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ABSTRACT 

 

RADIAL BASIS FUNCTIONS: BIOMEDICAL APPLICATIONS AND 

PARALLELIZATION 

 

by 

 

Ke Liu 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Zeyun Yu 

 

Radial basis function (RBF) is a real-valued function whose values depend only on the distances 

between an interpolation point and a set of user-specified points called centers. RBF 

interpolation is one of the primary methods to reconstruct functions from multi-dimensional 

scattered data. Its abilities to generalize arbitrary space dimensions and to provide spectral 

accuracy have made it particularly popular in different application areas, including but not 

limited to: finding numerical solutions of partial differential equations (PDEs), image processing, 

computer vision and graphics, deep learning and neural networks, etc. 

The present thesis discusses three applications of RBF interpolation in biomedical engineering 

areas: (1) Calcium dynamics modeling, in which we numerically solve a set of PDEs by using 

meshless numerical methods and RBF-based interpolation techniques; (2) Image restoration and 

transformation, where an image is restored from its triangular mesh representation or 

transformed under translation, rotation, and scaling, etc. from its original form; (3) Porous 

structure design, in which the RBF interpolation used to reconstruct a 3D volume containing 
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porous structures from a set of regularly or randomly placed points inside a user-provided 

surface shape. All these three applications have been investigated and their effectiveness has 

been supported with numerous experimental results. In particular, we innovatively utilize 

anisotropic distance metrics to define the distance in RBF interpolation and apply them to the 

aforementioned second and third applications, which show significant improvement in 

preserving image features or capturing connected porous structures over the isotropic distance-

based RBF method. 

Beside the algorithm designs and their applications in biomedical areas, we also explore several 

common parallelization techniques (including OpenMP and CUDA-based GPU programming) to 

accelerate the performance of the present algorithms. In particular, we analyze how parallel 

programming can help RBF interpolation to speed up the meshless PDE solver as well as image 

processing. While RBF has been widely used in various science and engineering fields, the 

current thesis is expected to trigger some more interest from computational scientists or students 

into this fast-growing area and specifically apply these techniques to biomedical problems such 

as the ones investigated in the present work. 
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Chapter 1 Introduction 

1.1 Radial Basis Function (RBF) 

1.1.1 Definition 

Radial Basis Function (RBF) is a real-valued function whose value depends only on the distance 

from two points in multi-dimensional space. One of these points is called the center, which could 

be the origin or alternatively some other point in this space. RBF interpolation is one of the primary 

methods to analyze multi-dimensional scattered data. Its abilities to generalize arbitrary space 

dimensions and to provide spectral accuracy have made it particular popular in different types of 

applications. Some of the applications include function approximation, numerical solutions of 

partial differential equations, computer vision and neural networks, etc. 

RBF is formally defined as ϕ(𝑟) = ϕ(‖𝑟‖). Any function ϕ that satisfies the property ϕ(𝑟) =

ϕ(‖𝑟‖) is a radial function. Norm usually is defined as the Euclidean norm but other distance 

functions like taxicab metric or Łukaszyk–Karmowski metric are also used to define the norm in 

some applications. Let r = ‖𝒙 − 𝒙𝑖‖ (𝒙𝑖 is center), c be a constant called shape parameter (or free 

parameter in some literatures), commonly used types of radial basis functions include 

 Gaussian: ϕ(𝑟) = 𝑒−(𝑐𝑟)2
 

 Multiquadric (MQ): ϕ(𝑟) = √𝑟2 + 𝑐2 

 Inverse multiquadric (IMQ): ϕ(𝑟) =
1

𝑟2+𝑐2 

 Thin plate spline (TPS): ϕ(𝑟) = 𝑟2ln (𝑟)  

The shape parameter plays an important role for the accuracy but how to choose the value is still 

an open research topic. Most researchers choose the value by trial and error or some other ad hoc 



2 

 

means. Literatures [1] [2] [3] [4] [5] [6] [7]provides more details about choosing the value for 

shape parameter. Figure 1 shows the shape of Gaussian basis function. Every radial basis function 

has a support range, which is the footprint of the basis function. There are two types of support. 

Compact support or finite support: function value is zero outside of certain interval. Non-compact 

support or infinite support: there is no interval to limit the function values. Function value goes to 

infinite as the range goes to infinite. Figure 2 shows the two types of support domains. 

RBFs are typically used to construct function approximations defined on scattered multi-

dimensional data of the form 

u(𝒙) = ∑ 𝑤𝑖𝜙(‖𝒙 − 𝒙𝑖‖)

𝑁

𝑖=1

 ( 1 ) 

where u(𝒙) is the approximated function that represented as a weighted sum of N radial basis 

functions. Each basis function is associated with a different center 𝒙i and weight 𝑤i. The weights 

Figure 1 Gaussian basis function. (a) Shape of Gaussian basis function in 1D. c is the center. (b) Shape of 

Gaussian basis function in 2D. 
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can be determined by solving linear equations. Let u𝑖 = u(𝑥𝑖), by ( 1 ), the weights 𝑤i can be 

solved by 

[
𝜙11 ⋯ 𝜙1𝑁

⋮ ⋱ ⋮
𝜙𝑁1 ⋯ 𝜙𝑁𝑁

] [

𝑤1

⋮
𝑤𝑁

] = [

𝑢1

⋮
𝑢𝑁

] ( 2 ) 

where 𝜙ji = 𝜙(𝒙𝑗 − 𝒙𝑖) . Once the unknown weights 𝑤i  are solved, function values can be 

evaluated by ( 1 ). Besides by solving the linear equations in ( 2 ), the unknown weights 𝑤i can 

also be solved by other matrix methods like linear least squares. 

This approximation scheme is particularly useful in time series prediction, control of nonlinear 

systems having sufficiently simple chaotic behavior, and 3D reconstruction in computer graphics. 

1.1.2 Applications 

1.1.2.1 Numeric Simulation 

Recent development of computer technology has made it possible to simulate a number of complex 

natural phenomena in experiments. In these experiments, partial differential equations (PDEs) with 

initial and boundary conditions are important tools to describe many mathematical models. For 

Figure 2 RBF support domains. (a) Compact support. (b) Non-compact support. 
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complex PDEs, analytic solutions are usually too complex, even impossible to obtain. Therefore, 

numerical solutions as an approximation of analytical solutions are instead the goal to obtain in 

practice. Many numerical methods have been developed to solve PDEs. Some classical methods 

that solve PDEs numerically based on polynomial interpolation are finite difference method 

(FDM), finite element method (FEM), finite volume method (FVM) and pseudo-spectral methods. 

These methods solve a set of linear equations which are constructed after the analysis of the entire 

problem domain is analyzed and divided into elements or meshes. 

Although these polynomial based methods are very effective to solve certain types of PDEs in 

many fields, they have limitations too, mostly because of the mesh-based interpolation. Distorted 

or low quality meshes lead to higher errors and necessitate remeshing, which is a task consuming 

both time and human labor and often is not guaranteed to be feasible in timely manner in complex 

3D geometries. Moreover, the underlying mesh-based structure makes them not well suited to 

solve problems with discontinuity boundaries. A way to deal with discontinuities is remeshing or 

discontinuous enrichment. Alternatively, the extended finite element method (XFEM) [8] [9] [10] 

Figure 3 Discretization using meshless method: nodes, domains of influence (in circle 

shape). Blue line illustrates problem domain. Red dots illustrate nodes. Grey circle 

illustrates the influence of local domain Ω𝐼 .(Courtesy of [38]). 
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[11] enriches the approximation space so that both strong and weak discontinuities can be captured. 

However, the involved difficulties of mesh-based interpolation are not only remeshing but also 

transiting problem states from old mesh to new mesh. Impact/penetration problem, 

explosion/fragmentation problem, flow pass obstacles problem, fluid-structure interaction problem 

and some biomedical simulations like the simulation and analysis of particular particles in 

cardiomyocytes during excitation and contraction are extremely difficult using the traditional 

methods introduced above. 

RBF based methods, however, do not suffer from the adaptive remeshing procedures and the 

approximation is built from nodes only. Thus they belong to a category of methods called meshless 

methods or meshfree methods. Meshless methods are good at achieving exponential convergence 

rates on problems where traditional methods have difficulties or fail to solve. By constructing a 

univariate function with Euclidean norm, meshless methods turn a multi-dimensional problem into 

a one dimensional problem. One of the earliest meshless methods is the smooth particle 

hydrodynamics (SPH) method proposed by Lucy [12] and Gingold and Monaghan [13]. It was 

proposed to solve problems in astrophysics. Libersky et al. [14] were the first to apply SPH in solid 

mechanics. Other improved SPH methods are proposed as well [15] [16] [17] [18] [19]. In 1990s 

other weak form based methods were developed while SPH and their improved versions were 

based on strong form. One of the earliest meshless methods based on global weak form is the 

element-free Galerkin (EFG) method [20]. One year later, reproducing kernel particle method 

(RKPM) was developed in wavelets [21]. In contrast to EFG and RKPM methods which use 

intrinsic basis, other methods are developed to use extrinsic basis and the concept of partition of 

unity (PU). The extrinsic basis was used to increase the approximation order. Melenk and Babuska 

[22] proposed partition of unity finite element method (PUFEM) based on the similarity of 
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meshless method and FEM. This method is very similar to hp-cloud method which employs 

elements of variable size (h) and polynomial degree (p). 

All meshless methods introduced above are based on global weak form of PDEs. Another type of 

meshless methods are based on local weak forms. The most popular method of this type is the 

meshless local Petrov-Galerkin (MLPG) method [23]. The main difference between MLPG and 

global weak form based methods such EFG and RKPM is that local weak form is generated on 

overlapping local subdomains, on which the integration is carried out. Another well-known 

method which is called moving point method is mainly applied in fluid mechanics [24] [25] [26]. 

Because there is no mesh, tool like k-dimensional tree (KD-Tree) is usually used to divide the 

space and find neighboring nodes during the construction of linear systems. As a result, instead of 

solving a large linear system, many smaller linear systems are solved. By solving problems in 

collocation fashion, which is more flexible than global methods, local RBF methods can construct 

more stable linear systems and are easier to implement. Literatures [1] [27] [23] [28] [29] [30] [31] 

[32] [33] [34] [35] [36] [37] [38] illustrate the efficacy and popularity of meshless methods in 

numerical areas. Giordano et al. proposes an RBF optimization method in hydrolysis area [39]. 

Figure 3 (courtesy of [38]) illustrates how meshless methods discretize problem domain. Red dots 

illustrate nodes whose values are used to approximate. Blue line illustrates problem boundary. 

Grey circle illustrates the influence of a subdomain. 

1.1.2.2 Surface Reconstruction 

RBFs find their usage in computer graphics fields as well such as surface or object reconstruction 

from point cloud, mesh repair, image registration, and field visualization in 2D or 3D, etc. 

Interpolating meshes with holes and reconstructing surfaces from point cloud are ubiquitous 

problems in computer graphics and computer aided design (CAD) areas. Because RBFs are 
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polyharmonic and fast to be fitted and evaluated, smooth surface or object can be reconstructed 

from point cloud in large amount (in millions). The smooth blending of surfaces ensures a manifold 

can be constructed and thus manufacturable, which is related to many problems in CAD. 

Smoothing and remeshing existing noisy surfaces are also important problems in both computer 

graphics and CAD. These problems are considered independent problems in most cases and 

receive much attentions [40]. RBFs have been used to reconstruct surfaces by Carr et al. [41], 

Savchenko [42], Turk and O’Brien [43] [44]. These works are limited to small problems by their 

𝑂(𝑁2) storage and 𝑂(𝑁3) arithmetic operations. By reducing the number of RBF centers used, a 

fast fitting and evaluation method is proposed by Carr et al. [45]. Figure 4 (courtesy of [45]) 

illustrates the problem of surface reconstruction from point cloud. 

1.1.2.3 Artificial Neural Networks 

RBFs are very useful in artificial neural networks as embodied in current versions of feedforward 

neural networks as well. A number of RBFs are organized together to form a network, called radial 

Figure 4 Surface reconstruction from point cloud. Left is the point cloud as 

input. Right is the reconstructed surface. (Courtesy of [45]). 
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basis function network (RBFN). The traditional RBFN is illustrated in Figure 5 (courtesy of [46]). 

RBFN is mostly used for data forecasting, data mining and data classification in artificial 

intelligence area. RBFs in neural networks are explained in depth [47].  In 1980s, Broomhead and 

Lowe [48] are one of the earlies using networks to interpolate quantitatively. RBFs become popular 

in neural networks in 1990s. Girosi extend RBFs [49] and use them in artificial intelligence (AI) 

field. Varvark used elliptical RBFs to enhance neural networks [50]. Fernández-Navarro proposed 

a method using new basis funtion (q-Gaussian basis function) in binary classification [51]. 

Raitoharju et al proposed a method to train RBFN for classification [52]. Maglogiannis et al. used 

RBFN in classification and recognition in microscopic images [53]. Keramitsoglou et al. used 

RBFN to classify very high spatial resolution satellite image [54]. Sermpinis et al proposed a RBF-

based method to forecast and optimize foreign exchange rates [55]. Sideratos and Hatziargyriou 

used RBFN in wind power forecasting [56]. Guo et al. proposed a forecasting model combing 

RBFN and 2D principal component analysis (PCA) in stock market [57]. Recently developed 

Figure 5 The traditional radial basis function network. 𝒙 = {𝑥𝑖}𝑖=1
𝑛  is the input. 𝒉 = {ℎ𝑗}

𝑗=1

𝑚
 are 

basis functions. The output 𝑓(𝒙) is the linear combination of weights 𝒘 = {𝑤𝑗}
𝑗=1

𝑚
. (Courtesy of 

[46]). 
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RBFN algorithms incorporating compact-support RBF greatly increase the performance in training 

process. 

