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and professional help at work; The previous, Soňa Pallayová and their families for
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Enhanced Applicability of Loop
Transformations

Summary

Data transfers and storage of large arrays in background memories are dom-
inating contributors to the chip area and power consumption of all modern
multimedia embedded systems. Modern high-level memory optimizations

contribute to the cost-efficient realization of these systems. In these optimizations
an important step involves loop transformations across the global program scope.
These transformations can be performed on a geometrical model extracted from the
program. The geometrical model captures all the memory access dependencies in
the program. Loop transformations in general modify the order in which the itera-
tions and statements within a loop body are executed. This could be beneficial for
different reasons such as enabling more parallelism or improving locality of the ac-
cessed data.

Due to the limitations of current geometrical models, the applicability of the transfor-
mations is limited. In this dissertation, we propose several applicability-enhancing
techniques for loop transformations. First, hierarchical rewriting separates and en-
capsulates the details of the application into functions, reducing the complexity of
the problem by hiding undesired constructs.

Second, we instantiate and extend the scenario technique for loop transformations.
A scenario is defined as a selected set of paths in the program which we choose
to exploit in the same way. A careful exploitation of scenario information, similar to
inlining, path predication or hyperblock creation, can significantly enlarge the explo-
ration space for optimizations. Unlike path predication or inlining, however it can
work across several conditional branches, merge several condition bodies, and still
control the exponential code explosion. Applying scenarios introduces several trade-
offs. The most obvious is that of code duplication vs. more optimizations (similar to
tail duplication during hyperblock creation) when additional loop transformations
are enabled by scenario usage.

The exploration space of the scenario creation technique grows exponentially with
the number of paths in the control-flow graph of the application. In this dissertation
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we propose several heuristics for the scenario creation technique. These heuristics
have different time requirements and accuracy limitations. Thus the designer has the
possibility to choose the heuristic based on his time and accuracy constraints and the
size of the problem.

In addition, most current (global scope) loop optimizations target the best solution
for locality. In this dissertation we show that targeting the best solution for locality is
not necessarily optimal for a particular platform instance, and that trade-offs should
be involved during loop transformations when the platform is unknown. This dis-
sertation provides real-life examples of trade-offs during loop transformations and
gives an overview of the joint research work in high-lever estimators for loop trans-
formations which will make the loop transformations trade-off oriented.
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CHAPTER 1

Introduction
Nil tam difficile est quin quaerendo investigari possiet.

Publius Afer Terentius
(185BC-159BC)

Nowadays, electronic devices are ubiquitous in the world around us. An elec-
tronic device can be found nearly in any gadget we take in our hands these
days. Handheld devices such as mobile phones, smart phones, handheld

television, personal digital assistants (PDA)s and global positioning system (GPS)
devices are working in urban areas, on the countryside, when traveling by car at
120 km/h or walking slowly 4km/h. The capturing devices such as digital cameras
support different resolutions and can capture and encode both, slowly and rapidly
moving objects.

These devices have to work independently on the environment, e.g., urban areas or
the countryside, 120km/h or 4km/h, in which they are present. This results in the
existence of a lot of different standards which are suited for different environments
and have to be integrated into one device. Embedded programmable processors,
whose software can be changed, aim to be cost effective and flexible solution for
current challenges compared to traditional hardware-only approach using Applica-
tion Specific Integrated Circuit (ASIC)s. They should be also much more power and
performance effective for a given application domain compared to general purpose
processors.

The specification of an application for embedded programmable processor is usually
written in a high-level programming language. In the past the application was di-
rectly hand-written in the machine language or translated directly from a high-level
language using a standard compiler. Nowadays, the strict development time con-
straints due to decreased time to market does not allow to hand-write the machine
code. Unfortunately, current compilers do not produce machine code with the same
quality as hand-written machine language.



2 Introduction

To bridge the gap between high-quality hand-written machine language and code
produced by the compiler source-to-source transformations exist. They perform
high-level optimizations improving the quality of the source code resulting also in
more power and performance effective translated code.

An important part of these high-level optimizations are Loop Transformations (LT).
However, these transformations are not always applicable in the context of modern
embedded systems with a lot of control-flow and trade-offs involved. This disserta-
tion aims at solving the applicability problem of LT. It proposes three independent
techniques enhancing the applicability of LT in the context of modern embedded
systems. The synergetic effect can be achieved by combining these techniques.

This chapter provides an introduction to the application domain targeted in this dis-
sertation, the embedded system virtual platform used, and challenges in current
source-to-source transformation techniques. Section 1.1 presents the application do-
main description. Section 1.2 discusses the embedded system platform description
focusing on the memory hierarchy subsystem. Section 1.3 introduces the design flow
used in this dissertation. Then it defines the problem statement and objective and
the contributions of this dissertation, all supported by an illustrative example. At
the end of this chapter a thesis overview is provided.

1.1 Application domain description

The main application target domain of this dissertation consists of embedded data-
dominated applications, i.e., applications which deal with large amounts of data and
data transfers. We can subdivide this target domain into three classes: multimedia
applications, front-end telecommunication applications and network component ap-
plications [28]. In this dissertation we focus on multimedia applications which have
the following main features [28]:

• Deep and large loop nests. Multimedia applications typically contain many
deep and large loop nests for processing the multidimensional data. Due to
the rectangular shape of images and video streams, the loop bounds are often
constant or manifest, i.e., only dependent on the enclosing loop iterators. The
loops are typically quite irregularly nested though.

• Mostly manifest affine loop bounds, conditions and array indices. Manifest
means that they are a function of the enclosing loop iterators only. Affine
means that this function is a linear combination of these loop iterators and a
constant. However, more and more recent multimedia applications also con-
tain data dependent conditions and indexing, and while loops. This is not
reflected in the state-of-the-art design methodologies for multimedia applica-
tions and it is one of the major topics of this dissertation.

• Multidimensional arrays. Multimedia applications mainly work on multidi-
mensional arrays of data. Also large one-dimensional arrays are often en-
countered. Often, the multidimensional arrays are already linearized to a one-
dimensional array.
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• Statically allocated data. Most data is statically allocated. Its exact storage lo-
cation can be optimized at compile time. Also this is starting to change, espe-
cially in emerging newer multimedia algorithms. These new algorithms have,
besides of the data that is statically allocated, i.e., the data which is analyzable
at design time, also the data that is dynamically allocated at run time. This
results in the mixed case where both, statically and dynamically allocated data
are within a single application. However, the mixed case is a topic of future
research and it is not covered in this dissertation. We only deal with the pieces
of the code that have fully statically allocated data.

• Temporary data. Most of the data is temporary, only alive during one or at
most a few iterations of the algorithm. When the data is not alive anymore, the
memory space where it was located can be reused and it can be overwritten by
other data.

• Real-time behavior with a form of periodic behavior. Multimedia applications
typically have to satisfy soft real-time constraints. They encode or decode the
input image stored in multidimensional arrays in the time loop. A time loop
is a loop within which a video or audio frame is encoded or decoded. The
time loop starts when the first frame is encoded/decoded and ends when the
last frame is encoded/decoded. Its loop trip count depends on the number of
frames in the encoded/decoded sequence. This designates the application to
have a form of periodic behavior.

To demonstrate the described features on real-life applications, in the sequel we
briefly describe the structure and code characteristics w.r.t. the list above of two
multimedia algorithms, an MPEG-1 Layer 3 (MP3) audio decoder and a Quadtree
Structured Difference Pulse Code Modulation (QSDPCM) video encoder. These ap-
plications are used in most of our experiments and also give a good overview of the
typical applications in the multimedia domain representing both, the audio and the
video part. The functional description of these applications is shown in Appendix A.

The MP3 audio decoder application has real-time periodic behavior. It receives a
decoded audio frame and decodes it until no frame is present at the input. The
frame is decoded in several steps. Each step is composed of a nested loop (or several
non-perfectly nested loops) with maximum loop nest depth of 5. The iteration count
for the loops is in hundreds of iterations. The loop bounds and array indices are
mostly manifest and affine. Typical for this application are a lot of non-manifest
outermost data-dependent conditions. We will provide a technique to deal with them
in this dissertation in Chapter 5. The application uses three-dimensional arrays and
a lot of temporary data storing the frame between the two subsequent processing
steps of the decoder.

The QSDPCM video encoder reads input video frames and encodes them using the
information from the previous video frame. It also has real-time periodic behavior
and encodes the frame in several steps. Each step is again composed of a nested
loop (or several non-perfectly nested loops) with a maximum loop nest depth of
8. The iteration count depends on the size of the frame, but for a frame it is again
in the hundreds to thousands of iterations. The loop bounds and array indices are
mostly manifest and affine. Typical for this application are a lot of non-manifest
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Figure 1.1: Kurzweil’s expansion of Moore’s Law shows that due to paradigm shifts the
underlying trend holds true from integrated circuits to earlier transistors, vacuum tubes,
relays and electromechanical computers.

innermost data-dependent conditions. We will provide a technique to deal with them in
this dissertation in Chapter 4. The application uses two-dimensional arrays and a lot
of temporary data storing the frame between the two subsequent processing steps of
the decoder.

1.2 The platform description

The programmable microprocessor architectures proposed in [216] and starting in
the 1971 with the Intel 4004, came a long way in the past 35 years. The number of
transistors on an integrated circuit has grown from 2300 in the year 1971 to more than
5×108. The growth follows Moore’s law, i.e., that the transistor density of integrated
circuits, with respect to minimum component cost, doubles every 24 months [239].
The performance of the microprocessors follows this trend and improved 35% per
year until 1986, and 55% per year since 1987 [99]. This increase is due to different
factors. In the past a constant improvement was given by increasing the clock rate.
In addition, the introduction of instruction pipelining when going from a Complex
Instruction Set Computer (CISC) to Reduced Instruction Set Computer (RISC) and
exploiting the Instruction Level Parallelism (ILP) for superscalars and Very Long In-
struction Word (VLIW) caused further improvement in the performance measured
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Figure 1.2: The memory gap [99].

as useful work (or instructions) executed per unit time. Nowadays, the clock rate
hardly raises. Higher clock speeds may increase the temperature to unacceptable
limits. In addition the clock speeds are affected by the scaling problems of wires.
Thus, it becomes almost impossible to produce a Central Processing Unit (CPU) that
runs reliably at speeds higher than 4.3 GHz or so [239]. Further performance im-
provements are achieved by using larger caches in the new processors, more func-
tional units [146, 147], and multiple computing cores.

Integrated circuits with the corresponding Moore’s Law were not the first com-
puting paradigm. Computing devices have been consistently accelerating price-
performance from the mechanical calculating devices used in the 1890 US Census, to
Turing’s relay-based “Robinson” machine that cracked the Nazi enigma code, to the
CBS vacuum tube computer that predicted the election of Eisenhower, to the transistor-
based machines used in the first space launches, to the integrated-circuit-based personal
computers [131]. This is demonstrated in Figure 1.1 where each paradigm shift caused
a further growth of the slope.

Not all aspects of computing technology develop in size and speed according to
Moore’s Law. Random Access Memory (RAM) speeds and hard drive seek times
improve on average 7% each year [99]. This opens the gap between the CPU perfor-
mance increased so far with 55%/year and the memory performance increase limited
to 7%/year. This memory gap is depicted in Figure 1.2. The gap is now so big that it
is being referred to as the “memory wall” [220]. Despite the use of advanced memory
subsystems during the last 15 years, the “memory wall” is still present [144]. Thus,
an intelligent use of the structure and capacity of the memory subsystem by ad-
vanced compilation and source-to-source transformation techniques becomes more
and more important.

The productivity of software developers most assuredly does not increase exponen-
tially with improvements in hardware, but by most measures has increased only
slowly and fitfully over the decades. Software tends to get larger and more com-
plicated over time requiring automated tools helping the designer to manage the
increased complexity of the design process.
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Figure 1.3: A general platform architecture used in this dissertation.

In this dissertation, we focus on the combination of the “memory gap” issue [215]
and the software productivity issue. To deal with these issues at a high-level of
abstraction, we do not need a concrete instance of a platform. The platform used
should have a CPU, at least one level of on-chip memory and an external off-chip
main memory. Such a platform architecture with two levels of on-chip memory is
depicted in Figure 1.3 and it is a general abstraction of current state-of-the art mul-
timedia platforms. The CPU data-path in the platform has multiple functional units
which can be scheduled in hardware (superscalar) or in software (VLIW). The pro-
gram is stored in the instruction memory and the data is stored in the data memory.
The memory subsystem has several layers, at least one resides on-chip and one re-
sides off-chip. The memory is software controlled. However, hardware controlled
caches are also allowed in the platform and are used when software control is not
possible due to too much unpredictability in the application. Such an abstraction
of the platform was already used in previous work dealing with the “memory” gap
problem, e.g., [130, 44].

1.3 Mapping problem

The mapping problem is depicted in Figure 1.4a. We have an application as de-
scribed in Section 1.1 and we have a platform as described in Section 1.2. Our goal
is to translate the application specification, described in a high-level language, to the
machine language, achieving low energy and very good performance. To achieve
this goal, modern (optimizing) compilers are used to translate the high-level lan-
guage description to the machine language as depicted in Figure 1.4b. However,
the resulting machine code is still far from hand-written machine code w.r.t. energy
consumption and/or performance. To improve the result of the compiler, source-to-
source transformation frameworks are used as depicted in Figure 1.4c. In Subsec-
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tion 1.3.1, we introduce the state-of-the-art in the compilation process. In Subsec-
tion 1.3.2, we introduce the missing compiler optimizations that are covered by the
high-level source-to-source transformation frameworks where the description of the
algorithm remains in the same language. However, after the compilation process
better results are achieved w.r.t. the energy and performance compared to directly
compiling the initial specification. (see Figure 1.4c). The introduction to the source
to source optimizations is in Subsection 1.3.2. This dissertation targets research in
the area of those source-to-source transformations.

1.3.1 Optimizing compiler

The goal of the compiler is to translate the description in the high-level language to
the machine language. This is done in several phases of the compilation process. In
the front-end of the compiler, the high-level language is translated into a platform
independent internal representation. This representation usually has the form of an
Abstract Syntax Tree (AST). In the middle-end of the compiler, this representation
is transformed to a platform dependent representation. This representation is re-
ferred to as a Register Transfer Language (RTL). In the back-end of the compiler, the
assembly code is generated from the RTL description.

The output of a compiler should be, in the ideal case, of equal quality to hand-written
assembly/machine code. This is rarely achieved. However, the code that is pro-
duced by compiling can be made to run faster, to take less space and to consume less
power by applying program transformations, commonly called optimizations. Code
optimization can take place at many levels, ranging from the algorithmic level down
to the assembly level. Higher level optimizations produce more dramatic results,
but lower level ones treat and exploit the target machine idiosyncrasies.

Compiler optimizations fall into two general categories: platform independent and
platform dependent. The platform independent optimizations are performed on the
platform independent internal representation. At this level, the compiler can im-
prove loops, address references, etc. The platform dependent optimizations, that
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include register allocation and utilization of machine idioms, are performed on the
platform dependent internal representation and can be largely embedded in the code
generation process. At this level, the compiler uses the machine specific information
to make good use of the machine resources and idioms.

For the embedded software domain we target, the optimizations performed have to
be even more advanced than for the general-purpose domain. This is necessary, be-
cause only a small overhead of compiled code versus hand-written assembly code is
generally acceptable in the embedded compiler community. With the advent of more
sophisticated code optimization technology [135] the overhead of compiled code ver-
sus hand-written assembly code has been reduced compared to the past. These novel
code optimization methodologies have high runtime requirements. However, in em-
bedded code generation, higher compilation times are acceptable, which may lead
to a paradigm shift in code optimization technology. Also, in the embedded domain,
the detailed characteristics of the target machines are taken into account resulting in
tight development of the compiler with the target architecture [233, 235].

The different optimizations are applied within different optimization passes during
the compilation. Nowadays, compilers can have a large number of those passes. E.g.,
the gcc compiler framework contains 127 possible optimization passes and approxi-
mately the same amount of parameters to control the amount of optimization to be
performed [232]. Those different passes interact together. This causes synergy in a
positive, but unfortunately, also in a negative way. The positive effect is when one
pass is enabling more freedom for the second pass, e.g., the loop unrolling enables
better instruction scheduling. The negative effect is when one pass limits the free-
dom for another pass or one pass eliminates the effect of other passes, e.g., the loop
unrolling limits the freedom for other high-level loop optimizations like interchange
and fusion. We foresee this as a big problem also w.r.t. the optimizations on different
levels. Recently, adaptive compilation has been proposed, where the optimization
passes are selected and tailored to the compiled application [40]. A similar approach
is iterative compilation [124, 125, 83, 97], where many variants of the source program
are generated and the best one is selected by actually profiling these variants on the
target hardware. Other authors [2, 175] use machine learning to gradually improve
the optimization results.

Despite of the large number of optimization passes, current compilers often neglect
whole groups of optimizations. Important examples are optimizations for better
utilization of the memory hierarchy subsystem. The reason is that the hardware con-
trol of the current memory elements of this subsystem (caches) determines only at
run-time which data to transfer and where to transfer, preventing a large group of
design-time memory optimizations. The hardware controlled caches are one of the
most power consuming elements in the platform architecture. Nowadays, power
dissipation starts to be the limiting factor in embedded handheld devices. Thus, the
embedded system domain is trying to avoid using caches and prefers software con-
trolled Scratchpad Memory (SPM)s. These require different (design-time) optimiza-
tion techniques which are not implemented in current (embedded system) compil-
ers. This triggers the need for source-to-source transformations of these low energy
memory elements with increased emphasis on the energy reduction optimizations.
Nowadays, these methodologies are implemented separately as source-to-source op-
timization frameworks. The application is transformed (source to source) in such a
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way that the new source code after compilation performs better and/or consumes
less energy by effectively exploiting the memory hierarchy subsystem. Ideally, these
transformations should be part of the optimizations in the compilation process.

1.3.2 High-level mapping techniques

The high-level mapping techniques targeting the memory subsystem consisting
of SPMs gained attention in recent years. We are not going to list here all the high-
level mapping techniques present. Rather, we focus on a few state-of-the-art contri-
butions.

The DTSE methodology developed at IMEC targets the optimal mapping of the ap-
plication w.r.t. the memory footprint reduction and data transfers on a predefined
memory subsystem using source to source transformations. The DTSE methodol-
ogy will be discussed in more detail in Chapter 2. A lot of work in the efficient
use of the memory hierarchy has been done at Uni. California, Irwine [170]. They
have analyzed the accesses to variables and chose a set of variables to be placed
within the scratch-pad memory. At Uni. Dortmund, a technique integrated into a
compiler has been developed which analyzes the application, partitions an array
variable whenever its beneficial, appropriately modifies the application and selects
the best set of variables and program parts to be placed within the scratch-pad [212].
This work uses static analysis for both data and program parts. At Penn State Uni-
versity, a compiler-controlled dynamic on-chip scratch-pad memory (SPM) manage-
ment framework using both loop and data transformations has been proposed [115].
The work focuses on the data parts only and uses dynamic copying of these data
parts. However, the algorithm is only applicable under simplifying constraints, i.e.,
perfectly nested loops, exactly known loop bounds and array subscripts being affine
functions of all loop indices along with additional constraints. Early work in this area
based on static analysis has been performed at Uppsala Uni. [189]. Their approach,
which focuses on the data parts only, shows that a static analysis is sufficiently pre-
cise and no dynamic analysis is needed. The instruction level power analysis and
optimization of software is discussed in [198]. Other system level power optimiza-
tions for embedded systems are listed in [172, 22, 34].

The high-level mapping techniques consist of platform independent optimizations
and platform dependent optimizations. Platform independent optimizations in-
clude data-flow transformations removing the redundant memory accesses, and loop
and control-flow transformations enabling transformations for the subsequent steps.
Platform dependent optimizations contain data and instruction memory organiza-
tion and transfer, spatial data and instruction locality improvement and cache orga-
nization related issues. Most of this work however requires compile time analyzable
code limiting the applicability of those high-level mapping techniques.

The importance of loop transformations for memory aspects in the embedded do-
main has been recognized quite early in the compiler theory [17]. The loop trans-
formations reorganize the control-flow in the loops to enable better optimizations
of the subsequent steps during compilation. Very early work on this has started al-
ready at the end of the 70’s [137] but that was only a classification of the possible
loop transformations. The loop transformations have enabled the parallelization or
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have improved the temporal locality of data accesses. There is a lot of work in this
domain that is surveyed in Chapter 7. At IMEC, the loop transformations have been
systematically applied for more than 10 years [203, 44, 213]. However, the structure
and complexity of novel applications limits the applicability of these transforma-
tions and opens new challenges for enhanced applicability of loop transformation
techniques.

1.4 Problem statement and objective

Loop transformations are an important part of high-level mapping techniques such
as the DTSE methodology. To perform DTSE optimizations, the complexity of the
optimization problem is reduced by selecting the subset of the program which is the
target of memory optimization. This subset involves mainly memory accesses, loops
and affine and manifest control-flow. The remaining parts of the program are hidden
for optimization purposes. In the current DTSE flow, the selection and separation of
the program subset relevant for memory optimization is performed manually by the
designer. This takes a lot of time and is error prone. Therefore, formalization of this
code separation supported by tools is needed to segregate the original source code.
Our approach presented in Chapter 4 makes this task for the designer much easier.

The DTSE methodology is targeting rather static (compile time analyzable) applica-
tions or application parts. Nowadays, applications are becoming dynamic and have
a lot of different execution paths. The actual execution path depends on the mode
selected by the application or user. A mode determines which parts of the applica-
tion will be used, i.e., it determines the execution path of the application. In the past,
multimedia applications usually worked in one concrete mode. Modern multimedia
applications have multiple modes which are not used equally and do not require the
same resources and optimizations.

These dynamic modern applications with a lot of modes cause problems for the tra-
ditional DTSE methodology. The DTSE methodology can still be applied, but only on
each static part, where control can be determined fully at compile time, separately.
However, the static parts are getting smaller. All of this prevents the traditional
DTSE from performing global optimizations reducing the main strength of the DTSE
methodology. Thus, for those applications, DTSE can perform only local optimiza-
tions. In Chapter 5, a scenario methodology instance for loop transformations in the
global program scope is proposed and elaborated. A scenario is defined as a selected
set of paths in the program which we choose to exploit in the same way [225, 85]. The
scenario technique should be applied on top of the DTSE methodology and should
“open the eyes” for global optimizations in DTSE when a lot of unbalanced modes
are present in the application.

During the platform independent source-to-source transformations of the DTSE
methodology, decisions are made without propagating important estimation from
the platform dependent transformations. The cost functions used in the platform
independent steps lead to one particular decision for that transformation step. As it
will be shown in Chapter 6, this can lead to suboptimal solutions. We propose con-
sidering the effects of the remaining DTSE steps at the higher levels of the method-
ology using high-level estimators and not going to one “optimal” solution at the
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platform independent steps. E.g., during the early GLT step of the DTSE methodol-
ogy, one concrete decision is made which is not optimal for every platform instance.
Instead, a set of decisions which cover the optimal decisions for any platform in-
stance should be propagated to the adjacent steps of the methodology. With such an
approach, we can obtain better results as we will see in Chapter 6.

1.5 Solution on an illustrative example

In this section we demonstrate the solution to the problems mentioned in Section 1.4
on two illustrative examples. We will not use any code in our first example. Instead
we will use an analogy with a laundromat where clothes are washed. In our analogy,
the clothes corresponds to the code and the washing process to the optimization
(loop transformation) of this code. The code “washing machine” analogy was also
used by Hugo De Man at the DATE’02 keynote speech [52].

We extend this analogy in Figure 1.5a and define two types of clothes, the white
ones that we are going to “wash” and the dark ones that we would like to keep
away because of coloring damage. The clothes can only be washed in one public
laundromat where different people (Alice, Bob, Carl, Dirk, Erik, Frank and Geert)
are coming during the weekend. Each person can bring one laundry basket to the
laundromat and not every person is washing each weekend. Which people can meet
in the public laundromat during a particular weekend is depicted by following the
arrows between a person’s laundry baskets in Figure 1.5a starting from the person
on the top (Alice) and ending at the person on the bottom (Geert). Thus, Alice, Carl
and Geert are washing every weekend. Before going to the laundromat, each person
has to separate the white and the black clothes to avoid coloring damage. Thus, at
home each person has to remove the dark clothes from the laundry basket. This is
demonstrated in Figure 1.5b. How to do so is explained in Chapter 4.

From the Figure 1.5b we can also see that when Alice is in the laundromat, Bob
could also be there depending on condition a. If Alice would know that Bob is going
that weekend to the laundromat, i.e., a is true, she could phone him and ask him
if he would be so kind and also wash her clothes to save the washing powder and
gasoline when driving to the laundromat. This is depicted in Figure 1.5c. We created
two scenarios, one assuming that Alice, Bob, Dirk, Carl, Frank and Geert are in the
laundromat and the other one assuming that Alice, Bob, Erik, Carl, Frank and Geert
are in the laundromat. The actual situation in the laundromat will be known only
during the weekend. As can be seen from Figure 1.5c, in the first scenario, Bob
and Dirk can combine their laundry for sure and in the second scenario, Alice, Bob,
Erik and Carl can also combine their laundry for sure because they will surely wash
together if that particular scenario occurs. Of course, in the first scenario Alice can
also wash together with Carl and Geert, given that there is no dependency between
Alice and Bob (e.g., Bob still has Alice’s white socks). Note, that the combination
of baskets and arrows in Figure 1.5a represents the Control Flow Graph (CFG) of
the application. The details about scenarios will be described in Chapter 5. Scenario
1 allows us to combine the two baskets of Bob and Dirk with one T-shirt and one
pair of shorts. Scenario 2 allows us to combine two baskets of Alice and Bob with
the T-shirt with the basket of Erik with one T-shirt and one pair of shorts and with
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Figure 1.5: The solution on an illustrative example.
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the empty basket of Carl. In the code, the combination of baskets with more white
clothes means enlarging the exploration space for our transformations.

The clothes in the laundry baskets in each scenario (note that some baskets have been
combined) are being washed. However different people like to wash their clothes
differently and something else is optimal for them. Some people prefer to wash at
30◦ not to lose the elasticity of the cloth, for other people it is better to wash it at
60◦ to be sure that it is fully clean. Also, for optimizations, there is not a unifying
best optimization for any platform. That is why we provide a set of best solutions
that vary over different platforms. This is demonstrated in Figure 1.5d and it will be
discussed in Chapter 6.

Now we will demonstrate the steps from Figure 1.5 on a small piece of real code
which is depicted in Figure 1.6a. In the first step in Figure 1.6b, the code that is
not the target of the DTSE optimizations is hidden into function f(). Then, in the
second step (see Figure 1.6c), the code is specialized into two parts, Scenario 1 and
Scenario 2. These specialized codes contain only certain paths from the original CFG
(see also Figure 1.5). They also enable more DTSE optimizations compared to the
previous code in Figure 1.6b. Note that Scenario 1 and Scenario 2 together contain
all the paths in the original CFG (see also Figure 1.5). On these codes, different
loop transformations are applied resulting in different solutions trading-off Data-
size cost for Control-flow complexity cost in the 2-dimensional exploration space as
depicted in Figure 1.6d. This approach enables more optimizations compared to the
approach without scenarios and multidimensional (Pareto) optimal solutions which
enable better utilization of the platform after the platform is known.

1.6 Thesis contributions

This dissertation contributes mainly to the platform independent stage of the DTSE
methodology. The primary goal of this dissertation is filling the gaps in the platform
independent stage and extending some steps in this stage towards future dynamic
applications. The dissertation contributes in four areas:

• DTSE requires prepared code where loop level constructs and arrays to be op-
timized need to be clearly separated from the remaining part of the application
code. In Chapter 4 we formalize and implement this separation of the code.

• DTSE primarily targets static applications where the execution order can be
analyzed (and modified by DTSE) at compile time. In Chapter 5 we propose
a systematic methodology of scenario usage for extending the applicability of
the GLT step, which is one of the most important steps in the methodology,
towards more dynamic applications.

• The GLT step in the DTSE methodology currently targets only one particular
goal which is the minimal lifetime of the array elements in the application so
that the memory locations can be reused. In Chapter 6 we present case studies
demonstrating that this goal does not always lead to the optimal solution. The
presented case studies show that many trade-offs exist during the GLT step.
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...
if(ctrl_a) {
  ...
  if(ctrl_b) {
    for(i=0;i<N;i++) {
      if(d[i])
        tmp = a[i];
      else
        tmp = b[i];
      c[i]=tmp;
  }
  else {
    ...
  }
}
if(ctrl_c) {
  ...
}

...
if(ctrl_a) {
  ...
  if(ctrl_b) {
    for(i=0;i<N;i++) {
      c[i]=f(d[i],
           a[i],b[i]);
  }
  else {
    ...
  }
}
if(ctrl_c) {
  ...
}

/*    Scenario 1     */
/* assuming b=true   */
...
if(ctrl_a) {
  ...
  for(i=0;i<N;i++) {
    c[i]=f(d[i],
         a[i],b[i]);
  }
}
if(ctrl_c) {
  ...
}
/*-------------------*/
/*    Scenario 2     */
/* assuming a=true   */
/*          b=false  */
...
if(ctrl_c) {
  ...
}
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Figure 1.6: The solution on an illustrative example - a small piece of real code.
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• The trade-off oriented GLT requires a different steering mechanism compared
to traditional GLT. In Chapter 6 we propose the coupling of high-level esti-
mators to the GLT framework as a steering mechanism for trade-off oriented
GLT and contribute to the definition of the requirements for those high-level
estimators together with other researchers.

1.7 Thesis overview

The dissertation is composed of eight chapters. In this section we provide short
overview of the chapters:

Chapter 2 presents the DTSE methodology and DTSE related techniques. Note, that
this chapter provides only an overview of the methodology, a more detailed
description can be found in the DTSE books [32, 28]. It also positions our con-
tributions within the whole DTSE methodology flow.

Chapter 3 explains the Geometrical Model (GM) and GLT framework in more detail.
Especially, the different GLT frameworks are analyzed and the gaps in these
frameworks are defined resulting in the contributions of this dissertation.

Chapter 4 formalizes the algorithms for separation of the code to be optimized from
the rest of the code. This separation of the code is called hierarchical rewriting
in the DTSE methodology. We have implemented the algorithms using the
ATOMIUM framework.

Chapter 5 proposes a systematic methodology of scenario usage for enhancing the
applicability of the GLT step in the DTSE methodology. We implemented the
proposed methodology using ATOMIUM framework and Boost Graph Library
(BGL). In this chapter, a solution for while loops is also proposed as a combina-
tion of the preprocessing and scenario approach. In that sense, this extension
has a cross-level nature with the previous chapter.

Chapter 6 provides case studies which show the need for trade-off oriented GLT.
Compared to the “best locality” traditional GLT step, which provides only one
GLT solution, the trade-off oriented GLT step provides a set of optimal GLT
solutions in the multi-dimensional exploration space. This is achieved by using
high-level estimators as the steering mechanism for GLT. The explanation of
those high-level estimators and their coupling to the GLT framework is also
discussed in this chapter.

Chapter 7 surveys related work in hierarchical rewriting and condition hiding, sce-
narios and Global Loop Transformations (GLT).

Chapter 8 provides a summary and conclusions, and proposes possible topics for
future research.





CHAPTER 2

The DTSE methodology
Goed geheugen. Om zoveel te kunnen onthouden moet hij weinig hebben beleefd.

Jan A. Emmens
(1924-1971)

The memory subsystem and bus usage consumes over 50% of the energy con-
sumption in embedded systems [53, 148]. This is especially true for modern
multi-media systems such as image processing or video encoding/decoding

which manipulate large multi-dimensional data sets resulting in a large amount of
data storage and transfers. Therefore, optimizing the global memory accesses of an
application, using e.g., the DTSE methodology developed at IMEC, is a crucial task
for achieving effective low-power realizations. The goal of the DTSE methodology
for system-level power optimization is to determine an optimal execution order for
the data transfers together with an optimal memory architecture mapping for stor-
ing the data of the given application [32, 28]. This leads to a reduction in the number
of main (off-chip) memory accesses and more efficient on-chip local memory (cache
or SPM) utilization. The cost functions currently incorporated for the storage and
communication resources are both power and area oriented [30]. Due to the real-
time nature of the targeted applications, the throughput is normally a constraint.
Improving the global memory accesses generally also has a positive influence on the
performance because it reduces the (external) bus traffic and it improves the cache
hit rates [129].

The DTSE methodology is split into several substeps combined in two groups: plat-
form independent and platform dependent steps. The platform independent steps
transform the program independently of the parameters of the memory (data stor-
age) target platform, which is, in effect, chosen or constructed based on the results
of these steps. The platform is subsequently used to further optimize the program
in the platform dependent steps. The platform independent steps optimize the data
flow, the regularity and locality of data accesses in general, and make the data reuse
possibilities explicit. The subsequent platform dependent steps take physical proper-
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ties of the target background memory architecture into account to map and schedule
the data transfers in a cost-efficient way.

The starting point is an executable system specification with multi-dimensional ar-
ray accesses. The output is a transformed source code specification, potentially com-
bined with a (partial) netlist of memories which is the input for the final platform ar-
chitecture design/linking stage when partly customizable or configurable memory
realizations are envisioned. The transformed source code is input for the software
compilation stage in the case of instruction-set processors. The flow is based on the
idea of constraint orthogonalization [27], where in each step a problem is solved at
a certain level of abstraction. The consequences of the decisions are propagated to
the next steps and as such decreases the search space of each of the following steps.
The order of the steps should ensure that the most important decisions and the deci-
sions that do not put too many restrictions on the other steps are taken earlier. The
former criterion is quite obvious. The latter is also intuitively clear because if we
would perform the decisions which impose many constraints at the beginning, these
constraints would limit the exploration freedom of the remaining steps. This general
approach is different from the iterative optimization approaches, e.g., [2, 175], which
we mentioned already in Chapter 1. There, the applied transformations are depen-
dent on each other, i.e., we cannot unambiguously determine the order of the trans-
formations. Breaking them up in consecutive steps leads to potentially severe sub-
optimality. This is generally known as the phase coupling dilemma where quality
and scalability have to be traded-off [199, 128]. In our approach we circumvent that
phase coupling by carefully selected splits. Still, those phase coupled approaches
can be well utilized inside the particular steps of DTSE where the constraint orthog-
onalization does not apply any further.

The DTSE methodology is partly supported with tools in the ATOMIUM system
exploration environment. For the platform dependent part the tools are quite ro-
bust, well tested and used for real-life designs. For the platform independent part,
most of the tools are prototypes only. The transformations are applied to original
source code after program partitioning/pruning. The partitioning/pruning reduces
the complexity of the exploration space and ensures that only the relevant parts of
the code with (large deeply nested) loops and multidimensional memory accesses
are the target of the DTSE optimizations.

The complete DTSE methodology is described in detail in [32] for customized archi-
tectures and in [28] for programmable architectures. The global DTSE framework is
shown in Figure 2.1. To situate our research interests in this global framework, we
have highlighted the steps we have contributed to in this dissertation with bold text.
To put those steps in the global context we give in this chapter a summary of the
DTSE methodology. Section 2.1 provides an overview of the platform independent
steps of DTSE and Section 2.2 provides an overview of the platform dependent steps.
Section 2.3 discuses other DTSE related methodologies and Section 2.4 summarizes
the open issues in the DTSE flow.
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Figure 2.1: DTSE methodology for data transfer and storage exploration: global
overview [201, 213].
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2.1 Platform independent steps

Platform independent steps of the DTSE reduce the number of array accesses and
enable later platform dependent optimization steps. They are beneficial for any plat-
form used later in the design-flow. The platform independent steps are pruning and
preprocessing, global data-flow transformations, global loop and control-flow trans-
formations and data reuse exploration.

1. Pruning and preprocessing

This step precedes the actual DTSE optimizations; it is necessary to iden-
tify and isolate the parts and data structures in the program which are data-
dominant and thus relevant for the DTSE. The preprocessing/pruning step
also presents this code in a way which is optimally suited for transforma-
tions [32]. Thus mostly loops with large bounds and exhibiting good reuse
of data and data structures such as array variables are exposed. All the free-
dom is exposed explicitly, and the complexity of the exploration is reduced by
hiding constructs that are not relevant. Apart from areas of power oriented
gain, the parts of the program, which are a bottleneck for obtaining better per-
formance need to be identified. These are mostly the data structures that have
very little locality but are accessed heavily.

During the pruning the ATOMIUM analysis tool can be used. This tool iden-
tifies the used part of the code dynamically during the profiling phase using
given testbench. Thus the testbench for the application has to be carefully se-
lected. ATOMIUM dynamic pruning prunes all the code we are not interested
in for further optimization. The ATOMIUM analysis identifies and profiles all
array accesses in the program. This gives us the first hint on which parts of the
code we should target our optimization effort. After the pruning, the prepro-
cessing, i.e., to expose explicitly all the optimization freedom, is performed.

During the preprocessing, pointer accesses are converted to array accesses [63,
75], other constructs that cannot be modeled by the geometrical model are
hidden away [162], functions are selectively inlined [1] and the code may be
rewritten in Dynamic Single Assignment conversion (DSA) form [69, 209]. Al-
though DSA is not a strict requirement for the following steps, it does increase
the freedom potentially allowing better transformations to be performed. For
all those preprocessing techniques, mostly prototype tools exist.

We contribute to the preprocessing step by proposing a methodology for deal-
ing with data-dependent conditions. We separate the treatment of outer and
inner data-dependent conditions. Inner conditions are hidden by using our
technique for hierarchical rewriting and hiding of data-dependent conditions.
Outer control-flow is treated with the instantiation and extension of general
scenario methodology [225, 85]. This enables better utilization of the GLT step
of the DTSE methodology as will be discussed in sequel.

2. Global data-flow transformations

The set of system-level data-flow transformations that have the most crucial
effect on the system exploration decisions has been classified, and a systematic
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methodology has been developed for applying them [31, 33]. Two main cate-
gories exist. The first one directly optimizes the important DTSE cost factors
by removing redundant accesses and reducing intermediate buffer sizes. The
second category serves as an enabling transformation for the subsequent steps
because it removes the data-flow bottlenecks wherever required, especially for
the global loop transformations step.

The main goal of the global data-flow optimization step is to reduce the num-
ber of bottlenecks in the algorithm that prevent optimizing code restructur-
ing transformations from being applied and remove access redundancy in the
data-flow. The transformations consist mainly of advanced signal substitution
avoiding unnecessary copies of data, modifying computation order in asso-
ciative chains enabling certain loop transformations, shifting of “delay lines”
through the algorithm to reduce the storage requirements, and recomputation
issues to reduce the number of transfers and storage size. For the data-flow
transformations only a limited set of prototype tools exists.

3. Global loop and control-flow transformations

The goal of the global loop and control-flow optimization step is to reduce the
global lifetimes of the signals and to increase the locality and regularity of the
data accesses. Signal is any time-varying quantity in the program that could
be either scalar valued or vector valued. In the DTSE methodology we focus
on vector-valued signals, i.e., array variables. Locality of data accesses means
that the accesses to the same memory location have to be close in time and
the regularity means that the order of consumption should be the same as the
order of production. The transformations remove system-level buffers intro-
duced due to mismatches in production and consumption ordering (regularity
problems). They allow also the data to be stored later in the design flow in
smaller memories closer to the data paths.

The Global Loop Transformations (GLT) step, the related preprocessing step
and the link to high-level estimation leading to trade-off oriented GLTs are
the main subjects of this dissertation. The transformations in the GLT aim at
improving the data access regularity and locality for multi-dimensional array
signals and at removing the system-level buffers introduced due to mismatches
in production and consumption ordering (regularity problems). The state of
the art in GLT focuses on one cost function resulting in one optimal solution
for GLT [204, 76, 44, 213]. In this dissertation we show that an extension of this
approach towards different cost functions resulting in trade-offs is needed. We
propose to use high-level estimation to steer those trade-off oriented GLTs. For
the GLTs a prototype tool and a more robust tool built on top of ATOMIUM
framework exists. The results of this dissertation have also contributed to the
development of these tools.

