
Raising the Level of Abstraction:

Simulation of Large Chip

Multiprocessors Running

Multithreaded Applications

Alejandro Rico Carro

Advisors:
Alejandro Ramı́rez Bellido

Mateo Valero Cortés

Submitted to the Departament d’Arquitectura de Computadors
for the degree of

Doctor of Philosophy in Computer Architecture

at the
Universitat Politècnica de Catalunya · BarcelonaTech

September 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33345349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acta de qualificació de tesi doctoral
Curs acadèmic: 2012/2013

Nom i cognoms

Alejandro Rico Carro
Programa de doctorat

Arquitectura de Computadors
Unitat estructural responsable del programa

Departament d’Arquitectura de Computadors

Resolució del Tribunal

Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de

la seva tesi doctoral titulada

 Raising the Level of Abstraction: Simulation of Large Chip Multiprocessors Running

Multithreaded Applications

Acabada la lectura i després de donar resposta a les qüestions formulades pels

membres titulars del tribunal, aquest atorga la qualificació:

 NO APTE APROVAT NOTABLE EXCEL·LENT

(Nom, cognoms i signatura)

President/a

(Nom, cognoms i signatura)

Secretari/ària

(Nom, cognoms i signatura)

Vocal

(Nom, cognoms i signatura)

Vocal

(Nom, cognoms i signatura)

Vocal

______________________, _______ d'/de __________________ de _______________

El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat

per l’Escola de Doctorat, a instància de la Comissió de Doctorat de la UPC, atorga la

MENCIÓ CUM LAUDE:

SÍ NO

(Nom, cognoms i signatura)

Presidenta de la Comissió de Doctorat

(Nom, cognoms i signatura)

Secretària de la Comissió de Doctorat

Barcelona, _______ d'/de ____________________ de _________

Abstract

The number of transistors on an integrated circuit keeps doubling every two
years. This increasing number of transistors is used to integrate more processing
cores on the same chip. However, due to power density and ILP diminishing
returns, the single-thread performance of such processing cores does not double
every two years, but doubles every three years and a half.

Computer architecture research is mainly driven by simulation. In computer
architecture simulators, the complexity of the simulated machine increases with
the number of available transistors. The more transistors, the more cores, the
more complex is the model. However, the performance of computer architecture
simulators depends on the single-thread performance of the host machine and, as
we mentioned before, this is not doubling every two years but every three years
and a half. This increasing difference between the complexity of the simulated
machine and simulation speed is what we call the simulation speed gap.

Because of the simulation speed gap, computer architecture simulators are
increasingly slow. The simulation of a reference benchmark may take several
weeks or even months. Researchers are concious of this problem and have been
proposing techniques to reduce simulation time. These techniques include the
use of reduced application input sets, sampled simulation and parallelization.

Another technique to reduce simulation time is raising the level of abstrac-
tion of the simulated model. In this thesis we advocate for this approach. First,
we decide to use trace-driven simulation because it does not require to provide
functional simulation, and thus, allows to raise the level of abstraction beyond
the instruction-stream representation.

However, trace-driven simulation has several limitations, the most impor-
tant being the inability to reproduce the dynamic behavior of multithreaded
applications. In this thesis we propose a simulation methodology that employs
a trace-driven simulator together with a runtime sytem that allows the proper
simulation of multithreaded simulations by reproducing the timing-dependent
dynamic behavior at simulation time.

Having this methodology, we evaluate the use of multiple levels of abstraction
to reduce simulation time, from a high-speed application-level simulation mode
to a detailed instruction-level mode. We provide a comprehensive evaluation
of the impact in accuracy and simulation speed of these abstraction levels and
also show their applicability and usefulness depending on the target evaluations.
We also compare these levels of abstraction with the existing ones in popular
computer architecture simulators. Also, we validate the highest abstraction
level against a real machine.

One of the interesting levels of abstraction for the simulation of multi-cores
is the memory mode. This simulation mode is able to model the performance

i

of a superscalar out-of-order core using memory-access traces. At this level of
abstraction, previous works have used filtered traces that do not include L1 hits,
and allow to simulate only L2 misses for single-core simulations. However, sim-
ulating multithreaded applications using filtered traces as in previous works has
inherent inaccuracies. We propose a technique to reduce such inaccuracies and
evaluate the speed-up, applicability, and usefulness of memory-level simulation.

All in all, this thesis contributes to knowledge with techniques for the sim-
ulation of chip multiprocessors with hundreds of cores using traces. It states
and evaluates the trade-offs of using varying degress of abstraction in terms of
accuracy and simulation speed.

Acknowledgements

First of all, I want to thank my advisor, Alex Ramirez, and co-advisor, Mateo
Valero. They gave me support, guidance and freedom to make my own decisions
through all these years. I have learnt a lot from them not only technically, but
also in many other aspects in life. Alex has an impressive ability to turn the
smallest idea into great contributions. I also want to thank him for putting up
with my pessimism and criticism when I have not been able to see the promise
and value of an idea. Mateo’s clarity and experience clearly improved the quality
of the work and helped put it in a broader context.

I also want to thank my mentor, Pradip Bose, and collaborators, Jeff Derby
and Bob Montoye, during my internship at IBM TJ Watson Research Center.
I felt their trust from the first day. Pradip was always helpful and willing to
teach me even the most obvious things. I also want to thank Roberto and Jose.
I also learnt a lot from Roberto, and without their friendship my internship
would have not been the same.

I thank my mentor, Chris Adeniyi-Jones, during my internship at ARM.
He provided me with all the resources I needed and gave me freedom to carry
out the work on my way. I also want to mention Gabor, Andreas, Roxana and
James for their help.

I also want to thank the funding bodies that supported this work. This
thesis has been supported by the European Social Fund and the Departa-
ment d’Universitats, Recerca i Societat de la Informació of the Generalitat
de Catalunya under the FI scholarship no. FI-2006-01133; the Spanish Min-
istry of Education under the FPU scholarship no. AP2005-4245; the FP6 SARC
project (contract no. FP6-27648); the FP7 ENCORE project (contract no. FP7-
248647); the FP7 Mont-Blanc project (contract no. ICT-FP7-288777); the Eu-
ropean Network of Excellence HiPEAC; and the Comisión Interministerial de
Ciencia y Tecnoloǵıa (contract nos. TIN2004-07739-C0201, TIN2007-60625 and
TIN2012-34557).

I also want to mention that CellSim and TaskSim are the effort of many
people. Main contributors to CellSim were Felipe, David, Toni and Augusto.
Main contributors to TaskSim were Felipe, Augusto, Milan, Carlos and Victor.

Vull agrair a Felipe, Miquel, Oriol i Xevi pels bons moments tots aquests
anys i les tertúlies de sobretaula. Quiero agradecer especialmente a Felipe.
Estuvo ah́ı desde el primer d́ıa y me ha dado su amistad y apoyo durante todo
este tiempo. També vull agrair especialment a Miquel. És un gran amic, sempre
està a punt per ajudar i va ser un gran recolzament durant els primers mesos a
IBM.

I also want to mention the members of the group: Augusto, Milan, Carlos,
Karthikeyan, Victor, Puzo, Rajo, Paul, Isaac, Thomas and Ugi; and other col-

iii

leagues at BSC: Enric, Marc,... Being surrounded by friendly and helpful people
makes work a happy activity everyday.

También quiero dar las gracias a mis padres Alejandro y Emilia, y a mi
hermano Abel. Desde siempre me han apoyado en todo lo que he querido hacer,
me han dado los recursos y libertad para hacerlo, y me han aguantado cuando no
he estado en mis mejores momentos. Les agradezco también que me regalaran
mi primer ordenador pocos meses antes de empezar la universidad y liberarme
aśı de una vida aburrida y darme la oportunidad de trabajar con ordenadores,
algo que estoy disfrutando cada d́ıa gracias a ellos.

Quiero dar las gracias a Luna por su apoyo y amor estos últimos años. Es
un placer estar con una persona que lo da todo, está siempre ah́ı para levantar
el ánimo y te recuerda cada d́ıa que es lo más importante en la vida.

Table of Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Context and Motivation . 1

1.1.1 Chip Multiprocessors . 1
1.1.2 Chip Multiprocessor Simulation 3
1.1.3 The Simulation Speed Gap 4

1.2 Thesis contributions . 6
1.3 Timeline . 8
1.4 Thesis Organization . 10

2 Background 13
2.1 CellSim . 13

2.1.1 The Cell/B.E. Microprocessor 14
2.1.2 CellSim Design . 15
2.1.3 Lessons Learned . 16

2.2 TaskSim . 18
2.2.1 CycleSim . 18
2.2.2 Modules and Configurations 20

2.3 Trace- vs Execution-driven Simulation 22
2.3.1 Host System Requirements 22
2.3.2 Dynamic Behavior Support 23
2.3.3 Modeling Abstraction . 24
2.3.4 Restricted-Access Applications 25
2.3.5 Speculation Modeling . 25
2.3.6 Development Effort . 25
2.3.7 Summary . 27

2.4 Simulation Time Reduction . 27
2.4.1 Reduced Setup or Input Set 27
2.4.2 Truncated Execution . 29
2.4.3 Statistical Simulation . 29

v

2.4.4 Sampling . 30

2.4.5 Parallelization . 31

2.4.6 FPGA Acceleration . 32

2.5 Chip Multiprocessor Simulators 32

2.5.1 Simplescalar and Derivatives 32

2.5.2 Simics and Derivatives . 33

2.5.3 M5/gem5 . 33

2.5.4 Graphite . 34

2.5.5 TPTS - Filtered Traces 34

2.5.6 Others . 35

2.6 Simulation in Major Conferences 36

2.6.1 Simulation Types . 36

2.6.2 Simulated Machine Size 37

2.6.3 Simulators . 38

2.7 Task-Based Programming Models 39

2.7.1 OmpSs . 42

3 Simulating Multithreaded Applications Using Traces 45

3.1 Problem . 45

3.2 State of the art . 47

3.3 Methodology . 47

3.3.1 Tracing . 48

3.3.2 Simulation Infrastructure 49

3.3.3 Simulation Process . 49

3.4 Implementation . 50

3.4.1 Instrumentation . 50

3.4.2 Runtime Integration . 52

3.4.3 Simulation Example . 53

3.5 Experiments . 54

3.6 Coverage . 58

3.7 Summary . 59

4 Multiple Levels of Abstraction 61

4.1 State of the art . 62

4.2 Application Representation Abstraction 63

4.3 Model Abstraction . 64

4.3.1 Burst Mode . 65

4.3.2 Inout Mode . 66

4.3.3 Mem Mode . 67

4.3.4 Instr Mode . 68

4.3.5 Summary . 69

4.4 Speed-Detail Trade-Off . 69

4.5 Evaluation . 73

4.5.1 Application Scalability using Burst 73

4.5.2 Accelerator Architectures using Inout 77

4.5.3 Memory System using Mem 79

4.6 Summary . 80

5 Trace Filtering of Multithreaded Applications 81
5.1 Problem . 82
5.2 State of the Art . 84
5.3 Methodology . 85
5.4 Implementation . 88

5.4.1 Sample implementation 90
5.5 Evaluation . 91

5.5.1 Trace Size . 92
5.5.2 Trace Generation Time 92
5.5.3 Simulation Accuracy . 94
5.5.4 Simulation Speedup . 96

5.6 Limitations . 96
5.7 Summary . 98

6 Modeling the Runtime System Timing 101
6.1 Problem . 101
6.2 Runtime Analysis . 103
6.3 Runtime Modeling . 105
6.4 Evaluation . 107
6.5 Discussion . 109
6.6 Summary . 110

7 Conclusions 111
7.1 Contributions and Publications 112
7.2 Impact . 113

7.2.1 Our Related Work . 113
7.2.2 Other Works using Our Work 114
7.2.3 Our Non-Related Work 116

7.3 Future Work . 117

Glossary 122

Bibliography 123

List of Figures

1.1 Transistor count, die size, technology node and transistor density
for a set of microprocessors from 1971 to 2012. 2

1.2 Single Thread Performance . 5

1.3 Simulation speed gap. 6

1.4 Thesis timeline . 9

1.5 Thesis organization. 10

2.1 The Cell/B.E. microprocessor architecture [100]. 14

2.2 The CellSim simulator. 16

2.3 Producer-consumer module example using CycleSim. 19

2.4 Example of communication between Producer and Consumer mod-
ules in CycleSim. 19

2.5 Examples of architectures modeled using TaskSim. 21

2.6 Flow chart of execution-driven and trace-driven simulation. . . . 23

2.7 Breakdown of papers per simulation type in main computer ar-
chitecture conferences from 2008 to 2012 37

2.8 Breakdown of papers per maximum simulated number of cores in
main architecture conferences from 2008 to 2012 38

2.9 Breakdown of papers per simulation tool in main computer ar-
chitecture conferences from 2008 to 2012 39

2.10 Task-based implementation of the Fibonacci number recursive al-
gorithm in (a) OpenMP 3.1, (b) Cilk and (c) Threading Building
Blocks. 41

2.11 Cholesky decomposition of a blocked matrix using OmpSs. 42

3.1 Execution of an application with a mutual exclusion using two
threads. 46

3.2 Simulation infrastructure scheme. 49

3.3 OmpSs application example and its corresponding traces for the
TaskSim – NANOS++ simulation platform. 51

3.4 Implementation scheme. 52

3.5 Scheme of a multithreaded application simulation that generates
4 tasks and waits for their completion on two and four threads. . 54

3.6 Speed-up for different numbers of cores from 8 to 64 with respect
to the execution with 8 cores. 55

3.7 Snapshot of the core activity visualization of a blocked-matrix
multiplication a with 1 task-generation thread, and b with a hi-
erarchical task-generation scheme 56

ix

3.8 Application performance comparison for area-equivalent multi-
core configurations. Speed-up with respect to the 16-core baseline. 57

4.1 Different application abstraction levels: (a) computation plus
MPI calls, (b) computation plus parops, (c) memory accesses,
and (d) instructions. 63

4.2 Simulation error of the burst mode compared to the real execu-
tion on an eight-core AMD Opteron 6128 processor for multiple
numbers of threads. 74

4.3 Comparison of real and simulated execution time for a 4096×4096
blocked-matrix Cholesky factorization using multiple block sizes. 76

4.4 Inout mode experiments on scratchpad-based architectures us-
ing an FFT 3D application: (a) execution on a real Cell/B.E.,
(b) simulation of a Cell/B.E. configuration, (c) simulation of a
Cell/B.E. configuration using a 128 B memory interleaving gran-
ularity, (d) simulation of a 256-core SARC architecture configu-
ration using a 4 KB interleaving granularity, and (e) simulation
of a 256-core SARC architecture configuration using a 128 B in-
terleaving granularity. Light gray show computation periods and
black shows periods waiting for data transfer completion. 78

4.5 Difference in number of misses between the mem and instr modes
for different simulated configurations using 4 and 32 cores, and
different interleaving granularities. 79

5.1 Trace filtering: (a) example of a memory access trace, (b) how
trace filtering proceeds, and (c) the resulting filtered trace. . . . 82

5.2 Different multithread execution interleavings. On the left, the
invalidation occurs after LOAD D executes, so D hits. On the right,
the invalidation occurs before D so D misses in this case. If the
trace is generated with the left execution, D will be filtered out,
and if the scenario in the right is produced during simulation, D
will not be there to miss. 83

5.3 Different dynamic scheduling decisions. Iterations of a parallel
loop are scheduled in different ways. On the left, iterations 1
and 2 are assigned to Thread 0, and 3 and 4 to Thread 1. That
makes iterations 2 and 4 to hit on their first memory access. On
the right, 1 and 3 are assigned to Thread 0, and 2 and 4 to Thread
1, making all of them to miss on their first memory access. If the
trace is generated using the left case and simulation leads to the
case on the right, the first accesses in iterations 2 and 4 would
not be present in the trace, and both misses could not be simulated. 83

5.4 Pathological case. The figure shows: (a) the pseudo-code of the
application; (b) the task dependence graph showing tasks in cir-
cles and the arrows between them are read-after-write (solid) and
write-after-read (dashed) dependencies; (c) the execution in a sin-
gle thread used for trace generation with the order in which tasks
are executed; and (d) the simulation of the application on four
threads showing to which threads tasks are dynamically sched-
uled and their execution order. 86

5.5 Pathological case execution time normalized to full trace with L2
cache latency of 20 cycles. A small L2 cache latency can be hid-
den by the superscalar core microarchitecture. Longer latencies
delay L1 misses that are correctly simulated with our methodol-
ogy (reset) and using the full trace. The naive method does not
simulate those L1 misses, as they were filtered out during trace
generation. 87

5.6 OpenMP for loop construct. The figure shows: (a) a scheme of
the execution flow of an OpenMP for ; (b) the original OpenMP
C code and the intermediate C code generated by GCC, including
the calls to the libgomp OpenMP runtime library. 89

5.7 Trace generation and simulation process. 90
5.8 Trace size reduction. 93
5.9 Trace generation speed-up. 93
5.10 Simulation accuracy. 95
5.11 Simulation accuracy average across benchmarks and frequencies. 96
5.12 Simulation speed-up. 97
5.13 Simulation speed-up average across benchmarks and frequencies. 98

6.1 Simulation example of a task-based application running on two
threads. (a) The simulation alternates between the simulated
threads and the runtime system operation, to simulate the ac-
tions specified in the events included in the trace. The runtime
system performs the creation of tasks, and assign tasks to idle
threads (dashed line), such as Task 1 to Thread 1. (b) The simu-
lation engine does not account the timing of the runtime system
operations, and only simulates the timing of the sequential sec-
tions in the trace. 102

6.2 Simplified pseudo-code of the main NANOS++ operations, and
the actions on shared resources: task dependence graph and ready
queue. Checks and updates of shared data are protected by locks
or atomic operations depending on their granularity. 104

6.3 Runtime system operation variability. (a) Task creation cost dis-
tribution of Cholesky factorization run on eight threads for two
different throttling limits. (b) Breakdown of the lock contention
time of Cholesky decomposition run on four, eight and sixteen
threads for four different throttling limits. 105

6.4 Simulation example with host time only (left) and host time plus
simulation of locks (right). 106

6.5 Normalized execution time real (a) and simulated (b,c,d) for a
blocked-matrix multiplication using 64×64 blocks. 108

6.6 Task creation execution time of the H.264 decoder skeleton both
in the real machine and using the host simulation approach using
multiple numbers of threads. 109

List of Tables

2.1 Main advantages and disadvantages of trace-driven simulation
over execution-driven simulation 28

2.2 Task-based programming models 40

4.1 Summary of TaskSim simulation modes. This includes their ap-
plicability on computer architecture evaluations, and their fea-
tures also comparing to state-of-the-art (SOA) simulators 69

4.2 Comparison of abstraction levels in existing simulators in terms
of simulation speed and modeling detail 71

4.3 TaskSim main configuration parameters. The experiments in Sec-
tion 4.5 use the default values unless it is explicitly stated otherwise 73

4.4 List of benchmarks, including their label used in the charts and
a description of their configuration parameters. 74

4.5 Cholesky factorization of a 4096×4096 blocked-matrix using dif-
ferent block sizes. The table shows the number of tasks, the av-
erage task execution time and the comparison of real execution
and simulation for four and eight threads. 75

5.1 TaskSim simulation parameters. 91
5.2 OmpSs benchmarks. 92

xiii

Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Chip Multiprocessors

A microprocessor is an integrated circuit (chip) that incorporates the central
processing unit (CPU) of a von Neumann-style computing system. The first
microprocessors appeared in the early 1970s [176, 74]. Since then, the number
of transistors on a chip has increased exponentially. This fact was observed by
Gordon Moore in 1965, a claim that is popularly known as Moore’s law [124].
The rate at which the number of transistors on a chip increased was set to
double every year in 1965. In 1975, Moore adjusted his observation to double
every two years [123]. This observation has served as an industry driver. Com-
panies’ roadmaps target Moore’s law transistor count growth rate, which sets
targets for research and development divisions and results in the development
and introduction of new technology nodes to achieve the required transistor
density.

Figure 1.1 shows the transistor count per chip, die size, technology node
and transistor density for a set of microprocessor from 1971 to 2012. Data
actually confirms Moore’s law, and shows a 2x increase in transistor count per
chip every two years. This increase was a combination of higher transistor
density (+22%/year) and larger die size (+15%/year) until 1992. Since 1992,
die size has not increased significantly. Server microprocessors have larger die
sizes between 300 and 600 mm2, while desktop microprocessor die sizes are
between 100 and 300 mm2. However, transistor density has increased 2x every
two years (+40%/year) since 1992, thus keeping up with Moore’s law transistor
count growth rate. This increase in transistor density growth rate was partially
thanks to the inclusion of on-chip caches. Caches are more regular than other
pipeline logic structures and thus have a higher transistor density.

The availability of more transistors allowed architects to integrate devices,
that were so far out of the chip, on the chip (landmarks shown in transistor
density chart in Figure 1.1). Examples are the inclusion of floating-point units,
caches and memory controllers. Also, it allowed architects to build more com-
plex architectures. First, the bit width of data and address paths was increased
to improve performance and to be able to reference a larger address space. The
first microprocessors had 4- and 8-bit data paths, with 16- and 32-bit archi-

1

1.1. Context and Motivation Chapter 1. Introduction

1960 1970 1980 1990 2000 2010 2020
Year

103
104
105
106
107
108
109
1010

Tr
an

si
st
or
s

4-bit
8-bit

16-bit
32-bit

64-bit

out-of-order
SMT

2-core
4-core

6-core
8-core

1+8-core

Intel
DEC-Alpha
IBM
AMD

1960 1970 1980 1990 2000 2010 2020
Year

101

102

103

Di
e
si
ze
 (m

m
²) Intel

DEC-Alpha
IBM
AMD

1960 1970 1980 1990 2000 2010 2020
Year

101

102

103

104

105

Fe
at
ur
e
si
ze
 (n

m
) 0.74MHz

2MHz
12MHz 150MHz

1400MHz
2800MHz

4700MHz
3500MHz

5V
3.1V

1.6V
1.25V

Intel
DEC-Alpha
IBM
AMD

1960 1970 1980 1990 2000 2010 2020
Year

102
103
104
105
106
107

Tr
an

s.
 d
en

si
ty
 (t
ra
ns
/m

m
²)

on-chip FPU
on-chip L1

on-chip L2
on-chip L3

on-chip mem ctlr

Intel
DEC-Alpha
IBM
AMD

Figure 1.1: Transistor count, die size, technology node and transistor density
for a set of microprocessors from 1971 to 2012.

2

1.1. Context and Motivation Chapter 1. Introduction

tectures appearing less than fifteen years later. The move from 32 to 64 bits
took 18 years for personal computers. However, in the server market, where the
system memory footprint is larger, there were 64-bit machines way earlier. An
example is the DEC Alpha 21064 introduced in 1992.

Having smaller transistors also allowed to increase frequency, and thus in-
crease performance. This increase in frequency also came together with a reduc-
tion in capacitance and voltage (landmarks shown in technology node chart in
Figure 1.1). This scale down of voltage for smaller feature sizes was stated in a
scaling theory by Robert Dennard et al. in 1974. This scaling theory is referred
to as Dennard scaling. The result was that, having more and faster transis-
tors together with a reduction in voltage and capacitance, new design chips
provided more performance at the same power. This enabled the introduction
of complex architectural techniques to improve performance, such as specula-
tion, out-of-order execution and simultaneous multithreading (SMT). Also, the
pipeline structures, such as branch prediction tables, reorder buffer and issue
queues, were enlarged to exploit more instruction-level parallelism.

However, Dennard scaling stopped in the early 2000s. Since then, new tech-
nology nodes provide more transistors, but voltage does not scale down any
more. Voltage is over 1V in desktops, laptops and servers and just below 1V
in embedded systems. The result is that power density increases and, as a
side effect, frequency cannot be scaled up because affordable heat dissipation
solutions cannot dissipate so much heat and the cooling solutions that would
are too expensive. This limitation in power density is popularly known as the
power wall. Moreover, at the same time, computer architects were experienc-
ing diminishing returns in the latest improvements to exploit instruction-level
parallelism [172, 143].

Under this scenario, microprocessor design shifted towards chip multipro-
cessors or multi-cores. A multi-core is an integrated circuit including multiple
processing cores, in contrast to the single processing core chips had so far. This
design is more power efficient [38] and, as a result, more transistors can be used
to increase performance by integrating more cores on the chip while preventing
power density from skyrocketing.

The first academic paper proposing a multi-core design was presented in
1996 [132] and the first commercially-available multi-core was introduced in
2001. Since then, the trend is to include more cores per chip in every generation,
which complicates their interconnection, the management of resources shared
among cores and the programming of applications that shifted from focusing on
instruction-level parallelism to targeting to exploit thread-level parallelism.

1.1.2 Chip Multiprocessor Simulation

Computer architecture research is mainly based on simulation. This is because
the execution of a workload on a complex microprocessor can hardly be modeled
analytically, and prototyping every design point is economically unviable.

In the 1980s and early 1990s, microprocessor simulators focused on the mod-
eling of cache behaviour and the pipeline structures in the context of a single
processing core per chip. Initially, pipeline models considered in-order execu-
tion on a wider or narrower superscalar design. In time, the design complexity
kept increasing with the introduction of increasingly complex techniques for
out-of-order execution, speculation, branch prediction and simultaneous multi-

3

1.1. Context and Motivation Chapter 1. Introduction

threading. On the other hand, the design space of the cache hierarchy included
cache size, associativity, latency and writing policies for one or two cache levels.

However, with the introduction of multi-cores, microprocessor simulation
turned into the simulation of a parallel machine. The simulation of a parallel
architecture is even more challenging than simulating a single core. Several
execution streams stress not only core-private components but also shared re-
sources in the architecture. These shared components include shared caches,
off-chip memory and the on-chip interconnection among cores. Modeling such
sharing and resource contention is already challenging for multiprogrammed
workloads. However, for multithreaded applications, it is also sensitive to the
level of parallelism, inter-thread data sharing and thread synchronization of the
particular application. To faithfully account for these effects, the simulation
model requires the inclusion, among others, of cache coherence protocols, cache
data placement policies, network arbitration and cache partitioning techniques.

Many of the modeling challenges of multi-core simulation are not new, as
they were already present when simulating shared-memory multiprocessor sys-
tems with cache coherency across multiple chips. However, there are fundamen-
tal differences of having such a parallel system on a single chip compared to
multi-chip multiprocessors. Communication latencies are lower thanks to fast
on-chip interconnection networks. And memory bandwidth is also lower because
an increasing amount of processing cores have to share a limited amount of pins
to access off-chip memory.

Due to these fundamental differences, researchers need to assess the applica-
bility of techniques developed for shared-memory multiprocessors in the context
of multi-cores. But, at the same time, multi-core designs also open new research
opportunities that are unique for multi-cores. As a result, multi-core simulation
becomes a fundamental tool for either revisiting existing ideas and explore new
ones.

1.1.3 The Simulation Speed Gap

Computer architecture simulation is mainly a single-threaded problem because
the fine-grain interaction of the components in the chip limits its parallelization.
Most computer architecture simulators are thus sequential and, as a result, sim-
ulation speed highly depends on the single-thread performance of the machine
were the simulator is running.

While the complexity of microprocessors keeps increasing, single-thread per-
formance is not increasing at the same pace. The efforts to develop or im-
prove techniques to exploit instruction level parallelism have decreased due to
diminishing returns and power density issues. This shifted the focus of com-
puter architects to higher aggregated multi-core performance rather than higher
single-thread performance.

A popular benchmark suite to measure single-thread performance is SPEC
(Standard Performance Evaluation Corporation) CPU. The SPEC CPU bench-
mark suite is divided in two subsets: integer (CINT) and floating-point (CFP)
benchmarks. We focus on the SPEC CINT benchmarks because computer sim-
ulation code is mainly integer code. We have gathered the SPECint results for
a set of microprocessors from 1991 to 2013 and adjusted them1 to the 2006

1We use the methodology in J. Preshing’s blog [137], abiding the SPEC fair use rules [10].

4

1.1. Context and Motivation Chapter 1. Introduction

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

Year

⅛

¼

½

1

2

4

8

16

32

64

~2x/2years

~2x/3.5years

Normalized Historic Trends for SPECint
AMD Athlon
AMD FX
AMD Opteron
AMD Phenom
AMD Turion
DEC Alpha
Fujitsu SPARC
HP PA-RISC
IBM POWER
Intel Celeron
Intel Core
Intel Itanium
Intel Pentium
Intel Xeon
MIPS
PowerPC
Sun SPARC

Figure 1.2: Single Thread Performance

standard to show the historical trends for single-thread integer performance.
Figure 1.2 shows these results. Until 2004, integer performance doubles ap-
proximately every two years. In 2004, multi-cores start becoming mainstream
and, in some cases, the first approaches to multi-core design were to integrate
simpler cores than the ones in the latest single-core microprocessors. For this
reason, from 2004 to 2006, the chart shows some stagnation in performance
improvement. Since 2006, single-thread performance improves again, but now
it doubles approximately every 3.5 years.

While single-thread performance improvement slows down, the complexity
of multi-cores keeps increasing at the same pace thanks to the still-increasing
amount of transistors per chip (see Figure 1.1). This translates into two facts.
The complexity of the simulation model, which depends on the complexity of the
simulated machine, keeps increasing at 2x every 2 years. But, the improvement
on simulation speed, that depends on single-thread performance, is slowing down
and improves at 2x every 3.5 years. This is what we call the simulation speed
gap, and it is sketched in Figure 1.3. If the transistor count and single-thread
performance trends hold for the next few years, there will be a 10x gap in around
year 2020.

This increasing gap leads to increasingly longer simulation runs or to restrict
the complexity of the model, for example, restrict the number of simulated cores.
This fact is reflected in research works in top conferences where they use multi-
core models with the same or less cores than the ones in commercially-available
products. While there are commercially-available multi-cores for conventional
servers with 16 cores [46], and not so conventional with 64 [29], 79% of the

5

1.2. Thesis contributions Chapter 1. Introduction

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

hola

~2x/2years

~2x/3.5years

10x

Transistor count
Single-thread performance
Simulation speed gap

Figure 1.3: Simulation speed gap.

research papers in major computer architecture conferences between 2009 and
2012 simulate at most 16 cores, and only 5% simulate more than 64 cores 2.

1.2 Thesis contributions

The simulation speed gap poses a challenge on computer architects to simulate
large multi-core designs. To complete the simulation of large multi-cores in a
reasonable time, we require higher simulation speeds. Researchers are concious
of this problem, and they have proposed several techniques to reduce simulation
time such as statistical simulation, sampling and parallel simulation.

The approach in this thesis is to raise the level of abstraction of the simula-
tion model. This allows to increase simulation speed at the expense of modeling
accuracy in order to reduce simulation time. Some reputed researchers advocate
for this approach [39, 180] and previous works have applied it in other scenarios
such as cluster and network simulation [24, 120].

To implement high levels of abstraction, we advocate for the use of trace-
driven simulation. However, one of the most important limitations of trace-
driven simulation is precisely its inability to reproduce the dynamic behavior
of multithreaded applications, which are absolutely necessary for the evaluation
of multi-core systems. This limitation is because the application behavior in
multiple threads is statically captured in a trace and does not change for different
simulated configurations as it would happen in a real machine.

To overcome this limitation, the first contribution in this thesis is:

2Check Section 2.6 for more simulation statistics in computer architecture conferences.

6

1.2. Thesis contributions Chapter 1. Introduction

• A simulation methodology for simulating multithreaded applications
running on multi-cores using trace-driven simulation. In this simula-
tion methodology, we combine the trace-driven simulation of the timing-
independent parts of the application, with the execution of timing-dependent
operations at simulation time. This way, run-time decisions are made
based on the simulated machine and are thus different for different config-
urations as it would happen in the real machine. This work is supported
by the following papers:

[150] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, M. Valero.
Trace-driven Simulation of Multithreaded Applications. In Proceed-
ings of the IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS ’11, pages 87–96, Apr. 2011.

[151] A. Rico, A. Duran, A. Ramirez, M. Valero. Simulating Dynamically-
Scheduled Multithreaded Applications Using Traces. IEEE Micro.
Submitted for publication.

Once we can reliably use trace-driven simulation for multithreaded applica-
tions running on multi-cores, we use it to raise the level of abstraction of simu-
lation. However, several questions arise when using higher levels of abstraction
regarding what are the right levels of abstraction, their insight, accuracy and
simulation speed.

The second contribution in this thesis is:

• Two fast high-level simulation modes along with two lower-level ones.
These simulation modes at different levels of abstraction are based on our
definition of application abstraction levels and target application scala-
bility, accelerator architectures, memory system and pipeline modeling,
respectively. We evaluate the insight of these simulation modes, their ac-
curacy and their simulation speed compared to the levels of abstraction
used in popular computer architecture simulators. This contribution is
supported by the following publication:

[148] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, M. Valero. On the Simulation of Large-Scale Architec-
tures Using Multiple Application Abstraction Levels. ACM Trans.
Archit. Code Optim., 8(4):36:1–36:20, 2012.

One of the abstraction levels in our definition targets multi-core memory
simulation. This level of abstraction uses an abstract model for processing
cores that focus mainly on memory accesses. To speed up memory simulation,
previous works use filtered traces that include only L1 cache misses to avoid the
cost of simulating L1 hits assuming that these do not imply additional delays
in the simulated application. This technique, called trace stripping [138], has
been successfully used in the past for single-thread scenarios. However, little
work has been done to use it for multithreaded applications, in which inherent
inaccuracies appear due to cache invalidations. A filtered hit may miss in a
multithreaded scenario due to the invalidation of the accessed data from a write
in another cache.

The third contribution in this thesis is:

7

1.3. Timeline Chapter 1. Introduction

• A trace generation technique based on the structure of multithreaded
applications that captures in the trace L1 hits that may potentially miss
in a multithreaded application execution due to invalidations. With this
technique, we cover potential invalidations due to different thread inter-
leavings and different dynamic schedulings. Our evaluation shows that
our technique consistently reduces the error of the state-of-the-art tech-
nique at the expense of small losses in trace size reduction and simulation
speed-up. This work is supported by the following publication:

[154] A. Rico, A. Ramirez, M. Valero. Trace Filtering of Multithreaded
Applications for CMP Memory Simulation. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS ’13, pages 134–135, Apr. 2013.

One of the potential inaccuracies of our simulation methodology in our first
contribution is that the execution of timing-dependent operations is not exposed
to the simulator, and thus cannot be accurately accounted in the application
timing modeling.

The fourth contribution in this thesis is:

• A fast high-level timing model for timing-dependent operations
that are executed at simulation time using our simulation methodology.
This timing model is based on the execution of these operations on the
host machine to account for different algorithm complexities and run-
time application states. Additionally, we also model their contention on
accessing data structures shared by multiple threads on the simulated
application.

1.3 Timeline

Figure 1.4 shows a timeline of relevant events related to the work in this thesis
to put it in context. At the top of the figure, we show the releases of multi-
core commercial products. The trend followed by the main manufacturers is to
increase the number of cores per chip in every new generation of multi-cores. As
explained in previous sections, this motivates our work to bridge the simulation-
speed gap.

The work in this thesis has contributed to several projects. From January
2006 to December 2009, we contributed to the SARC project with the devel-
opment of CellSim (see Section 2.1). CellSim served to carry out the work
of several partners in the project, leading to multiple publications and PhD
dissertations (see Section 7.2). CellSim was also the base for SARCSim: an ex-
tension of CellSim including timing models from other SARC partners, such as
models of extended vector accelerators and scalable inter-core communication
mechanisms.

In the context of the MareIncognito project (from January 2007 to December
2009), CellSim was relevant in the research for the design of next-generation
Cell/B.E. microprocessors (see Section 2.1.1). From March 2010 to February
2013 we contributed to the ENCORE project. The simulation methodologies
proposed in this thesis were used in ENCORE for the evaluation of explicit
management of coherent and non-coherent cache hierarchies. Also, the analysis

8

1.3. Timeline Chapter 1. Introduction

2006 2007 2008 2009 2010 2011 2012 2013

Multicores

Projects

Milestones

Other

Simulators

C
el
lS
im

T
ut

or
ia
l

Internships

IBM
9 cores

SARC ENCORE

MareIncognito

IBM ARM

T
as
kS

im

T
ut

or
ia
l

T
as
kS

im

M
T
 A

pp
s.

T
as
kS

im

A
bs

tr
. l
ev

el
s

T
as
kS

im

T
ra
ce
 fi
lt

gem5Graphite SniperRigel

Intel
2 cores

AMD
2 cores

AMD
4 cores

Intel
4 cores

AMD
6 cores

Intel
6,8 cores

IBM
8 cores

Intel
10 cores

AMD
8 cores

Sun
8 cores

Sun
16 cores

GEMS M5 PTLsim

Figure 1.4: Thesis timeline

of the runtime system we carried out for the simulation of the runtime system
timing (see Chapter 6) was used in ENCORE to understand the overheads of
the several components in the runtime system.

The course of this thesis was interrupted by two industrial internships. The
first one at the IBM TJ Watson Research Center (Yorktown Heights, NY, USA)
for the development of a vector accelerator took place from October 2008 to
December 2009. The second internship was at ARM Ltd. (Cambridge, UK)
from August 2012 to November 2012 and focused on the evaluation of the ARM
Cortex-A family of microprocessors for high performance computing.

Some milestones worth mentioning as outcomes of the work in this thesis
are the following:

• CellSim Tutorial. We performed a full-day tutorial on our CellSim
simulator (see Section 2.1) in the Parallel Architectures and Compilation
Techniques (PACT) conference at Brasov, Romania, on September 2007.

• TaskSim Tutorial. We performed a tutorial for the ENCORE project
partners on our TaskSim simulator (see Section 2.2) on March 2010.

• Publication of ”Trace-Driven Simulation of Multithreaded Ap-
plications”. Publication in Proceedings of the International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS) 2011
at Austin, TX, USA, on April 2011.

• Publication of ”On the Simulation of Large-Scale Architectures
Using Multiple Application Abstraction Levels”. Publication in
the ACM Transactions on Architecture and Compiler Optimization (TACO),
Vol. 8, No. 4, Article 36, January 2012.

9

1.4. Thesis Organization Chapter 1. Introduction

• Publication of ”Trace Filtering of Multithreaded Applications
for CMP Memory Simulation”. Publication in International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS) 2013 at
Austin, TX, USA, on April 2013.

In the course of this thesis, other groups in the computer architecture com-
munity working on simulation of multi-cores published their tools in related
conferences and journals. Some of them shown at the bottom of Figure 1.4 are
GEMS, M5, PTLsim, Rigel, Graphite, gem5 and Sniper. We cover these works
in Section 2.5.