1.1.3 Pros and Cons 

The major advantages using RBF to solve PDEs (meshless methods) are 1) meshless methods have 

similar h-adaptivity compared to mesh-based methods, 2) it is much easier to handle problems 

with moving discontinuities such as crack propagation, shear bands and phase transformation, 3) 

more robust solution of problems with large deformation domains can be obtained, 4) higher-order 

basis function can be used to obtain smoother solutions, 5) solution can be interpolated globally 

or locally, which provides flexibility and 6) no cost of remeshing or mesh alignment. The chief 

drawbacks to the use of meshless methods primarily is related to the choice of shape parameters, 

which remains as an open research topic. Improper choice of shape parameter may produce 

unstable solution with large errors. 

RBFs are particularly suited to fitting surfaces to non-uniformly distributed point clouds and partial 

meshed with irregular holes because of their independently polyharmonic smooth interpolation 

characteristics. Moreover, by using RBFs a fast fitting and evaluation approach can be applied to 

represent complicated objects of arbitrary topology with large data sets such as medical imaging 

and geophysical data. However, like any global models, RBFs have the drawbacks as well when 

manipulation of part of that model is required. In this case, the decomposition of a global RBF 

representation into a piecewise mesh of implicit surface patches is required. 

Because RBFN has one hidden layer, which differs from multi-layer perception (MLP), RBFN is 

more robust in data prediction. RBFN have the advantages of easy design, good generalization, 

strong fault tolerance to noisy input data, and self-learning ability. These properties make RBFN 

an ideal tool in data forecasting, data classification, and machine learning. RBFN is able to produce 
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smoother surface, more stable and provide better generalization comparing to traditional neural 

networks. 

1.2 Parallel Computing 

As RBF applications develop rapidly, more and more data is involved, which poses great challenge 

on computation. Traditional serial algorithms are no longer satisfactory for the high cost of 

computational time. A natural solution is using multiple processors, operating on the principle that 

large problems can be divided into smaller ones, which are then solved concurrently. Parallel 

computing can be classified from different views. The following sections describe the categories 

of parallel computing techniques in different perspectives. 

1.2.1 Architecture Perspective 

In computer architecture perspective, from lower level to higher level, there are bit-level 

parallelism, instruction-level parallelism and task-level parallelism [58]. Bit-level parallelism 

relates to the computer word size. Increasing the word size (the length of bits a processor can fetch 

and process in single processor cycle) can reduce the number of processor cycles. The word size 

is increasing from 4-bit to 8-bit, 16-bit, 32-bit and now 64-bit. Instruction-level parallelism relates 

to reordering and combining instructions stages into groups. Modern processors uses multi-stage 

instruction pipelining to process multiple instructions at single stage and superscalar to issue 

multiple instructions at a time. A typical processor of this type is the RISC processor. Figure 6 

shows a five-stage pipelining RISC processor and pipelined superscalar processor. Task-level 

parallelism decompose a task into sub-tasks and dispatches each sub-task to a processor for 

execution. Thus these sub-tasks are executed simultaneously. Some task-level parallel jobs need 

to exchange information among these sub-tasks to get final result. A commonly used task-level 

parallelism scheme is map-reduce. In this scheme, the original problem is first decomposed into 
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many smaller sub-problems (the “map” step). Then solve them simultaneously. At last, all partial 

results will be combined to get the final result (the “reduce” step). 

1.2.2 Memory Perspective 

Another popular classification of parallel computing is known as Flynn’s taxonomy, created by 

Michael J. Flynn. This classification focuses on instruction and data, thus deriving four types. 

Single-instruction-single-data (SISD) programs are the same as sequential programs. Single-

instruction-multiple-data (SIMD) programs perform the same operation on large dataset. Multiple-

instruction-single-data (MISD) programs are uncommon and are mainly designed in redundant 

systems. Multiple-instruction-multiple-data (MIMD) programs can perform multiple operations 

on multiple datasets and are the most commonly used. 

From the memory usage perspective, there are three popular parallel models. Shared-memory 

model uses single memory address space and usually is implemented by multi-threading 

Figure 6 Illustration of instruction-level parallelism. (a) 5-stage pipeline RISC processor. (b) 5-

stage pipelined superscalar processor. (Courtesy of [58]). 
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programming. Exchanging data is very easy since the memory is shared among processors. 

Distributed-memory model uses memory on multiple machines. Each machine has its own 

memory address space. Data exchange is achieved by sending and receiving messages. 

Heterogeneous memory model uses additional accelerator(s) called device(s) besides the CPU. 

The first accelerator is floating-point co-processor, which is designed for high-speed floating-point 

calculation. The most popular accelerator nowadays is the GPU. In this model, programs have to 

transfer data to the device(s), then start the device(s) for calculation, and finally get result from the 

device(s). Each model has its advantages and drawbacks. Shared-memory model is easier to 

implement and is more efficient comparing to distributed-memory model when the same number 

of processors are used. The main drawback of shared-memory is lack of scalability. Because the 

memory space is shared via system bus, all processors have to exist on a single machine. However, 

it is extremely difficult to continue shrinking the sizes of transistors and solve the heating problem 

while the chip is working to put more and more cores on a single chip, the number of cores on a 

chip is limited. In recent years, the number of cores on a single chip does not exceed 32. The 

distributed-memory model solves this problem by utilizing multiple machines. But, as the number 

of cores utilized is increasing, the message exchanging becomes more and more complicated so 

eventually, the cost of communication will dominate the overall computation time. Heterogeneous 

memory model takes advantage of dedicated, problem-specific device thus it has high 

computational efficiency. But the device causes additional program complication and incurs the 

cost of data transfer between the processors and device. 

Figure 7 (courtesy of [59] [60]) illustrates these three memory models introduced above. Figure 7 

(a) illustrates typical execution of shared memory model. Execution of program starts from master 
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thread. Before the master thread enters a parallel region, the master thread spawns other threads. 

Inside parallel region, multiple threads execute in parallel. After parallel region, spawned threads 

have to be synchronized with master thread and then destroyed. Then the master thread is the only 

Figure 7 Different types of memory models of parallel computing. (a) Execution sequence of shared memory model. 

Different colors illustrates different threads. (b) Shared memory model. (c) Distributed memory model. (d) 

Execution sequence of one of heterogeneous memory models. (Courtesy of [59] [60]). 
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thread that is in execution until next parallel region is encountered. Figure 7 (b) illustrates a shared 

memory model with 4 processors. As introduced above, the memory address space is shared 

among the 4 processors. Figure 7 (c) illustrates a distributed memory model with 4 hosts inter-

connected as a circular topology. Each host has an individual memory and 4 processors. Inside the 

host, the memory is shared with 4 processors. However, memory is inaccessible among hosts. If a 

host wants to access information in another host’s memory, it has to send a message to the 

destination host. Figure 7 (d) illustrates the execution of one type of heterogeneous memory 

models, namely, compute unified device architecture (CUDA). Left of figure shows the execution. 

Parallel code is encapsulated in kernel functions which will be called when parallel execution 

points are reached. Right of figure illustrates how threads are grouped into blocks and grid. Details 

of CUDA will be introduced in Section 5.1. 

1.2.3 Current Trends 

Computing architectures evolved significantly in the last decade. There are many improvements 

happened across the whole spectrum of architectures ranging from individual processors to 

geographically distributed systems. 

In the last decade, word size of a single processor has been increased from 16-bit to 64-bit in 

general processor. Some processors designed for special purposes such as gaming, video editing, 

encryption/decryption, the word size is even larger, usually ranges from 128-bit to 512-bit. 

In 2002, Intel introduced the Hyper-threading (HT) technology [61], which enables a processor to 

store two architecture states at the same time in a single execution unit. When an execution 

instruction of a program is suspended for some reason, execution instruction of the other program 

can be executed. This technology makes a single physical execution unit appear to be two “logical” 

execution units. The Operating System can therefore see two virtual processors and schedule two 
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independent threads at the same time. The execution speed is increased due to the more efficient 

use of the shared execution unit.  

The improvements of lithography not only reduces the heating of processor, but also is able to 

miniaturize the chip size, which make it possible to put multiple execution units (called “cores”) 

on the same processor die. The multi-core processors can actually execute multiple instructions at 

the same time. In recent years, multi-core processors gradually become ubiquitous, being found 

on devices ranging from high-end servers to tablets and smartphones. CPUs with tens or hundreds 

of processors are already available [62]. Current desktop processors are often multi-core designed 

and combined with HT technology. These multi-core processors are homogeneous shared-memory 

architectures that all cores are identical to each other. Such system is also called symmetric multi-

processor (SMP) system. 

A natural thought of improving computational power is connecting multiple SMPs by low-latency 

networks. Processors of one SMP cannot access memories on other SMPs. In other word, 

memories are distributed across these SMPs. SMPs communicate with each other through sending 

and receiving messages. The distributed system is highly extensible. 

Not all computing systems are symmetric. Asymmetric or heterogeneous multi-core systems also 

exist. An example is the Cell Broadband Engine [63], which contains two PowerPC cores and 

additional vector units called Synergistic Processing Elements (SPE). Each SPE has a 

programmable vector co-processor with a separate instruction set and local memory. Other widely 

used heterogeneous multi-core systems include general purpose graphic processing unit (GPGPU) 

[64]. The GPGPU is a massively parallel device that contains thousands of simple execution units 

connected to a shared memory. For this reason, the GPGPU is often called many-core processors. 

Because the RAM chips do not provide enough bandwidth to all cores at the maximum speed, the 
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memory is organized in a complex hierarchy. GPGPU is usually manufactured as a separate GPU 

cards that can be inserted into a host computer and work under the control of host CPU. During 

execution, after host CPU launches and initializes the GPU, data is sent to the device memory on 

the GPU through buses. After computation, results are fetched back to host memory and the GPU 

is shutdown. 

The hardware of modern multi-core processors are highly complex. This complexity cannot be 

ignored and instead it has to be carefully treated and exploited while programming to fully take 

advantages of new hardware features. Writing efficient parallel applications for multi-core and 

many-core processors requires detailed knowledge of the processor internals and proper 

coordination of communications and computations across available cores. 

With software designed for distributed processing including distributed Operating System, task 

scheduling software, data persistence software, distributed file systems provided, geographically 

distributed systems can form a larger computing systems called Cloud Computing. Cloud 

computing is a model that enables on-demand remote access to a shared pool of resources. 

Different cloud service models are identified by the type of resources provided. In software as a 

service (SaaS) clouds, users access application services running in the cloud infrastructure. 

“Google Apps” is an example of SaaS cloud. A platform as a service (PaaS) clouds provide tools 

such programming languages and libraries to develop programs and a hosting environment for 

applications developed by cloud users. AppEngine provided by Google, Azure provided by 

Microsoft, and Elastic Beanstalk provided by Amazon are examples of PaaS cloud. Infrastructure 

as a service (IaaS) clouds provide low-level computing services such as processing, storage, and 

networks that users can run any applications including Operating Systems. Amazon Web Service 
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is an example of IaaS. Details of distributed and cloud computing services and their limitations 

can be found in [65] 

1.3 Thesis Objectives 

This project has two major objectives: 

 Discuss three applications of RBFs. In this work, the following applications are discussed 

and implemented: 

o Modeling of calcium dynamics in in cardiac myocytes. This application needs to 

solve a system of nonlinear partial differential equations (PDEs) over a time series. 

This is accomplished by RBF interpolation. 

o Image restoration and transformation. In this application, a variation of RBF 

interpolation called anisotropic RBF interpolation is used to preserve image 

features while restoring image from triangular mesh. Isotropic image translation, 

rotation and anisotropic image upscaling (also called image super-resolution) are 

researched and implemented. 

o Porous structure construction. In this application, a porous structure is constructed 

from volumetric meshes (tetrahedron or hexahedron mesh). Firstly, anisotropic 

RBF is used to interpolate internal voxels of structure. Secondly, an iso-surface is 

taken to obtain the final structure. 

 Investigate parallelization of calcium dynamics application using a shared memory model 

(OpenMP), and a heterogeneous memory model (CUDA). Explore different parallel 

optimization techniques to reach the peak performance as close as possible. Investigate 

CUDA parallelization of image restoration application. In both applications, factors that 

affect performance as well as pros and cons are discussed.  
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Chapter 2 Modeling of Calcium Dynamics 

2.1 Introduction 

Heart failure has been one of the leading causes of human deaths in many countries including the 

United States. The prevalence of this disease is largely due to lack of accurate understanding of 

excitation-contraction (E-C) coupling in cardiomyocytes [66] [67] [68]. For its central role in E-C 

coupling, modeling Ca2+ release and concentration change has been an active research area. This 

chapter investigates spatial-temporal variations of intra-cellular calcium concentration at cellular 

and sub-cellular levels. At these scales, deterministic methods utilizing partial differential 

equations (PDEs) are more appropriate than stochastic methods [69] [70]. The local radial basis 

function collocation method (LRBFCM) developed by Sarler and Vertnik [5] has been applied to 

solving the PDEs in earlier work [1]. This meshless method eliminates the generation of meshes, 

as commonly required in finite element methods. However, the computational costs of such 

simulations are very high, especially when realistic geometries are considered. To this end, the 

main contribution of the present work is to reduce the computational time by employing modern 

parallel computing techniques and make comparisons between the different approaches on the 

specific simulation problem for numerical simulations of calcium dynamics in cardiac myocytes. 

Traditional techniques on parallel computing are MPI (Message Passing Interface) and OpenMP. 

MPI is a distributed-memory architecture that communicates between different machines by 

sending and receiving messages. OpenMP, on the other hand, is a shared-memory architecture and 

works on a single machine with multiple processors. Computation on graphics processing units 

(GPUs) is a new parallel methodology, which has become increasingly popular in recent years. It 

is a heterogeneous-memory architecture and uses graphic cards as co-processors. Modern GPUs 



19 

 

have thousands of cores, which makes it well suited for large-scale data parallelism. There are 

three programming models on GPUs, namely, Open Computing Language (OpenCL), Compute 

Unified Device Architecture (CUDA), and DirectCompute. Among these models, CUDA is the 

most user-friendly and widely used, thus we decided to use CUDA in present work. In this 

experiments, the computational performance and simulation accuracy of the serial version of the 

algorithm are compared to both OpenMP (with 4 cores) and GPU-CUDA implementations. 