The GLTs are applied globally across the full code and not only individual
loop nests, also across function scopes because of the selective inlining applied
in the preprocessing step. Still, they are applied only within the Static Control
Part (SCoP)s which will be defined in Chapter 3. In the preprocessing we pro-
pose a novel techniques that enables additional GLT going beyond the scope
of SCoPs, e.g., across data dependent conditions. For these novel techniques
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also prototype tools based on the ATOMIUM framework, Standard Template
Library (STL) and BGL have been developed.

It is crucial that the GLT step is applied before the data reuse exploration and
in-place steps. Loop transformations change the execution order such that the
production and the consumptions of data elements are moved closer together
in time. The result is that the data reuse copies in the memory hierarchy can
be made smaller since data is kept in the copy for a shorter time period, and
higher data reuse factors can be achieved. Also, the intra/inter in-place op-
timizations which exploit the reuse of the memory location of the array ele-
ment/array which is not used any more in the program by newcoming array
element/array, can benefit from limited lifetime enabled by GLT.

4. Data reuse exploration

The goal of the data reuse decisions step is to better exploit a hierarchical mem-
ory organization to benefit from the available temporal locality in the data ac-
cesses. An important consideration here is the distribution of the data over the
hierarchy levels such that frequently accessed data can be read from smaller
and less power consuming memories. This obviously has a positive effect on
the total power consumption of the application because the most frequently
accessed data is then read from less power consuming memories. Also the
smaller memories can then be closer to the data paths thereby reducing the
dissipation in the interconnect, especially if off-chip memory accesses are re-
placed by on-chip memory accesses.

In this step the data locality introduced by the previous global loop transfor-
mation step is exploited. Data reuse possibilities are made explicit by ana-
lyzing virtual multi-copy hierarchies (including bypasses) for the trade-off of
power and memory size cost. Heavily reused data will be copied to smaller
power-efficient on-chip memories, while costly accesses to external memory
are reduced.

The basic methodology of [58] and [222] is systematic, though it has restric-
tions on the actual data reuse behavior that can be handled. [200] and [28]
have extended this methodology by introducing some vital cost parameters to
describe a more complete search space. They further explored the relationship
between these parameters and the cost function for power and memory size,
and proposed heuristics to steer the search for a good solution.

[200] formalized the extended search space by introducing an analytical model
for the cost parameters as a function of the index expressions and loop bounds.
This avoids long simulation times and more importantly, it allows for the iden-
tification of exactly which array elements have to be copied to a sub-level for
optimal data reuse. This has lead to a fully automated design technique for all
loop-dominated applications to find optimal memory hierarchies and generate
the corresponding optimized code [201].
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2.2 Platform dependent steps

Platform dependent steps of the DTSE uses the information about the predefined
memory organization to perform further optimizations. Some substeps only apply
for an (embedded) customizable memory organization which is becoming available
on several platforms by partly powering down overdimensioned memory blocks
that are not fully needed. The platform dependent steps are Memory Hierarchy
Layer Assignment (MHLA), Storage Cycle Budget Distribution (SCBD), Memory Al-
location and Assignment (MAA) and memory data layout optimizations.

1. Memory Hierarchy Layer Assignment (MHLA)

The MHLA step maps the most beneficial candidates from data reuse copy
trees to a virtual memory hierarchy subsystem. During MHLA [26], the data
reuse copy trees resulting from the data reuse exploration and the correspond-
ing transfers are partitioned over several hierarchical memory layers, based on
the bandwidth and high-level memory size estimation. The high-level memory
class of each of the memory layers is determined (e.g., on-chip, off-chip, ROM,
SRAM or DRAM and other RAM “flavors”). The Data Reuse Analysis (DRA)
and the MHLA steps have been integrated in the robust Memory Hierarchy
(MH) tool based on the ATOMIUM framework.

2. Storage Cycle Budget Distribution (SCBD)

The goal of the SCBD step is to ensure that the (usually stringent) real-time
constraints are met with a minimal cost penalty. The major substep involves
Storage Budget Optimization (SBO) to determine which data should be made
simultaneously accessible in the memory architecture such that the real-time
constraints can be met with minimal memory bandwidth related costs.

This step mainly determines the bandwidth/latency requirements and the bal-
ancing of the available cycle budget over the different memory accesses.

Additional loop transformations are performed to meet the real-time con-
straints, such as merging of loops without dependences, software pipelining
and partial loop unrolling [185]. These loop transformations normally do not
influence the access order of data elements, so also the data reuse behavior
remains the same.

The data reuse transformations introduce dependences in the code which con-
strain the freedom for SCBD transformations. However, a certain transforma-
tion freedom is made available by defining the data reuse copies in single as-
signment form. This allows the SCBD transformations to move copy update
code out of a loop kernel for performance reasons. This extends the lifetime
of the data, since the data is copied earlier to the copy-candidate than actually
needed. As a result, the performance gain has to be traded off with a slightly
larger final copy size cost [47].

The initial data types (arrays or sets) are grouped/partitioned in basic groups,
a sub-step called Basic Group (BG) structuring [60]. SBO performs a partial
ordering of the flow graph at the BG level. It tries to minimize the required
memory bandwidth for a given cycle budget. This step produces a conflict
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graph that expresses which BGs are accessed simultaneously and therefore
have to be assigned to different memories or different ports of a multi port
memory [221, 223, 157].

3. Memory/bank allocation and signal assignment (MAA)

The goal of the memory allocation and assignment step is to determine an opti-
mal memory architecture for the background data. The step allocates memory
units and ports (including their types) from a memory library and assigns the
data to the best suited memory units, given the cycle budget and other timing
constraints [14, 190]. The combination of the SCBD and MAA tools allows to
derive real Pareto trade-off curves of the background memory related cost (e.g.,
power) versus the cycle budget [25]. This combination has been implemented
in the Memory Architect (MA) tool based on the ATOMIUM framework.

4. Memory data layout optimization

The goal of SPM and cache optimization is effective utilization of a processor’s
on-chip local memories by in-place [50] and data-layout [129, 130] transforma-
tions. In-place optimization consist of inter-signal (among data structures like
arrays) and intra-signal (among elements of data structure like elements of ar-
ray) in-place mapping. The transformation exploits the limited life-time of the
data during program execution and thus reduces the capacity misses.

This involves several sub-steps and focuses both on the SPM and the cache(s)
and the main memory. One of the main issues involves in-place mapping of
arrays and sub-arrays. In the worst case, all arrays require separate storage
locations. When the lifetimes of arrays or elements in the array are not over-
lapping, the space reserved in the memory for these groups can be shared [51].
The single assignment arrays and array copies introduced in the data reuse
step are in-placed during this step, leading to final optimal copy sizes. After
the in-place data mapping step we now decide which signals will be locked in
the data cache in case of a software controlled cache. The in-place technique
(both intra and inter) for SPM or software-controlled caches has been imple-
mented in the robust Memory Compaction (MC) tool based on the ATOMIUM
framework.

In the memory allocation and signal-to-memory assignment step, signals were
assigned to physical memories or to banks within predefined memories. How-
ever, the signals are still represented by multi-dimensional arrays, while the
memory itself knows only addresses. In other words, the physical address for
every signal element still has to be determined. This transformation is the data
layout decision. Main memory data-layout optimization exploits the memory
organization data freedom and thus reduces the conflict misses.

For hardware-controlled caches advanced main memory layout organization
techniques have been developed, which allow to remove most of the present
conflict misses due to the limited cache associativity [130]. Extensions on
this methodology are based on the estimated copy size during the data reuse
step [202].
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2.3 Other related methodologies and stages

Except of the DTSE methodology several related methodologies and stages that com-
plement the DTSE exist. The most important and the most coupled are high-level
memory size estimation, formal verification techniques for system-level transforma-
tions and Reduction of Arithmetic Cost of Expressions (RACE).

• High-level memory size estimation
The memory data layout optimization (see above) is the last step in the DTSE
methodology and determines the overall required memory size of the applica-
tion. However, during the earlier DTSE steps (GLT) the final execution order of
the memory accesses is not yet fixed. Lower and upper bounds for the needed
memory size for a partially defined loop organization and order, have been
proposed by [122]. These can be used to steer the many possible loop trans-
formations for a given application, and are also useful during the GLT step to
help steering the exploration.
While [122] mainly focuses on bounds on the memory needed for individual
arrays, [180] considers the effect of simultaneously alive data-dependences to
estimate the combined storage requirements for multiple arrays when the or-
dering of the accesses is fixed. [104] investigate bounds on memory require-
ment when only part of the global loop transformation has been fixed. In par-
ticular, they consider bounds over all possible loop fusion and loop shifting
transformations.
[105, 106] adds to the in-place estimation also DRA and MHLA decision esti-
mation resulting in the unique framework that estimates the most important
steps after the GLT. The estimation is linked to the GLT framework and incre-
mentally estimates the effect of the incremental GLT. That means, only parts
of the code affected by the incremental GLT are estimated again and combined
with the previous estimation result. This framework is interesting not only for
its completeness of estimation but also for its moderate time requirements.

• Formal verification techniques for system-level transformations
In addition to the results on exploration and optimization methodologies, work
has been done on system-level validation by formal verification of global data-
flow, loop and data reuse transformations [181, 42, 186]. Such a formal verifi-
cation stage avoids very costly CPU-time and design time re-simulation.

• Reduction of Arithmetic Cost of Expressions (RACE)
The DTSE introduces a lot of addressing and control overhead. To deal with
this overhead, the Address Optimization (ADOPT) methodology has been de-
veloped at IMEC [152]. That methodology has been extended to programmable
processor contexts [94], including modulo addressing reduction [80]. The
ADOPT methodology has been implemented in the RACE tool based on the
ATOMIUM framework. However, the usage of the tool is limited due to strict
input code requirements.
The DTSE steps will typically significantly increase the addressing complexity
of the applications, e.g., by introducing more complex loop bounds, index ex-
pressions and conditions. When this computational overhead is neglected, the



26 The DTSE methodology

optimized system will, although being more power efficient, suffer a severe
performance degradation.

However, most of the additional complexity introduced by DTSE can be re-
moved again by source code optimizations such as constant propagation, code
hoisting, strength reduction and others. Code hoisting moves loop-invariant
computations out of the scope of the loop body, eliminating unnecessary re-
computations of the same values. Strength reduction replaces expensive op-
erations in terms of performance by alternatives using cheaper operations.
For example, expensive modulo operations in addressing arithmetic can be
replaced by an alternative implementation using cheaper increment and decre-
ment operations [80]. The control flow complexity due to the introduction of
conditional statements can also be removed [66, 67]. The final result is that for
most applications not only the power consumption is reduced, but also the sys-
tem performance is increased. However, also during the ADOPT optimization
steps, trade-offs occur [160, 161].

2.4 Open issues

As we stated in Section 2.2 and in Section 2.3 the platform dependent steps and
RACE are covered by tools. These tools are not prototype tools but rather mature
tools which are used in real-life designs. Thus the research open issues remain in
the platform independent part of the DTSE methodology (see Section 2.1), in the
high-level cost estimation and in the formal verification (see Section 2.3). For the
platform independent part of the DTSE methodology especially the preprocessing
step and the global data flow and loop transformations steps are interesting research
challenge. The GLT are closely related with high-level cost estimation. The high-
level cost estimation is necessary to assess the impact of the GLT on the later design
steps in the DTSE trajectory.

To solve the remaining open issues in the DTSE methodology we launched several
research tracks. The formal verification research track was started in cooperation
with the Katholieke Universiteit Leuven and is running already for some time [181,
42, 186]. The high-level cost estimation research track was started in cooperation
with the Norway University of Science and Technology [122, 180, 104, 105, 106]. The
current focus is on the Hierarchical Memory Storage Estimation (HMSE) which cov-
ers to the large extent the DTSE related issues. However, the high-level control-flow
complexity estimation is still lacking.

This dissertation tries to fill the gap contributing in preprocessing for data dependent
conditions (Chapter 4 and Chapter 5) and in trade-off oriented GLT and coupling the
high-level estimators to the GLT framework (Chapter 6).



CHAPTER 3

Global loop transformations
Aγεωµέτρητoς µηδείς εισίτω.

Plato
(427BC-347BC)

In compiler theory, loop transformations play an important role in improving
cache performance and effective use of parallel processing capabilities. Most of
the execution time of a scientific program is spent within loops. Thus a lot of

compiler analysis and optimization techniques have been developed to make the
execution of loops faster [238]. This description from Wikipedia emphasizes the
importance of loop transformations for improving the performance of the system.
However, recent advanced multimedia systems typically use also a large amount of
data storage and transfers. This memory and bus usage consumes a major part of
the energy in the system. The loop transformations may improve the regularity and
locality of memory accesses. This enables better mapping of the arrays to software
steered memory subsystem consisting of on-chip SPM and off-chip Static Random
Access Memory (SRAM) main memory. The low energy consumption is especially
desired for modern embedded systems.

The loop transformations are performed on a Geometrical Model (GM). In this
model, all iterations of a particular statement are represented by a polyhedral shaped
domain. The dependencies within the algorithm are represented as relations be-
tween those polyhedral shaped domains. Despite the conciseness of the model and
effectiveness in dealing with generic loop transformations [218, 116, 46, 145], the
model imposes strict limitations on the input code [19].

Section 3.1 presents the GM and discusses its limitations. Sections 3.2-3.8 explain
a general Global Loop Transformations (GLT) framework and discuss in detail the
different modules of the framework. Section 3.9 highlights the open issues when
using current loop transformations techniques and frameworks. This dissertation
tries to solve these open issues.
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3.1 GM and its limitations

For the loop transformations, the geometrical model seems to be the right data model
choice. When using this model, loop transformations can be performed highly effec-
tively and efficiently by simple matrix manipulations [176, 217]. The model has been
used in many research projects related to loop transformations [134, 71, 46, 72, 136,
56, 118, 141, 46, 38, 77, 191] and there exist several very good libraries [217, 176, 70,
68, 11] that support this model. We are not going to discuss these here, the state-of-
the-art in this area can be found in Chapter 7.

In the GM model each statement is represented by its iteration domain, statement de-
scription and index functions of arrays in the statement.

Definition 3.1 A polyhedron (also known as polyhedral set) in
� n is the intersection of a

finite family of closed half-spaces in
� n.

Definition 3.2 A polytope in
� n is the convex hull of a finite set of vectors (tuples or

points in the vector space) or, equivalently, a bounded polyhedron.

Definition 3.3 An iteration vector is a tuple of the loop iterator values or, equivalently, a
point in the iteration vector space.

Definition 3.4 An iteration domain of a statement is a set that represents all iteration vec-
tors where the statement is executed. It can be described as the integer points in a polyhedron,
if the loops are affine expressions of the outer loop iterators and the parameters and all loops
increase by one in each iteration of the loop.

Definition 3.5 An index function is a function that maps the values of the iterators to an
index of an array.

The GM can handle only source code with manifest and affine for loop bounds and if
conditions which determine the iteration domain polytope. Also the index functions
of arrays in the statement have to be manifest and affine. The source code that can
be modeled in GM has to fulfill the requirements of the SCoP [19]. The SCoP is a
maximal set of consecutive statements without while loops, where loop bounds and
conditionals may only depend linearly on invariants within this set of statements.
These invariants include symbolic constants, formal function parameters and sur-
rounding loop counters. Note, that the term Polyhedral Dependency Graph (PDG)
used in the literature is the GM with additional information about the dependen-
cies among the iteration domain polytopes computed by the dependency analysis
from the index functions. The dependency analysis and the PDG will be discussed
in Section 3.5.

Figure 3.1a shows a simple C source code consisting of two statements (S1 and S2)
in two loop nests. The iteration domain of S1 is depicted in Figure 3.1b and iteration
domain of S2 is depicted in Figure 3.1c. The iteration domain of S1 as well as the
iteration domain of S2 can be expressed with a set {(i, j) ∈ � 2 | 0 ≤ i, j ≤ 3}. In the
future we will implicitly consider that all the iterators are integer points and we will
omit the ∈ � part.
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for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    a[i][j] = in1();   //S1

for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    b[i][j] = a[j][i]; //S2

Original code
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Figure 3.1: GM example for two loop nests: (a) Original code; (b) GM for S1; (c) GM for
S2.

for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    a[i][j] = in1();   //S1

for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    b[i][j] = a[j][i]; //S2

S1: Iteration domain
    - [1, 0, -1, 3]
    - [1, -1, 0, 3]
    - [1, 1, 0, 0]
    - [1, 0, 1, 0]
S1: Statement description
    %s = in1();
    reads: []
    writes: [a]
S1: Index functions
    reads: []
    writes:
     - [1, 0, 0]
     - [0, 1, 0]
S2: ...

Original code Geometrical model (without structure)

(a) (b)

Figure 3.2: GM example for two loop nests: (a) Original code; (b) Parts of YAML descrip-
tion [242] of the GM for S1 in the Polylib notation [217].

The iteration domains can be also represented in the Polylib notation [217]. In Fig-
ure 3.2 is the representation of the S1 iteration domain (Polylib notation) together
with the statement description and the index functions of array in the statement S1 in
the YAML Ain’t Markup Language (YAML) format [242]. YAML is a data serializa-
tion format designed for human readability and interaction with scripting languages
such as Perl and Python.

The iteration domain of S1 in Figure 3.2b is in the constraint format, where each line
represents one constraint. The four lines/constraints express the four loop bounds
of the two dimensional loop nest. Each constraint (equality or inequality) consists of
a vector of n+2 elements, where n is the depth of the loop nest, and it has the format
(S,X1, X2, ..., Xn,K). This format represents the constraint:

ifS = 0 : X1i + X2j + · · · + Xn + K = 0

ifS = 1 : X1i + X2j + · · · + Xn + K ≥ 0

The statement description identifies the statement the iteration domain belongs to
and lists in sequential order each array access (read/write) which is substituted by
a %s in the original statement description. The index functions are listed for each
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for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    a[i][j] = in1();   //S1

for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    b[i][j] = a[j][i]; //S2

Original code

S1: Iteration domain 
    - [0, 1, 0, 0, 0, 0, 0]
      (1*t0+0*i+0*t1+0*j+0*t2+0*1==0)
    - ...
S2: Iteration domain 
    - [0, 1, 0, 0, 0, 0, -1]
      (1*t0+0*i+0*t1+0*j+0*t2-1*1==0)
    - ...

Geometrical model (with structure)
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Figure 3.3: GM example for two loop nests: (a) Time dimension constraint for S1 and S2;
(b) GM for S1 with time dimension; (c) GM for S2 with time dimension; (d) S1 and S2
placed in CIS.

array access (read/write). Each line corresponds to one dimension of an array. The
index function has the format (X1, X2, ..., Xn,K) representing the function:

X1i + X2j + · · · + Xn + K

In the Geometrical Model (GM) in Figure 3.1 the information about some structure
of the code is missing. From the iteration domain descriptions of the individual loop
nests we cannot determine which loop nest is the first one and which is the second
one. I.e., we cannot decide on the order of the two loop nests based on the iteration
domain descriptions only. To represent the complete program in the GM we need
to introduce the time (called as well pseudo or statement) dimensions between each
two loop levels. The first time dimension is added at the first position. It orders
statements at the global (outside loop) level. This is also depicted in Figure 3.3b
where the added constraints distinguish between the first loop nest and the second
loop nest. In the code, we can imagine it as introducing an extra virtual time loop t0
iterating from 0..1 as the first statement at the global level and introducing a virtual
if condition before each loop nest. The if condition would be if(t0 = 0) for the first
loop nest and if(t0 = 1) for the second loop nest. Thus, only after the whole exe-
cution of the first loop nest, the t0 iterator will increment and the second loop nest
will be executed. This corresponds to the original execution ordering in the code in
Figure 3.3a. The second time dimension is added between the first and the second
loop dimension and determines the order of the statements within the outermost
loop of the loop nest. The total number of time dimensions is d+1 where d is the
depth of the deepest loop nest in the code. When having very deep loop nests the
total number of dimensions, i.e., d real dimensions plus d+1 time dimensions, can be
large. However, time dimensions can provide redundant information and then they
are not needed. E.g., because the code in Figure 3.1 has two statements at the global
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(top) level (the two for loops) the t0 is needed to distinguish between those two for
loops. However, at the first and second level, there is only one statement assigned to
each of the two top for loops. Thus the time dimensions t1 and t2 are not needed to
cover the complete structure of the code. Time dimensions have been already used
in [71, 120, 19, 213].

After including all information about the structure of the code, the single statement
iteration domains can be combined into a Common Iteration Space (CIS).

Definition 3.6 The common iteration space is an n dimensional space, n ≥ r, where r
is the dimension of polytope with greatest dimension, where all polytopes are combined. The
extra dimensions of the polytopes with d < n, where d is the dimension of the polytope, are
set to a fixed value, e.g., 0.

This combination is depicted in Figure 3.3d. In this CIS all the statements, i.e., S1
and S2 are placed. The order of the iterators is t0,i,t1,j,t2 where t0 is the outermost
iterator and t2 is the innermost iterator. We depicted only the iterators t0, i and j
because the t1 and t2 do not decide on any execution ordering and can be eliminated
as discussed above.

In the following sections we discuss in detail the whole loop transformation frame-
work using the GM we just presented as well as array data flow analysis and prepro-
cessing issues. This leads us to the shortcomings in the Global Loop Transformations
(GLT) flow which are highlighted in Section 3.9.

3.2 Loop transformation tool

Loop transformations are one of the basic optimization techniques used at the high-
level to improve the source code implementation resulting in energy and/or per-
formance gains. However, to perform these transformations manually is a tedious
and error-prone task. Thus, the automation of the loop transformation framework is
needed.

The loop transformations are usually performed on the GM especially due to the
wide scope of loop transformations that can be handled in a uniform way. We
have also selected this model as most suited for the GLT framework at IMEC. In
general, every loop transformation framework consists of several modules (see Fig-
ure 3.4). The first module, called the parser translates the source C code to the In-
ternal Representation (IR); e.g., AST. On the IR, the preprocessing is performed sup-
ported by different analysis methods or tools, e.g., Pointer Analysis and Conversion
(PAaC), hierarchical rewriting, Factored User-Def chains (FUD) etc. The preprocess-
ing is an optional block which enables that more code can be extracted to the GM.
It is discussed in detail in the next section. The second module GM checker/split-
ter identifies the parts of the code that meet the SCoP requirements and separates
them from the parts that do not meet the SCoP requirements. Note, that the part
meeting the SCoP requirement can become larger when more preprocessing tech-
niques are applied. In Chapter 4 and Chapter 5 we will present two novel prepro-
cessing approaches that are one of the main contributions of this dissertation. The
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extractor module translates the parts of the IR that fulfill the SCoP requirements,
i.e., IRGM1..n, from the internal representation to the geometrical model, i.e., to the
GM i,i∈1..n. Each GM is then transformed to a GM T in the LT module. The transfor-
mations are steered by the cost functions and supported by analysis. An important
part is array dependency analysis which is performed on a GM. It identifies the
dependencies among array accesses and their sizes. After performing the transfor-
mations on the GM i,i∈1..n the GM T

i,i∈1..n are transformed by the polyhedral scanner
to the IRT

GM1..n. Such a transformed IR is combined with the IR that did not meet the
SCoPs requirements, i.e., IRNGM (ASTNGM ). Note that this IR also contains anno-
tations about the positions within the code of the blocks that were extracted to GM
and transformed. This is performed in the combiner block. The new IRT (ASTT ) is
postprocessed and transformed to the new CT source code.

In the next sections we will discuss in more detail the most interesting parts of this
framework, namely the preprocessing, the GM extraction, the array dependency
analysis, the GLT itself, the GM scanning and the postprocessing.

3.3 Preprocessing for GLT

From Section 3.1 it is obvious that the geometrical model is quite strict on the input
source code (or internal representation) that can be extracted to the model. Only
the blocks of the code that contain constructs supported by the model, i.e., fors and
ifs with manifest and affine bounds/control expressions and statements with affine
and manifest memory accesses (arrays) are selected by the GM checker/splitter for
the extraction to the model. The rest of the input source code is kept in the internal
representation and not optimized. This part of the code is finally merged with the
loop transformed parts with the combiner.

Nowadays, multimedia applications consist of large pieces of code which contain
large deeply nested loops that process indexed signals. Current multimedia applica-
tions are not explicitly in the shape suitable for GM extraction and large parts of the
code cannot be recognized as GM extractable by the GM checker/splitter. However,
implicitly they are extractable. E.g., the indexed signals are hidden behind pointer
arithmetics; large and deeply nested loops are distributed across several function
calls; the indexed signals are intermingled with scalar signals that should be hidden
for the high-level memory optimizations, and the affine if conditions and addressing
are intermingled with the data dependent ones. To separate clearly and make explicit
the GM extractable code is the main task of the preprocessing before the GM check-
er/splitter. Without the preprocessing the GM checker/splitter selects only those
parts that are explicitly GM extractable in the original code. This is only a small
portion of the code that could be extractable in reality, i.e., after the preprocessing.
Thus, the preprocessing step is needed, which makes the implicitly GM extractable
constructs explicit and hides the constructs that are not supported by the GM. This is
done by the internal representation restructuring effort. Thus, we try to rewrite the
internal representation of the application so that the undesired constructs for loop
transformations are hidden and the desired constructs for loop transformations are
made explicit before the GM part and the non-GM part are analyzed and split by the
GM checker/splitter.
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Figure 3.4: General loop transformation framework.
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for(i=0;i<N;i++)
  for(j=0;j<M;j++)
    if(i==0)
      B[i][j]=1;
    else
      B[i][j]=f(A[i][j], A[i-1][j]);

int f(int a, int b) {
  return a*b;
}

Layer 1

Layer 2

Layer 3

Module1a

Module1b

Module2 Module3

- testbench call
- dynamic event behavior
- mode selectionSynchronisation

*

Figure 3.5: Dividing an application in the 3 layers.

The main tasks of the preprocessing are to reduce the complexity for the designer
and/or tools, increase exploration freedom by making available search space explicit
and by removing bottlenecks and hiding undesired constructs that are difficult to
handle in GM. The preprocessing consists of several substeps such as hierarchical
rewriting, hiding of undesired constructs, code expansion, array/pointer data-flow
analysis, data flow chain removal, weight-based removal and partitioning.

In the hierarchical rewriting and hiding of undesired constructs substeps the appli-
cation is rewritten in 3 layers. The first layer contains process control flow, the second
layer contains loop hierarchy and indexed signals and the third layer contains arith-
metic, logic and data-dependent operations. This is depicted in Figure 3.5. The first
layer is usually well written already by the designer, however the second and third
layer constructs are intermingled. To separate them systematically is a challenging
task. We contributed to this task in Chapter 4 where we proposed and implemented
a systematic technique to separate the two layers. An important part of the hierarchi-
cal rewriting is to make the addressing explicit. This requires Pointer Analysis and
Conversion (PAaC) techniques [184, 63, 75] which transfer the implicit array accesses
(pointers) to explicit ones (arrays). The hiding of undesired constructs also includes
hiding the data dependent ifs to the Layer 3 and using the worst case bounds for
data dependent addressing.

The function inlining causes code expansion and creates the global search space for
the GLT step. As discussed above, the loops can be distributed across several func-
tions. The parts of the code that could contribute to the global search space should
be inlined. This can be achieved with Selective Function Inlining (SFI) approach [1].
Note, that only the Layer 2 code should be inlined. Thus the inlining has to be selec-
tive, i.e., it should select only the code related to Layer 2 that should be inlined only
at the call instances which are target of our optimizations.

The Dynamic Single Assignment conversion (DSA) [69, 209] does not enlarge the
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Partition 1 Partition 2

Partition 3

for (i)
  B[i]=func1(A[i]);
for (i)
  C[i]=func2(A[i]);
for (i)
  D[i]=func3(B[i],C[i]);

for (i)
  D[i]=func3(func1(A[i]),
             func2(A[i]));

(a)

(c)

(b)

bool A[10];
byte B[10][10];

for (i=0;i<10;i++) {
  A[i];
  for (j=0;j<10;j++)
    B[i][j];
  A[i];
}

/*Cost A: (10+10)*10*1 */
/*Cost B:  10*10*100*8 */

Figure 3.6: (a) Data flow chain removal; (b) Weight based pruning; (c) Partitioning.

code that can be extracted to GM. However, it simplifies the array data-flow (depen-
dency) analysis (see Section 3.5) and thus enlarges the search space for the GLT. The
remaining steps in the preprocessing are data-flow chain removal, weight-based re-
moval and partitioning [32]. The data-flow chain removal means eliminating avoid-
able buffers in the program. This is depicted on Figure 3.6a where arrays B and C
represent avoidable buffers that can be eliminated without changing ordering of the
input and output of the chain being eliminated. No trade-off is involved when re-
moving data-flow chains. The weight-based removal and partitioning simplifies the
challenging task of DTSE optimizations by not considering small unimportant arrays
in the exploration and partitioning of the problem using the divide and conquer prin-
ciple. The weight based removal is based on the cost function faccess ∗size∗bits where
faccess is number of accesses to a particular array, size is its size (number of elements)
and bits is number of bits used for one element. The example of weight based re-
moval is in Figure 3.6b. In this example, the cost of array A is (10+10)*10+1=200 and
the cost of array B is 10*10*100*8=80000. Thus array B is more important than array
A and array A because of its low cost should not be considered for DTSE optimiza-
tions. The partitioning cuts the application at edges without costly data transfers so
the global view is not affected so much. An example is depicted on Figure 3.6c where
a large buffer exists between Partition 1 and Partition 2. Thus these partitions should
be optimized together. Partition 3 is only connected via the small buffers, thus it can
be handled separately in the optimization process.
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3.4 GM extractors

To get from the IR (AST) to the GM model we need a GM extractor. Some extrac-
tors combine the extractor itself, i.e., translation from IR to GM, with the parser,
i.e., translation from C code to IR. Examples of such extractors are Polyhedral Ex-
traction Routines (PER) and LooPo [61]. PER is an in-house product developed at
IMEC which is part of the program analysis and transformation ATOMIUM frame-
work [229]. The PER extractor itself works in several phases.

The first phase is called normalization. It tries to transform the AST constructs that
cannot be easily modeled in the GM or pose difficulties for keeping track of relations
between the AST and GM before the extraction to GM. This normalization has the
same goal as the preprocessing, i.e., enlarge the scope for the extraction. However, it
is applied only locally and thus its scope is rather limited.

The second phase is extraction of the node tree for the desired functions. After that,
the extractor builds the AST-GM link (AG) model which we can consider as a very
simple AST consisting only of constructs that can be directly translated to the GM.
If the AG model creation was successful, the data structure extraction, the iteration
domain extraction, the variable domain extraction, the access and the access domain
extraction, the boundary extraction, the lexicographical information extraction and
the flow dependency extraction will start in the listed order.

The PER extractor is a standalone tool. It is sufficient for the extraction, but it is
not sufficient for the (re)creation of the source file. It lacks data type information
or information about functions, types and variables outside the specified function.
However, the tool is now being integrated in the ATOMIUM GLT framework where
these shortcomings are going to be eliminated.

LooPo [61] is a prototype implementation of loop parallelization methods based on
the polyhedral model. The tool includes both the parser (and extractor) and a de-
pendence analysis module. It implements space-time mapping methods for nested
for loops [134] and has also the capability of dealing with while loops, for loops with
unknown bounds at compile time and if conditions in the loop nest [89]. LooPo can
generate efficient target code by using High Performance Fortran (HPF) as a back
end to LooPo.

The other extractors start directly from a IR. Examples of such extractors are Polyhe-
dral Extraction Routines from SUIF (pers) and WHIRL to Polyhedra (w2p). The pers
extractor has been developed at KU Leuven [213] and transforms Standford Uni-
versity Intermediate Format (SUIF) representation to the GM. It basically consists
of a pass in the SUIF compiler [7] that collects the same information as PER does.
However, it also keeps pointers to the internal SUIF data structure that can be used
during code generation. After integrating PER into the ATOMIUM GLT framework
PER will also keep the links to the ATOMIUM AST. The w2p extractor is a part of the
WRaP-IT library [19] and transforms the WHIRL representation to the GM. WHIRL
is the IR of the Open Research Compiler (ORC). The extractors differ not only in
the input IR the GM is extracted from but also in the robustness and the features
they support. Nowadays, we see that the GM extractors win its place also in mature
and heavily used compilers such as gcc. The proposal of GENERIC and GIMPLE
IR [149] and Tree SSA [155] opened the gcc compiler framework towards high level
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optimization and modeling such as the GLT and GM [23, 174].

3.5 Array dependency analysis tool

The array dependency analysis can be part of the extraction, e.g., in the ATOMIUM
PER extractor or it can be a separate tool after the extractor. E.g., the simple de-
pendency analysis in perl (sda.pl) and the advanced dependency analysis in perl
(ada.pl) (in the current framework called just dependency analysis in perl (da.pl))
are separate tools after the pers extractor. The Petit tool which is part of the Omega
project [120] is also a separate array dependency analysis tool. The array depen-
dency analysis can be found in any framework based on GM [56, 71, 118, 46, 38, 77].
It computes three types of dependencies, i.e., flow dependencies, anti-dependencies
and output dependencies, among the iteration domains of statements. The defini-
tions of these different types of dependencies are below. We will assume that all the
iteration domains have the same dimension. This is automatically obtained when
placing the iteration domains in the Common Iteration Space (CIS) together with
using the time (pseudo) dimensions to preserve the original scheduling for the ex-
tracted GM.

Definition 3.7 A flow dependency is a data dependency between a definition (a produc-
tion, a write) and a use (a consumption, a read) of the same array variable element. The array
variable element has to be defined before it can be used.

Definition 3.8 An anti-dependency is a data dependency between a use (a consumption,
a read) and a (next) definition (a production, a write) of the same array variable element. The
array variable element has to be used before it is redefined.

Definition 3.9 An output dependency is a data dependency between a definition (a pro-
duction, a write) and a (next) definition (a production, a write) of the same array variable
element. The order of the definitions has to be kept so that the array variable element contains
the right data after the two definitions (productions, writes) have finished.

Definition 3.10 The flow dependence relation δS1,S2 between two statements S1 and S2
is the set of all pairs of iteration vectors (~ı,~) that exhibit a flow dependence, i.e., when a
definition (a production, a write) in S1 and a use (a consumption, a read) in S2 access the
same array variable element.

Definition 3.11 Given two d-dimensional vectors ~ı and ~, ~ı is lexicographically smaller
than ~, denoted~ı ≺ ~ if and only if there exists some k, 1 ≤ k ≤ d, where d is the number of
dimensions, such that ı̇l = ̇l for 1 ≤ l < k and ı̇k < ̇k.

In multiple assignment code, we have to assure that the definition is executed before
the use and that there is no intermediate write access to that array variable element,
i.e.,
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for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    a[i][j] = in1();   //S1

for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    b[i][j] = a[j][i]; //S2

Original code
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Figure 3.7: GM example for two loop nests: (a) Original code; (b) The iteration domains
and the dependence distance vectors in the CIS; (c) Dependence polytope.

δS1,S2 = {(~ı,~) |~ı ∈ IDS1 ∧ ~ ∈ IDS2 ∧ WS1 (~ı) = RS2 (~) ∧
~ı ≺ ~ ∧ ¬(∃~̀ ∈ IDSX : WSX (~̀) = WS1 (~ı) ∧~ı ≺ ~̀≺ ~)}

where IDS1 and IDS2 are iteration domains of statements S1 and S2, WS1 is the def-
inition of an array in the statement S1, RS2 is the use of an array in the statement
S2 and WSX is an intermediate write access to that array variable in the iteration do-
main IDSX of statement SX. Statement SX is executed after statement S1 and before
statement S2.

Similarly we can define the anti-dependency relation and the output dependency re-
lation. If we consider code in Dynamic Single Assignment conversion (DSA) form [69,
209] each array element is written only once. Thus, in such a code there are neither
anti-dependencies nor output dependencies. Because each array element is written
only once also the flow dependence relation is simplified.

δS1,S2 = {(~ı,~) |~ı ∈ IDS1 ∧ ~ ∈ IDS2 ∧ WS1(~ı) = RS2(~)}

Definition 3.12 The dependence distance vector ~d is the difference between ~ and ~ı,
where~ı ∈ IDS1, ~ ∈ IDS2 and~ıδS1,S2~.

Definition 3.13 The dependence polytope DPS1,S2 of a dependence δS1,S2 is a convex
hull of all dependence distance vectors between S1 and S2, i.e.,

DPS1,S2 = conv{~d ∈ � d | ∃(~ı,~) ∈ δS1,S2 : ~d = ~ −~ı}

The concept of flow dependence, flow dependence relation, dependence distance
vector and dependence polytope is depicted in Figure 3.7. It shows a simple code
we already used as an example in Section 3.1. In the first loop nest, in statement S1,
the array element a[i][j] is defined and later in the second loop nest in statement S2
the array element a[j][i] is used. If (i,j)=(0,0) in the first loop nest and (i,j)=(0,0) in
the second loop nest or (i,j)=(0,1) in the first loop nest and (i,j)=(1,0) in the second
loop nest the same array element is accessed in the memory so there exists a flow
dependency between the write in the first loop nest and read in the second loop
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nest. The code is in DSA form so we can use the simplified definition to compute the
flow dependence relation:

δS1,S2 = {(t0S1, iS1, t1S1, jS1, t2S1, t0S2, iS2, t1S2, jS2, t2S2) |
0 ≤ iS1, jS1, iS2, jS2 ≤ 3 ∧ t0S1 = 0 ∧ t0S2 = 1 ∧
t1S1, t2S1, t1S2, t2S2 = 0 ∧ iS1 = jS2 ∧ jS1 = iS2}

After simplification of this set, e.g., using Omega calculator [121], we get the flow
dependence relation:

δS1,S2 = {(0, iS1, 0, jS1, 0, 1, jS1, 0, iS1, 0) | 0 ≤ iS1, jS1 ≤ 3}

The (flow) dependence distance vector is the difference between two iterations that
access the same array element in the memory, i.e., when (flow) dependence relation
is valid. E.g., when (i,j)=(0,0) for the first loop nest and (i,j)=(0,0) for the second
loop nest the dependence relation is valid and the difference (considering also time
dimensions) is (1,0,0,0,0). When (i,j)=(0,1) for the first loop nest and (i,j)=(1,0) for
the second loop nest the difference is (1,1,0,-1,0). Some of the dependence distance
vectors are depicted in Figure 3.7b. Note, that the t1 and t2 dimensions were omitted
here. They are always 0 for S1 and S2 and thus do not have any influence on the
computed sets.

We can also compute the dependence polytope as defined above. All dependence
distance vectors and the dependence polytope are in Figure 3.7c.

DPS1,S2 = conv{(d0, d1, d2, d3, d4) | ∃(t0S1, iS1, t1S1, jS1, t2S1, t0S2, iS2, t1S2,

jS2, t2S2 | 0 ≤ iS1, jS1, iS2, jS2 ≤ 3 ∧ t0S1 = 0 ∧ t0S2 = 1 ∧ t1S1,

t2S1, t1S2, t2S2 = 0 ∧ d0 = t0S2 − t0S1 ∧ d1 = iS2 − iS1 ∧ d2 =

t1S2 − t1S1 ∧ d3 = jS2 − jS1 ∧ d3 = t2S2 − t2S1)}

After simplification of this set we get the dependence polytope (see also the dash-dot
line in Figure 3.7c).

DPS1,S2 = {(1, d1, 0,−d1, 0) | −3 ≤ d1 ≤ 3}

After computing the iteration domains of the statements, introducing the time di-
mensions, putting the iteration domains to the CIS and computing the dependences
we have a compact representation of the program. The program can then be repre-
sented as a Polyhedral Dependency Graph (PDG):

Definition 3.14 A PDG is a tuple G = 〈V,E,P,∆〉 consisting of the following elements:

• V is the set of nodes where each node represents a statement in the original program.

• Each node n ∈ V is adorned by a polytope representing the iteration domain of that
statement. The set of all such polytopes is P .
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• E is the set of edges. There is an edge between node n1 ∈ V and n2 ∈ V , denoted
as (n1, n2) if and only if there is a (flow) dependence relation δS1,S2 between the two
statements S1 and S2 the two nodes n1 and n2 represent.

• Each edge e = (n1, n2) is adorned by the dependence polytope DPS1,S2. The set of all
such polytopes is ∆.