1.4 Thesis Organization

Figure 1.5 illustrates the organization of this document in the several chapters
it is composed of.

1. Introduction

7. Conclusions

Publications Impact Future Work

3. Simulating Multithreaded

Applications Using Traces

4. Multiple Levels

of Abstraction

5. Trace Filtering of

Multithreaded

Applications

6. Modeling the

Runtime System

Timing

2. Background

CellSim TaskSim

Figure 1.5: Thesis organization.

After this introductory chapter, we devote Chapter 2 to cover related work
for this thesis. In this chapter, we include an explanation of CellSim and
TaskSim, two simulators to which we contributed to develop in the course of

10

1.4. Thesis Organization Chapter 1. Introduction

this thesis. The lessons learned in the development of CellSim motivated the
development of TaskSim and the research that led to the contributions in this
thesis. The rest of the background in Chapter 2 is general and relevant for the
rest of the document.

We cover our contributions in Chapters 3, 4, 5 and 6. We include general
related work and state of the art in Chapter 2 and the specific related work and
state of the art relevant to each contribution in each one of the corresponding
chapters.

Chapter 3 explains and evaluates the first contribution of this thesis: a
simulation methodology for simulating multithreaded applications using a trace-
driven simulation approach. This simulation methodology enables the works in
Chapters 4 and 5 and motives the work in Chapter 6.

Chapter 4 covers our definition of multiple application abstraction levels,
the corresponding simulation modes at multiple levels of abstraction, and their
evaluation in terms of insight, accuracy and simulation speed. In Chapter 5 we
cover the description and evaluation of our trace filtering technique for multi-
threaded applications and in Chapter 6 we cover our high-level timing model
for timing-dependent operations to be used with the simulation methodology in
Chapter 3.

Finally, we conclude this thesis in Chapter 7 with our contributions and
associated publications, the impact of our work in other works and some rec-
ommendations for future work.

11

1.4. Thesis Organization Chapter 1. Introduction

12

Chapter 2

Background

In this chapter we cover related and relevant work for this thesis. First we
introduce CellSim, a simulator we developed for modeling the Cell/B.E. micro-
processor. The difficulties and experiences during the development of CellSim
motivated us to initiate research with the objective of exploring new simulation
techniques to reduce simulation time by raising the level of abstraction.

We also cover related work on other techniques for reducing simulation time.
This includes techniques used in state-of-the-art simulators such as statistical
simulation, sampling and parallel simulation. We also cover works using field-
programmable gate arrays (FPGA) prototyping with the aim of speeding up
computer simulation.

We explain a set of existing multi-core simulators that are relevant for the
work in this thesis either because the are widely used or because they implement
some of the simulation time reduction techniques explained before. We also
include a survey on the use of these simulation tools and techniques in major
computer architecture conferences.

Finally, we give an overview of task-based parallel programming models.
This background is important because the multithreaded applications driving
the work in this thesis are programmed in OmpSs [68], a task-based program-
ming model.

2.1 CellSim

CellSim [49, 147, 50, 51, 142] is a simulator modeling the Cell Broadband En-
gine (Cell/B.E.) microprocessor [100]. The introduction of the Cell/B.E. was a
breakthrough due to its unique characteristics. It was the first high-performance
heterogeneous multi-core. Heterogeneous designs have been widely used in the
embedded market. Microprocessors such as the NXP Viper [71], TI OMAP [56]
include a general-purpose core, a very-long-instruction-word (VLIW) core and
a set of multimedia accelerators such as video and audio encoders and decoders.
However, the Cell/B.E. was the first to have an impact on high-performance
computing (HPC) although it was initially designed for the video-game mar-
ket, precisely as the microprocessor of the Sony PlayStation 3 games console. A
proof of its impact in HPC is that the number one supercomputer in the Top500
list [11] of June 2008 was mainly composed of Cell/B.E. microprocessors.

13

2.1. CellSim Chapter 2. Background

Its high-performance heterogeneous design opened new research opportuni-
ties including both software and hardware. There was no Cell/B.E. simula-
tor publicly available, and we decided to develop one ourselves called CellSim.
However, we found several difficulties during the development of CellSim that
resulted in a reduced simulation speed that end up limiting its usability for
exploring larger Cell/B.E.-like designs. Also, the Cell/B.E. line of microproces-
sors was discontinued because it was not economically successful. Altogether,
we decided to discontinue CellSim, but the lessons learned from its development
were the foundation for the research in this thesis.

2.1.1 The Cell/B.E. Microprocessor

The Cell/B.E. microprocessor is an initiative by Sony, Toshiba and IBM. Its
development started in 2001, and it was introduced in 2005. It had a first im-
plementation in 2005 using 90nm technology node, known as Cell Broadband
Engine (Cell/B.E.). This implementation was mainly used in the PlaySta-
tion 3 games console. In 2008, a second implementation that was mainly
a shrink to 65nm was announced. This implementation was known as Pow-
erXCell 8i and became the microprocessor fueling the RoadRunner supercom-
puter [27], the first to achieve an HP Linpack (HPL) [67] performance over one
PetaFLOP (PFLOP), and the fastest in the Top500 list from June 2008 to June
2009.

L2

SPU

LS

MFC

EIB

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPE

L1 PPU

PPE

Memory

controller

I/O

controller

Figure 2.1: The Cell/B.E. microprocessor architecture [100].

Figure 2.1 shows a scheme of the Cell/B.E. microprocessor. It is composed
of one general purpose core, called the Power Processor Element (PPE), and
eight vector accelerators, each of them called the Synergistic Processor Ele-
ment (SPE). The PPE is composed of a two-way SMT in-order 64-bit Power-
Architecture [8] core, called the Power Processing Unit (PPU), with 64 KB of
L1 cache (32 KB for instructions plus 32 KB for data) and 512 KB of L2 cache.

14

2.1. CellSim Chapter 2. Background

Both levels of cache are private to the PPE. The PPE executes the operating
system and acts as a controller of the eight SPEs.

An SPE includes a SIMD processing core, called the Synergistic Processing
Unit (SPU), a 256 KB local memory called Local Store (LS), and a direct-
memory-access (DMA) engine called the Memory Flow Controller (MFC). The
SPU is a two-wide-issue in-order core with a new SIMD-based instruction set
architecture (ISA) [12]. It incorporates just SIMD execution units and has sim-
ple hint-based branch prediction because it targets energy efficiency for regular
data-intensive codes. The SPU can only access data in the LS. The LS works
as an scratchpad memory. To move data in and out of the scratchpad memory,
it must be done using DMA commands in the MFC.

The eight SPEs and the PPE are connected using a three-ring intercon-
nection network called the Element Interconnect Bus (EIB). The EIB also gave
access to off-chip memory through the on-chip memory controller and to off-chip
devices through the input/output (I/O) controller.

Both implementations of the Cell/B.E. were clocked at 3.2 GHz and provided
a peak single-precision floating-point performance of 204.8 GFLOPS using all
eight SPEs. The PowerXCell 8i included, unlike its predecessor, fully-pipelined
double-precision floating-point units in the SPEs that provided 102.4 GFLOPS
up from 12.8 GFLOPS in the first implementation. These facts confirmed how,
although the first implementation of the Cell/B.E. targeted multimedia com-
puting, for which double-precision floating-point is irrelevant, the interest of
the scientific community led to a second implementation providing full-fledged
double-precision floating-point capabilities.

However, the Cell/B.E. architecture also has some weaknesses. Program-
ming to achieve high performance is tedious. The non-coherent nature of the
LSs requires explicit data movement and the SIMD nature of the SPEs requires
programming with vector data structures and deal with alignment, gathering
and scattering of data while using close-to-assembler semantics. These pro-
grammability limitations added to the high design and development costs that
led to its discontinuation.

2.1.2 CellSim Design

Our approach to simulating the Cell/B.E. was to use a modular infrastructure.
Using a monolithic approach, apart from being generally bad software engineer-
ing practice, would lead to many dependencies among architecture components.
Having a modular infrastructure allows having encapsulated components with
a clear interface among them. For this purpose, we employed the UNISIM in-
frastructure [20] that allows to describe an architecture by specifying a set of
modules and the connections among them.

In CellSim, the PPU, caches, SPU, LS, MFC, EIB and memory controller
are independent modules. Figure 2.2 shows a scheme of CellSim including its
modules and interconnections. The design allows a configurable number of PPEs
and SPEs. This allowed to set up a Cell/B.E. configuration with one PPE and
eight SPEs, and also exploring future Cell/B.E. implementations with more
PPEs and SPEs.

CellSim is an execution-driven simulator. This implies that it has to support
two different ISAs, the 64-bit Power ISA and the SPU ISA. Since the SPU ISA
was new, we had to implement it from scratch and almost completely as we need

15

2.1. CellSim Chapter 2. Background

SPU

LS

MFC

EIB

SPU

LS

MFC

Memory

controller

L2

L1

PPU

PPE

L2

L1

PPU

...

SPE

...

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

Figure 2.2: The CellSim simulator.

to cover around 75% of the instructions for the applications used for evaluation.
The PPE works in system-call emulation mode. System calls are emulated
by forwarding them to the native operating system running in the host. This
implied there is no simulation of the operating system and thus there is no
simulation of I/O devices, as shown in Figure 2.2.

The PPU pipeline model was simple, as our focus was on modeling the per-
formance of the SPEs, which is the relevant processing component for HPC
applications. The SPU pipeline model included a configurable number of exe-
cution units and a configurable issue width. The LS had configurable latency
and allowed simultaneous access to different banks from the SPU and MFC.
The MFC DMA engine was also modeled in detail to account for configurable
processing delays, data transfer rates, packet sizes and transfer synchronizations.

We performed a functional validation of the PPU and SPU modules and a
performance validation of the interconnection network [147, 51].

2.1.3 Lessons Learned

The main problem of CellSim is that it is slow for simulating large configurations.
The largest configurations we simulated included 16 SPEs. This is due mainly
to three facts:

• Module communication overhead. Modularity brings a set of benefits
such as encapsulation and reusability. For example, our module cache
served both as L1 and L2 cache. However, one must be careful with
the complexity of module communications. UNISIM states a complex

16

2.1. CellSim Chapter 2. Background

communication protocol between modules. The sender module writes the
data in the output port at the beginning of the cycle. Then, the receiving
module accepts it or rejects it. If the receiver accepts it, then the sender
can enable it or not. This three-way protocol unnecessarily complicates
communication and introduces a large overhead for every interconnection
port every cycle.

• Software emulation. Due to the execution-driven nature of CellSim,
instructions must be functionally simulated (emulated). This has some
benefits as we explain in Section 2.3. From a developer’s point of view,
implementing the instruction set functionality provides a deep understand-
ing of the core features and capabilities. However, from a performance-
prediction perspective, emulation adds a simulation overhead for every
instruction, something that seems unnecessary if the objective is just to
determine the instruction timing.

An additional problem of execution-driven simulation appears when the
model is tied to the ISA. In the case of CellSim, the SPU ISA was spe-
cific to the Cell/B.E. This restricted the flexibility of CellSim. When
the Cell/B.E. was discontinued, software development for the Cell/B.E.
stopped and we found ourselves with a restricted amount of applications
to feed our simulator with.

In modern execution-driven simulators, functional simulation is decoupled
from the timing model. The functional simulation component translates
the instructions to an intermediate ”ISA-independent” representation that
is fed to the timing model. This way multiple ISAs can be supported and
the timing model becomes ISA independent [36].

• Detailed modeling. The use of execution-driven simulation allows a
detailed modeling of the processing cores because all the information about
the running instruction is available for the timing model. This is useful
for detailed modeling of a specific core. However, when that detailed
model is replicated for a large number of cores, simulation speed (cycles
per second) drops dramatically (typically super linearly). Some of our
experiments focused on the interconnect and off-chip memory bandwidth
with an increasing number of SPEs. In these cases, most of the time was
spent in the detailed modeling of the SPU and LS, while our exploration
was not focused in those components. Also, for interconnect and memory
bandwidth studies, it is interesting to find the sweet spot design that
best manages contention with an increasing number of cores. However,
simulating more than sixteen SPEs using such detailed models required
long simulation times. As an example, simulations of sixteen SPEs and
one PPE using CellSim run at approximately 9 kilo cycles per second
(140 kilo instructions per second (KIPS)) on a Pentium 4 at 3 GHz. This
is a slowdown of 33 333x compared to native execution.

The lessons learned from these experiences are the following:

• Keep modules communication simple. Modularity provides benefits
in terms of clean and structured code, encapsulation and reusability. How-
ever, the communication protocol among modules must be simple: enough
to do the job with the minimum performance overheads.

17

2.2. TaskSim Chapter 2. Background

• Keep the timing model ISA independent. Functional simulation
in execution-driven simulation must be decoupled from the timing model
and an intermediate representation must be used for this to be ISA inde-
pendent.

• Use the appropriate modeling detail for each component. The
components modeled in detail must be those to which the analysis is tar-
geted to. Depending on the type of studies, parts of the timing model may
be abstracted to gain simulation speed at the expense of some accuracy
loss in the not-so-relevant components. For example, for interconnect,
cache hierarchy and memory studies, the model of the processing core,
which is the most time-consuming part of the model, can be abstracted.
This allows researchers to scale their simulations to larger numbers of
cores.

2.2 TaskSim

After the discontinuation of CellSim, we decided to develop a new simulation
framework from scratch with the objective of keeping the strengths and get rid
of the weaknesses of CellSim.

First, we developed a simulation engine, referred to as CycleSim, to replace
UNISIM. From our experience with CellSim, we learned that modularity gives
flexibility, encapsulation and reusability, so CycleSim is also based on modules.
However, one of the issues in UNISIM was the complexity of the communication
protocol between modules, so we simplify it and went from a three-step to an
up-to-two-step protocol.

The simulation procedure is similar as with UNISIM, but we redesigned it
for speed. UNISIM executes all modules every cycle and all connections must
be set every cycle. In CycleSim, we only execute those modules that need to be
executed in a given cycle, and even skip empty cycles in which no module has
scheduled activity.

Using CycleSim, we developed a set of modules to model the components in
multi-core architectures. These modules are then glued together and configured
to compose the target architectures of interest.

The CycleSim simulation engine, the modules and the configurations us-
ing those modules compose the simulation framework we refer to as TaskSim.
TaskSim has been used to carry out a variety of research studies (see Section 7.2)
and is the platform on which we have incorporated and evaluated the simulation
methodologies and techniques proposed in this thesis.

In the following sections we provide more details on the CycleSim engine,
and the modules and configurations we have simulated with TaskSim.

2.2.1 CycleSim

CycleSim allows to describe an architecture using a set of modules and their
interconnections. Figure 2.3 shows a producer-consumer communication exam-
ple between modules using CycleSim. A Producer module sends some data to
a consumer module using the connection at the top of the figure that connects
the out port in Producer to the in port in Consumer. Consumer has a queue
to store that data until it can be processed due to its processing latency. Then,

18

2.2. TaskSim Chapter 2. Background

Producer Consumer

out in

in out

busy

Figure 2.3: Producer-consumer module example using CycleSim.

Cycle 1

start end

Cycle 2

start end

Cycle 3

start end

Cycle 4

start end

Cycle 5

start end

Cycle 6

start end

Producer

Consumer

e1

clock

e2

size:1 size:2

queue size: 2, processing latency: 3

busy busy busy

r1 r2

e3

e1 e2

r1 r2

e3
size:2 size:2 size:1 size:1

Figure 2.4: Example of communication between Producer and Consumer mod-
ules in CycleSim.

when the Consumer queue gets full, it has to notify the Producer to stop it from
sending more data that it could not fit in the queue. For this kind of situations,
CycleSim provides the busy signal. The busy signal is generally associated to a
interconnection for data, and serves to notify whether the receiving module is
ready for processing the data, or is busy and cannot process it. In the example,
the Consumer module can set the busy signal so the Producer module does not
send more data until the busy signal is unset.

After processing the data, the Consumer module sends the result to the
Producer through the interconnection shown in the bottom of the figure. This
interconnection does not need a busy signal because the Producer module is at
any time ready to process that communication.

As previously mentioned, UNISIM requires all signals to be set every cycle,
including the data in the sender module, the acceptance in the receiver module
and the enabling of the data in the sender module. Contrarily to UNISIM, in
CycleSim, the signals between modules does not necessarily have to be set every
cycle, and the busy signal is optional. This results in a much lower overhead
per cycle.

Also, in UNISIM, all cycles must be simulated. CycleSim, however, only
simulates a module if it has some activity in that cycle or if a signal in its input
ports changed. Cycles where no module has activity are skipped, similar to the
operation of event-driven simulators.

Figure 2.4 shows the cycle-by-cycle operation of the producer-consumer ex-

19

2.2. TaskSim Chapter 2. Background

ample shown before. In this example, the Consumer module has a queue that
can hold two elements, and it takes three cycles to process the element and send
back a response. By convention, modules send data at the start of the cycle,
and set/unset their busy signal at the end of the cycle. In the figure, we show
the number of elements in the Consumer queue at the end of each cycle.

In the first two cycles, the Producer module sends two elements to the Con-
sumer and its queue gets full. The Consumer then sets the busy signal, and
notifies that it does not have to do anything until Cycle 5. In Cycle 3, the
Producer reads the busy signal, and notifies that it will not have anything to do
until that signal changes or it receives any other data. Therefore, the Consumer
module is not executed again until Cycle 5, when it sends back the response
to element e1, and the Producer module awakes to handle it. In Cycle 6, the
busy signal is not set, the Producer module then sends a third element, and the
Consumer sends back the response to element e2.

With this operation, in Cycle 3 the Consumer module was not executed and
the Producer only for half cycle. Cycle 4 was never simulated, and in Cycle 5
the Producer only simulates the end of the cycle. The cycles not simulated are
shown in grey in the figure.

This implementation allows simulations scalable to large numbers of cores.
This is because the number of cycles to be simulated does not determine simu-
lation time, but simulation time is determined by the activity to be simulated
in the modeled components.

2.2.2 Modules and Configurations

Using the CycleSim semantics, we implemented a set of modules to model cores,
caches, local memories, DMA engines, memory controllers, off-chip memory
modules and interconnects. This set of modules is used to compose different
architectures, thus demonstrating one of the benefits of modularity: reusability.

Figure 2.5 shows three examples of target architectures depicted in terms of
modules and their interconnections. The first case, in Figure 2.5a, is an SMP
configuration with three levels of cache, with a configurable number of cores, L3
cache banks, memory controllers and memory modules.

The configuration in Figure 2.5b models the Cell/B.E. microprocessor (see
Section 2.1.1). In this configuration, the L1 and L2 caches are configured to
mimic the ones available for the Cell/B.E. PPU, the interconnection network
module is adapted to provide the same bandwidth and latency as the Element
Interconnect Bus, the scratchpad memory (LM) modules are configured as Local
Stores, and the DMA engine module is modified to work as the Memory Flow
Controller.

The third example, in Figure 2.5c, is the SARC project architecture [141].
A two-level hierarchical network connects the computation cores in the system
to a three-level cache hierarchy and a set of memory controllers giving access
to off-chip memory. The several last-level cache (L3) banks are shared among
all cores, and data is interleaved among them to provide maximum bandwidth.
The L2 banks are distributed among different core groups (clusters) and their
data placement policy can be configured to optimize either for latency (data
replication), or bandwidth (data interleaving) [170]. Each core has access both
to a first-level cache (L1), and to a scratchpad memory (LM). To have determin-
istic quick access to data, applications may map a given address range to the

20

2.2. TaskSim Chapter 2. Background

Core Core Core Core...

Interconnection Network

MIC

D
R

A
M

D
R

A
M...

MIC

D
R

A
M

D
R

A
M...

L3 L3...

...

L2

CPU

L1

(a) SMP

Interconnection Network

PPU

L1

L2

SPE SPE SPE SPE

DMA

SPU LM

SPE SPE SPE SPE

MIC

D
R

A
M

D
R

A
M

(b) STI Cell/B.E.

Global Interconnection Network

MIC

D
R

A
M

D
R

A
M...

MIC

D
R

A
M

D
R

A
M...

L3 L3...

C
lu

st
er

 I
n
te

rc
o
n
n
ec

t

L2

Core

Core

...

C
lu

st
er

 I
n
te

rc
o
n
n
ec

t

L2

Core

Core

...

...
CC+

DMA

C
P

U

LM

L1

...

(c) SARC architecture

Figure 2.5: Examples of architectures modeled using TaskSim.

LM, thus avoiding cache coherence issues. A mixed cache controller and DMA
engine manages both memory structures (L1 and LM), and address translation.

In TaskSim, the modeling effort is devoted to the memory system modules
(cache hierarchy, scratchpad memories and off-chip memory), and interconnec-
tion network. We model these components in detail and, in contrast, abstract
the core model. This is due to two reasons:

• The focus of our research is in macroarchitectural studies regarding the
memory system, multi-core density and multi-core organization.

• A detailed modeling of the core pipeline operation is one of the main
performance limiting factors in terms of simulation speed due to its costly
operation [108].

21

2.3. Trace- vs Execution-driven Simulation Chapter 2. Background

Therefore, we allow multiple abstraction levels for the core model depending
on the speed and accuracy required. These abstraction levels of the core model
are one of the contributions in this thesis and are presented in Chapter 4.

2.3 Trace- vs Execution-driven Simulation

A plausible classification of computer architecture simulators states two groups:
functional and performance simulators. Functional simulators just provide func-
tional correctness and programmers use them for application development and
debugging. Performance simulators on the other hand aim to provide a timing
prediction for the application running on a target machine. Functional simula-
tors are inherently execution-driven, while performance simulators can be either
execution-driven or trace-driven. In this section, we compare execution-driven
and trace-driven simulation in the context of performance simulators.

The fundamental difference between execution-driven and trace-driven sim-
ulators is their input. The input of an execution-driven simulator is the applica-
tion binary, associated libraries and input files. Using these inputs, execution-
driven simulators emulate the execution of the application and forward the re-
quired information to the timing model. Trace-driven simulators, on the other
hand, receive as input a trace file including enough information about the appli-
cation execution to predict its timing. In this case, trace-driven simulators read
the required information directly from the trace and forward it to the timing
model.

Figure 2.6 shows the flow chart of the simulation process for an execution-
driven simulator (Figure 2.6a) and for a trace-driven simulator (Figure 2.6b).
The difference is in the front-end. The execution-driven simulator feeds the
timing model with the output of the functional simulation, while the trace-
driven simulator does it with the output of the trace reader. The timing model,
simulated machines and kind of results from simulation can be common to both
approaches.

In both cases, the information required by the timing model depends on what
is being modeled and how accurate is the model. For example, to simulate a
cache memory in terms of hit ratios, the sequence of memory accesses is enough.
However, to model the performance of a processing core pipeline in detail, the
timing model requires the executed instructions, memory accesses and branch
directions and targets.

Although the difference between the two simulation types refers to the front-
end of the simulation process, it has implications in terms of capabilities and
limitations that we explain in the following sections.

2.3.1 Host System Requirements

An execution-driven simulator has to emulate the execution of the target ap-
plication running on the simulated machine, and therefore it inherits the ap-
plication system requirements, such as memory space for code and data, and
disk space for input files. For simulating large multi-core configurations, these
system requirements may exceed the resources of the host machine. As an ex-
ample, some high-performance applications require several hundred megabytes
of memory per thread [134]. Then, for weak scalability experiments on a future

22

2.3. Trace- vs Execution-driven Simulation Chapter 2. Background

Functional

Simulation

Timing

Model

Application

Input Files

Application

Binaries

Simulated

Machine

Parameters

Simulation

Results

(a) Execution-driven simulation

Trace

Reader

Timing

Model
Application

Trace File

Simulated

Machine

Parameters

Simulation

Results

(b) Trace-driven simulation

Figure 2.6: Flow chart of execution-driven and trace-driven simulation.

multi-core configuration with hundreds of cores, the simulation will require tens
of gigabytes of memory, which limits the execution-driven simulation of such
scenarios to large-scale host machines.

A trace-driven simulator, however, does not inherit the system requirements
of the application, as it does not need to emulate the application execution, and
thus, does not need to allocate its data or store its input files. However, trace
files for long applications are usually large. A trace file including instruction-
level information for a few seconds of execution may require tens of gigabytes of
storage. To reduce this disk space requirements, trace files may be compressed
using standard compression algorithms that are agnostic to the semantics of
the trace, such as those used in standard tools like gzip [65] and bzip2 [44].
Moreover, there are also trace compression techniques that take advantage of
the semantics of the trace contents to reduce the amount of bytes to represent
them. Several works in the late 1980s and early 1990s proposed trace reduction
techniques motivated by the low disk capacities in those times [156, 107, 138].
These techniques targeted to reduce trace file size, but in some cases they also
served to reduce simulation time [167].

2.3.2 Dynamic Behavior Support

Applications may have dynamic behavior that depends on the machine state, for
example computations based on random numbers, such as Monte-Carlo meth-
ods [5]. In these applications, different code may be executed based on the value
of some piece of data, such as the case of random numbers. Dynamic behavior

23

2.3. Trace- vs Execution-driven Simulation Chapter 2. Background

is also present in dynamically-scheduled multithreaded applications and oper-
ating systems. Multithreaded applications with dynamic scheduling may assign
work to threads based on the availability of resources or considering heuristics
to improve performance or energy efficiency based on the characteristics of the
underlying machine. The same applies at a higher-level in the operating system
scheduler, where multiple processes are assigned to multiple execution threads.
Moreover, dynamic behavior is also present in synchronization operations of
parallel applications, including operating systems, where the waiting decisions
depend on the state of the threads involved in the synchronization.

Thanks to the emulation of execution-driven simulators, these can reproduce
dynamic behavior at simulation time based on the state of the simulated ma-
chine. Even some full-system simulators are able to boot unmodified versions
of operating systems that execute on real machines [114, 33].

However, trace-driven simulators are restricted to the behavior statically
captured in the trace file during the trace generation run. Therefore, the tar-
get application behavior can not typically change for different machine con-
figurations as it would happen in a real machine. Some works in the early
1990s addressed this problem for statically-scheduled applications by repro-
ducing synchronization operations such as locks and barriers at simulation
time [105, 88, 82]. One of the contributions in this thesis is to enable the use of
trace-driven simulation for dynamically-scheduled applications, by reproducing
the dynamic behavior using an unmodified version of the parallel application’s
runtime system in cooperation with a trace-driven simulator (more details in
Chapter 3). The problem still exists for simulating operating systems using
traces, so more research is needed in this direction.

As a result, execution-driven simulators can simulate any kind of application
provided that they support the instructions to be executed. However, trace-
driven simulators have been limited to single-threaded, multiprogrammed and
statically-scheduled applications. In Chapter 3, we present our approach to
simulate dynamically-scheduled applications using traces. The simulation of
operating systems using trace-driven simulation remains an open problem.

2.3.3 Modeling Abstraction

Execution-driven simulators have to emulate the execution of the target applica-
tion. This implies that the simulator needs to process the executed instruction-
stream. This is the highest level of abstraction an execution-driven simulator,
in its overall, can get. The timing model may then use instruction-level infor-
mation or may use a higher level of abstraction, such as processing memory
accesses. However, having to provide functional simulation already incurs in a
significant slowdown in the order of hundreds or thousands of times slower than
native execution [36, 148].

Trace files can include any kind of information, which is only restricted by
the kind of information required by the timing model. Therefore, the level of
abstraction of the simulated model can be raised and this will directly translate
in a simulation speed increase. One of the contributions in this thesis is to
explore the implications of raising the level of abstraction in simulation. We
also compare levels of abstraction in popular execution-driven simulators with
the ones we developed in our trace-driven simulator. More details can be found
in Chapter 4.

24

2.3. Trace- vs Execution-driven Simulation Chapter 2. Background

2.3.4 Restricted-Access Applications

Execution-driven simulators require the target application binaries. Therefore,
in some situations where the access to target application binaries is restricted,
execution-driven simulation is just not possible.

In these cases, the owner of the application can distribute traces including
information about the application that allows performance analysis but does not
disclose sensible information that would break the confidentiality agreement over
the application. This situation happens in microprocessor-design companies
working with clients to develop a new chip targeting the client’s applications,
but these applications cannot be shared due to the legal policy of the client.
In this scenario, it is very useful to provide the microprocessor-design company
with trace files of the target applications and use trace-driven simulation to
drive the design of the chip.

2.3.5 Speculation Modeling

The modeling of processing cores with speculation support requires the simula-
tion of the instructions in the wrong-path on branch mispredictions. Instruction-
level trace files for trace-driven simulators typically include the stream of exe-
cuted instructions, but not those in the wrong path. This limits the accuracy
of trace-driven simulators as they can not account for the impact of speculative
instructions, such as speculative memory access reads. The impact of these in-
accuracies was studied in a previous work by Mutlu et al. [129] which stated a
5% error by not simulating the wrong-path instructions.

This is generally understood as a fundamental limitation of trace-driven
simulation but, in fact, there have been already works addressing this issue. An
approach by Bhargava et al. [31] searches for executions of the wrong path on a
branch misprediction in other locations in the trace where that branch took the
other direction and thus was the right path in the real execution. This allows
to have both paths of the execution for every branch. They report to cover 99%
of the branches with this technique.

2.3.6 Development Effort

Execution-driven simulators need to support the target ISA, or at least the ISA
subset that covers all instructions in the target applications. This implies the
development of object file readers, instruction decoders, and the implementa-
tion of the functionality of every instruction. This usually requires a higher
development effort than coding trace readers and writers, and it is also sensible
to the host machine characteristics, such as when the endianness of the target
ISA and the host differ.

Trace generation for trace-driven simulators has benefited from existing bi-
nary instrumentation tools that already provide the capabilities to execute the
application binary [161, 113, 130] and execute a set of user-defined callbacks
with certain parameters to provide the required information for the simulation
to be stored in the trace. This eases the development of trace generation tools
that can make use of a unified trace writer/reader that can also be used in the
simulator front-end.

25

2.3. Trace- vs Execution-driven Simulation Chapter 2. Background

In the case of execution-driven simulators coding the front-end is a time-
consuming development effort. For this reason, there are approaches to use
binary instrumentation tools, virtual machines and standalone emulators to
serve as the simulator front-end:

• Binary instrumention. There is a trend on using binary instrumen-
tation tools to trace the application online and feed the timing model
without having to store a trace file on disk [92, 97, 120]. This removes the
disk space requirements of trace-driven simulation but requires to gener-
ate the trace in every simulation. Whether binary-instrumentation-driven
simulators are closer to execution-driven or trace-driven ones in terms of
capabilities and limitations depend on the features of the binary instru-
mentation tool itself. For example, to simulate speculative instructions,
the instrumentation tool needs to checkpoint the application, execute the
wrong path on a mispredicted branch, and restore the checkpoint later.

• Virtual Machines. Binary instrumentation tools are useful as a front-
end to simulate single applications. However, they can not be used to
simulate full operating systems. The development of full-system simula-
tion and support for operating system in an execution-driven simulator
is costly. For this reason, there are approaches to use virtual machines
as a simulation front-end [155, 103, 133]. In this cases, the front-end has
information of the guest operating system and the processes running on it
and can forward it to the timing model. In this case, the simulator does
not need to model devices because the virtual machine already does this
job.

• Standalone Emulators. To avoid developing a full new emulator for
new performance models, there are approaches to use standalone emu-
lators [114, 18]. Emulators, or functional simulators as described at the
beginning of this section, aim to provide functional correctness, but some
of them also support to provide information to drive a performance sim-
ulator [114]. Emulators usually model devices and provide support for
operating systems so it is possible to perform full-system simulation.

These alternatives for the simulator front-end are attractive because they
allow researchers to concentrate on the development and refinement of the per-
formance model required to perform their experiments. In general, binary in-
strumentation tools, virtual machines and emulators do not target performance
simulation and thus do not have a notion of timing. In some cases, these have
been extended to have this notion [103] or to accept feedback from the perfor-
mance simulator to adjust the speed at which they execute the target applica-
tion [18]. In some other cases, these tools already have a notion of timing or even
accept to plug timing models by providing a specific API for this purpose [114].

To avoid the limitations of these tools inherent to the fact that they do not
target performance simulation, there are works that provide an open execution-
driven front-end specifically designed to attach external performance models to
it [166].

26

2.4. Simulation Time Reduction Chapter 2. Background

2.3.7 Summary

Trace-driven simulation has a number of advantages and disadvantages over
execution-driven simulation that we have covered in our discussion in previous
sections and are listed in Table 2.1.

In general, one of the clear advantages of using traces is that simulation
avoids the system requirements of the target application, such as memory and
disk space. Also, the sharing of traces instead of binaries for confidential ap-
plications is a clear advantage, but is only exploited in specific cases where the
driving applications are secret. This happens more often in industry rather than
in academia, where the driving applications are usually standard benchmarks
with a free or purchasable license.

The main limitations of trace-driven simulation with respect to execution-
driven is the reproduction of dynamic behavior. We have explained works to
cover statically-scheduled applications, and we refer to Chapter 3 for more de-
tails on our approach to cover dynamically-scheduled applications. Full-system
support for operating system is still not possible with trace-driven simulation.

In terms of development effort, trace-driven simulation has an advantage due
to the lack of a complex emulation front-end. However, the existing front-end
options we covered in the previous section reduce the burden of developing new
execution-driven simulators and close the gap in terms of development effort
with trace-driven simulation.

Nonetheless, for all of these options, simulation speed is determined by the
front-end overhead to execute the application and extract the information re-
quired for the timing model. In trace-driven simulation, there is no need for
application emulation and this opens the door to raising the level of abstrac-
tion. This is the most important advantage of trace-driven simulation to achieve
higher simulation speed, thus enabling the simulation of larger and more com-
plex multi-core systems.

2.4 Simulation Time Reduction

Simulation is a slow process. As an example, a compliant run of the SPEC
CPU2006 benchmark suite requires the simulation of 26 benchmarks with sev-
eral trillion instructions each. Such single-thread simulations may take weeks
or even months using detailed cycle-level simulation.

Researchers are conscious of this problem and have been proposing tech-
niques to reduce simulation time. In this section we cover such techniques in six
different categories: reduced setup and reduced input set, truncated execution,
statistical simulation, sampling, parallelization, and FPGA acceleration.

We do not cover techniques to reduce simulation time by raising the level of
abstraction in this section because we devote an entire chapter for this purpose.
A comprehensive discussion about using multiple abstraction levels for speeding
up simulation can be found in Chapter 4.

2.4.1 Reduced Setup or Input Set

Simulation time typically increases super linearly with an increasing number
of simulated cores. This is because, even simulating the same number of to-
tal instructions, accesses to shared resources from different cores require the

27

2.4. Simulation Time Reduction Chapter 2. Background

Table 2.1: Main advantages and disadvantages of trace-driven simulation over
execution-driven simulation

Advantages Disadvantages
Not dealing with application data.
The simulation thus avoids the ap-
plication memory size requirements.

Inability to simulate the wrong-path
instructions in speculative execution.
Addressed by Bhargava et al. cov-
ering 99% of wrong-path instruc-
tions [31].

Not dealing with application input
files. The simulation thus avoids the
application disk size requirements.

Inability to simulate the dynamic
behaviour of multithreaded applica-
tions. Addressed in our work in
Chapter 3.

Allowing fast high-level-abstraction
modeling. Execution-driven must
provide, at least, functional simula-
tion (emulation).

Inability to simulate the dynamic be-
haviour of operating systems. That
prevents using traces for full-system
simulation.

Sharing of confidential applications
through the sharing of traces instead
of code or binaries.

Dealing with potentially large trace
files.

simulation of additional cache coherence actions, more complex interconnect
arbitration and resolution of contention scenarios.

To avoid unreasonably long simulation times, researchers end up reducing
the simulated machine setup. This results in evaluations using machine con-
figurations similar to the ones of already-existing commercial products. How-
ever, it is necessary to assess the validity of new techniques for future (larger)
microprocessors if researchers want to undoubtedly influence their design. In
Section 2.6.2, we show statistics about the number of cores simulated in research
papers published in main computer architecture conferences. These statistics
show that using a reduced setup is a widely used technique for reducing simu-
lation time. Between 40% and 60% of papers simulate no more than four cores,
and, in general, around 80% of papers simulate up to sixteen cores.

Another technique to reduce simulation time is using reduced input sets.
The length of an application execution is determined by the complexity of the
computation and the amount of data to be processed. The reference input sets
of benchmark suites such as SPEC CPU, require the execution of several trillion
instructions, which makes the simulation of a single core to take several weeks
or even months. For this reason, benchmark suites provide reduced input sets
for simulation.

The objective of the reduced input set is to match the characteristics of
the reference input set. Such characteristics can be in the form of instruction
mixes, cache miss ratios or instruction-level parallelism, and some works have
used them to assess the validity of reduced input sets [104, 73]. Examples of
reduced input sets are the MinneSPEC [104] input sets for SPEC CPU2000,
the test and train input sets of SPEC CPU2000 and SPEC CPU2006, and the

28

2.4. Simulation Time Reduction Chapter 2. Background

simulation input sets of the PARSEC benchmark suite [32].

2.4.2 Truncated Execution

Truncated execution consists on simulating just a certain amount of consecutive
instructions from the total execution. This method, however, does not guarantee
that the simulated execution chunk has the same characteristics of the entire
execution.

Applications usually have an initialization phase, a computation phase (which
is the largest phase and may have multiple sub-phases with different behaviors),
and a finalization and cleanup phase. Studies simulating a given amount of in-
structions starting from the beginning of the execution are prone to consider
a non-representative part of the execution, as they simulated the whole ini-
tialization and part of the computation phase. For this reason, many works
fast-forward simulation for a certain amount of instructions, and start detailed
simulation (measurement) for another given amount of instructions with the
hope of taking a large enough chunk of the computation phase that is represen-
tative of the entire execution.

Another problem of this technique is that the architectural state of the sim-
ulated machine is empty after fast-forwarding and right before detailed simula-
tion, a situation called cold start. The state is then different to the state of the
execution at that point if detailed simulation is performed from the beginning
to the end. This leads to wrong behavior (increased cache misses and branch
mispredictions) in the initial part of the measurement. For this reason, this
method usually includes a warm-up during a certain amount of instructions
after fast-forwarding and before measurement. During warm-up, detailed sim-
ulation is performed to fill the architectural structures. The behavior during
warm-up is discarded and only what happens during measurement is considered
for evaluation purposes.