2.2 Mathematical Models and Meshless Numerical Methods 

2.2.1 Governing Equations 

To model calcium dynamics in cardiac myocytes, the following nonlinear reaction-diffusion 

equations, modified from [71], are considered: 

𝜕[𝐶𝑎2+]𝑖

𝜕𝑡
= 𝐷𝐶𝑎∇2[𝐶𝑎2+]𝑖 − ∑ 𝑅𝐵𝑚

3

𝑚=1

− 𝑅𝐵𝑠
, 𝑖𝑛 Ω ( 3 ) 

𝜕[𝐶𝑎𝐵𝑚]

𝜕𝑡
= 𝐷𝐶𝑎𝐵𝑚

∇2[𝐶𝑎𝐵𝑚] + 𝑅𝐵𝑚
, 𝑖𝑛 Ω, 𝑚 = 1, 2, 3 ( 4 ) 

𝜕[𝐶𝑎𝐵𝑠]

𝜕𝑡
= 𝑅𝐵𝑠

, 𝑖𝑛 Ω ( 5 ) 

𝜕[𝐶𝑎2+]𝑖

𝜕𝑡
= 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, 𝑜𝑛 𝜕Ω ( 6 ) 

where Ω is the interior of cell and 𝜕Ω is the cell surface and t-tubule membrane. In [71], the 

calcium flux term 𝐽𝐶𝑎𝑓𝑙𝑢𝑥 is defined in the entire domain, although it always takes a zero value at 

internal nodes. In this work, however, this term is explicitly defined only on the boundary 𝜕Ω. 

Therefore, instead of merging the calcium flux term in the first equation, we have an additional 

equation ( 6 ). 
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The initial conditions (resting states) used are as follows: [𝐶𝑎2+]𝑖 = 0.10𝜇𝑀, [𝐶𝑎𝐵1] = 11.92𝜇𝑀, 

[𝐶𝑎𝐵2] = 0.97𝜇𝑀 , [𝐶𝑎𝐵3] = 0.13𝜇𝑀 , [𝐶𝑎𝐵𝑠] = 6.36𝜇𝑀 . Note that this model and methods 

examine a portion of the cell, in which reflective boundary conditions are applied during numerical 

simulation on the part of 𝜕Ω where it is not the cell surface or t-tubule membrane. The reactions 

between Ca2+ and buffers are given by 

𝑅𝐵𝑚
= 𝑘+

𝑚([𝐵𝑚] − [𝐶𝑎𝐵𝑚]) ⋅ [𝐶𝑎2+]𝑖 − 𝑘−
𝑚[𝐶𝑎𝐵𝑚], 𝑚 = 1, 2, 3 ( 7 ) 

𝑅𝐵𝑠
= 𝑘+

𝑠 ([𝐵𝑠] − [𝐶𝑎𝐵𝑠]) ⋅ [𝐶𝑎2+]𝑖 − 𝑘−
𝑠 [𝐶𝑎𝐵𝑠] ( 8 ) 

In our model, three types of mobile Ca2+ buffers (Fluo-3, ATP, and calmodulin, denoted by 

𝐵𝑚, 𝑚 = 1, 2, 3) and one type of stationary Ca2+ buffer (troponin, denoted by 𝐵𝑠) are considered. 

Their concentrations are denoted by [𝐶𝑎𝐵𝑚], 𝑚 = 1, 2, 3, [𝐶𝑎𝐵𝑠]  respectively. At the resting 

(initial) state, all buffers were distributed uniformly throughout the cytosol but not on the cell 

membrane. The resting concentrations of mobile and stationary buffers satisfy equilibrium 

conditions (i.e. 𝑅𝐵𝑚
= 𝑅𝐵𝑠

= 0) [66]. The initial concentrations of buffers are calculated in 

equilibrium with the resting Ca2+ concentration, 0.1𝜇𝑀. The total Ca2+ flux, 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, on the surface 

membrane is defined in [66] where Ca2+ influx / efflux through L-type calcium channels (LCCs) , 

sodium-calcium exchangers (NCXs), Ca2+ pumps and background leaks are included. 𝐽𝐶𝑎𝑓𝑙𝑢𝑥 

throughout the cell surface membrane and the surface of t-tubules is defined as follows: 𝐽𝐶𝑎𝑓𝑙𝑢𝑥 =

𝐽𝐶𝑎 + 𝐽𝑁𝐶𝑋 − 𝐽𝑝𝐶𝑎 + 𝐽𝐶𝑎𝑏, where 𝐽𝐶𝑎 is the total LCC Ca2+ influx; 𝐽𝑁𝐶𝑋 is the total NCX Ca2+ influx; 

𝐽𝑝𝐶𝑎 is the total Ca2+ pump efflux; and 𝐽𝐶𝑎𝑏 is the total background Ca2+ leak influx. 

2.2.2 Geometric Model Considered 

According to [72], [73], [74], a ventricular myocytes may be simplified as repeated structural units 

consisting of a single t-tubule and its surrounding half sarcomeres. The surrounding half 
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sarcomeres are modeled as a cube-shaped box with dimension of 2𝜇𝑚 × 2𝜇𝑚 × 7𝜇𝑚, enclosing 

a t-tubule with dimension of 0.2𝜇𝑚 × 0.2𝜇𝑚 × 6.8𝜇𝑚. The t-tubule is assumed to be a tiny cube 

located vertically in the center of sarcomeres, as shown on Figure 8 (a). 

2.2.3 Space Discretization (LRBFCM) 

The time domain in the system of reaction-diffusion equations is discretized uniformly and 

explicitly. Thus, the Laplacian term needs to be approximated in each equation with certain spatial 

discretization. The LRBFCM is used to approximate the Laplacian term ∇2𝑢(𝒙, 𝑡) in ( 3 ), ( 4 ). 

One may refer to [66] [75] [76]for details. The main idea of LRBFCM is that the collocation can 

be done on overlapping local domains, yielding many systems of equations with small matrices 

instead of a single large matrix. The size of the collocation matrices depends on the number of 

nodes in the local domains. 

Briefly speaking, ∇2𝑢(𝒙, 𝑡) at each node 𝒙𝑖, 𝑖 = 1, 2, ⋯ , 𝑁, is approximated by its neighbors. The 

local domain Ω𝑖 associated with 𝒙𝑖 can be created using the n-nearest neighbors to 𝒙𝑖 including 

itself, i.e. {𝒙𝑘
[𝑖]

}
𝑁

𝑘=1
⊂ Ω𝑖. In this work, the number of points in each local domain is fixed at 𝑛 =

7. To approximate ∇2𝑢(𝒙𝑖, 𝑡), 𝑢(𝒙𝑖, 𝑡) is interpolated on Ω𝑖 by using RBF 𝜙(𝑟) as follows: 

𝑢 (𝒙𝑗
[𝑖]

, 𝑡) = ∑ 𝑤𝑘
[𝑖]

⋅ 𝜙 (‖𝒙𝑗
[𝑖]

− 𝒙𝑘
[𝑖]

‖)

𝑛

𝑘=1

, 𝑗 = 1, 2, ⋯ , 𝑛 ( 9 ) 
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where the weights 𝑤𝑘
[𝑖]

 are unknown but can be solved by ( 2 ). In current work, the multiquadrics 

(MQ) basis function is used although other radial functions can be used as basis functions as well. 

The shape parameter 𝑐 = 300 is used in order to achieve fast convergence. 

Based on ( 3 ), ( 4 ) the calcium influx 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, reactions 𝑅𝐵𝑚
, 𝑚 = 1, 2, 3, 𝑠 and Laplacian term 

∇2[𝐶𝑎2+]𝑖 need to be approximated. Because the points we used are fixed in the given geometric 

space over time, the Laplacian weights 𝑤𝑘
[𝑖]

 are constants for each point and thus can be pre-

calculated. However, the 𝐽𝐶𝑎𝑓𝑙𝑢𝑥, 𝑅𝐵𝑚
, 𝑚 = 1, 2, 3, 𝑠 and ∇2[𝐶𝑎2+]𝑖 will be updated in each time 

step. Figure 8 (b) shows the algorithm. In general, the numerical solution is found iteratively. At 

the end of each iteration, a result is tested against a pre-defined criteria. The iteration continues 

until a result satisfies the given criteria (converged). 

Figure 8 (a) The model considered in current study, containing the t-tubule (blue), surrounding half 

sarcomere (red), and external cell membrane (green). (unit: 𝜇𝑚). (b) Flow chart of the meshless 

algorithm for modeling of calcium dynamics. 
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2.3 Results and Discussion 

The geometric model shown in Figure 8 (a) is considered to simulate calcium dynamics and 

compare the performances of OpenMP, GPU and serial implementations. The model is discretized 

in three resolutions: Set 1 contains a total of 3,969 points (including 136 T-Tubule points and 80 

cell membrane points) with a node distance of 0.2𝜇𝑚. Set 2 contains a total of 30,807 points 

(including 545 T-Tubule points and 360 cell membrane points) with a node distance of 0.1𝜇𝑚. Set 

3 contains a total of 234,921 points (including 2,185 T-Tubule points and 1,512 cell membrane 

points) with a node distance of 0.05𝜇𝑚. The time steps for the three cases are 8𝑒−3 𝑚𝑠, 4𝑒−3 𝑚𝑠 

and 1𝑒−3 𝑚𝑠 respectively to make the PDEs converge. The total time simulated is 400 𝑚𝑠. 

Figure 9 shows the numerical results. Concentrations of Ca, Fluo, ATP, Cal, and TN are shown in 

(a) – (e) respectively. Unit for all concentrations is 𝜇𝑀. 
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Figure 9 Results of calcium dynamics. Vertical coordinate illustrates concentrations in 𝜇𝑀. (a) Concentration of 

Ca over time. (b) Concentration of Fluo over time. (c) Concentration of ATP over time. (d) Concentration of Cal 

over time. (e) Concentration of TN over time. 
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Chapter 3 Anisotropic Image Restoration and Transformation 

3.1 Introduction 

Image restoration is the operation of converting noisy or corrupted image to the clean original 

image. Corruption may appear because of motion blur, noise, and camera misfocus, etc. A similar 

operation is the image enhancement. But image enhancement emphasizes on features of the image 

to make it visually improved to viewers, but does not necessarily produce realistic data. Image 

restoration, however, uses a priori model to produce an image.  

Modern imaging technologies often digitize an image into a uniform array of pixels (or voxels in 

3D). A natural thought is using these pixels to restore an image. But with uniformly sampling, the 

sampling density is inevitably too high in regions where intensities change slowly and too low in 

regions whose intensities change rapidly. Despite the ease of use in both hardware and software 

developments, uniformly-digitized images often pose challenges in data storage and transmission, 

as well as image processing, especially in 3D medical images that have been consistently and 

significantly grown in size in recent years. Evolving from previously commonly-used uniform 

sampling, non-uniform sampling and adaptive mesh triangulation of an image has become an 

active research area in image processing. Image triangulation involves partitioning an image into 

a collection of non-overlapping small triangles called mesh elements (also called faces or triangles). 

This procedure often serves as an image coding method, meaning that an image in pixels is 

compressed by using a number of “super-pixels”. This method is a compact way to represent 

images for effective data storage and transmission, and also an efficient way to process and 

visualize images, especially for 3D images where the number of voxels can be extremely large. In 

addition, the resulting mesh edges are expected to be well aligned with image features (edges or 
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corners) in order to maintain a faithful restoration of the original image. Mesh modeling of an 

image has many applications like porous structure design in tissue engineering [77], image 

compression [78] [79] [80] [81], motion tracking and compensation [82] [83] [84] [85] [86] [87] 

image processing by geometric manipulation [88], medical image processing [89] [90] [91] [92], 

feature detection [93], pattern recognition [94], computer vision [95] [96], restoration [97], 

tomographic reconstruction [98], interpolation [99] [100] [101], image/video coding [102] [103] 

[104] [105] [106] [107], video modeling [108], image retargeting [109] and registration [110] [111] 

[112]. 

A common procedure of image triangulation consists of two steps: 1) generating mesh nodes 

(vertices) by choosing a set of sampling points defined in the image domain, and 2) connecting 

these mesh nodes by Delaunay triangulation [113]. Delaunay triangulation is a geometric operator 

and can avoid long and thin triangles that often lead to poor approximations. The selection of 

sampling nodes, however, is data-dependent, where the connectivity of the triangulation depends 

on the data set, based on which the mesh nodes are generated. Depending on how to generate mesh 

nodes, there are two categories of the image triangulation. The first one places mesh nodes inside 

the image features but near both sides of feature edges. So the triangulated images of this category 

show double-layer vertices at both sides of feature edges. The second category places mesh nodes 

directly at the feature edges, thus there are only single-layer vertices defined right on feature edges. 

Yang et al. [114] employed Floyd-Steinberg error-diffusion (ED) algorithm to place mesh nodes 

so that their spatial density varies according to the local image content. As a result, the triangulated 

images fall into category I. Adams [115] employed greedy-point removal (GPR) and error-

diffusion scheme together to achieve meshes of quality comparable to the original GPR scheme 

but at a much lower computational and memory complexities. With the conjunction of smoothing 
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operators, this method produces image triangulation of category I. Adams also proposed a 

framework in [116] for mesh generation by fixing various degrees of freedom available within that 

framework. This method performs extremely well and produces meshes of higher quality than the 

GPR method, and is considered as a method of category I as well. By contrast, Li et al. [117] 

proposed a modified version of Rippa [118] and Garland-Heckbert (GH) [119] frameworks which 

can generate single-layer mesh nodes on edges, and this framework generates triangulated images 

of category II. Another method of this category was proposed by Tu et al. [120], based on 

constrained Delaunay triangulations. In this method, the approximating function is not required to 

be continuous everywhere but with discontinuities being permitted across constrained edges of 

triangles in triangulation. 