For the PDG, the time dimensions determining the scheduling of the statements are
not necessary. However, then the original structure of the program is not known.
During the GLT, the placement phase, which places the individual iteration domains
in the new CIS, is required. This phase creates a new program structure from scratch
based on the dependencies so that they are not violated. Both approaches, creating of
the CIS based on the full information about the program structure and then adapting
the known structure of the program as well as the construction of the program from
scratch will be discussed in the next section.

3.6 Transformations on the GM

GLT changes the execution ordering of the statements without violating the data
(flow) dependencies in the program. The execution ordering of the statements can
easily be changed using the affine transformations. The affine transformation TS

maps each iteration vector ~ı in the iteration space of statement S to a new iteration
vector TS(~ı)

TS :~ı 7→ TS(~ı) = T~ı + ~t

where the T is a linear transformation matrix and ~t is the translation vector. The T
matrix does not to have be unimodular, i.e., square integer matrix with determinant
+1 or -1. However, if the T matrix is not square then the transformed space can be
larger (or smaller) dimension. Also, if determinant det T 6= ± 1, then the number
of points in the domain will be scaled by the determinant. Thus, the transformation
for non-unimodular matrix will not be a bijection, i.e. one-to-one mapping. In this
work we will consider only unimodular linear transformation matrices. The affine
transformation TS2 applied on the iteration domain S2 in Figure 3.8a

TS2(~ı) =









1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1









~ı +









−1
0
0
0
0









is demonstrated in Figure 3.8b,c. Note, that the ordering of the dimensions in the T
matrix and in the ~t is (t0, i, t1, j, t2). Figure 3.8b depicts the linear transformation T
and Figure 3.8c depicts the translation ~t. Note the small shift of the whole domain to
the origin of the coordinate system representing the shift (−1, 0, 0, 0, 0). We filled the
node (0,3) with darker fill to be able to observe the transformation of one particular
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Figure 3.8: (a) Original iteration domain of S2; (b) The iteration domain of S2 after linear
transformation; (c) The iteration domain of S2 after linear transformation and translation.

point in the iteration domain (and mainly to see the effect of the linear transforma-
tion).

In Figure 3.9 we can observe the effect of this transformation on the program (Fig-
ure 3.9a,d), on the iteration domain of S2 in the CIS and the dependencies (Fig-
ure 3.9b,e), and on the dependency polytope (Figure 3.9c,e). The linear transfor-
mation improved the regularity of the dependence in the program. This can be
seen by the reduction of the dependency polytope dimension from 1D (line) to 0D
(point). Note, that some approaches for regularity optimization are based on testing
the dependency polytope dimension for most common linear transformations (inter-
change, inverse) [44]. The linear transformation we applied in our example was also
the interchange of the two loops in the second loop nest. Despite improved regular-
ity, the production and consumption of the array elements are still far apart. That is
why we applied the translation vector. The −1 in the first time dimension t0 of the
translation vector ~t = (−1, 0, 0, 0, 0) fuses the two loop nests into one loop nest. Note
that this transformation would not be possible without the regularity optimization.
Still, the S1 has to precede S2 to keep the geometrical representation of the program
valid. In the sequel we define when the geometrical representation of the program
is valid and how do we recognize valid affine transformation:

Definition 3.15 The geometrical representation of the program is valid if and only if all de-
pendence distance vectors in the program are strictly positive, i.e., ∀~d = ~ −~ı � ~0. That
means there should not be a consumption/use/read of an array element before the produc-
tion/definition/write of that array element.

Definition 3.16 An affine transformation is valid if and only if the geometrical representa-
tion of the program after the affine transformation is valid.

The validity of the transformed program in our example in Figure 3.9 is achieved
by fission, i.e., loop splitting, of the last time dimension, so in reality the ~t =
(−1, 0, 0, 0, 1). The +1 in the last dimension is necessary to distinguish between the
statements in the innermost loop. The locality criterion tries in general to place pro-
duction and consumption as close as possible and as still allowed by the validity
constraint. However, in Chapter 6 we will show that it is not optimal from other
aspects and can lead to a suboptimal solution when the application is mapped on a
platform.
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for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    a[i][j] = in1();   //S1

for(i=0;i<4;i++)
  for(j=0;j<4;j++)
    b[i][j] = a[j][i]; //S2

Original code
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for(i=0;i<4;i++)
  for(j=0;j<4;j++) {
    a[i][j] = in1();   //S1
    b[j][i] = a[i][j]; //S2
  }

Transformed code
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Figure 3.9: (a) Original code; (b) The CIS with the dependency vectors (original code);
(c) The dependency polytope (original code); (d) Transformed code; (e) The CIS with
the dependency vectors (transformed code); (f) The dependency polytope (transformed
code).

An alternative approach is to start from the PDG without time dimensions and with-
out the CIS. In this representation the individual iteration domains are transformed
to improve the regularity of memory accesses, e.g., by selecting linear transforma-
tions that lead to the reduction of the dimensions in the dependency polytope. Only
after the linear transformation phase the linearly transformed polytopes are com-
bined together based on the locality criterion into a CIS and the ordering is selected.
This approach has been presented by Danckaert [44]. Verdoolaege [213] has shown
that for the locality improvement on a non-parallel architecture, this approach is
equivalent with the incremental approach [213] where the original structure of the
program is preserved in the CIS and the polytopes are incrementally linearly trans-
formed and translated1.

3.7 GM scanner

To get from the GM to the IR we need a GM scanner (see Figure 3.4). The full gen-
eration of the transformed IR (IRT in Figure 3.4) is performed in two steps. In the
first step, a simple IR is constructed. In the second step, the real IR is constructed. In
some frameworks the second step contains also the combiner which combines the
transformed parts of IR with the parts that have not been transformed.

1The previous approach of Danckaert is equivalent for architectures with Instruction Level Parallelism
(ILP) scheduling only, where only time scheduling is present. However, for architectures with Data Level
Parallelism (DLP) scheduling where also space dimension is present (like systolic arrays) Danckaert’s
approach is considered more general.
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The GM scanners are usually based on the algorithm of Quilleré et al. [178]. Exam-
ples of the scanners based on this algorithm are LoopGen, Chunky Loop Generator
(CLooG), WHIRL Loop Generator (WLooG), and SUIF Loop Generator (sloog). Loop-
Gen is the original C++ loop generation tool and library developed by Quilleré et
al. [178]. It takes the GM and produces the corresponding loop nest structure. How-
ever, the statement information is not present in this approach. CLooG is the reim-
plementation of LoopGen, which is easier to link into an application and includes
some additional code generation options [18]. But, the statement information is also
not present. The WLooG contained in WRaP-IT library uses CLooG to generate a
WHIRL representation of the code after transformations. The sloog which is also
based on CLooG, generates the SUIF representation of the code after transforma-
tions. It contains also pointers to the statements in the SUIF representation so the
whole code can be (re)generated after transformations [213]. Some scanners, e.g.,
CLooG, contain also the dumper from the IR to the transformed C code. However,
they do not contain the combiner, thus the non-geometrical part cannot be merged
into the transformed code. The other scanners like sloog contain the combiner and
leave the dumping to the external tool, e.g., SUIF to C (s2c) tool.

There are also code generation algorithms different from Quilleré et al. [178]. The
code generation was first solved by Ancourt and Irigoin [9]. They used the Fourier-
Motzkin elimination technique to compute loop bounds. The code generators de-
rived from this technique are the LooPo code generator and the code generator in
the Omega library [118]. However, for complex situations, the best solution is the
Quilleré et al. algorithm [178].

In the following subsection we first explain the basics of Quilleré et al. algorithm.
We will use the iteration domain descriptions from Figure 3.9e where the iteration
domain of statement S2 has been shifted by 2 iterations in i and j dimensions and
the time dimensions have been ignored. Such a situation is depicted in Figure 3.10
left. Later in the section we show how adding time dimensions affects the result of
the scanning. Finally we will discuss the different options that can be used in the
scanning process resulting in more or less compact output code.

3.7.1 Quilleré et al. algorithm

The Quilleré et al. algorithm generates loop levels by projecting the polyhedra onto
the corresponding dimension. Next, it splits the projection into disjoint polyhedra
and it sorts the resulting polyhedra to respect the lexicographic order. Lastly, it re-
cursively generates loop nests that scan each polyhedron. This is demonstrated on a
simple example of two iteration domains S1 : {[i,j] : 0≤i,j≤3} and S2 : {[i,j] : 2≤i,j≤5}
in Figure 3.10. In this figure we first project the outermost dimension into disjoint
polyhedra creating three disjoint ’i’ iteration domains, 0≤i≤1 where only S1 is exe-
cuted, 2≤i≤3 where both, S1 and S2 are executed and 4≤i≤5 where only S2 is exe-
cuted.

After this partitioning of the i dimension we look at the ’i’ regions we created and
split the projection of the second ’i’ region into disjoint polyhedra for each ’j’ re-
gion, i.e., the innermost dimension. This is demonstrated in Figure 3.11. If we look
carefully at the iteration domain {i,j : 2≤i,j≤3} in the figure, we cannot really say
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for(i=0;i<=1;i++)
  S1 : {j : 0<=j<=3}
for(i=2;i<=3;i++) {
  S1 : {j : 0<=j<=3} //
  S2 : {j : 2<=j<=5}
}
for(i=4;i<=5;i++)
  S2 : {j : 2<=j<=5}
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Figure 3.10: Quilleré et al. algorithm: Projecting the first dimension into disjoint polyhe-
dra.

for(i=0;i<=1;i++)
  for(j=0;j<=3;j++)
    S1;
for(i=2;i<=3;i++) {
  for(j=0;j<=1;j++)
    S1;
  for(j=2;j<=3;j++) {
    S1; //
    S2;
  }
  for(j=4;j<=5;j++)
    S2;
}
for(i=4;i<=5;i++)
  for(j=2;j<=5;j++)
    S2;j
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Figure 3.11: Quilleré et al. algorithm: Projecting the second dimension into disjoint poly-
hedra.

based on the geometrical information we have, which statement should be executed
first during these iterations, if S1 or S2. To decide on that we introduced in Sec-
tion 3.1 time dimensions in order to determine the scheduling of the statements in
these cases. In the next subsection we show how time dimensions affect the scanning
results.

3.7.2 Scanning with the time dimensions

Time dimensions were introduced in Section 3.1. They decide on the scheduling of
the iteration domains at a particular loop level when the ordering at that particular
loop level cannot be determined. In Figure 3.11 we have implicitly put statement S1
before statement S2 in the disjoint polyhedra {[i,j] : 2≤i,j≤3} (see also the second ’i’
loop and second ’j’ loop within that ’i’ loop in the corresponding code). However, in
reality we cannot say if S1 is before S2 or vice versa. Thus we implicitly considered
one innermost time loop ’t’ which was 0 for S1 and 1 for S2. After projection and
splitting into disjoint polyhedra this corresponds to the code in Figure 3.11. If we
do an interchange and put the time dimension as the outermost loop, first we split
the projection to time loop into disjoint polyhedra S1: {[[i,j] : 0≤i,j≤3} and S2 : {[i,j]
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for(t=0;t<=0;t++)
  for(i=0;i<=3;i++)
    for(j=0;j<=3;j++)
      S1;
for(t=1;t<=1;t++)
  for(i=2;i<=5;i++)
    for(j=2;j<=5;j++)
      S2;
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Figure 3.12: Quilleré et al. algorithm: Projecting of the time dimensions.

for(i=0;i<=5;i++)
  for(j=max(0,i-3);
      j<=min(i+3,5);j++) {
    if(j<=3)
      S1;
    if(j>=2)
      S2;
  }

j

i

0 1 2 3 4 5

1

2

3

4

5

0 S1

S2

Figure 3.13: Quilleré et al. algorithm: Compact code.

: 2≤i,j≤5}. After the projection of the second ’i’ and third ’j’ dimension we get the
code in Figure 3.12. Thus, with the time dimensions we have all the information to
construct the corresponding ordering of the statements.

3.7.3 Scanning for compact code

The code in Figure 3.11 does not have any guards, however it consists of several loop
nests and thus the code size is relatively large. If we would like to scan for compact
code, we should use a perfectly nested loop to scan a convex superset (such as the
bounding box) of union of all statements. Because the domain scanned by this loop
is also a superset of each statement’s domain, we cannot unconditionally execute the
statements within the loop body. Rather, each statement must be guarded by condi-
tions which test that the current loop index vector belongs to the iteration domain of
that statement. The superset of the union scanned by the perfect loop may be simply
the bounding box of the domain as done by the LooPo code generator [91] or the con-
vex closure of the domain as done by the Omega code generator [119]. Figure 3.13
illustrates the scanning result of the same GM as in Figure 3.11 using convex closure
of the domain resulting in the compact code.

Despite the compact code, the solutions based on the perfect loop do have severe lim-
itations. In the code also the empty iterations are executed. E.g., in Figure 3.13 the
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iterations in the triangular domains {[i,j] : 3≤i≤5 && i-3≤j≤2} and {[i,j] : 0≤i≤2 &&
3≤j≤i+3} are empty and neither statement S1 nor statement S2 are executed during
those iterations. There is also a control-flow overhead where each loop iteration must
test the guards of each guarded statements. Also, the min and max function create the
control-flow overhead. To obtain good trade-off between the control-flow overhead
and size, the bounding box approach is preferred for the multimedia real-life appli-
cations. The disadvantage is the higher empty iteration count. However, it is not
much higher in relative measures when compared to the convex closure approach.
The bounding box approach also reflects the code layout when the loop transforma-
tion is done manually and is also preferred by the designers. The redundant control-
flow can be optimized later using other techniques such as [94, 158, 159, 66]. There
is also a possibility to choose the loop nest level from which on a convex superset is
scanned resulting in the trade-off between the code size and control-flow overhead
represented by empty iterations and guarded execution.

3.8 Postprocessing

Although beneficial for memory optimizations, the preprocessing usually introduces
instruction and control-flow overhead, e.g., code duplicating after inlining and hid-
ing scalars in the Layer 3 code, extending the loop bounds when considering the
worst case, moving if conditions down in loop hierarchy and thus executing it more
often when creating Layer 3 functions, function calls to Layer 3 functions, etc. To
undo this overhead postprocessing is needed. After the transformations, scanning
of geometrical model part and merging it with the non-geometrical model part the
rewriting and hiding done in the preprocessing step has to be partially undone to
ensure optimality of transformed application. In this step the application needs to
be postprocessed (see Figure 3.4). Postprocessing (as well as preprocessing) are per-
formed on the internal representation, e.g., on the AST.

To reduce the created overhead the postprocessing techniques and tools like the one
of Falk et al. [66] for optimizing control flow or RACE like techniques such as code
hoisting and Common Subexpression Elimination (CSE) techniques for elimination
of code duplication [94] can be used to remove the negative preprocessing effects
and further improve the code quality. Also Layer 3 code has to be expanded back to
Layer 2 code to enable the global scope to the traditional compiler.

3.9 Open issues

The hierarchical rewriting is crucial for separation of the different layers of the code.
To recap, the first layer contains process control flow, the second layer contains loop
hierarchy and indexed signals and the third layer contains arithmetic, logic and
data-dependent operations. The loop transformations are only applied to the sec-
ond layer. To extract the second layer manually is not feasible for huge programs.
Thus it is crucial to extract this layer automatically. In real-life code especially the
Layer 2 and Layer 3 are intermingled together. To provide an automatic layering
technique is a challenging task. We address this task in Chapter 4 where we propose
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a systematic way of AST manipulation to hierarchically rewrite and hide data depen-
dent conditions. The automatic rewriting is crucial to enable loop transformations
based on the existing geometrical models and also use tools based on that model.

In the past the applications where mostly static with limited amount of data-
dependent conditions and non-static constructs that are not supported by the GM.
Thus, the GMs extracted were large and a lot of times the whole application corre-
sponded to one big GM. However, current real-life applications have many more
non-SCoP parts, i.e., parts that are not extractable to GM even after preprocessing.
Also, many GMs have a very small size and contain only one particular kernel. To
deal with this problem we propose an intra-task scenario approach in Chapter 5. The
scenario approach specializes the code to several code versions with bigger SCoPs
on which it can perform more optimizations at compile time. The decision which
specialized (and optimized) code version will be used is postponed to the run-time.

Nowadays, the GLT step targets regularity and locality issues (or uses another par-
ticular cost function). In Chapter 6 we show that this does not have to be the optimal
solution and that there exist trade-offs during the GLT phase. We discuss several
trade-offs in this chapter. To our knowledge, so far nobody has focused on the trade-
off issue for different costs during the loop transformations performed on the GM.
The trade-offs between the energy cost and the performance were observed in the
iterative compilation research. However, the authors propose to use a combined
energy-performance factor [83] which then still results in a one-dimensional solu-
tion. Other authors in the same area [125, 2] trade-off the quality of the result vs. the
time needed to obtain this result. However, the trade-offs among different properties
of the program are still not explicitly considered in those approaches.





CHAPTER 4

Preprocessing for innermost conditions
C’est une grande habileté que de savoir cacher son habileté.

François de La Rochefoucauld
(1613-1680)

Every recent high level low-power design methodology contains a loop trans-
formation stage. Loop transformations are one of the basic optimization tech-
niques used at the high-level to improve source implementation quality to-

wards low power. This technique either improves the parallelization opportunities
at the instruction or data level or even task level, or it improves the locality of data
accesses such that data can be stored in lower levels of the memory hierarchy, result-
ing in significant power gains.

Parallelization is beneficial for extracting more instruction and/or data level paral-
lelism. Improved parallelism causes reduction in cycles. When lowering the clock
speed or voltage it also has a positive effect on energy consumption.

Data locality is beneficial in two ways. First, by decreasing the distance between
production and consumption of the same element, the life-time of that element is
shortened. The memory allocated to this element is freed earlier for other data ele-
ments, typically reducing the total memory requirement [49]. Second, by decreasing
the distance between multiple consumptions of the same element, the local copy
with short life-time is typically placed in the smaller and faster memory [200]. This
reduces the number of accesses to power hungry large memories that are further
away from the processor in the memory hierarchy.

The loop transformations are nearly always performed on the GM which is very
effective in dealing with complex transformations. However, the GM imposes strict
limitations on the input code. We discussed the GM and its limitations in Section 3.1.

To overcome the limitations of the GM preprocessing/pruning is applied on the
source code beforehand. The preprocessing/pruning step is essential, because it
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reduces complexity, increases exploration freedom and hides undesired constructs
of the original source code. This is true both for the designer and for tools. Another
solution to overcome the limitations of the GM would be to extend the GM. E.g.,
parameterizable geometrical representation, that is data dependent can be used as
an extension of traditional GM to support also data dependent constructs. However,
this solution is not acceptable because the Integer Linear Programming (ILP) solvers
used for the optimizations can not deal effectively with such an extended GM caus-
ing prohibitively long run-times of the solvers. Thus using preprocessing/pruning
is preferred over such extension of the GM.

The preprocessing/pruning step consists of several substeps. They are hierarchical
rewriting, hiding of undesired constructs, code expansion, array/pointer data-flow
analysis, data-flow chain removal, weight-based removal and partitioning. For some
of these substeps there exist or are under development systematic techniques. Ab-
sar et al. [1] proposed selective code inlining for code expansion. Vanbroekhoven
et al. [209] are working on array/pointer data-flow analysis and data-flow chain
removal which removes avoidable buffers in the program (see Figure 3.6a in Sec-
tion 3.3). However, hierarchical rewriting and hiding of undesired constructs which
are two basic and error prone substeps were left to the designer and are handled
ad-hoc.

In this chapter we would like to handle these two important substeps in a systematic
way. We propose a technique which manipulates Abstract Syntax Tree (AST) to hi-
erarchically rewrite and hide data dependent conditions. The technique is based on
automatic rewriting of an application in three layers. The first layer contains process
control flow, the second layer contains loop hierarchy and indexed signals and the
third layer contains arithmetic, logic and data-dependent operations. The loop trans-
formations are only applied to the second layer. Afterwards layer three is inlined and
propagated again into layer two. The automatic rewriting is crucial to enable loop
transformations based on the existing geometrical models and also use tools based
on those models. We contributed to the area of preprocessing with technique for
hierarchical rewriting and hiding of undesired constructs and its implementation in
prototype tool.

4.1 Problem definition

The kernels of modern applications contain the mixture of the second and third layer.
The first layer, containing process control-flow, is usually very well separated by the
designer. Also the exploration and optimization of the first layer is not the task of
the traditional DTSE methodology, called processor level DTSE. The first layer is the
target of the optimization of task level DTSE dealing with concurrent threads which
is out of the focus of this dissertation and therefore we do not further discuss this
issue. We will demonstrate the problem of separation of the second and third layer
in processor level DTSE on an example in Figure 4.1.

Figure 4.1a shows a part of the QSDPCM video encoder [193]. The two nested loops
represent two kernels, i.e., subsampling by 2 and motion estimation by 2, of the
video encoder. The kernels are usually well optimized by the designer. One objec-
tive of a low-power design methodology is inter-kernel optimization where large
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1 for ( y =0; y<9; y++) {
2 . . .
3 for ( n=0; n<8; n++) {
4 . . .
5 for ( l =0 ; l <2; l ++)
6 temp+= p r e v f r [ ] ;
7 p r e v s u b 2 f r [ ] = temp /4;
8 }
9 }

10 for ( y =0; y<9; y++) {
11 . . .
12 for ( n=0; n<8; n++) {
13 p1= s u b 2 f r [ ] ;
14 i f ( c t r l )
15 p2 =0;
16 else
17 p2=p r e v s u b 2 f r [ ] ;
18 d i s t +=abs ( p1−p2 ) ;
19 }
20 . . .
21 tmp v2y [ y]= f ( d i s t , . . . ) ;
22 . . .
23 }

(a)

1 for ( y =0; y<9; y++) {
2 . . .
3 for ( n=0; n<8; n++) {
4 . . .
5 for ( l =0 ; l <2; l ++)
6 temp+= p r e v f r [ ] ;
7 p r e v s u b 2 f r [ ] = temp /4;
8 }
9 }

10 for ( y =0; y<9; y++) {
11 . . .
12 for ( n=0; n<8; n++) {
13 d i s t += l t f u n c ( s u b 2 f r [ ] ,
14 p r e v s u b 2 f r [ ] , c t r l ) ;
15 }
16 . . .
17 tmp v2y [ y]= f ( d i s t , . . . ) ;
18 . . .
19 }

(b)

1 i n t l t f u n c ( i n t l t a r g 1 , i n t
2 l t a r g 2 , i n t l t a r g 3 )
{

3 i n t p1 , . . . , p2 ;
4 p1=arg1 ;
5 l t i f v a r =0;
6 l t e l v a r =arg2 ;
7 p2=arg3 ?
8 l t i f v a r : l t e l v a r ;
9 return abs ( p1−p2 ) ;

10 }

(c)

Figure 4.1: Data dependent conditions as limiting factor for GLT: (a) original code seg-
ment that cannot be fused; (b) code segment after applying our technique that can be
fused; (c) layer three code.
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energy savings can be obtained. If we look at the second loop nest we can see a
data dependent condition in the kernel. A GLT framework has a problem to ana-
lyze the code within data dependent conditions. E.g., it has problems to analyze the
prev sub2 fr (previous frame subsampled by 2) read access (the write access can be
analyzed easily). To enable analyzing also this access inside the condition together
with the scalars p1 and p2 (which are not targeted by high-level memory optimiza-
tion) the data dependent condition (line 14) should be hidden in the third layer of
the application (see Figure 4.1c). The second layer should contain only loop hierar-
chy and indexed signals as depicted in Figure 4.1b. Although dist is not an indexed
signal yet, after conversion to Dynamic Single Assignment conversion (DSA) [209]
(which is one of the preprocessing substeps) it will be. The dist scalar should also
remain in second layer because its lifetime goes beyond the boundaries of the basic
block (after if-conversion) that has been encapsulated into the lt func() function. We
assume that the basic blocks are already well optimized and do not need any further
GLT. Thus they can be encapsulated into the lt func() functions.

The code in Figure 4.1b can be extracted into the GM and thereafter GLT can be ap-
plied. Compared to the original code fragment in Figure 4.1a, the code in Figure 4.1b
has the data dependent condition and the scalars p1 and p2 hidden (see Figure 4.1c).
Also the code granularity has been raised to only loop and array signal level. This
was achieved by elimination of “avoidable” scalars (scalars that are not input or out-
put scalars of the basic block, like p1 and p2) and hiding arithmetic, logic and bitwise
operations. Section 4.2 explains how to go systematically from the code in Figure 4.1a
to the code in Figure 4.1b, and it provides algorithms for this code transformation.

4.2 Hierarchical rewriting and hiding of data dependent
conditions

In our approach, we assume that the potential exploration space is in one function.
This can be achieved by systematically applying Selective Function Inlining [1]. We
also consider pointer free code, which can be achieved by Pointer Analysis and
Conversion techniques [184, 75]. Also, the data dependent addressing should be
substituted by extreme cases (lower and upper bound). These bounds can be ob-
tained either via dynamic profiling [117] or via analytic methods. To use extreme
bounds usually over-constrains the dependencies computed later during loop trans-
formations resulting in non-optimal application of these transformations. One solu-
tion to avoid this over-constraining of dependencies is using scenario methodology
as is explained in Chapter 5.

Such a preprocessed application has to be rewritten in three layers. Our hierarchical
rewriting and hiding of data dependent conditions technique which separates the
second and the third layer consists of three main steps:

1. Moving the data dependent conditions to innermost loops.

2. Rewriting the innermost if conditions to ternary operators (if-conversion).

3. Encapsulation of if-converted basic block computations into functions.
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Each of these steps will be discussed in detail in following subsections. After apply-
ing these steps we obtain code without data dependent conditions and with appro-
priate granularity for loop transformations.

4.2.1 Moving data dependent conditions to innermost loops

Moving data dependent conditions to the innermost level enlarges the exploration
space. It looks very similar to ignoring the condition at the corresponding level as in
the case of current approaches. However the condition is now kept at the innermost
level and after the loop transformation it can be hoisted up again to the appropriate
level. Other approaches transform the data dependent conditions to data indepen-
dent conditions [114, 126]. However, these approaches use worst case situation and
thus they loose some information about the code. In this respect they are similar to
ignoring the condition.

In Figure 4.2 we show an example of condition moving. In Figure 4.2a we see the
original code where the data-dependent condition is at the middle level. In Fig-
ure 4.2b the data dependent condition was moved to the innermost level, and thus it
is prepared for two new steps, namely the rewriting of the condition to ternary op-
erator and after that the encapsulation of the if-converted basic block computations
into functions.

1 for ( bx =0; bx<2; bx++) {
2 i f ( b l l a s t i n d [ bx]>=0) {
3 for ( cx =0; cx <8; cx ++) {
4 b l b u f f [ bx ] [ cx ] = . . . ;
5 }
6 . . .
7 }

(a)

1 for ( bx =0; bx<2; bx++) {
2 for ( cx =0; cx <8; cx ++) {
3 i f ( b l l a s t i n d [ bx]>=0) {
4 b l b u f f [ bx ] [ cx ] = . . . ;
5 }
6 . . .
7 }

(b)

Figure 4.2: Moving data dependent conditions to innermost loop: (a) original code frag-
ment code; (b) code fragment after condition moving.

At this point it is important to clarify about moving outermost conditions innermost.
Those outermost conditions that are be part of the scenario approach discussed in
Chapter 5 are not moved. The “scenario” conditions contain at least one of the rele-
vant parameters for scenarios in the expression. The relevant parameters are discov-
ered by scenario parameter discovery techniques [84, 86].

When moving a condition down in the loop hierarchy during preprocessing, the
condition is executed more times compared to the original place. This is depicted
on an example in Figure 4.3a where the condition is executed once and Figure 4.3b
where the condition is executed six times. To avoid this redundant conditional ex-
ecution, after the transformations we move data dependent conditions up again.
If prohibited by the applied global loop transformations (e.g., loop merge as de-
picted in Figure 4.3b), we can still use the loop nest splitting principle [66] to move
the data dependent condition up. However, this systematic optimization increases
the code size. Thus it is sometimes beneficial not to perform loop transformations
which blocks the condition to be moved up again without code size increase; so a
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1 for ( i =0 ; i <6; i ++)
2 a [ i ] = . . . ;
3 i f ( c t r l )
4 for ( i =0 ; i <6; i ++)
5 . . . = a [ i ] ;

(a)

1 for ( i =0 ; i <6; i ++)
2 a [ i ] = . . . ;
3 for ( i =0 ; i <6; i ++)
4 i f ( c t r l )
5 . . . = a [ i ] ;

(b)

1 for ( i =0 ; i <6; i ++) {
2 a [ i ] = . . . ;
3 i f ( c t r l )
4 . . . = a [ i ] ;
5 }

(c)

Figure 4.3: Example when moving back of data dependent condition is prohibited by
LT: (a) original code fragment code; (b) code fragment after condition moving; (c) loop
transformed code fragment where the if condition cannot be moved outside the for loop.

trade-off is involved. Future improvement to the existing loop transformation frame-
work should use the control-flow complexity estimates during loop transformations.
These estimates should avoid loop transformations that block the conditions which
cause large overhead. This is one area for the future research.

Summarizing, we move the data dependent condition to innermost loop if:

1. it is not a scenario condition and either

2. (a) it can be moved up (back to its original position) after LT or
(b) it is not too costly to put (and keep) it at the innermost level (costly in

terms of number of additional evaluations of the condition)

The next two subsections explain how to hide such a moved data dependent condi-
tion at the innermost level by rewriting it to ternary operator and encapsulation of
if-converted basic block computations into function.

4.2.2 Rewriting the innermost if conditions to ternary operators

Eliminating innermost data dependent conditions is represented by its transforma-
tion to a ternary operator. This transformation replaces the control-flow structure
not supported by the geometrical model to an operator. This operator is an eval-
uation statement which is supported by current loop transformation flows. In the
case of only assignments in the if condition body this one-to-one mapping is always
possible. If two different variables or array elements are written in both branches of
the if condition, two ternary operators are needed; each captures one variable/array
element write.

Figure 4.4 shows an example of the rewriting of innermost if condition demonstrated
on a part of the QSDPCM application [28]. We start following back the dependen-
cies from list of array definitions to capture the data-dependent innermost condi-
tions that contribute to the array data flow. We are not interested in other innermost
conditions. The innermost condition detected during following back the flow de-
pendencies is automatically rewritten to a ternary operator. The operator is then
encapsulated into the particular function. In Figure 4.4a in the statement at Line 9
the use of variable p2 is detected during following back the flow dependencies. If
we ask for its definition we cross the control-flow boundary. We obtain two poten-
tial definitions depending on the ctrl control expression. If one potential definition,
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1 for ( y =0; y<9; y++) {
2 . . .
3 for ( n=0; n<8; n++) {
4 p1= s u b 2 f r [ ] ;
5 i f ( c t r l )
6 p2 =0;
7 else
8 p2=p r e v s u b 2 f r [ ] ;
9 d i s t +=abs ( p1−p2 ) ;

10 }
11 . . .
12 tmp v2y [ y]= f ( d i s t , . . . ) ;
13 . . .
14 }

(a)

1 for ( y =0; y<9; y++) {
2 . . .
3 for ( n=0; n<8; n++) {
4 p1= s u b 2 f r [ ] ;
5 l t i f v a r =0;
6 l t e l v a r =p r e v s u b 2 f r [ ] ;
7 p2= c t r l ?
8 l t i f v a r : l t e l v a r ;
9 d i s t +=abs ( p1−p2 ) ;

10 }
11 . . .
12 tmp v2y [ y]= f ( d i s t , . . . ) ;
13 . . .
14 }

(b)

Figure 4.4: Rewriting the innermost data dependent if condition to ternary operator: (a)
original code fragment code; (b) code fragment after condition rewriting.

i.e., one branch of the condition, is missing we add this branch into the Abstract
Syntax Tree (AST). In the added branch we construct an identity copy statement,
i.e., p2=p2;. The full control structure (both branches) is then rewritten to the ternary
operator (see statement on Line 7 in Figure 4.4b). Note, that during the next step,
i.e., the encapsulation of if-converted basic block computations into functions, all
statements on Lines 4 – 9 will be collected to one function and the basic block will
be replaced by one function call. After the rewriting of the condition to the ternary
operator, the last step is easier implementable. Also, rewriting the condition to a
ternary operator can help some compilers to interpret it as guarded execution.

The pseudocode of the algorithm for rewriting the innermost if conditions to ternary
operators is listed in Figure 4.5. Before we describe the algorithm in detail, we ex-
plain the Factored User-Def chains (FUD) we use for scalar data-flow analysis. FUD
chains are an improved form of use-def chains [219]. They have two important prop-
erties. The first is that each use of a variable is reached by a single definition. The
second property is that special merge operators called pseudo-definitions are in-
serted into control-flow merge points when there exist multiple reaching definitions.
These pseudo-definitions factor the multiple incoming reaching definitions, and are
inserted to satisfy the first property for any variable use after the control-flow merge.
E.g., in Figure 4.4a between the use of variable p2 at Line 9 and two definitions of this
variable in two branches of the if condition there exists a pseudo-definition which
merges the two definitions of p2 variable.

In the FUD chain scalar data-flow analysis, the definition corresponds to a write
access and the use corresponds to a read access. For both the write and read accesses,
we can get the statement which contain these accesses. We can also collect all uses
(read accesses) in a statement. Further, we can follow back the flow dependency,
i.e., the data dependency between a definition and any use of the same variable.
Note that the variable has to be defined before it can be used. Following back the
flow dependency is the same as searching for the given use (read) the corresponding
definition (write). If during this searching the pseudo-definition is discovered, we
identify that the real definition is within some control-flow construct. There exist
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r e w r i t i n g i n n e r m o s t i f (
Input : AST with FUD analys i s ,
Output : Transformed AST ( i f−converted ) ) {

unmark al l data dep condi t ions ( ) ;
d e f l i f o = c o l l e c t a l l a r r a y d e f s ( ) ;
while ( element = pop element ( d e f l i f o ) ) {

statement = g e t s t a t e m e n t ( element ) ;
u s e l i s t = c o l l e c t u s e s ( statement ) ;
foreach use item ( u s e l i s t ) {

def i tem = g e t d e f ( use i tem ) ;
i f ( ins ide data dep cond ( def i tem )

&& ! marked condition ( def i tem ) ) {
r e p l a c e c o n d b y t e r n a r y o p e r a t o r ( def i tem ) ;
mark cond ( def i tem ) ;

}
i f ( ! ins ide data dep cond ( def i tem )

&& ! a r r a y d e f ( def i tem ) ) {
push element ( def i tem , d e f l i f o ) ;

}
}

}
delete marked data dep cond ( ) ;

}

Figure 4.5: Algorithm for rewriting the innermost if condition to ternary operators (if-
conversion).

fud_normalDef of p2
in if branch

fud_normalDef of p2
in else branch

fud_normalUse of p2

fud_gammaDef of p2
in if condition

(fud_gammaDef is special
instance of fud_pseudoDef

for conditions)

1 0looped

Figure 4.6: An example of a pseudo-definition for a condition. Between the use and the
definitions in the branches of the if-condition the pseudo definition is present.
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specialized pseudo-definitions for conditions and for loops in the FUD [219]. Thus,
a write inside a condition can be easily identified when during following back the
flow dependency from the use, the pseudo-definition for condition is detected. This
is depicted in Figure 4.6 for variable p2 from code in Figure 4.4a.

In the algorithm in Figure 4.5 we first collect all array definitions (writes) in the AST
of the scope of our technique by traversing the corresponding part of the AST. The
scope is usually the function we want to optimize with GLT. For each array defini-
tion we get the statement where the array is written and get all uses (reads) of the
variables in that statement. Then we follow back the flow dependencies for each
use and identify its definition till we do not reach the pseudo-definition that iden-
tifies the write inside the if condition or an array definition. Note that the pseudo-
definition for if condition is special in the scalar data-flow FUD analysis we are using
as was discussed in the previous paragraph. After identification of the control-flow
boundary, the condition is replaced by the ternary operator by AST rewriting and
this condition is marked as rewritten. At the end we delete all marked conditions
which have been rewritten to the ternary operator.

The algorithm we presented in Figure 4.5 is simplified version of the real algorithm
we implemented. In reality the search is not stopped after detecting the condition.
When detecting the condition the algorithm is called recursively. With this imple-
mentation also nested innermost conditions can be handled. The only restriction is
that the conditions have to be if conditions, thus not other conditional control struc-
tures such as case are allowed. However, these structures can be usually rewritten to
the set of if conditions. Obviously, it is not possible to rewrite other then innermost
conditions to the ternary operator. Thus the enabling Step 1, i.e., moving data de-
pendent conditions down in the AST hierarchy (see Subsection 4.2.1) is performed
before innermost condition rewriting.

4.2.3 Encapsulation of if-converted basic block computations into
functions

After rewriting the innermost if condition to ternary operators, which actually rep-
resents if-conversion at the source code level, our code consists of if-converted basic
blocks with a lot of scalars. We will demonstrate this on the part of the realistic ex-
ample from the QSDPCM application [28]. In Figure 4.7a on Lines 4 – 9 there are 5
statements in the if-converted basic block. Those statements form one kernel which
is usually very well optimized and should be transformed as one statement during
GLT. Also, the if-converted basic block contains a lot of scalars that should be hidden
for the GLT step. E.g., in Figure 4.7a, the scalars {p1, lt if var, lt el var, p2} are “avoid-
able” scalars. With “avoidable” scalars we mean intermediate variables that are not
input variables or output variables of a particular if-converted basic block. Thus only
the scalars whose lifetime does not span over the (if-converted) basic block bound-
aries are called “avoidable scalars” and can be encapsulated in Layer 3. Input and
output scalars of a basic block remain in Layer 2 and are expanded to arrays using
Dynamic Single Assignment conversion. The “avoidable” scalars can be eliminated
in Layer 3 code via simple scalar copy propagation which is a well-known technique
in the classic compiler literature [3, 154].
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1 for ( y =0; y<9; y++) {
2 . . .
3 for ( n=0; n<8; n++) {
4 p1= s u b 2 f r [ ] ;
5 l t i f v a r =0;
6 l t e l v a r =p r e v s u b 2 f r [ ] ;
7 p2= c t r l ?
8 l t i f v a r : l t e l v a r ;
9 d i s t +=abs ( p1−p2 ) ;

10 }
11 . . .
12 tmp v2y [ y]= f ( d i s t , . . . ) ;
13 . . .
14 }

(a)

1 for ( y =0; y<9; y++) {
2 . . .
3 for ( n=0; n<8; n++) {
4 d i s t += l t f u n c ( s u b 2 f r [ ] ,
5 p r e v s u b 2 f r [ ] , c t r l ) ;
6 }
7 . . .
8 tmp v2y [ y]= f ( d i s t , . . . ) ;
9 . . .

10 }
11 −−−
12 i n t l t f u n c ( i n t l t a r g 1 , i n t
13 l t a r g 2 , i n t l t a r g 3 )

{
14 i n t p1 , . . . , p2 ;
15 p1=arg1 ;
16 l t i f v a r =0;
17 l t e l v a r =arg2 ;
18 p2=arg3 ?
19 l t i f v a r : l t e l v a r ;
20 return abs ( p1−p2 ) ;
21 }

(b)

Figure 4.7: Innermost data dependent condition hiding: (a) original code fragment code;
(b) code fragment after condition hiding.

Figure 4.7 contains an example of the encapsulation of (if-converted) basic block
computations into function. Every output variable of the basic block or the array
in the basic block is detected and all the statements in the (if-converted) basic block
this variable is depending on (directly or indirectly) are isolated. This group of state-
ments is then encapsulated into a function. In the Layer 2 code only the function call
to this function remains. The statements in the if-converted basic block are encap-
sulated into the lt func() function and the basic block is replaced by this function as
depicted in Figure 4.7b on Line 4. After the encapsulation, the code contains only
Layer 2 constructs. Note, that in Figure 4.7a only one output variable dist is present
and is depending on all the statements in the basic block, thus the isolation is not
applied in this case.