Truncated execution usually employs a fixed amount of instructions for fast-
forward, warm-up and measurement. This is problematic as different bench-
marks have completely different initialization, computation and cleanup du-
rations. However, and in spite of the lack of representativeness of truncated
execution, a previous work in 2005 [179] reports that it was the most used tech-
nique for reducing simulation time in main computer architecture conferences
from 1995 to 2005.

2.4.3 Statistical Simulation

Statistical simulation consists on simulating a trace that is statistically similar
to the average overall application behavior but is orders of magnitude shorter
than a trace of the entire application execution [180].

The first step of statistical simulation is to profile the application and extract
statistical characteristics that define its behavior. Using this profile, a synthetic
trace is generated including synthetic instructions in the same magnitudes and
characteristics as in the original execution. Synthetic instructions do not intend
to cover the whole ISA of the machine where the profiling was carried out, but
are a representative smaller set. A synthetic instruction may include its type,
dependencies and whether it produces a branch misprediction or an instruction
or data cache miss.

29

2.4. Simulation Time Reduction Chapter 2. Background

The synthetic trace is simulated with a trace-driven simulator that imple-
ments a simplified architecture model. The execution of different instruction
types on the core pipeline considers resource and data hazards as in a detailed
simulator. However, branch mispredictions and cache misses are modeled in
a simpler way: the simulator just flushes the pipeline and computes the miss
delay, respectively.

Due to the shorter simulated trace and the simpler simulated model, statis-
tical simulations are orders of magnitude faster than detailed simulation. How-
ever, these simplifications are at the expense of simulation accuracy. Existing
works have performed experiments showing absolute errors within 8% [131] and
18% [72], and even smaller relative errors.

2.4.4 Sampling

Sampling consists on selecting a subset of a statistical population to estimate
the characteristics of the whole population by extrapolating the characteristics
of the subset.

In computer architecture simulation, sampling is used to select a subset of
the application execution (sample) to estimate the characteristics of the entire
execution. As done by Yi et al. [179], we explain sampled simulation techniques
in three categories: representative, periodic and random sampling.

Representative sampling consists on selecting a subset of the executed
instructions that is representative of the entire execution. An example of rep-
resentative sampling is SimPoint [159, 135]. SimPoint selects a few chunks of
execution based on the list of basic blocks that they execute. The first step is to
do a profiling of the application by splitting it in chunks of a certain number of
instructions. For each chunk, it determines the basic blocks that are executed
and how many times are they executed. Then, it applies a clustering algorithm
do detect chunks that are similar in terms of the basic blocks they execute and
how many times each basic block is executed. Then, they select one or few
samples for each cluster, and the resulting set of chunks is considered represen-
tative of the whole execution. The authors of SimPoint compare the error of
simulating the representative set over simulating the entire execution and report
an absolute error within 8% for IPC, and within 20% for metrics such as cache
misses and branch prediction.

Periodic sampling consists on selecting a subset of the executed instruc-
tions at fixed intervals. SMARTS [177] is an example of periodic sampling that
uses statistical sampling theory to give an estimate of the IPC error of the
sampled simulation compared to the entire simulation. This estimation allows
the user to tune the sampling frequency and length of each sample to increase
accuracy. The authors report a CPI error within 3%. They also compare their
approach with SimPoint, and show that SMARTS is consistently more accurate
for their experiments but at the expense of requiring a longer simulation time:
5.0 hours (SMARTS) instead of 2.8 hours (SimPoint).

Random sampling consists on selecting a subset of the executed instruc-
tions randomly. The parameters for this process are the number of samples and
their length.

All sampling methods suffer the cold start problem previously explained for
truncated execution. The state of the simulated machine at the beginning of
the simulation of a sample is different to the state at that point when simulat-

30

2.4. Simulation Time Reduction Chapter 2. Background

ing the entire execution. The solution for sampled simulation is the same as
for truncated execution: simulating for a period of time in detail to warm up
the architectural structures before starting measurement. The usual method is
then to fast-forward simulation using functional simulation, warm up before the
sample, and simulate in detail for the duration of the sample.

Although functional simulation is faster than detailed simulation, it is still
orders of magnitude slower than native execution. To further accelerate the pro-
cess, the authors of SMARTS proposed TurboSMARTS [175]. In this approach,
the state of the machine before each sample (checkpoint) is saved using a single
functional simulation. Then, for every experiment, the state of the simulated
machine is restored before warm up and detail simulation of every sample. This
completely avoids functional simulation. With this technique they report a re-
duction in average simulation time for the SPEC CPU2000 benchmarks from
7.0 hours (SMARTS) to 91 seconds (TurboSMARTS).

2.4.5 Parallelization

Parallel simulators execute the simulation of different parts of the simulated
machine on multiple threads of the host machine. The common approach is to
simulate each core on a separate thread and synchronize them on accesses to
shared resources, such as a common shared cache. However, this fine-grained
synchronization decreases the advantage of parallelization, and gets worse for
increasing numbers of cores sharing a common set of resources. This is the
approach by Parallel Turandot CMP (PTCMP) [66], a parallelization of the
Turandot simulator [125, 127], explained in more detail in Section 2.5.6. The
parallelization of PTCMP is evaluated for up to four cores, and the maximum
speed-up achieved is 1.5x running on 3 separate threads.

Synchronization is required to avoid timing violations. A timing violation
happens when a simulated thread that is behind in terms of simulated cycles
carries out an action that affects another thread that is ahead in simulated
cycles. In this situation, it is already too late for the thread that is in a future
cycle to account for the action that happened in the past.

In order to get higher speed-ups, other works employ more complex ways
of synchronization. TimeWarp [99] and SlackSim [58] let threads to run freely
(TimeWarp) or having up to a certain difference in simulated cycles (SlackSim),
while they periodically save the state of the simulated machine. Then, on a
time violation, they restore the latest checkpoint before the timing violation
and resume simulation from there. Graphite [121] goes a step further and let
timing violations to happen, thus assuming the error they incur. To decrease
the amount of timing violations, Graphite has the option of synchronizing on
application synchronization operations such as barriers and point-to-point syn-
chronizations.

Although parallel simulation reduces simulation time, it is only useful for the
evaluation of one or few configurations. The reason is that parallel simulation
does not allow the exploration a larger design space. This is because, for reduc-
ing simulation time, it employs more host machine resources. Then, for design
space exploration, multiple host threads can be used for running multiple simu-
lations in parallel rather than executing one simulation in parallel. As a result,
when many configurations must be evaluated, running many serial simulations
in parallel is more efficient and provides better simulation throughput.

31

2.5. Chip Multiprocessor Simulators Chapter 2. Background

2.4.6 FPGA Acceleration

Another approach to accelerating multi-core simulation is to implement the
simulated model on an FPGA. Research Accelerator for Multiple Processors
(RAMP) [174, 106, 162] is a project to build the hardware and software in-
frastructure to simulate multi-cores and multiprocessors using FPGAs. They
implement a communication infrastructure among multiple FPGAs, modeling
several cores each, and advocate for a community-maintained set of modules
that can be used to quickly setup new configurations. The model for each core
is split into the functional and timing models [162]. They show that running the
functional simulation only is in the same order of magnitude in terms of speed
compared to software functional simulators. However, when a timing model is
added, the FPGA is several orders of magnitude faster than the software sim-
ulator. In a comparison of the RAMP simulator to the Simics/GEMS software
simulator (see Section 2.5.2), simulations of 64 cores with two levels of cache
and cache coherence, RAMP is 263x faster.

2.5 Chip Multiprocessor Simulators

There are many computer architecture simulators that are used for doing re-
search in multi-core systems. In this section, we cover the ones with some
special interest either because they are widely used or because they use some of
the simulation time reduction techniques explained in Section 2.4.

2.5.1 Simplescalar and Derivatives

Simplescalar [43, 21] is an execution-driven simulator and one of the most used
computer architecture simulators in the 2000s with more than 4000 citations
in research papers. It models a single out-of-order superscalar core with two
levels of cache and a fixed latency to main memory. The core model assumes
a unified structure for the issue queue, reservation stations and reorder buffer
that, together with the functional units, it is called the register update unit.

This simple model made Simplescalar attractive because introducing modi-
fications and getting experimental results was a relatively fast procedure. Also,
the fact that some works compared its accuracy to real hardware [64] also in-
creased its popularity although it was shown to have an average error on a set
of SPEC CPU 2000 benchmarks of up to 36% on IPC.

There have been works to improve the modeling accuracy of Simplescalar or
extending it for simulating multi-cores [64, 182, 53, 17, 178, 58, 111].

One of them is the Zesto simulator [111]. The main objective of Zesto
is to increase the modeling detail of Simplescalar. It provides separate issue
queues, reservation stations and reorder buffer, models caches in more detail
with limited miss handling status registers (MSHR) and prefetching support,
among others, and adds a DRAM detailed model together with a model of
the memory controller. Because of this low-level detail, Zesto is claimed to be
slower than other research pipeline simulators of the time. Zesto is aimed to
single core simulations, but it can also simulate multi-cores but it is limited to
multiprogrammed workloads.

Another multi-core simulator based in SimpleScalar is SlackSim [58]. Slack-
Sim, apart from extending Simplescalar to simulate multiple cores, it also par-

32

2.5. Chip Multiprocessor Simulators Chapter 2. Background

allelizes simulation. It allows multiple cores to run in parallel but preventing
them to be ahead of other threads by more than a given number of cycles (slack).
By adjusting this slack appropriately they minimize timing violations (see Sec-
tion 2.4). They also incorporate a mechanism to periodically save the machine
state (checkpoint), and backtrack simulation to the lastest checkpoint in case
of a timing violation [59]. This mechanism is not new though, as it was already
proposed in 1982 with the name of Time Warp [99].

2.5.2 Simics and Derivatives

Simics [114] is a full-system functional simulator, thus execution-driven, that
supports a large variety of ISAs. Its main target is to work as a virtual platform
for software development. However, it has the option to run having a notion of
timing and, in this mode, it allows to plug timing models.

Simics was introduced in the early 2000s and became a popular alternative
for carrying out full-system simulation. Simics models all the necessary devices
to run unmodified versions of a large variety of operating systems including
Linux, Windows, MS-DOS and Solaris. This eased the work of researchers that
just had to use Simics together with their custom timing models to perform
their experiments [1, 22, 40, 60].

A timing model for Simics that has been widely used is GEMS [116]. GEMS
includes a SPARC core pipeline model called Opal, and a cache hierarchy, in-
terconnection network and memory model called Ruby. Simulations can be per-
formed with Ruby only or with Ruby and Opal together. Ruby supports several
cache coherence protocols, including broadcast-, token- [115], and directory-
based versions of MSI, MESI or MOESI. The Opal model is very detailed and
this results in accurate but slow simulations. As shown later in Chapter 4,
adding the Opal core modeling over Ruby makes simulation an order of magni-
tude slower.

Another timing model for Simics is Flexus [91]. Flexus is interesting because
it implements the TurboSMARTS [175] sampling technique explained in Sec-
tion 2.4.4. As explained before, this sampling technique consists in simulating
only some statistically representative parts of a benchmark to reduce simulation
time. To do this, they save the machine state (checkpoint) before each represen-
tative chunk of the benchmark. To save all the required checkpoints fast, they
do it using functional simulation. Then, for detailed simulation, they restore
the machine state at the beginning of a representative sample and then perform
detailed simulation from there and until the end of the sample. They repeat the
process for all samples.

Both GEMS and Flexus are mainly used for simulating multi-cores, but
their detailed slow operation generally limits simulation to 32 and 16 cores
respectively.

2.5.3 M5/gem5

M5 [34] is a full-system execution-driven simulator initially targeted to network-
ing workloads. For this purpose, M5 allows the simulation of multiple machines
and run client/server applications to analyze the performance of network pro-
tocols and interconnects with a focus on hardware/software co-design.

33

2.5. Chip Multiprocessor Simulators Chapter 2. Background

M5 is open-source and that made it attractive as an alternative to Simics,
which is a commercial product. That is the case that, in 2009, it started the
merge of GEMS and M5, giving birth in 2011 to the gem5 simulator [33]. Since
then, GEMS (for Simics) is discontinued and the efforts of the GEMS team are
focused on gem5. With this merge, researchers have not only the M5 cores,
caches and interconnects models, but also Opal and Ruby from GEMS available
for simulation with gem5.

gem5 supports Linux for the Alpha, ARM and x86 ISAs, and Solaris for the
SPARC ISA. This has attracted several companies, such as AMD and ARM,
to benefit from full-system simulation which is necessary for the analysis of
OS-intensive applications. It has also attracted researchers to use it for their
experiments, to integrate it with other existing simulation platforms [93], or to
assess its accuracy [45].

2.5.4 Graphite

Graphite [121, 120] is a parallel simulator that uses PIN [113], a dynamic-
binary instrumentator, for functional simulation. It models a tiled multi-core
architecture and is able to simulate each tile on a separate host thread. It is
also able to spread the simulation over multiple host machines.

To avoid the overhead of synchronization on every access to shared resources
out of a tile, namely the interconnection network, it uses lax synchronization. It
does not synchronize on every access out of the tile, but only on those where the
receiver is behind the sender, that is the receiver does not process the message
until it is at the same time stamp as when the message was sent. However, if
the receiver is ahead of the sender, that is it receives a message in the past, it
just processes the message and assumes the error. It also allows to synchronize
on application synchronization operations such as barriers and point-to-point
synchronizations. With lax synchronization, they get better speedup at the
expense of accuracy. They report a 4x speedup by using 80 cores (10 host
machines).

Sniper [52] is an extension to Graphite that replaces the core model by
an analytical model called interval simulation [83]. It also employs sampling,
is integrated with the McPAT power model [110] and provides visualization
support.

2.5.5 TPTS - Filtered Traces

TPTS (Two-Phase Trade-driven Simulation) [108] is a trace-driven simulator
that includes techniques to model the performance of an out-of-order superscalar
core using memory access traces. For this purpose, it generates memory access
traces using Simplescalar and embeds for each memory access the number of
cycles and instructions to the previous memory access and the dependencies
with previous memory accesses. It uses the number of cycles to issue the memory
access and the number of instructions to manage the size of the reorder buffer.
Then, only memory accesses that are in the reorder buffer, considering the
number of non-memory instructions in between accesses, are issued to memory
if they do not have dependencies with pending memory accesses. This model
is called reorder buffer occupancy analysis (ROA) [109] and assumes that the
reorder buffer is the performance limiting factor of the processor core. This

34

2.5. Chip Multiprocessor Simulators Chapter 2. Background

assumption is based on the analysis of the performance of superscalar processors
in a previous work [102].

The main purpose of TPTS is to explore cache hierarchy and main memory
configurations while assuming the same core configuration as in the Simplescalar
trace generation run.

They also extend their experiments to multithreaded applications. In this
case, they assume statically-scheduled applications and synchronize threads on
lock and barrier operations as explained in Section 2.3.

Another interesting feature of this work is that they employ stripped memory
access traces [138]. They propose several ways to deal with the inaccuracies of
using stripped memory access traces for multithreaded applications, but do not
evaluate them in their work. We cover the concept of using stripped memory
access traces for multithreaded applications and propose a technique to improve
its accuracy in Chapter 5.

2.5.6 Others

MPSim [13] is an extension to the SMTSim single-core simulator [165] that adds
the simulation of multiple cores and uses a trace-driven front-end for multi-
programmed workloads. It has been used to simulate the Alpha and PowerPC
ISAs. MPsim has been used as the multi-core simulator in a multi-scale sim-
ulation methodology for the simulation of large HPC applications running in
supercomputers [89]. This methodology is validated against the MareNostrum
supercomputer [3] showing an error within 33% for MPsim dual-core simulations
of complex HPC applications.

PTLsim [181] is a full-system execution-driven simulator for the x86 ISA. It
became popular because it was the only open-source x86 full-system simulator
at the time of its release in 2006. It gets full-system support by integrating the
Xen virtual machine monitor [26] and provides in-order and out-of-order core
models. The accuracy of PTLsim was assessed against a real AMD K8 core
showing an error withing 5% for the rsync application [181].

MARSS [133] is an extension of PTLsim to use QEMU [76] as the front-end
for full-system simulation instead of Xen.

COTSon [18] is a full-system execution-driven simulator that uses the AMD
SimNow emulator [28] as a front-end. It has shown a case to simulate 1000 cores
by parallelizing simulation [122].

Turandot [125, 127] is a trace-driven multi-core simulator modeling a multi-
core resembling the IBM POWER4. Turandot was validated [126] and shown
to have a deviation within 5% for SPECint95. It provides a detailed power
model [42] and it has also been parallelized [66]. In the parallel implementation,
multiple simulated cores run on separate threads and synchronize on accesses
to the shared L2 cache. It is reported to have a 1.5x speedup running on three
threads. In this same work, they extend Simplescalar for simulating multiple
cores and parallelize it using the same strategy.

CMP$im [97, 98] is a cache hierarchy and memory system simulator using
PIN for functional simulation. Its focus is on memory behavior analysis of multi-
cores running single-threaded, multithreaded or multiprogrammed workloads.

SESC [145] is an execution-driven simulator that uses MINT [168], a MIPS
emulator, for functional simulation. It models an out-of-order core, caches and

35

2.6. Simulation in Major Conferences Chapter 2. Background

interconnection network. It is claimed to be simple and fast (1.5 MIPS), and
this has made many researchers to adopt it for their experiments.

2.6 Simulation in Major Conferences

We maintain a data base with statistics about the simulation methodology em-
ployed in research papers in the main computer architecture conferences, namely
International Symposium on Computer Architecture (ISCA), the International
Symposium on Microarchitecture (MICRO), the International Symposium on
High Performance Computer Architecture (HPCA), and the International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

In this section, we show some data concerning several aspects of the simula-
tion methodology employed in papers published in these four conferences that
are relevant to the work in this thesis. These aspects are: the simulation type,
the size of the simulated machine in number of cores and the simulation tools
employed.

2.6.1 Simulation Types

Figure 2.7 shows the percentage of papers published in main computer archi-
tecture conferences by the simulation type used in their experiments. We have
classified papers using simulation in three categories: trace-driven, execution-
driven and binary-instrumentation-driven. We also include the percentage of
papers not using simulation. These papers are mainly software-only proposals
or performance analysis works that carry out their experiments through mea-
surements in real machines.

The majority of papers using simulation employ execution-driven simulators.
This is mainly due to the limitations of trace-driven simulators for the simulation
of multi-cores in terms of reproducing the dynamic behavior of multithreaded
applications and operating systems (see Section 2.3). Most of the works using
trace-driven simulation are for proposals focusing on the off-chip memory or
interconnection network. In these works, they feed the timing model of the
off-chip memory or the interconnection network with traces of memory accesses
or network messages, respectively. Usually, these works require to simulate
large numbers of threads or nodes to expose the system to contention. This
prevents the use of execution-driven simulators due to their slow operation with
increasing numbers of cores, and that is why trace-driven simulators are used
for these works instead.

On the other hand, execution-driven simulators are used for multi-core stud-
ies involving processing core or cache hierarchy modifications. They are also
used for reliability studies, for which it is necessary to have the application
data in order to inject errors and see how those affect the functionality of the
application.

It is also interesting to note that most works published in ASPLOS are
software-only. In 2011 and 2012, more than 75% of the papers presented in the
conference did not use any simulation at all.

36

2.6. Simulation in Major Conferences Chapter 2. Background

 0%

 20%

 40%

 60%

 80%

 100%
2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

P
e
rc

e
n
ta

g
e
 o

f
p
a
p
e
rs

Conference/year
ISCA MICRO HPCA ASPLOS

No simulation
Execution driven
Binary instrumentation
Trace driven

Figure 2.7: Breakdown of papers per simulation type in main computer archi-
tecture conferences from 2008 to 2012

2.6.2 Simulated Machine Size

Figure 2.8 shows the percentage of papers published in main computer architec-
ture conferences by the number of simulated cores. We only include papers using
simulation in their experiments. Also, in papers simulating several configura-
tions with multiple numbers of cores, we just consider the largest configuration
(maximum number of cores) for that paper.

The results show that around 40% of the papers simulate four cores or less (in
ASPLOS around 60%). Nowadays, most existing desktop and server micropro-
cessors include at least four cores. Even mobile microprocessors with four-cores
are the norm for high-end cell phones and tablets. Also, around 80% of the
papers simulate 16 or less cores, which is again in the range of cores of existing
server processors. Only around 5% of the papers simulate large configurations
with more than 64 cores.

While gathering these statistics, we found a clear differentiation between
works using execution-driven and trace-driven simulation. Trace-driven simula-
tion works are the ones using the more numbers of cores, generally more than
32, while execution-driven simulators are most of them limited to a maximum
of 16 cores. In fact, there is a correlation between the percentages of papers by
number of simulated cores with the percentage of papers by simulation type. In
the years with more trace-driven simulation, there are more works simulating
large configurations.

37

2.6. Simulation in Major Conferences Chapter 2. Background

 0%

 20%

 40%

 60%

 80%

 100%

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

P
e
rc

e
n
ta

g
e
 o

f
p
a
p
e
rs

Conference/year
ISCA MICRO HPCA ASPLOS

>64 cores
33−64 cores
17−32 cores
9−16 cores
5−8 cores
1−4 cores

Figure 2.8: Breakdown of papers per maximum simulated number of cores in
main architecture conferences from 2008 to 2012

This makes sense considering our previous discussion on the type of works
for which the different types of simulators are employed. Off-chip memory and
interconnection network studies require larger configurations if they want to
account for contention effects when having an increasing number of cores sharing
those shared resources. In the case of execution-driven simulation, techniques
to improve processing core pipeline designs or cache management techniques
(among many others) may be better analyzed in small configurations. However,
those techniques must be considered to be an improvement of current existing
processors as long as they are not assessed for larger configurations where higher
contention or the lack of scaling of some components may offset or even reverse
the benefits of those techniques.

2.6.3 Simulators

Figure 2.9 shows the percentage of papers in main computer architecture con-
ferences by the simulation tool employed. We have included only papers using
simulation, and have classified them in several categories considering the simula-
tors presented in Section 2.5. For example, the Simplescalar label corresponds to
works using Simplescalar and also works using simulators based on simplescalar,
such as the ones mentioned in 2.5.1. We have included a category for the most
used simulators, including the GPGPU simulator GPGPU-Sim [25], and then
two other categores: Other and In-house. Under Other, we have aggregated
the papers using simulators that have been published. In-house corresponds to
simulators developed in the institution of the researchers publishing the work
and that are neither published, nor disclosed for general use.

The figure shows that the most popular simulators are those based on Sim-

38

2.7. Task-Based Programming Models Chapter 2. Background

 0%

 20%

 40%

 60%

 80%

 100%

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

N
u
m

b
e
r

o
f
p
a
p
e
rs

Conference/year
ISCA MICRO HPCA ASPLOS

In−house
Other
PTLsim
SESC
CMP$im
GPGPU−Sim
M5
Simics
Simplescalar

Figure 2.9: Breakdown of papers per simulation tool in main computer archi-
tecture conferences from 2008 to 2012

plescalar and Simics, accounting for between 20% and 40% of papers using
simulation in these conferences. Moreover, there is a large portion of papers
that use in-house simulators that also accounts for between 20% and 40%.

Most of the papers using Simplescalar are single-threaded experiments re-
garding pipeline enhancements and fault tolerance. Most of the papers using
Simics, they do it together with the GEMS timing models. For the rest of
works, the simulation tools employed are quite diverse, showing that computer
architects have not yet found a one-size-fits-all simulator that can be used for
different kinds of studies, simulated architectures and simulation setups.

2.7 Task-Based Programming Models

Shared-memory parallel programming models allow the programming of mul-
tithreaded applications by specifying which parts of the computation can be
executed concurrently. Low-level programming models provide primitives to
specify parallel work using semantics close to the ones used by operating sys-
tems to run multiple execution threads on multiple processing elements. For
complex parallel applications, using those low-level semantics can be a produc-
tivity limiting factor. High-level programming models introduce abstractions
that are more friendly for programmers to specify which computation can be
executed concurrently.

A family of high-level programming models are those based on tasks. Task-
based programming models introduce the concept of task as a means to define
a piece of potentially parallel work that processes a specific set of data. These
programming models are becoming popular because the concept of task is in-
tuitive for programmers, which may increase productivity [163], and their dy-
namic scheduling of individual tasks yields better load balancing than statically-
scheduled approaches for parallel loops.

39

2.7. Task-Based Programming Models Chapter 2. Background

Table 2.2: Task-based programming models

Programming Task Task Automatic
model Nesting Dependencies Cut-off
OmpSs [68] Yes Yes Yes
StarPU [19] Yes Yes No
Threading Building Blocks [144] Yes Yes No
OpenMP 3.1 [7] Yes No No
Cilk [80] Yes No No
Sequoia [77] Yes No No
X10 [57] Yes No No
Chapel [55] Yes No No
Charm++ [101] No No No

Task-based parallel applications are partitioned into tasks that may exe-
cute in parallel. A task is typically a function or a block of code and it is
not conceptually related to a specific execution thread. The runtime system
software associated to the programming model assigns tasks to threads at run
time. This scheduling is dynamic and makes decisions based on the number
of threads and their availability. If a task needs to consume data produced by
another task, it waits for the producer task to complete using synchronization
primitives that usually allow it to wait for a specific task or for all previously
created tasks. We refer to these scheduling and synchronization operations as
parallelism-management operations or parops for short.

Table 2.2 shows a non-exhaustive list of programming models that support
tasks. All these programming models provide constructs in the form of special
keywords, data structures or compiler directives to define tasks that will be
created at run time. Examples of these constructs for creating and synchroniz-
ing tasks are shown in Figure 2.10. It shows parallel implementations of the
Fibonacci number recursive algorithm using three different programming mod-
els from Table 2.2: OpenMP, Cilk and Threading Building Blocks. OpenMP
makes use of extended pragma annotations for tasks (in bold) and Cilk adds
special keywords to the language (in bold). In both OpenMP and Cilk, fib(n-1)
and fib(n-2) execute concurrently, and the calling task—fib(n)—waits for their
completion on taskwait and sync respectively. Threading Building Blocks does
not use language extensions and that results in a more complex piece of code.
Threading Building Block’s spawn(b) creates task fib(n-2) asynchronously, and
spawn and wait for all(a) creates task fib(n-1) and waits for both fib(n-1) and
fib(n-2) to complete.

All the programming models in Table 2.2, but Charm++, support that tasks
create other tasks, which is referred to as task nesting. In Charm++, only
the main thread creates tasks. Another feature of task-based programming
models is whether tasks are defined independent or have dependencies. OmpSs,
StarPU and Threading Building Blocks support task dependencies by managing
a task-dependency graph at runtime similar to the way a superscalar processor
manages instruction dependencies. That is, if a task needs to consume data
to be produced by other pending tasks, it waits and is not scheduled until its
dependencies are satisfied.

40

2.7. Task-Based Programming Models Chapter 2. Background

int fib(int n)
{

int i, j;
if (n<2) return n;
else {

#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);
#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);
#pragma omp taskwait
return i+j;

}
}

(a) OpenMP

cilk int fib(int n)
{

if (n<2) return n;
else {

int x, y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y);

}
}

(b) Cilk

long fib(int n) {
int sum;
FibTask& a = *new(task::allocate_root()) FibTask(n,&sum);
task::spawn_root_and_wait(a);
return sum;

}
class FibTask: public task {
public:

const int n;
int* const sum;
FibTask(int n_, int* sum_) :

n(n_), sum(sum_) {}
task* execute() { // Overrides virtual function task::execute

int x, y;
FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
// Set ref_count to ‘two children plus one for the wait’
set_ref_count(3);
// Start b running
spawn(b);
// Start a running and wait for all children (a and b)
spawn_and_wait_for_all(a);
// Do the sum

*sum = x+y;

return NULL;
}

};

(c) Threading Building Blocks

Figure 2.10: Task-based implementation of the Fibonacci number recursive al-
gorithm in (a) OpenMP 3.1, (b) Cilk and (c) Threading Building Blocks.

OmpSs also features a runtime-system mechanism to choose, at a task cre-
ation point, whether it actually creates the task or if it executes the task se-
quentially. This mechanism named cut-off [69] is useful when there are many
pending tasks, all threads are busy and there is no need to open more paral-
lelism, which would incur an unnecessary overhead. Cut-off can also be used
in other programming models, but it is the programmers responsibility to im-
plement separate serial and parallel versions of the task and call either of them
depending on a user-defined heuristic. OmpSs provide this feature built-in, it

41

2.7. Task-Based Programming Models Chapter 2. Background

is automatic and the heuristics are configurable.

Regardless of the programming model features, task-based programs are
composed of tasks and the parops to manage them. This is a feature that we
exploit to enable the trace-driven simulation of multithreaded applications. See
Chapter 3 for more details about this technique.

2.7.1 OmpSs

The OmpSs parallel programming model is an extension of OpenMP that in-
corporates the concepts of the StarSs programming model (CellSs [30] and
SMPSs [136] are implementations of StarSs for the Cell/B.E. and SMP platforms
respectively. As in OpenMP, OmpSs allows the definition of potentially parallel
tasks on a sequential code using pragma annotations on functions or code blocks.
Pragma annotations are extended with the in, out and inout clauses to allow
the programmer to indicate the input (read-only), output (write-only) and in-
put/output (read-write) data of the task. This allows the automatic resolution
of task dependencies and the extraction of task-level parallelism at runtime.

The OmpSs toolchain is completed with the Mercurium source-to-source
compiler [4] and the NANOS++ runtime system [6]. Mercurium implements
the necessary transformations to compile OpenMP and OmpSs applications and
generate code that calls NANOS++ parops.

#pragma omp task in(a, b) inout(c)
void sgemm_t(float a[M][M], float b[M][M],

float c[M][M]);

#pragma omp task inout(a)
void spotrf_t(float a[M][M]);

#pragma omp task in(a) inout(b)
void strsm_t(float a[M][M], float b[M][M]);

#pragma omp task in(a) inout(b)
void ssyrk_t(float a[M][M], float b[M][M]);

--

float A[N][N][M][M]; // NxN blocked matrix,
// with MxM blocks

for (int j = 0; j<N; j++) {
for (int k = 0; k<j; k++)

for (int i = j+1; i<N; i++)
sgemm_t(A[i][k], A[j][k], A[i][j]);

for (int i = 0; i<j; i++)
ssyrk_t(A[j][i], A[j][j]);

spotrf_t(A[j][j]);

for (int i = j+1; i<N; i++)
strsm_t(A[j][j], A[i][j]);

}

(a) OmpSs source code

1

2

34 5

67 8

9

14 15

18

23

26 311112 13

10

16 1719 2427 32

21 22

20

2528 33

30

29

34

35

spotrf_t
strsm_t
sgemm_t
sysrk_t

(b) Task dependency graph

Figure 2.11: Cholesky decomposition of a blocked matrix using OmpSs.

42

2.7. Task-Based Programming Models Chapter 2. Background

Figure 2.11 shows an example of an application written in OmpSs. The
application is a Cholesky decomposition of a blocked matrix. Figure 2.11a shows
the source code including the task definitions (top) using pragmas including their
in (read-only), out (write-only) and inout (read-write) task data dependencies.
The task-generating code (bottom) executes sequentially creating new tasks
at every function call. Figure 2.11b shows the task dependence graph of an
execution of the Cholesky decomposition on a 5x5 blocked matrix. The graph
shows tasks as nodes, and inter-task dependencies as the edges interconnecting
nodes. Different colors correspond to different task types and the node numbers
show the task creation order.

43

2.7. Task-Based Programming Models Chapter 2. Background

44

Chapter 3

Simulating Multithreaded
Applications Using Traces

In this chapter we introduce our approach to enable the simulation of dynamically-
scheduled multithreaded application using traces.

First, we explain the problem of capturing the behavior of a mulithreaded
application in a trace and then trying to reproduce that behavior in a trace-
driven simulation. Then, we cover the state of the art in this matter., which is
limited to statically-scheduled applications.

We introduce a simulation methodology to address the problem for dynamically-
scheduled applications. We also explain our implementation of this methodology
and show some experiments that prove its feasibility and usefulness. Finally, we
discuss the coverage and limitations of our approach and the research opportu-
nities it opens for trace-driven simulation.

3.1 Problem

Multithreaded applications are parallel applications where all parallel execution
streams access data in a common address space. These applications are writ-
ten using shared-memory parallel programming models. As mentioned in Sec-
tion 2.7, regardless of the programming model, multithreaded applications con-
sist of user code and parallelism-management operations. The user code is the
part of the application that defines its intrinsic behavior regardless of whether
the application is executed in parallel or not. The parallelism-management op-
erations, or parops for short, is the part of the code that manages the synchro-
nization of multiple threads and schedules work to be executed concurrently.

One of the properties of trace-driven simulation is that the application be-
havior is statically captured in a trace file and does not change during the
simulation of multiple machine configurations. This is a problem for simulat-
ing multithreaded applications due to the dynamic behavior caused by timing-
dependent operations. The behavior of a timing-dependent operation changes
for different machine configurations, something that a trace-driven simulator
can not reproduce.

Figure 3.1 shows the execution of a multithreaded application with a mutual
exclusion. Dashed lines mark the user code execution that is split in several

45

3.1. Problem Chapter 3. Simulating MT Apps Using Traces

Thread 0

acquire lock
check lock

acquired!

release lock
released!

Thread 1

acquire lock
check lock
wait!

acquired!

parop
user code
parop call

waiting

Figure 3.1: Execution of an application with a mutual exclusion using two
threads.

fragments shown as white boxes. The user code execution is interleaved with
the execution of parops, shown outside the dashed lines. In this example, the
executed parops are for acquiring and releasing a lock before and after the
execution of the critical section. The small black boxes show the calls to these
operations. Thread 0 starts executing until it reaches the point where it needs
to acquire a lock to enter the critical section. At that point, the operation to
acquire the lock executes, it actually gets the lock, and Thread 0 enters the
critical section. Afterwards, Thread 1 tries to acquire the lock but it has to
wait for Thread 0 to release it. When Thread 0 finishes the critical section, it
releases the lock. Then, Thread 1 acquires it, and enters the critical section.

Let us say the execution in Figure 3.1 happens during a trace generation run
and it is captured in a trace file. Then, during simulation, Thread 0 will always
acquire the lock and Thread 1 will wait regardless of which of them arrives first
to the critical section. Therefore, the effects of different machine configurations
on which thread acquires the lock first, which one waits and for how long it
waits can not be reproduced using trace-driven simulation.

For statically-scheduled applications, timing-dependent operations include
locks and barriers. The variability of these operations relates to whether the
thread must wait and for how long it has to wait. However, for dynamically-
scheduled applications, timing-dependent operations are more complex. They
include operations to create parallel work and heuristics to scheduled and assign
that parallel work to available threads depending on the application and machine
states.

We cover existing works that manage to reproduce the dynamic behavior of
statically-scheduled multithreaded applications in the next section. In the rest
of the chapter, we explain our approach to address the problem for dynamically-

46

3.2. State of the art Chapter 3. Simulating MT Apps Using Traces

scheduled applications which, to the best of our knowledge, no other work has
done before.

3.2 State of the art

In the 1980s and early 1990s, trace-driven simulation was widely-used in com-
puter architecture research. The problem explained in the previous section
already applied at that time, but it was in the context of shared-memory mul-
tiprocessors.

Goldschmidt and Hennessy [88] compared trace-driven simulation and binary-
instrumentation-driven simulation in terms of accuracy for multithreaded appli-
cations running on shared-memory multiprocessors. They conclude that trace-
driven simulation is accurate as long as there are not timing dependencies,
precisely the problem we explain in the previous section. In statically-scheduled
applications, they identify timing dependencies in locks and barriers. Then, to
model the different behavior on different configurations, they include a lock or
barrier event in the trace. When the simulator finds one of those events, it em-
ulates its behavior depending on the state of the simulated machine. An ad-hoc
implementation of lock and barrier operations carries out the necessary busy-
waiting loop iterations until the synchronization condition is satisfied. This
assumes the implementation of all locks and barriers in the application is the
same. However, for dynamically-scheduled applications, they do not manage to
isolate the synchronization and scheduling timing-dependent code and conclude
that trace-driven simulation is inaccurate in such cases.

Other works [105, 82, 108] employ the same technique and, in all cases, they
only consider statically-scheduled applications and use an ad-hoc implementa-
tion for locks and barriers as done in Goldschmidt and Hennessy’s work. A
recent work [183] proposes the same technique for reproducing locks and barri-
ers without citing any of the previous papers. Their novelty is the annotation
of locks and barriers to force the same execution order as in the original trace-
generation run to provide deterministic replay.

3.3 Methodology

We developed a simulation methodology [150] to properly reproduce the dy-
namic behavior of dynamically-scheduled multithreaded applications during sim-
ulation, and overcome the problem explained in Section 3.1. This methodology
targets runtime-managed multithreaded applications and is based on their struc-
ture.

As mentioned in previous sections, multithreaded applications consist of user
code and parops. User code is generally timing independent. To illustrate this
concept, let us define user code as a set of sequential sections. A sequential
section is a piece of code that executes the same instructions and in the same
order regardless of the machine configuration. This means that instruction i (in
sequential order) always executes after instruction i-1 and before instruction
i+1. Examples of sequential sections are an iteration in an OpenMP parallel
loop, a Cilk parallel routine and an OmpSs task.

47

3.3. Methodology Chapter 3. Simulating MT Apps Using Traces

Parops determine the order and timing in which sequential sections are ex-
ecuted. These include, but are not limited to: thread management operations
(creation/spawn/join), synchronizations (locks, barriers, point-to-point), paral-
lel work scheduling, and transaction begin and commit in transactional memory
systems. These operations are timing dependent because the instructions they
execute depend on the machine configuration and state.

As an example, the sequential code section of each thread in Figure 3.1
maintains its timing-independent order regardless of being interleaved by the
execution of parops. However, the execution of the lock acquire parops actually
varies on the machine state, more precisely on the lock variable state: whether
it is free or busy.

Given these properties, our methodology establishes that user code is simu-
lated using a trace-driven approach, and parops are executed at simulation time
based on the state of the simulated machine.

3.3.1 Tracing

The application instrumentation for trace generation is aware of the applica-
tion structure instead of blindly recording the instruction stream. First, the
instrumentation detects the entry and exit points of sequential sections in order
to store each of them separately. At the same time, instead of capturing the
execution of parops, the instrumentation discards it and includes a parop call
event for each of them. The event is stored at the point where the parop was
executed, and includes all necessary information to reproduce its execution at
simulation time. For example, for a lock acquire operation, the event would
include the address or identifier of the lock variable to synchronize with.

The information included in a trace file is:

• Information to feed the timing model for each sequential section separately.
For example, list of instructions or memory accesses.