Both categories of image triangulation generated by the methods mentioned above have their 

advantages and disadvantages. For the first category (double-layer vertices), the quality of image 

restoration is usually better because all vertices are well defined on images features thus the 

intensities of pixels during image restoration process will not be affected by edges. As a result, the 

edges in the recovered images are sharp and the Peak Signal-to-Noise Ratio (PSNR) is usually 

higher. While the restoration quality of methods in category I is high enough for subjective quality 

testing, the two layers must be very close to each other in order to have well-defined and sharp 

image edges. A consequence of this is that the resulting meshes can easily contain lots of thin and 

long triangles between the two layers, which could cause large approximation errors when the 

meshes are used for numerical analysis (like finite element analysis). Additionally, in many 

applications, the direct communication between different materials should be maintained, meaning 

that no “cushion” layer between materials should be introduced in the meshes. Moreover, using 

two layers of mesh vertices usually has more storage cost, resulting more memory space to be used 
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and more time to transmit it over the network. Methods of category II avoid the small triangles 

and also the “cushion” layer problem, thus the mesh quality is usually better if proper steps are 

taken. However, the vertices are defined on feature edges, where the nodal intensities are 

ambiguously defined. That is, the intensity of an edge pixel will be contributed by both sides of 

the image edge. As will be shown in the experiments, the restored images often suffer from blurred 

and distorted feature edges if it is not properly addressed. 

Because the image restoration method in this project is a single step in image processing, the same 

mesh will be used for numerical analysis in the future thus a method that lies in the second category 

(single-layer approaches) is more interested for this project because the obvious limitation of 

methods of category I. However, in order to address the blurring and distortion problems often 

seen in existing approaches in this category, a method based on the radial basis function (RBF) 

interpolation is proposed with the following improvements: 1) rather than considering only the 

Euclidean distances between vertices, this method also takes into consideration the image local 

orientations, yielding an anisotropic radial basis function (ARBF) and 2) this method does not use 

intensities of vertices directly, but instead utilize the intensities of triangles to eliminate the 

uncertainty of nodal intensities on feature edges. 

This method provides a new approach to restore image from triangular mesh. Because triangular 

mesh representations of images have much fewer nodes (sampling rates are often as low as 5% - 

6%) defined, storage, transmission, and image operations like smoothing, sharpening, etc. will be 

much faster at the mesh domain instead of pixel domain. Also, this proposed method can be used 

to visual verification for image operations done in mesh domain. 

Image transformation is a function that takes an image as its input and produces an image as its 

output. The input and output image may appear similar but having different interpretations or 
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entirely different, depending on the transform chosen. These transforms can be performed in 

spatial domain or frequency domain. Examples of image transformation includes Fourier 

transform, principal component analysis (PCA) and various spatial filters. Like geometric 

transformation in computer graphics field, image transformation in spatial domain includes 

translation, rotation and scaling. Translation of an image means move an image to another location 

in coordinates system. Its implementation is simple that only an offset is added to the location of 

every pixel of the image. The output of image translation produces images with the same size and 

intensity as input image but different coordinates. Image rotation produces images with the same 

size, but rotated an angle around a given position comparing to the input image. Its implementation 

is also not complicated that a rotation matrix is multiplied to the location of every pixel of the 

image. One can use this operation to rotate and flip an image. 

Both translation and rotation are called rigid-body transformations (the image dimension is 

unchanged after transformation). Image scaling, however, changes image dimension after 

transformation. Image scaling relates image enlargement (upscaling) and shrinkage (downscaling). 

Interpolation techniques like bilinear, bi-cubic and nearest-neighbors are often used in its 

implementation. 

High resolution images or videos are usually desired in most digital imaging applications for two 

principal areas: improvement of pictorial information for human perception and automatic 

machine interpretation. There are five types of digital image resolution: pixel resolution, spatial 

resolution, spectral resolution, temporal resolution and radiometric resolution. This paper 

concentrates on spatial resolution. From spatial resolution perspective, digital images are 

comprised of many regularly aligned small elements called pixels. Two approaches can be applied 

to increase spatial resolution. The first one is using better imaging sensors like charge-coupled 
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device (CCD) or complementary metal-oxide-semiconductor (CMOS). But there is a limit on this 

approach because of the hardware cost and physical constraints. The other one is image super-

resolution (SR). 

Image super-resolution (SR) are techniques that construct high-resolution (HR) image(s) from 

low-resolution (LR) image(s). The basic idea is to combine multiple LR frames to generate a HR 

image. This paper focuses on another closely related technique - single image interpolation, which 

can often be used to increase the image size. Feature preserving image interpolation is an active 

area in the image processing. Many methods have been proposed in the past decades to tackle this 

problem [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133]. 

Nearest neighbor and bilinear interpolation are two simple methods for image interpolation, which 

are of order 0 and 1, respectively [121]. Despite their simplicity and very low computational cost, 

these methods suffer from severe blocky artifacts as well as blurring and ringing artifacts near the 

edges. Although better performance can be achieved by using higher order splines, oscillatory 

edges and ringing artifacts still exist in higher order spline methods [134]. The main reason is that 

these methods are intensity-based but not feature-based. They do not consider factors other than 

intensity. As the final recipient of any image processing, human visual system is very feature-

sensitive. These features are mostly edges and corners within the image thus the sharpness is also 

of high importance. Radial basis function interpolation incorporates intensity and location 

information so it performs better than those intensity-based methods. However, because the 

Euclidean distance it uses is isotropic regardless of image features, blurring artifacts are often 

found in RBF interpolated result. Anisotropic radial basis function (ARBF) interpolation solves 

this drawback by using anisotropic distance. For the interpolated point, contributions of neighbors 

are calculated by adaptive distance [135]. This chapter discusses a new image super-resolution 
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method based on ARBF. Moreover, this method operates on triangular meshes instead of pixels 

for several advantages. 

Triangulated image is comprised of many nodes (called vertices) and triangles (called faces). 

Traditionally, pixel-based interpolation is very popular for single-image SR problems because it 

is intuitive and easy to implement. Because triangular mesh of a digital image has much less 

vertices and faces comparing to the number of pixels, it provides a compressive representation of 

an image. Image operations like smoothing, denoising, etc. based on triangular mesh requires less 

time and memory space to compute, store and transmit. Triangulate image adaptively is desired 

because it generates many small triangles near the curve and corners and few large triangles on 

non-feature area. Thus it provides a good accuracy while keeps the number of triangles relatively 

small. 

The remainder of this chapter is organized as the following. Section 3.2.1 briefly summarizes the 

mesh generation method. Section 3.2.2 introduces image restoration using traditional isotropic 

RBF interpolation. The more accurate image restoration is presented in Section 3.2.3. Section 3.2.4 

shows the detailed algorithm of this method. The image super-resolution (SR) techniques used in 

this Section 3.3 are explained in Section 3.3.2. Finally, Section 3.4 shows the experimental results 

and discussions. Section 3.5 concludes this chapter. 

3.2 Anisotropic Image Restoration 

While mesh generation from images is not the main focus of this chapter, a brief summary of this 

step is given just for completion of the present work. Then more details of traditional (isotropic) 

radial basis function (RBF) interpolation is introduced, followed by the anisotropic RBF-based 
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interpolation for image restoration from meshes. The details of the implementation algorithm is 

given below as well. 

3.2.1 Adaptive Mesh Generation from Images 

A series of algorithms are used to generate high quality, feature-sensitive, and adaptive meshes 

from a given image. Firstly, three kinds of the sample points (namely, Canny's points, halftoning 

points, and uniform points) are generated. Secondly, a triangular mesh is generated from these 

points by using constrained Delaunay triangulation. The Canny's edge detector is employed to 

guarantee that important image features are preserved in the meshes. A halftoning-based sampling 

strategy is adopted to provide feature-sensitive and adaptive point distributions in the image 

domain. Finally, a Delaunay-triangulation is used to generate initial quality triangulation of the 

image. These steps are briefly summarized below. 

 Canny Sample Points  Image edges are important features in an image and need to 

be preserved in the obtained meshes. Canny edge detector is a well-known method to deal 

with boundary extraction. In this chapter, Canny edge detector is used to generate the initial 

Canny edge points and they are strictly attached to the boundary of the features of the 

image. However, the initial Canny edge points are too dense to yield quality meshes if all 

these edges are used as mesh nodes. In this method, the curvature information of every 

Canny's edge point is taken into account and the Principal Component Analysis (PCA) is 

used to determine the sampling density. The PCA method can detect the overall attribute 

of the neighbors of a certain size by a statistical way. After the PCA sampling, tiny features 

and features with high curvature have dense sample points and big features or features with 

straight lines have sparse sample points. 
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 Halftoning Sample Points  The edge points generated by the Canny edge detector 

described above can only capture pixels on or near the image edges. In order to have a 

decent initial mesh, one has to scatter some more points in the non-edge regions of the 

image. The halftoning sample points are adopted based on the approach described in [114]. 

This method generates the sample points using the second derivatives of an image, where 

most of the sample points are placed near the image features (edges). 

 Uniform Sample Points  Although the halftoning sample points can cover most non-

edge regions of the image, it is possible that no point (either Canny or halftoning) is found 

in regions of almost constant intensities. Therefore some points need to be generated 

uniformly to cover the rest of the images where the first two types of sample points are not 

located. A point (𝑥, 𝑦) is said to be a valid uniform sample point if no Canny's or halftoning 

points are found in its neighborhood in a fixed distance. 

 Mesh Generation via Constrained Delaunay Triangulation  The sample points 

found above are used to generate the triangular mesh for a given image by using the 

Delaunay triangulation. A popular open source software Triangle [136] is employed for 

Delaunay triangulation. In order to guarantee the obtained meshes being well aligned with 

image edge features, a set of line segments are filled in Triangle as additional constraints 

formed by connecting the Canny's sample points along the detected Canny's edges. With 

all the described strategies combined, high quality, feature-sensitive, and adaptive meshes 

are generated from a given grayscale image. Some meshing examples will be shown in the 

results section below. 
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3.2.2 Radial Basis Function (RBF) Interpolation 

Image restoration is all about restoration intensities of every pixel of the image. As Section 3.1 

explained, in this application, triangular mesh representation of an image is used to determine the 

intensities of pixels of the image by interpolation. 

One question about restoring image from triangular meshes is: what intensities should be used, 

intensities on vertices or intensities on faces? In the mesh generation approach described above, 

many vertices are placed on image edges. These vertices are good to capture image gradients (or 

orientations) but not for image intensities because there is an ambiguity in assigning intensity to a 

node defined on an edge, as illustrated for blue nodes in Figure 10 (a). Obviously, a very small 

change (or error) on the location of blues nodes would make a big interpolation difference if the 

mesh vertices are used as the nodal values in RBFs. A better way is to use face centers as the nodal 

values for RBF interpolations, which can eliminate the ambiguity and is less sensitive to mesh 

Figure 10 Example of interpolation. (a) Interpolation by vertices. Green dots are vertices defined on 

feature. Blue dots are vertices defined on feature edge. (b) Interpolation by faces. Green dots are face 

centers. Blue dots are face centers used for interpolation of the intensities of pixels enclosed by the blue 

triangle. 
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errors. Figure 10 (b) shows this idea, where the face centers are more robust to the location changes 

of mesh vertices. Results of vertex-based RBF interpolation and triangle-based RBF interpolation 

can be found in Figure 13 (c) and Figure 13 (d) in Section 3.3. Taking the intensities of triangles 

as input, the weights can be solved by ( 2 ). 

Although using face centers performs better than the vertex-based RBF interpolation, the 

traditional RBF is isotropic in the sense that only the geometric distance information is considered, 

which often causes blurring and distortion artifacts as can be seen in Figure 13 (d). To capture the 

anisotropicity of the image features, the direction of image edges has to be considered as well. 

Otherwise, nodes across feature edges may have strong influence on the pixel being interpolated. 

Figure 11 (a) shows the cause of the blurred edge problem. x is the pixel whose intensity needs to 

be calculated. The intensities on nodes x1 and x2 are two of the neighbors used for interpolation. 

The weights of them are determined only by the Euclidean distance to x based on the definition of 

traditional RBF. However, x1 is on the other side of the feature edge, so it should have much less 

influence on x than x2. The isotropic RBF has a hyper-spherical support domain which cannot 

satisfy this data-dependent requirement. Thus the intensity on x is blurred by x1. By contrast, 

Figure 11 Interpolation schemes. (a) Isotropic RBF interpolation. (b) Anisotropic RBF interpolation. (c) 

Eigenvectors on an edge pixel. e1 shows the normal direction. e2 shows the tangent direction. 
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Figure 11 (b) shows the anisotropic RBF (ARBF) interpolation. The support domain of ARBF is 

a hyper-ellipsoid. By choosing proper shape parameter, the support domain could rule out the 

interfering node x1 , or give insignificant weight to node x1 . Thus the blurring effect will be 

eliminated and sharp features can be well retained. Section 3.2.3 elaborates on the detail of 

designing anisotropic radial basis functions for image restoration. 

3.2.3 Anisotropic Radial Basis Function (ARBF) Interpolation 

The main difference between the isotropic and anisotropic RBFs is the definition of distance 

metrics used. As in [135], the anisotropic RBF is defined as follows: 

Definition 1. Given N distinct points 𝑋 = {𝒙𝑗 ∈ ℝ𝑑}
𝑗=1,⋯,𝑁

 and a 𝑑 × 𝑑 positive definite matrix 

T, the anisotropic radial basis function associated with a radial basis function 𝛷𝑗(∙) =

𝜙 (‖∙ −𝒙𝑗‖
2

) is defined by  

𝛷𝑻,𝑗(∙) = 𝜙 (‖∙ −𝒙𝑗‖
𝑻

) ( 10 ) 

where ‖𝒙‖𝑻 = 𝒙𝑇𝑻𝒙. 

The support domain of ARBF is hyper-ellipsoid instead of a hyper-sphere in traditional RBF. Its 

center is 𝒙𝑗, associated with the quadratic form (𝒙 − 𝒙𝑗)
𝑇

(𝒙 − 𝒙𝑗). Interested readers can refer to 

[137] [138] for more details of ARBF. 