In Figure 4.8 the algorithm for encapsulation of if-converted basic block computa-
tions into functions is listed. Actually, the algorithm works similar to simple scalar
copy propagation which has been reimplemented to be able to collect all statements
on the traversing path starting from a array definition. At the beginning we collect
all array definitions (writes) in the corresponding part of the AST. For each array
definition we get the statement where the array is written and get all uses (reads) of
the variables in that statement. Till here, the algorithm resembles the algorithm in
Figure 4.5. Here, the statement in the if-converted basic block is copied to the func-
tion and the following back of the scalar flow dependencies continues till the array
definition or the boundary of the if-converted basic block is detected. The boundary
is detected by identifying the use that is outside the (if-converted) basic block. This
is possible with ATOMIUM FUD analysis.

If this boundary is detected the def lifo has to be checked for the scalar that crosses
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e n c a p s u l a t i n g i f c o n v e r t e d b a s i c b l o c k s (
Input : I f−converted AST with FUD a n a l y s i s
Output : Transformed AST with l a y e r 2 and l a y e r 3 ) {

d e f l i f o = c o l l e c t a l l a r r a y d e f s ( ) ;
while ( element = pop element ( d e f l i f o ) ) {

statement = g e t s t a t e m e n t ( element ) ;
i f ( i n i f c o n v e r t e d b a s i c b l o c k ( statement ) {

copy statement to new funct ion ( statement ) ;
}
u s e l i s t = c o l l e c t u s e s ( statement ) ;
foreach use item ( u s e l i s t ) {

def i tem = g e t d e f ( use i tem ) ;
i f ( ! a r r a y d e f ( def i tem ) ) {

d e f l i f o = push element ( def i tem , d e f l i f o ) ;
}
i f ( pseudo def ( def i tem ) ) {

check and reorder ( def i tem , d e f l i f o ) ;
}

}
}
c r e a t e f u n c t i o n c a l l s ( ) ;
e l iminate dead code ( ) ;

}

Figure 4.8: Algorithm for encapsulation of if-converted basic block computations into
functions by scalar copy propagation.

the boundary. The def lifo has to be reordered and this scalar has to be moved be-
tween the array definitions and the definitions that point within the if-converted ba-
sic block. This is needed, because before we go to the next if-converted basic block,
all statements from the current basic block have to be collected. We will demonstrate
it on example in Figure 4.7a. Let us assume we are at Line 7 and the def lifo contains
...,ctrl,p1,p2. If the ctrl could be before p1 and p2 we would pop ctrl before p1 and
p2 and statements outside the basic block will be collected before this basic block
is finished. Thus, this reordering is needed and not doing so will cause the inter-
mingling of the statements from different if-converted basic blocks. At the end the
function is created from the statements collected in the basic block. Note, that we do
not follow loop carried dependencies like dist, otherwise we would unroll the loop
around the basic block. Also, the dead code, i.e., the original statements that have
been collected, are eliminated.

Note, that during copying of the statements code duplication can occur. E.g., if the
statement on Line 7 in Figure 4.7a would be used also in another context, e.g., the
p2 scalar is used also somewhere else than on Line 9, this statement will be copied
twice and encapsulated into two different functions. The final result of this step
is encapsulation of all the functionality in the if-converted basic block between an
array write and flow dependent array reads or (loop carried) scalars that cross the
basic block boundary.

The introduced steps carry an overhead after loop transformations due to code du-
plication in Step 3, copying of the array content when only one branch is present in
Step 2 and data dependent condition moving down in Step 1. Code duplication can
be largely eliminated by Common Subexpression Elimination (CSE) [111, 94] after
inlining Layer 3 back to Layer 2. However, sometimes we eliminate the opportunity
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Max. loop nest Max. nr. of stat.
depth in a SCoP in a SCoP

Original QSDPCM video encoder 6 6
QSDPCM video encoder after

hierarchical rewriting 8 65

Table 4.1: Max. loop nest depth and max. nr. of statements in a SCoP before and after
hierarchical rewriting.

Nr. of main memory Improvement compa-
accesses red to previous row

Original QSDPCM video encoder 542.1×103 -
QSDPCM video encoder after 445.5×103 17.8%
GLT

QSDPCM video encoder after 306.1×103 31.3%
hierarch. rewrit. and GLT

Table 4.2: Comparison of original QSDPCM video encoder code, the code after GLT and
the code after hierarchical rewriting and GLT.

for CSE by applied loop transformation, e.g., when a loop split is performed between
two statements that are candidates for CSE. The expressions in these statements that
are now in separate loop nests are of course no candidates for CSE any more. Similar
estimates as we discussed at the end of Subsection 4.2.1 to avoid loop transforma-
tions which cause large duplication that cannot be solved by the CSE should be used
here.

4.3 Results

The hierarchical rewriting and hiding of data dependent conditions was tested on
the QSDPCM real-life application [28]. The application contains 26 innermost data
dependent if conditions that prevent to use loop transformations on the global scope.
In the original code, also some “avoidable” scalars are present.

The characteristics of the QSDPCM application w.r.t. maximal loop nest depth in
a SCoP and maximal number of statements in a SCoP before and after hierarchi-
cal rewriting are depicted in Table 4.1. After applying our technique, the problem-
atic conditions and “avoidable scalars” were hidden in Layer 3 allowing larger and
deeper SCoPs.

For the QSDPCM application we also applied the complete DTSE methodology with
and without our technique for preprocessing of innermost conditions. We observed
the number of data memory accesses to the off-chip main memory which contribute
significantly to the overall energy consumption.

In Table 4.2 we compare three different QSDPCM versions. The original QSDPCM
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video encoder version corresponds to the version where GLT have not been applied.
The QSDPCM video encoder after GLT version corresponds to the version where the
fusion of the kernels that can be extracted to GM has been applied. The QSDPCM
video encoder after hierarchical rewriting and GLT version corresponds to the ver-
sion where the preprocessing of innermost conditions and fusion of all the kernels
has been applied. We can observe 31.3% improvement when comparing our ap-
proach to the existing techniques without preprocessing.

4.4 Conclusions

In this chapter we have first motivated the need for hierarchical rewriting and data
dependent conditions hiding for global loop transformations. This step separates the
code in three layers. The first layer contains process control flow, the second layer
contains loop hierarchy and indexed signals and the third layer contains arithmetic,
logic and data-dependent operations. The first layer is usually well separated by the
designer. However, the second and the third layer are intermingled. Such code is
complex for the analysis and difficult to handle by the (DTSE) tools. Thus the sepa-
ration of the second and third layer is an important step in the DTSE methodology.

However, till now the separation has been done manually, which is a tedious and
error-prone task. In this chapter we proposed a technique for automatic separation
of the second and third layer. We implemented our technique (except of moving
the data-dependent conditions to innermost loops) using the AST library and the
scalar data flow (FUD) analysis. Both are IMEC in-house products and are part of
ATOMIUM [229] tool suite. We tested our technique on a real-life application. For
this application we applied the DTSE methodology and we have seen that the tech-
nique allowed better utilization of this methodology.





CHAPTER 5

Preprocessing for outermost conditions
A scenario isn’t a story that the gamemaster reads to the players, it’s an outline for

improvisational storytelling.
John M. Ford

(1957-2006)

Current multimedia streams contain the (en)coded sequence of audio/video
frames. Before playing these multimedia contents the streams have to be de-
coded. The decoding consists of a sequence of multimedia kernels. Mul-

timedia kernels are usually loop nests which include some processing (decoding)
functionality, e.g., Viterbi, Fast Fourier Transformation (FFT), Requantization, In-
verse Modified Discrete Cosine Transformation (IMDCT), Motion Estimation (ME)
etc. Every kernel takes an input frame, processes it and produces an output frame. In
modern multimedia streams different types of audio/video frames exist and the se-
quence of kernels used for the decoding depends on the type of the particular frame.
In the application code the decision on kernels used for the decoding of the incoming
frame is determined at run time by the outermost data dependent conditions in the
frame decoding function. Mostly, the kernels fulfill the Static Control Part (SCoP)
requirements (see Section 3.1) or can be preprocessed using e.g., the technique in
Chapter 4, so that they fulfill these requirements. When the kernels are in the SCoP
shape, the execution ordering within those is known at compile time. However, the
execution ordering of the kernels, i.e., the sequence in which they occur, is known
only at run time and it depends on the type of the incoming frame. This limits the
scope of the design time optimizations such as loop transformations only at the ker-
nels itself. However, we are not able to do cross-kernel optimizations, e.g., to merge
two kernels and eliminate the intermediate buffer between them, at the design time.
Thus, till now, the only option was to perform these optimizations at the run time,
what can be cycle and energy consuming. Our approach presented in this chapter
uses design time - run time approach to solve the problem. Multiple possible opti-
mizations are performed at the design time, however at the run time the appropriate
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optimization is selected.

In this chapter after the problem definition in Section 5.1, in Section 5.2 we discuss
how to model such applications consisting of kernels which ordering is know only at
run-time. The model is needed to combine the Geometrical Model (GM) for SCoPs
(kernels) with the data dependent control-flow of the application and is part of our
solution to the problem. Section 5.3 explains how to construct easily a synthetic
example of the proposed model and how to extract the model from a real-life appli-
cation. Section 5.5 explains how to add profile information to the model using Ball-
Larus profiling [15]. Section 5.6 proposes a technique using the model which goes
beyond state-of-the-art loop transformations described in Section 3.6. Section 5.7
discusses several heuristics for our technique. Then the code generation phase is
explained. In the next two sections the extension of our technique for loops with
varying trip count and multi-dimensional exploration space are discussed. Finally a
summary and conclusion section are provided.

5.1 Problem definition

Loop transformations are the crucial part of each state-of-the-art design methodol-
ogy [28, 116, 145]. They improve the parallelization opportunities at the instruction
or data level or improve the locality of data accesses, resulting in significant per-
formance, area and power gains. The loop transformations are nearly always per-
formed on a geometrical model [176, 217] which is very effective in dealing with
generic loop transformations [218, 116, 46, 145]. Nowadays, the loop transforma-
tions performed on the geometrical model also start to take their place in popular
modern compilers [19, 174].

The loop transformations performed on the geometrical model have to deal with
strict limitations imposed by the model. Only those parts of the code which are
“compile time” analyzable, called the SCoPs [19] can be parsed to the model and
transformed. The SCoP is a maximal set of consecutive statements without while
loops, where loop bounds and conditionals may only depend on invariants within
this set of statements. These invariants include symbolic constants, formal function
parameters and surrounding loop counters. Intuitively, we can look at the SCoP as
the geometrical model “basic block” on which the transformations can be applied.
Note, that the SCoP has much coarser granularity than the basic block; it may contain
multiple basic-blocks.

As a result of these limitations many optimizations opportunities are missed. We
will demonstrate the problem on a example in Figure 5.1. The code in Figure 5.1a
demonstrates two for loops where array A is produced in the first loop and the same
array is conditionally consumed in the second loop. If the A array is consumed is de-
termined only at run time. In the case, the second loop would not be in a condition,
the two loops could be fused and array A could be in-placed, i.e., the memory loca-
tions of the array elements that are not used any more could be reused. Our (very
simplified) solution is demonstrated in Figure 5.1b. We create two specialized cases
where the condition is not present. The first case can be optimized at the design time.
The decision which case is taken is postponed to the run time. Thus, we are able to
optimize the code, however we have to pay in the code size increase for specialized
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1 for ( i =0 ; i <10; i ++) {
2 A[ i ] = . . . ;
3 }
4 i f ( scen cond ) {
5 for ( i =0 ; i <10; i ++) {
6 . . . =A[ i ] ;
7 }
8 }

(a)

1 Solut ion when during run
2 time scen cond i s t rue :
3 for ( i =0 ; i <10; i ++) {
4 A tmp = . . . ;
5 . . . = A tmp ;
6 }
7

8 Solut ion when during run
9 time scen cond i s f a l s e :

10 for ( i =0 ; i <10; i ++) {
11 A[ i ] = . . . ;
12 }

(b)

Figure 5.1: Outermost data dependent conditions as limiting factor for GLT: (a) original
code segment that cannot be fused; (b) specialized design time optimized solutions for
different branches.

cases and also in the decision between those cases at run time. Still, this overhead is
cheaper as to do the whole optimization at run time.

In the past, the multimedia and signal processing applications, i.e., applications from
the application domain we target in this dissertation, where mostly fully statically
analyzable and consisted of one big SCoP in the second layer and simple control-
flow in the first layer of the application. Thus the code as depicted in Figure 5.1a
was not present. To recap, the first layer contains the process control flow, the sec-
ond layer contains the loop hierarchy and indexed signals and the third layer con-
tains arithmetic, logic and data-dependent operations. Only the second layer con-
taining memory management is the target for high-level low-power optimization.
However, modern multimedia applications consist of smaller SCoPs in the second
layer connected by rich control flow in the first layer. This control flow is usually
data-dependent in current multimedia applications. Thus, in current applications
very rich control flow (as simplified in Figure 5.1a) is present.

To go beyond the traditional scope of the SCoP, more focused techniques such as
scenario creation [164, 163, 166] or optimization of the hottest path [35] have been
proposed recently. These techniques combine the second “loop” layer and the first
“control flow” layer and create larger SCoPs (“hyper”-SCoPs). The cost for the en-
larged optimization space (“hyper”-SCoPs) is code duplication. The reasoning is
similar to hyper-block [139, 140] and trace [73] creation, but on a much coarser level,
i.e., on the level of SCoP instead of the basic block. However, to look at and optimize
only the hottest path leads to suboptimal solution as we will see later in this disser-
tation. Our approach overcomes this limitation and provides better solution to the
increased control-flow problem.

5.2 CFG+GM model

Current multimedia applications described above cannot be modeled only by the
Geometrical Model (GM) described in Section 3.1 due to small SCoPs and rich control-
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flow caused by a lot of outermost data dependent conditions as motivated in Sec-
tion 5.1. Thus, we propose a model which combines the GM and the Control Flow
Graph (CFG) constructed from the outermost data dependent conditions of the ap-
plication. The GM models the SCoPs and the data flow array dependencies among
them and the CFG models the outermost data dependent conditions in the main
decoding function. The GM and its properties and limitations are described in Sec-
tion 3.1. The technique demonstrated in this chapter cannot deal with arbitrary CFG
and thus we do have several assumptions for the CFG in the main decoding func-
tion. Those restrictions are introduced to focus on certain class of CFG which occurs
in our test applications and with respect to the simplified methods we are using
for constructing CFG. More general solution for arbitrary (also cyclic) CFG is fea-
sible when using advanced control-flow analysis and loop identification based on
control-flow dominators [3] and path profiling of arbitrary control-flow graphs [15].
Those extensions require some engineering effort and are left for future work. Still,
it would be desired that the CFG is reducible as defined in [3, 98] that the loops are
unambiguously defined. CFGs of all real-life examples we have studied, fulfill our
specific assumptions and they should not limit the generality of our technique for
multimedia application domain. The assumptions for the CFG are:

• the CFG has to be a series-parallel Directed Acyclic Graph (DAG);

• the output degree of each node in the series-parallel graph is maximally two;

• the series chain (this term is explained below) in the series-parallel graph can
have maximally one node.

We limit our technique only at the CFG which can be constructed when using only
if statements as control structures. In the applications we have studied this is the
case. Also a lot of applications can be rewritten to the form where only if statements
are used as outermost control-flow structures. Such a graphs can be represented as
series-parallel DAGs with the output degree of each node maximally two. Below we
define the series-parallel graph more formally. We basically follow the definitions
used in [64]:

Definition 5.1 A two-terminal graph (TTG) is a graph with two distinguished vertices,
s and t called source (start/initial node) and sink (end node), respectively.

Definition 5.2 The parallel composition P = P(X,Y) of two TTGs X and Y is a TTG
created from the disjoint union of graphs X and Y by merging the sources of X and Y to
create the source of P and merging the sinks of X and Y to create the sink of P.

Definition 5.3 The series composition S = S(X,Y) of two TTGs X and Y is a TTG created
from the disjoint union of graphs X and Y by merging the sink of X with the source of Y. The
source of X becomes source of P and the sink of Y becomes the sink of P.

Definition 5.4 A two-terminal series-parallel graph (TTSPG) is a graph that may be
constructed by a sequence of series and parallel compositions starting from a set of copies of
a single-edge complete graph K2 with assigned terminals.
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(a) (b)

Figure 5.2: (a) The examples of series composition and parallel composition [240]. (b) K2

graph [241].

Definition 5.5 A complete graph is a graph where an edge connects every pair of vertices.
The complete graph on n vertices has n vertices and n(n-1)/2 edges, and is denoted by Kn.

Definition 5.6 Finally, a graph is called series-parallel (sp-graph), if it is a TTSPG with
some two its vertices being source and sink.

The examples of series composition, parallel composition and K2 graph are in Fig-
ure 5.2. Note, that for our case, the graphs are directed. Also the sp-graphs are more
strict than the reducible CFG as defined in [3, 98].

In a sp-graph, a series chain of nodes is one or more nodes that are linked together
in series to form a chain. If the series chain in the CFG would have 2 or more nodes,
these CFG nodes representing the SCoPs of the application could be merged to one
node. We assume this was done by the GM analysis.

5.3 Synthetic graphs

Preparing the application to a form where the CFG+GM model can be extracted is
an tedious and error-prone task requiring preprocessing techniques such as selective
function inlining [1], pointer analysis and conversion [184, 75], hierarchical rewrit-
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ing [28] and dynamic single assignment conversion [209]. These techniques are sys-
tematic, however not automated yet. To be able to evaluate our techniques and
heuristics much faster, we synthesize the CFG+GM model using the Task Graphs
For Free (TGFF) pseudorandom graph generator and the Mersenne-Twister (MT)
pseudorandom number generator algorithm.

TGFF is a tool which was originally developed in 1998 by R.P. Dick and D.L.
Rhodes [57] to facilitate standardized random benchmarks for scheduling and allo-
cation research, in general, and hardware-software co-synthesis research, in particu-
lar. TGFF is suitable for many applications that require generating pseudo-random
graphs. The user can specify the number of task graphs to generate, the minimum
number of task (nodes) per task graphs, the maximum number of input and out-
put transmits (edges) per task, the seed for the pseudo-random number generator
and some other parameters. K. Vallerio has subsequently updated and enhanced the
code and documentation. The latest version [207] expands on TGFF features, pro-
viding a highly configurable random graph generator capable of generating several
types of random graphs. The most significant improvement is the addition of a new
algorithm which is capable of generating several types of random graphs including
series-parallel chains. The number of series chains in generated graph and length of
each chain are set by the TGFF commands series wid and series len. Another param-
eter, series must rejoin, will generate an extra (sink) node that will connect to the end
of each chain. The TGFF generates only DAGs which suits our purpose better than
more complex Synchronous Data Flow (SDF) graph generators which model cyclic
dependencies, parallel and pipelined processing [194].

However, to use Task Graphs For Free (TGFF) directly does not produce graphs ful-
filling the specification of the CFG in our model which was described in Section 5.2.
The old TGFF generation algorithm [57] produces graphs which can have several
sinks and if they have one sink they are not sp-graphs. Figure 5.3a shows a graph
generated by the old TGFF generation algorithm. This graph has three sinks, namely
nodes 9, 10 and 11. If we add an extra node 12 which will be the common sink
for nodes 9, 10 and 11 the graph still does not fulfill the requirements of sp-graph
in Section 5.2. The new TGFF generation algorithm [207] can produce sp-graphs.
However, if the length of the series chain is set to one as required for a CFG the new
algorithm is too constrained and produces only one type of graph. This type of graph
always branches at the left node and rejoins in the last node (see Figure 5.3b). Thus,
in this section except describing the synthetic graphs we propose also workaround
for TGFF to produce wide range of synthetic CFG graphs with the desired properties.

To produce graphs according to the assumptions of the CFG in our model we use
the new TGFF generation algorithm without the series chain length constraint and
number of nodes 5× – 10× larger than required for our CFG (see Figure 5.4a). We
process this graph and collapse the series chains with length larger than one to one
node series. Figure 5.4a illustrates a graph generated by the new TGFF generation
algorithm with relaxed series chain length constraint and in Figure 5.4b is the de-
rived graph after series chain collapsing. Note that the node number in Figure 5.4b
corresponds to the first node number in the series chain in Figure 5.4a. With this ap-
proach we have obtained synthetic CFGs fulfilling the properties of the CFG in our
model (see Section 5.2) which are comparable with real-life CFGs. This would not be
possible without subsequent modifications of TGFF generated graphs.
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Figure 5.3: A graph generated by the TGFF generation algorithm. (a) output of old gen-
eration algorithm [task count (5,15), output task degree 2] (b) new generation algorithm
[task count (5,15), output task degree 2, series must rejoin, series length 1].
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Figure 5.4: A graph generated by the TGFF generation - new generation algorithm [task
count (5,15), output task degree 2, series must rejoin]. (a) before collapsing series chains
(b) after collapsing series chains.
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Figure 5.5: Example of synthesized CFG.

Each node in the CFG contains several properties representing the GM model for
that node. These properties are generated pseudorandomly using the MT algorithm
for generation uniform pseudorandom numbers [142]. The properties we generate
are: AST volume of the node, Dependency start nodes, Dependency lengths and Dependency
sizes.

The AST volume of the node represents the number of AST nodes in that particular
CFG node. The Dependency start node represents the start node of an array depen-
dency. I.e., it contains information in which node the array is produced. The De-
pendency length represents the number of nodes visited by a visitor during a breadth-
first traversal when starting from Dependency start node till the dependency end node,
i.e., the node where the array is consumed, is reached. Because using breadth-first
traversal this is an atypical definition of dependency length (normally we would ex-
pect depth-first traversal). This definition is used, because the MT pseudorandom
generator uses the uniform distribution when generating the numbers. Thus when
using depth-first traversal the number of nodes between the Dependency start node
till the dependency end node would be also uniform. However, we observed in the
real-life applications, that the probability of small number of nodes between the De-
pendency start node till the dependency end node is higher. We achieve this property
by using breadth-first traversal and number generator with uniform distribution.
Of course, better solution would be to use appropriate random generator with non-
uniform distribution with combination of uniform random generator and depth-first
traversal. However, we did not find any that was suiting our distribution needs and
thus we decided for the workaround with the breath-first search. The Dependency
size represents the number of elements in the dependency.

Figure 5.5 shows an example generated using the parameters in Table 5.1 for the
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Parameter Interval for TGFF/MT generator
Number of TGFF nodes (5,15)
AST volume of the node (20,120)
Dependency start node (1, num vertices(TGFFcollaps))
Dependency length (1, 5)
Dependency size (100, 1000)

Table 5.1: An example of the parameters for synthesized CFG.

TGFF and the MT pseudorandom generator. The AST volume of the node is typed in
the parentheses in the node after the node id number. The dependency generated
with Dependency start node, Dependency length and Dependency size parameters can
be identified with the dependency id number. These numbers are in the rectangles
attached to the nodes. In the parentheses is the size of the dependency if the corre-
sponding node is the start node, and 0 if the corresponding node is the end node of
the dependency. E.g., in Figure 5.5 the dependency with id 3 and dependency with
id 5 start at the first node. The dependency 3 has dependency size of 877 elements
and ends in the next left node. The dependency 5 has dependency size of 114 ele-
ments and ends in the next right node. The AST volume of the first CFG node (node
id 0) is 80 AST nodes, the volume of the next left CFG node (node id 1) is 79 and of
the next right CFG node (node id 2) is 48 AST nodes.

5.4 Real-life graphs

The CFG+GM model can be extracted from real-life applications after applying all
necessary preprocessing techniques such as selective function inlining [1], pointer
analysis and conversion [184, 75], hierarchical rewriting [28] and dynamic single as-
signment conversion [209]. The code before extraction should contain only outer-
most data-dependent conditions whose branches contain the SCoPs. The extraction
of the model is performed in three phases from the parsed AST of the application.
In the first phase, the GM for each SCoP and the dependencies among/across SCoPs
are extracted. Note that we extract all dependencies among/across SCoPs, i.e., in
this phase we ignore the (outermost) data dependent control-flow of the code. In the
second phase, the CFG where each node represents a SCoP and directed edges are
used to represent outermost data dependent jumps in the control-flow, is extracted.
The second phase also combines the GM and the CFG where the nodes of the CFG
contain the GM information for the SCoP associated with that particular CFG node.
This unique combination is one of the main contributions of the dissertation. Any
code that consists of top-level control flow and the SCoPs can be parsed into our
model. As mentioned above, our model assumes DAG as CFG within the time loop
where the nodes of the CFG are SCoPs (containing conditions and loops with affine
and manifest bounds). We have seen that the applications in the multimedia domain
we target fulfill these requirements after using preprocessing techniques presented
in Chapter 4. As mentioned in Section 5.2 more general solution for arbitrary (also
cyclic) CFG is feasible. Note, that both the GM as well as the CFG still have links
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1 i f ( header . block ! = 0 ) {
2 i f ( header . block ==1)
3 for ( i =0 ; i <576; i ++) / / F k e r n e l
4 sample [ i ]= f ( in [ i ] ) ;
5 else
6 for ( i =0 ; i <576; i ++) / / G k e r n e l
7 out [ i ]=g ( in [ i ] ) ;
8 }
9 i f ( header . s t e r e o ==1)

10 for ( i =0 ; i <576; i ++) / /H k e r n e l
11 out [ i ]=h ( sample [ i ] ) ;

Figure 5.6: Part of simplified MP3 source C code with 3 kernels connected by data de-
pendent conditions.
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Figure 5.7: AST representation of the C code example in Figure 5.6.

to the original AST. The third phase counts the number of AST nodes in the SCoPs
(AST volume of the node), identifies the Dependency start nodes, Dependency end nodes
(thus also the Dependency lengths) and Dependency sizes from the parsed and extracted
AST and GM+CFG representation.

The three phase extraction is demonstrated on the code in Figure 5.6. The code is a
simplified version of the requantization and stereo kernels of the MP3 audio decoder
application [132] for long and short blocks only. The whole application is described
in detail in Section A.1. The code in Figure 5.6 consists of two kernels F and G, per-
forming f() and g() requantization operations followed by kernel H, which performs
a h() stereo operation on a one dimensional array (frame) with 576 elements. These
kernels fulfill the requirement of a SCoP and thus they can be modeled using the GM.
After the AST parsing the GM for each SCoP and the dependencies among/across
SCoPs are extracted. For the AST parsing we use the ATOMIUM AST parser and
for the GM extraction and representation we use ATOMIUM GM libraries. Both are
parts of the in-house IMEC ATOMIUM framework [229]. The CFG is represented
using the Boost Graph Library (BGL) [188].

The AST of the application in Figure 5.6 is in Figure 5.7. The GM model and the
dependencies extracted are depicted on the left in Figure 5.8. In the kernel F the
sample array is written for the iteration node from i=0 to i=575. This is the GM at the
top left of the figure. In the middle left of the figure is the GM for kernel G where



Real-life graphs 73

...

... i

i

Write sample[]

Read sample[]

... i

1

2

3,4 6,7

9

10,11

12

F kernel

G kernel

H kernel

0 575

Figure 5.8: The GM model (iteration domain polytopes and dependency polytopes) of
the kernels from Figure 5.6 (left side of the figure) and the CFG model from Figure 5.6
with the link to the GM model (right side of the figure). The nodes in the CFG contain
line numbers.

the output is written for the iteration node from i=0 to i=575. The GM for kernel H
is depicted at the bottom left of the figure. Here, the sample array is read and the
output is written for the iteration node from i=0 to i=575. Between kernel F where
sample array is written and kernel H where sample array is read exists a data flow
array dependency of size 576. The data flow array dependency is depicted by the
bold dash-dot-dot line between GM for kernel F and GM for kernel H.

Figure 5.8 (right side) shows the control dependencies between the kernels using the
CFG. The CFG is constructed only from outermost data dependent conditions. The
bodies of these conditions are the kernels. During the CFG construction the link to
the GM discussed above is created. The numbers within the CFG nodes correspond
to the line numbers in Figure 5.6. E.g., line 1 contains the outermost data dependent
condition which is represented by a decision node with two output edges in the CFG.

After extracting the CFG+GM representation, the third phase of the extraction counts
the number of AST nodes in the SCoPs (AST volume of the node), identifies the Depen-
dency start nodes, Dependency end nodes and Dependency sizes. The resulting graph is
in Figure 5.9. This graph combines quantitative information for analysis from Fig-
ure 5.7 and Figure 5.8.

In Figure 5.9 the AST volume of the node is typed in the parentheses in the node after
the node id number. The dependency extracted from the GM can be identified with
the dependency id number and the array access type and name in the square brack-
ets. The array access type and name is additional compared to synthetic graphs (see
Figure 5.5). As in the synthetic graphs, in the parentheses is the size of the depen-
dency if the corresponding node is the start node, and 0 if the corresponding node is
the end node of the dependency. E.g., in Figure 5.9 the dependency with id 1 starts at
the node with id 2. This dependency has dependency size of 576 elements and ends
at the node with id 5. The AST volume of the first CFG node (node id 0) is 4 AST
nodes, the volume of the node with id 2 as well as node with id 5 is 17 AST nodes.
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Figure 5.9: A CFG graph extracted from part of an MP3 audio decoder.

Note that the same basic representation is used for the real-life graph in Figure 5.9
and the synthetic graph in Figure 5.5.

5.5 Ball-Larus path profiling in DAG

Any optimization technique should focus mainly on the bottlenecks in the impor-
tant part of the application. Due to Amdahl’s law [8] the overall speedup Soverall

achievable from an improvement to a computation that affects a proportion P of that
computation where the improvement has a speedup of S is

Soverall =
1

1 − P + P
S

.

Thus in our technique we should consider the frequency of the paths in the CFG,
which determines the proportions P for paths of the whole program execution. To
obtain this information in an efficient way we use Ball-Larus profiling [15].

Ball-Larus profiling is a simple and fast algorithm that selects and places profile in-
strumentation to minimize run-time overhead. The essential idea behind the path
profiling algorithm is to identify all potential paths with states, which are encoded
as integers. In Ball-Larus profiling the states are numbered from 0...n-1, where n
is the number of potential paths in the CFG. The profiling works only with CFGs
that have been converted into a Directed Acyclic Graph (DAG) with a unique source
vertex ENTRY and sink vertex EXIT. Our CFG is always a DAG, as specified in Sec-
tion 5.2, thus the conversion is not necessary. The basic step in Ball-Larus profiling
is to assign a non-negative constant value to each edge in a DAG, such that the sum
value along any path from from ENTRY to EXIT is unique. We call the path sum
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Figure 5.10: Assignment of non-negative constant values to edges for the CFG in Fig-
ure 5.9. The sum of these numbers along each path in the graph is a unique number from
0...5 identifying that path. (a) Annotated CFG; (b) Table with all possible paths.

the path number and it lies in the interval 0...n-1, where n is the number of potential
paths in the CFG.

Figure 5.10 shows an example of a DAG where to each edge a non-negative con-
stant value is assigned. The algorithm for calculating those values is described in
Figure 5.11.

After assigning values to the edges in a DAG, the instrumentation code is inserted.
At the start of the program, we initialize all elements of an array count to 0. The array
count has n elements where n is the number of paths in the program and at the end
of the instrumentation it will contain the path histogram, i.e., how often were indi-
vidual paths executed. At the edges with positive Val(e) value, at the ENTRY node
and at the EXIT node we place instrumentation code as described in the algorithm
in Figure 5.12.

During instrumentation the register r is set to 0 when we enter the ENTRY node and
is updated along the edges with positive values till the EXIT node is reached. Then
an array count indexed by the value of the register is incremented. At the end of
the profiling the array count contains frequencies, i.e., number of times the path was
executed, for each path.

Table 5.2 shows the results of Ball-Larus profiling of an MP3 audio decoder [132].
The CFG of the MP3 audio decoder contains 26 nodes and has 234 possible paths.
Table 5.2 does not list the paths which where not executed during profiling. From the
table we can see that only 6 paths are active for the majority of realistic bitstreams,
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foreach ver tex v in reverse t o p o l o g i c a l order {
i f v i s a l e a f ver tex {

NumPaths ( v ) = 1 ;
} else {

NumPaths ( v ) = 0 ;
foreach edge e = v−>w {

Val ( e ) = NumPaths ( v ) ;
NumPaths ( v ) = NumPaths ( v ) + NumPaths (w) ;

}
}

}

Figure 5.11: Algorithm for assigning values to edges in a DAG [15].

Before program execut ion i n i t i a l i z e count [ ] = 0
At ENTRY ver tex {

instrument ( v , ’ r =0 ’ ) ;
}
foreach edge e {

i f Val ( e ) != 0 {
instrument ( e , ’ r+=Val ( e ) ’ ) ;

}
At EXIT ver tex {

instrument ( v , ’ count [ r ]++ ’ ) ;
}

Figure 5.12: Simplified algorithm for placing instrumentation.

Path number Number of times the
path was executed

209 12079
221 2363
197 765
90 336
102 100
78 51
others 0

Table 5.2: Ball-Larus profiling for an MP3 audio decoder.



Scenario technique 77

i.e., are executed one or more times as it was identified by the Ball-Larus profiling.
This substantiates the 10%-90% principle, i.e., that less than 10% of paths are respon-
sible for at least 90% of all executions.

5.6 Scenario technique

Our scenario technique creates clusters of paths in the application during design
time. The clusters are created based on 2D objective function. First, the clusters
should benefit from enabled loop transformations as it was demonstrated in Fig-
ure 5.1 in Section 5.1. Second, the clusters should be constructed with minimal code
overhead. These two forces act in opposite directions resulting in the trade-off be-
tween enabled loop transformations and code overhead. The more detailed we clus-
ter, the more loop transformations are enabled resulting in data memory footprint
decrease. However, the more code overhead resulting in instruction memory foot-
print increase is present. The input for our scenario technique is the CFG+GM model
explained in Section 5.2 which can be either synthesized (Section 5.3) or extracted
from the real application (Section 5.4). The output is a Pareto curve [171] in a 2D ex-
ploration space data memory footprint vs. instruction memory footprint where each
point on the curve represents a complete set of Control Flow subGraph (CFsG)s (a
set of path clusters where all paths of the original CFG are present). Below are the
definitions of a path, CFsG, complete set of CFsGs and Pareto set of CFsGs.

Definition 5.7 A path in a graph is a sequence of vertices such that from each of its vertices
there is an edge to the next vertex in the sequence. The first vertex is called the start vertex
and the last vertex is called the end vertex.

Definition 5.8 Control Flow subGraph (CFsG) of a CFG is a series-parallel CFG which
contains only some of the paths of the original CFG.

Definition 5.9 A set of CFsGs is a complete set of CFsGs if and only if it covers all paths
in the original CFG from which it was derived.

Definition 5.10 A complete set of CFsGs is a Pareto set of CFsGs if and only if there is no
other complete set of CFsGs which is better in all dimensions (smaller data memory footprint
and smaller instruction memory footprint) of the exploration space.

In this section, first we explain how we create the complete sets of CFsGs from the
CFG+GM model. In the next two subsections we define our exploration space. At
the end of this section we explain the trade-offs between the axes in the exploration
space where only the Pareto sets of CFsGs occur.

5.6.1 Dividing the CFG into CFsGs

The CFG synthesized in Section 5.3 or extracted in Section 5.4 can be decomposed to
individual paths. Such a decomposition is depicted in Figure 5.13. On the left side
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Figure 5.13: Decomposition of the CFG into individual paths and creating the CFsGs.

is the original CFG followed by the equal sign and the 6 individual paths occurring
in this graph split by plus sign. For large graphs this may lead to an explosion of
possible paths. As already motivated above, the decomposition enables more loop
transformations. However, if the loop transformations would be applied separately
on each path during the design time, this will cause large code overhead and also
overhead during the run time when the actual (optimized) path has th be predict-
ed/detected. Hence, some paths have to be grouped together. This is depicted by
the boxes surrounding the paths which will be grouped together. Thus, on the right
side of the figure (after the equal sign) we have 3 groups for our simple example. The
first group is labeled Scenario 1 and contains one path. The second group is labeled
Scenario 2 and contains three paths. The third group is labeled Scenario 3 and con-
tains two paths. This grouping solution is just an illustration randomly chosen here.
The whole search space from which we can pick a solution contains Bn possibilities
where n is the number of paths in the original CFG and Bn is the Bell number [21].
For our example in Figure 5.13 with n=6 the B6 = 203. Thus our search space has
203 possibilities from which we have chosen one randomly for the example in Fig-
ure 5.13. We will discuss more in detail how to compute the Bell number later. The
Bell number Bn is equal to the number of ways to partition a set (of all paths) into
nonempty subsets (of scenarios) if the set (of all paths) has n elements [21]. Each
nonempty subset, i.e., Scenario 1-3, builds the CFsG. The three scenarios form a com-
plete set of CFsGs.

Till now, we did not explain how we cluster the paths. In this paragraph we provide
general clustering principles and then we explain the simplification we made for
our scenario technique. In Figure 5.14a is depicted a clustering example with two-
dimensional objective cost function. Each path is represented by a (two-dimensional)
Pareto curve which represents different path knob configurations (e.g., energy vs.
performance trade-off). Normally, the paths with similar Pareto curves are clustered
to one scenario at the design time. We expect that those paths exhibit similar proper-
ties, e.g., also with respect to the optimizations and represent similar code. Thus, the
distance between two Pareto curves determines which paths to cluster. The cluster
is then represented by its worst-case Pareto curve. Too large distance between the
Pareto curves means too bad worst case for curve closest to origin. Based on this
criterion Curve 1 and Curve 2 are clustered in Figure 5.14a. Thus, Curve 1 (repre-
senting path 1) and Curve 2 (representing path 2) form first scenario and Curve 3
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Figure 5.14: General clustering approach.

forms second scenario. Apart from the distance also the frequency of occurrence is
important. If very frequent curve is clustered with very rare one which has worse
Pareto curve, this scenario (and all paths in this scenario) inherits the worse (rare)
Pareto curve. In such a case is better to cluster the frequent Pareto curves with better
rare Pareto curves so that the frequent Pareto curve represents the created scenario.
This is depicted in Figure 5.14b. This analysis and clustering is done at the design
time. During the runtime, the appropriate scenario with its Pareto curve is identified
and a concrete Pareto point is selected based on the required knob configuration. In
the sequel we will use simplified Pareto curve “similarity” measure based on two
metrics, the cost (in terms of instruction memory footprint) and the gain (in terms of
data memory footprint) which are explained in Subsection 5.6.2 and 5.6.3. The “sim-
ilarity” of the Pareto curves is also dependent on the cost of storing a Pareto curve
which is platform dependent. Thus in our approach we provide several options for
different platforms as explained in Subsection 5.6.4.

In Figure 5.13 we have a CFG where the nodes correspond to different SCoPs. This
CFG contains 6 paths. One decision how to group these paths is depicted in the Fig-
ure 5.13. In the first group the path from node 0 to node 6 is without branching, so
all the nodes in this group can create one big SCoP. This is emphasized by shad-
owing those nodes. In the second group the path from node 0 to node 1 is without
branching, so SCoP node 0 and 1 can create a bigger SCoP. Again, those nodes that
can be merged to create a bigger SCoP are shadowed. In the third group nodes 0 to 4
are without branching and can create a bigger SCoP. Bigger SCoPs enable more loop
transformations compared to small SCoPs, because the loop transformations are not
capable to go beyond the SCoP boundary. In each scenario represented by CFsG,
the additional knowledge about the control-flow allows for stronger and more pre-
cise analysis and thus for better program optimization, i.e., the loop transformations
for improved locality of the program. However, the additional knowledge requires
also code replication resulting in code size increase. In the following subsections we
will provide more details about the scenario creation technique, the estimation of
code size increase in terms of AST nodes in the application and loop optimization
potential.
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Figure 5.15: Decomposition of the CFG into individual paths and creating the CFsGs
with GM and AST information annotation.

5.6.2 Cost: Instruction memory size increase

Each node in a CFsG has its AST subtree. This subtree has to be duplicated when
the node occurs in other CFsG of the same (complete) CFsG set. Note, that from now
on with CFsG set we would understand complete CFsG set. E.g., in Figure 5.13 node 0 of
the original CFG has to be duplicated for Scenario 1-3, node 1 has to be duplicated
for Scenario 1-2 etc. This causes an increase of the code for the set of CFsG compared
to original CFG. The absolute code size for the CFG and for the set of CFsGs can be
estimated using the number of AST nodes in the original CFG and in the created set
of CFsGs.