• Parop call events including the information to carry out their execution
at simulation time.

Application traces are indexed to enable the individual access to the infor-
mation of each sequential section. This allows a simulated thread to switch to
run a new sequential section or resume the execution of a suspended one when
the execution of a parop carries out some scheduling operation. In the example
in Figure 3.1, the corresponding trace would include the two sequential sections
(denoted with the dashed line), and one event for each lock acquire and release
calls (black boxes) including the lock identifier for each of them.

Using this tracing method, an application is fully represented in a single
trace, and it is not necessary to generate a trace for every number of threads
to be simulated. In other words, one trace is generated per application and
is used to simulate the execution of that application over multiple machine
configurations with different numbers of cores. This results in a significant
reduction in required disk space and tracing time compared to the state-of-
the-art approaches requiring a separate thread for every number of cores to be
simulated.

48

3.3. Methodology Chapter 3. Simulating MT Apps Using Traces

3.3.2 Simulation Infrastructure

Having these traces, the simulation tool requires to access to an implementation
of the required parops. In parallel programming models, parop implementations
are typically provided as part of a runtime system library. In our methodology,
the programming model runtime system is integrated in the simulation infras-
tructure and, in order to work as decoupled as possible, a clearly-defined inter-
face is required to provide the necessary services to both the simulator timing
model and the runtime system.

Simulator
Runtime
System

parallelism-management
operations

Interface

simulated arch state
and actions

Figure 3.2: Simulation infrastructure scheme.

Figure 3.2 shows a scheme of the simulation infrastructure. It has three
components: the trace-driven simulation engine, the runtime system and the
engine-runtime interface. The trace-driven simulation engine includes the sim-
ulated architecture timing model and the front-end to read the application trace.
The runtime system is the one associated to the programming model of the simu-
lated application. The engine-runtime interface has two parts. The first (shown
at the top of the interface box in the figure) exposes and interface to the runtime
system parops for the simulation engine to invoke them at simulation time. The
second (shown at the bottom) are the architecture dependent operations that
the runtime system requires for the execution of parops. An example of these
operations is the creation and join of threads, such as fork/join in OpenMP
parallel loops.

3.3.3 Simulation Process

A simulation using multithreaded application traces in this infrastructure runs
as follows. The simulator begins the simulation of the starting thread in the
application, commonly known as the main or master thread. All remaining
treads start idle. The simulator performs the timing simulation of the user code
in the main thread until it reaches the first parop event in the trace. At that
point, the simulator invokes the parop execution in the runtime system through
the runtime system interface. The corresponding parop is then executed based
on the state and characteristics of the simulated machine. This is different to
approaches using binary instrumentation, where functional simulation is based
on the host machine state and characteristics, and to traditional trace-driven
techniques where parop execution depends on the state and characteristics of
the machine where the trace was collected. As an example of our simulation
adaptability, scheduling decisions carried out by our simulation infrastructure

49

3.4. Implementation Chapter 3. Simulating MT Apps Using Traces

are based on the number of cores of the simulated architecture, the core status
(running/wait/idle), or the overall work load at a given point in simulation time.

Then, after dynamically simulating a given parop, simulated threads may
have been assigned new sequential sections according to the runtime system
decisions. Each simulated thread then proceeds with the timing simulation of
the sequential section assigned to it. For instance, when a parallel Cilk function
is invoked, the corresponding parop is called. According to the Cilk work-first
scheduling policy, the calling thread switches to execute the parallel function,
while the calling context is switched to an available thread, or suspended until
there is one available. Using our methodology, the simulation proceeds in the
same way as in the real machine: it assigns the parallel-function sequential
section to the calling thread, and the calling context is either assigned to an
available simulated thread, or is suspended until some simulated thread becomes
available. This operation is possible because different sequential sections are
captured and stored separately in the trace file and can be accessed individually
to be simulated by different threads in the simulated machine.

3.4 Implementation

We implemented the proposed methodology using the TaskSim trace-driven sim-
ulator (see Section 2.2), and the OmpSs runtime system called NANOS++ [6]
(see Section 2.7.1). This implementation supports multithreaded applications
written in the programming models supported by NANOS++, which currently
are OpenMP and OmpSs.

In this environment, the target applications are compiled using the Mer-
curium source-to-source compiler. The resulting binary calls an instrumented
version of NANOS++ that generates traces for TaskSim. The resulting traces
are simulated on TaskSim, and NANOS++ is used as the runtime system for
the execution of parops at simulation time.

3.4.1 Instrumentation

NANOS++ incorporates an instrumentation engine that can be used to gener-
ate traces with a custom trace format via the implementation of plugins that
are dynamically loaded at runtime. For our implementation, we developed a
NANOS++ plugin to capture the runtime events of interest and generate traces
for TaskSim. Additionally to the captured events, instruction or memory access
traces are generated using PIN [113]. Since all parops are encapsulated in the
runtime system, the instrumentation captures all the necessary information for
simulation.

The user-code sequential sections in this environment correspond directly to
NANOS++ tasks. The main execution thread, which is a sequential section in
itself, is treated as a NANOS++ task as well. In the rest of this section, we
refer to sequential sections as tasks, and to the main-thread associated task as
main task.

Figure 3.3 shows an example of an OmpSs application and a scheme of the
corresponding trace. The application creates four tasks and passes a separate
matrix block to each of them as an argument. Afterwards, the main task syn-
chronizes with the four created tasks using the taskwait directive before printing

50

3.4. Implementation Chapter 3. Simulating MT Apps Using Traces

#pragma omp task inout(mat)
void t1(float mat[N][N]);

#pragma omp task inout(mat)
void t2(float mat[N][N]);

#pragma omp task inout(mat)
void t3(float mat[N][N]);

#pragma omp task inout(mat)
void t4(float mat[N][N]);

(a) Task definition code

float matrix[4][N][N];

int main(int argc, char* argv[])
{

//...
t1(matrix[0]);
//...
t2(matrix[1]);
//...
t3(matrix[2]);
//...
t4(matrix[3]);
//...

#pragma omp taskwait

//print matrix contents
}

(b) Main task code

Application
Trace

m
ai

n
ta

sk
ta

sk
 1

ta
sk

 2
ta

sk
 3

ta
sk

 4

main task trace
CPU user_code, main0ins
create_task id_t1, inout(0x72480,16384)
CPU user_code, main1ins
create_task id_t2, inout(0x76480,16384)
CPU user_code, main2ins
create_task id_t3, inout(0x7a480,16384)
CPU user_code, main3ins
create_task id_t4, inout(0x7e480,16384)
CPU user_code, main4ins
task_wait
CPU user_code, main5ins

task4 trace
CPU user_code, t4ins

t4ins trace

...
20: sub r15, r12, r13
24: store r35, r15 (0x7e6a0)
28: sub r3, r31, r4
2C: load r21, r7 (0x80a88)
30: addi r3, r3
34: beq r3 (next_i: 7C)
7C: mul r32, r8, r9
80: mul r33, r10, r11
84: mul r34, r12, r13
8C: store r32, r17 (0x7f280)
90: store r33, r18 (0x7f284)
...

(c) Trace contents

Figure 3.3: OmpSs application example and its corresponding traces for the
TaskSim – NANOS++ simulation platform.

the contents of the matrix.

A trace of each task instance is captured separately and includes all parop-
call events as they originally occurred. In the main task, there is one parop
event per task creation (on each function call) and one parop event for the
taskwait synchronization. The information related to each parop call (function
arguments) is also included in the trace, so they can be properly re-executed at
simulation time. Each create task event includes the id of the created task
and the address, size and directionality (inout, see Section 2.7.1). Computation
periods between parops are specified as CPU events and include a pointer to
the associated instruction or memory-access trace. As an example, the trace
of task t4 has one CPU event that points to an instruction trace including
all instructions executed by the task. As previously explained, all task event
traces and all instructions or memory-access traces are indexed to be accessed
individually.

51

3.4. Implementation Chapter 3. Simulating MT Apps Using Traces

3.4.2 Runtime Integration

Figure 3.4 shows a scheme of the components of our implementation. The
interface between TaskSim and NANOS++ is split in two parts: the runtime
bridge and the architecture-depenedent operations. The runtime bridge exposes
all necessary parops implemented in NANOS++. This allows TaskSim to invoke
them every time it finds a parop-call event in the trace. The architecture-
dependent operations allow NANOS++ to manage the simulated threads and
to assign tasks for them to execute.

TaskSim NANOS++

create task
task wait
wait on data

Runtime
Bridge

Arch-dep
operations

execute task
start/join

bind
yield

Figure 3.4: Implementation scheme.

Figure 3.4 includes a list of the main parops and architecture-dependent
operations used in our implementation. The main parops exposed by the run-
time bridge (shown alongside the corresponding NANOS++ function between
parenthesis) are the following:

• create task (createWD): the calling task requests the creation of a new
task. It specifies the new task id and the input and output data identifiers
(address and size) for dependence tracking. The new task may be submit-
ted for execution in any thread, or the cut-off mechanism (see Section 2.7)
may decide to execute it inline.

• task wait (waitCompletion): the calling task requests to wait for all its
previously-created tasks to complete execution. No additional information
is required.

• wait on data (waitOn): the calling task requests to wait for the last pro-
ducer of a specific piece of data to complete execution. It specifies the
corresponding data identifiers.

These operations cover the basic task functionality of OmpSs and OpenMP
applications.

Similarly, TaskSim exposes the simulated architecture to NANOS++ through
the architecture-dependent operations. These architecture-dependent opera-
tions allow NANOS++ to assign tasks to simulated threads and set their state
(idle/running). This architecture-dependent part of the interface is implemented
as a NANOS++ plugin (as it is done for the architecture-dependent operations
of different real machines) and includes the following operations (alongside the
corresponding NANOS++ function between parenthesis):

• execute task (switchTo/inlineWork): executes a task on the current thread.
It can be done on a separate context (switchTo) or on the current context
(inlineWork).

52

3.4. Implementation Chapter 3. Simulating MT Apps Using Traces

• start/join thread (start/join): starts/finishes a new thread.

• bind thread (bind): binds the current thread to a hardware simulated
thread.

• yield thread (yield): requests a thread to yield.

Additionally, other architecture-dependent operations provide support for
explicit data transfers on distributed shared memory architectures, such as sys-
tems including local/scratchpad non-coherent memories (e.g., GPU, multimedia,
Cell/B.E.).

For the aforementioned functions to work, a set of data structures repre-
senting the several machine threads at the runtime-system layer needs to be
created at startup. The simulator engine calls the runtime system to initialize
these data structures through the init runtime-bridge function with the suitable
target architecture features, such as the number of cores and core types (in het-
erogeneous scenarios). At this point, the runtime system starts and initializes
the generic data structures that are common for any underlying architecture.
Then, in order to initialize the architecture-dependent data structures, it invokes
the implementation of the createThread architecture-dependent operation.

This pre-simulation procedure provides the runtime system with the neces-
sary abstraction layer to represent the threads in the simulated architecture.
Thanks to this fact, and the decoupling between the parops and the user code,
no data needs to be stored in the trace; and, as a result, the data structures
resulting from the runtime system initialization are sufficient for the correct
functioning of the previously-listed operations at simulation time.

During simulation, NANOS++ has the illusion of running on a real machine,
so tasks are scheduled, executed and synchronized in the same way as in a real
execution on whatever architecture configuration is simulated.

To apply this methodology to other programming models, we need all parops
to be encapsulated in the runtime system. Then, how easy is to integrate the
runtime system with the trace-driven simulator depends on how easy it is to
setup the interface between them. The runtime bridge, which follows the bridge
software pattern, is easy to program as long as there is a clear API for the
available parops in the runtime. For the architecture-dependent operations, the
ease of implementation depends on how spread out are these in the runtime
system code. In NANOS++, all architecture-dependent code is encapsulated in
a separate library that can be loaded at runtime. Then, for our implementation
we just had to replace the architecture-dependent library of the real machine
by one implementing the operations for TaskSim.

3.4.3 Simulation Example

Simulation starts by assigning the main task to one of the simulated threads.
All other simulated threads start idle. A separate context (user-level thread) is
created for each simulated thread, to provide NANOS++ with the illusion of
a multithreaded machine, even though TaskSim is running on a single thread.
Then, whenever a simulated thread wants to call a parop, the simulator switches
to the context associated to that simulated thread before entering the runtime
system execution.

53

3.5. Experiments Chapter 3. Simulating MT Apps Using Traces

create task t1

create task t2
create task t3

create task t4

task wait

exec t1

exec t2

exec t3

exec t4

Thread 0 Thread 1

main task

main task

wait!

(a) Two threads

create task t1

create task t2
create task t3

create task t4

task wait

exec t1

exec t2
exec t3

exec t4

Thread 0 Thread 1 Thread 2 Thread 3

main task

wait!

main task

(b) Four threads

Figure 3.5: Scheme of a multithreaded application simulation that generates 4
tasks and waits for their completion on two and four threads.

Figure 3.5 shows the simulation of the application in Figure 3.3, using
two (Fig. 3.5a) and four simulated threads (Fig. 3.5b). Having all simulated
threads setup, Thread 0 starts the simulation of the main task until it encounters
the first create task event. Then, it calls the corresponding parop through
the runtime bridge, which results in the creation of task t1 in NANOS++.
Task t1 is then ready and is scheduled to Thread 1 that is idle. Later, the
main task also creates t2, t3 and t4. These are executed by different threads
depending on the available cores in both examples, following a breadth-first
scheduling policy. After creating the four tasks, Thread 0 finds a task wait
event. At that point in the example with four cores, all created tasks are al-
ready running in other threads, so Thread 0 waits for their completion. In the
example with two cores, only t1 is running, so Thread 0 starts t2. Thread 1
finishes t1, and then switches to t3 and later to t4. Thread 0 completes t2,
and switches back to the main thread where it waits for t4 to complete.

This example shows how our simulation methodology allows the simulation
of different hardware configurations using a single trace per application.

3.5 Experiments

In this section we show a set of experiments that demonstrate the feasibility
and usefulness of the presented methodology, using our implementation shown
in the previous section.

The first experiment is the scalability evaluation of a blocked-matrix multi-
plication where each matrix block is processed by an OmpSs task. The compu-
tation is done using the sgemm function in the BLAS library [37]. Figure 3.6
shows its scalability (speed-up with respect to the execution with 8 cores), la-
beled as matmul.

As it can be seen, matmul performance does not scale beyond 32 cores. The
analysis of the results showed that the bottleneck is the task generation rate in

54

3.5. Experiments Chapter 3. Simulating MT Apps Using Traces

the main task, a limitation that has been studied in previous works [153]. This
issue leads to core underutilization, as it is shown for the 64-core experiment
in Figure 3.7a. Each row in the figure corresponds to one core: gray-colored
horizontal bars show task execution and white regions are idle time. The first
row at the top of the figure is the main task, which is the only solid line in the
figure. Although the main task is continuously creating tasks (shown in black),
it is not fast enough to generate tasks at a sufficient rate to feed all 63 remaining
cores. This results in long idle periods (in white) where cores are waiting for
tasks.

8 16 32 64 128
Number of cores

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

matmul
matmul-par

Figure 3.6: Speed-up for different numbers of cores from 8 to 64 with respect
to the execution with 8 cores.

We modified the application to parallelize task generation using a hierarchi-
cal task spawn scheme: the main task creates a set of task-spawn intermediate
tasks, each of them creating a subset of the total matrix-multiplication tasks.
Figure 3.6 shows that the matrix-multiplication version with hierarchical task
spawn (labeled as matmul-par) perfectly scales up to 128 cores. Figure 3.7b
shows the core activity for matmul-par. All core rows show that all cores are
busy all the time(no idle periods), thus fully utilizing the available resources in
the architecture. The black regions showing the task generation phases are now
spread across all cores.

This first experiment shows that the methodology allows trace-driven simu-
lations of multithreaded applications for different number of cores using a single
trace per application. It demonstrates that it is useful for finding bottlenecks in
the application and runtime system that appear on large numbers of cores not
yet available in real machines.

The second experiment is the comparison of different area-equivalent multi-
core designs. The different machine configurations follow Pollack’s Rule [38], in
which the performance increase of a core design is roughly proportional to the
square root of the increase in complexity (core area). The baseline configuration

55

3.5. Experiments Chapter 3. Simulating MT Apps Using Traces

(a) matmul

(b) matmul-par

Figure 3.7: Snapshot of the core activity visualization of a blocked-matrix mul-
tiplication a with 1 task-generation thread, and b with a hierarchical task-
generation scheme

in this experiment includes 16 cores. Then we explore two alternatives: one
with four cores twice as fast, and another containing 64 cores with half the
performance each.

56

3.5. Experiments Chapter 3. Simulating MT Apps Using Traces

Figure 3.8 shows the speed-up with respect to the baseline configuration
using 16 cores. The results in the figure are shown for a set of scientific appli-
cations programmed in OmpSs. A single trace per application is used for the
simulation of all hardware configurations. The configuration with four cores gets
better performance for applications with less parallelism, as individual tasks will
execute faster and they do not get any benefit from having more cores avail-
able. This is the case of pbpi and stap, which are limited by the performance
of the main task, and they do not scale to 16 cores. In this case, doubling the
core performance, doubles the overall application performance, as the sequential
bottleneck that dominates execution is completed twice as fast.

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

cholesky kmeans matmul matmul−par pbpi stap

S
p

e
e

d
u

p

4 cores 2x
16 cores 1x
64 cores 0.5x

Figure 3.8: Application performance comparison for area-equivalent multi-core
configurations. Speed-up with respect to the 16-core baseline.

The configuration using 64 cores performs better for highly-parallel applica-
tions, as the benefit of executing more tasks in parallel compensates the indi-
vidual task performance loss. In our experiments, this applies to applications
that scale up to 64 cores, which is the case of matmul-par. For the rest of ap-
plications, the baseline configuration is the best option. Cholesky, Kmeans and
matmul scale to 16 cores, so this configuration outperforms the one using just
four cores twice as fast. However, they do not scale to 64 cores, thus having an
overall performance loss due to the lower throughput of the individual cores.

For these experiments, our simulation framework required one trace per ap-
plication and one simulation per configuration. The purpose of the experiment
is twofold. First, to show the ability of our implementation to reproduce the
applications dynamic behavior for several configurations varying the number of
cores and the core type/performance. And, second, to show that the infrastruc-
ture allows to get an insight of the reasons for application scalability on different
configurations.

57

3.6. Coverage Chapter 3. Simulating MT Apps Using Traces

3.6 Coverage

The proposed methodology covers multithreaded applications where timing-
dependent code is decoupled from the application actual computation. Low-level
programming models (such as pthreads) allow the user to mix parops with user
code. Such applications would have to be modified so that parops are decoupled
from user code, and parops can be exposed to the simulator. This needs to be
done for each parop and every application which is actually impractical. This
results in a limitation of the proposed methodology, that is directly inherited
from the mentioned weakness of low-level programming models.

Also, non-deterministic applications that rely on random values (such as
Monte Carlo algorithms), include race conditions or depend on machine char-
acteristics (e.g., data structures depend on number of cores) may not be re-
producible during simulation. All required computation paths may have not
executed on the original run, and thus are not available in the trace, making its
trace-driven simulation not doable.

Therefore, we have identified high-level programming models as the best
cases for our methodology. Since parops are fully provided in the associated
runtime system, user code and parops are decoupled. Therefore, the instrumen-
tation of the runtime system covers the generation of traces for applications in
that programming model. Also, the runtime system of these programming mod-
els can be directly used as the runtime system in the simulation platform, just
by adding the corresponding architecture-dependent operations as explained in
Section 3.4.

This simulation methodology opens several research opportunities that are
not practical using state-of-the-art trace-driven simulation.

First of all, new ideas on runtime system design, implementation and op-
timization, such as new scheduling policies or more efficient management of
thread/task data structures, can be evaluated on future parallel architecture
designs before the actual hardware is available. These evaluations are possible
thanks to the interface described in Section 3.3, which provides runtime sys-
tems with the illusion of being executed on a real machine. Machines with large
numbers of homogeneous cores (64-128) accessing a shared memory are nowa-
days available, although their cost is a limiting factor for its accessibility. The
presented framework allows runtime system development for such large-scale
machines.

An interesting area of research is scheduling for heterogeneous architectures.
The presented infrastructure allows the evaluation of runtime scheduling tech-
niques for such heterogeneous on-chip architectures, which is not possible us-
ing state-of-the-art trace-driven tools, and more difficult for execution-driven
approaches as they may require a full compilation toolchain for the heteroge-
neous simulated architecture sometimes requiring support for multiple ISAs.
The trace-driven nature of our tools allows to have ISA-independent traces and
just needs to simulate the timing of the different core types.

Power-aware scheduling for large-scale architectures is another interesting
research area, which is explorable using our methodology. Multithreaded ap-
plications may trade off performance with power savings for non-critical code
regions, resulting in non-significant overall performance degradations. Analyz-
ing those trade-offs is, again, not doable for models on existing trace-driven
simulators, and may be hard using measurements in real machines as the access

58

3.7. Summary Chapter 3. Simulating MT Apps Using Traces

to power sensors is in many cases limited (only a set of sensors are readable at
a given point in time) or restricted (only available at the hypervisor level).

The presented methodology also provides dramatic reductions in the tracing
time and effort. A single trace represents the intrinsic behavior of the ap-
plication, and it is not necessary to generate traces for different architecture
configurations of the target parallel system. Applications are traced once, and
used to evaluate many configurations. Also, there is no need to regenerate traces
when there are changes in the runtime system. Whenever a new feature or op-
timization is applied to the runtime system implementation, it is immediately
available to the simulation framework, as the runtime system library is used
unchanged.

The time and effort required for tracing applications has been a major issue
in research based on trace-driven simulation so far. Previous works had to
generate a separate traces per application and for each number of cores to
be simulated. Thus, by minimizing the required tracing time and effort, new
multithreaded applications can be quickly traced and incorporated as evaluation
benchmarks to research projects. Also, our methodology reduces the required
disk space (a limitation explained in Section 2.3). This way, more applications
or longer executions can be stored in the same disk space.

3.7 Summary

The simulation methodology presented in this chapter is, to the best of our
knowledge, the first hybrid methodology combining traces and execution for
parallel application simulation. Traces are generated for the timing-independent
user code, and parops are re-executed at simulation time.

One of the contributions of this methodology is a significant reduction in the
effort for generating traces and disk space requirements. Multithreaded appli-
cations are represented by a single trace, that can be used to evaluate multiple
hardware configurations. Also, by using multithreaded applications written in
high-level programming models, the instrumentation of the corresponding run-
time system is enough to generate traces for any application.

The use of traces in our methodology provides all the benefits of trace-driven
simulation explained in Section 2.3. We showed simulations with up to 128 cores
that completed in a few minutes thanks to the lack of functional simulation and
to raising the level of abstraction. More details about this can be found in the
next chapter.

59

3.7. Summary Chapter 3. Simulating MT Apps Using Traces

60

Chapter 4

Multiple Levels of
Abstraction

The techniques to reduce simulation time explained in Section 2.4 are useful to
reduce the simulation time of cycle-accurate simulators. These simulators are
fundamental tools for computer architecture research in order to understand
the workload stress on microarchitectural structures, but their time-consuming
operation limits their usability to exploring multi-cores with a few tens of cores.
In general, cycle-accurate simulators are not suitable for simulating large-scale
architectures, nor are they actually meant to be used for this.

Early high-level design decisions, or evaluations of the cache hierarchy, off-
chip memory, or interconnect may not need such cycle-level understanding of
the architecture, as microarchitecture decisions in those cases may be irrele-
vant or even misleading. As it is widely suggested by the research commu-
nity [180, 39], this fact opens the door to raising the level of abstraction of
the core model. Furthermore, it allows to raise the level of abstraction of the
application representation, as it does not necessarily have to be represented as
an instruction stream. Most existing simulation tools are tied to this level of
application representation: execution-driven simulators need to work with the
application instruction stream for functional simulation (see Section 2.3), as well
as trace-driven simulators that model the core pipeline.

In this chapter, we evaluate the implications of raising the level of abstraction
of the simulation model by raising the level of abstraction of the simulated
application. We categorize simulation levels of detail and introduce a definition
of application abstraction levels. In this effort, we focus on the more abstract end
of the spectrum, which is necessary for simulating large-scale architectures and
where, to date, comparatively little work has been done. Based on the proposed
application abstraction categories, we introduce two very high-level simulation
modes that are faster than functional simulaton, and that actually provide more
insight. These are complemented with two more detailed simulation modes: one
simulating only memory accesses, and another working at the instruction level.
We discuss and evaluate the utility and accuracy of these simulation models and
analyze their trade-offs between simulation speed and model detail compared to
the abstraction levels of popular simulators in computer architecture research.

61

4.1. State of the art Chapter 4. Multiple Levels of Abstraction

4.1 State of the art

The idea of variable-grain simulation detail is already present in the literature
and, in fact, many existing simulators offer several levels of abstraction with
different simulation speeds and levels of detail. Having different abstraction
levels is beneficial, not only due to having a faster (usually higher level) or more
accurate simulation (usually lower level), but because each of them allows the
researcher to reason about certain aspects of the design.

The abstraction levels in many existing simulators range from microarchi-
tectural pipeline modeling of, for example, in-order and out-of-order cores, to
functional simulation. Examples are popular execution-driven simulators such
as Simplescalar [43], Simics [114] and gem5 [33]. These simulators provide a
simulation mode for functional simulation, an intermediate mode that abstracts
the core pipeline and simulates the memory hierarchy in detail, and the most
detailed mode that simulates both the memory hierarchy and the core pipeline
in detail. We cover these simulation modes and their simulation speed and
modeling detail trade-offs in Section 4.4.

These aforementioned simulators target cycle-accurate simulation and their
detail operation comes at the expense of simulation speed. However, other sim-
ulators [128, 24, 164] use event-driven simulation and high levels of abstraction
to achieve early design decisions and high-level insights for architectures which
cycle-accurate simulation is unfeasible.

An example of this kind of high-level computer architecture simulators is
Dimemas [24]. It models distributed-memory clusters with up to thousands of
cores, and its main target is parallel application analysis. Dimemas simulations
mainly focus on reflecting the impact of different cluster node configurations and
interconnection qualities on MPI communications. For this purpose it abstracts
the simulation of the cores assuming it has the same performance as in the
trace-generation machine (or a performance relative to it) and models MPI
communication for a proper network contention simulation. A similar approach
is followed by SMPI [63]. SMPI also models a cluster architecture, but the delay
of MPI messages is calculated using an analytical model that considers not only
transfer rates but also communication protocol delays.

Analytical models have also been used to abstract the model of the core
pipeline. Interval simulation [83] is an approach in this direction. It uses a
simple model that computes the IPC using an analytical model at intervals of a
given size. The analytical model assumes a fixed IPC based on the issue width
of the core and considers the IPC drop for an interval when there is a cache
miss or branch misprediction.

Another way of raising the level of abstraction is to abstract the simulated
machine model while raising the level of abstraction of the application repre-
sentation. We advocate for this approach, provide a definition of a hierarchy
of levels of application abstraction and evaluate the corresponding simulated
machine abstractions in the following sections. Previous simulators for trace
memory simulation [35, 167, 138, 173, 105, 88, 109] use an application represen-
tation at the memory level that considers memory accesses only.

In this chapter, we evaluate from the MPI-level abstraction used by Dimemas,
to the memory level of trace memory simulators, and to the instruction level
used by execution-driven simulators. Also, we introduce a fourth abstraction
level leveraged from our simulation methodology presented in Chapter 3.

62

4.2. Application Representation AbstractionChapter 4. Multiple Levels of Abstraction

task switch

Node 1

Node 2

Node 3

Node 4

communicationcomputation

time

Core 1

Core 2

Core 3

Core 4

time

task creation

Core 4

time

ld @0,8 st @1,8 ld @2,4 ...

CPU 1350us
MPI_send msg1, p2, 8KB
CPU 15us
MPI_recv msg2, p4, 8KB
CPU 2580us

CPU user_code, 250us
CPU create_task, 30us
create_task t1
CPU user_code, 200us
CPU create_task, 30us
create_task t2

load 0x90, 8 bytes
store 0x98, 8 bytes
load 0x104, 4 bytes
load 0x108, 4 bytes
store 0x60, 4 bytes

Process 1 (Node 1)

Thread 1 (Core 1)

(a)

(b)

(c)

task executionidle time

Core 4

time

load add cmp beq mul mul br...

34: load r3, r1 (0x8f)
38: add r4, r7,r22
3C: cmp r4, r3
40: beq (next_i: 7D)
7D: mul r27, r25, r26

store(d)

ld @3,4 st @9,4

Figure 4.1: Different application abstraction levels: (a) computation plus MPI
calls, (b) computation plus parops, (c) memory accesses, and (d) instructions.

4.2 Application Representation Abstraction

In this section we introduce a categorization of application abstraction levels.
These levels refer to different application representations as provided to a sim-
ulator at different granularities and levels of detail.

The highest application abstraction level in our definition is for multi-process
applications, such as those programmed with MPI. As explained in the previ-
ous section for Dimemas, the application is composed of computation periods,
referred to as bursts and communications. Figure 4.1a shows the timeline of an
MPI application where the application is represented following this structure.
On the right of the timeline, there is a sample of the information included in a
Dimemas trace. The contents of a Dimemas trace include the same semantics:
computation bursts are expressed as CPU events, and there is a specific event
for each MPI call (e.g., MPI send, MPI recv).

For the simulation of smaller systems like a multi-core chip or a shared-
memory node, the Dimemas approach is not appropriate. Different threads
in a shared-memory application make use of common resources to access the
shared address space, although they execute on separate cores. In that case,
the level of abstraction must be lowered to be capable of observing the internals
of the computation in shared-memory applications, or between inter-process
communications in MPI applications.

In order to represent computation at that shared-memory level, applications
can be expressed as in high-level programming models such as the ones explained
in Section 2.7. As in the methodology presented in Chapter 3, the application is
represented as sequential sections (user code) and parops. Figure 4.1b shows the

63

4.3. Model Abstraction Chapter 4. Multiple Levels of Abstraction

timeline of a task-based parallel application, which could also be part of an MPI
application, as it occurs in the Roadrunner supercomputer [27] that features the
Cell/B.E. accelerator (see Section 2.1.1) and other systems featuring GPGPUs.
As for Dimemas, computation bursts are expressed as CPU events, and are
interleaved with parops and, additionally, explicit memory transfer operations
for distributed-memory multi-cores. In the example in Figure 4.1b, Core 1
creates and schedules tasks (gray phases), and cores from 2 to 4 execute those
tasks (phases between dark gray) as they are being created by Core 1. This
example works as the one shown in Figure 3.5.

This level of abstraction is appropriate for quickly evaluating application
scalability: whether an application can make use of an increasing number
of cores; and memory bandwidth requirements: whether data is transferred
fast enough to cores to avoid slowdowns. For accelerator-based systems where
computation cores work on non-coherent scratchpad memories (e.g., Cell/B.E.,
GPUs, DSPs), this abstraction level includes all information required for an
accurate evaluation of the memory system. Since such accelerators only ac-
cess data in their scratchpad memories, the computation is not affected by the
activity in other components in the system. This means that, as long as the
accelerator core and scratchpad memory features remain unchanged, modifica-
tions to the rest of the memory system and the interconnection network will
not affect the accelerator computation delay. Thus, modeling data transfers be-
tween off-chip memory or last-level cache, and scratchpad memories is sufficient
for an accurate simulation. We demonstrate this point in Section 4.5.2.

However, for cache-based architectures this approach has, as is intended,
some limitations in favor of simulation speed. The level of abstraction must be
lowered to simulate cache-based architectures accurately, so the memory system
is stressed with the application memory accesses. Figure 4.1c shows a list of
memory accesses corresponding to a specific chunk of computation. This kind
of representation is widely used by trace memory simulation methods [35, 167,
138, 173, 105, 88, 109], some of them covered in Section 3.2.

Additionally, when it is necessary to explore microarchitectural issues con-
cerning the core pipeline, or a more detailed understanding of the application
execution is required, the simulated application needs to be represented at the
instruction level. Figure 4.1d shows the list of instructions in a computation
burst. This is the lowest level of representation of an application, and is the one
used in execution-driven simulators and trace-driven simulators focusing in the
pipeline microarchitecture. As previously mentioned, this representation level
allows the detailed understanding of the microarchitecture activity, but prevents
the exploration of large-scale multi-cores due to its time-consuming operation.

4.3 Model Abstraction

The application abstraction levels shown in Figure 4.1 are the base for the archi-
tecture model abstractions introduced in this section and that we implemented
in TaskSim. To work with such application abstraction levels, we found appro-
priate the use of event-driven simulation and the use of traces for all levels. This
way, functional simulation is not needed at simulation time, and the application
representation can be actually abstracted beyond the instruction stream level.

The aforementioned application abstraction levels allow the definition of four

64

4.3. Model Abstraction Chapter 4. Multiple Levels of Abstraction

architecture model abstractions implemented in the following simulation modes:

• Burst: based on the shared-memory abstraction level (Fig. 4.1b). Ac-
counts for the execution time of sequential sections and parop events.

• Inout: based on the shared-memory abstraction level (Fig. 4.1b). Extends
burst with explicit memory transfers.

• Mem: based on the memory abstraction level (Fig. 4.1c). Used for mem-
ory simulation.

• Instr: based on the instruction abstraction level (Fig. 4.1d). Used for
instruction-level simulation.

The burst mode operates on a set of cores that simulate the computation
bursts assigned to the associated threads, and carry out their synchronization
through the parops in the trace. Therefore, simulation of the memory system
and core pipeline is not necessary, so they are not even present on simulations in
burst mode. However, for all other modes (inout, mem and instr), the cache hi-
erarchy, network-on-chip and off-chip memory are simulated for a proper timing
of memory accesses. More details on the implementation of these four architec-
ture abstractions are given in the following sections.

4.3.1 Burst Mode

The burst mode implements a fairly simple event-driven core model. There is
one trace for the main task, corresponding to the starting thread in the program,
and then one trace for every other task executed in the application. A task trace
includes all computation bursts as CPU events, and the required parops for a
correct parallel execution. Since different tasks have separate traces, they can
be individually scheduled to available cores. The parallel work scheduling can
be either fixed or dynamic.

For fixed scheduling, as soon as a task is created and scheduled, any available
core can start its execution. This mechanism is implemented using a semaphore-
like strategy, that is signal and wait operations. After a task creation, a signal
event unblocks the execution of the corresponding task, which is assigned to a
core as soon as it becomes free.

The same signal-wait mechanism allows the simulation of thread synchro-
nizations such as task wait (waiting for all previously-created tasks), wait on
data (waiting for a producer task to generate a piece of data) and barriers.

The trace format for the burst mode using fixed scheduling includes the
following event types:

• CPU: indicates the beginning of a computation burst. It includes a com-
putation type id and its duration in nanoseconds.

• Signal/Wait: used for thread synchronization. Both include a semaphore
id.

The core model using this trace format operates as follows. One of the
simulated cores starts simulation by reading the first event in the main task
trace. CPU events are then processed by adding their duration to the current

65

4.3. Model Abstraction Chapter 4. Multiple Levels of Abstraction

cycle value in the target architecture (a ratio can be applied to burst durations
to simulate different core performance levels). The rest of the cores in the
system start idle, and wait for tasks to be created and scheduled. Whenever a
Signal event for task creation is found in the main task, any idle thread can
start simulating the corresponding task. The core taking the new task becomes
active, and starts processing its events.

For simulations using dynamic scheduling, TaskSim adopts the approach
presented in Chapter 3. The simulator employs an interface to a runtime system
that executes the parops at simulation time. In this case, the Signal and Wait
event types are not necessary, and the trace includes, instead, the calls to the
appropriate runtime system operations. When runtime call events are found
in the trace, the runtime system is invoked to execute them, and perform the
corresponding scheduling and synchronization operations. These operations are
executed based on the state of the simulated machine, and task execution is
simulated according to the decisions made by the runtime system. For more
information see Chapter 3.

4.3.2 Inout Mode

The inout mode builds on top of the burst mode to provide precise simulation of
multi-core architectures using scratchpad memories (non-coherent distributed
shared-memory systems). As previously mentioned, the execution of a core
accessing a scratchpad memory is not affected by the features of other elements
in the system. The access to a scratchpad memory is deterministic, and the
core will only be delayed on eventual synchronizations with explicit memory
transfers between the scratchpad memory and the cache hierarchy levels, or
off-chip memory.

The trace format of the burst mode is enriched with specific events that
indicate the initiation of explicit memory transfers (e.g., DMA), and the syn-
chronization with their completion before bursts reading that data:

• DMA: used to initiate an explicit memory transfer. It includes the transfer
type (read/write), data memory address, size and a tag id.

• DMA wait: used to synchronize with previously initiated memory trans-
fers. It includes a tag id.

The application simulation in inout mode works as in the burst mode but,
when a DMA event is found, that core sends the proper commands to program
the memory transfer in the corresponding DMA engine. DMA transfers are
asynchronous so the simulation of that memory transfer takes place in parallel
with the processing of computation bursts. Then, on a DMA wait event, the core
stalls until it receives acknowledgement of the completion of the corresponding
memory transfer.

The core model in both burst and inout modes is intentionally simplistic.
To avoid the slow detailed simulation of pipeline structures, the target core
is assumed to feature the same characteristics as the underlying machine on
the trace-generation run (or a relative performance using ratios for computa-
tion bursts). Despite this simplicity, the isolation of computation on cores with
scratchpad memories results in accurate memory system and interconnection

66

4.3. Model Abstraction Chapter 4. Multiple Levels of Abstraction

network evaluations that, for large target accelerator-based architectures, com-
plete in a few minutes, as is shown in Section 4.5.2.

4.3.3 Mem Mode

For appropriately stressing the cache hierarchy elements and off-chip memory
on cache-based systems, the mem mode considers the list of executed memory
accesses of the application. The burst mode is extended to add trace mem-
ory simulation to the computation bursts in the target application. For each
computation burst, a trace of all corresponding memory accesses is captured
and a pointer to the resulting memory access trace is included in the associated
CPU event. Then, during simulation, when the simulator processes a CPU event,
it ignores the computation burst duration in the trace, and it simulates the
corresponding memory access trace instead.

The trace formats of trace memory simulation works in the 80s and early
90s, included just the memory accesses and, in some cases, the timestamp of
the cycle when they were issued. However, in order to more precisely model
the core performance, the memory access trace for the mem mode also includes
the number of non-memory instructions between memory accesses, thus leading
to a trace format analogous to the one of the TPTS simulator explained in
Section 2.5.5. The records in the trace include the following information for
each memory access:

• Access type: Load or Store

• Virtual memory address.

