Yu

Address: Email:

3200 N Cramer Street, keliu@uwm.edu

Milwaukee, WI 53211

USA

Research Interests

Image/mesh processing, numerical analysis, parallel computing, scientific computing,

performance optimization, computer graphics, data visualization

Education

 Bachelor in Computer Science, University of Electronic Science and Technology of

China, 2006

Thesis title: Instant Messaging System in Client/Server Architecture

 Coursera: Advanced Javascript Programming, 2014

 Coursera: Web Development, 2014

mailto:keliu@uwm.edu

107

Professional and Work Experience

 University of Wisconsin Milwaukee Since Sep. 2015

Graduate Teaching Assistant

Graduate Teaching Assistant for the following courses:

o Data Structure and Algorithms (CS 351)

o Server-side Programming (CS 481)

 University of Wisconsin Milwaukee Summer, 2015

School of Public Health

Graduate Research Assistant

1) Analyze exome DNA sample data

2) Build analyzing software pipeline

 University of Wisconsin Milwaukee 2014 – 2015

Academic Affairs

Graduate Project Assistant

1) Create Hadoop test setup and explore its applications in campus

2) Instruct users to use cluster

 University of Wisconsin Milwaukee 2012 – 2014

University Information Technology Services

Graduate Project Assistant

1) Discuss with users about performance optimization

108

2) Assist students in parallel computing and research computing workshops

 University of Wisconsin Milwaukee 2010 – 2012

Biomedical Modeling and Visualization Lab

Graduate Research Assistant

1) Model calcium dynamics in cardiac myocytes

2) Solve partial differential equations (PDEs) by meshless method

3) Increase performance up to 20X by using CUDA

4) Simulate calcium dynamics in ventricular myocytes on subcellular level

5) Simulate particle dynamics based on Monte-Carlo method

6) Increase performance up to 50X by using MPI

 FlysInfo Computing Services (Chengdu) 2008 – 2009

Project Manager / Software Engineer

1) Implement communication and document workflow

2) Implement user authentication module

3) Manage project development and deployment

4) Communicate with customer to acquire and verify requirements

 Augmentum (Shanghai) 2006 – 2008

Software Engineer

1) Implement messaging service for Outlook 2003

109

2) Implement user authentication, gateway communication, database accessing and report

generating modules

3) Design and implement message queue and workflow by using BusinessWorks from

Tibco

4) Write development documents

Publications

 Ke Liu, Guangming Yao, Zeyun Yu, Parallel Acceleration for Modeling of Calcium

Dynamics in Cardiac Myocytes. Bio-Medical Materials and Engineering, vol. 24, no. 1, pp.

1417-1424, 2014

 Ke Liu, Ming Xu, Zeyun Yu, Feature-preserving Image Restoration from Adaptive

Triangular Meshes, Computer Vision – ACCV 2014 Workshop, vol. 9009, pp. 31-46, 2014

 [In submission] Ke Liu, Ye Guo, Zeyun Yu, Porous Structure Design in Tissue Engineering

Using Anisotropic Radial Basis Function, arXiv:1612.01944 [cs.GR], 2016

Technical Skills

Languages: C/C++, CUDA C, Python, Java, Javascript, Matlab, bash, tcsh, C#

Tools:

 Parallel Computing: CUDA Tookit, OpenMP, MPI, Hadoop

 Graphic: OpenGL

 Web Development: Django, Amazon AWS

 Cluster: LSF, PBS, SLURM, HTCondor

110

 Genome Sequence Analyzing: bowtie2, bwa, picard, GATK, SeqMule, ANNORVAR

Methodologies:

 Numerical methods: radial basis function (RBF) interpolation, meshless

	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2016

	Radial Basis Functions: Biomedical Applications and Parallelization
	Ke Liu
	Recommended Citation

	tmp.1488313814.pdf.cbn3k