Figure 5.15 depicts the same set of CFsGs as Figure 5.13 with annotated informations
about the (AST volume of the node), Dependency start nodes, Dependency end nodes and
Dependency sizes. To determine the count of AST nodes of the original CFG we cumu-
latively add the AST volume of the node for each CFG node in the original CFG in Fig-
ure 5.9. This results in 4×3+17×3+0 = 63 AST nodes (see Figure 5.9). The number
of AST nodes in Figure 5.15 is (4×3+17×3+0)+(4×3+17×2+0)+(4×2+17+0) = 134
AST nodes. The code size for set of CFsG in Figure 5.15 is more than double of the
code size of the CFG in Figure 5.9. Thus more than double of the instruction memory
size will be needed to store such a code. However, the code compaction techniques
and code sharing between scenarios can be applied to certain extend after GLT.

5.6.3 Gain: Data memory size decrease

In the set of CFsGs some CFsGs may have array dependencies that do not cross any
data dependent condition and that crossed a data dependent condition in the orig-
inal CFG. E.g., see dependency with id 1 in the CFG in Figure 5.9 between write of
sample array and read of sample array. In the original CFG this dependency crosses



Scenario technique 81

the data dependent condition on line 9 in Figure 5.6. In the CFsG labeled as Sce-
nario 1 in Figure 5.15 it does not cross any data dependent condition. Thus it can
be potentially optimized by the GLT step, e.g., by loop fusion. We look at the size
of those dependencies, i.e., the number of elements that is written at one side of the
dependency and read at the other side of the dependency (in our example 576). This
corresponds to the number of dependency vectors in the dependency. To determine
the optimization potential of creating a set of CFsGs we iterate over those array de-
pendencies that can be potentially optimized now and whose could not be optimized
in the original CFG. We cumulatively count the size of those array dependencies.

However, the improvement in the optimization potential depends also on the fre-
quency of the CFsG where the optimization is possible. E.g., if the frequency of
Scenario 1 would be 10% of the whole execution the impact of the optimisation of
dependency with id 1 would be only 10%. The dependency can occur also in other
CFsG (see dependency with id 1 in Scenario 2 in Figure 5.15). Those executions of the
dependency are not going to be optimized and thus should not be counted. Thus the
optimization potential of a CFsG is

Potential(CFsG) =
∑

pi∈CFsG



fpi
×

∑

Depk∈CFsG

VDepk
(pi)





where pi is the i-th path in a CFsG and fpi
is the frequency of this path obtained

by Ball-Larus profiling (see Section 5.5). VDepk
(pi) is the dependency size of the k-

th dependency in the CFsG along the path pi. The dependency starts and ends at
different nodes. It should cross only nodes with input and output degree one in the
CFsG when going from the start node to the end node of the dependency. The start
node should have output degree one and the end node should have input degree
one. Then the optimization potential of the set of CFsGs is

Potential(set of CFsGs) =
∑

CFsG∈set of CFsGs

Potential(CFsG)

We also define the the data memory size decrease and the data memory size increase
as we will use them in the rest of this dissertation. The data memory size decrease re-
flects better the relation of the scenarios data memory size to the original application
and intuitively represents better the gain. However, data memory size increase can
be better depicted in the trade-off figures we are going to show in this chapter (for
data memory size decrease the x-axis should be reversed to the opposite direction).

Definition 5.11 The data memory size decrease for a set of CFsGs is the difference
between the optimization potential for this set and the optimization potential for the original
CFG (singleton set).

Definition 5.12 The data memory size increase for a set of CFsGs is the difference be-
tween the optimization potential for this set and the maximal optimization potential for the
set of CFsGs
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where the latter is the set of CFsGs where each CFsG from the set is created by exactly
one path in the original CFG. The set of CFsGs with best optimization potential has
the same number of elements as the number of paths in the original CFG.

5.6.4 Trading-off instruction vs. data memory size

For each set of CFsGs we can determine the cost in terms of number of AST nodes for
that set and the gain in terms of the optimization potential as defined in the previous
subsection. The increase of the number of AST nodes causes instruction memory
size increase and the increase of the optimization potential causes data memory size
decrease (or the decrease of the optimization potential causes data memory size in-
crease). Till now we have discussed only briefly how many sets of CFsGs exist if the
original CFG has n paths. In the following paragraph we will explain more in detail
these issues.

The number of ways of grouping n paths is called the Bell number Bn. It is equal
to the number of ways to partition a set into nonempty subsets if the set has n ele-
ments [21]. For our example in Figure 5.13 with n=6 the B6 = 203. The simplest way
to compute Bell number is using the recursive equation

Bn+1 =

n∑

k=0

Bk

(
n
k

)

, B0 = 1

where ( n
k ) is a binomial coefficient,

(
n
k

)

=
n!

k! × (n − k)!
.

We can look at this equation as the dot product of the vector (B0, B1, . . . , Bn) and
the vector (( n

0 ), ( n
1 ), . . . , ( n

n)), i.e., the n-th row in the Pascal triangle [39]. For n=5
we get B6 = (1, 1, 2, 5, 15, 52) · (1, 5, 10, 10, 5, 1) = 203. The Bn grows exponentially
with the number of paths and to evaluate all solutions for larger number of paths
is not feasible due to time and storage requirements. In Figure 5.16 we draw the
full exploration space for 6 active paths of the full MP3 CFG. Note, that first the
6 active paths out of 234 paths have been selected and then grouped as shown in
Figure 5.13. The remaining 234 − 6 = 228 paths are not active, i.e., they do not
occur in the activation trace (their frequency is 0) and they are not considered in our
exploration. These paths are grouped to one scenario called backup scenario. The
backup scenario is a piece of code that covers all paths that are not a target of the
exploration (active paths). I.e., for the MP3 audio decoder it covers all 234-6=228
paths that have not been used during profiling. A valid solution will be selected for
these paths but it will of course not be very optimized (worst case scenario).

Because the non-active paths which are part of the backup scenario are not a target
of our exploration, the size of the backup scenario is not counted in the code metric
we use. This is not a problem for our exploration, because the size of the backup
scenario stays the same and represents the offset to the obtained code sizes for dif-
ferent groupings. Also, the backup scenario code should almost never occupy the L1
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Figure 5.16: Full exploration space for 6 active paths of the MP3 audio decoder.

instruction memory (if it is not the case, we should consider to repartition our sce-
narios). It is located just for backup cases in the (huge) main memory where we do
not have an instruction size limitation. This is different from the solution where we
have the original source code without scenarios that does not exhibit yet the backup
scenario. This code is always occupying L1 instruction memory.

The Nr. of AST nodes in the application is the total number of AST nodes after a group-
ing. Note, that some CFG nodes (corresponding to SCoPs as has been mentioned
earlier) and thus AST nodes of that SCoPs have to be duplicated. The Estimated data
memory size increase shows the loop transformation potential decrease when group-
ing more paths and thus discarding possibility for bigger SCoPs. From the 203 points
obtained, only 8 are Pareto points (see the Pareto curve in Figure 5.16). Note, that
the bottom rightmost point in our exploration in Figure 5.16 is also not representing
the original CFG but the CFG constructed from the active paths only. We refer to
this solution as to initial CFG. The backup scenario is still located in main memory
additional to this initial solution. The original CFG may have larger code size and
less optimization potential and thus it is not a Pareto optimal point in our explo-
ration space. For an MP3 audio decoder we use as test driver in this chapter, the
initial CFG and the original CFG have the same optimization potential (due to zero
frequency non-active paths). However, the original CFG is slightly larger (has more
nodes).

To evaluate all possible groupings can be time consuming especially for larger CFGs
and a higher amount of active paths considered. Thus, in the following section we
propose several heuristics that will speed up the grouping exploration and make it
much more scalable.

5.7 Pruning the exploration space and heuristics

The number of possible sets of CFsGs grows exponentially with the number of paths
in the original CFG. Thus also the time to evaluate all possible sets grows exponen-
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tially with the number of paths in the original CFG. The parsing time requirements
to the model grow with the number and complexity of CFG nodes. E.g., to evaluate
all possible groupings of 6 paths in a 33 node original CFG takes ∼25s. To evaluate
all possible groupings of 7 paths in a 100 node original CFG takes already ∼1000s.
To evaluate all possible groupings of 14 paths in a 188 node original CFG is even
not feasible due to limited memory resources as we will see later. Thus the brute
force evaluation of scenario creation technique is not scalable w.r.t. increased size (in
terms of nodes and explored paths) of the original CFG. To deal with this problem
we propose in next subsections several heuristics for the scenario creation technique.

5.7.1 Selecting the most frequent paths

The CFG in our model represents all possible code paths among the kernels. How-
ever, due to the well-known 10%-90% principle (i.e., only 10% of the code is respon-
sible for 90% of the execution time), only a few code paths are really hot. To identify
these hot code paths we use Ball-Larus profiling [15]. This was already demonstrated
for the MP3 audio decoder example where only 6 paths out of 234 are active (see Ta-
ble 5.2). Thus we do not need to create the sets of CFsGs and perform the exploration
from all paths available. It is sufficient to do the exploration only from the hot code
paths that are usually only 10% of all possible paths. This will prune the exploration
space significantly. The remaining 90% of paths form a backup scenario which is not
a target of the exploration. The backup scenario is not considered in our optimiza-
tion effort and it has to be activated each time we do not enter one of the hot code
paths.

5.7.2 Coverage criterion heuristic

When grouping paths together, other paths can also occur in the resulting CFsG in
addition to the paths the CFsG is composed of. In Figure 5.13 Scenario 2 consists of
3 paths. Nevertheless, it also contains the path of Scenario 1 because all graph edges
that are in Scenario 1 are also in Scenario 2. Thus, Scenario 1 is fully covered by Scenario
2, i.e., the whole functionality of Scenario 1 can be found in Scenario 2. In the coverage
criterion heuristic, we first construct all the possible CFsG sets. Then we check in
each CFsG set if it contains a scenario that can be covered by another scenario in
the same set. The CFsG set, where a scenario is fully covered by another scenario
from the same CFsG set, is not further evaluated and is pruned from the exploration
space. Thus, because of full coverage of Scenario 1 in Scenario 2, the whole clustering
in Figure 5.13 is skipped and not evaluated further. Because we check the coverage
of the scenarios we call this heuristic the “overage criterion heuristic”.

The solution in Figure 5.13 can still be a Pareto point, if the optimization potential,
i.e., the data memory size decrease, for Scenario 1 is large. Then this value determines
the overall data memory size decrease for that CFsG set. From this CFsG set we can
derive another set by splitting Scenario 2 in two subscenarios, one containing the
path which contains node 2 and the other one containing the two remaining paths
(which contain node 3). Because Scenario 1 dominates the data memory size decrease
(reduction), the new solution should not differ too much in data memory size. Also,
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because only one scenario has been split further (Scenario 2), the code size should
not change drastically. Thus, even when our heuristic has pruned the solution in
Figure 5.13 out of the exploration space, if Scenario 1 dominates the overall cost and
gain, splitting Scenario 2 should create a point which is not so far in the exploration
space and is not pruned out.

5.7.3 Loss/Similarity heuristic

The previous heuristic was based on generating all possible CFsG sets and prun-
ing them before evaluation. The sequel Loss/Similarity heuristic and Fruchterman-
Reingold heuristic construct “optimal” CFsG sets directly. Our target is to construct
a CFsG set where similar paths in terms of the common nodes in the paths are in
one scenario and where also paths do keep their big SCoPs when grouped. Note,
that when grouping the paths together, the SCoPs get smaller and we are interested
in this difference. The reasons are the following: when grouping similar paths, the
number of duplicated nodes will be much smaller than when grouping paths that
are different. Also, we would like to group paths together which do not lose any-
thing from the loop transformation potential when grouped, i.e., after grouping the
big SCoPs do not get smaller.

We measure the similarity of two paths pi and pj as a ratio of nodes common to both
paths, and all nodes of those two paths. This is an extension to the similarity measure
presented in [165]. To count all nodes of two paths we count the nodes in the graph
constructed by grouping those two paths. To count nodes common to both paths we
use the inclusion-exclusion principle, i.e., the cardinality of the intersection of two
sets is equal to the sum of cardinalities of those two sets minus the cardinality of the
union of the two sets

Similarity(pi, pj) =
‖pi ∩ pj‖
‖pi ∪ pj‖

=
‖pi‖ + ‖pj‖ − ‖pi ∪ pj‖

‖pi ∪ pj‖

The Similarity is a value in the interval 〈0, 1〉, 0 means that the two paths are com-
pletely disjunct, 1 means that they are equal. Note, that we count the AST nodes
(NAST ), not the CFG (SCoP) nodes, thus

Similarity(pi, pj) =
NAST pi

+ NAST pj
− NAST pi∪pj

NAST pi∪pj

We define the loss between two paths as loss of the loop transformation potential
when these two paths are grouped together. Then the SCoPs are not so large as
before and this decreases the optimization potential. We compute this loss as

Loss(pi, pj) = fpi
×

∑

Depk∈pi

VDepk
(pi) + fpj

×
∑

Depk∈pj

VDepk
(pj)

−



fpi
×

∑

Depk∈pi∪pj

VDepk
(pi) + fpj

×
∑

Depk∈pi∪pj

VDepk
(pj)







86 Preprocessing for outermost conditions

1 2 3 4

1

2

3

4

0

0 1.41

3.25

4.375.104.47

5.48

3.16 4.07

5.10 5.66

Paths

Figure 5.17: Example of Loss/Similarity heuristic grouping (table).

where VDepk
(pi) is the dependency size of the k-th dependency along the path pi in

the CFsG {pi} (resp. {pi ∪ pj} in the second line). The dependency starts and ends at
different nodes. It should cross only nodes with input and output degree one in the
CFsG when going from the start node to the end node of the dependency. The start
node should have output degree one and the end node should have input degree
one. Similar definition is valid for VDepk

(pj). The f is the frequency of the path or of
the union of two paths.

After obtaining those two measures, we compute the Loss/Similarity ratio for each
pair of paths. This ratio defines the “distance” between the paths. Note that the
similarity is a unit-less metric and the loss is not. We consider the similarity as a
relative adaptation of the loss, i.e., if the similarity is 1, the loss is not increased.
However, if the similarity is smaller, this penalty is transfered to the loss. With this
approach, we obtained better results as when using two unit-less metrics. We believe
it is because of the larger importance of the loss in our technique. Then we sort the
pairs of paths according to distance and start to group paths with the closest distance.
The closer the distance, the larger similarity and/or smaller loss.

An example of such an approach is in Figure 5.17. The items in the table determine
the distance between the paths as computed by Loss/Similarity measure. We start
from the grouping when each path is separate. Then we group two paths with closest
distance, i.e., 0 and 1 (distance 1.41). That is another grouping possibility. The third
grouping possibility we obtain when grouping also paths 2 and 3 together (distance
3.16). The next possibility is to add path 4 to the group of 0 and 1, etc. This is
also depicted in Figure 5.18 where the nodes represent the paths and the edge labels
show the distance between two paths. This heuristic is extremely fast and gives good
results as we will demonstrate in Subsection 5.7.5.

5.7.4 Heuristic based on Fruchterman-Reingold layout

This heuristic is an extension of the previous one. Here, the inverse of the Loss/Sim-
ilarity ratio defines an attractive force between two paths (not the distance). Then we
also define the repulsive force that is equal to the product of the loop transformation
potentials of the two paths, i.e.,
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Figure 5.19: Principle of Fruchterman-Reingold layout heuristic. Note, that just some
attractive forces are depicted in the figure.

Attractive force(pi, pj) = Similarity(pi, pj)/Loss(pi, pj)

Repulsive force(pi, pj) =
∏

p∈{pi,pj}



fp ×
∑

Depk∈p

VDepk
(p)





We use those forces for force directed layout [78]. We construct a graph with ran-
dom layout where the nodes represent the paths and we define the attractive and
repulsive forces in the graph. Then we apply the forces under the defined cool down
function [78]. We have used the default linear cooling function, where the cool-
ing schedule begins with some initial temperature (100◦ in our case) and gradually
(linearly) in time reduces the temperature to zero. Compared to the more general
simulated annealing [48] approach, the force directed layout, being a physical simu-
lation involving forces, does not search directly for the energy minimum and is less
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computationally demanding. The result is a new layout that is used as a start for our
grouping technique, as shown in Figure 5.19. The grouping technique is the same
as in the Loss/Similarity heuristic (see Figure 5.18). This approach is a bit slower
compared to the previous one because of the new layout computation as depicted in
Figure 5.19.

5.7.5 Results

The quality of the heuristics will be shown on a real-life MP3 audio decoder and on
a set of synthetic examples generated with an adapted TGFF pseudorandom graph
generator [57].

The CFG of MP3 audio decoder has 26 nodes and we focus on grouping exploration
of the 6 most active paths (see Table 5.2). Note, that not all paths have to be grouped
in the scenario creation. The paths that are not grouped form the backup scenario.
The backup scenario is a piece of code that covers all paths that are not a target of the
exploration (non-active paths). The profiling we used for active path identification
is context sensitive. I.e., our test streams have been music test streams for which
this is a representative distribution of paths. In a different context, e.g., for speech
decoding other paths will pop up as important and some important paths from the
music context will disappear. This will lead to different scenario creation and it is
the reason, why our scenario technique is context sensitive.

For the synthetic examples, we use three sets: a small set, a middle set and a large set.
We define small/middle/large w.r.t. the complexity and size of the graphs generated
for the set, not w.r.t. the number of graphs in the set. The small set has in average
17 CFG nodes and in average 5 selected paths. It contains 20 graphs. The middle set
has in average 72 CFG nodes and 7 selected paths. It contains 5 graphs. The large
set has in average 188 CFG nodes and 14 selected paths. It contains 3 graphs. The
information about the real-life example and the sets can be found also in the Table 5.3
after each set in parentheses in the form (average CFG nodes in a graph, average active
paths in a graph, nr. of graphs in the set). We compare the Pareto curve of the full explo-
ration space (see Figure 5.16 for MP3 audio decoder) to the curves obtained with the
proposed heuristic. We define the accuracy of the heuristic as ratio between the ar-
eas below the two curves (the brute force bf and the heuristic heur). Our assumption
is that we integrate (compute the area under the curve) starting from the solution
where each scenario is an individual path (leftmost point) and ending by the solu-
tion where all the active paths create one scenario (rightmost point). The resulting
accuracy ratio can be in the interval (0, 1〉. The closer is the ratio to 1 the better is the
heuristic. Thus

Accuracy(bf , heur) =

∫

bf /

∫

heur

The results for the real-life MP3 audio decoder and for the synthetic examples are
in Table 5.3. In the first column is the name of the testbench, in the second column
are the heuristics applied for that testbench, the third column depicts how many
solutions has been pruned from the whole exploration space, the forth and the fifth
column depict accuracy of the heuristic and time required.
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Benchmark Heuristic Pruned [%] Accuracy Time [s]
MP3 audio Brute force 0 1 375
decoder2 Coverage criterion 80.0 0.91 131
(26,6,1) Loss/Similarity 97.0 0.93 23.3

F-R layout 97.0 0.85 23.2
Small Brute force 0 1 16.6
synthetic Coverage criterion 16.6 0.99 13.1
examples Loss/Similarity 90.4 0.93 2.05
(17,5,20) F-R layout 90.4 0.87 2.01

Middle Brute force 0 1 666
synthetic Coverage criterion 17.3 0.99 617
examples Loss/Similarity 99.2 0.90 3.56
(72,7,5) F-R layout 99.2 0.83 3.59

Large Brute force 0 NA NA
synthetic Coverage criterion NA NA NA
examples Loss/Similarity 99.9̄ NA 100
(188,14,3) F-R layout 99.9̄ NA 99.1

Table 5.3: Comparing the accuracy and CPU time requirement for different heuristics.
The information after each set in parentheses gives an idea about the size of the graphs
and number of graphs in the set. It is in the form (average CFG nodes in a graph, average
active paths in a graph, nr. of graphs in the set).

Figure 5.20 and first part of Table 5.3 show the results for different heuristics for
the real-life MP3 audio decoder. In this paragraph we discuss the results for this
real life application. In next paragraph we focus on synthetic examples results. The
Loss/Similarity (L/S) heuristic is fast and also accurate, because the ratio between
this heuristic and the brute force curve is 0.93 (see Table 5.3). That means the brute
force curve is only 7% better (in terms of area) than the L/S heuristic curve. The L/S
heuristic prunes 97% of the search space. This number was computed as a ratio of
number of pruned complete CFsG sets to all the possible complete CFsG sets. The
L/S heuristic has missed only one Pareto point from the brute force Pareto curve.
The coverage criterion heuristic has also good accuracy (0.91, i.e., 91%), but is has
also high time requirement. This heuristic prunes 80% of the solutions (complete
CFsG sets) in the exploration space for our real life example. The Fruchterman-
Reingold (F-R) layout heuristic does not fulfill our expectations, despite the good
speed, almost the same as the speed of the L/S heuristic. Also, the pruning factor is
equivalent to L/S heuristic. However, the F-R layout heuristic is less accurate. Thus
for an MP3 the L/S heuristic seems to be the best one.

Second part of Table 5.3 shows the results for three sets of synthetic examples. The
results for small and middle set of synthetic examples confirm the previous state-
ments, i.e., the coverage criterion is a slow but accurate heuristic. Here the coverage
criterion heuristic outperforms the L/S heuristic in terms of accuracy. This heuristic
prunes on average only 16.6% of the exploration space for the small set and 17.3%
of the exploration space for the middle set compared to fast L/S and F-R layout

2The parsing of the application was not excluded from the time results.
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Figure 5.20: Comparison of different heuristics on MP3 audio decoder example.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0  0.5  1  1.5  2  2.5  3  3.5  4

N
r.

 o
f A

S
T

 n
od

es
 in

 th
e 

ap
pl

ic
at

io
n

Estimated data memory size increase (x1000)

Brute force exploration
Covering criterion

Loss/Similarity criterion
Fruchterman-Reingold layout

Figure 5.21: Comparison of different heuristics on a synthetic example (NCFG=34 and
Npath=6) from small set (TGFF seed = 6).

heuristics which prune 90.4% of the exploration space for small set and 99.2% of the
exploration space for middle set. Thus, the L/S and F-R heuristics are much faster
compared to coverage criterion heuristic. Also here, the F-R heuristic was a disap-
pointment. The reason for the bad performance of the F-R heuristic is probably the
strong repulsive force that is also partly involved in the definition of the attractive
force (the loss) and should be better calibrated.

The large set of synthetic examples deserves special attention. Here, it was not pos-
sible obtain the results for brute force and coverage criterion heuristic due to limited
memory resources (out of memory after 1 day of computing). Thus, the L/S and F-R
heuristics are the only option from the proposed heuristics, we have for large graphs
with a lot of paths. The large synthetic set shows the importance of the applied fast
heuristics. If not using those, we would not be able to obtain any results for the large
set. Due to the fact we could not obtain brute force results, also the accuracy is not
available for the large synthetic set.
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The fast heuristics (L/S and F-R) can be still improved by trading-off their accuracy
for speed. Now, they provide only one solution for given number of scenarios (CF-
sGs). After analyzing the Pareto points obtained by the brute force, we have seen
that several Pareto points can be obtained for given number of scenarios. We be-
lieve, taking more than the best heuristic solution for given number of scenarios for
fast heuristics, will result into additional improvement in those heuristics. However,
the time requirement will then also increase. The proposed heuristics belong to the
class of hierarchical clustering approaches [113]. For the scenario creation, also other
clustering approaches such as exclusive clustering (e.g., K-means clustering [138]),
overlapping clustering (e.g., Fuzzy C-means clustering [59]) or probabilistic cluster-
ing (e.g., Mixture of Gaussians [54]) should be evaluated. Still, those techniques only
propose clustering methods itself but do not provide the metrics which are impor-
tant part of the clustering algorithm and are specific for given problem. We provide
those metrics in our clustering heuristics. To evaluate those metrics with other clus-
tering algorithms is part of the future work.

Note the time difference for the small synthetic examples and the real-life test-vehicle
which is order of magnitude higher despite similar structure (number of nodes and
active paths) of the CFGs. The large time difference is caused mainly by including
of the C code parsing (constructing the CFG and GM out of the C code) to the real-
example time and also by keeping both the C code and the model in the processor
memory during computation for the code generation purpose.

5.8 Code generation and results

After obtaining the Pareto curve, each point corresponds to a set of CFsGs where the
set of CFsGs jointly covers all active code paths (see Figure 5.22). The code genera-
tion phase takes a set of CFsGs for the Pareto point which is picked by the designer.
The selected point depends on the trade-off between code size and data size increase
the designer would like to make. From this set of CFsGs the set of C code functions
is generated where one CFsG corresponds to one C code function. The C code func-
tions do contain fewer blocking data dependent conditions compared to the original
code (original CFG) and thus can be better optimized by the following steps of the
DTSE methodology (e.g., the GLT).

Figure 5.22 shows the resulting Pareto curve for the MP3 audio decoder using the
coverage criterion heuristic for scenario creation. For the code generation and opti-
mization we have to pick one Pareto point. The choice will determine which scenario
grouping (set of CFsGs) we choose for further optimizations. Let us assume we do
not have enough L1 instruction memory so we go for cheap option w.r.t. the code
size and select the second Pareto point from the right. This point corresponds to two
scenarios (two CFsGs), namely {78,90,102} and {197,209,221}. The numbers in the
curly brackets are the path numbers of paths which form the CFsG. Because we did
the exploration only on the active paths we still need to have one backup scenario
(see Subsection 5.7.1) which groups all non-active paths. This will be located in main
memory and should be hardly used.

After selecting the Pareto point and generating the code functions, the optimizations
(GLT) are applied on these functions. The GLT optimized codes are passed to the
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Figure 5.22: Results for MP3 audio decoder using coverage criterion heuristic for sce-
nario creation. Each point corresponds to a set of CFsGs. In the curly brackets there are
paths which form the CFsG.

Memory Compaction (MC) tool (see Section 2.2 in Chapter 2), which applies the
in-place optimizations [50], and MHLA [26] tool. The MHLA tool decides on the
optimal placement of the arrays and their copy candidates to the memory hierarchy
layers. A copy candidate is part of an array which is stored in a lower level than the
original array. Thus, the lower memory layer serves as a software controlled cache.
Obviously, after the GLT transformation local memories can be better utilized. This
results to fewer main memory accesses and thus to energy savings. The accesses to
the different layers have been profiled using the ATOMIUM data memory profiling
tool. We have measured the traffic from/to main memory and have determined the
number of main memory accesses in a two-layer memory hierarchy where the size
of L1 on-chip SPM is 2kB.

The 2kB L1 on-chip SPM size was selected to show the gains of our technique com-
pared to the approach without scenarios. If we select a too large SPM (e.g., 4kB), all
important arrays will be placed in the SPM and there will not be any difference when
using GLT with or without scenarios, or not using GLT at all in terms of L1 accesses
and L1 misses. Of course, 4kB SPM will consume slightly more energy compared
to 2kB SPM. If we do not use SPM at all and use only the Main Memory (MM),
all the arrays will be placed in the MM and again, there will not be any difference
between using our technique or not. However, this solution will consume a signif-
icant amount of energy, because of the costly accesses to the MM. The trade-offs
between those two extremes have been studied in [26, 106]. The first paper studies
only the impact of MHLA decisions for different memory configurations, the second
one studies the impact of GLT+MHLA for different configurations. Such a detailed
study as in [106] has to be performed for each point of the trade-off in Figure 5.22
and it is out of the scope of this dissertation. Also, in this dissertation we do not deal
with the detailed energy studies of SPM, cache or SRAM depending on size. These
can be found in [16, 65].

Table 5.4 shows the results in terms of the number of main memory accesses for the
MP3 audio decoder code, the code after GLT and the code after Scenarios and GLT.
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Nr. of main memory Improvement related
accesses to previous row

Original MP3 audio decoder 714.2×106 -
MP3 audio decoder after 126.9×106 82.2%

GLT
MP3 audio decoder after 68.8×106 45.8%

Scenarios and GLT

Table 5.4: Comparison of original MP3 audio decoder code, the code after GLT and the
code after Scenarios and GLT.

We measured, that by using state-of-the-art techniques only (i.e., applying only GLT
without scenario technique), we were able to optimize 25% lines of source code of the
application, namely frequency inversion and polyphase synthesis filterbank kernels
(for the details about the application see Appendix A). This leads to 82.2% reduction
in the number of main memory accesses compared to the original version (see col-
umn 3 in Table 5.4). The main memory accesses correspond to a significant part of the
platform energy cost and they will also result in a performance loss due to the “mem-
ory wall” already indicated earlier. This reduction is mainly due to transformations
in the synthesis polyphase filterbank kernel (see Appendix A). The remaining ker-
nels contain the data dependent conditions and thus they cannot be optimized by the
state-of-the-art techniques. However, after applying the scenario technique we are
able to optimize the whole decoding functionality of the application. This leads to a
further decrease of 45.8% (see column 3 in Table 5.4) in the number of main memory
accesses.

Thus, the reduction of data memory size by 49.6%, when going from the rightmost
point to the second rightmost point as estimated in Figure 5.22, reduces the number
of main memory accesses by 45.8%. The code size increases by factor of 2. Based
on Table 5.7 we have ∼2kB of compiled code per scenario (when compiled with
optimization for code size) for a set of 3 scenarios. To go to a 2 scenario solution,
we have to combine 2 out of 3 scenarios. Even when the 2 scenarios we combine
have totally different nodes, we can end up in 6kB per scenario set. This is still not
a factor of 2 compared to the original code (4.65kB). There exist two reasons for this
which we will discuss in sequel. As mentioned earlier, the rightmost point in our
exploration is not the original code, but rather the initial code which corresponds to
the initial CFG constructed from active paths only. Thus the initial code size would
be smaller than 4.65kB. Also, creating more scenarios enables more optimizations
resulting in a code size decrease which is not captured by our estimation. Thus,
the code size estimator has to be better calibrated if we would want more accurate
estimates. This is however not so obvious to obtain at compile-time especially when
we would like the code size estimation of L1 instruction memory because of the
dynamic and data dependent nature of our target application codes. This could
be useful to estimate e.g., instruction cache misses as depicted in Table 5.7. This
estimation if difficult if we do not know the exact activation trace. However, the
ultimate accuracy of the estimators is not really needed in our approach. In practice
we apply infrequent calibration at run-time to accommodate for inaccuracies of the
estimates. If we discover that the shape of the real Pareto-curve moves too much
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1 while ( i<header . count ) {
2 body ;
3 }

a

1 / / 576 i s t h e wors t c a s e
2 for ( i =0 ; i <576; i ++) {
3 i f ( i<header . count ) {
4 body ;
5 }
6 }

b

Figure 5.23: Rewriting of while loop: (a) original code segment; (b) code segment after
rewriting while loop to a for loop and a condition.

from the original working points, we have to recalibrate and if needed even regroup
the scenarios. Also the latter will happen only very rarely so the runtime overhead
will remain negligible.

In the scenario approach we create at compile time the set of CFsGs which covers
the whole functionality of the application. We call the CFsGs scenarios. During run
time we have to select the appropriate scenario. How to select this scenario has not
been discussed yet. In front of data information in each frame in the MP3 audio
decoder is the header information which tells us which type of frame we are going
to decode. Based on this information we also can choose the appropriate scenario for
decoding the incoming frame. The decision mechanism is just large switch statement
which redirects the control-flow to the appropriate scenario based on the header
of the incoming frame. This decision mechanism is generated automatically by a
perl script in our technique. If the header information would not be available, we
would have had to use accurate scenario predictors similar to state-of-the-art branch
predictors or specific scenario predictors, e.g., [55, 84, 86]. If the predictors would be
wrong, we would have had to recover the input frame which can be time consuming.

5.9 Dealing with while loops

Till now we have considered that the kernels in the applications are SCoPs and thus
can be GM modeled. This requires statically analyzable code without while loops,
where loop bounds and conditionals may only depend on invariants within this set
of statements. These invariants include symbolic constants, formal function parame-
ters and surrounding loop counters. Thus the kernels cannot contain data dependent
conditions. If there is data dependent condition in the kernel it has to be hidden us-
ing technique in Chapter 4.

For the while loops there exist several solutions. In [90] the authors use irregular non-
dense execution domains with run-time checks which could lead to large run-time
overhead. In [164, 163] the authors do not deal with the while loops at all. So the
nodes that contain while loop(s) cannot be GM modeled. This reduces the oppor-
tunity for GLT. The other option is to use the technique in [165]. Here, the while
loop is rewritten to a for loop with worst case upper bound and a condition within
the body. When the condition is true, the original body is executed. Otherwise, an
empty iteration is performed (see Figure 5.23). The condition can be hidden by the
technique described in Chapter 4. When using this approach we create extra over-
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Figure 5.24: Trip count distribution for a while loop in the MP3 audio decoder.

head in empty iterations and possible redundant accesses to the memory subsystem
when the condition is hidden. In that sense, this approach is similar to [90]. In this
section we propose combination of preprocessing and scenario approach using loop
profiling information. Scenario approach for loops was also used in [195] in the con-
text of scenario-aware data flow models. Because of the preprocessing aspect, our
approach has a cross-level nature with previous chapter.

To use always the worst case is not necessary if we know in advance the loop trip
count profiling information, i.e., the frequency of different number of iterations of the
loop and the upper bound of the trip count during run time [167]. Such information
is depicted in Figure 5.24. From the figure we can see that in most cases only half of
the worst case trip count is executed. Thus we can create a special case which will
be used in most of the cases and the worst case which will be used otherwise. In
general multiple frequent occurring special cases, having different trip counts, can
be exploited.

In the following two subsections we explain how we obtain loop trip count infor-
mation using profiling, and how we use this information to deal with loops with
varying trip count.

5.9.1 Profiling of the loops with varying trip count

In this subsection we discuss how we can profile the loops in the application and
obtain the trip count distribution of individual loops. Then we explain how we se-
lect only the loops that have varying trip count and that are the main target of our
technique.

To prepare the code for trip count profiling we automatically insert function calls to
start prof(), call prof() and finish prof() functions when traversing the application Ab-
stract Syntax Tree (AST) (for an example of the code after annotation see Figure 5.25).
The start prof(i) function call is inserted immediately before the loop, the finish prof(i)
immediately after the loop and the call prof(i) as the first statement of the loop; i refers
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i f ( header . block ! = 0 ) {
i f ( header . block ==1) {

s t a r t p r o f ( 5 ) ;
f o r ( i =0 ; i<header . count1 ; i ++) {

c a l l p r o f ( 5 ) ;
. . .

}
f i n i s h p r o f ( 5 )

}
. . .

}

Figure 5.25: Example of the code annotation before trip count profiling.
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Figure 5.26: Trip count distribution for all while loops (with varying trip count) in the
MP3 audio decoder.

to the loop number. After inserting the profiling code in the application we run the
application using realistic input data. During the profiling, the trip count informa-
tion is stored in a 2D dynamic array, where the first dimension is the loop number,
the second dimension is the trip count of the loop. The content of the array is the
frequency for given loop and given trip count.

We would like to profile only loops that have varying trip count. The loops which
have constant trip count are modeled using the geometrical model as described
in [19, 163]. Thus after profiling we prune all loops which have only one trip count
value during the whole profiling. We still have to check if those loops are really for
loops in the AST. If not, we can work with these loops as with the for loops where
the obtained trip count will be the upper bound of the for loop. However, the worst
case of those loops has to be considered in the backup scenario. After pruning we
can plot the trip count histogram of all varying trip count loops in the application.

Figure 5.26 depicts the distribution of trip count in 3D space for an MP3 audio de-
coder. The x-axis contains the loop id numbers, the y-axis contains the trip count
values and the z-axis contains the frequencies for given trip count and given loop.
We observe that loops 0,1,3,4 have trip counts up to 100 and loops 2,5 have trip
counts up to 400 with a high peak there. This is already interesting information, be-
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cause if we had directly used the technique in [162] we would need to consider the
worst case for all loops, which is 576 for all mentioned loops. However, they occur
in different paths of the code and are used for decoding different type of blocks. This
is why there is such a big difference in the profiling information of the while loops in
the code. We will use the trip count histogram information in the next subsection for
creating scenarios out of the original CFG.

Creation of scenarios for loops with varying trip count will be demonstrated on loop
5. This has several reasons. In our approach we can construct scenarios from directed
acyclic CFGs only. As mentioned in Section 5.2, this is rather an implementation is-
sue. Only the loop 5 is the outermost loop, i.e., there is not any other loop between
the direct acyclic control-flow within the time loop and this loop. The other loops
are nested deeper in the loop hierarchy and thus are not so interesting for scenario
approach. Besides that, loops 0 and 3 are on infrequent paths. Also, this part of the
exploration (scenarios with varying trip count) is still manual. After scenario ap-
proach would be extended for arbitrary CFGs and the scenarios with varying trip
count would be automated, different combinations of multiple loops should be eval-
uated. Still, we do not expect that this will outperform our decision for the MP3
application.

5.9.2 Scenario technique for loops with varying trip count

The scenario technique explained in Section 5.6 requires that the CFG nodes fulfill
the requirement of SCoP. Thus, when while loops are present in the kernel, the worst
case number of iterations is used. However, when we define several special cases we
can reduce the number of empty iterations. We assume that the number of iterations
is data-dependent and thus not analyzable at compile-time. However, for the MP3
application it is known at run-time before entering the decoding frame functionality
as depicted in Figure 5.25. Here, the number of iterations is dependent on the header
information count1.

The best case is when we create a special case (separate for loop) for each loop itera-
tion count. Then the number of iterations is

Niter =

WC∑

TC=0

(fTC × TC )

where Niter is the number of iterations, WC is the worst case trip count, TC is the
trip count and fTC is the frequency of this trip count. The Niter corresponds to the
number of iterations executed when the while loop is present. However, creating
a special case for each trip count will create a large instruction memory footprint
overhead similar to creating separate scenario from each path. If we decide to create
only one special case (to have one special case and one worst case) all the occurred
trip counts below the special case (and the special case) can use this implementation
and the remaining trip counts have to use worst case implementation. Thus, the
number of iterations is
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Figure 5.27: Number of iterations depending on the position of the split for 1D split for
loop id number 5 from Figure 5.26.

Niter (X1) =

X1∑

TC=0

fTC × X1 +

WC∑

TC=X1+1

fTC × WC

where Niter is the number of iterations, X1 is the split trip count (till this trip count
the special case will be used), and WC is the worst case trip count. Depending on the
position of the X1, the Niter (X1) will vary (see Figure 5.27). From this graph we can
identify the X1 where the Niter (X1) is minimal which will be the best split for one
special case.

Of course, we can do more splits than only one and create several special cases (till
each trip count has its special case as explained above). For creating N splits we can
define the number of iterations achieved with those splits as

Niter (X1, ..., XN ) =
N+1∑

i=1





Xi∑

TC=Xi−1+1

fTC × Xi





where Niter is the number of iterations, (X1, ..., XN ) are the positions of N splits,
X0 = −1 and XN+1 = WC (WC is the worst case iteration count of the while loop).
Note that this is an N dimensional function. Its minimum defines the N splits with
the minimal number of iterations.

As explained already above, Figure 5.27 depicts the function of number of iterations
depending on the position of the special case (the split) for N=1. The trip counts have
been obtained based on Figure 5.26, loop id number 5. We can observe that the best
split is after the peak of the trip count frequency. Thus the special case should have
400 number of iterations. Note, that the worst case is 576 iterations. Using number of
iterations as cost function for the split assumes that the operations performed during
each iteration are the same. If it is not so, this cost function has to be adapted and
weighted appropriately. We will explain this with an example in the next paragraph.
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i =0 ;
while ( i<header . count ) {

i f ( i =<100)
y=x<<3;

e l s e
y=A[ i ]∗ 7 ;

i ++;
}
. . .

}

Figure 5.28: Example of the code when loop structure executed has changed after the
100th iteration.