• Access size in bytes.

• Number of instructions since the previous memory instruction.

The core model uses this information to simulate the performance of an
out-of-order core by modeling the re-order buffer (ROB) structure; a technique
by Lee et al. [109] also used in TPTS, and referred to as ROB Occupancy
Analysis. Using this method, simulation runs as follows. When the simulated
core reaches a CPU event, it starts processing the associated memory access
trace pointed by the event record. It reads the first memory access in the
trace, an starts issuing the previous instructions at a given issue rate. When
all previous instructions are issued, the memory access is issued and sent to the
first-level cache. Simulation keeps processing the following memory accesses in
the trace in the same manner, allowing several concurrent memory accesses in
flight. However, to avoid performance overestimations and account for resource
hazards, simulation considers the limitation imposed by the ROB size. This
assumes that the ROB is the main limiting factor in the core based on a study
by Karkhanis et al. [102]. For every memory access, the associated number
of previous instructions and the memory instruction itself, are stored in the
ROB. Then, when the ROB is full, no more trace records are processed, and
only the memory accesses in the ROB are allowed to be concurrently accessing
the memory system. Non-memory instructions in the ROB are committed at
a given commit rate. Commit blocks when a pending memory access arrives
to the head of the ROB, and it does not unblock until the memory access is
resolved.

67

4.3. Model Abstraction Chapter 4. Multiple Levels of Abstraction

This technique assumes that all memory references are independent. How-
ever, for many applications, data dependencies may be the primary factor limit-
ing memory-level parallelism. Memory access traces can be enriched with data
dependencies and only allow independent accesses to be sent in parallel. This
extension provides a closer approximation in terms of accuracy to instruction-
level simulation.

This method is, in any case, faster than working at the instruction level, but
we further speed up simulation by applying trace stripping [138, 173] to TaskSim
memory access traces. This technique consists of simulating the memory access
trace on a small direct-mapped filter cache, and only storing misses and the
first store to every cache line (only required for the simulation of write-back
caches [173]). The resulting traces experience reductions in size of up to 98%
depending on the application, and will perform the same number of misses as
the original trace on simulations of caches with a number of sets equal or larger
to the number of sets of the filter cache. A limitation of this technique is that
the cache line size of the simulated architecture must be the same that was used
in the filtering process for the filter cache.

The results in later sections show that this architecture model abstraction
provides a high simulation speed that is 18x faster than simulating at the instruc-
tion level. We also evaluate this simulation mode in more detail in Chapter 5.

4.3.4 Instr Mode

In order to simulate core activity more accurately on systems with caches, the
instr mode extends the burst operation mode to allow the employment of in-
struction traces for computation bursts, similarly to the extension applied for the
mem mode. The instruction stream is captured at tracing time using PIN [113],
a dynamic binary instrumentation tool, and an instruction trace is generated
for every computation burst. Then, as for the mem mode, the CPU event format
is extended to include an extra field for storing a pointer to the corresponding
instruction trace.

The core model in instruction mode operates exactly as in burst mode, but
the duration of CPU events is ignored, and the corresponding instructions are
simulated instead. There are many ways to encode an instruction trace but, in
general, they require to include the following information for every instruction:

• Operation code: it can be more or less generic depending on the target
ISA and the detail of the core model (e.g., arithmetic rather than the
specific instruction opcode).

• Input and output registers.

• Memory address and data size for memory instructions.

• Next instruction for branch instructions.

This mode allows a detailed core simulation. Obviously, the more accurate
the core model, the longer the simulation takes to complete. In TaskSim, dif-
ferent instruction-level core models can be used, and even switched from one to
another at simulation time, as described in the next section.

68

4.4. Speed-Detail Trade-Off Chapter 4. Multiple Levels of Abstraction

4.3.5 Summary

Table 4.1 shows a summary of the presented simulation modes. This includes
their applicability to different architecture types or software domains and their
usability for computer architecture studies. The burst mode allows to evaluate
application scalability and, when it works integrated with a runtime system (as
described in Section 4.3.1), it also provides a framework to perform runtime
system evaluations as we explained in Chapter 3. On top of these features, the
inout mode allows to evaluate the memory system and interconnection network
designs, and it is accurate for scratchpad-based architectures. The mem mode
provides support for the evaluation of the memory system and interconnection,
as well as the inout mode, and also allows to analyze the design of the cache
hierarchy components. On top of this, the instr mode provides support for
evaluating the microarchitecture of the core pipeline structures. Table 4.1 also
shows an estimate of the simulation modes speed to give an idea of the trade-
off between simulation speed and modeling detail. These trade-offs are more
thoroughly evaluated in Section 4.4.

Table 4.1: Summary of TaskSim simulation modes. This includes their applica-
bility on computer architecture evaluations, and their features also comparing
to state-of-the-art (SOA) simulators

Mode Applicability Features
Burst Application scalability Potentially faster than native execution

RT system evaluation 100x faster than SOA functional sims

Inout Memory system 100-1000x faster than SOA instr.-level sims
Interconnect Accurate for scratchpad-based CMPs

Mem Cache hierarchy 10-100x faster than SOA instr.-level sims

Instr Core microarchitecture –

It is worth mentioning that TaskSim allows to switch between different levels
of abstraction for different computation bursts along a single simulation. This
is very useful to quickly traverse initial phases of an application in burst/inout
mode similarly to fast forwarding in some sampling-based simulation method-
ologies (see Section 2.4.4), and then execute the computation bursts of interest
in mem or instr mode.

4.4 Speed-Detail Trade-Off

We have chosen three of the most popular computer architecture research simu-
lators to analyze their trade-offs between simulation speed and modeling detail
for their different levels of abstraction. The simulators are Simplescalar (see
Section 2.5.1), Simics and its timing module GEMS (see Section 2.5.2) and
gem5 (see Section 2.5.3).

All three simulators are execution-driven, and thus rely on being provided
with the executable binary files of the application. This leads them to work

69

4.4. Speed-Detail Trade-Off Chapter 4. Multiple Levels of Abstraction

at the instruction level of abstraction (Figure 4.1d), but they still provide sev-
eral levels of model abstraction, ranging from the highest level being functional
simulation and, the lowest, the simulation of the core pipeline structures. All
abstraction levels in Simplescalar, Simics+GEMS and gem5 are compared to
the ones explained in the previous section in terms of simulation speed and
modeling detail. As a first observation, the instr level in TaskSim considers the
application instruction stream as well, but mem, inout and burst benefit from
a higher-level abstraction of the application representation to provide higher
simulation speeds while still being insightful for different purposes.

Table 4.2 includes the different abstraction levels and performance of the
simulators considered in this study. The results were extracted from executions
on an Intel Xeon running at 2.8 GHz, with 512 KB of L2 cache, 2 GB of DRAM
at 1333 MT/s and running a 32-bit Linux distribution. For each application, we
repeat the simulations four times, and took the fastest for all abstraction levels
to avoid operating-system noise. We simulated a single-core configuration in all
simulators because it is the fastest configuration in all cases. The addition of
simulated cores usually leads to a super linear slowdown. We employed a set
of scientific applications, listed in Table 4.4, for these experiments, all compiled
with gcc, -O3 optimization level and cross-compiled for PISA (Simplescalar),
SPARC (Simics), Alpha (gem5) and x86 (TaskSim). The x86 binaries were
executed on the host system to generate traces for the different abstraction
levels of TaskSim.

The different abstraction levels of Simplescalar in this study are sim-fast,
which just performs functional simulation supported by system-call emulation;
sim-cache, which just simulates the first- and second-level caches with immediate
update and a fixed latency for L2 cache misses (off-chip memory accesses);
and sim-outorder, which adds to sim-cache the simulation of an out-of-order
processor pipeline. The three levels of abstraction correspond to the different
binaries generated when compiling the Simplescalar distribution sources.

The highest abstraction level of Simics is its standalone execution (no timing
modules, -fast option) for functional simulation. The second level is the in-
corporation of the GEMS Ruby module, set up for a MOESI CMP token config-
uration; and the lowest level is the addition of the Opal module. We could have
also included an intermediate simulation setup including Opal but not Ruby.
However, detailed modeling of core pipelines without a model for the memory
hierarchy does not provide any additional insight because other simulators do
not have a configuration as such.

We configured gem5 to run in system-call emulation mode, and to sup-
port the Alpha ISA. The different abstraction levels provide functional simu-
lation (func: no flags are specified); the simulation of the cache system (cache:
--caches --l2cache --timing); the addition to cache of an in-order core
pipeline model (inorder : --caches --l2cache --inorder); and the addi-
tion to cache of an out-of-order core pipeline model (ooo: --caches --l2cache
--detailed). The TaskSim architecture model abstractions were discussed in
depth in Section 4.3.

70

4.4.
S

p
eed

-D
etail

T
ra

d
e-O

ff
C

h
ap

ter
4.

M
u

ltip
le

L
evels

of
A

b
straction

Table 4.2: Comparison of abstraction levels in existing simulators in terms of simulation speed and modeling detail

Abstraction level Speed (KIPS) Ratio to fastest Ratio to native Model detail

SIMPLESCALAR
sim-fast 20,425 1 288.07 functional only
sim-cache 5,946 3.43 999.29 sim-fast + cache hierarchy model
sim-outorder 1,062 19.23 5,669.55 sim-cache + OOO pipeline model

SIMICS + GEMS
standalone 32,517 1 128.23 functional only
Ruby 129 251.54 31,827.10 adds cache hierarchy and memory model
Ruby + Opal 14 2,237.40 260,017.16 Ruby + OOO pipeline model

GEM5
func 984 1 4,381.74 functional only
cache 401 2,45 10,734.61 adds cache hierarchy and memory model
inorder 47 20,92 98,335.57 cache + in-order pipeline model
ooo 85 11,80 46,984.21 cache + OOO pipeline model

TASKSIM
burst 4,175,762 1 0.80 computation bursts and parops
inout 132,573 31.50 25.70 burst + explicit memory transfers
mem 2,067 2,020.32 1,561.27 burst + trace memory simulation
instr 113 36,919.01 31,173.21 burst + core pipeline model

71

4.4. Speed-Detail Trade-Off Chapter 4. Multiple Levels of Abstraction

The second column in Table 4.2 shows the simulation speed of the different
abstraction levels in kilo-instructions per second. The third column shows the
ratio of the simulation speed versus the fastest mode in the same simulator. The
values shown are the average for all applications. As expected, as the level of
abstraction is lowered, simulation gets slower. However, simulation speeds sig-
nificantly vary between simulators due to their different simulation approaches:
execution- vs. trace-driven, full-system vs. system-call emulation; and their dif-
ferent levels of modeling detail. For example, Ruby, gem5 and TaskSim model
the off-chip DRAM memory operation in detail, while Simplescalar applies just
a fixed latency to L2 cache misses. The differences between the various func-
tional modes of the execution-driven simulators are quite significant. Functional
simulation in Simics is significantly faster than its other levels of abstraction due
to its software development target. Even though Simics simulates full-system, it
is actually faster than sim-fast, whose model is much simpler. Contrarily, gem5
functional mode is much slower even in system-call emulation mode as, in this
case, the target is architecture simulation.

The abstraction levels modeling the core pipeline details, cache hierarchy and
memory system are the slowest in all simulators and their speed ranges from
14 KIPS for Ruby+Opal, which implements a very detailed model, to 1062 KIPS
for Simplescalar which, apart from being not so complex, also benefits from sit-
ting on a simple memory system model. It is remarkable that the inorder model
of gem5 is actually slower than the out-of-order model which, intuitively, should
not be the case, since an out-of-order core model is more complex. This fact has
been consistently found across different applications and different environment
setups of gem5.

The forth column shows the ratio to the application execution on the host
machine. It must be noticed that the comparison of simulation speed between
different simulators does not match the comparison of their ratio to native ex-
ecution. This is because different simulators employed binaries compiled for
different architectures that required different numbers of executed instructions
to complete.

It is worth highlighting that the TaskSim burst mode can be faster than
native execution, as was found for the applications in this study, and is 128x
faster than the fastest functional mode. This makes sense, as the speed of the
burst mode depends on the number of events captured in the trace. In this case,
the applications were compiled for task-parallel execution and simulated on a
single core, which is useful for the sake of comparison, but the burst mode is more
interesting when simulating parallel systems, as is shown in the experiments in
Section 4.5.1. The rest of the modes in TaskSim simulate the memory system,
which slows down simulation in favor of simulation detail. The inout mode
benefits from the aforementioned isolation of execution on accelerators to get
a high simulation speed, only 25x slower than native execution, because only
explicit memory transfers are simulated. Finally, the mem mode provides an 18x
speedup compared to the instr mode. Among the rest of abstraction levels that
only simulate the memory system, only sim-cache is faster, which, as previously
mentioned, uses a simple model for caches and does not simulate the off-chip
memory.

72

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

Table 4.3: TaskSim main configuration parameters. The experiments in Sec-
tion 4.5 use the default values unless it is explicitly stated otherwise

Parameter Description (units) Default Value
Cache (L1/L2/L3)

Associativity Number of ways per set 2/4/4
Size Total cache size (bytes) 32K/256K/4M
Data placement Replication or interleaving replication
MSHR entries MSHR table size 8/64/64

Scratchpad memory
Size Total memory size (bytes) 64K
Latency Access latency (cycles) 3

DMA engine
Queue size DMA queue size 16
Maximum transfers Max. concurrent transfers 16
Packet size DMA packet size (bytes) 128

Interconnection Network
Maximum transfers Max. concurrent transfers no. of links
Latency Link latency (cycles) 1
Bandwidth Link bandwidth (bytes/cycle) 8

Memory Controller
Queue size Access queue size 128
Data interleaving mask Interleaving granularity (bytes) 4096
Number of DIMMs Number of DRAM DIMMs 4

DRAM DIMM
autoprecharge Enable/disable autoprecharge disabled
data rate Transfers per second (MT/s) 1600
burst Number of bursts per access 8
t
RCD,tRP,CL,tRC,tWR,tWTR Timing parameters 3

4.5 Evaluation

For the experiments in this section we configure TaskSim using the configura-
tion parameters shown in Table 4.3. A cache-based homogeneous multi-core
configuration (as the one shown in Figure 2.5a) is used for the evaluations of
the burst, mem and instr simulation modes in Sections 4.5.1 and 4.5.3. The
architecture configurations for the Cell/B.E. and the SARC architecture shown
in Figures 2.5b and 2.5c are used for the evaluation of the inout mode in Sec-
tion 4.5.2.

4.5.1 Application Scalability using Burst

The experiments in this section show the validation of the burst mode for eval-
uating application scalability. Simulations are compared to real executions on
an eight-core AMD Opteron 6128 processor machine. We use a set of scien-
tific applications used in high-performance computing (HPC) plus blackscholes
from the PARSEC benchmark suite, which has been ported to OmpSs (shown
in Table 4.4).

3Default values for DRAM timing parameters match the Micron DDR3-1600 specification.

73

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

The applications are first run natively on the real system for different num-
bers of threads ranging from one to eight. Execution time is measured for the
parallel computation section of the application, avoiding the initialization part,
and execution time is averaged over ten repetitions. On the same machine, we
collect ten traces for each benchmark. We perform simulations with these ten
traces per benchmark using the dynamic scheduling approach described in Sec-
tion 4.3.1 and for multiple numbers of threads from one to eight as done in the
real executions. The resulting simulated time per benchmark and number of
threads is the average over the ten simulations using the ten different traces.

Table 4.4: List of benchmarks, including their label used in the charts and a
description of their configuration parameters.

Benchmark Label Parameters
2D convolution 2Dconv 4096x4096 pixels image, 8x8 filter
Cholesky factorization Cholesky 32x32 blocks of 128x128 elements
LU factorization LU 32x32 blocks of 128x128 elements
Matrix multiplication MatMul 32x32 blocks of 128x128 elements
Kmeans clustering Kmeans 1M points, 64 dimensions, 128 centers
k-NN classification kNN 200K train points, 5K test points,

64 dimensions, k=30, 20 classes
Blackscholes BS PARSEC native input: in 10M.txt

2Dconv Cholesky LU MatMul Kmeans kNN BS Average
Benchmarks

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Si
m
ul
at
io
n
Er
ro
r

1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads

Figure 4.2: Simulation error of the burst mode compared to the real execution
on an eight-core AMD Opteron 6128 processor for multiple numbers of threads.

The burst mode assumes that task execution time barely varies from an ex-

74

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

ecution on one thread compared to an execution on a higher number of threads.
Therefore, codes optimized to fit task data in private caches and not being lim-
ited by memory bandwidth are candidates to be accurately simulated, as it is
the case of highly-optimized HPC applications and scientific libraries. Figure 4.2
shows the percent error of the predicted execution time using the burst mode
and the execution on the real machine. The average error across all benchmarks
and numbers of threads is below 1.6%, and the maximum error is 3.2%. Part of
this error comes from the difference between the native and the trace-collection
runs and from instrumentation overheads.

Table 4.5: Cholesky factorization of a 4096×4096 blocked-matrix using different
block sizes. The table shows the number of tasks, the average task execution
time and the comparison of real execution and simulation for four and eight
threads.

Block size 64× 128× 256× 512× 1024× 2048×
64 128 256 512 1024 2048

Number of tasks 45760 5984 816 120 20 4
Avg. task time 212µs 1.4ms 9.3ms 62ms 371ms 1.8s

Real vs. Simulation - 4 threads
Real exec. time (s) 2.89 2.12 2.01 2.19 3.26 7.43
Predicted time (s) 2.65 2.12 1.98 2.14 3.13 7.38
Error (%) 8.26 0.15 1.28 2.05 4.03 0.72
Simulation time (s) 3.15 0.41 0.08 0.09 0.36 1.39
Slowdown 1.09 0.20 0.04 0.04 0.11 0.19

Real vs. Simulation - 8 threads
Real exec. time (s) 1.56 1.08 1.05 1.35 3.06 7.41
Predicted time (s) 1.34 1.07 1.02 1.28 3.02 7.38
Error (%) 14.08 0.57 2.63 5.13 1.31 0.41
Simulation time (s) 3.45 0.46 0.12 0.23 1.28 2.96
Slowdown 2.21 0.48 0.11 0.17 0.42 0.40

We use Cholesky factorization (see Figure 2.11) as a case study of the valid-
ity and usefulness of the burst mode for scalability analysis using multiple block
sizes (M×M in Figure 2.11a). Table 4.5 shows the number of tasks and average
task execution time for multiple block sizes between 64×64 and 2048×2048. We
executed these multiple configurations in the real machine for different numbers
of threads from one to eight and averaged the execution time over ten repeti-
tions. We also simulated the same configurations using ten different traces and
averaged the predicted execution time.

Figure 4.3 shows the results. The configuration with 64×64 blocks shows an
error up to 14% because instrumentation overheads start becoming important
for such small block sizes. However, for all other block sizes, simulation accu-
rately reproduces real execution for multiple threads, even having collected the
trace on one thread. Table 4.5 shows the real and simulated execution times for
four and eight threads. The error for all block sizes except 64×64 tops at 5.2%.
The results are not only accurate but also insightful. We can see that block sizes
larger than 512×512 do not exhibit enough parallelism to fully utilize all eight
threads. Block size 1024×1024 stops scaling at five threads, and 2048×2048

75

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

1 2 3 4 5 6 7 8 16 32 64128
threads

0

2

4

6

8

10

12

Ex
ec

ut
io
n
tim

e
(s
)

64x64 block size

real
simulation

1 2 3 4 5 6 7 8 16 32 64128
threads

0

2

4

6

8

10

12

Ex
ec

ut
io
n
tim

e
(s
)

128x128 block size

real
simulation

1 2 3 4 5 6 7 8 16 32 64128
threads

0

2

4

6

8

10

12

Ex
ec

ut
io
n
tim

e
(s
)

256x256 block size

real
simulation

1 2 3 4 5 6 7 8 16 32 64128
threads

0

2

4

6

8

10

12
Ex

ec
ut
io
n
tim

e
(s
)

512x512 block size

real
simulation

1 2 3 4 5 6 7 8 16 32 64128
threads

0

2

4

6

8

10

12

Ex
ec

ut
io
n
tim

e
(s
)

1024x1024 block size

real
simulation

1 2 3 4 5 6 7 8 16 32 64128
threads

0

2

4

6

8

10

12

Ex
ec

ut
io
n
tim

e
(s
)

2048x2048 block size

real
simulation

Figure 4.3: Comparison of real and simulated execution time for a 4096×4096
blocked-matrix Cholesky factorization using multiple block sizes.

76

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

does not have any parallelism at all due to task dependencies.
We extended the simulations for 16, 32, 64 and 128 threads. The results

show that block size 64×64 does not scale beyond 16 threads due to task cre-
ation overheads, a problem we already explained for the matrix multiplication
experiment in Section 3.5. That is that the rate at which the main thread
produces tasks is not fast enough compared to the rate at which tasks are exe-
cuted by other threads, thus not being able to keep all threads busy. Block size
512×512 stops scaling at 32 threads, and 256×256 has diminishing returns be-
yond 16 threads, which makes the execution with blocks of 128×128 two times
faster than with 256×256 when using 128 threads.

This kind of analysis is done fast because the burst mode is in most cases
faster than native execution. Table 4.5 shows the time required to simulate the
four and eight configurations on one thread (our implementation is not parallel),
and the slowdown with respect to the real execution time. The average slowdown
for four threads is 0.28x (3.6x faster than native execution) and for eight threads
is 0.63x (1.6x faster).

4.5.2 Accelerator Architectures using Inout

In this section we introduce a set of experiments showing the utility and accuracy
of the inout mode for architectures using scratchpad memories. Figure 4.4 shows
several timelines of a Fast Fourier Transform (FFT) 3D application written
in CellSs [30]. This FFT3D application is also compiled with the Mercurium
compiler (see Section 2.7.1), but to use the CellSs runtime system.

Figure 4.4a is the real execution on a real Cell/B.E. Periods in gray represent
computation phases, and periods in black represent time spent waiting for data
transfers to complete. The application first performs an FFT on the first dimen-
sion of a 3D matrix. FFT execution is computation-bound, so it is dominated
by computation time (gray). After the first FFT, it performs a transposition.
The matrix transposition execution is memory-bound, so it is dominated by
waiting time (black). After the transposition, it performs another FFT but on
the second dimension, followed by a second transposition and, finally, another
FFT on the third dimension. The five application stages are clearly identifiable
in the timeline. The second transposition takes much longer than the first one,
because data is accessed following a different pattern, which does not efficiently
use the available off-chip memory bandwidth.

Figure 4.4b shows the timeline of the simulation in TaskSim using the inout
mode with a Cell/B.E. configuration (Figure 2.5b) and the fixed scheduling ap-
proach as described in Section 4.3.1. The inout mode is able to closely reproduce
the behavior of the real system. As it can be seen in Figure 4.4c, the same sim-
ulation takes place but the off-chip memory data-interleaving granularity is set
to 128 B instead of the default 4 KB in the real Cell/B.E. The time to complete
the second transposition is then greatly shortened, resulting in a delay similar
to that of the first transposition. This is because, using a 128 B interleaving
scheme, several DIMMs are always accessed in parallel in both transpositions,
thus achieving close to peak bandwidth efficiency, and getting a 30% reduction
in total execution time.

In Figure 4.4d and Figure 4.4e, the same simulations (4 KB and 128 B inter-
leaving granularities respectively) are carried out using a 256-core configuration
of the SARC architecture (Figure 2.5c) excluding the L1 caches. Computa-

77

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

PPU

SPU 8

SPU 1

.
.
.

0 ms 135 ms

(a)

PPU

SPU 8

SPU 1

.
.
.(b)

(c)

PPU

SPU 8

SPU 1

.
.
.

(d)

(e)

CORE 1

CORE 256

.
.
.

CORE 1

CORE 256

.
.
.

0 ms 137 ms

0 ms 22 ms

0 ms 22 ms7 ms

0 ms 137 ms22 ms 95 ms

FFT FFT FFTtransposition transposition

30%

67%

Figure 4.4: Inout mode experiments on scratchpad-based architectures using
an FFT 3D application: (a) execution on a real Cell/B.E., (b) simulation of
a Cell/B.E. configuration, (c) simulation of a Cell/B.E. configuration using a
128 B memory interleaving granularity, (d) simulation of a 256-core SARC archi-
tecture configuration using a 4 KB interleaving granularity, and (e) simulation
of a 256-core SARC architecture configuration using a 128 B interleaving gran-
ularity. Light gray show computation periods and black shows periods waiting
for data transfer completion.

tion is now spread among many more units, thus reducing the total execution
time from 137 ms to 22 ms. Also, there is much more pressure on the memory
system due to more cores concurrently accessing data. Because of this high
memory congestion, there is no significant difference between the time taken by
both transpositions despite the different access patterns. However, the 4 KB
scheme still cannot make an efficient use of memory bandwidth. The 128 B
scheme achieves much higher efficiency, and thus leads to a 67% reduction in
total execution time.

This experiment shows that the problems suffered in small-scale architec-
tures are not necessarily the same as those in large architectures. Also, the
potential solutions do not have the same effect at different scales. The magni-
tude of the improvement by changing a parameter can be completely different
in a small configuration and a large configuration. Therefore, the detailed sim-
ulation of small architectures is not sufficient for the exploration of future large
architecture designs.

The experiment also shows the potential of the inout mode to quickly obtain

78

4.5. Evaluation Chapter 4. Multiple Levels of Abstraction

an understanding of the application behavior on different memory system and
interconnection network configurations for scratchpad-memory-based architec-
tures. It must be noticed that each 256-core simulation shown in this section
required approximately three minutes to complete on an Intel Core2 T9400
running at 2.53GHz.

4.5.3 Memory System using Mem

The following experiments show the error of using trace memory simulation
with stripped traces in the mem mode. We simulate the SMP architecture in
Figure 2.5a in both mem and instr modes. The architecture is configured with 4
and 32 cores, and using two different interleaving granularities for main memory:
4 KB and 128 B. Figure 4.5 shows the percentage difference of the number of
misses between the two modes using Cholesky. The number of misses is summed
for all caches in the same level across the architecture. As expected, the error
in the L1 is small despite the use of stripped traces. However, for the L2 and
L3 levels, the error is much higher, as the trace stripping algorithm does not
account for the effects on shared caches for parallel execution on multi-cores,
a problem that we address in Chapter 5. In any case, the error is consistently
below 17% for the different numbers of cores and hardware configurations.

L1 L2 L3
Cache level

0

5

10

15

20

Nu
m

be
r o

f m
is

se
s

er
ro

r (
%

) 4 cores
32 cores

(a) 4 KB DRAM interleaving granularity

L1 L2 L3
Cache level

0

5

10

15

20

Nu
m

be
r o

f m
is

se
s

er
ro

r (
%

) 4 cores
32 cores

(b) 128 B DRAM interleaving granularity

Figure 4.5: Difference in number of misses between the mem and instr modes for
different simulated configurations using 4 and 32 cores, and different interleaving
granularities.

For the sake of comparison, we also repeated the simulations in this section
using non-stripped memory access traces. The maximum error in this case is
3%, thus showing the inaccuracy incurred when using trace stripping. That sets
once again a trade-off between simulation speed and accuracy. On an Intel Xeon
E7310 at 1.6GHz, simulations with full traces were 2x faster than instruction-
level simulation, while the ones using stripped traces (with an 8KB filter cache)
were around 20x faster, which is consistent with the results in Section 4.4.

The large error of filtered traces compared to full traces led us to analyze its
sources. Trace filtering techniques were used accurately in previous works for
single-threaded applications. In multithreaded applications, however, a memory
access that hits in a machine configuration may miss in another because the data
was invalidated by another thread in the system. Therefore, if an access is not
present in the trace because it was filtered out during trace generation, it would

79

4.6. Summary Chapter 4. Multiple Levels of Abstraction

not be present during simulation to model a potential miss due to invalidations.
This fact motived us to initiate research to enable more accurate simulations
of multithreaded applications using filtered traces. We present this work in the
next chapter.

4.6 Summary

In this chapter we have analyzed the use of multiple levels of abstraction in com-
puter architecture simulation tools as a base for simulating large-scale architec-
tures. As part of this analysis, we have characterized the levels of abstraction
in existing simulation environments. In simulators requiring target applications
to be represented as an instruction stream, the highest level of abstraction is
functional emulation, which has been shown to be more than 100x slower than
native execution for the highly optimized Simics platform.

Also, we presented a definition of multiple application representations that
are more abstract than an instruction stream, and several simulation modes
implemented in TaskSim based on these representations. The two highest-level
modes in TaskSim, burst and inout, have been shown faster than native exe-
cution and 25x slower, respectively, while being more insightful than functional
simulation. The burst mode has been proven useful and accurate for scalability
studies and application analysis, with an error below 8% compared to native
execution. Also, we tested the utility and accuracy of the inout mode for archi-
tectures using scratchpad memories. The inout mode has been validated against
a real Cell/B.E., showing close performance behavior, and it is capable of sim-
ulating up to 256-core configurations in less than three minutes. Finally, we
revisit trace memory simulation techniques that are incorporated in TaskSim
to provide an 18x speedup over instruction-level simulation with a maximum
error of 17% on the simulation of the cache hierarchy and memory system. This
error showed the inaccuracy inherent in using filtered traces for multithreaded
applications, which motives our work in the next chapter.

80

Chapter 5

Trace Filtering of
Multithreaded Applications

Recent works [108, 109] use trace memory simulation and trace filtering tech-
niques such as trace stripping [138, 173] to reduce the simulation time of single-
threaded configurations. These works generate a trace including all L1 misses
of a benchmark running on a given microarchitecture. Then, they feed this
trace to a trace-driven simulator to explore the design space of the non-core
components, such as cache hierarchy—L2 and above—, off-chip memory and
on-chip interconnect. This methodology assumes a fixed core microarchitecture
and L1 cache for all trace-driven simulations. This is a significant limitation for
single-thread/single-core analysis, as the non-core design space is limited. This
kind of methodology seems more valuable for multi-core simulations where the
non-core design space is larger and a higher simulation speed is needed.

However, filtering a trace for multithreaded application simulations is not
straightforward. Trace stripping consists of filtering out all L1 hits and just
store L1 misses in the trace. This methodology assumes that for a given core
microarchitecture and L1 cache configuration, the non-core accesses—to the L2
cache—are independent of the non-core configuration. This is true for single-
threaded applications where L1 accesses either hit or miss only depending on
previous accesses, which are always in the same order for a given core microar-
chitecture. However, cache coherence operations in multi-core architectures,
such as invalidations, may make an access to hit or miss depending on the other
threads activities, which actually depend on the non-core configuration. In this
scenario, an access that was not recorded in the trace due to being assumed
an L1 hit, may miss due to its data being invalidated by another cache in the
system.

In this chapter, we introduce our approach to enable trace filtering for multi-
threaded applications. First, we define the problem of filtering memory trace of
multithreaded applications and explain what is the state of the art in this mat-
ter. Then, we explain our methodology and our implementation using the mem
mode of TaskSim. Finally, we evaluate the method compared to the state of the
art in terms of trace reduction, trace generation time, accuracy and simulation
speed-up.

81

5.1. Problem Chapter 5. Trace Filtering of MT Apps

5.1 Problem

Trace stripping [138] reduces trace size and simulation time by not including
L1 hits in the trace and only simulate L1 misses. Figure 5.1a shows a snippet
of a memory access trace. The trace is passed through a direct-mapped cache
that informs for every access if it was a hit or a miss (Figure 5.1b). Every hit
access is discarded and every miss is recorded in the trace giving as a result the
filtered trace in Figure 5.1c.

TYPE ADDRESS SIZE
---- ------- ----
LOAD 0x7ffff488 4
LOAD 0x7ffff484 4
LOAD 0x48fbc 8
STORE 0x48e04 8
LOAD 0x48f90 4
LOAD 0x7ffff480 4
LOAD 0x7ffff47c 4
LOAD 0x7ffff478 4

(a) Original trace

TYPE ADDRESS SIZE
---- ------- ----
LOAD 0x7ffff488 4 (miss)
LOAD 0x7ffff484 4 (hit)
LOAD 0x48fbc 8 (miss)
STORE 0x48e04 8 (miss)
LOAD 0x48f90 4 (hit)
LOAD 0x7ffff480 4 (hit)
LOAD 0x7ffff47c 4 (miss)
LOAD 0x7ffff478 4 (hit)

(b) Filter cache simulation

TYPE ADDRESS SIZE
---- ------- ----
LOAD 0x7ffff488 4
LOAD 0x48fbc 8
STORE 0x48e04 8
LOAD 0x7ffff47c 4

(c) Filtered trace

Figure 5.1: Trace filtering: (a) example of a memory access trace, (b) how trace
filtering proceeds, and (c) the resulting filtered trace.

Let us say the filter cache is a 16 KB direct-mapped cache with 64-byte
cache lines. In the filtering process, there are a series of cold, conflict and
capacity misses. The methodology states that both the full and filtered traces
will generate the same number of misses in caches with the same or larger
number of sets. Having more sets and/or a higher associativity (e.g., 64KB
2-way set associative cache) will cause some of the capacity and conflict misses
during the filtering process to hit in simulation, but that will happen equally for
the full and the filtered traces, and in both cases the same accesses will miss.

The described methodology works in single thread scenarios because there
is a single order of accesses and there are no external events that may alter the
cache state. However, in the case of a cache-coherent multi-core architecture
running a multithreaded application, that is no longer the case. Some of the
accesses that hit during the filter process, may miss in a multi-core architecture
because of cache coherence actions. Figure 5.2 shows two scenarios of the exe-
cution of two threads in different simulation configurations that lead to different
thread interleavings. In both cases, a cache line invalidation occurs due to a
write in a remote cache to a shared cache line. In the case on the left, Thread 1
executes Load D before Thread 0 executes Store B. Thus, D hits and the data
in its cache gets invalidated afterwards. In the right case, Thread 0 executes
Store B before, so Thread 1 misses on Load D as its cache line holding the data
is invalid. The problem arises when the filtered trace is generated on the left
case and D is filtered out. Then, if a given simulation configuration leads to the
right case, D is not present in the trace because it is assumed a hit, and the
simulator cannot account for the timing effects of the cache miss.

Another characteristic of parallel programming models that may cause a
naively filtered trace to fail is dynamic scheduling. The previous examples in
Figure 5.2 assumed static scheduling. However, dynamically-scheduled parallel
applications may schedule pieces of work to different threads depending on the

82

5.1. Problem Chapter 5. Trace Filtering of MT Apps

modif.0xf80
address state

shared0xf80
address state

shared0xf80
address state

invalid0xf80
address state

shared0xf80
address state

modif.0xf80
address state

Thread 0
L1 Cache

Thread 1
L1 Cache

Thread 0
Execution

Thread 1
Execution

A: LOAD 0xf80

shared0xf80
address state

C: LOAD 0xf80

D: LOAD 0xf80 (hit)

B: STORE 0xf80 Invalidate

Thread 0
L1 Cache

Thread 1
L1 Cache

Thread 0
Execution

Thread 1
Execution

A: LOAD 0xf80 C: LOAD 0xf80

D: LOAD 0xf80 (miss)

B: STORE 0xf80 Invalidate

invalid0xf80
address state

Figure 5.2: Different multithread execution interleavings. On the left, the inval-
idation occurs after LOAD D executes, so D hits. On the right, the invalidation
occurs before D so D misses in this case. If the trace is generated with the left
execution, D will be filtered out, and if the scenario in the right is produced
during simulation, D will not be there to miss.

Thread 0 Thread 1

iteration 1:
(miss) LOAD 0xf00

iteration 2:
(hit) LOAD 0xf20

iteration 3:
LOAD 0xf40 (miss)

iteration 4:
LOAD 0xf60 (hit)

(hit) LOAD 0xf04.
.
.

(hit) LOAD 0xf24.
.
.

LOAD 0xf44 (hit).
.
.

LOAD 0xf64 (hit).
.
.

tim
e

Thread 0 Thread 1

iteration 1:
(miss) LOAD 0xf00

iteration 3:
(miss) LOAD 0xf40

iteration 2:
LOAD 0xf20 (miss)

iteration 4:
LOAD 0xf60 (miss)

(hit) LOAD 0xf04.
.
.

(hit) LOAD 0xf44.
.
.

LOAD 0xf24 (hit).
.
.

LOAD 0xf64 (hit).
.
.

Figure 5.3: Different dynamic scheduling decisions. Iterations of a parallel loop
are scheduled in different ways. On the left, iterations 1 and 2 are assigned to
Thread 0, and 3 and 4 to Thread 1. That makes iterations 2 and 4 to hit on
their first memory access. On the right, 1 and 3 are assigned to Thread 0, and
2 and 4 to Thread 1, making all of them to miss on their first memory access.
If the trace is generated using the left case and simulation leads to the case on
the right, the first accesses in iterations 2 and 4 would not be present in the
trace, and both misses could not be simulated.

application state, for instance, to balance the work load. That may lead to the
scenario in Figure 5.3. Given a parallel loop, multiple iterations are scheduled to
multiple threads. The example shows four iterations scheduled to two threads.
On the left, iterations 1 and 2 are scheduled to Thread 0, and iterations 3 and
4 are scheduled to Thread 1. Given a 64-byte cache line, iterations 1 and 2
access the same cache line, thus leading iteration 2 to hit in the cache from the
very first access. The same occurs with iterations 3 and 4, but they access a
different cache line than iterations 1 and 2. On the right, iterations 1 and 3 are
scheduled to Thread 0, and 2 and 4 to Thread 1. In this case, all iterations miss
on their first access, since they do not reuse the data loaded in the L1 cache
by the previous executed iteration. If a memory access trace is generated and
filtered with the case on the left, the first accesses of iterations 2 and 4 would
not be in the trace. Then, if simulation leads to the scenario on the right, the
misses of those accesses cannot be simulated.

83

5.2. State of the Art Chapter 5. Trace Filtering of MT Apps

5.2 State of the Art

In the 1980s and early 1990s, there were several works to reduce the size of
memory access traces for trace-driven memory simulation. This had two pur-
poses: reducing the trace file size to make the most of the limited disk space,
and reducing simulation time. Some works, such as Mache [156] and AE [107],
just target to reduce trace file size and do not affect simulation time, although
they introduce an overhead to decompress (reconstruct) the trace. As an exam-
ple, Mache recognizes different memory access streams during trace generation.
Then, it records a tag and a base address for each stream, and just specifies the
tag and the address difference for every subsequent access in that stream. The
rationale behind this idea is that, in a 32-bit address space, specifying a tag and
an address difference usually takes less bits than a full address.