To construct the metric T, the image structure tensor is used 

𝐺𝜎 ∗ [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ] 
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where 𝐺𝜎  is the Gaussian smooth operator, and [
𝐼𝑥

𝐼𝑦
]  is the image gradient at a pixel. Two 

eigenvectors e1 and e2 are the normal and tangent directions of the edge, respectively, as shown 

in Figure 11 (c). The corresponding eigenvalues are λ1 and λ2. The anisotropic metric is defined 

by 

𝐓 = [𝑒1 𝑒2] [
𝜆1 0
0 𝜆2

] [
𝑒1

𝑇

𝑒2
𝑇] ( 11 ) 

Similar to the isotropic RBF but with a modified distance metric, the ARBF image interpolation 

problem becomes 

u(𝒙) = ∑ 𝑤𝑖
′𝜙(‖𝒙 − 𝒙𝑖‖𝑻)

𝑁

𝑖=1

 ( 12 ) 

Please note that the matrix in ( 2 ) should also be updated accordingly with the new distance metric 

T. Therefore, the new set of weights 𝑤i
′ would be different from the weights 𝑤i in the isotropic 

RBF interpolation. 

3.2.4 Algorithms 

The following algorithm shows the steps of the proposed approach for image restoration from 

triangular meshes. The major step is the ARBF interpolation which comprises two sub-steps. First, 

the weight coefficients are solved by using the new distance metric T. As stated in section 3.2.2, 

this is done by taking intensities at triangle centers. Then the weights are applied to ( 12 ) to restore 

the intensity of each pixel. More details are explained in [139] 

Algorithm: Image Reconstruction 

ImageReconstruction() 

{ 
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 // read image mesh 

 loadMesh(); 

 

 // calculate intensities for each triangle center 

 calculateTriangleCenters(); 

 

 // find the neighboring vertices and triangles for  

 // each node 

 findNeighbors(); 

 

 // rescale eigenvalues in equation ( 11 ) 

 calculateEigenvalues(); 

 

 // calculate metric T in equation ( 11 ) 

 computeMetrics(); 

 

 // do the ARBF interpolation in equation ( 12 ) 

 ARBFInterpolation(); 

 

 // output result 

 printResult(); 

} 

ARBFInterpolation() 

{ 

 for (every triangle centers) 

  solveCoefficients(); 

 end 

 

 for (every triangles) 

  for (every pixel in current triangle) 

   applyCoefficientsToInterpolation(); 

  end 

 end 
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} 

3.3 Anisotropic Image Transformations 

3.3.1 Isotropic Image Transformations 

The coordinates of pixels of target image basically are linear transformations of coordinates of the 

original image. Mathematically, image translation can be implemented by adding an offset 

(translation vector) to original coordinates of image pixels. Written in matrix form as 𝑃′ = 𝑃 + 𝑇, 

where 𝑃′ is the translated image coordinates, 𝑃 = [𝑥, 𝑦]𝑇 is the original coordinates, 𝑇 = [𝑡𝑥, 𝑡𝑦]
𝑇
 

is the offset. But translation is an affine transformation with no fixed points. Matrix multiplication 

always have the origin as a fixed point. So the homogeneous coordinates can be used to represent 

a translation of a vector space with matrix multiplication. Using homogeneous coordinate as a 

workaround, image translation can be written in matrix multiplication 𝑃′ = 𝑇(𝑡𝑥, 𝑡𝑦) ⋅ 𝑃. In detail, 

this equation can be written as  

[
𝑥′

𝑦′

1

] = [
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

] ⋅ [
𝑥
𝑦
1

] ( 13 ) 

To perform image rotation, a rotation angle 𝜃 and a position (rotation point or pivot point) (𝑥𝑟 , 𝑦𝑟) 

need to be specified. Positive 𝜃  defines a counterclockwise rotation and negative 𝜃  defines a 

clockwise rotation. Mathematically, assuming the origin is the pivot point, image rotation can be 

defined as 𝑃′ = 𝑅 ⋅ 𝑃, where 𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]. For arbitrary pivot point, the pivot point can 

be move to the origin along with the image, then the rotation is performed and finally the pivot 

point is translated back to previous coordinates along with the image. Similar to image translation, 

image rotation can be written in matrix multiplication form represented by homogeneous 

coordinates as 𝑃′ = 𝑅(𝜃) ⋅ 𝑃. In detail, this equation can be written as  
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[
𝑥′

𝑦′

1

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] ⋅ [

𝑥
𝑦
1

] ( 14 ) 

Unlike translation and rotation, image scaling is not rigid-body transformation and changes the 

image dimension, with respect to the origin. To perform image scaling, scaling factors (𝑠𝑥, 𝑠𝑦) and 

a fixed point need to be specified. Mathematically, image scaling with respect to the origin can be 

defined as 𝑃′ = 𝑆 ⋅ 𝑃, where 𝑆 = [
𝑠𝑥 0
0 𝑠𝑦

]. For arbitrary fixed point scaling, the fixed point can 

be moved to the origin along with the image, then the scaling is performed and finally the fixed 

point is translated back to previous coordinates along with the image. There are several cases to 

discuss. Case 1: if 𝑠𝑥 < 1 𝑎𝑛𝑑 𝑠𝑦 < 1, image dimension is reduced (downscaling). Case 2: if 𝑠𝑥 =

1 𝑎𝑛𝑑 𝑠𝑦 = 1, image dimension is unchanged. Case 3: if 𝑠𝑥 > 1 𝑎𝑛𝑑 𝑠𝑦 > 1, image dimension is 

increased (upscaling). Case 4: if 𝑠𝑥 = 𝑠𝑦, scaling is uniform. Case 5: if 𝑠𝑥 ≠ 𝑠𝑦, scaling is different. 

Case 6: if 𝑠𝑥 𝑜𝑟 𝑠𝑦 is negative, the image is not only resized, but also its coordinates are reflected 

about the coordinate axes. Similar to rigid-body transformation introduced above, image scaling 

can be written in matrix multiplication form represented by homogeneous coordinates as 𝑃′ =

𝑆(𝑠𝑥, 𝑠𝑦) ⋅ 𝑃. In detail, this equation can be written as 

[
𝑥′

𝑦′

1

] = [
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

] ⋅ [
𝑥
𝑦
1

] ( 15 ) 

In practice, image could be transformed according to a given transformation sequence. Instead of 

perform transformation at every stage, transformations can be composited to a single stage to get 

better performance. For example, if an image needs 3 transformations: 𝑃′ = 𝑀3 ⋅ 𝑀2 ⋅ 𝑀1 ⋅ 𝑃. The 

composite transformation can be written as matrix multiplication 𝑃′ = 𝑀 ⋅ 𝑃, where 𝑀 = 𝑀3 ⋅

𝑀2 ⋅ 𝑀1. 
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The image transformations (translation, rotation and scaling) introduced above are all isotropic. 

Because translation and rotation are rigid-body transformations, they do not change image features. 

Image scaling, however, change image dimensions after transformation, which will blur image 

features because isotropic scaling only considers the coordinates of pixels and thus is not feature-

sensitive. To better preserve image features, anisotropic scaling is required. 

3.3.2 Anisotropic Image Scaling 

Based on this, the interpolated image is resampled according to the new dimension. Figure 12 

shows this idea. Gray triangle which is currently considered in original image (smaller on the left) 

is mapped onto the target image (larger on the right). Each triangle in the enlarged image contains 

more pixels. Intensities of pixels in each triangle are determined by ARBF interpolation described 

in section 3.2.3. Unlike traditional interpolation on pixels, our proposed SR method uses triangle-

Figure 12 Resampling of original image (M × N) to target image (X × Y). As the gray 

triangle shows, every triangle in target image keeps the shape unchanged but has larger 

sampling density. 
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based interpolation. The following algorithm shows the full process. The first step is triangulating 

the input image to generate the triangular mesh described in section 3.2.1 and calculating 

eigenvalues and corresponding eigenvectors defined on vertices. Then calculate intensity, 

eigenvalues and corresponding eigenvectors of each triangle (represented by triangle center) by 

taking average of three vertices of current triangle. The neighborhood of vertices and triangles 

need to be determined for calculating anisotropic metric. The eigenvalues of triangles are rescaled 

according to [138]. The eigenvalues and eigenvectors of triangles are then used for calculating 

anisotropic metric mentioned above. The interpolation is performed on triangles one by one. 

During the interpolation, the current triangle is first resampled to contain more pixels, then ARBF 

interpolation method is used when interpolate each pixel. 

The formal algorithm is described below: 

ALGORITHM: Image Super-resolution 

INPUT: original image 

OUTPUT: enlarged image 

ImageSuperresolution() { 

 // image triangulation described in section 3.2.1 

 triangulate(); 

  

 // calculate intensities for each triangle center 

 calculateTriangleCenters(); 

  

 // find neighboring vertices and triangles for nodes 

 findNeighbors(); 

 

 // rescale eigenvalues 

 calculateEigenvalues(); 

 // calculate anisotropic metric 

 computeMetrics(); 
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 // do the ARBF interpolation 

 ARBFInterpolation(); 

 

 // output result 

 printResult(); 

} 

 

ARBFInterpolation() { 

 for (every triangle) { 

  solveCoefficients(); 

  resampling(); 

  for (every pixel in current triangle) 

   interpolate(); 

 } 

} 

3.4 Results and Discussion 

Numerous experiments have been conducted on publicly available images by using the proposed 

approaches and the image restoration results are all promising. Due to the space limit, only the 

well-known “Lena” image and three medical images of different sizes are considered. Figure 13 

(a) is the original Lena image of size 256 × 256 pixels. Figure 13 (b) is the result of assigning a 

constant intensity to all pixels in a mesh triangle (so-called piecewise interpolation). Obviously 

this result shows heavy mosaic effect. Figure 13 (c) is the result of iso-RBF interpolation using 

intensities on vertices. As previously stated on section 3.2.2 the ambiguity of intensities on vertices 

blurred the result. Figure 13 (d) is the result of iso-RBF interpolation using intensities on triangle 

centers. In this case, there is no ambiguity of intensities. So the result is much better comparing to 

Figure 13 (c). However, the feature edges are still blurred and some distortions are clearly seen 
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because of the lack of directional information used in isotropic RBF. Figure 13 (e) is the result of 

ARBF interpolation using intensities on triangle centers with multi-quadrics (MQ) basis function. 

The result is much better thanks to a modified distance metric that incorporates both geometric 

distances and data-dependent feature orientations. Figure 13 (f) is similar to Figure 13 (e), except 

that the basis function is inverse multi-quadrics (IMQ). Other basis functions like Gaussian and 

Thin-Plate-Spline (TPS) are also tested. However, it is hard to find a proper shape parameter to 

get a reasonable result for Gaussian, and the TPS basis does not converge. 

Figure 13 Summary of restoration of Lena. (a) Original Lena image. (b) Result of piecewise interpolation. (c) 

Result of vertex-based iso-RBF interpolation. (d) Result of triangle-based iso-RBF interpolation. (e) Result of 

triangle-based ARBF interpolation using MQ basis. (f) Result of triangle-based ARBF interpolation using IMQ 

basis. 
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More details of the Lena experiment are shown in Figure 14. Figure 14 (a) is the original Lena 

image, the same as Figure 13 (a). Figure 14 (b) is the mesh generated by the method outlined in 

section 3.2.1. Figure 14 (c) is the recovered image, which is the same as Figure 13 (e). To visually 

see the generated mesh and compare the difference between the original and restored images, 

Figure 14 (d) - (f) are the zoomed-in views of Figure 14 (a) - (c), respectively. As the results show, 

the mesh quality is high enough for subsequent numerical analysis and the recovered image is very 

close to the original one. As a matter of fact, the restored image looks smoother due to the smooth 

radial basis functions used, and the sharp edge features are well preserved. Figure 15 shows the 

original brain MRI, its generated mesh, and the result of ARBF interpolation using intensities on 

triangle centers with the MQ basis function. The zoomed-in views show the quality of mesh and 

restoration as well. Figure 16 shows another MRI experiment of breast. Figure 17 shows a CT-

scanning experiment. From all these examples, one can see the effectiveness of this approach for 

image mesh generation and feature-preserving restoration. 

To give quantitative evaluation of the restored images, we use the widely-used peak signal-to-

noise ratio (PSNR) as defined below: 

𝑃𝑆𝑁𝑅 = 20 ∗ log10 (
255

𝑅𝑀𝑆𝐸
) 

𝑅𝑀𝑆𝐸 = √
∑ ∑ [𝑂(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]𝑁

𝑗=1
2𝑀

𝑖=1

𝑀 ∗ 𝑁
 

where M and N are the dimensions of the image. 𝑂(𝑖, 𝑗) is the original intensity at pixel (𝑖, 𝑗) and 

𝐼(𝑖, 𝑗) is the interpolated intensity at (𝑖, 𝑗). Table 1 gives a summary of the Lena image using 

different restoration approaches. The compression ratio in the table means the ratio of the number 

of vertices in the mesh vs. the number of pixels in the original image. The restored image with the 
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anisotropic RBF interpolation gives the best PSNR which conforms to the visual result. Table 2 

summarizes the other three data sets, where the running time of image restoration for each case is 

included and measured on a 2.5 GHz i5-3210m CPU and 2 GB RAM. The proposed algorithms 

were implemented in C language and will be released to the public. 

Lena (256 × 256, compression ratio is 6%) PSNR (db) Shape Parameter 

Piecewise Interpolation 22.9703 0.5 

Triangle-based ISO-RBF Interpolation 26.7367 0.5 

Triangle-based ARBF Interpolation (MQ) 28.2088 0.5 

Triangle-based ARBF Interpolation (IMQ) 27.1836 1.8 

Table 1 Summary of the Lena image (Figure 13) 

 

Data Size Compression 

Ratio 

PSNR(db) Shape 

Parameter 

Time 

(sec.) 