The trip count itself and derived Niter function as shown in Figure 5.27 is not nec-
essarily sufficient as a cost function. In Figure 5.28 we see an example where the
first 100 iterations are cheap compared to the remaining iterations. In the iteration
interval 〈0, 100〉 the simple shift operation is performed in the loop. However, after
the 100th iteration, the more complex multiplication is performed. Also, those itera-
tions contain costly memory access we are concerned with. This difference has to be
taken in the account in our cost function and thus each iteration has to be weighed
based on the code complexity and memory accesses which are executed in that it-
eration. This is true for one dimensional instance of our cost function as well as for
multi-dimensional general cost function as defined above. However, this is part of
the future research.

As mentioned above, the special case causes the reduction in the number of empty
iterations. However it requires also duplication of code, where two CFG nodes, the
worst case and the special case have to be considered during CFG creation. This is
depicted in Figure 5.29; Figure 5.29a shows the CFG without considering trip count
profiling information (only the worst case node is present). Figure 5.29b depicts the
CFG where both the worst case and the special case are considered. After obtaining
the header information which is at the beginning of the frame, we know the iteration
count for that frame and thus the right decision if we are in the special case or not
can be taken. However, if this information would not be present, the predictors as
mentioned already at the end of Section 5.8 would have to be used.

After creating the new CFG with the worst case and special case the Ball-Larus profil-
ing is applied. The comparison of Ball-Larus profiling when only worst case is used
and when both the worst case and the special case are used, is shown in Table 5.5.
Note that the paths which have zero frequency do not occur in the table. However,
they will be grouped together to form a backup scenario. As we can observe in Fig-
ure 5.29 two paths going from start node to the end node through the worst case
node in the original CFG are refined to four paths in the new CFG. In Table 5.5 we
see the individual path frequency information for the original CFG and the new CFG
for an MP3 audio decoder application after the refinement. The path label is in the
form XDnr where X is the letter identifying the path in the old and new CFG, D is
the number identifying more detailed path information in the new CFG and nr is
the path number in the corresponding CFG. Note that only one while loop was split
in the application, resulting in splits of three paths going through this loop into six
paths. Our new approach where we consider also while loops, gives us a more de-
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Figure 5.29: Original CFG without considering trip count profiling information and new
CFG considering trip count profiling information and derived cost in Figure 5.27.

tailed view, as we see in Table 5.5. Thus it enables a better exploration of the search
space. After the profiling we apply the scenario technique (see Section 5.6) which
groups the individual paths together in the set of CFsGs. The heuristics proposed in
Section 5.7 can be used to prune the exploration space.

We have applied the proposed technique on the MP3 audio decoder application and
have compared it to the approach when only worst case for the while loops is used.
When only the worst case has been used, we have identified for the MP3 audio de-
coder 234 paths. After considering both worst case and special case for loop number
5 we have identified 378 paths. For the worst case, only 6 paths are active and for the
worst and special case 9 paths are active as depicted in Table 5.5. The total number
of different groupings is then B6 = 203 w/o while loop support (i.e., when using the
worst case) and B9 = 21147 with while loop support (when using both, special and
worst case). Bn is the Bell number defined as the number of ways a set of n elements
can be partitioned into non-empty subsets [21].

We applied the heuristic described in Subsection 5.7.2 to compare the results when
using only worst case and both worst case and special case for the MP3 audio de-
coder. Using the coverage criterion heuristic the number of relevant groupings de-
creased from 203 to 61 w/o while loop support (worst case) and from 21147 to
2313 with while loop support (special case and worst case) respectively. Finally, 6
Pareto points were obtained for scenario technique w/o while loop support and 13
Pareto points were obtained for scenario technique with while loop support (see Fig-
ure 5.30). The non-Pareto points have been discarded using techniques in [227].

In Figure 5.30 we see the Pareto curve obtained when using only the worst case
approximation of while loop, and the Pareto curve obtained when using both worst
case and special case. On the x-axis is the estimated data memory size increase which
corresponds to the missed opportunity for GLT expressed in number of dependen-
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W/o while loop With while loop
support support

Path nr Freq Path nr Freq
A78 51 A126 51
B90 336 B1138 19

B2150 317
C102 100 C174 100
D197 765 D317 765
E209 12079 E1329 3398

E2341 8681
F221 2363 F1353 784

F2365 1576

Table 5.5: Comparing the characteristics of Ball-Larus profiling [15] for the CFG used in
Section 5.5 and the new CFG created utilizing the information from trip count profiling.
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Figure 5.30: Comparing the results of scenario creation for scenarios without splitting
the while loops (considering worst case) and with splitting the while loops (only 1 while
loop considered) based on the trip count profiling. The result shows that the split has
reduced the number of iterations compared to approach that has considered only the
worst case situation.
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cies that cannot be modeled due to data dependent control flow. We can look at this
value also as the number of possible array elements that could still be reduced in GLT
if we perform the GLT on individual paths. On the y-axis is the code size increase in
number of AST nodes that we have to pay for increased GLT opportunity.

Based on Figure 5.30 we see that our technique requires more duplication and has the
same amount of GLT potential as the technique w/o while loop support when con-
sidering worst case. This is obvious, because by creating scenarios for while loops
we duplicate additional code and we do not gain any additional GLT potential com-
pared to worst case approximation. However, we reduce the number of iterations
when compared with the worst case. In the while loop number 5 we have focused
on, we have gained 14.4×106 iterations compared to the technique when only worst
case is used. The original number of iterations when applying the previous tech-
nique was 51.4 × 106 for this loop. After our technique we reduced the number of
iterations to 37.0 × 106. That means we have obtained 39% improvement for that
loop in number of iterations. Thus, even when splitting while loops always gives
a dominated solution when compared to non splitting loop in the two-dimensional
data memory size vs. code memory size exploration space, this is not true any more
in the three dimensional data memory size vs. code memory size vs. number of it-
erations exploration space. This is also depicted in Figure 5.30 where the projection
to 2D space data memory size vs. code memory size with umber of iterations above
the curves is present. Except of splitting the while loops, the other approach is not to
use worst case and leave while loops in the application code. This approach requires
fewer iterations compared to our worst and special case approach. However, it has
also fewer GLT opportunities and gives yet another Pareto working point in the 3D
exploration space.

As we have said above, our approach requires larger code size increase because of
the duplication of the while loop bodies. The code size increase happens only in the
main program memory however, and not in the active part of the code that is loaded
to the L1 instruction memory and the loop buffer. Also the code size increase drawn
in Figure 5.30 happens only for the critical parts of the program. Thus the overall
program size increase is still small. The whole MP3 audio decoder has 4262 lines
of code. However, the kernels are described only in 529 lines of code. I.e., we are
working with 12.5% of code which is responsible for 99% of execution time.

5.10 Switching cost

The scenario technique produces several C code functions where each C code func-
tion covers certain code paths (see Section 5.8). Depending on the incoming frame,
the appropriate function which was generated from a CFsG covering some code
paths is selected. Thus this function has to be loaded to the foreground instruc-
tion memory and executed. When the size of the foreground instruction memory is
limited, the previous function residing in the memory is flushed because of switch-
ing to the new scenario. The switching activity depends on how the partitioning of
the original CFG to the set of CFsGs is done. A small example - if we have paths
1,2 and 3 and the activation trace is 1, 2, 1, 2, 1, 2, 3, 3, 3, 3, 1, 2, 1, 2, 1, 2, 2, 1, 2,
2, 1, 1, ... obviously we would like to group path 1 and 2 together and keep path
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At the beginning i n i t i a l i z e histogram , time , l a s t o c c u r e n c e
and AvgT to 0 . Then each time during enter ing the EXIT node
in Bal l−Larus p r o f i l i n g c a l l update dis tances ( ) :

update dis tances (
Input : path occured ,
Output : updated average d i s t a n c e matrix AvgT) {

//increment the counter for path ( Bal l−Larus p r o f i l i n g )
h i s t o [ path ]++;
//increment the g loba l time
time ++;
for ( i =0 ; i<NR PATHS ; i ++) {

i f ( l a s t o c c u r e n c e [ i ] ) {
x = ( path<=i ) ? path : i ;
y = ( path<=i ) ? i : path ;
//time between path and i
tmpT = time−l a s t o c c u r e n c e [ i ] ;
//average time : path and i
AvgT[ x ] [ y ] = AvgT[ x ] [ y ]∗ ( h i s t o [ path ]−1)/ h i s t o [ path ]

+ tmpT/ h i s t o [ path ] ;
}

}
l a s t o c c u r e n c e [ path ]= time ;

}

Figure 5.31: The update distances() algorithm for determining the time distance between
two paths.

3 separate. If we would group path 1 and 3 together (first CFsG) and keep path 2
separate (second CFsG) this will lead to constant switching between the first CFsG
and the second CFsG. The importance of this switching depends heavily on how fast
the switching will occur in practice. Note, that in this section we assume a special
case where the switching between paths is very frequent. This can happen in future
very dynamic applications. If the scenario is stable for some time, the switching cost
is not so relevant.

In this section we provide a technique how to determine the set of CFsGs with min-
imal switching activity using Ball-Larus profiling [15] information and the Fruchter-
man-Reingold layout [78]. I.e., the technique should, based on the activation trace,
provide such a grouping of the individual paths to the set of CFsGs that the switch-
ing activity (flush and load of scenarios) is minimal. To do so, first we propose to
collect some extra information on top of Ball-Larus profiling and then use that infor-
mation in the Fruchterman-Reingold layout.

5.10.1 Description of the profiling algorithm

Ball-Larus profiling (see Section 5.5) collects the histogram of paths during execution
of the program. When executing a path in the CFG, the Ball-Larus profiling incre-
ments the counter for that path. We extend the simple updating of the path counter
by adding extra information about average time between two paths. I.e., we com-
pute how long ago in time units, where the time unit is equal to the execution of one
path, from the current path were other paths taken. A similar idea was presented
in [24] for determining the backward reuse distance. The algorithm for determining
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Path 1 2 3
1 2.5 2 1.5
2 - 0 1
3 - - 1

Table 5.6: Example of AvgT matrix defining the average distances between the paths for
the activation trace 1, 2, 3, 3, 1, 1.

the average time between two paths is listed in Figure 5.31.

After this algorithm which is running together with Ball-Larus profiling the two
dimensional AvgT array contains the average time between each pair of paths in
the program. An example of the activation trace and obtained AvgT array is in Ta-
ble 5.6. The AvgT array information can be used in two different ways; to evaluate
the switching activity of the already selected set of CFsGs or to optimize the scenarios
for minimal switching activity. Here we assume a special case when the switching
cost is approximately uniform and does not depend on the source of switching and
the destination of switching. The detailed study of the switching activity has been
left for future work in the Multi-Processor System on Chip (MP-SoC) context where
the impact of the switching is large [226]. As mentioned above, the AvgT array infor-
mation can be used also to find the optimal grouping (set of CFsGs) w.r.t. switching
activity and loading of scenarios based on Fruchterman-Reingold layout [78] as we
will discuss next.

5.10.2 Using Fruchterman-Reingold layout for minimal switching
activity scenarios

The AvgT array defined in the Subsection 5.10.1 contains the average time between
each pair of paths in the program. When considering optimal switching activity
between the CFsGs in the CFsG set, we would like to group together paths that are
close in the average time. If we do not do so, the switching activity between the
different CFsGs will be high. Table 5.6 contains also information how far in time,
on average, are two consecutive runs of the same path. This information is on the
diagonal of the AvgT two dimensional array. If that average time is small, it means
that the corresponding path is executed in short time intervals again and again. This
makes it a good candidate for a separate CFsG.

When using Fruchterman-Reingold layout [78] to determine minimal switching ac-
tivity scenarios, we can look at AvgT array as at a matrix defining the attractive/re-
pulsive forces between the vertices where the vertices represent the individual paths.
The attractive force between two paths is the inverse of the value in AvgT matrix. The
closer the paths are in average time the more we would like to group those paths and
thus the bigger the attractive force should be. The repulsive force between two ver-
tices, i.e., paths, is the product of the inverses of the corresponding values on the
diagonal of AvgT matrix. The closer the executions of the same paths are the more
this path would like to form the individual CFsG and repulses other nodes. The
inverse function we use for deriving the forces is
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78(251)

90(40)
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102(138)
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197(20)

1060

209(1)

647

221(6)

800

128

622

146

154

769

245

257

173

206

6

Sets of CFsGs derived from the
graph:

* {78}{90}{102}{197}{209}{221}
* {78}{90,102}{197}{209}{221}
* {78,90,102}{197}{209}{221}
* {78,90,102,197}{209}{221}
* {78,90,102,197,221}{209}
* {89,90,102,197,209,221}

Figure 5.32: The graph after Fruchterman-Reingold layout where the nodes represent
the paths and the edges the attractive forces between the nodes. The number in the
node is the path number and the number in the parentheses in the node is the AvgT i,i

value where i is the path number and contributes to repulsive force. The numbers on
the edges are AvgT i,j values where i,j are the path numbers and define attractive forces.
The closest nodes are grouped forming sets of CFsGs (sets of scenarios) with minimal
switching activity. The different groupings are listed on the top-right of the figure.

Inversefunction i,j =
1

1 + lnAvgT i,j

The logarithm in the function reduces the rich spread of AvgT values we have ob-
served.

After defining the vertices and attractive/repulsive forces we use a random layout
for the first layout of the vertices. Then we apply the forces under the linear cool
down function. However, Fruchterman-Reingold layout [78] considers constant at-
tractive/repulsive forces between each two nodes connected with an edge. Fortu-
nately, the Boost Graph Library (BGL), which we used for implementation, allows to
redefine these forces.

After running Fruchterman-Reingold layout the graph layout should be improved
with respect to the minimal switching activity. I.e., the vertices (paths) that would
result in large switching activity are close together and can be clustered to one CFsG.
We sort the edges of the graph based on minimal length. We start iterate over such
a sorted collection of edges and cluster the vertices at the ends of the edge together.
The more we cluster the smaller the code size and the bigger the data size will be.
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Size Size Nr. I1 reads Nr. I1 reads Nr. I1 misses
(compiled (total) (Scen. code (Scen. code

with funcs only) funcs only)
gcc -Os)

Original 8k 4.65k 2.83×109 1.32×109 11.0×106

Switching ∼3k per ∼2k per 2.83×109 1.32×109 6.0×106

cost scenario scenario
No switch ∼3k per ∼2k per 2.83×109 1.32×109 13.7×106

cost scenario scenario

Table 5.7: Comparing code size, code size when compiled for this objective (-Os switch),
Nr. I1 reads (total and within Scenario code) and Nr. I1 misses for 3 codes; original code
w/o scenarios, scenario code (set of 3 CFsGs) with considering the switching cost and
scenario code (set of 3 CFsGs) w/o considering the switching cost.

However, the obtained points (sets of CFsGs) should have smaller switching activity
compared to other possible sets of CFsGs.

In Figure 5.32 is an example of a graph for the active paths of the MP3 audio decoder
after Fruchterman-Reingold layout. The node id numbers correspond to the path
numbers in the MP3 audio decoder. The number in the parentheses inside the node
corresponds to the diagonal values of the AvgT matrix and the edge labels corre-
spond to the non diagonal values of the AvgT matrix. If we start to cluster the paths
we get six sets of CFsGs representing six points in the exploration space that are
also listed in Figure 5.32. We have implement the technique using the C++ libraries
- BGL [230], ATOMIUM (and BACKBONE (BB)) (which are part of in-house IMEC
ATOMIUM framework [229]) and STL [234]. We tested one MP3 audio decoder sce-
nario set (set of CFsGs) against the original code and scenario code where switching
cost is not considered using cachegrid [231]. Cachegrind is a cache profiler which
performs detailed simulation of the I1, D1 and L2 caches in the CPU. It identifies
the number of cache misses, memory references and instructions executed for each
line of source code, with per-function, per-module and whole-program summaries.
Cachegrid allows manually specify one, two or all three levels (I1/D1/L2) of the
cache from the command line. For our purposes, we specified I1 as 2048 byte, direct
mapped cache with line size 32 bytes.

The results of the experiment are in Table 5.7. When switching cost is not consid-
ered, the number of I1 misses can be even worse (by 24.5%) than the original code.
However, when the switching cost is considered, we were able to reduce number
of I1 misses by 45.5% compared to the original code. Note that we counted only
I1 misses related to the scenario code, not the total number of I1 misses. We have
observed, that the number of I1 misses to the functions called within scenario code,
e.g., the “power” function or Discrete Cosine Transformation (DCT) function, which
have not been considered in the last two columns in Table 5.7, can even increase
for solution where switching cost is considered. Note that those functions have not
been taken in the account during our exploration. W.r.t. the Figure 5.22, the “Switch-
ing cost” solution {78,90,102,197}{209}{221} has 3941 AST nodes and 495 estimated
data memory size increase compared to Pareto solution {78,90,102}{197}{209,221}
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which has 3437 AST nodes and 200 estimated data memory size increase. However,
it has fewer I1 misses compared to this solution. Thus, if the switching cost is rele-
vant, we should introduce it as an additional axis in our exploration space, similar
as we did for the number of iterations in Section 5.9. But actually working this out
in detail is left for future work.

5.11 Conclusions

Current real-life applications cannot be fully analyzed at compile time due to a lot of
data dependent conditions at different loop nesting levels. Similar to any branching
for instruction scheduling, these conditions limit the exploration space for high-level
memory optimizations. Thus, the static “compile-time” models like the GM are not
sufficient any more. Therefore, these models have to be extended and combined
with more dynamic approaches such as the scenario approach we proposed in this
chapter. The scenario creation technique allows more optimizations at compile time,
where the decision on the particular scenario use is postponed to run-time.

After the problem definition, our model that combines the current GM with the CFG
of the application has been explained. We have shown how to extract this model
from a real-life application and how to synthesize our model using TGFF pseudo-
random graph generator. Because of the limitations of the generated TGFF graphs,
we have proposed a workaround resulting in wide range of synthetic CFG graphs
with the desired properties. It has been clarified how to obtain the profiling infor-
mation and how it is integrated into our model. We have proposed the scenario
technique which is one of the main contributions of this dissertation and have sug-
gested several heuristics to deal with the exponential complexity of the problem. In
the last two sections, extensions of the technique towards while loop specialization
and considering switching cost overhead have been provided.





CHAPTER 6

Trade-offs in the GLT
There are no solutions. There are only trade-offs.

Thomas Sowell
(1930- )

Nowadays, multimedia systems deal with huge amounts of memory accesses
and large memory footprints. To alleviate the impact of these accesses and
reduce the memory footprint high-level memory exploration and optimiza-

tion techniques have been proposed. These techniques try to more efficiently utilize
the memory hierarchy. An important step in these optimization techniques is the
application of GLTs (see Chapter 3). They have a crucial effect on later data memory
footprint optimization steps and code generation (see Chapter 2). However, most
state-of-the-art work has focused only on individual objectives. The main objective
studied in the literature involves improving the locality of data accesses and thus
reducing the data memory footprint. Usually this work does not consider the trade-
offs in the GLT step in relation to successive optimization steps. Therefore it is not
globally efficient in mapping the application on the target platform.

This chapter discusses several trade-offs during the GLT and makes the GLT trade-
off oriented. It shows that best locality does not automatically ensure the optimal
solution for the used platform instance and that trade-offs should be involved dur-
ing loop transformations when the used platform instance is unknown. This chapter
first explains the problem of current design flows. Then it explains the different
trade-offs on small educative examples followed by a formalization of the interac-
tions among the different trade-off components. It also provides a real case study of
the QSDPCM [193] application mapped to the ARM platform. In the case study we
target the RISC and Very Long Instruction Word (VLIW) processor family where the
exploitable ILP is increased by loop unrolling in the later compilation phase after our
high-level exploration. We will explain how high-level estimation techniques should
help us to capture these trade-offs and how important it is to steer the research to-
wards this direction. A short overview of the joint research work in this area will
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be given. At the end of this chapter we will show, using the MP3 audio decoder
example, one common pitfall. Using the TI cl6x compiler we will show how GLTs
can conflict with the kernel optimization and how the computation-storage trade-off
at the algorithmic level can help us solve this issue.

6.1 Problem definition

Recent advanced multimedia systems typically use large amounts of data storage
and transfers. Memory and bus consume a major part of the energy in the embedded
systems [53, 148]. This is due to initial bad data locality. Improving the data locality
by loop transformations has positive effects on both speed and energy consumption.
The two immediate benefits of data locality, i.e., enabling the in-place optimization
and enabling the data reuse analysis and memory hierarchy layer assignment [28],
have been already discussed in Chapter 4.

The benefit of the overall data locality on the speed and power was shown by many
groups in the past. However, most previous work has focused only on one optimal
solution for loop transformations for a particular cost function which was mostly
minimal lifetime of the individual array elements [28]. A few exceptions have been
published going beyond this single focus [210, 178, 18]. The first paper studies over-
head of data memory optimizations on the instruction memories in embedded pro-
cessors and proposes appropriate countermeasures which keep both, instruction and
data energy, low. The second paper provides an algorithm for code generation from
Geometrical Model which enables some control over the trade-off between code size
and control overhead. Still, the primary goal of the paper is to handle any non-
convex union of domains with multiple statements, and allowing to systematically
eliminate inner conditionals. The tuning parameters it offers for code generation are
quite limited. Basically, the only parameter which can be specified for code genera-
tion is the loop depth where to apply domain separations. [18] extends this approach
and offers several code generation parameters such as first and last loop depth to
optimize in control. However, nobody systematically studied and identified the par-
ticular cost components contributing to the data locality (which is crucial for global
energy reduction) and the possible negative effects of data locality improvements.

Figure 6.1 depicts the large group of loop transformations and the different cost com-
ponents they affect (depicted by arrows). The Global Loop Transformations (GLT)s
we target mainly in this dissertation are an important subgroup of all loop trans-
formations applied. These transformations are applied mostly over loop nests in
the program and usually have the overall regularity and locality as the main objec-
tive. Except of these transformations, also other loop transformations exist. These
transformations are applied after the GLTs and are constrained by those global trans-
formations. An example are the transformations targeting innermost loop nests for
better performance and bandwidth. An important part of all loop transformations
is the Geometrical Model (GM) scanning which generates the code from the model
used in those transformations. The different transformations influence different cost
components like inter in-place, intra in-place, data reuse, control flow complexity
(including instruction locality), code size and parallelization for Instruction Level
Parallelism (ILP), etc. These cost components determine the final area vs. perfor-
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Figure 6.1: Relation between loop transformations (GLT = Global Loop Transformations),
cost components and final cost.

mance vs. energy trade-off as depicted in Figure 6.1.

This chapter identifies the effects of the GLT on the different cost components such
as inter in-place, intra in-place, data reuse and control flow complexity. To identify
and evaluate these cost components is important. Only then, the loop transforma-
tions can be properly steered for a particular platform with particular data-path and
memory hierarchy. This can be achieved by using high-level estimators which can
give us estimations on the different axes we trade-off.

6.2 Trade-offs demonstrated on educative examples

Loop transformations improve the source code implementation in different aspects,
e.g., data memory footprint, instruction memory footprint, control flow complexity,
parallelism, etc. Nowadays, researchers focus only on one particular aspect. How-
ever, an optimum for one particular aspect may not be an optimum for another one.

We would like to provide the designer with multiple source code implementations
after the loop transformation step. The implementations will differ in the amount of
optimization for different aspects we mentioned in the previous paragraph and they
will have different platform requirements. However, all of these implementations
will be Pareto optimal solutions in our exploration space. A Pareto optimal solution
cannot be improved upon without hurting at least one of the criteria.

To provide Pareto optimal solutions is crucial when mapping the application onto
the platform. Only then can we select a (loop transformed) implementation that is
tailored to the platform requirements. The Pareto optimal points can also be used
during run-time selection [224] for an approach that exploits the Pareto point curve
opportunities in a combined design/run-time method. When the platform resources
change, we are able to switch to another implementation, again tailored to the plat-
form requirements.

In this section we provide an overview of trade-offs we have identified during loop
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Cost components
Subsection Intra Inter Data Control-flow Code Parallel.

in-place in-place reuse complexity size (ILP)
6.2.1 and 6.4.1 X X
6.2.2 and 6.4.2 X X
6.2.3 and 6.4.4 X X
6.2.4 X X
6.2.5 X X
6.4.3 X X

Table 6.1: Overview of the different trade-offs discussed in this chapter. In each row, the
cost components involved in the trade-off are indicated with (X) in the corresponding
column.

transformations. Each subsection explains one particular trade-off on an educative
example. In our global approach in Section 6.4 we will demonstrate the trade-offs
in a case study and combine them in three dimensional exploration space. The full
overview of the trade-offs discussed in this chapter is in Table 6.1.

6.2.1 Intra in-place vs. inter in-place

In-place is an optimization technique aiming at reducing the required memory size
of data structures. This is achieved by reusing the same memory locations for differ-
ent data elements or data structures. This is possible if we can analyze the lifetimes
of data values. We distinguish two types of in-place optimization, intra and inter.
Inter in-place optimization reduces the required memory size by reusing the same
memory location by two different arrays. Intra in-place optimization reduces the
required memory size by reusing the same memory location by different array ele-
ments of the same array. The transformation thus exploits the limited lifetime of the
data during program execution.

We will demonstrate the intra in-place vs. inter in-place trade-off on the educative
code example in Figure 6.2. The implementation in Figure 6.2a consists of 4 separate
loops. In the first loop array A is produced. In the second loop array A is consumed
and array B is produced. In the third loop array B is consumed and array C is pro-
duced. In the fourth loop array C is consumed. After fusion (merging) of the loops
we obtain the implementation in Figure 6.2b.

To achieve maximal inter in-place the lifetime of the whole array, i.e., between the
write of the first element and read of the last element, has to be small. The maximal
inter in-place is often achieved in the non-localized code with a lot of separate loop-
s/loop nests, see code in Figure 6.2a, where the lifetime of the whole array spans
over two loops. E.g., if we assume 1 time unit per iteration per statement where an
array is written or read, the lifetime of the array A in Figure 6.2a will be 2*N time
units. Note, that in Figure 6.2b the lifetime of the whole array is 4*N time units.

To achieve maximal intra in-place, the lifetime of each individual array element, i.e.,
time between its write and read, has to be small. This is usually achieved in fully



Trade-offs demonstrated on educative examples 113

1 for ( i =0 ; i<N; i ++)
2 A[ i ] = . . . ;
3 for ( i =0 ; i<N; i ++)
4 i f ( i>=d )
5 B [ i ] = f (A[ i−d ] , A[ i ] ) ;
6 else
7 B [ i ] = 0 ;
8 for ( i =0 ; i<N; i ++)
9 C[ i ] = B [ i ] ;

10 for ( i =0 ; i<N; i ++)
11 i f ( i>=d )
12 . . . = f (C[ i−d ] , C[ i ] ) ;
13 else
14 . . .

(a) Code before loop fusion with
good inter in-place possibility.

1 for ( i =0 ; i<N; i ++) {
2 A[ i ] = . . . ;
3 i f ( i>=d )
4 B [ i ] = f (A[ i−d ] , A[ i ] ) ;
5 else
6 B [ i ] = 0 ;
7 C[ i ] = B [ i ] ;
8 i f ( i>=d )
9 . . . = f (C[ i−d ] , C[ i ] ) ;

10 else
11 . . .
12 }

(b) Code after loop fusion with
good intra in-place possibility.

Figure 6.2: Inter in-place and intra in-place trade-off example.

merged and localized code. E.g., in Figure 6.2b the code from Figure 6.2a has been
merged. This significantly reduces the lifetimes of the individual array elements.
E.g., if we again consider 1 time unit per iteration per statement, the lifetime of
one element (e.g. A[0]) in Figure 6.2b will be 4*d+1 time units where d is the inter-
iteration dependency distance. Note, that in Figure 6.2a it is N+d+1 time units. The
localized code in Figure 6.2b has small lifetime for individual array elements and
the non-localized code in Figure 6.2a has small lifetime for whole arrays. Thus, the
opportunity for inter in-place is better for non-localized code and the opportunity
for intra in-place is better for localized code.

The difference between the non-localized code with maximal inter in-place and lo-
calized code with maximal intra in-place is demonstrated also in Figure 6.3. The
three arrays from Figure 6.2 are represented in the time-address space graph. In
Figure 6.3a and Figure 6.3b the original memory layout without in-place for the non-
localized and localized code is shown. In Figure 6.3c and Figure 6.3d we see the
memory layout after in-place (inter for Figure 6.3c and intra for Figure 6.3d). In
Figure 6.3c the arrays are inter-in-placed because their respective lifetimes are short
(2*N) and non-overlapping. However, they cannot be intra-in-placed because all
elements are first produced and then consumed, so we need all N elements in the
memory. In Figure 6.3b the array lifetime spans the whole execution 4*N. Thus the
arrays cannot be inter-in-placed since their lifetimes are overlapping. However not
all elements in the array have to be kept alive and thus intra-in-place can be applied.
This is due to the good locality of the individual array elements. Consumption fol-
lows d iterations, i.e., 4*d+1 time units, after production and thus reuse of element
locations resulting in smaller memory address space for arrays is possible. Further-
more, by improving the locality some intermediate buffers are not needed anymore.
E.g., in the localized code array B is not present in Figure 6.3d because it was elimi-
nated using advanced copy propagation [209].
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Figure 6.3: The trade-off between inter in-place and intra in-place.
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1 for ( i =0 ; i<N; i ++) {
2 sum+=B [ i ] ; / / R1 , e . g . r e a d o f B [ 0 ] in T0
3 }
4 for ( i =0 ; i<N; i ++) {
5 A[ i ]=g ( B [ i ] ) ; / /W3(A[ 0 ] ) and R2 ( B [ 0 ] ) in T1
6 i f ( i>=d )
7 . . . = f (A[ i−d ] , sum ,A[ i ] ) ; / / d i s c o n s t .
8 }

Figure 6.4: Data size vs. nr. data transfers trade-off example (simple example).

For our example, we can give a break-even point depending on the parameters d
and N, i.e., the inter-iteration distance between production and consumption and
the size of the array, when is the final memory size equal for both the solution, the
local one and the non-local one. The break-even point is when N = 2 × d as can be
derived from Figure 6.3.

6.2.2 Intra in-place vs. data reuse

Intra in-place optimization reuses memory space of a single data element that is not
needed any more as we explained in the previous subsection. To achieve a good intra
in-place the lifetime of elements, i.e., the time between the production and consump-
tion, has to be minimal. Thus the production and consumption of elements have to
be placed as close as possible.

Data reuse optimization means to place a local copy of the part of the array which
will be used (read) several times closer to the data path. This copy can also be a
single array element placed in the foreground memory, i.e., register file. By placing
the copy closer to the data path the number of accesses to higher levels of memory
is reduced, because if the element is read again, it is read from the copy in the local
memory and not from the main array in the main memory. To have a good reuse
and to be able to place a local copy to the local memory, two conditions have to be
fulfilled. First there has to be some reuse, i.e., the copy has to be read several times.
Second, the reads have to be close in execution time so that the local copy is not
occupying the local memory unnecessarily long.

An educative example of the intra in-place vs. data reuse trade-off is illustrated in
Figure 6.4. It shows two loops. The first loop reads elements of array B[i] which
are cumulatively summed. The second loop (first statement) also reads elements of
array B[i], performs function g() on them and assigns them to array A[i]. The second
statement of this loop reads array elements A[i] and A[i-d], where d is a constant
representing inter-iteration dependency distance, reads sum and performs function
f(). Because the write of array A and the read of array A are in the same loop nest
and we cannot put the statements in the second loop closer together, array A has
optimal locality. After applying intra in-place only d elements have to be stored in
the memory. However, the distance between the read of array B in the first loop and
in the second loop is huge. We can improve this by moving the first statement of the
second loop to the first loop. This will improve the data reuse for array B. However,
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(a) Memory layout of the code in Figure 6.4.
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(c) Memory layout of the code in Figure 6.4
after in-place.
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(d) Memory layout after moving the state-
ment A[i]=g(B[i]); to the first loop after in-
place is the same as in the figure above.

Figure 6.5: Data size vs. nr. data transfers trade-off: Explanation of the data transfer
reduce vs. data storage size increase effect on time-address space axis.

it will also destroy good locality of array A. To put all three statements in one loop
nest is not possible because of the loop carried dependency (writing of sum) in the
first loop nest (first statement) followed by the dependency (sum) between the first
and third statement. So the only two options are good locality of array A or good
reuse of array B, but not both. This results in the trade-off between intra in-place and
data reuse.

This example corresponds to the time-address space graph in Figure 6.5. Figure 6.5a
corresponds to the situation in Figure 6.4 when the two consumptions of the same B
memory location are in two different loop nests and are performed at two different
time stamps T0 and T1 (for A[0]) which are far apart. The situation in Figure 6.5b
corresponds to moving the second statement in Figure 6.4 to the first loop. Then,
the two consumptions of the same B memory location are close together (time T0 for
array element A[0]). However, the intra in-place possibility of array A decreased.
This is clear from the intra in-placed memory layouts in Figure 6.5c (the array A can
be in-placed) and Figure 6.5d (the array A cannot be in-placed).
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1 for ( i =0 ; i <16; i ++)
2 for ( j =0 ; j <16; j ++)
3 A[ i ] [ j ] = in ( ) ;
4 for ( i =0 ; i <14; i ++)
5 for ( j =0 ; j <14; j ++)
6 out =
7 A[ i + 2 ] [ j + 2 ] ;
8 for ( i =0 ; i <16; i ++)
9 for ( j =0 ; j <16; j ++)

10 i f ( i <2 | | j <2)
11 . . . = A[ i ] [ j ] ;

(a) Original code with
low control-flow com-
plexity and high memory
footprint requirement.

1 for ( i =0 ; i <16; i ++)
2 for ( j =0 ; j <16; j ++)
3 {
4 A[ i ] [ j ] = in ( ) ;
5 i f ( i >1 && j >1)
6 out = A[ i ] [ j ] ;
7 }
8 for ( i =0 ; i <16; i ++)
9 for ( j =0 ; j <16; j ++)

10 i f ( i <2 | | j <2)
11 . . . = A[ i ] [ j ] ;

(b) Code with high
control-flow complex-
ity and low memory
footprint requirement.

1 for ( i =0 ; i <16; i ++) {
2 for ( j =0 ; j <16; j ++)
3 A[ i ] [ j ] = in ( ) ;
4 i f ( i >1)
5 for ( j =0 ; j <14; j ++)
6 out = A[ i ] [ j + 2 ] ;
7 }
8 for ( i =0 ; i <16; i ++)
9 for ( j =0 ; j <16; j ++)

10 i f ( i <2 | | j <2)
11 . . . = A[ i ] [ j ] ;

(c) Intermediate solution.

Figure 6.6: Initial code to demonstrate intra in-place vs. control-flow complexity exam-
ple.

6.2.3 Intra in-place vs. control flow complexity

Trade-offs mentioned above have targeted the data part of the application. However,
a trade-off also exists between the data part (intra in-place) and the control part (con-
trol flow complexity) of the application. This is illustrated by an educative example
in Figure 6.6.

In the code in Figure 6.6a array A is produced in the first loop nest and part of the
array is consumed in the second loop nest. After applying the loop transformations
for improving locality the loop nests may be fused and the consumption of array A
is shifted to satisfy the flow dependency (see Figure 6.6b). In the code in Figure 6.6b
the lifetime of A[2][2], written and read in the iteration (i,j) = (2,2), is not overlapping
with the lifetime of A[2][3], written and read in the iteration (i,j) = (2,3). So the A[2][3]
can be mapped to the same memory location as A[2][2]. Similarly, the lifetime of
A[2][3] is not overlapping with the lifetime of A[2][4], etc. Thus we do not need
the declared size of A to store the whole array A in the memory. Instead of the 256
memory locations needed for the code in Figure 6.6a we need 61 memory locations in
Figure 6.6b after intra in-place of the A array. Note, that we need to keep the A[0][j],
A[1][j], A[i][0] and A[i][1] in the memory because they are assumed to be consumed
later and we need one memory location for the array element processed in the loop
in Figure 6.6b. That means we still need (2*16+2*16-4)+1=61 memory locations.

However, in the code in Figure 6.6b the if condition was introduced. This can be a
problem for processors that do not support guarded execution and branch predic-
tion. It may also block the loop from being software pipelined. Even for processors
that deal well with conditions we still need to calculate the condition itself. Thus
we say that the code in Figure 6.6b has higher control-flow complexity compared to
the code in Figure 6.6a. This may severely slow down the application and results in
the trade-off between intra in-place and control-flow complexity in the application.
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The code in Figure 6.6a requires 256 memory locations, however executes 0 explicit
if statements. Note, that still many branches caused by the for loops are present. The
code in Figure 6.6b executes 256 if statements, however it needs only 61 memory
locations.

Note, that also an intermediate solution exists (see Figure 6.6c). Here we decided
to fuse and shift to satisfy the flow dependency only in the outermost loop. This
eliminates the dependency on the innermost iterator in the if condition. However,
this costs us 13 extra memory locations because we did not merge the innermost
loop and thus we need to keep all elements A[i][2]-A[i][15] in the memory. Together
with the A[0][j], A[1][j], A[i][0] and A[i][1] this makes (2*16+2*16-4)+14=74 memory
locations. In this code we execute 16 if statements. This solution is between the
two extreme solutions we presented in two previous paragraphs, i.e., the code with
minimal footprint (see Figure 6.6b) but with high control-flow complexity and the
code with footprint equal to declared size but with small control flow complexity.
These 3 points define a Pareto curve which trades-off the intra in-place vs. control
flow complexity.

6.2.4 Intra in-place vs. ILP trade-off (for parallelization)

To achieve maximal speed-up of the application, Instruction Level Parallelism (ILP)
is exploited by current compilers. Software pipelining, unrolling, function inlining,
tail duplication, if-conversion, etc. can increase the amount of exploitable ILP. How-
ever, implementations using these techniques require larger memory footprint than
original implementation. This results in a trade-off between performance and stor-
age size.

Figure 6.7 illustrates a simple example of this trade-off. The initial implementation
in Figure 6.7a produces in statement S1 array A. This array is consumed in statement
S2. If each (production or consumption) operation takes 1 cycle the total number of
required cycles would be 2×N×M . The required memory size is 1, because each
element of array A is consumed immediately after production.

To increase the amount of parallelism, software pipelining can be used. In the ge-
ometrical model, this means to shift (i.e., translate the iteration domain polytope)
S2 by +1 in the dimension we want to software pipeline as depicted in Figure 6.7b.
Now, the production of an element in S1’ and consumption of a previous element in
S2’ can be performed in parallel. This takes 2×N + N×M≈N×M cycles so a reduc-
tion with a factor of 2 compared to the code in Figure 6.7a. However, the required
storage size is 2, because we do not immediately consume the same element, but a
previous element and thus we need two elements to store.

To further increase the amount of ILP parallelism, vector processing techniques can
be used. By software pipelining we have created an inter-iteration dependency be-
tween the production and consumption of array A in the innermost dimension (see
Figure 6.7b). However, there is no dependency in the outermost dimension. Thus
after loop body split and loop interchange (see Figure 6.7c) we can unroll the (now)
innermost dimension and process the whole array A in this dimension as a vector.
This results in 2+M ≈ M cycles. However, the memory footprint increases to 2×N .
The vector processing techniques can be also used directly in Figure 6.7a where one
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1 for ( i =0 ; i<N; i ++)
2 for ( j =0 ; j<M; j ++) {
3 A[ i ] [ j ] = . . . ; / / S1
4 . . . = A[ i ] [ j ] ; / / S2
5 }

(a) Original code.

1 for ( i =0 ; i<N; i ++) {
2 A[ i ] [ 0 ] = . . . / / S1 ’
3 for ( j =1 ; j<M; j ++) {
4 . . . = A[ i ] [ j −1];

/ / S2 ’
5 A[ i ] [ j ] = . . . ; / / S1 ’ ’
6 }
7 . . . = A[ i ] [M] ; / / S2 ’ ’
8 }

(b) Code with software pipelin-
ing.

1 for ( i =0 ; i<N; i ++) {
2 A[ i ] [ 0 ] = . . . / / S1 ’
3 }
4 for ( j =1 ; j<M; j ++)
5 for ( i =0 ; i<N; i ++) {
6 . . . = A[ i ] [ j −1];

/ / S2 ’
7 A[ i ] [ j ] = . . . ; / / S1 ’ ’
8 }
9 for ( i =0 ; i<N; i ++) {

10 . . . = A[ i ] [M] ; / / S2 ’ ’
11 }

(c) Code with software pipelin-
ing and vector processing.