Other works such as block filtering [15] both reduce trace size and improve
simulation performance, but they do it at the expense of simulation error.

The most interesting work for this thesis is trace stripping [138, 173]. It is
interesting because it reduces the trace file size, improves simulation speed, and
it does not introduce simulation error. The only restriction is to use the same
cache line size for the filter cache and the simulated caches. As explained in the
previous section, and shown in Figure 5.1, this method uses a direct-mapped
cache as a filter cache. While generating the memory access trace, the accesses
are passed to the filter cache, and only misses are recorded in the trace. In the
work by Wang et al. [173], trace stripping is extended to simulate write-back
caches. In this case, not only are the filter cache misses recorded, but every first
write to a clean line is also included. This way, the access that may change the
state of a cache line to dirty is present in the trace and the corresponding write
backs take place during simulation.

A more recent work by Lee et al. [109] introduced a simulation methodology
to model not only the memory subsystem, but also a superscalar out-of-order
core using traces and trace stripping. In this work, the trace is generated with a
cycle-accurate simulator from which they obtain a stripped (filtered) trace. They
present several models that use extra information in the trace such as the number
of instructions and/or cycles between memory accesses, and dependencies among
them. Then, the trace is used to drive the simulation but replacing the core
(including the L1 caches) by a trace player that sends memory accesses directly
to L2. The time and order in which accesses take place is decided considering
the number of cycles between them, the size of the reorder buffer, and when the
access is ready (its dependencies are satisfied).

All these previous works use trace filtering in the context of single-threaded
applications and multiprogrammed workloads. The only previous work that
addressed the use of trace filtering for simulating multithreaded applications
is TPTS [108] (see Section 2.5.5). To address the problem explained in the
previous section, the authors present four alternatives:

• Naive filtering. Filter the multiple threads in the application as done
for single-threaded applications and ignore the effects of cache coherence
actions.

• Code region analysis. Disable filtering on code regions that access
shared data.

84

5.3. Methodology Chapter 5. Trace Filtering of MT Apps

• Individual access analysis. Disable filtering for memory accesses whose
ordering is non-deterministic and may potentially miss due to an invali-
dation (as shown in Figure 5.2).

• No filtering. Generate full traces.

The second and third approaches require an analysis that depends on the paral-
lel programming model, something that the authors do not evaluate. The results
shown for this work are only for naively filtering the trace: they assume the po-
tential error from not including filter cache hits that may miss in multithreaded
application simulations.

For the rest of this chapter, we use naive filtering as the state-of-the-art
approach to which we compare our methodology against.

5.3 Methodology

We propose a methodology to overcome the problem explained in Section 5.1.
Our proposal takes advantage of the synchronization happening between ac-
cesses from different threads to the same data. Whenever a thread wants to
access shared data, it has to synchronize with other threads to avoid race con-
ditions. Before a synchronization point (e.g., a lock), other threads may have
accessed the data, thus potentially modifying the state of the copies in the pri-
vate cache (e.g., invalid) as shown in Figure 5.2. In the figure, accesses A, B, C
and D may be in separate critical sections. Our approach is then to reset (clear)
the filter cache at trace generation time on every synchronization point. With
this technique, every first access to a cache line after the synchronization point
is recorded, thus avoiding the filtering of accesses that may potentially miss dur-
ing simulation. Effectively, this methodology makes every piece of computation
between synchronization points (sequential sections) to be filtered separately.
This way, each sequential section is independent of any operations occurring
before and after its execution.

With respect to the problem related to dynamic scheduling shown in Fig-
ure 5.3, our methodology handles this case as well. The fork and join of it-
erations in a parallel loop are considered synchronization operations. Then,
the filter cache is reset at the beginning of every iteration so, effectively, every
iteration is filtered separately and their first accesses are stored in the trace.

We show the impact of these effects in simulation accuracy using a patholog-
ical case programmed with a task-based programming model (see Section 2.7).
The program creates a task (A) that sets all the elements of an array that fits in
the filter cache to random values. Then, it creates four tasks (B), each of them
reading all the elements in the array to do some operation (e.g., reduction).
This process is repeated multiple times. The pseudo-code of this program and
its task dependence graph are shown in Figures 5.4a and 5.4b, respectively.

The pseudo code uses the keyword spawn to denote the creation of a task
that may be executed in parallel. For this example, we assume the program-
ming model provides means to automatically identify the dependencies among
tasks and schedules them for execution only when they are ready. Figure 5.4c
shows the trace generation process for this application. The trace generation
takes place on a single thread for simplicity, but the case applies the same to
generating the trace in multiple threads. In the trace generation execution, the

85

5.3. Methodology Chapter 5. Trace Filtering of MT Apps

unsigned vec[SIZE];

//A writes vec
void A() {
 for i=1..SIZE
 vec[i] = rand();
}
//B reads vec
void B(int t) {
 for i=1..SIZE
 accum += vec[i];
}

int main() {
 for 1..Nrepetitions
 spawn A();
 for t=1..4
 spawn B(t);
}

A()

..
.

A()

A()

B(1) B(2) B(3) B(4)

B(1) B(2) B(3) B(4)

A();

Thread 0

tim
e

B(2);

B(2);

B(1);

B(3);

B(4);

B(4);

B(1);

B(3);

A();

B(4);

B(2);

A();
B(1);

B(3);

.
.
.

A();

Thread 0

tim
e

A();

A();

Thread 1

A();

A();

A();

Thread 2

A();

Thread 3

B(1); B(2); B(3); B(4);

B(3); B(2); B(1); B(4);

B(2); B(1); B(4); B(3);

B(1); B(3); B(4); B(2);

B(2); B(1); B(4); B(3);

A();
B(4); B(2); B(1); B(3);

B(2); B(4); B(3); B(1);

.
.
.

.
.
.

.
.
.

.
.
.

b) Dependence grapha) Pseudo-code c) Trace generation

 on one thread

d) Simulation on four threads

Figure 5.4: Pathological case. The figure shows: (a) the pseudo-code of the
application; (b) the task dependence graph showing tasks in circles and the
arrows between them are read-after-write (solid) and write-after-read (dashed)
dependencies; (c) the execution in a single thread used for trace generation with
the order in which tasks are executed; and (d) the simulation of the application
on four threads showing to which threads tasks are dynamically scheduled and
their execution order.

first execution of A loads vec in the filter cache, say a 16 KB direct-mapped
cache. Then, using the naive approach, the following executions of B and A
hit in the filter cache, so their accesses to vec are not recorded in the trace.
Figure 5.4d shows a simulation using the application trace and modeling a four-
thread multi-core architecture with private caches. Due to task dependencies,
the simulation alternates the execution of A with the execution of the four in-
stances of B. When the first A executes, it loads vec in Thread 0’s L1 cache.
Then, the four instances of B execute in the four threads. In Thread 0 there is
no error, as it hits as it did in trace generation; but the execution on Threads
1, 2 and 3 find a cold cache where they should miss. However, the accesses in
the first execution of B(2), B(3) and B(4) are not present in the trace and
those misses are not simulated. The same happens in the second repetition. A
executes again in Thread 0, but its writes to vec are not present because they
were filtered out during trace generation, and the copies in the L1 caches of
Threads 1, 2 and 3 are not invalidated. Again, when Threads 1, 2 and 3 execute
the second batch of B instances, their accesses to vec should miss, but again
they are not present in the trace because they also hit in the trace generation
run and were not recorded.

Using our methodology, the filter cache is reset at every spawn operation
call and task finalization during the trace generation run. Thus, before every
execution of A and B, the filter cache is reset, and the first accesses to vec in
every task miss in the filter cache and are recorded in the trace. The simulation
in Figure 5.4d using our methodology proceeds as follows. First, A loads vec
in Thread 0’s L1 cache. Then, the several instances of B execute, and in all
cases their first accesses to vec are simulated. B(1) reuses the data loaded
by A and hits, but B(2), B(3) and B(4) find cold caches and they miss and

86

5.3. Methodology Chapter 5. Trace Filtering of MT Apps

load copies of vec to their private caches. After the first batch of B instances
execute, a second A executes again in Thread 0. This invalidates vec’s copies
in the L1 caches of Threads 1, 2 and 3. Again, the first accesses to vec in
the following Bs are present in the trace, and they miss again, this time because
those cached versions are invalid. This shows how our simple idea helps to build
a filtered trace of a multithreaded application that is suitable for simulation of
a multi-core architecture.

We actually carried out these experiments with the implementation of our
methodology explained later in Section 5.4. We coded this pathological case in
OmpSs (see Section 2.7.1) and set it to run 500 repetitions of the main loop.
The trace filtering process is as shown in Figure 5.4c: on one thread and using a
16 KB direct-mapped filter cache with 64-byte lines. Using the naive approach,
99.8% of the accesses get discarded, while using our methodology the filtering
rate is 93.2%. The cache hit ratio of a sequential access pattern over four-
byte consecutive elements that fit in cache is 93.75%: every cache line holds
16 elements, so 1 out of 16 accesses to a cache line miss and the remaining 15
hit. The filtering ratio of our methodology is on that range because the data is
not reused in the filter cache because it is cleared for every separate task. The
naive approach gets a much higher filtering ratio, but may provide an erroneous
simulation as explained before.

20 50 100 150
L2 cache latency

0.8

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
iz
ed

 E
xe

cu
tio

n
Ti
m
e

full
reset
naive

Figure 5.5: Pathological case execution time normalized to full trace with L2
cache latency of 20 cycles. A small L2 cache latency can be hidden by the
superscalar core microarchitecture. Longer latencies delay L1 misses that are
correctly simulated with our methodology (reset) and using the full trace. The
naive method does not simulate those L1 misses, as they were filtered out during
trace generation.

Figure 5.5 shows the normalized execution time of the naive method, la-
beled naive; our proposal, labeled reset ; and the simulation using the full (non-
filtered) trace, labeled full. We expect to have an underestimation of execution

87

5.4. Implementation Chapter 5. Trace Filtering of MT Apps

time using the naive method because it may not simulate some of the misses
due to invalidations and dynamic scheduling. The three methods are simulated
for multiple L2 cache latencies on a multi-core configuration with five out-of-
order cores: one core executes the main loop and creates tasks, and four cores
execute those tasks. This way we do not constraint the parallelism shown in
the dependence graph. For a latency of 20 cycles, the three methods predict the
same performance. Since vec fits in L2, the additional latency of an L1 miss
that hits in L2 is hidden by the superscalar core model and does not stall the
pipeline. However, when going to higher latencies, the core microarchitecture
cannot hide that latency anymore and the full and reset configurations predict
a higher execution time due to those L1 misses. However, the naive method
does not show this effect, as it cannot simulate those L1 misses: the accesses
were considered hits during trace generation, so they are not in the trace.

Alternatively to our methodology, a more complex application analysis could
be done to identify only accesses to shared data and only avoid filtering those.
However, this would require longer developments, should be done for every pro-
gramming model to be supported, and trace generation may take significantly
longer. Also, such analysis would account only for potential invalidated data,
but not for dynamic scheduling effects. Our methodology is simple, accounts
for both effects and is the same for multiple parallel programming models.

5.4 Implementation

As explained in previous chapters, multithreaded applications are composed of
sequential sections and parops. In Figure 5.6a we illustrate this concept for
an OpenMP parallel loop. First, the application runs on one thread, which
is sequential section A. Then, the application executes a fork parop to spawn
a parallel loop and schedule its multiple iterations to the multiple available
threads (four in this example). Then, every thread executes its share of the
parallel loop, and each of the iterations is in itself a sequential section (B, C,
D and E). After that, a join parop finalizes the parallel loop and continues
execution on one thread.

Our methodology leverages this knowledge to effectively filter each sequen-
tial section separately. This makes sense because the memory accesses in a
sequential section are always in the same order and their effects on the private
L1 cache state are always the same with respect to the previous and follow-
ing accesses. To accomplish this, the trace generation engine must be notified
whenever a parop executes so it knows when to reset the filter cache.

The effort required to instrument parallel applications to catch parops dur-
ing trace generation depends on the programming model. However, in general,
all programming models provide a runtime system API (runtime library) and/or
compiler support for intermediate code generation. Figure 5.6b shows an ex-
ample of the code generated by the GCC compiler for an OpenMP parallel for
loop [2]. The programmer annotates the parallel loop with the pragma omp for
keywords, and the compiler transforms that construct to an intermediate code
that calls the libgomp OpenMP runtime library. Opposite to this, the pthreads
programming model exposes the API to the programmer, who then has to deal
with managing parallelism.

Some functions in a parallel programming model’s runtime system just pro-

88

5.4. Implementation Chapter 5. Trace Filtering of MT Apps

A

B C D E

F

(a) OpenMP for scheme

#pragma omp for

for (int i=0; i<n; ++i)

{

 body;

}

long i, _s0, _e0;

if (GOMP_loop_runtime_start(0, n, 1, &_s0, &_e0))

do {

 long _e1 = _e0;

 for (i = _s0, i < _e0; i++)

 body;

} while (GOMP_loop_runtime_next(&_s0, _&e0));

GOMP_loop_end ();

Original OpenMP C code

GCC generated code

(b) OpenMP for code

Figure 5.6: OpenMP for loop construct. The figure shows: (a) a scheme of
the execution flow of an OpenMP for ; (b) the original OpenMP C code and
the intermediate C code generated by GCC, including the calls to the libgomp
OpenMP runtime library.

vide some information about the properties or the state of the application (e.g.,
omp get thread num). But most of them provide the execution of a parop (e.g.,
omp set lock). Then, to make use of our methodology, the runtime system API
has to be instrumented manually or using a dynamic binary instrumentation
tool. At the same time, this instrumentation must work together with the tool
used to generate the memory access trace for the notification of parop calls and
the reset of the filter cache. Here we comment on two alternatives for trace
generation: execution-driven simulators and dynamic binary instrumentation
tools; and how they can be notified of parop calls to reset the filter cache.

Execution-driven simulators can be notified of certain application events by
means of special instruction codes. Some simulators provide this mechanism
built-in and available to users. An example of this is magic instructions in Sim-
ics (see Section 2.5.2) for C programs. The user can incorporate instrumentation
points in the code by using the MAGIC(X) construct. Then, the simulator in-
vokes a callback function when it reads the magic assembly instruction, and the
parameter X can be used to pass information to the simulator. Other simulators,
such as Simplescalar (see Section 2.5.1), do not provide a built-in functional-
ity but it can be easily added as it is open source and this is not a complex
extension.

Dynamic binary instrumentation tools, such as PIN [113] and Valgrind [130],
also provide instrumentation points for calling a callback function specified by
the user. In this case, the user has to register API function symbols and the
corresponding callback functions are invoked when the target program executes
them, without having to manually add instrumentation in the code.

Considering this, the operation for using our methodology is the same for
both alternatives. Whenever the execution of a parop triggers the execution of
the associated callback function, this one resets the contents of the filter cache.

In Section 5.2, we covered some works that assume a fixed core and L1
configuration for all experiments and replace the core and L1 cache models by a

89

5.4. Implementation Chapter 5. Trace Filtering of MT Apps

trace reader that sends memory accesses directly to the L2. In our methodology,
however, the trace-driven simulator must include the L1 caches. Since we want
to account for cache coherent actions, such as invalidations, we need to maintain
the L1 cache state for those actions to take place. In the following section, we
describe our implementation of this methodology to show its feasibility and as
an example of how it can be put in practice.

5.4.1 Sample implementation

We implemented this methodology in the mem mode of TaskSim (see Sec-
tion 4.3.3) and using the simulation methodology explained in Chapter 3. We
use our NANOS++ instrumentation plug-in and PIN to generate traces at the
memory level of abstraction (see Section 4.2). Figure 5.7 shows how the different
components are combined to generate traces and carry out simulation. Two ver-
sions of the OmpSs application binary are generated with Mercurium, one linked
to an instrumented version of NANOS++ (instrumented binary) and another
one linked to a non-instrumented version (regular binary). The instrumented
binary is run natively on one thread and it generates an application-level trace
at the shared-memory abstraction level (see Section 4.2). The regular binary is
executed with PIN, also in one thread, to catch all memory accesses. For this
purpose, we developed a PIN tool that generates the memory-access trace for
the instrumented application. If filtering is set in the PIN tool, the memory
accesses are passed to a configurable filter cache that decides whether or not to
record them in the trace. Also, the NANOS++ API functions are registered
in our PIN tool to trigger the execution of callback functions to reset the filter
cache, if filtering is enabled.

OmpSs
.c

Mercurium

Instrumented
NANOS++

.so

Instrumented
OmpSs
Binary

Mercurium
OmpSs
Binary

NANOS++
.so

Trace
Generation

PIN Tool
[filter/full]

Run

Run
with
PIN

+ Full/filtered
Trace

TaskSim

Simulation
Results

Multi-core
Model
Config.

Figure 5.7: Trace generation and simulation process.

The result of the two runs is an application-level trace and one memory-
access trace for every computation section. The two traces are combined to-
gether to generate a single (full or filtered) trace for TaskSim.

The trace generation process (dashed line in the figure) is carried out by our
trace reader/writer library, which is also used in TaskSim to read the input trace.

90

5.5. Evaluation Chapter 5. Trace Filtering of MT Apps

This helps to develop multiple core models based on a given trace semantics
regardless of the trace format as long as the API between the simulator and the
trace reader/writer is maintained.

5.5 Evaluation

In this section we evaluate our proposal using our implementation in terms of
increased trace size, accuracy, trace generation cost and simulation time. We
compare these metrics for three filtering approaches. The first is the state-of-
the-art naive approach, labeled naive. As previously mentioned, it ignores cache
coherence actions and filters the trace without clearing the filter cache at any
point. The second is our proposal, labeled reset, which clears the filter cache
contents on every synchronization point. And the third is the full/non-filtered
memory access trace, labeled full, which includes all memory accesses and is the
baseline in our experiments.

Parameter Description (units) Default Value
Core

Number of cores Number of cores in the chip 4/8/16
Frequency Core/chip frequency (GHz) 1/2
ROB size Number of ROB entries 64

L1 Cache
Associativity Number of ways per set 2
Size Total cache size (bytes) 32K
Latency Access latency (cycles) 2

L2 Cache
Associativity Number of ways per set 8
Size Total cache size (bytes) 4M
Latency Access latency (cycles) 20/50/100/150

Interconnection Network
Maximum transfers Max. concurrent transfers no. of links
Latency Link latency (cycles) 1
Bandwidth Link bandwidth (bytes/cycle) 8

Memory Controller
Queue size Access queue size 128
Data interleaving mask Interleaving granularity (bytes) 4096
Number of DIMMs Number of DRAM DIMMs 4

Off-chip Memory
number of banks Number of banks per DIMM 8
autoprecharge Enable/disable autoprecharge disabled
data rate Transfers per second (MT/s) 1600
burst Number of bursts per access 8
t
RCD,tRP,CL,tRC,tWR,tWTR Timing parameters 4

Table 5.1: TaskSim simulation parameters.

4Default values for DRAM timing parameters match the Micron DDR3-1600 specification.

91

5.5. Evaluation Chapter 5. Trace Filtering of MT Apps

For trace filtering we use a 16 KB direct-mapped cache with 64-byte cache
lines. This configuration is the largest direct-mapped cache with the same num-
ber of sets than our target 32 KB 2-way set-associative L1 cache. This and the
rest of simulation parameters are shown in Table 5.1. These parameters are the
same as in the experiments in the previous chapter for the interconnect, memory
controller and off-chip memory. The cache parameters are different because in
this chapter we evaluate a two-level cache hierarchy instead of one with three
levels. The reason is that this way we can tune the L2 cache latency to show the
impact of different penalties of not simulating L1 misses due to invalidations.

Name Description Reuse Parallelism Bound type
LU LU decomposition High Irregular Compute
Cholesky Cholesky factorization High Irregular Compute
Reduction Array reduction Low High Memory
Vecop Vector addition No Massive Memory
Matmul Matrix multiplication High High Compute

Table 5.2: OmpSs benchmarks.

For these experiments, we use a set of scientific kernels written in OmpSs,
whose characteristics are listed in Table 5.2. These scientific kernels are widely
used in high-performance scientific applications and cover different levels of
data reuse, parallelism and computation-versus-memory ratio. The benchmarks
target fine-grain parallelism, so we are able to evaluate the effects of an intensive
scheduling and synchronization operation.

We simulate the benchmarks for multiple numbers of cores (to see the effects
of parallelism), multiple L2 cache latencies (to see the effects of increased L1
invalidation penalties), and for multiple chip frequencies (to see the effects of
an increased penalty for off-chip memory accesses).

5.5.1 Trace Size

The trace size reduction of trace stripping techniques depend on the locality
exhibited by the target application. High hit ratios result in more accesses
being discarded in the trace filtering process and smaller trace files. Therefore,
we expect applications with a higher data reuse to have higher hit ratios and,
as a result, higher trace size reductions.

Figure 5.8 shows the trace size reduction of naive and reset with respect to
the full trace size. As expected, the benchmarks with lower data reuse, Reduc-
tion and Vecop, exhibit lower reductions than its high-data-reuse counterparts.
The use of filter cache reset shows a 4% drop reduction compared to naive on
average, with a maximum loss of 9% for Vecop. This is also expected, as Vecop
is the benchmark that has more parop calls because it exploits the finest-grain
parallelism among all benchmarks due to its massive parallelism scheme (all
tasks are independent).

5.5.2 Trace Generation Time

Trace generation time is heavily affected by disk write performance. For the
implementation of our methodology, we employ PIN, which is faster than us-

92

5.5. Evaluation Chapter 5. Trace Filtering of MT Apps

Cholesky LU Reduction Vecop Matmul Average
Benchmarks

0

20

40

60

80

100

Tr
ac

e
Si

ze
 R

ed
uc

tio
n

(%
)

reset
naive

Figure 5.8: Trace size reduction.

ing an execution-driven simulator. Since dynamic binary instrumentation is so
fast, adding the simulation of the filter cache for every memory access in the
application incurs a significant performance penalty.

Cholesky LU Reduction Vecop Matmul Average
Benchmarks

0.0

0.5

1.0

1.5

2.0

Tr
ac

e
Ge

ne
ra

tio
n

Sp
ee

du
p

reset
naive

Figure 5.9: Trace generation speed-up.

Figure 5.9 shows the trace generation time reduction of naive and reset
compared to the time required to generate the full trace. The host machine for
these experiments is a Linux box with a quad-core Intel i7-930 at 2.8GHz, 12GB
of RAM and making use of a remote NFS disk to store the traces. Although
the use of remote storage increases the latency of disk write operations, the
simulation of the filter cache cancels out the benefit of having to record less
accesses for naive and reset. In the previous section we have seen trace size
reductions over 90%. However, trace generation speed-up is just 1.19x for reset
and 1.33x for naive on average. This is due to the overhead of the filter cache

93

5.5. Evaluation Chapter 5. Trace Filtering of MT Apps

simulation. In our proposal, the process of resetting the filter cache implies an
extra cost that makes trace generation longer than for the full trace in the most
memory intensive benchmarks Reduction and Vecop.

In any case, trace generation is a one-time operation so, in most cases, its
cost is not critical.

5.5.3 Simulation Accuracy

In this section we give a measure of how our proposal reduces the simulation
error of the state-of-the-art naive approach. Figure 5.10 shows the simulation
error introduced by trace filtering in both reset and naive having the full trace as
the baseline. The figure shows three charts, each of them for a different number
of simulated cores: four, eight and sixteen. At the same time, each chart is
divided in two halves: the left half is the configuration with 1 GHz cores, and
the right half for 2 GHz cores. The x-axis shows groups of L2 cache latencies,
each group for a different benchmark. The L2 cache latencies are 20, 50, 100 and
150 cycles, to be consistent with the experiment shown in Section 5.3. Although
the largest latencies are unrealistic, we want to show these extreme cases as an
upper-bound of simulation error for trace filtering, where L1 misses have a large
penalty, even if the data is reused on chip (i.e., they hit in L2 cache). Also,
these large penalties are closer to the effect of in-order cores. Our out-of-order
configuration is able to hide a 20-cycle latency, something an in-order core could
hardly hide.

We expected the results of reset to be closer to the simulation of the full
trace. However, we have found quite a lot of variability during the simulations
due to dynamic scheduling decisions (butterfly effect). Slight differences in
timing due to filtering make tasks to be scheduled to different threads in the
different configurations which leads to completely different data reuse patterns
in the private caches.

There are a few cases where our methodology has a larger error than naive.
In most of these cases, apart from the variability inherent to dynamic scheduling,
we have found the limitation of filtered traces to handle ping-pong effects due
to false sharing. This limitation is the same for both reset and naive, but due
to dynamic scheduling, reset missed more false sharing conflicts than naive in
the cases where reset has a larger error (the conflicting tasks were scheduled in
the same thread for naive, and to different threads in the same time frame for
reset). The problem with false sharing is that, even if the first accesses to every
cache line after a parop execution are recorded, consequent hit write accesses
may be accessing a cache line containing data written by another thread. The
threads do not share the data, but both data reside in the same cache line that
is invalidated on every write. The full trace recreates correctly these scenarios,
but filtered traces cannot because the accesses that may ping-pong are not in
the trace. A possible technique to handle this would be to avoid filtering writes,
and only filter reads. However, this may be too aggressive so we think that
further investigation is needed for this purpose.

However, even considering these effects, our methodology consistently re-
duces the simulation error incurred by the incorrect filtering of the naive method-
ology. Figure 5.11 shows the average across all benchmarks and frequencies for
the different multi-core configurations. On average, reset halves the error of
naive from 9% to 4.5%.

94

5.5. Evaluation Chapter 5. Trace Filtering of MT Apps

20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
030

25

20

15

10

5

0

5

Si
m

ul
at

io
n

Er
ro

r (
%

)

Cholesky LU Reduction Vecop Matmul Cholesky LU Reduction Vecop Matmul

reset
naive

1GHz 2GHz

L2 Cache Size/Benchmarks

(a) Simulation error for 4-core CMP

20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
030

25

20

15

10

5

0

5

Si
m

ul
at

io
n

Er
ro

r (
%

)

Cholesky LU Reduction Vecop Matmul Cholesky LU Reduction Vecop Matmul

reset
naive

1GHz 2GHz

L2 Cache Size/Benchmarks

(b) Simulation error for 8-core CMP

20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
030

25

20

15

10

5

0

5

Si
m

ul
at

io
n

Er
ro

r (
%

)

Cholesky LU Reduction Vecop Matmul Cholesky LU Reduction Vecop Matmul

reset
naive

1GHz 2GHz

L2 Cache Size/Benchmarks

(c) Simulation error for 16-core CMP

Figure 5.10: Simulation accuracy.

95

5.6. Limitations Chapter 5. Trace Filtering of MT Apps

20 50 100 150 20 50 100 150 20 50 100 150 AVG0

5

10

15

20

25

Si
m

ul
at

io
n

Er
ro

r (
%

)

4 cores 8 cores 16 cores

reset
naive

L2 Cache Latency/Number of Cores

Figure 5.11: Simulation accuracy average across benchmarks and frequencies.

5.5.4 Simulation Speedup

The trace size reductions shown in Section 5.5.1 promise a large reduction in
simulation time. However, most of the accesses in the full trace require the
simulation of an L1 hit, while most of the accesses in the filtered traces miss. An
access to L1 has a lower cost in terms of simulation time compared to an L1 miss.
Misses require the simulation of an access to the shared interconnection to the
L2 cache and the access to the L2 cache. In the case of also missing in L2, then
it further requires the simulation of an access to the memory controller and off-
chip memory. Then, the simulation time cannot be proportional to the number
of memory accesses, as not all of them have the same simulation requirements.
Therefore, simulation time reductions close to the trace size reductions shown
previously seem optimistic.

Figure 5.12 confirms this reasoning, but still shows large reductions account-
ing up to 3.8x simulation speed-ups in the benchmarks with larger data reuse.
In the benchmarks with low data reuse, however, the simulation speed-up is
below 1.5x in most cases. From the chart we can also confirm that our method-
ology is close to naive in terms of simulation time. Except for some cases, such
as the Vecop benchmark on a 1 GHz CPU and an L2 cache with a 150-cycle
latency, our methodology is generally within 10% of naive.

Figure 5.13 shows the simulation speed-up average across benchmarks and
frequencies. Simulation speed-up decreases for simulations with higher numbers
of cores. In this case, the cost of simulating more cache coherence actions reduces
the benefit of saving the simulation of L1 hits in filtered traces. Nevertheless,
simulation speed-ups range from 1.5x to 2.3x for reset compared to 1.6x to 2.4
for naive. Overall, reset is just 9.5% slower than naive and 1.9x faster than
simulating the full trace.

5.6 Limitations

There are a few limitations that must be noted by anybody who wants to employ
this methodology. The first is that, since our methodology is for trace-driven
simulation, it inherits the limitations inherent to the use of traces, such as the
inability to simulate the wrong-path memory accesses on speculative execution.

96

5.6. Limitations Chapter 5. Trace Filtering of MT Apps

20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
00.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Si
m

ul
at

io
n

Sp
ee

du
p

Cholesky LU Reduction Vecop Matmul Cholesky LU Reduction Vecop Matmul

reset
naive

1GHz 2GHz

L2 Cache Size/Benchmarks

(a) Simulation time improvements for 4-core CMP

20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
00.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Si
m

ul
at

io
n

Sp
ee

du
p

Cholesky LU Reduction Vecop Matmul Cholesky LU Reduction Vecop Matmul

reset
naive

1GHz 2GHz

L2 Cache Size/Benchmarks

(b) Simulation time improvements for 8-core CMP

20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
0 20 50 10
0

15
00.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Si
m

ul
at

io
n

Sp
ee

du
p

Cholesky LU Reduction Vecop Matmul Cholesky LU Reduction Vecop Matmul

reset
naive

1GHz 2GHz

L2 Cache Size/Benchmarks

(c) Simulation time improvements for 16-core CMP

Figure 5.12: Simulation speed-up.

97

5.7. Summary Chapter 5. Trace Filtering of MT Apps

20 50 100 150 20 50 100 150 20 50 100 150 AVG0.0

0.5

1.0

1.5

2.0

2.5

Si
m

ul
at

io
n

Sp
ee

du
p

4 cores 8 cores 16 cores

reset
naive

L2 Cache Latency/Number of Cores

Figure 5.13: Simulation speed-up average across benchmarks and frequencies.

Also, the use of trace-driven simulation prevents the simulation of the full sys-
tem. The behaviour of the operating system depends on the timing of certain
components, such as varied I/O timing when modeling I/O components, which
is not possible to capture in traces.

The limitations inherent to our methodology can be summarized in two:
race conditions and false sharing. Our methodology assumes the multithreaded
application is properly synchronized, so it is race-condition free. If race condi-
tions are possible, the application could just break in a real execution, so the
interest in such kind of simulations is expected to be minimal. The case of false
sharing is a more important limitation. As explained in Section 5.5.3, memory
access hits during trace generation may miss in simulation due to an invalida-
tion from another thread writing to data residing in the same cache line, even
though the data is not shared between the threads. Programmers and compil-
ers add padding to data structures to avoid false sharing due to the potential
impact it may have in performance. However, false sharing can be found in real
multithreaded programs, so more investigation is needed to tackle this problem.

5.7 Summary

In this chapter we presented the first attempt to enable trace filtering for sim-
ulating multithreaded applications running on multi-cores. We have provided
a deep explanation of the problem addressed and we have shown its potential
impact with a synthetic application including a pathological case exhibiting the
problematic inherent to the use of trace filtering as it is done in previous works.

We implemented our methodology based on the structure of OmpSs applica-
tions, and using dynamic binary instrumentation to generate the full and filtered
traces to feed in the mem mode of TaskSim. We show a thorough evaluation of
the proposal in terms of trace size reduction, trace generation speed-up, simu-
lation error and simulation speed-up compared to the state-of-the-art technique
and to simulating the full/non-filtered trace. Our methodology consistently re-
duces the simulation error of the state of the art in 50% and just implies a mere
9.5% loss in simulation performance on average.

This poses a trade-off between simulation error and simulation speed-up.

98

5.7. Summary Chapter 5. Trace Filtering of MT Apps

The average error of our technique is 4.5% in our experiments and simulation
time is reduced by half. Research works evaluating small differences in perfor-
mance may prefer to reduce the error margin and simulate the full trace even if it
takes twice the time. On the other hand, works requiring very long simulations
(several days or weeks) may want to benefit from a 2x cutdown in simulation
time at the expense of a relatively small simulation error.

99

5.7. Summary Chapter 5. Trace Filtering of MT Apps

100

Chapter 6

Modeling the Runtime
System Timing

The methodology presented in Chapter 3 simulates sequential sections using
traces and executes parops directly on the host machine at simulation time.
Using native execution is fast but difficults the timing modeling of parop ex-
ecution on the simulated machine because parop execution is not exposed the
simulation engine.

Runtime-managed applications are usually partitioned keeping in mind the
overhead of parop execution so the time spent on parops is negligible compared
to the time spent in sequential sections between them. However, in applications
using fine-grained parallelism to scale to large numbers of cores, parop execution
may have a significant performance impact.

In this chapter, we evaluate the importance of modeling the timing of parops
and present our attempt to use a fast high-level model for parop timing based
on their execution on the host machine.

6.1 Problem

Figure 6.1 shows the timeline of a simulation using our methodology in Chap-
ter 3. The simulated application is task-based, runs on a configuration with two
simulated threads and uses a master-worker scheme where one thread creates
tasks and another one executes them. Figure 6.1(a) shows the application trace
file content and the corresponding simulation stages on the multiple simula-
tion components, namely the two simulated threads and the integrated runtime
system. The trace file includes sequential sections, shown as CPU events, and
parop call events. Simulation starts in Thread 0 and, after a first sequential sec-
tion (A), simulation finds a create task event. Then, the simulation engine
calls the runtime system through the Runtime Bridge (see Figure 3.4) to create
Task 1. This operation is executed by the runtime system, which takes some
host time and, having finished, simulation resumes. Then, Thread 1, which was
idle waiting for tasks (dashed line), asks the runtime system for a ready task,
and it is assigned the recently-created Task 1. Thread 1 starts simulating Task 1
(which has its separate trace not shown in the figure).

Simulation proceeds analogously in Thread 0 with the creation of Task 2,

101

6.1. Problem Chapter 6. Modeling the Runtime System Timing

Simulated

Thread 0

Trace File

CP
U
A

cr
ea
te
_t
as
k
1

Runtime

System

CP
U
B

cr
ea
te
_t
as
k
2

Simulated

Thread 1

...

...

...

CP
U
C ...

ta
sk
_w
ai
t

host time

CP
U
E

...

Thread 0 Thread 1
...

si
m

u
la

to
r

ti
m

e

a) Simulation Operation b) Simulated Timing

seq. sections parop calls parop exec. idle

A B B C D E

F F

A

B

C

D

E

F

Figure 6.1: Simulation example of a task-based application running on two
threads. (a) The simulation alternates between the simulated threads and the
runtime system operation, to simulate the actions specified in the events in-
cluded in the trace. The runtime system performs the creation of tasks, and
assign tasks to idle threads (dashed line), such as Task 1 to Thread 1. (b) The
simulation engine does not account the timing of the runtime system operations,
and only simulates the timing of the sequential sections in the trace.

and so on. Later, close to the end of the application, a task wait event is found,
which forces Thread 0 to wait for all previously-created tasks to complete. The
simulation engine calls the runtime system for this synchronization primitive
and, when executed, it founds that all tasks have finished. Simulation resumes
and completes after simulating the last sequential section.

At simulation time, the simulator alternates between timing simulation in the
trace-driven simulation engine and parop execution in the runtime system. The
problem is that the trace-driven simulator is not aware of the executed runtime
system operations, and it can only model the timing of sequential sections in
the trace, as it is shown in Figure 6.1(b). This way, the simulator is able to
reflect the impact of the runtime system decisions on the application execution,
such as tasks being scheduled to different threads. However, it does not account
for the overhead of the runtime system operations themselves.

A straightforward approach to account for parop timing is to use the time
taken by the operation during trace generation as an estimate for its execution
time. The problem with this technique is that the trace generation run uses a
specific runtime configuration, including options such as scheduling and cutoff
policies (see Section 2.7). Therefore, the problem with this technique is that the
timing of parops would be the same (the one at trace generation time) regardless
of the runtime system configuration used during simulation.

The work presented in this chapter has therefore two objectives. First, eval-
uate the variability of parop timing for different runtime system and simulated
machine configurations. And second, to model the timing of parops so simula-
tion reflects the performance impact of different runtime system configurations
in the predicted execution time on the simulated machine.

102

6.2. Runtime Analysis Chapter 6. Modeling the Runtime System Timing

6.2 Runtime Analysis

Generally, runtime system operations take a small portion of the total applica-
tion time: applications are appropriately partitioned, and runtime systems are
highly optimized, both to minimize runtime system overheads. However, not all
applications can be easily repartitioned, as the problem size for a determined
computation slice may be fixed, for example, the size of a macroblock in video
decoding applications. Also, advanced runtime system policies, such as locality-
aware schedulers, may provide a better application performance, but their costly
operation may cancel out their benefits, even leading to performance degrada-
tion in some scenarios. In other words, the overhead of a better scheduler may
cancel out the benefits of its better scheduling.

In order to understand the factors affecting the performance of runtime
system operations, we analyze their computation on different scenarios and the
possible situations of contention on shared resources. The object of this study
is the NANOS++ runtime system, which is the one used along this thesis. Also,
we focus on the parops used in task-based parallel applications written in the
OmpSs programming model (see Section 2.7.1).

One of the factors introducing performance variability in NANOS++ parops
is the use of cut-off mechanisms (see Section 2.7), referred to as throttling.
Whenever the application wants to create a new task, the throttling mecha-
nism decides whether to actually spawn the new task and add it to the task
dependence graph, so any thread can execute it, or tell the thread creating the
task to execute it inline. This mechanism aims to alleviate the cost of adding
more tasks to the runtime system structures when there is no need for more
parallelism, such as when all treads are busy and there are many pending tasks.

Examples of throttling metrics are the total number of in-flight tasks and the
total number of ready tasks at a given point in time. When the metric is above
a certain threshold, referred to as throttle-limit, additional tasks are executed
inline rather than created and submitted for execution by other threads.

Another important factor introducing parop variability is the scheduler. It
makes decisions regarding task queuing and execution at certain points of the
application, such as on task creation, task completion and when a thread be-
comes idle. For this, it manages ready task queues. A ready task queue includes
a set of tasks ready for execution (dependencies satisfied), and may be global or
thread-private. Different schedulers may have different policies, such as breadth-
first and work-first [70], and therefore have different algorithm complexities.