Brain 285 × 341 6% 15.7058 0.5 0.41 

Breast 512 × 512 5% 11.8763 0.5 1.10 

Heart 356 × 396 5% 10.5208 0.5 0.63 

Table 2 Summary of the three medical images (Figure 15, Figure 16, Figure 17) 

3.5 Conclusions 

This chapter describes a nonlinear interpolation method by using anisotropic radial basis functions 

and structure tensor driven metrics. Using the ARBF interpolation, an original image can be stored 

and processed in the mesh format with some nice advantages including less storage requirement, 

faster transmission speed, and more efficient image processing due to the significantly reduced 

number of mesh nodes as opposed to the number of pixels in the original image. The generated 

meshes, after some post-processing such as mesh-based segmentation, can be readily used for 

further numerical analysis. The present image restoration algorithm provides an effective way to 
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restore the image with an arbitrary super-resolution from a mesh representation, serving as a 

decoding algorithm for the mesh-based image coding technique. The anisotropic RBF algorithm 

can be used as a de-blurring process as well with sharp features well preserved in the images. 

As the image restoration algorithm shows, the time complexity of the function 

ARBFInterpolation() is 𝑂(𝑚 × 𝑛), where 𝑚 is the number of triangles and 𝑛 is the number 

of pixels inside a triangle. In case of 3D images or very large 2D images, the running time could 

Figure 14 Details of Lena. (a) Original Lena image. (b) Generated mesh of (a). (c) Result of triangle-based 

ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c), respectively. 
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be very expensive. One of our further investigations would be the parallel implementation of the 

proposed algorithm using GPU programming. Fortunately the present method is very 

straightforward to parallelize. Additionally we are also interested in the mesh-based image 

segmentation by using the adaptive meshes generated from the original images, and in applying 

the segmented meshes to image-based numerical analysis. 

Figure 18 shows isotropic image translation and rotation. As introduced in Section 3.3.1, image 

translation and rotation are rigid-body transformations and do not change image dimensions. Three 

Figure 15 Details of brain MRI. (a) Original brain MRI. (b) Generated mesh of (a). (c) Result of triangle-based 

ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c), respectively. 
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image features are highlighted in Figure 18 (a) to show the translation clearly. Figure 18 (b) shows 

image rotated 45° respect to the origin. 

Numerous experiments are conducted on biomedical images using this approach and the SR results 

are all promising. All results are enlarged by 2X, 3.5X, 5X for comparison using the shape 

parameter 0.5. This chapter only shows three experimental results and 5X enlargement. 

Figure 16 Details of breast MRI. (a) Original breast MRI. (b) Generated mesh of (a). (c) Result 

of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c), 

respectively. 
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Figure 19 shows three biomedical images and the zoom-in areas of original, ARBF-5X enlarged, 

bicubic-5X enlarged results. The brain image is of size 285 × 341 and its triangular mesh has 5% 

sampling rate. The heart artery image is of size 356 × 396  and its triangular mesh has 4% 

sampling rate. The breast image is of size 512 × 512 and its triangular mesh has 4% sampling rate. 

As illustrated in Figure 19, while bicubic interpolation keeps the noises, the proposed method 

generates smoother images and sharper edges because of the following reasons: 1) during the 

triangulation, noisy pixels belongs to a triangle. Because this method uses intensity of triangle 

center, which is the average of three vertices, the noisy pixel contributes much less than other 

Figure 17 Details of CT-scanned image of heart. (a) Original heart image. (b) Generated mesh of (a). (c) 

Result of triangle-based ARBF interpolation using MQ basis. (d) - (f) are zoomed-in views of (a) - (c), 

respectively. 
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pixel-based interpolation methods. 2) the anisotropic distance described in Section 3.2.3 largely 

reduces the contribution of triangles located on other side of feature edges. These results are 

obtained by first performing 5X different SR interpolations, then use bicubic interpolation to return 

to original size. As the experiments shown, the proposed method uses mesh nodes whose amount 

are only 4%–5% of original pixels can produce enlarged smoothed images of visually satisfactory. 

However, since the proposed method is based on triangular mesh interpolation, the SR result is 

largely determined by the mesh quality. Moreover, unlike multi-frame SR approach, single image 

interpolation approach does not have additional information provided thus the quality of the 

Figure 18 Isotropic image translation and rotation. After transformation, image dimensions are unchanged. (a) 

Image translated to another coordinates. Three red circles indicates image features before and after translation. 

(b) Left: original image. Right: image rotated 45°. 
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interpolation is very much limited by the original image and the lost frequency components cannot 

be recovered. 

  

Figure 19 Super-resolution results of biomedical images. Results are rescaled for display. Red boxes show the 

zoom-in areas. (a) is the original brain MRI. (b) is the zoom-in part of (a). (c) is ARBF-5X SR result and (d) is 

bicubic-5X SR result. (e) is the original CT-scanned heart artery image. (f) is the zoom-in part of (e). (g) is 

ARBF-5X SR result. (h) is bicubic-5X SR result. (i) is the original breast MRI. (j) is zoom-in part of (i). (k) is 

ARBF-5X SR result. (l) is bicubic-5X SR result. 
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Chapter 4 Porous Structure Design in Tissue Engineering 

4.1 Introduction 

In order to improve biological tissues, tissue engineering (TE) which uses a scaffold to form new 

tissues for a medical purpose has a wide range of applications. Part of the applications in practice 

are repairing or replacing portion of or whole tissues and performing specific biochemical 

functions. Because of the inherent ability to produce customized porous scaffolds with different 

required architectures, the development of additive manufacturing (AM) techniques during last 

decade greatly improves tissue engineering. The latest ASTM standards defines AM as "a process 

of joining materials to make objects from three-dimensional (3D) model data, usually layer upon 

layer, as opposed to subtractive manufacturing methodologies" [140]. More specifically, additive 

manufacturing starts from a 3D computer model and builds the final product by the addition of 

material, usually from a layer-by-layer fashion. This is a new manufacturing techniques comparing 

to conventional subtractive processes which removes material from a 3D block. Commercial AM 

techniques to fabricate scaffolds for tissue engineering applications include selective laser 

sintering (SLS), stereo-lithography (SLA), fused deposition modeling (FDM), precision extrusion 

deposition (PED) and 3D printing (3DP). Interested readers can refer to [141] [142] [143] for 

details of these techniques. 

Because native tissues are inherently heterogeneous and often have complex physiological 

architectures, literature, in practice, is primarily focused on the manufacturing of models which 

are simplified but functionally equivalent to the tissue to be repaired in terms of porosity and 

mechanical properties. Two types of porous scaff olds, namely regular porous scaff olds and 

irregular porous scaff olds, can be designed to achieve this goal. Numerous methodologies are 
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proposed and categorized to fabricate these two types of scaff olds [144]. Table 3 categorizes these 

methods. 

Type of Scaffolds Methods 

Regular porous scaffolds CAD-based methods 

Image-based methods 

Implicit surface modeling (ISM) 

Space-filling curves 

Irregular porous 

scaffolds 

An optimization method proposed by [145] 

Stochastic methods using Voronoi models [146] [147] 

A hybrid Voronoi-spline method [148] 

Methods using volumetric meshes [149] 

Table 3 Category of methods to design porous scaffolds in tissue engineering. 

Periodic porous structures have a limitation that slight local modifications can aff ect the entire 

structure globally. Our proposed method provides a new implicit approach to generate porous 

tissue scaff old through volumetric mesh. Thus scaffold architectures can be adjusted by only 

modifying the mesh. Our proposed method has three major advantages over other implicit methods 

like TPMS-based ones. Firstly, local modifications of pore shape, size or distribution is achieved 

by changing local mesh accordingly, which is easy because there are only geometric changes in 

the mesh. Secondly, our method is flexible to simulate heterogeneities and discontinuities in 

natural tissue structures by using purposely-designed mesh as input. Depending on the features of 

tissue structure, meshes with diff erent type (such as tetrahedron mesh and hexahedron mesh), size 

and density can be used to represent these characteristics. With diff erent meshes as input, our 

method is able to build diff erent tissue scaff olds with slight modifications in algorithms. Thirdly, 

unlike many implicit methods need post-actions like Boolean operations to get the final pieces 

built, the only post-action in our method is taking iso-surfaces, which is easier, faster and more 
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flexible that user can get diff erent scaff old architectures by taking diff erent iso-values. In general, 

our method is superior in flexibility and easy to implement. 

The rest of this chapter is organized as the following. Section 4.2 summarizes progresses so far of 

methods categorized in Table 3. Section 4.3.1 introduces porous scaff old reconstruction using 

conventional RBF interpolation. The proposed scaff old reconstruction is presented in Section 

4.3.2. Section 4.3.3 shows the overall algorithms of our proposed method. Finally, Section 4.4 

shows some experimental results and discussions. Section 4.5 concludes this chapter. 

4.2 Prior Works 

CAD-based methods, such as constructive solid geometry (CSG) and boundary representation (B-

Rep), are used to design regular porous scaffolds. CSG-based tools combine standard solid 

primitives (cylinders, spheres or cubes) through Boolean operations (e.g. intersection) to design 

and represent complex models. B-Rep tools describe the solid cell through its boundaries by a set 

of vertices, edges and loops without explicitly specify relations among them. So a preliminary 

check is required to verify there are no gaps or overlaps among the boundaries [150]. However, as 

objects become large or their internal architectures become more complex, their size increases 

dramatically hence it is hard or impossible to visualize and manipulate them. To overcome this 

limitation of most CAD-based tools, different solid cells with more bio-inspired features have been 

introduced [151] [152]. 

Image-based methods combine imaging, image processing and free-form fabrication techniques to 

simplify scaffold design. Scaffolds can be described by 3D binary images (i.e. voxel values are 

Boolean and correspond to "solid" and "void"). Image-based methods produce scaffolds by taking 

the intersection of two 3D binary images, one representing the shape to be reproduced, and the 
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other consisting of stacking of a binary unit cell. Empirically derived geometries are created in the 

unit cell with basic geometric shapes (cylinders, spheres) to represent regular pores within a 

scaffold. Randomly arranged pores can be obtained by the use of a random number generator to 

set voxel state. The topological optimization algorithms has been proved pivotal to obtain scaffolds 

in image-based methods [153] [154]. 

Implicit surface modeling is highly flexible and describes scaffold architecture by a single 

mathematical equation, with freedom to introduce different pore shapes, pore size gradients. 

Recently, a large class of periodic minimal surfaces methods such as triply periodic minimal 

surfaces (TPMS) have become attractive for the design of biomorphic scaffold architectures. An 

early attempt of using TPMS-based method to control tissue fabrication is presented by [155]. 

TPMSs like Schwartz's Primitive (type P), Schwartz's Diamond (type D) and Schoen's Gyroid 

(type G) are demonstrated their efficacy in high-precision fabrication of TPMS-based scaffolds 

[156] [157] [158]. However, all aforementioned works are limited to simple cubic or cylindrical 

outer shape. An improved method for constructing a pore network within an arbitrary complex 

anatomical model has been developed and successively optimized by Yoo et al. [159] [160]. In 

general, the TPMS methodologies, combining the advantages of both traditional CSG and image-

based methods, are computationally efficient for modeling and fabrication of scaffolds. 

Space-filling curves methodologies coupled to extrusion-based techniques. Such techniques 

consist of the extrusion of a micro-diameter polymeric filament terminating with a nozzle having 

an orifice diameter in the hundreds of microns range. The fabrication process involves the 

deposition of polymeric layers, which adhere to each other by heating temperature while retaining 

their shape. This process leads to regular repetition of identical pores. Thus these geometries have 

been named honeycomb-like patterns [161]. More complex patterns can be obtained by changing 
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the deposition angle between adjacent layers. An alternative approach to design scaffold is using 

fractal space-filling curves, which can be mathematically generated by starting with a simple 

pattern that grows through the recursive rules. 

Periodic porous structures have several advantages. They are easier to model and their structural 

properties are possible to predicate. Their disadvantages lie in the difficulty of controlling the pore 

shape, size and distribution since slight modification of the unit cell will pose global changes to 

the entire structure. Moreover, current CAD tools are not suitable to reproduce the complex natural 

structures. In scaffold with variational porous architectures, discontinuities of deposition path 

planning are often found at the interface of two adjacent regions [162]. To design such scaffold 

architecture, Khoda et al. implemented an optimization method [145]. Stochastic and Voronoi 

models have been used to generate random pores in scaffold design as well. Heterogeneous pores 

distributed according to a given porosity level are generated by stochastic methods in scaffold 

design [146] [147]. To overcome the limitation of only simple spheres can be used to represent 

pores, a hybrid Voronoi-spline representation combined with a random colloid-aggregation model 

is proposed [148]. The proposed method has been extended to implement graded pore sizes and 

pore distributions [163]. Volumetric mesh generators derived from finite element tools are used to 

create heterogeneous porosity within a solid model as well [149]. 
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4.3 Methods 

4.3.1 Radial Basis Function (RBF) Based Construction 

In general, using the method mentioned in this chapter to construct a porous structure involves the 

following steps: 1) assign values to mesh nodes systematically to get ready for interpolation; 2) do 

RBF/ARBF interpolation; 3) iso-surface thresholding. After interpolation, iso-surfaces are taken 

on the interpolated piece to create porous architecture. In detail, for both 2D and 3D meshes, mesh 

vertices are given values 1. For 2D meshes, edge centers and tile (triangle or quadrangle) centers 

are given values -1. For 3D meshes, face centers and sub-volume (tetrahedron or hexahedron) 

centers are given values -1. Figure 20 (a-c) shows a sample 2D triangle mesh, a 3D tetrahedron 

mesh and a 3D hexahedron mesh with assigned values, respectively. For simplicity of drawing, 

2D RBF interpolation scheme is illustrated by Figure 21 (a). 