Figure 6.7: The trade-off between performance and area using more instruction level
parallelism.
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or both loops can be parallelized. This results to different trade-offs between number
of cycles and the required memory footprint.

6.2.5 Code size vs. code complexity trade-off (during code genera-
tion)

Until now we have discussed trade-offs that affect in-place (inter and intra), data
reuse, control flow complexity and ILP of the code during loop transformations.
Also interesting trade-offs exist during code generation phase when the code is gen-
erated from the geometrical model. The geometrical model represents each iteration
instance of the statement as a separate point in a multi-dimensional space. We ex-
plain this model directly using the example in Figure 6.8.

Figure 6.8a shows a simple code fragment. Array A is written in the first statement
S1 and read in the second statement S2. The corresponding geometrical model is in
Figure 6.8b. The iteration domains are represented by the rectangular boxes. The
depicted arrow represents the dependency between the write and the read of the
element, i.e., from the iteration where it is written to the iteration where it is read.

When extracting the code from the model in Figure 6.8b we can obtain (original)
code in the Figure 6.8a, the code in Figure 6.8c or the code in Figure 6.8d depending
on the algorithm we use for generating the code. A detailed explanation about the
code extraction from geometrical model can be found in Section 3.7 in Chapter 3. The
model keeps only information about execution ordering of the application and not
about the structure of the code. The codes in Figure 6.8a,c,d have the same execution
ordering, thus their geometric model is the same and thus all of the codes can be
generated from the same geometric model. The differences among the codes are in
empty iterations, control-flow overhead, and code size.

The code in Figure 6.8c is without control flow overhead (no if conditions). However,
it is almost fully unrolled code consisting only of small loop nests which will be most
probably unrolled by the compiler. Note also that this code does not have any empty
iterations, i.e., all iterations are used for computation. The code in Figure 6.8a is
compact, however it has some control flow overhead due to the if conditions. Also,
it requires eight empty iterations where no element is written or read. The code in
Figure 6.8d is compact as well, however it has the very large control flow overhead
due to the if conditions and min and max functions. Nevertheless, it requires only 2
empty iterations.

These trade-offs have been already partly discussed by the authors working on code
generators from the geometrical model [20, 178]. We mention them to have a more
complete overview about the trade-offs in the loop transformation step where we
also include the code generation step. Except of the techniques in code generation
there is a post-generation technique proposed by Falk et al. [66]. By using the ad-
vanced loop nest splitting technique at the source code level a large part of control-
flow overhead can be avoided. We consider this technique as a code generation
technique, because it can be integrated into the code generation phase and it does
not change the execution ordering of the application.

The code of Figure 6.8a contains two if conditions. We can apply here the intra in-
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1 for ( i =0 ; i <6; i ++)
2 for ( j =0 ; j <6; j ++) {
3 i f ( i <=3 && j <=3)
4 A[ i ] [ j ] = f ( ) ; / / S1
5 i f ( i >=2 && j >=2)
6 B [ i ] [ j ] = g (
7 A[ i −2][ j −2 ] ) ; / / S2
8 }

(a) Original code (scanning us-
ing bounding boxes).
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1

2

j3 4 5

3

4

(b) Geometrical model for the
codes in Figure 6.8.

1 for ( i =0 ; i <=1; i ++)
2 for ( j =0 ; j <=3; j ++)
3 A[ i ] [ j ] = f ( ) ; / / S1
4 for ( i =2 ; i <=3; i ++) {
5 for ( j =0 ; j <=1; j ++)
6 A[ i ] [ j ] = f ( ) ; / / S1
7 for ( j =2 ; j <=3; j ++) {
8 A[ i ] [ j ] = f ( ) ; / / S1
9 B [ i ] [ j ] = g (

10 A[ i −2][ j −2 ] ) ; / / S2
11 }
12 for ( j =4 ; j <=5; j ++)
13 B [ i ] [ j ] = g (
14 A[ i −2][ j −2 ] ) ; / / S2
15 }
16 for ( i =4 ; i <=5; i ++)
17 for ( j =2 ; j <=5; j ++)
18 B [ i ] [ j ] = g (
19 A[ i −2][ j −2 ] ) ; / / S2

(c) Scanned code for maximal
unrolling and no empty itera-
tions.

1 for ( i =0 ; i <=5; i ++)
2 for ( j =max( 0 , i −3);
3 j <=min ( i + 3 , 5 ) ; j ++) {
4 i f ( i <=3 && j <=3)
5 A[ i ] [ j ] = f ( ) ; / / S1
6 i f ( i >=2 && j >=2)
7 B [ i ] [ j ] = g (
8 A[ i −2][ j −2 ] ) ; / / S2
9 }

(d) Intermediate solution.

Figure 6.8: The trade-off during code generation phase.
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place vs. control flow complexity trade-off when shifting S2 and splitting the loops,
as already discussed in Subsection 6.2.3. But, this transformation changes the execu-
tion order.

6.3 GLT trade-off cost components

In this section we identify the different cost components from Table 6.1 that mainly
participate in the GLT trade-offs. GLTs target platform independent issues, such
as locality and regularity, and they change the execution ordering of the statements.
The other Loop Transformations (LT)s target other issues than locality and regularity,
e.g., more platform specific issues such as bandwidth and performance. Also the
impact on the code is different, the GLT have overall impact on the code (mostly on
multiple loop nests) and the other LT have limited impact on the code (mostly one
perfect loop nest or innermost loop). The position of GLT in the DTSE design flow
is compliant with the importance in these transformations in the flow. Decisions on
improving the data locality and regularity in the GLT are early in the DTSE design
flow. Later in the flow, these decisions are refined using other LT. These improve
e.g., the Storage Budget Optimization (SBO) opportunities or the ILP. The GLT are
orthogonal [29] to other LT, i.e., the constraints created during the decisions in GLT
are propagated to the other LT, but not the other way around. That means, the
decisions made earlier in the flow do not have to be reconsidered, they can be only
refined using additional (e.g., platform dependent) knowledge. In the past, some
solutions that should be propagated to the lower levels have been pruned away,
because of not considering trade-offs at the higher levels, i.e., GLT. To point at this
problem is the main contribution of this chapter.

GLT

Intra
in-place

Inter
in-place

Data
reuse

Control-flow
complexity

Other LT

Intra
in-place

Control-flow
complexity

Parallelization
(ILP)

...

GM scanning

Code
size

Control-flow
complexity

︸ ︷︷ ︸
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Figure 6.9: The cost components participating at GLT from Table 6.1 which are orthogo-
nal to the other LT and GM scanning decisions.

During the GLT the execution ordering of the application changes significantly. De-
cisions at this level influence the data locality (intra in-place, inter in-place and data
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reuse), the control-flow complexity and related instruction locality [210] (see Fig-
ure 6.9). As discussed in Subsection 6.2.1 the non-fused (non-localized) code is ben-
eficial for inter in-place and also for the instruction locality. The fused (localized)
code is however better for intra in-place and has worse instruction locality. The GLT
related trade-offs are the trade-offs we mainly target in this chapter. The work of
Vander Aa et al. [210] has already shown the importance of the instruction locality
in these trade-offs. This is the reason why we do not discuss the instruction locality
part of control-flow complexity further. However, the remaining GLT trade-offs are
discussed in the educative examples in Subsection 6.2.1- 6.2.3 and on a case study in
Subsection 6.4.1- 6.4.4.

After GLT, performing other LT can still improve different performance and band-
width related aspects like control-flow complexity or ILP parallelism as depicted in
Figure 6.9. An example of the trade-off in other LT is presented in Subsection 6.2.4.
As already mentioned at the beginning of this chapter we target the RISC and VLIW
processor family, where the ILP is enhanced by loop unrolling and software pipelin-
ing in the compiler. We consider such an ILP parallelization as orthogonal to the
exploration space we target in the GLT. The decisions in our GLT exploration space
are propagated and later used by the compiler. However, the compiler unrolling
possibility does not constrain the GLT decisions.

During the GM scanning the execution ordering, thus the memory and locality re-
lated issues are fixed. However, here we can still decide if we go for more compact
code with high code complexity or for a flattened code with low code complexity
as depicted in Figure 6.9. An educative example of this trade-off has been shown in
Subsection 6.2.5. We do not discuss this trade-off in our case study, because this was
already discussed in detail in the geometrical model scanning papers [178, 20] and
in Section 3.7 in Chapter 3. Further studying of fine grain control on code generation
is out of the scope of this dissertation.

Thus, in the following case study we do not consider other LTs or GM scanning and
we only focus on the exploration of the GLT trade-offs.

6.4 Case study and results

In this section we demonstrate GLT-related trade-offs on a real-life example, namely
a QSDPCM video encoder [193]. Then we provide several Pareto points in the three
dimensional exploration space. The dimensions of this space are Level 1 (L1) data
storage size, number of data transfers to/from main memory, and the control flow
complexity. Note, that the L1 data storage size is the overall size obtained by the
combination of inter in-place and intra in-place trade-off. As mentioned above, we
do not discuss the trade-offs in the code generation phase (Subsection 6.2.5). For
the QSDPCM application with loop nests depth of eight the code size is exploding
when using the scanning technique like in Figure 6.8c. We do not consider trade-offs
for improving the parallelization potential (see Subsection 6.2.4). The target ARM
processor we have mapped the application onto does not have multiple functional
units and thus improving the parallelization potential would not help for the target
platform with this processor.
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6.4.1 Intra in-place vs. inter in-place

The trade-off between intra in-place and inter in-place discussed in Subsection 6.2.1
can be found in the real-life QSDPCM application [193]. We compared 3 versions of
QSDPCM, namely non-localized, localized and partially localized, where only part
of the loop nests is fused (merged). To evaluate the code we used the MHLA map-
ping tool [26] with a 2 layer memory hierarchy. The memory hierarchy is composed
from Layer 1 1kB Scratchpad Memory (SPM) and Main Memory (MM). The tool
considers inter and intra in-place and decides on the placement of the arrays and
their copy candidates to different memory layers. Note, that the copy candidate is
a part of the array which is stored in a lower level than the original array. The tool
provides us with the size assigned to SPM and MM as well as the number of memory
accesses and energy number computed based on this information and the memory
model [26].

Non- Fully Partially
localized localized localized

Data L1+MM energy [uJ] 71.97 47.17 46.47
Data L1 data energy [uJ] 13.79 14.32 14.29
Data MM data energy [uJ] 58.18 32.85 32.17
Assigned size to L1 [bytes] 742 748 802
Assigned size to MM [bytes] 114048 66352 63360
Nr. L1 data mem.acc. 1.14×106 1.19×106 1.19×106

Nr. MM data mem.acc. 542×103 306×103 300×103

Table 6.2: Results for different QSDPCM implementations when exploring inter vs. intra
in-place trade-off.

Table 6.2 gives an overview of the results obtained on the three code versions de-
scribed above. We see that the best solution for energy is the partially-localized one.
In all cases, the energy contributions from the L1 are very comparable which is some-
how coincidental because the arrays and copies assigned in L1 are very different in
the three cases. However the L2 energy contribution is much smaller in the fully and
partially localized codes. This is due to the big reduction of the number of accesses
to this layer. The non-localized solution is 55% worse than the partially localized
solution. The fully localized solution is only 1.5% worse compared to non-localized
solution. An important message is that the most local code is not always the best one
for energy as most people would expect.

For the rest of the section we will not consider the intra in-place and inter in-place
axes separately, but combine them into one data size axis. At the end, we are inter-
ested in the overall data size resulting from intra and inter in-place and not from the
particular components of the data size.

6.4.2 Intra in-place vs. data reuse

The trade-off between intra in-place and data reuse discussed in Subsection 6.2.2
is demonstrated in the code in Figure 6.10 and 6.11 for a real life example taken
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from QSDPCM. In this code we can observe a similar effect as explained in Sub-
section 6.2.2, i.e., that the (time) distance between the production and consumption
of an array element (for intra in-place) and the time distance between several con-
sumptions of other array elements (for data reuse) can conflict, but now on a much
more complex example. In Figure 6.10 on Line 29 there is an array prev sub4 frame
which depends (via scalar variable temp4) on an input array prev frame on Line 25.
This input array is read two times in the application (Line 25 and 10). The two
consumptions are too far apart to put the value in a register and use it for both
reads. If we consider 1 time unit per iteration per statement with array read/write,
the two reads are (2*2+1)*8*8+(4*4+1)*4+(4*4+1) = 405 time units far apart. You can
check it by computing the time you need from the first read of A[20*176+20], i.e., for
y=x=m=n=k=l=0, to the second read of the same element.

After strip mining, fusion (merging) and shifting (bumping) of the inner loops it is
possible to bring the two consumptions of the input array prev frame so close together
that they access the same memory element in the same iteration. This is shown in
the code in Figure 6.11. Thus we can store this element in the foreground memory
and save costly off-chip memory accesses by reusing the value from the foreground
memory (register) (see Line 11 in the transformed code in Figure 6.11). However,
this data reuse improving transformation will disrupt the good locality and good
intra in-place optimization opportunity of the prev sub4 frame array. The production
of this array has to be shifted together with the whole loop nest further from its
consumption (see the changed address expression for this array). We do not discuss
the inter in-place optimization in this section, because the inter in-place opportunity
remains the same and thus the inter in-place decisions are not affected.

prev sub4 fr. Assigned data Nr. MM mem Total
storage size size to L1 accesses energy

[uJ]
Best intra in-place 496 2544 307×103 32.9
Improved data reuse 541 2589 259×103 27.5

Table 6.3: Results for different QSDPCM codes when exploring intra in-place vs. data
reuse trade-off.

We compared 2 versions of QSDPCM, namely the code with best intra in-place opti-
mization (for a code fragment see Figure 6.10) and our adapted code (see Figure 6.11)
with improved data reuse. To evaluate the codes we again used the MHLA mapping
tool [26] with a 2 layer memory hierarchy3. The results are in Table 6.3. We have ob-
served an almost 15% decrease in the number of main memory accesses compared to
the best intra in-place code. However, we paid 45 memory locations extra for array
prev sub4 frame resulting in 1.7% increase of the data size stored in L1. This is not a
problem as long as the prev sub4 frame array still fits into L1. If it would have to be
moved to main memory, the improved data reuse would not be beneficial because
of increased main memory accesses due to accesses to prev sub4 frame array.

3Note, that from now on other version of QSDPCM with a lot of bug fixes has been used compared to
the Table 6.2. Therefore the results of Subsection 6.4.1 are not completely consistent with the remaining
text.



126 Trade-offs in the GLT

1 for ( y=−2; y<9; y++) {
2 for ( x=−2; x<11; x++) {
3 i f ( ( y>=−2) && ( y<9−1) && ( x>=−2) && ( x<11−1)) {
4 for (m=0; m<8; m++) {
5 for ( n=0; n<8; n++) {
6 i f ( ( 8 ∗ ( x +1)+(n+2)>=0) && ( 8∗ ( x +1)+(n+2)<88) &&
7 ( 8∗ ( y +1)+(m+2)>=0) && ( 8∗ ( y +1)+(m+2) <72)) {
8 for ( k =0; k<2; k++) {
9 for ( l =0 ; l <2; l ++) {

10 temp2+=prev frame [ ( 1 6∗ ( y+1)+2∗(m+2)+k
11 )∗176+16∗ ( x +1)+2∗(n+2)+ l ] ;
12 }
13 }
14 prev sub2 frame [ ( 8 ∗ ( y +1)+(m+2))∗88+8∗ ( x +1)
15 +(n+2)]= temp2 /4;
16 }
17 }
18 }
19 }
20 i f ( ( y>=−1) && ( y<9−1) && ( x>=−1) && ( x<11−1)) {
21 for (m=0; m<4; m++) {
22 for ( n=0; n<4; n++) {
23 for ( k =0; k<4; k++) {
24 for ( l =0 ; l <4; l ++) {
25 temp4+=prev frame [ ( 1 6∗ ( y+1)+4∗m+k )∗176
26 +16∗( x+1)+4∗n+ l ] ;
27 }
28 }
29 prev sub4 frame [ ( 4 ∗ ( y+1)+m)∗44+4∗ ( x+1)+n]=
30 temp4 /16;
31 }
32 }
33 }
34 i f ( ( y>=0) && ( y<9) && ( x>=0) && ( x<11)) {
35 for ( vy =0; vy<9; vy++) {
36 for ( vx =0; vx<9; vx++) {
37 for (m=0; m<4; m++) {
38 for ( n=0; n<4; n++) {
39 i f ( ( 4∗y+vy−4+m)>=0 && (4∗y+vy+4+m)=<

40 (36−1) && (4∗x+vx−4+n)>=0 && (4∗x+vx+4+n)=<

41 (44 −1)) {
42 p2=prev sub4 frame [ ( 4∗y+vy−4+m)∗44+4∗x+vx
43 −4+n ] ] ;
44 }
45 . . .

Figure 6.10: Data size vs. Nr. of data transfers trade-off example (QSDPCM). Code with
good in-place and bad reuse.
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1 for ( y=−2; y<9; y++) {
2 for ( x=−2; x<11; x++) {
3 for (m=0; m<4; m++) {
4 for ( n=0; n<4; n++) {
5 i f ( ( ( 4 ∗ ( x+1)+n+1)>=0) && ( ( 4 ∗ ( x+1)+n+1)<44) &&
6 ( 4∗ ( y+1)+m+1)>=0) && ( ( 4 ∗ ( y+1)+m+1) <36)) {
7 for ( i =0 ; i <2; i ++) {
8 for ( j =0 ; j <2; j ++) {
9 for ( k =0; k<2; k++) {

10 for ( l =0 ; l <2; l ++) {
11 temp2+=prev frame [ ( 1 6∗ ( y+1)+4∗(m+1)+
12 2∗ i +k )∗176+16∗ ( x +1)+4∗(n+1)+2∗ j + l ] ;
13 }
14 }
15 prev sub2 frame [ ( 8 ∗ ( y+1)+2∗(m+1)+ i )∗88+
16 8∗ ( x +1)+2∗(n+1)+ j ]= temp2 /4;
17 temp4+=temp2 ;
18 }
19 }
20 prev sub4 frame [ ( 4 ∗ ( y+1)+m+1)∗44+4∗( x+1)+n+1]
21 =temp4 /16;
22 }
23 }
24 }
25 i f ( ( y>=0) && ( y<9) && ( x>=0) && ( x<11)) {
26 for ( vy =0; vy<9; vy++) {
27 for ( vx =0; vx<9; vx++) {
28 for (m=0; m<4; m++) {
29 for ( n=0; n<4; n++) {
30 i f ( ( 4∗y+vy−4+m)>=0 && (4∗y+vy+4+m)=<(36−1)
31 && (4∗x+vx−4+n)>=0 && (4∗x+vx+4+n)=<

32 (44 −1)) {
33 p2=prev sub4 frame [ ( 4∗y+vy−4+m)∗44+4∗x+
34 vx−4+n ] ] ;
35 }
36 . . .

Figure 6.11: Data size vs. Nr. of data transfers trade-off example (QSDPCM). Code with
bad in-place and good reuse.
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6.4.3 Data reuse vs. control flow complexity

In Section 6.3 we have depicted the strong interaction between intra in-place and
data reuse because both are part of the GLT group. If we look back at the code
example in Subsection 6.4.2 several loop transformations have been applied to go
from code in Figure 6.10 to Figure 6.11. First the strip mining has been performed
to enable the fusion of the first two loop nests in Figure 6.10. This strip mining does
neither change the intra in-place nor the data reuse. However, it allows hoisting the
condition in the first loop nest two levels up resulting in 2206 if evaluations in the
first two loop nests. Note, that we counted all three if conditions in these loop nests
for Best intra in-place strip mined version. After the fusion of the first two loop nests
and shifting to satisfy the dependency relations the intra in-place opportunity de-
creased, however the number of main memory accesses was reduced from 307× 103

to 259× 103 as has been shown in previous subsection. The number of if evaluations
increased from 2206 to 2288 as will be shown in the next subsection. This results in
a trade-off data reuse vs. control flow complexity when projected on data reuse vs.
control flow complexity plane (see also Subsection 6.4.5). This trade-off is depicted
in Table 6.4.

Nr. MM mem Number of
accesses if eval.

Best intra in-place 307×103 2206
strip mined (SM)

Improved data reuse 259×103 2288

Table 6.4: The trade-off between the data reuse and control flow complexity.

6.4.4 Intra in-place vs. control flow complexity

The trade-off between intra in-place and control flow complexity as discussed in
Subsection 6.2.3 is demonstrated in the code in Figure 6.12 and 6.13 for the real life
example. The extra control flow is present because of fusing and shifting the loops
to obtain good intra in-place with improved data reuse while still satisfying the flow
dependencies (see Figure 6.12). However, this control flow can be reduced when
shifting the loops a little bit more than required for optimal in-place as shown in Fig-
ure 6.13. Here the Lines 10,14 and 19 were shifted a bit further as in the code of Fig-
ure 6.12. This caused a disruption of the locality for array prev sub4 frame compared
to the code in Figure 6.12. However, the first condition in the code in Figure 6.12 is
hoisted and simplified in the code in Figure 6.13.

We compared three code versions of QSDPCM application, the one with improved
data reuse in Figure 6.12, the one with improved code complexity in Figure 6.13
(Improved complexity 2) and an intermediate version (Improved complexity 1). In
the Improved complexity 1 version, the condition was hoisted from the inner loop,
sacrificing 25.5% L1 data memory space. In the Improved complexity 2 version, the
condition was hoisted from the two inner loops, sacrificing 25.8% L1 data memory
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1 for ( y=−2; y<9; y++) {
2 for ( x=−2; x<11; x++) {
3 for (m=0; m<4; m++) {
4 for ( n=0; n<4; n++) {
5 i f ( ( ( 4 ∗ ( x+1)+n+1)>=0) && ( ( 4 ∗ ( x+1)+n+1)<44) &&
6 ( 4∗ ( y+1)+m+1)>=0) && ( ( 4 ∗ ( y+1)+m+1) <36)) {
7 for ( i =0 ; i <2; i ++) {
8 for ( j =0 ; j <2; j ++) {
9 for ( k =0; k<2; k++) {

10 for ( l =0 ; l <2; l ++) {
11 temp2+=prev frame [ ( 1 6∗ ( y+1)+4∗(m+1)+
12 2∗ i +k )∗176+16∗ ( x +1)+4∗(n+1)+2∗ j + l ] ;
13 }
14 }
15 prev sub2 frame [ ( 8 ∗ ( y+1)+2∗(m+1)+ i )∗88+
16 8∗ ( x +1)+2∗(n+1)+ j ]= temp2 /4;
17 temp4+=temp2 ;
18 }
19 }
20 prev sub4 frame [ ( 4 ∗ ( y+1)+m+1)∗44+4∗( x+1)+n+
21 1]= temp4 /16;
22 }
23 }
24 }
25 i f ( ( y>=0) && ( y<9) && ( x>=0) && ( x<11)) {
26 for ( vy =0; vy<9; vy++) {
27 for ( vx =0; vx<9; vx++) {
28 for (m=0; m<4; m++) {
29 for ( n=0; n<4; n++) {
30 i f ( ( 4∗y+vy−4+m)>=0 && (4∗y+vy+4+m)=<

31 (36−1) && (4∗x+vx−4+n)>=0 && (4∗x+vx
32 +4+n)=<(44−1)) {
33 p2=prev sub4 frame [ ( 4∗y+vy−4+m)∗44
34 +4∗x+vx−4+n ] ] ;
35 }
36 . . .

Figure 6.12: Performance and data size trade-off example (QSDPCM). Code with good
in-place and bad code complexity.

Assigned data Control-flow Number of
size to L1 expression if eval.

Improved data reuse 2589 if(f(y,m,x,n)) 2288
//no-hoisting

Improved code complex. 1 3249 if(f(y,m,x)) 572
//hoisting 1 level

Improved code complex. 2 3258 if(f(y,x)) 143
//hoisting 2 levels

Table 6.5: Results for different QSDPCM codes when exploring intra in-place vs. control-
flow complexity trade-off.
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1 for ( y=−2; y<9; y++) {
2 for ( x=−2; x<11; x++) {
3 i f ( y+2>9 && x+2>11) {
4 for (m=0; m<4; m++) {
5 for ( n=0; n<4; n++) {
6 for ( i =0 ; i <2; i ++) {
7 for ( j =0 ; j <2; j ++) {
8 for ( k =0; k<2; k++) {
9 for ( l =0 ; l <2; l ++) {

10 temp2+=prev frame [ ( 1 6∗ ( y+2)+4∗m+2∗ i
11 +k )∗176+16∗ ( x+2)+4∗n+2∗ j + l ] ;
12 }
13 }
14 prev sub2 frame [ ( 8 ∗ ( y+2)+2∗m+ i )∗88+8∗ ( x
15 +2)+2∗n+ j ]=temp2 /4;
16 temp4+=temp2 ;
17 }
18 }
19 prev sub4 frame [ ( 4 ∗ ( y+2)+m)∗44+4∗ ( x+2)+n]=
20 temp4 /16;
21 }
22 }
23 }
24 i f ( ( y>=0) && ( y<9) && ( x>=0) && ( x<11)) {
25 for ( vy =0; vy<9; vy++) {
26 for ( vx =0; vx<9; vx++) {
27 for (m=0; m<4; m++) {
28 for ( n=0; n<4; n++) {
29 i f ( ( 4∗y+vy−4+m)>=0 && (4∗y+vy+4+m)=<

30 (36−1) &&(4∗x+vx−4+n)>=0 && (4∗x+vx
31 +4+n)=<(44−1)) {
32 p2=prev sub4 frame [ ( 4∗y+vy−4+m)∗44+
33 4∗x+vx−4+n ] ] ;
34 }
35 . . .

Figure 6.13: Performance and data size trade-off example (QSDPCM). Code with bad
in-place and good code complexity.



Case study and results 131

space. The results are in Table 6.5. Note, that except fewer evaluations of the condi-
tion expression due to hoisting, also the expression itself has been simplified.

6.4.5 Combination of trade-offs

We combined the points discussed in Subsections 6.4.2– 6.4.3 to a three dimensional
exploration space in Figure 6.14. The exploration has been done manually for the
QSDPCM application and 4 Pareto points have been identified. The Best intra in-
place version we started from (see Subsection 6.4.2) was a non-Pareto point from
which we derived the Best intra in-place version after strip mining (SM) (see Subsec-
tion 6.4.3). The final results containing the initial point and all Pareto points for all
three dimensions are depicted in Table 6.6.
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Figure 6.14: The 3D exploration space example (Nr. mem. accesses×data storage
size×control flow complexity) for real life multimedia application (QSDPCM).

If we look at the 4 points obtained in Figure 6.14 we observe (going from point 1(SM)
to 2, i.e., 1(SM) 7→ 2) a decrease of data transfers from 307 × 103 to 259 × 103. How-
ever, we have to sacrifice a data storage size increase from 2544 elements to 2589
elements. Thus, for a 15.6% decrease in number of memory accesses we have to pay
1.8% increase in data storage size. Note, that also the number of times the if state-
ment is evaluated increased from 2206 to 2288. Further, we observe (going 2 7→ 3)
a decrease of number of times the if statement is evaluated from 2288 to 572 for an
increase in memory size from 2589 to 3249. Thus, for a factor of 4 reduction in con-
dition evaluation we have to pay 25.5% increase in storage size. If we decide to
shift and hoist further (going 3 7→ 4), we decrease the if condition evaluation again
factor of 4. This is for a further increase in memory size by 0.03%. Most probably
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Assigned data Number of Number of
size to L1 data transf. if eval.

Best intra in-place 2544 307×103 7680
Best intra in-place 2544 307×103 2206
strip mined (SM)

Improved data reuse 2589 259×103 2288
Impr. code complexity 1 3249 259×103 572
Impr. code complexity 2 3258 259×103 143

Table 6.6: Results for different QSDPCM codes when exploring intra in-place vs. data
reuse vs. control-flow complexity trade-off.

when choosing between Improved code complexity 1 and Improved code complex-
ity 2 the better solution is to go for Improved code complexity 2, because we have
4x fewer if statement evaluations compared to Improved code 1 for 0.03% memory
size increase. This would not be the case, if the 9 elements cause the move of the
affected array from L1 memory to main memory. Such a move will significantly
increase the number of data transfers to main memory. Also, we would prefer Im-
proved code complexity 1 code if the assembly code of the innermost basic block
drastically changes, causing more cycles for this basic block as we will see in the
next subsection.

6.4.6 Evaluation on ARM platform

We have compiled the best intra in-place version and the 4 Pareto optimal code ver-
sions we explored in the previous subsections with the ARM gcc cross compiler and
have ran it on the SimIt ARM simulator [177]. We focus on the parts of the code
where transformations have been applied (see code fragments in previous subsec-
tions) and measure the number of cycles, the execution time, and the binary size.

Code version QSDPCM (part)

Cycles Time Binary size
[×106] [ms] [bytes]

Best intra in-place 14.336 69.4 13212
Best intra in-place 14.467 70.1 13340

strip mined (SM)
Impr. data reuse 13.039 63.2 12988
Impr. code complexity 1 12.936 62.7 12956
Impr. code complexity 2 12.947 62.7 12892

Table 6.7: The number of cycles, the execution time and binary size for different QSD-
PCM codes when running on SimIt ARM simulator (206.4MHz host).

The results obtained are listed in Table 6.7. Although we have sacrificed the good
data locality of the application to a certain extent, the application is running faster
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due to improvement in other aspects such as data reuse and code complexity. Note,
that in Table 6.7 the Best intra in-place strip mined (SM) version that is a Pareto point
in Figure 6.14 has worse cycle count and binary size than the non-Pareto point Best
intra in-place. The Best intra in-place strip mined (SM) version has the same assigned
data size as the Best intra in-place version. The worse cycle count and binary size is
due to more complex index expressions in the strip mined version causing more and
complex code. The complexity of the index expression code is not taken into account
yet. However, we plan to do it in our future work. The traditional code complexity
metrics such as Halstead or McCabe metrics [96, 143] are too coarse to evaluate index
expressions. The solution here could be to weight different operators in the index
expression and sum those weights resulting in the index expression complexity. The
combination with the above mentioned traditional code metrics could be beneficial,
when the index expression contains control-flow introduced by ternary operators.
Address optimizations performed by the source-to-source tools such as RACE (see
Chapter 2) or by the compiler should be also considered in these index expression
metrics triggering the need for address optimization estimators. As a result, the
overhead in cycles will usually be relatively small [152, 80].

Code version QSDPCM (part) QSDPCM QSDPCM
(w/o inner BB1) (inner BB1)

Cycles Time Cycles Time Cycles Time
[×106] [ms] [×106] [ms] [×103] [ms]

Impr. data reuse 13.039 63.2 11.626 56.3 37.554 0.2
Impr. code complex. 1 12.936 62.7 11.546 55.9 37.432 0.2
Impr. code complex. 2 12.947 62.7 11.533 55.9 37.554 0.2

Table 6.8: The comparison of cycles and the execution time for the different QSDPCM
codes in the intra in-place vs. control flow complexity trade-off when running on SimIt
ARM simulator (206.4MHz host) (whole code, loop structure without the inner basic
block and the inner basic block only).

If we focus in detail on results for Improved code complexity 1 and Improved com-
plexity 2, we can observe that Improved code complexity 2 requires slightly more
cycles although the condition is hoisted and it is much simpler compared to Im-
proved code complexity 1 (see Table 6.5). Thus we analyzed the application without
the innermost basic block and that basic block separately by measuring the number
of cycles without the innermost basic block and the number of cycles for that basic
block. The results are depicted in Table 6.8. For Improved complexity 2 the control-
flow complexity is indeed simpler resulting in fewer cycles compared to Improved
code complexity 1. However, the shifting caused more complex address compu-
tation (more assembly code) (similar to the Best intra in-place strip mined version
above) resulting in more cycles for the basic block itself. However, if we look at the
binary size metric, we see that the Improved code complexity 2 has 64 bytes less code
compared to the Improved code complexity 1. Thus it is still a Pareto point in the
three dimensional exploration space cycles vs. the data size vs. the binary size.

Figure 6.15 shows the relation between data size and machine cycles for the Best intra
in-place version and 4 Pareto points from Figure 6.14. We observe that improvement
in the other aspects than ultimate locality can bring significant gains for the applica-



134 Trade-offs in the GLT

 12.8

 13

 13.2

 13.4

 13.6

 13.8

 14

 14.2

 14.4

 14.6

 2500  2600  2700  2800  2900  3000  3100  3200  3300

C
yc

le
s 

(x
10

6 )

Assigned data size to L1

1(SM)

1

2
3 4

Figure 6.15: The 2D exploration space example (data storage size×cycles) for real life
multimedia application (QSDPCM) on ARM 206.4MHz host.

tion. For an ARM 206.4MHz host it brought 10% reduction in the execution time for
an 28% increase in the data size.

6.5 High-level estimators and their interaction with the
GLT engine

In Sections 6.2 and 6.4 we have shown the importance of the different trade-offs in
GLT. We have also explained that these trade-offs result from the different effects of
the same GLT on the different underlaying steps of the DTSE methodology such as
in-place or data reuse. These effects can be rapidly evaluated using high-level esti-
mators. Thus, the goal of this section is to highlight the work in high-level estimators
and the relation with the trade-off oriented GLT.

Note, that this section is an overview section with focus on the interaction between
high-level estimators and GLT. More details on particular high-level estimators as
well as the estimation error for the two estimators we briefly discuss in following
subsections can be found in [122, 109]. In general, these estimators assume rectan-
gular iteration domains and uniform dependency vectors, i.e. dependency vectors
with same length and direction. This assumptions mostly hold for the application
domain we are targeting resulting in accurate estimation. If the iteration domains
are triangular or skewed, it can result to a factor of 2 overestimation. Then we can
use more accurate approaches as discussed in [109] resulting in the trade-off between
accuracy and computation time.

The DTSE reduces data transfers and storage size in the application. However, the
resulting storage size is known only after the in-place step which is one of the last
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steps in the DTSE design flow (see Chapter 2). But, the designer would like to know
as soon as possible the required storage size going from specification to the imple-
mentation. Thus the storage size estimation tools are an important part of the early
design flow. In the context of the DTSE optimization methodology [32] the storage
size estimation is essential to get a global view during the transformation phase of
DTSE design trajectory and guide the designer with relevant feedback toward the
optimal decisions. Even if the DTSE design trajectory would be fully automated,
it would require order of magnitude larger time intervals to evaluate the final im-
pact of the transformations. Because the amount of transformations can be huge, the
high-level estimators are crucial in the DTSE design trajectory to evaluate fast the
impact of transformations during the early stages in the trajectory.

For storage size estimation two different approaches have been used in the past. The
first one considers fully fixed execution ordering [214, 93, 228]. This is not possible
in the first phase of design trajectory. The other approach estimates without execu-
tion ordering [13]. However, not taking execution ordering into account at all brings
big disproportion between maximal and minimal estimated value. Often, a partic-
ular execution ordering is known at the beginning of the design flow and becomes
more fixed when traversing the design trajectory. Thus it should be interesting to
take the partial execution ordering into account. This is presented in the technique
proposed by Kjeldsberg [122], where (partial) ordering constraints can be given by
the designer. Moreover, this technique gives useful hints for execution ordering.
This technique and our coupling to the GLT framework will be explained in Subsec-
tion 6.5.1.

The technique by Rydland [180] extends the technique of Kjeldsberg for inter in-
place estimation. However, it deals only with fixed execution ordering. Hu [104] has
proposed a memory requirement estimation technique for the translation substep of
the GLT. In [106] he has proposed a hierarchical memory estimation technique using
simplified Data Reuse Analysis (DRA) heuristic and platform independent MHLA
heuristic. This approach is extended also for the linear transformation substep and
is estimating also intra and inter in-place in [107, 108]. Hu’s approach is incremen-
tal, i.e., it recomputes the data reuse only for parts of the code affected by the loop
transformation, requiring much less estimation time compared to non-incremental
approach. This technique and its link to the GLT trade-offs will be demonstrated in
Subsection 6.5.2. A good overview about the in-place optimization and estimation
can be found in [45, 12].

In Subsections 6.2.3, 6.2.5 and 6.4.4 we have seen that GLT affects also the control
flow complexity of the application. Thus the high-level control-flow estimation is
also required to interact with the GLT framework. However, this part was left for
the future work. One solution would be using key microarchitecture-independent
characteristics as proposed by Hoste [102] in another context. As we will see in
Section 6.6 those have to be combined also with microarchitecture-dependent char-
acteristics.
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1 for ( i =0 ; i <6; i ++)
2 for ( j =0 ; j <6; j ++)
3 for ( k =0; k<3;k++) {
4 A[ i ] [ j ] [ k ] = . . . ; / / S1
5 i f ( i >0 && j >1)
6 B [ i ] [ j ] [ k ] =
7 A[ i −1][ j −2][k ] ; / / S2
8 }

(a) Code example for STOREQ
concept definitions.
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(b) Upper and Lower bound for
the example in Figure 6.16a.

Figure 6.16: STOREQ principles (thanks to Per Gunnar Kjeldsberg).

6.5.1 STOREQ high-level estimator and the GLT engine

The Storage Requirement estimation (STOREQ) methodology presented by Kjelds-
berg [122] targets the intra and inter in-place estimation without execution order-
ing. The estimation requires that all the iteration domains are placed in CIS (see
Chapter 3). Then it estimates upper and lower bounds on the size of individual de-
pendencies based on the partially fixed execution ordering, thus it is estimating the
hypothetically best and worst intra in-place. The designer can choose which dimen-
sions in the CIS are fixed and which are not fixed to constrain the estimation. Finally,
simultaneously alive dependencies and their maximal combined size is computed,
thus inter in-place estimation is added. However, this part of the estimation is still
improving and is under development.

The transformation estimated is the interchange of the loops forming the CIS. The
effects of the translation part or of other GLT linear transformations than interchange
in CIS dimensions cannot be estimated. Before discussing in detail our coupling
to the GLT framework we will demonstrate the basic estimation principles on an
example in Figure 6.16.

Figure 6.16a shows a simple code with one nested loop within which the array A
is written in statement S1. The array element written in statement S1 is read two j
and one i iterations later. The corresponding GM with the dependency is depicted in
Figure 6.16b. The dotted boxes bound the iteration domains of S1 and S2. The solid
line box bounds the Dependency Part (DP). DP is part of the production iteration
domain which is participating at the dependency. E.g., for our example the iteration
domains of S1 is {(i, j, k) ∈ � 3 | 0 ≤ i, j ≤ 5 ∧ 0 ≤ k ≤ 2}, however only elements
written in {(i, j, k) ∈ � 3 | 0 ≤ i ≤ 4 ∧ 0 ≤ j ≤ 3 ∧ 0 ≤ k ≤ 2} are read in
iteration domain S2 and thus participate at the dependency. Thus, the DP contains
the iteration domain nodes where array elements are produced that are read within
the depending iteration domain.

The current order of the loop in Figure 6.16a determines that we iterate first in the
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k dimension, then in the j dimension and only then in the i dimension. Changing
execution order means for STOREQ that this sequence is changed. This corresponds
to loop interchange. E.g., when interchanging i and k the new sequence will be; first
iterating in the i dimension, then j and finally k. For the 3 dimensional loop nest we
have 3! = 3 × 2 × 1 = 6 possibilities of execution order. For each execution order
different iteration nodes are visited when going from the iteration where an array
element is written (e.g., (0,0,0) for A[0][0][0]) to the iteration node where the array
element is read (e.g., (1,2,0) for A[0][0][0]). For each execution order those iteration
nodes form a set and so we have 3! sets for our example with 3 dimensional loop
nest. The intersection of those sets intersected with the set of iteration nodes which
are within the DP creates other set of iteration nodes (see dashed line in Figure 6.16b).
The cardinality of such a created set is the estimated Upper Bound. The union of
those sets intersected with set of iteration nodes which are within the DP creates yet
another set of iteration nodes (see dash-dot-dot line in Figure 6.16b). The cardinality
of such a created set is the estimated Lower Bound. Thus we can see that none of
those estimation is realistic, i.e., the execution ordering that can achieve the upper or
the lower bound does not exist. The estimation gives only the interval within which
the real value will be and it can be refined by fixing certain dimensions in the CIS.
If all the dimensions are fixed it converges to one value. In this case there will be
only one set of visited nodes and the intersection and union with the iteration nodes
which are within the DP will be the same. The STOREQ methodology can also give
hints which ordering is optimal for given dependency.