Figure 6.2 shows the pseudo-code of four of the main runtime system op-
erations in NANOS++. For each of these operations, we indicate whether it
accesses or updates the task dependence graph (DG) or the ready task queues
(RQ). Figure 6.2a shows the code for task creation. As previously mentioned,
due to the throttling mechanism, the execution may follow different paths with
potentially different costs. Also, if a task is actually submitted (no throttle), and
does not have any potential dependencies, it is considered independent, and is
directly pushed to a ready task queue. However, if it has potential dependen-
cies, it must be checked against previous tasks in the task dependence graph
and, if there are dependencies, the graph is updated accordingly with the new
task.

Another example of variability is the acknowledge of task completion, shown
in Figure 6.2b. The operation after completing a task must iterate over its

103

6.2. Runtime Analysis Chapter 6. Modeling the Runtime System Timing

if throttle task creation:
 //execute task inline
 if task has predecessors:
 execute predecessors
 create task object & execute
else:
 //create and submit task
 create task object
 if task has possible deps:
 if task does have deps:
 add task to dep graph
 else:
 add task to ready queue
 else:
 add task to ready queue

check DG

check DG
update DG

update RQ

update RQ

(a) Task Creation

check DGwhile pending tasks > 0:
 //select & exec ready tasks
 if select ready task:
 execute task

update RQ

(c) Task Wait

while thread is running:
 //select & exec ready tasks
 if select ready task:
 execute task

update RQ

(d) Idle Loop

DG: dependence graph

RQ: ready task queue

decrease pending tasks
foreach task successor:
 release successor dependency
 if successor ready
 add successor to ready queue
if select ready task:
 execute task
else:
 execute idle loop

update RQ

(b) Task Completion

update DG

update DG

update RQ

Figure 6.2: Simplified pseudo-code of the main NANOS++ operations, and the
actions on shared resources: task dependence graph and ready queue. Checks
and updates of shared data are protected by locks or atomic operations depend-
ing on their granularity.

successor tasks, meaining other tasks depending on its output. Its cost depends
on the total number of successors and if they become ready. Also, for the
operations Task Wait (Figure 6.2c), Idle loop (Figure 6.2d) and Task Completion
(Figure 6.2b), the scheduler must select a ready task for execution. At this point,
the parop cost greatly depends on the complexity of the scheduler algorithm.
A simple policy, such as oldest-first, has a lower cost than a policy checking all
tasks in the queue. In this case, the cost depends on the number of tasks in the
queue and, if empty, on the check of other queues for work stealing.

From Figure 6.2, we can also identify the chances of contention among
threads. For instance, the task dependence graph may be a center of con-
tention when a thread is completing a task and updates the successors state in
the graph, while another thread is creating a task with dependencies, and wants
to add it to the graph. In this case, both threads must compete for a lock before
entering the critical section that updates the task dependence graph. Another
source of contention is the scheduler’s ready task queues. An example is when
a thread is idle waiting for tasks and checking the ready task queue and, at the
same time, another thread creates a task without dependencies and wants to
add it to the same ready task queue.

From this analysis, we conclude that the cost of runtime system operations
depends on the taken control flow path, the algorithm complexity and the data
size on which they operate. Then, apart from the computation cost, an extra
overhead has to be considered when there is contention on parops accessing
shared resources from separate threads.

Figure 6.3a shows a histogram of the time taken by task creation opera-
tions during the execution on a real machine of a Cholesky factorization (see
Section 2.11) on eight threads. The figure shows a histogram for two different

104

6.3. Runtime Modeling Chapter 6. Modeling the Runtime System Timing

0 10 20 30
Time (us)

0
2000
4000
6000
8000

10000
12000
14000
16000

Ta
sk

 C
re

at
io

n
Co

un
t

throttle-limit=5
throttle-limit=500

(a) Task Creation Time Distribution

5 100 500 10000
Throttle Limit (4/8/16 threads)

0
1
2
3
4
5
6
7
8

Lo
ck

 W
ai

t T
im

e
(m

s)

Switching
TaskGraph
Scheduler

(b) Average Lock Wait Time per Thread

Figure 6.3: Runtime system operation variability. (a) Task creation cost distri-
bution of Cholesky factorization run on eight threads for two different throttling
limits. (b) Breakdown of the lock contention time of Cholesky decomposition
run on four, eight and sixteen threads for four different throttling limits.

throttling limits, 5 and 500. Whenever the total number of in-flight tasks is
above the limit, new tasks are executed inline instead of following the regular
submission to the task graph or ready queues. Hence, a lower throttle limit
generates more inlining than a higher one. The results in the figure show that
using a throttle limit of 5 leads to lower task creation costs than using a limit of
500, as many more tasks are inlined. Most of the inlined creations take less than
10 us, while the regular creation and submission takes between 5 and 20 us.

Figure 6.3b shows the average time per thread spent waiting for acquiring a
lock, and its breakdown depending on the operation being synchronized. This is
shown for Cholesky factorization using multiple numbers of throttle limits and
run on four, eight and sixteen threads. The results show two effects. The first
is that lock contention increases with the number of threads for all throttling
limits. This is because there are more chances that separate threads want to
access a shared resource when there are more threads executing in parallel. The
second is that the contention on locks also increases after a certain throttle limit.
The contention for locks with limit 5 is significantly lower than for larger limits.
This is because in inlined task creations the runtime system does not need to
access shared resources.

6.3 Runtime Modeling

The results in the previous section show that the cost of parops is sensible to
the runtime system and simulated machine configurations, and how these affect
the contention on the runtime system shared resources. Therefore, in situations
where parops account for a large portion of the application, or when multiple
runtime system configurations are compared in terms of overhead, it is necessary
to account for time spent in parop execution.

In this section, we introduce a fast high-level timing model for parops, to be
used in the simulation methodology in Chapter 3. The objective is to provide
an estimate of parop execution time, while maintaining the cost of the model

105

6.3. Runtime Modeling Chapter 6. Modeling the Runtime System Timing

Thread 0 Thread 1

get start time

get stop time
simulate
runtime
period continue

processing
trace

Runtime Thread 0

get
lock/
unlock
time

waiting
time

simulate
locks

Runtime

seq. section parop exec.parop call sim. parop sim. lock wait

Figure 6.4: Simulation example with host time only (left) and host time plus
simulation of locks (right).

low, so it is fast enough to be used in multiple levels of abstraction from detailed
to high-level ones.

The timing model lies on top of a light-weight instrumentation library that
captures the execution time of parops in the host machine. This gives a measure
of the cost of that operation considering the runtime system state during simula-
tion. As the runtime system data state depends on the simulated architecture,
the control flow path followed by parop execution, the algorithm complexity
and the data size on which it operates are reflected by the parop execution
time on the host. Then, the host execution time can be factored to match the
simulated machine performance. The use of performance factors has already
been explored in existing simulation tools [24, 155], and several databases of
performance factors are publicly available [9, 158].

From the previous section we know that, apart from parop computation,
contention on shared resources also depends on the runtime system configura-
tion. On a sequential simulator, the simulation of different threads is serialized
and, thus, the execution of parops on different simulated threads is also seri-
alized. Therefore, all lock acquire operations are successful and the potential
contention is not reproduced. To account for contention, the lock acquire and
release operations are also instrumented. As a result, when the control comes
back to the simulation engine after a parop execution, the simulator has a trace
of sequential sections and lock operations of the executed parop that is used to
model its timing.

Figure 6.4 illustrates how the parop execution information is captured and
used for simulation. The figure shows the methodology’s operation for a parop
execution without (left) and with (right) locks. Without locks, on a parop
execution, its starting and finishing times are recorded, and its total execution
time is computed. The resulting trace is a single sequential section with a given
execution time (on which a performance factor can be applied to match the
simulated machine performance). Finally, the resulting sequential section time
is accounted in the parop-calling simulated thread, that resumes processing the
trace afterwards.

106

6.4. Evaluation Chapter 6. Modeling the Runtime System Timing

The example with locks shows how lock acquire and release operations, that
do not suffer from contention during the execution on the host machine, are
also included in the resulting trace. In Figure 6.4 (right), both threads execute
parops that are serialized. However, when they simulate both parop traces,
Thread 0 acquires the lock first, and then Thread 1 fails to acquire the same
lock and has to wait before Thread 0 releases it, thus reproducing the contention
that would exist on that application running on the simulated machine.

6.4 Evaluation

In this section we present a set of experiments to show the impact of throttling
limits, scheduling policies and numbers of threads on parop execution and how
our methodology models their timing.

We use the integrated TaskSim-NANOS++ simulation infrastructure pre-
sented in Chapter 3 and simulate with the burst mode presented in Chapter 4.
The experiments compare the following configurations:

• Real: execution on the real machine.

• Naive: simulation using as parop execution time the one from the trace
generation run (explained in Section 6.1).

• Host: simulation using as parop execution time the one from the host
machine during simulation (Figure 6.4 (left)).

• Host+Locks: simulation using as parop execution time the one from the
host maching during simulation and also simulating lock contention from
parops in different simulated threads (Figure 6.4 (right)).

For the first experiment we use a blocked-matrix multiplication with 64×64
blocks of single-precision floating-point elements written in OmpSs. We execute
the application in the real machine and using the three aforementioned simu-
lation configurations. All experiments are done with two different schedulers:
default and cilk. Default uses a global ready queue and a LIFO policy. Cilk
uses one queue per thread and, on task creation, it starts executing the created
task and the parop-calling task gets enqueued for other thread to resume its
execution. Executions on the real machine are repeated five times and averaged
to counteract OS noise.

Figure 6.5 shows the normalized execution time on the real machine and on
simulation using the naive, host and host+locks approaches. The x-axis shows
throttling limit values from 1 to 9999999 (infinite) and each data series is for
a given number of threads. The results are normalized to the execution with
throttling limit 1.

The naive configuration is able to reproduce the lack of parallelism of throt-
tling limits below 50, but is not able to reproduce the loss of performance for
larger throttling limits due to parop overhead. The introduction of the host
time in the host configuration is able to account for part of that overhead but
does not make as much difference as in the real machine. The simulation of
locks gets the predicted execution time closer to the one of the real machine but
it does not follow the same trends and does not match its magnitude either.

107

6.4. Evaluation Chapter 6. Modeling the Runtime System Timing

0.90

0.95

1.00

1.05
No

rm
al

iz
e

Ex
ec

ut
io

n
Ti

m
e

(a) real

1 threads
2 threads
4 threads
8 threads
12 threads
16 threads

(b) naive

1 5 10 50 10
0

50
0

10
00

10
00

0

99
99

99
9

Throttle Limit

0.90

0.95

1.00

1.05

No
rm

al
iz

e
Ex

ec
ut

io
n

Ti
m

e

(c) host

1 5 10 50 10
0

50
0

10
00

10
00

0

99
99

99
9

Throttle Limit

(d) host+locks

Figure 6.5: Normalized execution time real (a) and simulated (b,c,d) for a
blocked-matrix multiplication using 64×64 blocks.

In any case, parop execution time in these experiments is not significant,
and the results are in the noise margin which can be affected by the inherent
inaccuracies of the burst mode and OS noise during the real, trace generation
and simulation executions.

To get a more precise view of the effects of our methodology, we carry out
a second case study using an H.264 decoder skeleton application written in
OmpSs. This skeleton has the same structure as a real implementation of an
H.264 decoder using the 3D wave optimization [117]. In this case, we focus on
the parop timing across multiple schedulers and numbers of threads and use a
throttling limit of 100 for all experiments.

The experiments are done for a set of schedulers including the ones in the

108

6.5. Discussion Chapter 6. Modeling the Runtime System Timing

NANOS++ distribution (default, bf, dbf, cilk, wf) and two other schedulers
using priorities depending on the chain of dependencies a given task has to
the top of the task dependence graph (toplev) and to the bottom of the graph
(botlevel). These schedulers are explained in more detailed in the PhD Thesis of
Paul Carpenter [54]. The complexity of toplev and botlev is higher than for the
other five scheduler, because they have to traverse the task dependence graph
to assign priorities to tasks.

de
fau

lt bf db
f

cilk wf
top

lev
bo

tle
v

Schedulers

0

2

4

6

8

10

12

14

Ti
m

e
(s

ec
on

s)

real
host

(a) Four threads

de
fau

lt bf db
f

cilk wf
top

lev
bo

tle
v

Schedulers

0

2

4

6

8

10

12

14
Ti

m
e

(s
ec

on
s)

real
host

(b) Eight threads

de
fau

lt bf db
f

cilk wf
top

lev
bo

tle
v

Schedulers

0

2

4

6

8

10

12

14

Ti
m

e
(s

ec
on

s)

real
host

(c) Sixteen threads

Figure 6.6: Task creation execution time of the H.264 decoder skeleton both in
the real machine and using the host simulation approach using multiple numbers
of threads.

Figure 6.6 shows the task creation execution time for the real machine (a)
and using the host simulation approach (b) for the aforementioned schedulers
and multiple numbers of threads. In the real machine, the differences for the
five schedulers in the NANOS++ distribution are not significant and can be
considered noisy. However, the cost of toplev and botlev is very significant.
However, the host simulation approach is not able to reproduce that cost. We
have checked the source of the overhead for these scheduler in the real machine,
and it comes from the increased complexity of the task graph insertion rather
than from the contention in locks, which is minimal. Therefore, the simulation
of locks is not expected to improve this prediction.

6.5 Discussion

The experiments in the previous section show that our high-level model is not
able to accurately reproduce the variability of different runtime system config-
urations at simulation time. The fundamental deficiencies of the method are
related to caching effects due to the following facts:

• Serial vs. parallel execution. The simulator runs on a single host thread
while the real application executes on multiple separate threads. This has
two effects. The first is that parops executing in different threads will

109

6.6. Summary Chapter 6. Modeling the Runtime System Timing

have different cache states in their privates caches while the simulator has
a single private cache in which the state of the runtime system can be kept.
The second is that the cache coherence actions that happen in the real
machine from accesses to shared runtime system resources from separate
threads are not present during simulation either.

• Application data vs. simulator data. In the real machine, between two
parop calls, the application computation may have completely evicted all
runtime system data from the caches. In the simulator, this depends on
the level of abstraction of the timing model of sequential sections between
parop calls. In a high-level mode such as the burst mode, the computation
between parop calls is small and the runtime system data may be kept in
the private caches and the accesses in the next parop call will hit in the
cache.

These two deficiencies lead to the underestimations of parop execution for
some schedulers seen in the previous section.

Another deficiency of the method is instrumentation overheads. The exe-
cution of some parops is short and the insertion of instrumentation points can
lead to overestimations when simulating the timing of parops using the host
and host+locks approaches, as we have seen for some schedulers. A possible
solution to this problem is to measure the typical delay of an instrumentation
call and subtract it from the measured parop execution time.

As a result, the parop timing models introduced in this chapter are not
enough for an accurate reproduction of the time taken by runtime system op-
erations. Further investigation is needed to quantify the deficiencies analyzed
in this discussion and propose more detailed models that actually account for
the runtime system effects when the cost of the runtime system operations is of
interest of the research study being carried out.

6.6 Summary

In this chapter we explained the problem of modeling the timing of the runtime
system operations using our simulation methodology in Chapter 3. We showed
the sources of variability for runtime system operations and proposed two high-
level models for the timing of these operations based on their execution on the
host machine.

Our experiments showed that our models are able to partially mimic the
trends of parop timing and are definitely better than the naive approach, but
generally result in underestimations. We discussed the reasons for these in-
accuracies and concluded that further investigation is needed to quantify the
deficiencies of these methods and improve the models to bridge the gap between
the simulated and real parop execution times.

110

Chapter 7

Conclusions

In the history of microprocessor from 1972, the number of transistors per chip
has doubled every two years. Due to power density issues, among others, this
increasing number of chips has been used since the early 2000s to include more
cores in the same chip.

The inclusion of multiple cores per chip, has changed the microprocessor
design paradigm, which has an impact on single-thread performance. The de-
sign of multi-cores focuses on exploiting thread-level parallelism on multiple
cores, rather than instruction-level parallelism on a single core. This leads to a
slowdown on the increase of single-thread performance that went from doubling
every two years until 2004, to doubling every three years and a half since then.

These two facts, the increasing trends of number of transistors per chip and
single-thread performance, has an impact on computer architecture simulation,
which is the topic in this thesis. Computer architecture simulation is important
because it drives most computer architecture research. In this context, the
number of transistors determines the complexity of the model to be simulated,
and the single-thread performance of the host machine determines simulation
speed. Since the number of transistors keeps doubling every two years, the
complexity of the simulated model also increases at this rate. At the same time,
single-thread performance, and thus, simulation speed, doubles every three years
and a half. The difference is what we call the simulation speed gap, and makes
simulation of multi-cores increasingly slow over time. As an example, if the
simulation of a contemporary architecture takes one week, a simulation of a
contemporary architecture in five years will take more than two weeks, and over
a month in ten years.

The objective of this thesis is to close the simulation speed gap to reduce
simulation time. Other researchers in the computer architecture community are
aware of the problem and have proposed techniques to reduce simulation time,
such as sampling and parallelization, that we covered in Section 2.4.

The approach in this thesis is to raise the level of abstraction to close the
simulation speed gap and reduce simulation time. In this direction, we have
proposed a set of simulation techniques and methodologies. In the next sections,
we summarize our contributions and list their associated publications, explain
works that have used our research, and provide some recommendations on how
this work could be continued in the future.

111

7.1. Contributions and Publications Chapter 7. Conclusions

7.1 Contributions and Publications

Our contributions in this thesis are the following:

• A trace-driven simulation methodology for dynamically-scheduled
multithreaded applications. It combines a trace-driven simulation engine
with a runtime system to simulate timing-independent user code using
traces and execute timing-dependent parops at simulation time to make
scheduling and synchronization decisions based on the simulated machine.

[150] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, M. Valero.
Trace-driven Simulation of Multithreaded Applications. In Proceed-
ings of the IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS ’11, pages 87–96, Apr. 2011.

[151] A. Rico, A. Duran, A. Ramirez, M. Valero. Simulating Dynamically-
Scheduled Multithreaded Applications Using Traces. IEEE Micro.
Submitted for publication.

• Two fast high-level simulation modes for evaluating application scal-
ability and accelerators with scratchpad memories. These simulation modes
are based on our definition of application abstraction. At the highest level
of abstraction, the burst mode, is faster than native execution and is ac-
curate and useful to predict application scalability on larger numbers of
cores than the ones available in the real machine. The inout mode has
only an average 25x slowdown compared to native execution, and has been
shown accurate and useful for the simulation of accelerator-based architec-
tures. The most important fact is that these modes have been shown to be
faster and more insightful than functional simulation in execution-driven
simulators.

[148] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, M. Valero. On the Simulation of Large-Scale Architec-
tures Using Multiple Application Abstraction Levels. ACM Trans.
Archit. Code Optim., 8(4):36:1–36:20, 2012.

• A trace generation technique to include memory accesses sensible to
cache invalidations in filtered memory access traces for the simulation
of multithreaded applications running on cache-based multi-cores. The
trace generation technique covers invalidations due to different thread in-
terleavings and different dynamic scheduling decisions. It reduces the
average error of the state of the art from 9% to 4.5%, while providing
similar trace size reduction (10x smaller traces) and simulation speed-up
(2x faster simulations) compared to the simulation of the full trace.

[154] A. Rico, A. Ramirez, M. Valero. Trace Filtering of Multithreaded
Applications for CMP Memory Simulation. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS ’13, pages 134–135, Apr. 2013.

• A high-level simulation model for modeling the timing of executed
parops in our simulation methodology. We found that our technique is
not enough to faithfully model the timing of parops due to the different

112

7.2. Impact Chapter 7. Conclusions

application and cache states between simulation and real execution. Fur-
ther investigation is needed to improve the model to better account for
parop timing in the applications or studies where it is relevant.

7.2 Impact

In this section we explain other works we carried out related with the work in
this thesis; works that use the simulation techniques proposed in this thesis; and
other non-related works we have carried out during the course of this thesis.

7.2.1 Our Related Work

Related to the development of CellSim, we published a set of papers, poster
abstracts, and a workshop presentation. In chronological order:

[49] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, E. Ayguadé.
A module-based cell processor simulator. In Advanced Advanced Com-
puter Architecture and Compilation for High-Performance and Embedded
Systems 2006 Poster Abstracts, ACACES ’06, pages 237–240, July 2006.

[50] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, E. Ayguadé.
CellSim: A Cell Processor Simulation Infrastructure. In Advanced Com-
puter Architecture and Compilation for Embedded Systems 2007 Poster
Abstracts, ACACES ’07, pages 279–282, July 2007.

[147] A. Rico, F. Cabarcas, D. Rodenas, X. Martorell, A. Ramirez, E. Ayguadé.
Implementation and validation of a Cell simulator (Cellsim) using UNISIM.
In 3rd HiPEAC Industrial Workshop on Compilers and Architectures, Apr.
2007.

[51] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, E. Ayguadé.
CellSim: A Validated Modular Heterogeneous Multiprocessor Simulator.
In XVIII Jornadas de Paralelismo (CEDI 2007: II Congreso Espanol de
Informática), JP ’07, pages 187–188, Sept. 2007.

Related to CellSim, we also carried out a full-day Tutorial at the Sixteenth
International Conference on Parallel Architectures and Compilation Techniques
(PACT) 2007:

[142] A. Ramirez, A. Rico, F. Cabarcas. CellSim: a Modular Simulator for Het-
erogeneous Chip Multiprocessors. http://pcsostres.ac.upc.edu/
cellsim/doku.php#cellsim_tutorial_documentation, 15 Sept.
2007. Full-day tutorial at Parallel Architectures and Compilation Tech-
niques (PACT) 2007.

Related to the development of TaskSim, we published a technical report at
the Universitat Politècnica de Catalunya – BarcelonaTech:

[146] A. Rico, F. Cabarcas, A. Quesada, M. Pavlovic, A. J. Vega, C. Villavieja,
Y. Etsion, and A. Ramirez. Scalable Simulation of Decoupled Accelera-
tor Architectures. Technical Report UPC-DAC-RR-2010-14, Universitat
Politècnica de Catalunya, June 2010.

113

http://pcsostres.ac.upc.edu/cellsim/doku.php#cellsim_tutorial_documentation
http://pcsostres.ac.upc.edu/cellsim/doku.php#cellsim_tutorial_documentation

7.2. Impact Chapter 7. Conclusions

Related to the analysis of the runtime system overheads, we published a
journal and a conference paper related to the task creation bottleneck mentioned
at several points along the thesis and explained in Section 3.5. In chronological
order:

[152] A. Rico, A. Ramirez, M. Valero. Task Management Analysis on the Cell
BE. In XIX Jornadas de Paralelismo, JP ’08, pages 271–276, Sept. 2008.

[153] A. Rico, A. Ramirez, M. Valero. Available Task-level Parallelism on the
Cell BE. Scientific Programming, 17(1-2):59–76, 2009.

7.2.2 Other Works using Our Work

During the course of this thesis we developed a set of simulation tools and
methodologies. In this section we give a measure of the impact of our work
listing the publications using our tools and methodologies for the evaluation of
their proposals.

• List of publications using CellSim in chronological order:

[112] D. Ludovici G. Gaydadjiev. SARC Power Estimation Methodology.
In Proceedings of the 18th Annual Workshop on Circuits, Systems
and Signal Processing, Nov. 2007.

[87] R. Giorgi, N. Puzovic, and Z. Popovic. Implementing DTA support
in CellSim. In Advanced Computer Architecture and Compilation for
Embedded Systems 2008 Poster Abstracts, ACACES ’08, July 2008.

[118] C. Meenderinck B. Juurlink. A Chip MultiProcessor Accelerator for
Video Decoding. In Proceedings 19th Annual Workshop on Circuits,
Systems and Signal Processing, Nov. 2008.

[84] R. Giorgi, Z. Popovic, N. Puzovic. Exploiting DMA to enable non-
blocking execution in Decoupled Threaded Architecture. In IEEE
International Symposium on Parallel Distributed Processing, IPDPS
2009, pages 1–8, 2009.

[85] R. Giorgi, Z. Popovic, N. Puzovic. Implementing Fine/Medium
Grained TLP Support in a Many-Core Architecture. In Proceedings
of the 9th International Workshop on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS ’09, pages 78–87,
2009.

[86] R. Giorgi, Z. Popovic, N. Puzovic. Introducing Hardware TLP Sup-
port in the Cell Processor. In International Conference on Complex,
Intelligent and Software Intensive Systems, CISIS ’09, pages 657–662,
2009.

[94] X. Huang, X. Fan, S. Zhang, L. Shi. Investigation on Multi-Grain
Parallelism in Chip Multiprocessor for Multimedia Application. In
International Conference on Information Engineering and Computer
Science, ICIECS 2009, pages 1–4, 2009.

[78] E. Fernández Abeledo. Implementation of Nexus: Dynamic Hard-
ware Management Support for Multicore Platforms. Master’s thesis,
Delft University of Technology, 2010.

114

7.2. Impact Chapter 7. Conclusions

[90] C. Gou, G. Kuzmanov, G. N. Gaydadjiev. SAMS multi-layout mem-
ory: providing multiple views of data to boost SIMD performance.
In Proceedings of the 24th ACM International Conference on Super-
computing, ICS ’10, pages 179–188, 2010.

[41] M. Briejer, C. Meenderinck, B. Juurlink. Extending the Cell SPE
with Energy Efficient Branch Prediction. In Proceedings of the 16th
international Euro-Par conference on Parallel processing: Part I, Eu-
roPar’10, pages 304–315, 2010.

[61] C. Ciobanu, G. Kuzmanov, G. Gaydadjiev, A. Ramirez. A Polymor-
phic Register File for Matrix Operations. In International Conference
on Embedded Computer Systems, SAMOS ’10, pages 241–249, 2010.

[119] C. Meenderinck, B. Juurlink. Nexus: Hardware Support for Task-
Based Programming. In 14th Euromicro Conference on Digital Sys-
tem Design, DSD ’11, pages 442–445, 2011.

[23] A. Azevedo, B. Juurlink. An Instruction to Accelerate Software
Caches. In Proceedings of the 24th international conference on Ar-
chitecture of computing systems, ARCS’11, pages 158–170, 2011.

• List of publications using TaskSim in burst mode in chronological order:

[75] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, M. Valero. Task Superscalar: An Out-of-Order Task
Pipeline. In Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO ’10, pages 89–100,
2010.

• List of publications using TaskSim in inout mode in chronological order:

[48] F. Cabarcas, A. Rico, A. Ramirez, Y. Etsion, C. Villavieja, A. J.
Vega, M. Pavlovic, A. Quesada, P. Bellens, R. M. Badia, M. Valero.
Castell: A CMP architecture scalable to hundreds of processors.
Technical Report UPC-DAC-RR-CAP-2009-33, Universitat Politec-
nica de Catalunya, Nov. 2009.

[170] A. Vega, A. Rico, F. Cabarcas, A. Ramirez, M. Valero. Compar-
ing Last-level Cache Designs for CMP Architectures. In Proceedings
of the Second International Forum on Next-Generation Multicore/-
Manycore Technologies, IFMT ’10, pages 2:1–2:11, 2010.

[47] F. Cabarcas, A. Rico, Y. Etsion, A. Ramirez. Interleaving Granu-
larity on High Bandwidth Memory Architecture for CMPs. In Inter-
national Conference on Embedded Computer Systems, SAMOS ’10,
pages 250–257, 2010.

[141] A. Ramirez, F. Cabarcas, B. Juurlink, A. Mesa, F. Sanchez, A. Azevedo,
C. Meenderinck, C. Ciobanu, S. Isaza, G. Gaydadjiev. The SARC
Architecture. Micro, IEEE, 30(5):16–29, 2010.

[62] C. B. Ciobanu, X. Martorell, G. K. Kuzmanov, A. Ramirez, G. N.
Gaydadjiev. Scalability Evaluation of A Polymorphic Register File:
A CG Case Study. In Proceedings of the 24th International Confer-
ence on Architecture of Computing Systems, ARCS’11, pages 13–25,
2011.

115

7.2. Impact Chapter 7. Conclusions

[96] S. Isaza, F. Sanchez, F. Cabarcas, A. Ramirez, G. Gaydadjiev. Parametriz-
ing Multicore Architectures for Multiple Sequence Alignment. In
Proceedings of the 8th ACM International Conference on Computing
Frontiers, CF ’11, pages 31:1–31:10, 2011.

[169] A. Vega, F. Cabarcas, A. Ramirez, M. Valero. Breaking the Band-
width Wall in Chip Multiprocessors. In International Conference on
Embedded Computer Systems, SAMOS ’11, pages 255–262, 2011.

[16] M. Alvarez, F. Cabarcas, A. Ramı́rez, C. Meenderinck, B. Juurlink,
M. Valero. Scalability of Parallel Video Decoding on Heterogeneous
Manycore Architectures. Technical Report UPC-DAC-RR-CAP-2011-
12, Universitat Politècnica de Catalunya, June 2011.

[157] F. Sanchez, F. Cabarcas, A. Ramirez, M. Valero. Scalable Multi-
core Architectures for Long DNA Sequence Comparison. Concurr.
Comput. : Pract. Exper., 23(17):2205–2219, Dec. 2011.

[171] N. Vujic, F. Cabarcas, M. Gonzalez Tallada, A. Ramirez, X. Mar-
torell, E. Ayguade. DMA++: On the Fly Data Realignment for
On-Chip Memories. IEEE Transactions on Computers, 61(2):237–
250, 2012.

• List of publications using TaskSim in mem mode in chronological order:

[81] V. Garcia, A. Rico, C. Villavieja, N. Navarro, A. Ramirez. The Data
Transfer Engine: Towards a Software Controlled Memory Hierarchy.
In Advanced Computer Architecture and Compilation for Embedded
Systems 2012 Poster Abstracts, ACACES ’12, pages 215–218, July
2012.

7.2.3 Our Non-Related Work

From the work during the internship at the IBM TJ Watson Research Center,
we published the following work:

[149] A. Rico, J. H. Derby, R. K. Montoye, T. H. Heil, C.-Y. Cher, P. Bose.
Performance and Power Evaluation of an In-line Accelerator. In Proceed-
ings of the 2010 ACM International Conference on Computing Frontiers,
CF’10, pages 81–82, May 2010.

The work during the internship at ARM Ltd. led to the following collabora-
tion:

[140] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, A. Ramirez. Expe-
riences with Mobile Processors for Energy Efficient HPC. In Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’13,
pages 464–468, 2013.

[139] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez. Tibid-
abo: Making the Case for an ARM-Based HPC System. Future Genera-
tion Computing Systems, 2013. Accepted for publication.

116

7.3. Future Work Chapter 7. Conclusions

7.3 Future Work

From the work presented in this thesis, we propose two research lines as future
work:

• Exploration of programming models other than OmpSs. The
techniques in this thesis are evaluated in the context of the OmpSs pro-
gramming model. This serves as a proof of concept of the use of our tech-
niques for a task-based programming model. Based on this experience,
we explained in Section 3.4.2 how our trace-driven simulation methodol-
ogy for multithreaded applications could be applied to other programming
models.

We do not know about fundamental differences of other task-based pro-
gramming models that would prevent their runtime system to be inte-
grated with a trace-driven simulator. However, difficulties may arise while
carrying out this integration, which makes it a very interesting future
work. Also, this would allow the comparison of different programming
models for future large chip multiprocessors, which is an interesting topic
in itself.

• Abstraction of power models. Power models are generally a set of cal-
culations based on the technological and architectural characteristics of the
target microprocessor, and on the utilization statistics of the different com-
ponents by the target application. This applies both to simulation-based
power models [160, 110], and even to power management units in real mi-
croprocessors (Intel’s Running Average Power Limiting [95], AMD’s Ap-
plication Power Management [14] and IBM’s POWER7 Power Proxy [79]).

In Chapter 4 we introduce a set of high-level timing models, and explain
their usability and accuracy. An interesting future work is to explore
abstract power models based on these high-level timing models. The
granularity of the utilization statistics generated by these timing mod-
els is very coarse. Thus, developing abstract power models based on these
coarse-grained collection of statistics while achieving a reasonable degree
of accuracy is a challenging task.

• Performance ratios for cross-machine burst simulation. The burst
mode uses the execution time of sequential sections to predict the execu-
tion time of the application running on the simulated machine. As we
showed, this is useful and accurate to predict the scalability of an applica-
tion on larger numbers of cores than those available in the real machine.

An interesting idea is to use the trace generated on a machine to simulate
a different machine using the burst mode. As explained in Chapter 4,
performance ratios can be applied to the duration stored in the trace
to mimic the execution time for a given sequential section, or a set of
sequential sections, on a different machine. Some existing simulators [24,
155] use performance ratios in the context of cluster simulation. However,
there are no works assessing the validity of such performance ratios for a
multithreaded shared-memory environment.

We envision an interesting future work on the use of performance ratios for
the simulation of different machine configurations using the burst mode,

117

7.3. Future Work Chapter 7. Conclusions

and the cross-validation of the resulting predicted execution times against
the real machine.

• Sampling of sequential sections. The size of traces depends on the
type of the contents that, at the same time, depends on the timing model.
The traces for the burst and inout modes are rather small. However,
the mem and instr mode traces can be very large, up to hundreds of
gigabytes. Also, the simulation time of such traces is usually very long. In
this context, we could apply sampling techniques to only trace one or a few
representative sequential sections, the simulation of which could provide
an accurate estimation of the average behavior of the application.

There are already existing sampling techniques, as we explained in Sec-
tion 2.4. Some of them have even been explored in the context of mul-
tithreaded applications. However, none of them have been assessed for
dynamically-scheduled multithreaded applications, such as the ones driv-
ing the work in this thesis.

Using such sampling techniques for runtime-managed applications would
provide shorter simulation times, and could also provide large reductions
in trace size for mem and instr simulations. In this case, one or a few
sequential sections would be simulated using detailed simulation, such as
mem or instr, and the rest of the application could be fast forwarded in
mem and instr mode using the result of the detailed simulation.

• Deterministic replay of dynamic scheduling. In the experiments in
Chapter 5 we compare the simulation accuracy of three different traces:
reset, naive and full. The differences in these traces lead to small timing
differences that result in butterfly effects. Differences of a few cycles, may
make a task to be scheduled to a different thread, thus changing the whole
scheduling. Then, the access patterns to the cache hierarchy change and
it is difficult to compare the different configurations when they end up
exercising completely different actions in the underlying hardware.

A potential solution to this problem is the development of two new sched-
ulers: one that records the scheduling of tasks to threads in a file, and
another one that replays that scheduling on subsequent simulations. This
way, the reference simulation can be simulated using the record sched-
uler and the rest using the replay scheduler. This would end up having
the same scheduling in all configurations, thus resulting in comparable
experiments. However, this mechanism may suffer from the same effects
as previous works in deterministic multithreaded application simulation.
That is that a thread may have to wait to execute the next task in the
recorded list of tasks because its predecessors have not completed yet. This
introduces some idle time that would not be present in the real machine,
where the scheduler would have assigned a ready task instead.

Therefore, for this work, both the reduction of variability and the intro-
duction of unrealistic idle time must be assessed.

• Improved timing models for parops during simulation. In Chap-
ter 6 we presented our attempt to model the execution time of parops in
the simulated machine using our simulation methodology. However, the

118

7.3. Future Work Chapter 7. Conclusions

results are not as expected and our models do not reflect the variability
seen in the real machine.

In most cases, the cost of parops is negligible in the overall application
execution time and, hence, variations in parop execution time are negli-
gible. However, for research studies focusing on parop cost or targeting
fine-grained parallelism, a proper timing-model for parops is needed. For
this reason we recommend that more research is targeted in this direction.

119

7.3. Future Work Chapter 7. Conclusions

120

Glossary

Application abstraction Level of
detail in the representation of an
application as fed to a simulator.

CMP Chip Multiprocessor.

CPU Central Processing Unit.

DMA Direct Memory Access.

DSP Digital Signal Processor.

FLOPS Floating-point Operations
Per Second.

FPGA Field Programmable Gate Ar-
rays.

GPU Graphics Processing Unit.

Green500 Ranking of the 500 most
energy efficient supercomputers.

Host machine Machine running the
simulator.

HPC High Performance Computing.

HPL High-Performance Linpack.

I/O Input/Output.

ISA Instruction Set Architecture.

Linpack Benchmark used to rank su-
percomputers in the Top500 and
Green500 lists.

Microprocessor Integrated circuit
that incorporates the CPU of a
von Neumann-style computing
system.

Model abstraction Level of detail in
the model of a simulated micro-
processor component.

MSHR Miss Status Handling Regis-
ter.

Parops Parallelism Management Op-
erations.

Sequential section Code section in
a parallel application the instruc-
tions of which execute in sequen-
tial order regardless of whether
the application runs in parallel or
sequentially.

SIMD Single Instruction Multiple
Data.

SMT Simultaneaous Multithreading.

Target machine Machine modeled
in the simulator.

Timing model Model that predicts
the timing of an application run-
ning on the target machine.

Top500 Ranking of the 500 most per-
forming supercomputers.

VLIW Very Long Instruction Word.

121

Glossary Glossary

122

Bibliography

[1] FeS2: A Full-system Execution-driven Simulator for x86. http://fes2.
cs.uiuc.edu. Accessed: June, 12th 2013.

[2] GCC OpenMP Manual. http://gcc.gnu.org/onlinedocs/libgomp. Ac-
cessed: July 1st, 2013.

[3] Marenostrum supercomputer ii (2006) system architecture.
http://www.bsc.es/marenostrum-support-services/marenostrum-system-
architecture. Accessed: June, 13th 2013.

[4] Mercurium project website. https://pm.bsc.es/projects/mcxx.
Accessed: June 20th, 2013.

[5] Monte Carlo method. http://en.wikipedia.org/wiki/Monte_
Carlo_method. Accessed: June, 10th 2013.

[6] NANOS++ Official Website. https://pm.bsc.es/projects/
nanox. Accessed: June 20th, 2013.

[7] OpenMP 3.1 Specification. http://www.openmp.org/mp-
documents/OpenMP3.1.pdf. Accessed: June, 13th 2013.

[8] Power.org — Collaborative Innovation for Power Architecture. http:
//www.power.org.

[9] Spec cpu2006 results. http://www.spec.org/cpu2006/results.
Accessed: July 7th, 2013.

[10] SPEC Fair Use Rules. http://www.spec.org/fairuse.html. Ac-
cessed: 31 May 2013.

[11] Top500 Supercomputer Sites. http://www.top500.org.