Conventional RBF seems viable to construct porous scaff olds. However, since RBF is isotropic in 

the sense that only geometrical distance is considered, the support domains of underlying basis 

Figure 20 Values assigned to mesh nodes. Red dots represent value of 1. Blue dots represent value of 

-1. In 3D meshes, interior dots are represented by lighter colors. (a) Sample 2D triangle mesh. Note 

both edge and triangle centers are given values -1. (b) Sample 3D tetrahedron mesh. Small triangle 

represent tetrahedron centers. (c) Sample 3D hexahedron mesh. Small triangle represent hexahedron 

centers. 
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function always tend to be circular (in 2D) or spherical (in 3D), which sets an limitation to the 

customization of the internal architecture, especially for complex tissue scaff olds. Therefore, 

conventional RBF is only viable to generate simple architectures. Openings in desired scaff old 

architecture should start from sub-volume center and grows towards pores on structure surface. 

Given the condition that the face centers and sub-volume centers are assigned of value -1, the 

interpolated voxels should have values close to -1. Therefore, the internal opening directions have 

to be considered during interpolation and the shape of support domain should thus be anisotropic. 

4.3.2 Anisotropic Radial Basis Function (ARBF) Interpolation 

Comparing to image restoration application introduced in Section Chapter 3, the main diff erence 

between anisotropic RBF in image restoration application and in this work is the definition of 

distance used. Given N distinct line segments 𝐿 = {𝐿𝑗}
𝑗=1,…,𝑁

 the anisotropic radial basis function 

is defined by 

Figure 21 2D interpolation schemes. 𝑥 is the pixel to be interpolated. Dashed circle (for RBF) or 

ellipses (for anisotropic RBF) are support domains of underlying basis functions. (a) RBF 

interpolation. (b) Anisotropic RBF interpolation 
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Φ𝐿,𝑗(∙) ≔ 𝜙 (‖∙ −𝑙𝑗‖
𝐿

) ( 16 ) 

where ‖𝑥‖𝐿  is defined as the distance between any arbitrary point and a line segment or the 

distance between two line segments. 

To calculate the distance between point x and line segment (a,b), there are three cases to consider. 

For case 1, if point x is on the line segment (a,b), distance is 0. For case 2, if point x, and (a,b) 

form an acute triangle, the distance is defined as the length of x’s projection to (a,b). For case 3, if 

x, and (a,b) form an obtuse triangle, the distance is defined as 𝑚𝑖𝑛{‖𝑥𝑎‖, ‖𝑥𝑏‖}. Figure 22 (a-c) 

illustrates the three cases. 

The distance between any two arbitrary line segments (a,b) and (c,d) is defined as 

𝑚𝑖𝑛{‖𝑎𝑐‖, ‖𝑎𝑑‖, ‖𝑏𝑐‖, ‖𝑏𝑑‖}. Figure 22 (d) illustrates this case. Table 4 summaries these types 

of distances described above. 

 

Figure 22 Cases to calculate anisotropic distance. (a) Point x is on line segment (a,b). (b) Point x and line 

segment (a,b) form an acute triangle then distance is defined as the length of ‖𝑥𝑥′‖. (c) Point x and line 

segment (a,b) form an obtuse triangle. (d) Distance between line segment (a,b) and (c,d). 
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Types of Distance Definition Description 

x to mesh nodes 𝑑 = ‖⋅ −𝑥‖ Conventional Euclidean distance 

x to line segment (a, b) 𝑑 = 0 Case 1: x is on (a, b) 

𝑑 = ‖𝑥𝑥′‖ Case 2: x and (a, b) form an 

acute triangle. x’ is the projection 

of x on (a, b) 

𝑑 = 𝑚𝑖𝑛{‖𝑥𝑎‖, ‖𝑥𝑏‖} Case 3: x and (a, b) form an 

obtuse triangle 

line segment (a, b) to 

line segment (c, d) 
𝑑 = 𝑚𝑖𝑛{‖𝑎𝑐‖, ‖𝑎𝑑‖, ‖𝑏𝑐‖, ‖𝑏𝑑‖} Distance between two line 

segments 

Table 4 Type of distances used in porous structure construction. 

4.3.3 Algorithms 

The following algorithm illustrates major steps to build porous structure from triangular (2D), 

tetrahedron and hexahedron (3D) meshes. The primary step is ARBF interpolation which consists 

of three sub-steps. Firstly, values are assigned to mesh nodes as explained in Section 4.3.1 to build 

the matrix. Secondly, the weight coefficients are solved by using the new distance definition 

explained in Section 4.3.2. Thirdly, the weights are used to interpolate the value at each voxel. 

After the piece is interpolated, an iso-surface is chosen and applied to get the final porous scaff old. 

Algorithm: Porous Scaffold Construction 

ConstructPorousScaffold() 

{ 

 loadMesh(); // read mesh 

 

 ARBFInterpolation(); // do the ARBF interpolation 

 

 marchCube(); // take iso-surface 

 

 exportResult(); // print result 

} 

ARBFInterpolation() 
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{ 

assignMeshValues(); // assign mesh nodes and build matrix  

solveCoefficients(); // solve unknown weights  

applyCoefficientsToInterpolation(); // do the actual 

interpolation  

} 

4.4 Results and Discussion 

This section includes results of scaff old shapes using diff erent types of meshes and shows several 

experimental results. Figure 23 (a) shows a scaffold obtained from single tetrahedron. The opening 

grows from tetrahedron center toward the four triangle centers. Figure 23 (b) illustrates an 

icosahedron mesh comprised of 20 tetrahedrons. Figure 23 (c) shows the scaffold interpolated from 

Figure 23 (b). Figure 24 (a) shows a scaffold obtained from single hexahedron. Figure 24 (b) shows 

a scaffold obtained from a block-shape hexahedron mesh which is comprised of 8 smaller 

hexahedrons. Figure 24 (c) shows a scaffold obtained from a rod-shape hexahedron mesh which 

is comprised of 4 smaller hexahedrons. Input meshes for these results are regular so the final 

scaffolds are regular as well. The results are interpolated by ARBF interpolation introduced above 

using inverse multiquadrics (IMQ) as basis function and shape parameter of value 0.1. After 

interpolation, a proper iso-value is applied to the interpolated piece to show the final porous 
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structure. Because the input meshes are regular, the output structures tend to be regular as well. 

Iso-values can be adjusted to get structure of different size of pores. Results of different iso-values 

are included in Figure 25. As the figure shows, size of pores increase as the iso-values increases. 

So after interpolation, choosing a proper iso-value is required to obtain the desired porous structure. 

Besides iso-values, basis function can also affect the porous architecture in terms of mostly the 

size and shape of pores. Because the shape of basis functions are different, when the final piece is 

Figure 23 Results based on tetrahedron meshes. (a) Scaff old based on single tetrahedron. (b) Input 

icosahedron mesh (formed by 20 tetrahedrons). (c) Scaff old using (b) as input. 

Figure 24 Results based on hexahedron meshes. (a) Scaff old based on single hexahedron. (b) 

Scaff old based on 8 hexahedrons arranged to form a large cube. (c) Scaff old based on 4 hexahedrons 

arranged to form a rod shape. 
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interpolated, different voxels are included in their support domains. Interpolated results using 

different basis functions are included in Figure 26. To compare isotropic RBF interpolation and 

anisotropic RBF interpolation, a 2D isotropic RBF interpolated result (Figure 27 (a)) is also 

included. As explained before, because basis functions in isotropic RBF have circular support 

domains, the circle-shape artifacts can be seen in the result. Additionally, interpolation results 

based on disturbed meshes are also investigated and shown in Figure 27 (b-d). These disturbed 

Figure 25 Results taken by diff erent iso-values. (a) - (d) are results taken by increasing iso-

values. 
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meshes are generated by moving some mesh vertices in random direction. As the results shown, 

disturbed porous structures can be obtained from disturbed meshes. Therefore, adding disturbance 

is a viable way to construct porous structure with randomness, which is very useful to construct 

tissues with complex physiological architectures. Finally, as a contrast, TPMS results are also 

included in Figure 28. 

Figure 26 Results obtained by using different basis functions in ARBF interpolation. 

Shape parameter is 0.1 for all results. (a) Result interpolated by multiquadrics (MQ) 

basis. b) Result interpolated by inverse multiquadrics (IMQ) basis. (c) Result 

interpolated by Gaussian basis. (d) Result interpolated by thin plate spline (TPS) 

basis. 
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4.5 Conclusions 

In practical, constructed scaffold may be very complicated to simulate complex physiological 

tissue architecture in terms of equivalent internal connectivity and mass transportation. Periodic 

porous structure cannot meet this challenge satisfactorily. Our proposed method uses volumetric 

mesh as input which can be very complex – thanks to modern mesh modeling techniques. Thus, 

Figure 27 Experimental results. (a) Result interpolated by isotropic RBF and based on a 2D 

triangle mesh. (b-d) Results based on hexahedron meshes with disturbance. 
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using complex mesh as input, our proposed method is able to construct complicated porous 

scaffold structures to meet this challenge. Moreover, modifications to the final structure can be 

achieved by common mesh operations or changing iso-value, which makes our method very 

flexible comparing to other period porous manufacturing techniques (like implicit surface 

methods). Finally, implementation of our proposed method is easy and computational cost is low 

because the core algorithm of interpolation is calculating distances and solving unknown weights. 

There are a lot of mature and fast linear algebra libraries available to use. 

In the future, this method will be tested with adaptive meshes which represent porous architectures 

with heterogeneous and discontinuous structures. Moreover, a criteria to measure final scaffold 

will be developed to further test the efficacy and efficiency of this method.  

Figure 28 Porous structure obtained by TPMS method. (a) Structure obtained by P-type function. 

(b) Structure obtained by D-type function. (c) Structure obtained by G-type function. (d) 

Structure obtained by IWP-type function. 
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Chapter 5 Parallelization 

5.1 Introduction to GPGPU 

In recent years, General-Purpose computing on Graphic Processing Unit (GPGPU) emerges as a 

new way to parallelize programs. There are three unique advantages of GPU, making it a very 

promising accelerator in computation. Firstly, GPU has large number of execution units (EUs). 

Usually hundreds, even thousands EUs exist on single chip, comparing to 2 or 8 EUs on CPU. 

Secondly, threads on GPU are very light-weighted that there are almost no cost on creating, 

destroying and switching threads. Therefore, it is possible to decompose the problem into hundreds 

of thousands, even millions sub-problems and mapping them onto the same number of threads. 

This is not possible because threads on CPU (including kernel threads and user threads) are heavy-

weighted. There are large thread-contexts (hardware registers, kernel stacks, etc.) have to be saved 

when threads are switching out of execution and restored when they are switched back. Given that 

fact, the number of threads is usually limited by the number of EUs on CPU. Typical GPU can 

accelerate a program execution up to 20X - 100X faster. Thirdly, the price of GPU is cheap 

comparing to price of CPUs having similar computational power. A dedicated cluster is 

prohibitively expensive to most of researchers. Their price usually starts from 100K US dollars. 

Although there are some institute-owned clusters available, not every research can get access on 

them and the access availability is not guaranteed. A middle-level GPU however, costs only $100 

- $300, making it a readily affordable device and once purchased, it is owned by the researcher. 

5.2 Parallelization of Modeling of Calcium Dynamics 

Section 5.2.3 listed the hardware and software environment for calcium dynamics experiment. 

This section discusses the implementation details. 
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5.2.1 Parallelization with OpenMP 

Because the calculations of Laplacian terms are most time-consuming in the algorithm (see Figure 

8 (b)), OpenMP is used to parallelize this step. The Laplacian terms have to be calculated for every 

point in the domain. OpenMP automatically divides the calculations into multiple chunks (4 

chunks in this experiments because a quadcore CPU is used). Then it forks multiple threads and 

each thread calculates one chunk of work load. All threads execute the same algorithm but with 

different data. This is called data-parallelism. At the end of this step, all partial results are merged 

automatically and these working threads are synchronized implicitly. Because the overhead of 

thread-forking and thread-joining is larger than the advantages they can provide in other steps in 

the algorithm, OpenMP is not applied to other steps in the algorithm. 

5.2.2 Parallelization with GPU 

CUDA is an implementation of heterogeneous programming involving CPU (called host) and GPU 

(called device). The functions executed on GPU are called kernel functions. The execution starts 

with the serial host. When a kernel function is launched, the execution switches to the device 

(GPU), where a large number of threads are initiated to take advantage of abundant data parallelism. 

All the working threads in a kernel are organized in groups called thread blocks. When the kernel 

finishes executing, the control returns back to the host and the serial execution continues on the 

host until the next kernel launches or program terminates [164]. While the GPU is computing, 

CPU is available to do other tasks. In this implementation, however, CPU is simply waiting for 

the GPU to finish. The thread-switching on GPU has almost no overhead, so CUDA is able to 

create a one-to-one mapping between data points and threads. If the number of threads created is 

more than the number of CUDA cores available, they are scheduled to execute in batches. In 

execution, the number of scheduled threads is determined by several factors, including the number 
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of CUDA cores available, the number of registers available, and the capacity of on-chip shared-

memory. To achieve the best performance, a brief summary of some special techniques are 

considered in this implementation. 

5.2.2.1 Use of Shared Memory 

Because CUDA has thousands of threads running in parallel, the reads and writes to the off-chip 

device memory (called global memory) tend to have a memory bandwidth contention, which can 

significantly lower the performance. Threads in the same block, however, can share data in a small 

on-chip memory (called shared-memory). In this experiment, the calculation of Laplacian terms 

needs to read Laplacian coefficients and Ca2+ or 𝐶𝑎𝐵𝑚, 𝑚 = 1, 2, 3 concentrations at neighboring 

points. To alleviate the global memory bandwidth contention, these variables are loaded into 

shared-memory once at the beginning of this step instead of multiple reads when needed. If the 

neighboring coefficients and concentrations are in the same block as the current point, they are 

fetched from shared-memory. Otherwise, they are loaded from global memory. The calculation of 

Laplacian terms is implemented as a kernel function. Unlike the global memory, however, the 

contents of shared-memory is not persistable across kernels. So at the end of this step, results have 

to be synchronized back to global memory for next kernel launches. 

5.2.2.2 Reordering of Data Points 

To increase the hit of shared-memory, we need to find a way to maximize the possibility that a 

point and its neighbors are all in the same block. If they are not in the same block, their coefficients 

and concentrations have to be loaded from global memory, which lowers the performance due to 

the global memory bandwidth contention. The number of thread blocks used is rounded up to 

⌈
number of points in a dataset

number of threads per block
⌉. Section 5.2.2.5 discusses details of block dimensions. When reading 

points, points in geometry are reorganized and grouped into many cells (blocks). The points in a 
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block are grouped roughly in a cubic region such that the points and their neighbors are likely to 

be in the same block. 

5.2.2.3 Use of Constant and Texture Memories 

As stated in Section 5.1, the reads and writes of global memory have memory bandwidth 

contention. The constant and texture memories have built-in caches. When a program reads the 

same value more than once, it actually reads it from the cache, which eliminates the bandwidth 

problem. Constant and texture memories are read-only and constant memory is very small (only 

64 KB shared by all stream-multiprocessors). There are dozens of constant arguments (refer to [1]) 

in constant memory. Texture memory shows a higher performance when data are localized with 

each other. Therefore, the neighborhood information found by the kd-tree is saved in texture 

memory. 

5.2.2.4 Unrolling Loops 

When dealing with iterations, programs on CPU use loops with specific components like 

programming counter, instruction decoder, etc. However, CUDA cores are simplified to have ALU 

(arithmetic-logic unit) only. Thus executing loops in CUDA is slower than CPU. If one can unroll 

a loop by storing involved variables into multiple registers instead of using one register and refresh 

that register at every iteration, the compiler can decode the instructions more efficiently and 

generate faster code. However, since the number of registers available is limited (GeForce GTX 

560 Ti has 8 multiprocessors and each has 32,768 registers), the growing usage of registers could 

decrease the number of threads scheduled to execute and thus lowers the device occupancy. Device 

occupancy is determined by the equation 
number of threads scheduled

warp size
, where the warp size is 32 in 

current CUDA-enabled GPUs. One may refer to [164] for more details. In this implementation, 

when unrolling loops increases the number of registers used by a single thread to 27, the device 
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occupancy decreased from 50% to 33.3%. So there is a balance of increased code efficiency and 

decreased device occupancy. Whether to use this technique is really a case-by-case scenario. In 

this experiment, using this technique can improve the performance by about 10% in calculation of 

Laplacians. 

5.2.2.5 Global Synchronization 

Unlike the CPU, CUDA threads are scheduled to execute in batches. At a point requiring 

concentrations at neighboring points, it is likely that the threads responsible for the neighboring 

points are not executed yet and thus the neighboring concentrations are not updated. To cope with 

this situation, threads in GPU have to be synchronized. Unfortunately in the current GPU design, 

a kernel function can only synchronize threads in the same block. To synchronize threads in 

different blocks (global synchronization), a kernel function has to be split into smaller ones. In this 

algorithm, every step (see the 6 boxes on the right-hand side of Figure 8 (b)) is implemented as a 

kernel, yielding a total of 6 kernels. These kernels use different thread block dimensions in order 

to achieve maximum device occupancy. Because calculating Ca2+ flux and reaction terms does 

not require neighboring concentrations, a relatively small block size (128 threads per block) is 

used so that each thread can use more registers and shared-memory. Ca2+ flux is calculated on T-

Tubule and cell membrane with a 58.3% device occupancy. Reaction terms are calculated on 

interior points with a 66.7% device occupancy. In applying reflective boundary condition, 

calculating Laplacian terms and calculating average concentration, shared-memory are used as 

high-speed cache. A large block size (512 threads per block) is used to increase the possibility of 

shared-memory hit. Reflective boundary condition is applied at boundary points at a 100% device 

occupancy. Laplacian terms and average concentrations are calculated at all points with a 33.3% 
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and 100% device occupancy respectively. At the end of each step, results are synchronized into 

global memory. 

5.2.3 Experiment Environment 

In this application, OpenMP and GPU are used to speed up the simulation and their performances 

are compared with the serial implementation. The CPU-based experiments (serial and OpenMP) 

are performed on a Dell Precision T7400 workstation with two quad-cores of 3.0 GHz Intel Xeon 

X5472 processors and 16 GB memory, a RedHat platform of kernel version 2.6.18-308.4.1.el5, 

and a GCC compiler of version 4.4.7. The serial experiment uses a single core and the OpenMP 

experiment uses four cores. The GPU-based experiments are performed on a Dell Precision T3500 

workstation with a NVIDIA GeForce GTX 560 Ti, 2 GB device memory, and a CentOS 6.4 

platform of kernel version 2.6.32-358.14.1.el6.x86_64. The NVIDIA graphic card driver has a 

version of 319.32. Details of implementation are discussed in section 5.2. 

5.2.4 Results and Discussion 

Column 1 in Figure 29 shows the average concentrations of Ca2+, mobile and stationary buffers in 

three implementations, namely, serial, OpenMP and CUDA, per the legend displayed below the 

figure. Column 2 and Column 3 show their average relative errors compared to the serial 

implementation for point sets 2 and 3, respectively. Because an analytical solution does not exist 

for such a complicated mathematical model (see equations ( 3 ), ( 4 ), ( 5 ), ( 6 )), we have used 

the numerical simulation from the serial LRBFCM approach [1] as the ground truth for comparison, 

which had been shown to agree with the finite element-based simulation [71] and with the available 

experiments as well. The errors in column 2 and column 3 show that OpenMP has exactly the same 

simulation results as the serial version. The CUDA result shows up to 0.5% relative error for the 

medium model (column 2) and 0.2% relative error for the large model (column 3). A close 
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inspection discovers that the errors are partly caused by the fact that the GPU treats floating-point 

numbers differently from the CPU. The error curves also show that, as the number of points 

increases, the accuracy of CUDA implementation also increases. 

Table 5 shows the running time of serial, OpenMP and CUDA on the three point sets. For a small 

model (set 1), OpenMP has the lowest performance because the overhead of multithreading is 

larger than the gains. CUDA has a better performance but only 3.66X faster than serial’s speed. 

For a medium size of model (set 2), OpenMP and CUDA show 1.20X and 10.10X performance 

increases respectively comparing to serial implementation. For large model (set 3), OpenMP 

shows 1.5X performance increase and CUDA shows 19.82X performance increase. Apparently 

the GPU shows a great performance boost and is very promising in data parallelism because of a 

large number of cores available on GPUs. 

However, GPU cores have simpler circuits compared to CPU cores and require special techniques 

like instruction-level optimization to get the best performance boost. Moreover, simpler circuits 

also restrict the applications of GPUs to tasks like data parallelism. The small device memory 

(usually 1 to 4 GB) also limits the amount of data a GPU can process simultaneously. For large 

input data, it is necessary to divide the data into multiple parts so that each part can be fitted into 

the device memory. 
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Number of Points Serial OpenMP (4 cores) CUDA 

Point set 1 (3,969 points) 26.17 28.21 7.15 

Point set 2 (30,807 points) 504.52 419.95 49.94 

Figure 29 Column 1 shows the average concentrations of Ca2+, mobile and stationary buffers for point set 2 (30,807 

points) in three implementations, namely, serial, OpenMP and CUDA. Note that the concentrations of the three 

versions are almost identical. Column 2 shows the average relative errors of point set 2 (30,807 points), as compared 

to the serial execution. Column 3 shows the average relative errors of point set 3 (234,921 points), as compared to 

the serial execution. 
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Point set 3 (234,921 points) 26893.21 17974.51 1356.85 

Table 5 Running time of Serial, OpenMP, CUDA implementations on 3 point sets (unit: seconds) 

 

5.3 Parallelization of Image Restoration with GPU 

5.3.1 Methods 

When implement the ARBF interpolation algorithm, CUDA is considered and experimented as a 

way to speed-up performance. The most time-consuming step of algorithm introduced in Section 

3.2.4 is the ARBF interpolation. This step takes about 95.5% of total execution time of the 

algorithm. So naturally, this is the step needs to be parallelized. 

In algorithm, the intensity of pixel in a given triangle is interpolated by the neighbors of that 

triangle. Blue dots in Figure 10 (b) illustrate this idea. The neighborhood size can be varied. In this 

work, 1-ring and 2-ring neighborhood are considered. The neighborhood of triangles is calculated 

before interpolation. The intensities of pixels are interpolated in a triangle-by-triangle fashion. In 

detail, triangles are iterated through and for each iteration, all pixels are interpolated by another 

nested loop. In this work, the outer loop of triangles are parallelized by CUDA, which means each 

triangle considered is mapped to a thread. Therefore, all triangles are able to be interpolated 

simultaneously. 

5.3.2 Results and Discussion 

One interesting thing is that the results do not depend on thread block size. After experiment with 

thread block size of 128, 256 and 512, the results are almost identical. Table 6 shows the 

experimental results. 



77 

 

Further profiling shows that two factors negatively impact the performance. Firstly, the cost of 

thread synchronization is high for every thread block. Because the size of neighborhood of each 

triangle is different, some thread requires more time to finish computation. On logic level, CUDA 

schedules execution by thread blocks. A thread block is scheduled in execution and has to be 

scheduled out at the same time. In detail on hardware level, threads are organized by warps, each 

of which has the size of 32. This means a batch of 32 threads has to be scheduled in and out of 

execution at the same instruction time. Different sizes of neighborhood require different execution 

time of threads. So threads with shorter execution time have to wait threads with longer execution 

time to be scheduled out of execution. 

Data 

(image size) 

Serial Time 

(sec.) 

CUDA 

Time (sec.) 

Maximum Device 

Occupancy 

Speed-up 

Brain (285 × 341) 7.56 2.85 33.3% 2.65X 

Heart (356 × 396) 9.16 3.45 33.3% 2.66X 

Breast (512 × 512) 17.43 6.81 33.3% 2.56X 

Table 6 Execution time of image restoration. Results are the almost identical for block size of 128, 256 and 512. 

 

Secondly, on-chip shared memory size also limits the number of threads that can be accommodated 

in a stream-multiprocessor (SMs). When threads are scheduled to execution, the scheduler decides 

how many thread blocks (and the threads in thread blocks) can be scheduled to execution based on 

various factors, such as compute capability of the device, size of shared memory, size of constant 

memory, the number of registers available on SM. The device used in this experiment can 

accommodate 1536 threads per SM but only have shared memory of size 48KB, which is the 

bottleneck. Therefore, only 33.3% of threads can be scheduled to execution for each SM. Different 

image data is experimented and the maximum device occupancy is the same. An attempt to solve 

this issue is reducing the number of threads in thread blocks. Different thread block dimensions 
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are used, namely, 128, 256, 512. Shared memory limitation mitigates, but the number of registers 

available (65,535 for the device used) quickly becomes another limitation to increase the 

maximum device occupancy. In sum, the maximum device occupancy remains at 33.3%. Further 

investigation shows that the intrinsic logic of code implemented is the reason of so many registers 

are used. 

Due to the two reasons discussed above, the GPU acceleration for image restoration is not so 

effective, comparing to the modeling of calcium dynamics application. In calcium dynamic 

modeling, the size of neighborhood for each point is a constant and hardware limitation is relatively 

low. Therefore the maximum device occupancy in calcium dynamic modeling is much higher 

(88.5%) and the acceleration is more effective (20X faster). 
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Chapter 6 Conclusions and Future Works 

6.1 Thesis Summary 

As the aforementioned applications proved, RBF is a powerful tool to reconstruct unknown 

function from multi-dimensional scattered data in biomedical area. Additionally, significant 

improvement in preserving image features and capturing connected porous structures over the 

original isotropic distance can be achieved by utilizing anisotropic distance metrics. 

OpenMP and CUDA-based GPU programming are effective and efficient techniques to accelerate 

the performance of meshless PDE solver. However, as discussed in image restoration application, 

some intrinsic issues of algorithm such as varying sizes of neighborhood and hardware limitation 

like the number of registers and the size of shared memory can pose negative impacts on the 

efficiency of GPU parallelization. 

6.2 Future Directions 

In addition to the three applications and parallelization techniques discussed above, RBF can be 

used in wider areas and other parallel methods can be applied in current applications. 

6.2.1 Applications of Radial Basis Function Networks 

In the future, applications utilizing RBFN in deep learning area will be investigated. Current 

neural networks have multiple decision layers and complex to implement. RBFN, on the other 

hand, has only single layer thus is easier to implement but still effective to make decisions. 

6.2.2 Porous Structure 

The porous structures design application in thesis can also be extended and investigated further 

in several aspects. 
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6.2.2.1 Independent of Mesh 

Current porous structures are constructed based on volumetric mesh, more specifically, 

tetrahedron meshes and hexahedron meshes. Although as proved above, mesh-based 

reconstruction algorithm is effective and has many advantages, there are disadvantages as well. 

One major drawback is the mesh itself. To use this algorithm, a mesh has to be generated and 

supplied. Mesh generation and the following optimization are processes consuming large time 

and human labor. Getting rid of meshes and using only a set of discrete points is a favorable 

improvement in the future. 

6.2.2.2 Functionally Graded Porous Structure 

Current porous structure design algorithm uses uniformly distributed mesh nodes, which is 

effective to construct structures with uniform porosities and distributions. However, natural bio-

materials do not expose such architectures. Functionally graded materials (FGM) have been 

extensively proved to be effective in terms of transmitting matters in the past decades. In the 

future, a new approach to model porous structures with graded porosities and distributions will 

be designed. 

6.2.2.3 Parallel Porous Structure 

Parallel programming techniques are not applied to current porous structure design algorithm. 

Although the performance of current algorithm is acceptable, it may become unacceptable if 

more complex inputs are involved. OpenMP and CUDA will be applied to optimize the 

performance of current algorithm. 
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 Parallel Computing: CUDA Tookit, OpenMP, MPI, Hadoop 

 Graphic: OpenGL 

 Web Development: Django, Amazon AWS 

 Cluster: LSF, PBS, SLURM, HTCondor 
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 Genome Sequence Analyzing: bowtie2, bwa, picard, GATK, SeqMule, ANNORVAR 

Methodologies: 

 Numerical methods: radial basis function (RBF) interpolation, meshless 
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