[12] Synergistic Processor Unit Instruction Set Architecture. https:
//www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/
76CA6C7304210F3987257060006F2C44, 27 Jan. 2007.

[13] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero. The MPsim
Simulation Tool. Technical Report UPC-DAC-RR-2009-7, Universitat
Politècnica de Catalunya, Jan. 2009.

[14] Advanced Micro Devices. BIOS and Kernel Developer’s Guide (BKDG)
for AMD Family 15h Models 00h-0Fh Processors, Rev 3.08. Technical
report, 2012.

123

http://fes2.cs.uiuc.edu
http://fes2.cs.uiuc.edu
h
https://pm.bsc.es/projects/mcxx
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
https://pm.bsc.es/projects/nanox
https://pm.bsc.es/projects/nanox
http://www.power.org
http://www.power.org
http://www.spec.org/cpu2006/results
http://www.spec.org/fairuse.html
http://www.top500.org
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44

Bibliography Bibliography

[15] A. Agarwal and M. Huffman. Blocking: exploiting spatial locality for trace
compaction. In Proceedings of the 1990 ACM SIGMETRICS conference
on Measurement and modeling of computer systems, SIGMETRICS ’90,
pages 48–57, 1990.

[16] M. Alvarez, F. Cabarcas, A. Ramı́rez, C. Meenderinck, B. Juurlink, and
M. Valero. Scalability of Parallel Video Decoding on Heterogeneous Many-
core Architectures. Technical Report UPC-DAC-RR-CAP-2011-12, Uni-
versitat Politècnica de Catalunya, June 2011.

[17] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Necromancer: Enhancing
System Throughput by Animating Dead Cores. In Proceedings of the 37th
annual International Symposium on Computer Architecture, ISCA ’10,
pages 473–484, 2010.

[18] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega. COT-
Son: Infrastructure for Full System Simulation. SIGOPS Oper. Syst. Rev.,
43(1):52–61, 2009.

[19] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Archi-
tectures. In Proceedings of the 15th International Euro-Par Conference
on Parallel Processing, Euro-Par ’09, pages 863–874, 2009.

[20] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. A.
Penry, O. Temam, and N. Vachharajani. UNISIM: An Open Simulation
Environment and Library for Complex Architecture Design and Collabo-
rative Development. IEEE Comput. Archit. Lett., 6(2):45–48, July 2007.

[21] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for
Computer System Modeling. Computer, 35(2):59–67, 2002.

[22] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Balasubramonian,
and V. Srinivasan. Efficient Scrub Mechanisms for Error-Prone Emerg-
ing Memories. In Proceedings of the 2012 IEEE 18th International Sym-
posium on High-Performance Computer Architecture, HPCA ’12, pages
1–12, 2012.

[23] A. Azevedo and B. Juurlink. An Instruction to Accelerate Software
Caches. In Proceedings of the 24th international conference on Archi-
tecture of computing systems, ARCS’11, pages 158–170, 2011.

[24] R. M. Badia, J. Labarta, J. Gimenez, and F. Escal’e. DIMEMAS: Pre-
dicting MPI applications behavior in Grid environments. In GGF ’03:
Workshop on Grid Applications and Programming Tools, June 2003.

[25] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyz-
ing CUDA Workloads Using a Detailed GPU Simulator. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
ISPASS ’09, pages 163–174, 2009.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proceedings of the nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 164–177, 2003.

124

Bibliography Bibliography

[27] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and
J. C. Sancho. Entering the petaflop era: the architecture and performance
of Roadrunner. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 1:1–1:11, 2008.

[28] R. Bedichek. Simnow: Fast platform simulation purely in software. In
Hot Chips, volume 16, 2004.

[29] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Went-
zlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro,
J. Stickney, and J. Zook. TILE64 - Processor: A 64-Core SoC with Mesh
Interconnect. In Solid-State Circuits Conference, 2008. ISSCC 2008. Di-
gest of Technical Papers. IEEE International, pages 88–598, 2008.

[30] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: a Program-
ming Model for the Cell BE Architecture. In SC ’06: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, page 86, 2006.

[31] R. Bhargava, L. John, and F. Matus. Accurately Modeling Speculative
Instruction Fetching in Trace-Driven Simulation. In 1999 IEEE Interna-
tional Performance, Computing and Communications Conference, pages
65 –71, Feb. 1999.

[32] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings of
the 17th international conference on Parallel Architectures and Compila-
tion Techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008.

[33] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 Simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[34] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE
Micro, 26(4):52–60, 2006.

[35] B. Black, A. S. Huang, M. H. Lipasti, and J. P. Shen. Can Trace-Driven
Simulators Accurately Predict Superscalar Performance? In Proceedings
of the 1996 International Conference on Computer Design, VLSI in Com-
puters and Processors, ICCD ’96, pages 478–485, 1996.

[36] G. Black, N. Binkert, S. K. Reinhardt, and A. Saidi. Modular ISA-
Independent Full-System Simulation, chapter 5. Springer, 2010.

[37] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, et al. An updated
set of basic linear algebra subprograms (BLAS). ACM Transactions on
Mathematical Software (TOMS), 28(2):135–151, 2002.

[38] S. Borkar. Thousand Core Chips: A Technology Perspective. In Proceed-
ings of the 44th annual Design Automation Conference, DAC ’07, pages
746–749, 2007.

125

Bibliography Bibliography

[39] P. Bose. Integrated Modeling Challenges in Extreme-Scale Computing.
Keynote at ISPASS’11: International Symposium on Performance Analy-
sis of Systems and Software 2011, Apr. 2011.

[40] A. Bosque, P. Ibañez, V. Viñals, P. Stenström, and J. M. Llabeŕıa. Char-
acterization of Apache Web Server with Specweb2005. In Proceedings of
the 2007 workshop on MEmory performance: DEaling with Applications,
systems and architecture, MEDEA ’07, pages 65–72, 2007.

[41] M. Briejer, C. Meenderinck, and B. Juurlink. Extending the Cell SPE
with Energy Efficient Branch Prediction. In Proceedings of the 16th inter-
national Euro-Par conference on Parallel processing: Part I, EuroPar’10,
pages 304–315, 2010.

[42] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma, and M. Rosen-
field. New Methodology for Early-Stage, Microarchitecture-Level Power-
Performance Analysis of Microprocessors. IBM Journal of Research and
Development, 47(5.6):653–670, 2003.

[43] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 25(3):13–25, June 1997.

[44] M. Burrows and D. J. Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[45] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy Evaluation
of GEM5 Simulator System. In 7th International Workshop on Reconfig-
urable Communication-centric Systems-on-Chip, ReCoSoC ’12, pages 1–7,
2012.

[46] M. Butler, L. Barnes, D. Sarma, and B. Gelinas. Bulldozer: An Approach
to Multithreaded Compute Performance. Micro, IEEE, 31(2):6–15, 2011.

[47] F. Cabarcas, A. Rico, Y. Etsion, and A. Ramirez. Interleaving Granularity
on High Bandwidth Memory Architecture for CMPs. In International
Conference on Embedded Computer Systems, SAMOS ’10, pages 250–257,
2010.

[48] F. Cabarcas, A. Rico, A. Ramirez, Y. Etsion, C. Villavieja, A. J. Vega,
M. Pavlovic, A. Quesada, P. Bellens, R. M. Badia, and M. Valero. Castell:
A CMP architecture scalable to hundreds of processors. Technical Report
UPC-DAC-RR-CAP-2009-33, Universitat Politecnica de Catalunya, Nov.
2009.

[49] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and
E. Ayguadé. A module-based cell processor simulator. In Advanced Ad-
vanced Computer Architecture and Compilation for High-Performance and
Embedded Systems 2006 Poster Abstracts, ACACES ’06, pages 237–240,
July 2006.

[50] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and
E. Ayguadé. CellSim: A Cell Processor Simulation Infrastructure. In
Advanced Computer Architecture and Compilation for Embedded Systems
2007 Poster Abstracts, ACACES ’07, pages 279–282, July 2007.

126

Bibliography Bibliography

[51] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and
E. Ayguadé. CellSim: A Validated Modular Heterogeneous Multipro-
cessor Simulator. In XVIII Jornadas de Paralelismo (CEDI 2007: II
Congreso Espanol de Informática), JP ’07, pages 187–188, Sept. 2007.

[52] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the Level
of Abstraction for Scalable and Accurate Parallel Multi-Core Simulation.
In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 52:1–52:12,
2011.

[53] A. Carpenter, J. Hu, J. Xu, M. Huang, and H. Wu. A Case for Globally
Shared-Medium On-Chip Interconnect. In Proceedings of the 38th annual
International Symposium on Computer Architecture, ISCA ’11, pages 271–
282, 2011.

[54] P. Carpenter. Running Stream-like Programs on Heterogeneous Multi-core
Systems. PhD thesis, Universitat Politècnica de Catalunya, 2011.

[55] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and
the Chapel Language. Int. J. High Perform. Comput. Appl., 21(3):291–
312, 2007.

[56] J. Chaoui, K. Cyr, J.-P. Giacalone, S. de Gregorio, Y. Masse,
Y. Muthusamy, T. Spits, M. Budagavi, and J. Webb. OMAP: Enabling
Multimedia Applications in Third Generation (3G) Wireless Terminals.
White Paper, Texas Instruments, Dec. 2000.

[57] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an Object-Oriented Approach to Non-
Uniform Cluster Computing. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, pages 519–538, 2005.

[58] J. Chen, M. Annavaram, and M. Dubois. SlackSim: a Platform for Parallel
Simulations of CMPs on CMPs. SIGARCH Comput. Archit. News, 37:20–
29, July 2009.

[59] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois. Adap-
tive and Speculative Slack Simulations of CMPs on CMPs. In Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’43, pages 523–534, 2010.

[60] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry,
V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos. Flexible Hard-
ware Acceleration for Instruction-Grain Program Monitoring. In Proceed-
ings of the 35th Annual International Symposium on Computer Architec-
ture, ISCA ’08, pages 377–388, 2008.

[61] C. Ciobanu, G. Kuzmanov, G. Gaydadjiev, and A. Ramirez. A Polymor-
phic Register File for Matrix Operations. In International Conference on
Embedded Computer Systems, SAMOS ’10, pages 241–249, 2010.

127

Bibliography Bibliography

[62] C. B. Ciobanu, X. Martorell, G. K. Kuzmanov, A. Ramirez, and G. N.
Gaydadjiev. Scalability Evaluation of A Polymorphic Register File: A
CG Case Study. In Proceedings of the 24th International Conference on
Architecture of Computing Systems, ARCS’11, pages 13–25, 2011.

[63] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and M. Quin-
son. Single Node On-Line Simulation of MPI Applications with SMPI.
In 2011 IEEE International Parallel Distributed Processing Symposium,
IPDPS ’11, pages 664–675, 2011.

[64] R. Desikan, D. Burger, and S. W. Keckler. Measuring Experimental Error
in Microprocessor Simulation. In ISCA ’01: Proceedings of the 28th An-
nual International Symposium on Computer Architecture, pages 266–277,
2001.

[65] L. P. Deutsch. DEFLATE Compressed Data Format Specification version
1.3. http://tools.ietf.org/html/rfc1951, 1996.

[66] J. Donald and M. Martonosi. An Efficient, Practical Parallelization
Methodology for Multicore Architecture Simulation. IEEE Comput. Ar-
chit. Lett., 5(2):14, 2006.

[67] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:
past, present and future. Concurrency and Computation: Practice and
Experience, 15(9):803–820, 2003.

[68] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. Ompss: a Proposal for Programming Heteroge-
neous Multi-Core Architectures. Parallel Processing Letters, 21(2):173–
193, 2011.

[69] A. Duran, J. Corbalán, and E. Ayguadé. An adaptive cut-off for task
parallelism. In Proceedings of the 2008 ACM/IEEE conference on Super-
computing, SC ’08, pages 36:1–36:11, 2008.

[70] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of OpenMP Task
Scheduling Strategies. In Proceedings of the 4th international conference
on OpenMP in a new era of parallelism, IWOMP’08, pages 100–110, 2008.

[71] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A Multiprocessor SOC
for Advanced Set-Top Box and Digital TV Systems. IEEE Des. Test,
18(5):21–31, 2001.

[72] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere. Statistical
Simulation: Adding Efficiency to the Computer Designer’s Toolbox. Mi-
cro, IEEE, 23(5):26–38, 2003.

[73] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Designing Com-
puter Architecture Research Workloads. Computer, 36(2):65–71, 2003.

[74] Enciclopedia Britannica. Microprocessor. http://global.
britannica.com/EBchecked/topic/380548/microprocessor.
Accessed: June 6th, 2013.

128

http://tools.ietf.org/html/rfc1951
http://global.britannica.com/EBchecked/topic/380548/microprocessor
http://global.britannica.com/EBchecked/topic/380548/microprocessor

Bibliography Bibliography

[75] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero. Task Superscalar: An Out-of-Order Task
Pipeline. In Proceedings of the 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’10, pages 89–100, 2010.

[76] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
Proceedings of the 2005 USENIX Annual Technical Conference, Apr. 2005.

[77] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Se-
quoia: Programming the Memory Hierarchy. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, SC ’06, page 83, 2006.

[78] E. Fernández Abeledo. Implementation of Nexus: Dynamic Hardware
Management Support for Multicore Platforms. Master’s thesis, Delft Uni-
versity of Technology, 2010.

[79] M. Floyd, M. Ware, K. Rajamani, T. Gloekler, B. Brock, P. Bose,
A. Buyuktosunoglu, J. Rubio, B. Schubert, B. Spruth, J. Tierno,
and L. Pesantez. Adaptive Energy-Management Features of the IBM
POWER7 Chip. IBM Journal of Research and Development, 55(3):8:1–
8:18, 2011.

[80] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the
Cilk-5 Multithreaded Language. In Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation,
PLDI ’98, pages 212–223, 1998.

[81] V. Garcia, A. Rico, C. Villavieja, N. Navarro, and A. Ramirez. The Data
Transfer Engine: Towards a Software Controlled Memory Hierarchy. In
Advanced Computer Architecture and Compilation for Embedded Systems
2012 Poster Abstracts, ACACES ’12, pages 215–218, July 2012.

[82] J. Gee and A. Smith. Analysis of multiprocessor memory reference behav-
ior. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors, ICCD ’94, pages 53–59, 1994.

[83] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval Simulation: Raising
the Level of Abstraction in Architectural Simulation. In HPCA ’10: Pro-
ceedings of the 16th IEEE International Symposium on High-Performance
Computer Architecture, pages 1–12, Jan. 2010.

[84] R. Giorgi, Z. Popovic, and N. Puzovic. Exploiting DMA to enable non-
blocking execution in Decoupled Threaded Architecture. In IEEE Interna-
tional Symposium on Parallel Distributed Processing, IPDPS 2009, pages
1–8, 2009.

[85] R. Giorgi, Z. Popovic, and N. Puzovic. Implementing Fine/Medium
Grained TLP Support in a Many-Core Architecture. In Proceedings of
the 9th International Workshop on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, SAMOS ’09, pages 78–87, 2009.

129

Bibliography Bibliography

[86] R. Giorgi, Z. Popovic, and N. Puzovic. Introducing Hardware TLP Sup-
port in the Cell Processor. In International Conference on Complex, In-
telligent and Software Intensive Systems, CISIS ’09, pages 657–662, 2009.

[87] R. Giorgi, N. Puzovic, and Z. Popovic. Implementing DTA support in
CellSim. In Advanced Computer Architecture and Compilation for Em-
bedded Systems 2008 Poster Abstracts, ACACES ’08, July 2008.

[88] S. R. Goldschmidt and J. L. Hennessy. The accuracy of trace-driven simu-
lations of multiprocessors. In Proceedings of the 1993 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, SIGMET-
RICS ’93, pages 146–157, 1993.

[89] J. Gonzalez, J. Gimenez, M. Casas, M. Moreto, A. Ramirez, J. Labarta,
and M. Valero. Simulating Whole Supercomputer Applications. IEEE
Micro, 31(3):32–45, 2011.

[90] C. Gou, G. Kuzmanov, and G. N. Gaydadjiev. SAMS multi-layout mem-
ory: providing multiple views of data to boost SIMD performance. In
Proceedings of the 24th ACM International Conference on Supercomput-
ing, ICS ’10, pages 179–188, 2010.

[91] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen,
J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk. SimFlex: a Fast,
Accurate, Flexible Full-System Simulation Framework for Performance
Evaluation of Server Architecture. SIGMETRICS Perform. Eval. Rev.,
31(4):31–34, 2004.

[92] S. A. Herrod. Tango Lite: A Multiprocessor Simulation Environment,
Introduction and User’s Guide. http://www-flash.stanford.edu/
herrod/docs/tango-lite.ps, 1993.

[93] M. Hsieh, K. Pedretti, J. Meng, A. Coskun, M. Levenhagen, and A. Ro-
drigues. SST + gem5 = A Scalable Simulation Infrastructure for High
Performance Computing. In Proceedings of the 5th International ICST
Conference on Simulation Tools and Techniques, SIMUTOOLS ’12, pages
196–201, 2012.

[94] X. Huang, X. Fan, S. Zhang, and L. Shi. Investigation on Multi-Grain
Parallelism in Chip Multiprocessor for Multimedia Application. In Inter-
national Conference on Information Engineering and Computer Science,
ICIECS 2009, pages 1–4, 2009.

[95] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A, 3B, and 3C: System Programming Guide, Parts 1
and 2. Technical report, 2011.

[96] S. Isaza, F. Sanchez, F. Cabarcas, A. Ramirez, and G. Gaydadjiev.
Parametrizing Multicore Architectures for Multiple Sequence Alignment.
In Proceedings of the 8th ACM International Conference on Computing
Frontiers, CF ’11, pages 31:1–31:10, 2011.

130

http://www-flash.stanford.edu/herrod/docs/tango-lite.ps
http://www-flash.stanford.edu/herrod/docs/tango-lite.ps

Bibliography Bibliography

[97] A. Jaleel, R. S. Cohn, C.-k. Luk, and B. Jacob. CMP$im: A Binary
Instrumentation Approach to Modeling Memory Behavior of Workloads
on CMPs. Technical Report UMDSCA-2006-01, Intel, 2006.

[98] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: a Pin-based On-
the-fly Multi-core Cache Simulator. In Proceedings of the Fourth Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS), co-located
with ISCA, pages 28–36, 2008.

[99] D. R. Jefferson and H. A. Sowizral. Fast concurrent simulation using the
Time Warp mechanism, part I: Local control. Rand Note N-1906AF, the
Rand Corp., Santa Monica, CA, Dec. 1982.

[100] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. Introduction to the Cell multiprocessor. IBM Journal of
Research and Development, 49(4-5):589–604, July 2005.

[101] L. V. Kale and S. Krishnan. Charm++: a portable concurrent object
oriented system based on C++. SIGPLAN Not., 28(10):91–108, 1993.

[102] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor
Model. In Proceedings of the 31st annual International Symposium on
Computer Architecture, ISCA ’04, pages 338–, 2004.

[103] C. D. Kersey, A. Rodrigues, and S. Yalamanchili. A Universal Parallel
Front-end for Execution Driven Microarchitecture Simulation. In Pro-
ceedings of the 2012 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO ’12, pages 25–32, 2012.

[104] A. KleinOsowski and D. Lilja. MinneSPEC: A New SPEC Benchmark
Workload for Simulation-Based Computer Architecture Research. Com-
puter Architecture Letters, 1(1):7–7, 2002.

[105] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the Validity of Trace-
driven Simulation for Multiprocessors. In Proceedings of the 18th Annual
International Symposium on Computer Architecture, ISCA ’91, pages 244–
253, 1991.

[106] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz.
RAMP Blue: A Message-Passing Manycore System in FPGAs. In In-
ternational Conference on Field Programmable Logic and Applications,
2007, FLP ’07, pages 54–61, 2007.

[107] J. R. Larus. Abstract execution: a technique for efficiently tracing pro-
grams. Softw. Pract. Exper., 20(12):1241–1258, Nov. 1990.

[108] H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, and S. Cho. Two-phase
trace-driven simulation (TPTS): a fast multicore processor architecture
simulation approach. Softw. Pract. Exper., 40:239–258, Mar. 2010.

[109] K. Lee, S. Evans, and S. Cho. Accurately approximating superscalar
processor performance from traces. In IEEE International Symposium on
Performance Analysis of Systems and Software, 2009, ISPASS’09, pages
238–248, Apr. 2009.

131

Bibliography Bibliography

[110] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: an Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 42, pages 469–480, 2009.

[111] G. Loh, S. Subramaniam, and Y. Xie. Zesto: A Cycle-Level Simulator for
Highly Detailed Microarchitecture Exploration. In IEEE International
Symposium on Performance Analysis of Systems and Software, 2009, IS-
PASS 2009, pages 53–64, 2009.

[112] D. Ludovici and G. Gaydadjiev. SARC Power Estimation Methodology.
In Proceedings of the 18th Annual Workshop on Circuits, Systems and
Signal Processing, Nov. 2007.

[113] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Janapa, and R. K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Programming Language
Design and Implementation, PLDI ’05, pages 190–200, 2005.

[114] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full
System Simulation Platform. IEEE Computer, 35(2):50–58, 2002.

[115] M. Martin, M. Hill, and D. Wood. Token Coherence: Decoupling Per-
formance and Correctness. In 30th Annual International Symposium on
Computer Architecture, ISCA ’30, pages 182–193, 2003.

[116] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset.
SIGARCH Comput. Archit. News, 33(4):92–99, 2005.

[117] C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez Mesa, and
A. Ramirez. Parallel Scalability of Video Decoders. J. Signal Process.
Syst., 57(2):173–194, Nov.

[118] C. Meenderinck and B. Juurlink. A Chip MultiProcessor Accelerator for
Video Decoding. In Proceedings 19th Annual Workshop on Circuits, Sys-
tems and Signal Processing, Nov. 2008.

[119] C. Meenderinck and B. Juurlink. Nexus: Hardware Support for Task-
Based Programming. In 14th Euromicro Conference on Digital System
Design, DSD ’11, pages 442–445, 2011.

[120] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A Distributed Parallel Simulator for
Multicores. In High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pages 1–12, 2010.

[121] J. E. Miller, H. Kasture, G. Kurian, N. Beckmann, C. G. III, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A Distributed Parallel Simulator for
Multicores. Technical Report MIT-CSAIL-TR-2009-056, Massachusetts
Institute of Technology, Nov. 2009.

132

Bibliography Bibliography

[122] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Faraboschi. How
to simulate 1000 cores. SIGARCH Comput. Archit. News, 37(2):10–19,
July 2009.

[123] G. Moore. Progress in digital integrated electronics. In International
Electron Devices Meeting, volume 21, pages 11–13, 1975.

[124] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), 19 Apr. 1965.

[125] M. Moudgill. Techniques for Implementing Fast Processor Simulators. In
Proceedings of the The 31st Annual Simulation Symposium, SS ’98, pages
83–, 1998.

[126] M. Moudgill, P. Bose, and J. Moreno. Validation of Turandot, a Fast
Processor Model for Microarchitecture Exploration. In IPCCC’99: IEEE
International Performance, Computing and Communications Conference,
pages 451–457, Feb. 1999.

[127] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environment for PowerPC
Microarchitecture Exploration. IEEE Micro, 19(3):15–25, May 1999.

[128] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, M. D. Hill, D. A.
Wood, S. Huss-Lederman, and J. R. Larus. Wisconsin Wind Tunnel II:
A Fast, Portable Parallel Architecture Simulator. IEEE Concurrency,
8:12–20, Oct. 2000.

[129] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Understanding
the effects of wrong-path memory references on processor performance.
In Proceedings of the 3rd workshop on Memory performance issues: in
conjunction with the 31st International Symposium on Computer Archi-
tecture, WMPI ’04, pages 56–64, 2004.

[130] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementation,
PLDI ’07, pages 89–100, 2007.

[131] S. Nussbaum and J. Smith. Modeling Superscalar Processors Via Statisti-
cal Simulation. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 2001, PACT ’01, pages 15–24,
2001.

[132] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor. In Proceedings of the Seventh Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS VII, pages 2–11, 1996.

[133] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: a full system simula-
tor for multicore x86 CPUs. In Proceedings of the 48th Design Automation
Conference, DAC ’11, pages 1050–1055, 2011.

[134] M. Pavlovic, Y. Etsion, and A. Ramirez. Can Manycores Support the
Memory Requirements of Scientific Applications? In A4MMC’10: 1st
Workshop on Applications for Multi and Many Core Processors, 2010.

133

Bibliography Bibliography

[135] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder. Using SimPoint for Accurate and Efficient Simulation. In
Proceedings of the 2003 ACM SIGMETRICS international conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’03,
pages 318–319, 2003.

[136] J. M. Perez, R. M. Badia, and J. Labarta. A Dependency-Aware Task-
Based Programming Environment for Multi-Core Architectures. In Pro-
ceedings of the 2008 IEEE International Conference on Cluster Comput-
ing, pages 142–151, Sept. 2008.

[137] J. Preshing. A Look Back at Single-Threaded CPU
Performance. http://preshing.com/20120208/
a-look-back-at-single-threaded-cpu-performance, 8
Feb. 2012. Accessed: 31 February 2013.

[138] T. R. Puzak. Analysis of Cache Replacement Algorithms. PhD thesis,
1985. AAI8509594.

[139] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez. Tibid-
abo: Making the Case for an ARM-Based HPC System. Future Generation
Computing Systems, 2013. Accepted for publication.

[140] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and A. Ramirez.
Experiences with Mobile Processors for Energy Efficient HPC. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
DATE ’13, pages 464–468, 2013.

[141] A. Ramirez, F. Cabarcas, B. Juurlink, A. Mesa, F. Sanchez, A. Azevedo,
C. Meenderinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev. The SARC
Architecture. Micro, IEEE, 30(5):16–29, 2010.

[142] A. Ramirez, A. Rico, and F. Cabarcas. CellSim: a Modular Simulator for
Heterogeneous Chip Multiprocessors. http://pcsostres.ac.upc.
edu/cellsim/doku.php#cellsim_tutorial_documentation,
15 Sept. 2007. Full-day tutorial at Parallel Architectures and Compilation
Techniques (PACT) 2007.

[143] L. Rauchwerger, P. K. Dubey, and R. Nair. Measuring Limits of Paral-
lelism and Characterizing its Vulnerability to Resource Constraints. In
Proceedings of the 26th Annual International Symposium on Microarchi-
tecture, MICRO 26, pages 105–117, 1993.

[144] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[145] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC simulator. http://sesc.
sourceforge.net, Jan. 2005.

[146] A. Rico, F. Cabarcas, A. Quesada, M. Pavlovic, A. J. Vega, C. Villavieja,
Y. Etsion, and A. Ramirez. Scalable Simulation of Decoupled Accelera-
tor Architectures. Technical Report UPC-DAC-RR-2010-14, Universitat
Politècnica de Catalunya, June 2010.

134

http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance
http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance
http://pcsostres.ac.upc.edu/cellsim/doku.php#cellsim_tutorial_documentation
http://pcsostres.ac.upc.edu/cellsim/doku.php#cellsim_tutorial_documentation
http://sesc.sourceforge.net
http://sesc.sourceforge.net

Bibliography Bibliography

[147] A. Rico, F. Cabarcas, D. Rodenas, X. Martorell, A. Ramirez, and
E. Ayguadé. Implementation and validation of a Cell simulator (Cell-
sim) using UNISIM. In 3rd HiPEAC Industrial Workshop on Compilers
and Architectures, Apr. 2007.

[148] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, and M. Valero. On the Simulation of Large-Scale Architec-
tures Using Multiple Application Abstraction Levels. ACM Trans. Archit.
Code Optim., 8(4):36:1–36:20, 2012.

[149] A. Rico, J. H. Derby, R. K. Montoye, T. H. Heil, C.-Y. Cher, and P. Bose.
Performance and Power Evaluation of an In-line Accelerator. In Proceed-
ings of the 2010 ACM International Conference on Computing Frontiers,
CF’10, pages 81–82, May 2010.

[150] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero.
Trace-driven Simulation of Multithreaded Applications. In Proceedings of
the IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS ’11, pages 87–96, Apr. 2011.

[151] A. Rico, A. Duran, A. Ramirez, and M. Valero. Simulating Dynamically-
Scheduled Multithreaded Applications Using Traces. IEEE Micro. Sub-
mitted for publication.

[152] A. Rico, A. Ramirez, and M. Valero. Task Management Analysis on the
Cell BE. In XIX Jornadas de Paralelismo, JP ’08, pages 271–276, Sept.
2008.

[153] A. Rico, A. Ramirez, and M. Valero. Available Task-level Parallelism on
the Cell BE. Scientific Programming, 17(1-2):59–76, 2009.

[154] A. Rico, A. Ramirez, and M. Valero. Trace Filtering of Multithreaded
Applications for CMP Memory Simulation. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware, ISPASS ’13, pages 134–135, Apr. 2013.

[155] F. Ryckbosch, S. Polfliet, and L. Eeckhout. VSim: Simulating Multi-
Server Setups at Near Native Hardware Speed. ACM Trans. Archit. Code
Optim., 8(4):52:1–52:20, 2012.

[156] A. D. Samples. Mache: no-loss trace compaction. In Proceedings of the
1989 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, SIGMETRICS ’89, pages 89–97, 1989.

[157] F. Sanchez, F. Cabarcas, A. Ramirez, and M. Valero. Scalable Multicore
Architectures for Long DNA Sequence Comparison. Concurr. Comput. :
Pract. Exper., 23(17):2205–2219, Dec. 2011.

[158] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor,
and X. Wu. Performance Projection of HPC Applications Using SPEC
CFP2006 Benchmarks. In Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, IPDPS ’09, pages 1–12,
2009.

135

Bibliography Bibliography

[159] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In Proceedings of the 10th
international conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS X, pages 45–57, 2002.

[160] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache tim-
ing, power, and area model. Technical report, Technical Report 2001/2,
Compaq Computer Corporation, 2001.

[161] A. Srivastava and A. Eustace. ATOM: a system for building customized
program analysis tools. In Proceedings of the ACM SIGPLAN 1994 con-
ference on Programming Language Design and Implementation, PLDI ’94,
pages 196–205, 1994.

[162] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson,
and K. Asanovic. RAMP gold: An FPGA-based Architecture Simulator
for Multiprocessors. In 47th ACM/IEEE Design Automation Conference
(DAC), 2010, DAC ’10, pages 463–468, 2010.

[163] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, and
J. Labarta. A High-Productivity Task-Based Programming Model for
Clusters. Concurr. Comput. : Pract. Exper., 24(18):2421–2448, Dec. 2012.

[164] M. M. Tikir, M. A. Laurenzano, L. Carrington, and A. Snavely. PSINS: An
Open Source Event Tracer and Execution Simulator for MPI Applications.
In Proceedings of the 15th International Euro-Par Conference on Parallel
Processing, Euro-Par ’09, pages 135–148, 2009.

[165] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithread-
ing: Maximizing On-Chip Parallelism. In Proceedings of the 22nd annual
international symposium on Computer architecture, ISCA ’95, pages 392–
403, 1995.

[166] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez. Multi2Sim: A Simulation
Framework to Evaluate Multicore-Multithreaded Processors. In 19th In-
ternational Symposium on Computer Architecture and High Performance
Computing, 2007, SBAC-PAD ’07, pages 62–68, 2007.

[167] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a survey.
ACM Comput. Surv., 29:128–170, June 1997.

[168] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Sim-
ulation of Shared-Memory Multiprocessors. In Proceedings of the Second
International Workshop on Modeling, Analysis, and Simulation On Com-
puter and Telecommunication Systems, MASCOTS ’94, pages 201–207,
1994.

[169] A. Vega, F. Cabarcas, A. Ramirez, and M. Valero. Breaking the Band-
width Wall in Chip Multiprocessors. In International Conference on Em-
bedded Computer Systems, SAMOS ’11, pages 255–262, 2011.

[170] A. Vega, A. Rico, F. Cabarcas, A. Ramı́rez, and M. Valero. Compar-
ing Last-level Cache Designs for CMP Architectures. In Proceedings of
the Second International Forum on Next-Generation Multicore/Manycore
Technologies, IFMT ’10, pages 2:1–2:11, 2010.

136

Bibliography Bibliography

[171] N. Vujic, F. Cabarcas, M. Gonzalez Tallada, A. Ramirez, X. Martorell,
and E. Ayguade. DMA++: On the Fly Data Realignment for On-Chip
Memories. IEEE Transactions on Computers, 61(2):237–250, 2012.

[172] D. W. Wall. Limits of instruction-level parallelism. In Proceedings of
the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS IV, pages 176–188,
1991.

[173] W.-H. Wang and J.-L. Baer. Efficient trace-driven simulation method
for cache performance analysis. In Proceedings of the 1990 ACM SIG-
METRICS conference on Measurement and modeling of computer systems,
SIGMETRICS ’90, pages 27–36, 1990.

[174] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C. Hoe,
D. Chiou, and K. Asanovic. RAMP: Research Accelerator for Multiple
Processors. IEEE Micro, 27(2):46–57, 2007.

[175] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. Tur-
boSMARTS: Accurate Microarchitecture Simulation Sampling in Minutes.
In Proceedings of the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, SIGMETRICS ’05,
pages 408–409, 2005.

[176] Wikipedia. Microprocessor. http://en.wikipedia.org/wiki/
Microprocessor, 2013. Accessed: June 6th, 2013.

[177] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating Microarchitecture Simulation Via Rigorous Statistical Sam-
pling. In Proceedings of the 30th annual International Symposium on
Computer Architecture, ISCA ’03, pages 84–97, 2003.

[178] G. Yan, X. Liang, Y. Han, and X. Li. Leveraging the Core-Level Com-
plementary Effects of PVT Variations to Reduce Timing Emergencies in
Multi-Core Processors. In Proceedings of the 37th annual International
Symposium on Computer Architecture, ISCA ’10, pages 485–496, 2010.

[179] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characterizing
and Comparing Prevailing Simulation Techniques. In 11th International
Symposium on High-Performance Computer Architecture, 2005, HPCA
’11, pages 266–277, 2005.

[180] J. J. Yi, L. Eeckhout, D. J. Lilja, B. Calder, L. K. John, and J. E. Smith.
The Future of Simulation: A Field of Dreams. Computer, 39(11):22–29,
Nov. 2006.

[181] M. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchi-
tectural Simulator. In IEEE International Symposium on Performance
Analysis of Systems Software 2007, ISPASS ’07, pages 23–34, 2007.

[182] R. Zhong, Y. Zhu, W. Chen, M. Lin, and W.-F. Wong. An Inter-Core
Communication Enabled Multi-Core Simulator Based on SimpleScalar. In
21st International Conference on Advanced Information Networking and
Applications Workshops, 2007, volume 1 of AINAW ’07, pages 758–763,
2007.

137

http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Microprocessor

Bibliography Bibliography

[183] P. Zhu, M. Chen, Y. Bao, L. Chen, and Y. Huang. Trace-driven Simulation
of Memory System Scheduling in Multithread Application. In Proceedings
of the 2012 ACM SIGPLAN Workshop on Memory Systems Performance
and Correctness, MSPC ’12, pages 30–37, 2012.

138

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.1.1 Chip Multiprocessors
	1.1.2 Chip Multiprocessor Simulation
	1.1.3 The Simulation Speed Gap

	1.2 Thesis contributions
	1.3 Timeline
	1.4 Thesis Organization

	2 Background
	2.1 CellSim
	2.1.1 The Cell/B.E. Microprocessor
	2.1.2 CellSim Design
	2.1.3 Lessons Learned

	2.2 TaskSim
	2.2.1 CycleSim
	2.2.2 Modules and Configurations

	2.3 Trace- vs Execution-driven Simulation
	2.3.1 Host System Requirements
	2.3.2 Dynamic Behavior Support
	2.3.3 Modeling Abstraction
	2.3.4 Restricted-Access Applications
	2.3.5 Speculation Modeling
	2.3.6 Development Effort
	2.3.7 Summary

	2.4 Simulation Time Reduction
	2.4.1 Reduced Setup or Input Set
	2.4.2 Truncated Execution
	2.4.3 Statistical Simulation
	2.4.4 Sampling
	2.4.5 Parallelization
	2.4.6 FPGA Acceleration

	2.5 Chip Multiprocessor Simulators
	2.5.1 Simplescalar and Derivatives
	2.5.2 Simics and Derivatives
	2.5.3 M5/gem5
	2.5.4 Graphite
	2.5.5 TPTS - Filtered Traces
	2.5.6 Others

	2.6 Simulation in Major Conferences
	2.6.1 Simulation Types
	2.6.2 Simulated Machine Size
	2.6.3 Simulators

	2.7 Task-Based Programming Models
	2.7.1 OmpSs

	3 Simulating Multithreaded Applications Using Traces
	3.1 Problem
	3.2 State of the art
	3.3 Methodology
	3.3.1 Tracing
	3.3.2 Simulation Infrastructure
	3.3.3 Simulation Process

	3.4 Implementation
	3.4.1 Instrumentation
	3.4.2 Runtime Integration
	3.4.3 Simulation Example

	3.5 Experiments
	3.6 Coverage
	3.7 Summary

	4 Multiple Levels of Abstraction
	4.1 State of the art
	4.2 Application Representation Abstraction
	4.3 Model Abstraction
	4.3.1 Burst Mode
	4.3.2 Inout Mode
	4.3.3 Mem Mode
	4.3.4 Instr Mode
	4.3.5 Summary

	4.4 Speed-Detail Trade-Off
	4.5 Evaluation
	4.5.1 Application Scalability using Burst
	4.5.2 Accelerator Architectures using Inout
	4.5.3 Memory System using Mem

	4.6 Summary

	5 Trace Filtering of Multithreaded Applications
	5.1 Problem
	5.2 State of the Art
	5.3 Methodology
	5.4 Implementation
	5.4.1 Sample implementation

	5.5 Evaluation
	5.5.1 Trace Size
	5.5.2 Trace Generation Time
	5.5.3 Simulation Accuracy
	5.5.4 Simulation Speedup

	5.6 Limitations
	5.7 Summary

	6 Modeling the Runtime System Timing
	6.1 Problem
	6.2 Runtime Analysis
	6.3 Runtime Modeling
	6.4 Evaluation
	6.5 Discussion
	6.6 Summary

	7 Conclusions
	7.1 Contributions and Publications
	7.2 Impact
	7.2.1 Our Related Work
	7.2.2 Other Works using Our Work
	7.2.3 Our Non-Related Work

	7.3 Future Work

	Glossary
	Bibliography