The STOREQ methodology presented by Kjeldsberg [122] is implemented in a proto-
type tool [123]. This tool is written in MATLAB and works with its own geometrical
model. The PER tool mentioned in Chapter 3 has an option to generate this special
model. Use of this option requires that the input C code must be written in “CIS
form”, i.e., all loops should be nested and all array accesses should happen in the
body of the inner loop as depicted in Figure 6.16a. This is not a limitation of the PER
tool, but rather a limitation of the STOREQ input format.

To integrate the STOREQ estimation tool to the GLT framework we have coupled
the two frameworks via a PERL script which transforms our geometrical model (see
Chapter 3) to the STOREQ format. This has allowed us to use the STOREQ as an
integral part of our GLT framework.

However, STOREQ did estimate only in-place and neglected the data reuse and the
memory hierarchy layer assignment step. Also it did not estimate other transfor-
mations except of interchange. Thus together with the Norway University of Sci-
ence and Technology (NTNU) in Trondheim, namely Qubo Hu and his advisor Per
Gunnar Kjeldsberg, we have launched the research in hierarchical memory storage
estimation to close this gap.

6.5.2 Hierarchical memory storage estimation interaction with GLT
engine

The STOREQ approach was developed as a separate tool without considering its
later integration into the GLT framework as a steering component. It did estimate
only intra in-place, despite the fact that inter in-place estimation is being developed
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as well, and it did not estimate the data reuse. The new estimation framework called
Hierarchical Memory Storage Estimation (HMSE) eliminates those restrictions.

HMSE [105, 106] can be easily integrated to the GLT framework. It estimates intra
in-place, inter in-place, MHLA and data reuse steps of the DTSE methodology for a
given loop transformation. The estimation is incremental, i.e., if another incremental
transformation is applied, only the estimation for the parts of the code affected by the
transformation is updated. The effect of the incremental transformations is usually
limited to a certain code region [87] allowing to use the incremental approach also
for the estimation.

Y

N

Geometrical Model

Initial DRA

MHLA est.

Incre. DRA

Pareto curves comparison

C-code
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stop

Control flow (order of performed steps)
Data flow

Figure 6.17: The flowgraph of HMSE framework (thanks to Qubo Hu).

Figure 6.17 depicts the flowgraph of the HMSE framework. After extracting the GM
from the C code (which can be common with GLT framework) the initial Data Reuse
Analysis (DRA) and MHLA estimation is used. The MHLA estimation takes into
account a range of platform instances where the size of L1 on-chip memory is vary-
ing from zero to the size required for all data in the application. For each instance
the mapping of arrays and their copy candidates computed in DRA is estimated.
The complexity of this approach for two memory layers is O(n log n) where n is the
number of arrays and copy candidates for all platform instances. This is very low;
e.g., [26] analyzes only one instance of a two layer memory hierarchy with the com-
plexity O(2nn2 log n). Thus, the MHLA estimation is very fast and results in the 2D
Pareto curve trading-off the size of the L1 on-chip memory instance and the number
of misses to the L1 on-chip memory (the dashed line in Figure 6.18). After the ini-
tial DRA and MHLA estimation the incremental loop transformation (e.g., fusion) is
applied in the GLT framework. Then the incremental DRA is applied. That means
the reconstruction of the copy candidates and data reuse trees for the affected code
regions in GM. The incremental DRA is much faster compared to the initial DRA be-
cause it is performed locally. After that the MHLA is rerun and a new Pareto curve is
generated (the solid line in Figure 6.18). Then another incremental loop transforma-
tion can be applied resulting in another Pareto curve (the dotted line in Figure 6.18
for interchange), etc. Each time the new Pareto curve is generated from MHLA esti-
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Figure 6.18: Pareto curve comparison in HMSE framework (thanks to Qubo Hu).

mation it is compared with the global Pareto curve and a new global Pareto curve is
calculated. This global Pareto curve keeps information on which set of incremental
transformations is optimal for the given L1 (SPM) size to achieve minimal number of
L1 on-chip memory misses. The description of DRA and MHLA estimation is out of
the scope of this dissertation and can be found in the dissertation of Qubo Hu [109].

The HMSE approach provides real trade-off curves between the size of the L1 mem-
ory instance and the number of misses to the L1 instance for the given set of in-
cremental transformations. It keeps the global Pareto curve which determines the
optimal incremental transformation from the set for the given L1 memory instance.
The HMSE framework can be integrated into our GLT framework and the estimation
can be used for steering the trade-off oriented GLTs. However, the code complexity
estimation is not yet present in this work.

6.6 Effect of algorithmic kernel optimisations and
computation-storage trade-off on the GLT

In Subsection 6.4.6 we have seen that the applied GLT have complicated the index
expressions in the kernel. The generated assembly code has been more complex and
has caused more instruction cycles despite the fact that the high-level code complex-
ity (see Subsection 6.4.4) decreased. In this subsection we show a similar effect for
software pipelining using the MP3 audio decoder application [132] mapped to the
TI fixed point C64x processor. Software pipelining schedules instructions from a
loop so that multiple iterations of the loop execute in parallel. This is beneficial for
the performance of the application on Digital Signal Processor (DSP)s which have
multiple Functional Unit (FU)s.

In this section we first focus on algorithmic kernel optimizations which make the
kernels software pipelined. After that we will present how fusion (merging) of the
kernels can affect software pipelining and how software pipelining interacts with
algorithmic computation vs. storage trade-off.

We have focused on the long block requantization and joint middle-side stereo de-
coding kernels of the MP3 audio decoding application [132]; they are called requan-
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1 for ( . . . ) {
2 s c a l e = s c a l e f a c s c a l e + 1 ;
3 C = g l o b a l g a i n − 210 − ( s c a l e f a c l << s c a l e ) ;
4 i f ( p r e f l a g )
5 C −= ( pretab << s c a l e ) ;
6 / / t a b = [ 2 ˆ 0 , 2 ˆ ( 1 / 4 ) , 2 ˆ ( 1 / 2 ) , 2 ˆ ( 3 / 4 ) ]
7 y = tab [C&3]∗(1 << (C >> 2 ) ) ;
8 . . .
9 }

Figure 6.19: The optimized requantization kernel of MP3 audio decoder; it shows how

to efficiently compute C and 2
1
4
×C

= 2
C%MOD4

4 × 2
C/INT

4.

tization and stereo decoding from now on. These kernels are part of the most fre-
quent path of the MP3 application and also part of one scenario as we identified ear-
lier in this dissertation and thus is beneficial to optimize those using GLT. Scenario
creation enabled this optimization which was not feasible before applying scenario
technique. The requantization kernel computes the output sample os from the input
sample is using the equation

os = sign(is) × |is| 43 × 2
1
4
×A × 2−B

where A and B are given by:

A = global gain − 210

B = scalefac multiplier × (scalefac l [ch][sfb] + preflag × pretab[sfb])

The original implementation performs many calls to the “power” run-time support
function. Furthermore, it has many multiplications and frequent calls to static Look-
Up Table (LUT)s. It has also many floating point operations executed with the help of
floating point libraries. Using these libraries similar to using run-time support func-
tions and using statics prevents from applying software pipelining. Thus, our first
goal has been to remove bottlenecks mentioned above to enable software pipelining.
The static LUTs in function calls have been made global. The function calls have
been inlined using the keyword inline. The floating point operations have been con-
verted to fix point to avoid usage of floating point libraries. The biggest problem
have been the “power” run-time-support function calls that cannot be inlined. To
eliminate these calls an algorithmic change has been needed.

We can rewrite the equation computing output sample os as

os = sign(is) × |is| 43 × 2
1
4
×C

where C = A − 4 × B. The |is| 43 was implemented as a LUT. For computing the
C = A − 4 × B we use the knowledge that scalefac multiplier is 1 or 1

2
depending

on the scalefac scale bit in the frame header and that preflag is just a bit in the frame
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header. Then we can rewrite C as is listed in the code in Figure 6.19 in Lines 2–5. The
expression 2

1
4
×C can be rewrite as

2
1
4
×C = 2

4×(C/INT 4)+C%MOD4

4 = 2C/INT
4 × 2

C%MOD4
4

where C/INT 4 is the result of integer division by 4 of C and C%MOD4 is the modulo
of C after integer division by 4.

The first part of the expression, namely 2C/INT
4 can be easily implemented using

two shifts 1 << (C >> 2). The second part of the expression has 4 values only
and can be tabulated tab[C&3]. For the 4 value LUT see Line 6 in Figure 6.19. The
whole expression y = 2

1
4
×C is implemented in Line 7 of the Figure 6.19.

The other implementation options are to use more or to fewer LUT entries. We can
tabulate the whole 2

1
4
×C expression using an 384-entry LUT instead of our 4-entry

LUT. We can also reduce the LUT for |is| 43 using the expression

|is| 43 = 16 ×
∣
∣
∣
∣

is

8

∣
∣
∣
∣

4
3

This causes reduction from 16kB LUT to 2kB LUT. Note, that the is value varies from
0 to 8206 and we need 2 bytes to store this value. We can also totally eliminate the
LUT in |is| 43 using the Newton approximation method. However, this will require
much more computational effort.

The stereo decoding kernel is very simple and is implemented straightforwardly
from the algorithm description

Li =
Mi + Si√

2

Ri =
Mi − Si√

2
,

where Mi and Si are middle and side value inputs which correspond to requantized
os values in the two decoded channels, and Ri and Li are right and left channel
outputs.

The two kernels are now software pipelined. The initiation interval of the requanti-
zation kernel is 15 and the initiation interval of the stereo decoder kernel is 4. The
initiation interval is an important value which determines the number of cycles be-
tween the initiation of successive iterations of the loop. The smaller the initiation
interval, the fewer cycles it takes to execute a loop [236]. We can observe the initia-
tion intervals and the TI C64x register usage from the register usage table for both
kernels in Figure 6.20a. On the top we have the register usage table for the requan-
tization kernel and on the bottom for the stereo decoder kernel. From the table we
can observe that quite a lot of registers keeping intermediate values during compu-
tations are occupied in the requantization kernel. This is confirmed by the resource
partition table of the critical resources in Table 6.9a. From the Table 6.9a we can see
that for the requantization kernel the initiation interval is constrained by the number
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Requantization kernel:
+-----------------------------------------------------------------+
| Register bank A | Register bank B |
|00000000001111111111222222222233|00000000001111111111222222222233|
|01234567890123456789012345678901|01234567890123456789012345678901|
|--------------------------------+--------------------------------|

0: |******* * ************ |********** *************** *|
1: |******* * ************* |*** ****** *************** *|
2: |****** *** ************* |*** ***** *****************|
3: |* ******** *********** * |* * *** *****************|
4: |* ******** *********** * |* * ** *** ************* ***|
5: |* ***** ** ********** * |*** ** *** * ***************|
6: |* ** * * ********** |*** ****** ************** **|
7: |***** * ******* ** |*** ****** ************** * |
8: |****** * ******* * |** * **** ************** * |
9: |***** * * ******* * |** * ** * ************* ***|
10: |***** * ********* * |* **** * ************* ***|
11: |******* ********* * |* ** * * *****************|
12: |******* ********* * |* ***** * *****************|
13: |******* *********** |* ******* *****************|
14: |**** * ************ |***** *** *****************|

+-----------------------------------------------------------------+

Stereo decoding kernel:
+-----------------------------------------------------------------+
| Register bank A | Register bank B |
|00000000001111111111222222222233|00000000001111111111222222222233|
|01234567890123456789012345678901|01234567890123456789012345678901|
|--------------------------------+--------------------------------|

0: | ** ** ** |* *** ** |
1: | ****** ** |* **** ** |
2: | ** **** * |* ***** *** |
3: | ** ** * * |* **** ** |

+-----------------------------------------------------------------+

(a) High register pressure in the MP3 audio decoder
for computation intensive implementation when using 4-
entry LUT for 2

1
4
×C computation in the requantization

kernel.

Requantization kernel:
+-----------------------------------------------------------------+
| Register bank A | Register bank B |
|00000000001111111111222222222233|00000000001111111111222222222233|
|01234567890123456789012345678901|01234567890123456789012345678901|
|--------------------------------+--------------------------------|

0: |* * *** | * * |
1: |* * *** | ** * |
2: |* ***** | ** * * |
3: |* ***** | * * * |
4: |* ***** | * *** * |
5: |* ***** | ***** * |
6: |* ***** | ** * * |
7: |* ***** | * * * |

+-----------------------------------------------------------------+

Stereo decoding kernel:
+-----------------------------------------------------------------+
| Register bank A | Register bank B |
|00000000001111111111222222222233|00000000001111111111222222222233|
|01234567890123456789012345678901|01234567890123456789012345678901|
|--------------------------------+--------------------------------|

0: | ** ** ** |* ***** |
1: | **** ** ** |* ****** |
2: | ** **** * |* ****** * * |
3: | ** *** * |* ****** |

+-----------------------------------------------------------------+

(b) Low register pressure in the MP3 audio decoder for
storage size intensive implementation when using 384-
entry LUT for 2

1
4
×C computation in the requantization

kernel.

Figure 6.20: The trade-off between computation and storage in the MP3 audio decoder
and its effect on the register pressure.
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Requantization4 Stereo decoding
A-side B-side A-side B-side

.S units 14* 14* 0 1

.X cross 14* 11 3 3

.D units 6 7 4* 4*

.T address 5 6 4* 4*

(a) Computation intensive implementation critical resource
table.

Requantization Stereo decoding
A-side B-side A-side B-side

.D units 8* 8* 4* 4*

.T address 4 8* 4* 4*

(b) Storage intensive implementation critical resource ta-
ble.

Table 6.9: Critical resource tables.

of shift/Arithmetic-Logical Unit (ALU)/branch/fiels operation units (.S units) and
the crossbars (.X cross) on the A-side due to the computationally intensive kernel.
The problems of stereo decoding kernel are the data/addition/subtraction opera-
tions units (.D units) and the address paths (.T address).

The analysis had already shown that there is too much register pressure and some
resources are critical and thus the loop fusion of those two kernels will not enable
more ILP exploitation. We have tested it and after the necessary interchange and 1
time unrolling of the requantization kernel the initiation interval of the fused ker-
nel becomes 34. This has confirmed our concerns that the register spilling in the
fused kernel and the critical resources would not allow shortening of the initiation
interval. Thus we have decided for another implementation in the computation vs.
storage trade-off and have implemented the whole 2

1
4
×C expression by a 384-entry

LUT table. The register usage table for this implementation is in Figure 6.20b and the
resource partition table of the critical resources in Table 6.9b. From those tables we
see that there is no register pressure problem any more in the requantization kernel
and thus unrolling and fusion could enable more ILP exploitation. Also the critical
resources are not computational resources any more but the data/addition/subtrac-
tion operations units (.D units) and the address paths (.T address). After interchang-
ing and 1 time unrolling the requantization kernel, the kernels can be fused. The
fusion caused a drop of the initiation interval to 10. The fusion enabled in-place
optimizations which caused a further drop of initiation interval to 8 for the fused
kernel.

4The values in the critical resource table are for iteration interval (II) 14, where no solution was found.
The solution was found only by II 15. Unfortunatelly, the tables are constructed for the first II the compiler
is trying.
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The example of the QSDPCM video encoder mapped on the architecture with
the ARM processor in Subsection 6.4.6 and the example of the MP3 audio de-
coder mapped on the architecture with the TI C64x processor have shown the rel-
evance to consider the kernel implementation and optimization in relation to GLT.
Thus, except high level estimations of storage size requirement (hierarchical or non-
hierarchical), data reuse and high-level control-flow complexity, it would be ben-
eficial to have also estimations of kernel implementation and optimization as part
of the global control-flow complexity estimation. In contrast to to the high-level
control-flow estimation this estimation cannot be platform independent, so the tar-
get platform description has to be one input for the estimation. Yet, it can be based
on relative differences and comparisons of the platforms rather than on the absolute
numbers. Similar to high-level estimation, this part is left for future work.

6.7 Conclusions

Multimedia applications require good performance for reasonable energy consump-
tion. New methodologies reducing the number of data transfers and memory foot-
prints, which are the crucial bottleneck of current multimedia applications, have
been proposed. An important step of these methodologies are the GLT which en-
able the exploitation of following steps such as data reuse, in-place or efficient code
generation.

However, most state-of-the-art loop transformation techniques aim at a particular
goal and have a particular cost function. They do not consider that they affect all
the subsequent steps. This requires to study important trade-offs that have not been
analyzed yet.

In this chapter we have discussed and explained different trade-offs that loop trans-
formations offer. We have explained these trade-offs on educative examples and
demonstrated them on a real-life application, namely on the QSDPCM video en-
coder [193]. We have provided different Pareto points (versions of the application)
in the 3D platform independent exploration space and mapped them in the 2D plat-
form dependent exploration space.

To capture all these trade-offs among high level measures such as in-place, data reuse
or control-flow complexity, high-level estimators, that can be used in early steps of
our design flow, have to be used. We have discussed the development and future
work in this area where we have also contributed.

At the end of this chapter we have discussed the GLT as enabler for exploiting more
ILP. We have shown that GLT itself are not sufficient due to register pressure in the
register banks and critical resources in the platform. To overcome this limitation we
have to choose a different point in the algorithmic computation vs. storage trade-off
at the kernel level. Thus we have to consider also those effects and come with future
high-level estimators to capture these issues.



CHAPTER 7

Related work
Zu verlangen, daß er immer alles, was er je gelesen, behalten haben sollte, ist wie verlangen,
daß er alles, was er je gegessen hat, noch in sich trage. Er hat von diesem leiblich, von jenem

geistig gelebt und ist geworden, was er ist.
Arthur Schopenhauer

(1788-1860)

In this chapter we survey the related work. We split the chapter into three sec-
tions. The first section discusses the related work in hierarchical rewriting and
condition hiding. We contributed to this area in Chapter 4. The second section

gives an overview on the work performed in scenario related area. Scenarios were
the main focus of Chapter 5. The third section summarizes the work in the loop
transformation area with the link to trade-offs in GLT which was the title of Chap-
ter 6.

7.1 Hierarchical rewriting and condition hiding

As stated in Chapter 4 in the DTSE optimizations we would like to focus only on
the parts of the code that contain loops with large bounds and array signals which
are data-dominant and thus relevant for the DTSE. The original code is usually in-
termingled; i.e., 1) constructs that are target of our optimization are spread across
different functions and 2) constructs that should be hidden for the DTSE optimiza-
tions are in one function together with constructs we would like to optimize. In
Chapter 4 we contributed to solving the second mentioned problem and to layering
optimization scope at the design time. We created separate functions which encap-
sulate the constructs that should not be the target of DTSE optimizations. In this
section we mention related work for both problems above.

To move the code from functions to a common scope, the inlining techniques are
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used. In most of modern programming languages the designer can specify the func-
tions that should be inlined by the keyword inline [192]. This inlining is the declara-
tion based inlining; i.e., the inlining specification is used at the function declaration
point to hint that all calls to that particular function have to be replaced with the
corresponding body of the function. This approach does not allow to specify exactly
which particular calls to the function are most essential for inlining. The function
will be inlined at all call points where it is possible. This is not desired in the opti-
mization context where only some call instances of the function should be inlined.
In call based inlining approach the inlining specification is used at the function call
point to hint that only at this particular point the inlining has to be done. However,
this call point will be inlined independent of the followed control flow path, i.e. each
invocation of this cal point will be inlined (e.g., if this call point is in the loop, it
will be inlined for each iteration or if this call point is called from the different parts
of the program, both will see this call point as inlined). The most selective inlining
approach is the call instance based inlining approach, where different instances (in
different control-flow paths) of the same function are distinguished and thus differ-
ent invocations of the function holding the particular call point will see this call point
as different call points. In the DTSE context to use the call instance based inlining
was proposed in [1] to enlarge the exploration space for the DTSE optimizations.
In [161] the call based and call instance based inlining was used to enlarge the explo-
ration space for ADOPT optimizations resulting in the trade-off between the code
size and speed-up achieved by the optimizations.

However, in the hierarchical rewriting and condition hiding it is also necessary to
separate the code that is not the target of our optimizations. In [205, 206] the authors
propose the function exlining technique which solves the inverse problem of func-
tion inlining. The authors provide two techniques, one for finding similar sequences
of statements that can be replaced by calls to one function, and another for divid-
ing a large set of statements into several functions, where each function performs
a distinct computation. However, none of those two techniques targets specialized
separation of the code as needed in the DTSE optimization context. In [150] an auto-
mated framework for code and data partitioning for the needs of data management
is proposed. However, this framework is targeting high-level C++ specification only.
A lot of work similar to exlining is in the synthesis and compilation area, where the
sequence of statements or operators is grouped and replaced by powerful special-
ized block or instruction [95, 112, 4, 79]. The principles of hierarchical rewriting,
i.e., separation of the code, in the optimization context have been worked out in the
DTSE books [32, 28].

7.2 Scenarios

Scenarios create additional knowledge about the application during the design time
that can be used and exploited. The actual scenario is then selected during the run-
time. In Chapter 5 we have contributed to this research with providing the complete
methodology for applying scenarios in the GLT context. The scenario knowledge is
utilized for global optimizations during the design time. The decision which opti-
mized scenario to use is postponed to run-time. Creating large optimization scopes
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has already been proposed in the past in VLIW compiler optimization and schedul-
ing techniques. In this section we first discuss those. Next, we make a link between
our scenario instance for GLT and the general scenario approach and provide an
overview about state-of-the-art in scenario work itself.

As the development of the architectures moved to the out-of-order execution and
VLIW pipelined architectures (see Section 1.2), larger code blocks have been required
for transformation and scheduling purposes to efficiently utilize the concurrency of-
fered by those architectures. However, the applications were getting less analyzable
at compile time due to more complex control-flow inside and among loop nests and
different modes the applications can contain, resulting in the mapping problem de-
scribed in Section 1.3. Thus the compiler and methodology designers have proposed
several ways how to form larger blocks and go beyond the traditional block bound-
aries.

The first approach was to eliminate conditional branches from a program utilizing
predicated execution support. This approach is the well known if-conversion ap-
proach [5, 154]. If-conversion was first proposed in automatic vectorization tech-
niques for loops with conditional branches. It replaces conditional branches in the
code with comparison instructions which set a predicate. Instructions which are con-
trol dependent on the branch are then converted to guarded instructions dependent
on the value of the corresponding predicate. In this manner, control dependences are
converted to data dependences in the code. If-conversion can eliminate all non-loop
backward branches from a program [139]. However, it combines all execution paths
in a region into a single block. Therefore, every instruction from that region has to
be examined. So even instructions that would not be accessed so frequently due to
different frequencies of the paths in the program, have to be executed [41]. Also,
execution paths with subroutine calls or unresolvable memory accesses can restrict
optimization and scheduling within the predicated block.

Well known techniques for the VLIW compiler optimization and scheduling which
go beyond the traditional if-conversion technique are trace scheduling [73, 62], su-
perblock creation [110], hyperblock creation [139, 140] and decision tree schedul-
ing [103, 101]. They all have a similar goal - to enlarge the exploration space and
allow global optimization or instruction scheduling without the negative effects of
global if-conversion by focusing on certain execution paths only. In trace scheduling
the code is divided into a set of traces that represent the frequently executed paths.
There may be conditional branches out of the middle of the trace (side exits) and
transitions from other traces into the middle of the trace (side entrances). Instruc-
tions are scheduled within each trace ignoring these control flow transitions. After
scheduling, bookkeeping is required to ensure the correct execution of off-trace code
by inserting compensation code. A superblock is a block of instructions such that
control may enter from the top only (thus no side entrances are allowed), but may
exit from one or more locations. The instructions within the superblock are not pred-
icated, thus the superblock contains only instructions from one path of the program.
A hyperblock is a superblock after if-conversion of set of paths and thus it contains
instructions from different paths of the program. The blocks or paths which are part
of the hyperblock are selected based on the execution frequency, size and instruction
characteristics. If there are side entrances in the selected superblock/hyperblock re-
gion, the tail of the superblock/hyperblock is duplicated. Decision tree scheduling
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is similar to superblock scheduling due to absence of the side entries. To perform
compiler optimizations, predication can be employed in decision trees similar to hy-
perblock scheduling.

Inserting compensation code and tail duplication are approaches to duplicate the
necessary code, used by trace scheduling and superblock scheduling. Compensation
code needs much more engineering effort but has the potential advantage of requir-
ing less code copying. However, [88] reports that trace scheduling does not always
create less code growth and often creates more compared to superblock schedul-
ing. In [36] the authors propose to combine the superblock scheduling and software
pipelining to accelerate effectively a variety of programs.

Current multimedia systems use many programming constructs whose evaluation
depends on the input of the program. This creates a gap between analysis and ex-
ploration requirements of current applications and the fully automated system level
exploration tools. Examples such as tools for global memory optimization [28] or
program-wide parallelization of loop nests [17] can only deal with programs that are
analyzable at compile time and that are not dependent on program input.

To alleviate this gap and to make the applications more predictable requires a more
advanced design time analysis. Thus, a scenario concept has been introduced that is
based on partitioning the actual behavior of the application into distinct classes (sce-
narios) of typical behavior. Scenarios are selected at run-time, but they are exploited
already at design time. The actual behavior is determined using specific profiling
information [81, 208].

A scenario is defined as a set of Run-Time Situation (RTS)s which we choose to ex-
ploit in the same way. RTS is a piece of execution we treat as a unit, e.g., one path in
the CFG. The actual RTS (e.g., path) is known only at the moment it occurs. The ap-
plication execution is a sequence of RTSs. Examples of RTSs are an execution phase,
an operating mode, one frame, temperature and variability situation, the wireless
channel conditions, the set of active applications etc. In this dissertation the RTS is
equivalent to one path in the directed acyclic CFG within the time loop as defined
in Chapter 5. For real codes in our real target domain, by the time the RTS occurs,
there is no time anymore to perform the exploitation. In the scenario approach, we
do the exploitation at compile time for different RTSs. I.e., for the purpose of this
dissertation the exploitation means the utilization of GLT within one RTS. Since the
number of possible RTSs is large, it is necessary to cluster some RTSs in a scenario
and use the same compile time exploitation for all of them. During the run-time
phase, only the appropriate scenario has to be selected and the system switches to
use this scenario by loading the appropriate code from the main or L1 cache mem-
ory into the L0 buffers. In order to distinguish from the use-case scenarios that are
used when designing the system functionality [74], the full name is the application
scenario [85]. Note, that other scenario instances we are going to discuss in the se-
quel are quite different from our approach which utilizes scenarios to create larger
exploration space. Still, the basic principles, such as RTS characterization and identi-
fication, RTS clustering, scenario exploitation, scenario prediction and detection and
scenario switching remain the same for all instances.

In [36] the authors use the information about periodic property of the multimedia
application to present a new concept of Dynamic Voltage Scaling (DVS). Each period
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in the application shows a large variation in terms of its execution time. The authors
propose to supply the information of the execution time variations in addition to
the content itself. This makes it possible to perform better DVS, resulting in lower
energy consumption, as compared to the DVS approach which relies on Worst Case
Execution Time (WCET) estimation. However, the authors do not specify how the
periods should be identified.

The scenario concept was first used in [225] to capture the data dependent dynamic
behavior inside a thread, in order to better schedule a multi-threaded application on
a heterogeneous multi-processor architecture. In [81] scenarios have been used to
refine the estimation of the WCET. This approach based purely on static analysis of
application source code was extended towards profiling driven scenario detection
and prediction for DVS aware scheduling in [84, 86]. In [35], the authors propose
a mapping technique and compiler which identifies the hot path(s) and merges or
duplicates the kernels, called Packet Processing Functions (PPF), in order to maxi-
mize system throughput focusing on the networking target domain. In [82] scenarios
have been used for DVS similar to the work in [36]. Compared to [36], in [82] also a
systematic methodology on how to detect the scenarios is proposed. However, the
approach in [82] is purely static. It was extended towards profiling driven approach
in [84, 86]. In [208] a number of phases is extracted in which each phase exhibits sim-
ilar behavior. These phases are then exploited for hardware adaptation for energy
efficiency.

Hyperblock or superblock formation, as enlargement of the scope of optimization
and scheduling by considering multiple blocks of instructions, is considered as a fine
grain approach. The basis for forming the hyper/superblock are the selected basic
blocks that will participate in the hyper/superblock. Compared to this approach,
we consider scenario creation as a coarse grain approach where the whole RTSs are
identified and combined in the most beneficial way for the given target (DVS for
energy, GLT, reconfiguration, etc.).

7.3 Loop transformations

In Chapter 6 we provided the different GLT trade-offs demonstrated on educational
and real-life examples. GLT have been studied by many research groups in the past.
In this section we try to survey an the state-of-the-art in loop transformations and
the trade-offs studied during these transformations.

Most of the program execution is preformed in the loops [238, 133]. Thus, to improve
the program performance, loops are the target of many optimization techniques al-
ready from the early age of optimizing or parallelizing compiler [3, 133]. Loop trans-
formations aim at improving the cache performance or an effective use of parallel
processing capabilities. In this section we first recap the work in loop transforma-
tions for parallelization. Then we survey the loop transformations for improving the
locality and thus cache or software controlled Scratchpad Memory (SPM). We also
briefly mention the most used GM libraries because the GM is mostly used as basis
model for loop transformations. Finally we discuss the work in trade-off related loop
transformations.
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We can categorize the loop transformation work based on 1) the objective of loop
transformations and 2) the model they use. The two main objectives of loop trans-
formations are parallelization and improving locality. Based on the model we can
distinguish work that uses Geometrical Model (GM) and work that does not use this
model. We first start with an overview of the work that uses GM followed by an
overview of the work that does not use GM. Note, however, that there has been a
wealth of research in loop transformations. Thus this overview cannot be extensive
and we rather introduce some pioneering work with respect to the different cate-
gories we just introduced. Good overview of loop transformations for locality can
be found in [28] and for parallelization in [17].

Pioneering work in using GM for loop transformations aimed at improving the par-
allelism. In [133] the hyperplane method is used to identify a set of iteration points
executed at a certain time stamp. The parallelization on GM has further been devel-
oped in the systolic array synthesis world [153, 151, 179]. The formulation is slightly
different from the hyperplane method: loop transformations are performed by trans-
forming the source polytope into a target polytope, and by then scanning that target
polytope. For a parallel execution, the polytope is transformed (using an affine map-
ping) into a new polytope in a new coordinate system. In this coordinate system,
certain dimensions correspond to space and others to time. Therefore the mapping
is called a space-time mapping. Later on, the polytope model has also been used for
parallelizing loop nests for massively parallel architectures [134, 71, 46, 72].

Initial research in loop transformation for locality focused on optimizing locality in
a single perfectly nested loop by applying a single loop transformation [218]. The
algorithm improves the locality of a loop nest by transforming the code via inter-
change, reversal, skewing and tiling. The algorithm has been implemented in the
SUIF compiler. This approach did not allow to optimize large buffers between loop
nest. In [116] perfectly nested loop nests are not required, however the authors con-
sider only self reuse and it is reported that the algorithm does not obtain very good
results for imperfectly nested loop nests. Another method to improve data locality
is to perform data transformations [37] or use fine-grain scheduling techniques [10].
However, the fine-grain scheduling techniques do not really perform source code
level loop transformations, since they do not lead to transformed code afterwards.

Most of the research in this field was based on the use of geometrical models where
the set of transformations is limited to affine matrices. In [136] the authors discuss a
loop transformation framework that is based on integer non-singular matrices. The
framework includes transformations such as permutation, skewing and reversal, as
well as a transformation called loop scaling. The authors claim that the framework
is more general than existing ones; however, it is also more difficult to generate code.
In [56] the authors specify the program using the Alpha language which uses a sys-
tem of parameterized linear recurrence equations to represent the program. The
authors propose a framework to transform the initial specifications into a parallel
algorithm, i.e., to another system of recurrence equations, in which the time and the
space index are separated. [71] proposes to use multidimensional affine schedules
with lexicographic ordering for problems whose parallel complexity is polynomial.
In [118] a framework for unifying iteration reordering transformations such as loop
interchange, loop distribution, skewing, tiling, index set splitting and statement re-
ordering is presented. In [141] the loop fusion and shifting techniques have been
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proposed to maintain parallelism and allow the parallel execution of fused loops
with minimal synchronization and to eliminate cache conflicts in fused loops. In [46]
the authors deal with affine by statement scheduling, a high-level technique for the
parallelization of loop nests with uniform dependences. In [38] the authors present
an automatic method for computing the number of integer points contained in a
convex polytope or in a union of convex polytopes. This can be used e.g., to com-
pute the maximum available parallelism in the loop nest. Compared to the previous
approaches which target parallelization, [77] is targeting the minimizing of memory
accesses in loop nests by improving data temporal locality. The intermediate buffers
are eliminated applying moving, merging and loop alignment transformations on
the GM. This work was extended in [191].

Other researchers did not use Geometrical Model (GM) at all. Thus, they can usu-
ally apply only a very limited set of linear transformations. A good overview of
those techniques can be found in [17]. In [6] the transformations are performed on
the code itself to parallelize the FORTRAN programs. Therefore, different kinds of
loop transformations (permutation, reversal, . . . ) usually have to be considered (and
evaluated) individually. In [173] the authors propose two compiler schemes, namely
cycle shrinking and run-time dependence checking, that can be used to automati-
cally transform serial loops to a parallel form. Cycle shrinking performs loop par-
allelization at compile time. Run-time dependence checking, however, prepares the
loop for run-time parallelization. This is achieved by inserting appropriate code in
the source program, which automatically performs dependence checking and book-
keeping during program execution. In this case, parallelism is exploited at run time.
The authors have also proposed a hardware solution for barrier synchronization,
which greatly reduces the overhead associated with nested serial and DOALL loops.
In [156] the authors use loop reverse and the permutation of two loops to fuse the
loops and process them in the pipelined manner. They have improved the collective
analysis technique which uses the graph coloring proposed in [182] to determine
whether a cluster can be pipelined. In [117] the authors investigated dynamic loop
analysis techniques to expose huge potential of the coarse-grain parallelism in pro-
grams.

At IMEC and the Computer Science Department of the K.U. Leuven we have ad-
dressed many of the problems of loop transformations for locality in our past re-
search. Van Swaaij et al. [203] have proposed to work in two phases to limit the
complexity and to improve scalability: a placement step and an ordering step. The
placement step determines particular affine mapping functions for loop transforma-
tions to obtain improved overall locality. The ordering step defines the valid execu-
tion ordering. Danckaert [43] has split the placement step in a linear transformation
step and a translation step. To steer these two steps, he also has provided several
heuristics. The linear transformation step deals with the linear part and the trans-
lation with the constant part of the affine mapping function. This split further re-
duces overall algorithm complexity. Verdoolaege [211] has shown that it is possible
to avoid the ordering step introduced by Van Swaaij in the past. He also further
improved the heuristic steering techniques. However, up till now the loop transfor-
mations targeted one optimal solution. In reality, multiple optimal solutions leading
to the trade-off exist, depending on processor architecture and the memory subsys-
tem instance [107].
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The Geometrical Model (GM) (a.k.a. polyhedral model) is the most preferred model
to use for loop transformations for locality as well as for parallelization. The the-
ory of convex polytopes and linear and integer programing used in the model is
described in [92, 183]. Several libraries manipulating polyhedra have been imple-
mented in the past. The four most famous are the PolyLib library [217], the Omega li-
brary [176], the Parametric Integer Programming (PIP) library [70, 68] and the Parma
Polyhedral Library (PPL) library [11]. The PolyLib library is the library for manip-
ulating polyhedral domains which represent the integer points in unions of poly-
hedra. The Omega library manipulates integer tuple relations and sets which are
described using Presburger formulas [127, 187]. Presburger formulas are a class of
logical formulas which can be built using affine constraints over integer variables,
the logical operators ¬, ∨, ∧, and the quantifiers ∀ and ∃. PIP/PipLib is the para-
metric integer linear programming solver developed by Feautrier for finding the
lexicographic minimum of the set of integer points lying inside a convex polyhe-
dron. This polyhedron can depend linearly on one or more integral parameters. The
PPL is a modern C++ library providing numerical abstractions especially targeted
at applications in the field of analysis and verification of complex systems. A more
extensive list of polyhedral libraries can be found in [213]. Besides the public li-
braries for GM manipulation, also the proprietary GM libraries such as GM library
in ATOMIUM [229] exist.

All researches above focused on improving one particular property of the program,
e.g., data locality or feasibility to parallelize the program, without considering other
effects caused by their transformations. Only few exceptions have been published on
this individual objective. Vander Aa et. al. [210] have shown the trade-off between
data locality and the instruction locality. After fusing small loop nests, the fused
large loop nest cannot fit in the loop buffer resulting in overhead in the instruction
memory. In the code generation phase [178] the authors mention different possi-
bilities for generating the code, however they do not study explicitly the trade-off
between the code complexity and code size as we do it in our work. Thus, until now,
nobody systematically studied and identified the particular cost components con-
tributing to the data locality (which is crucial for global energy reduction) and the
negative effects of data locality improvements. In our work in Chapter 6 we focus
on those effects and show that clear trade-offs exist during the loop transformation
phase. Compared to [210] we discuss much smaller changes in the code achieved
by loop shifting that do not affect the size of the loop nests and list all effects on the
components contributing to the data locality. To extend the exploration scope of the
global loop transformations different preprocessing techniques like Selective Func-
tion Inlining (SFI) [1], Pointer Analysis and Conversion (PAaC) [184, 75], Dynamic
Single Assignment conversion (DSA) [209], hierarchical rewriting [28] and scenario
creation [165] have been proposed. These preprocessing techniques also often re-
quire trade-offs between the freedom they allow for loop transformations, and extra
cost we have to pay (e.g., code size). These trade-offs are orthogonal to global loop
transformation trade-offs, i.e., the constraints created during the preprocessing are
propagated to the GLT, but not other way around. This means, the trade-offs made
at the preprocessing level cannot be revised, they can be only refined at the GLT
level.

An interesting and novel area w.r.t. loop transformations is the adaptive and iter-
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ative compilation. In [40] the optimization passes are selected and tailored to the
compiled application. In the iterative compilation [124, 125, 83, 97] many variants
of the source program are generated and the best one is selected after profiling the
different variants on the target hardware. The variants that are best for energy are
not always best for the performance resulting in a trade-off. However, this trade-off
is not considered explicitly in iterative compilation research. To gradually improve
the optimization results some authors are using machine learning [2]. The work of
Pouchet et al. goes also in this direction in the context of polyhedral transformations.
The more time we spend in the iterative compilation, the better results we obtain, re-
sulting also in certain type of trade-off. However, the trade-offs among different cost
properties such as data memory energy versus instruction memory overhead of the
program are not explicitly considered in those approaches.





CHAPTER 8

Conclusions and future work
What is written without effort is in general read without pleasure.

Samuel Johnson
(1709-1784)

The low power requirements of embedded systems resulting from limited bat-
tery lifetime and hard constraints for heat dissipation demand efficient imple-
mentation of those systems. This can be achieved using high-level optimiza-

tion methodologies like Data Transfer and Storage Exploration (DTSE). In this chap-
ter we first summarize the contributions of this dissertation to the DTSE design flow
for low power embedded systems. We have proposed several improvements in the
flow: systematic hierarchical rewriting in the preprocessing step, use of scenarios to
enlarge the Global Loop Transformations (GLT) exploration space, and trade-off ori-
ented GLT. After summarizing the contributions in Section 8.1, we sketch directions
of future research in the preprocessing, the scenarios and trade-off oriented GLT in
Section 8.2.

8.1 Summary and conclusions

Data transfers and storage of large arrays in background memories are dominating
contributors to the area and power consumption for all modern multimedia embed-
ded systems. Modern high-level memory optimizations such as DTSE contribute
to the cost-efficient realization of these systems. In these optimizations an important
step involves GLT which enables later data-reuse and in-place optimizations. To ben-
efit fully from these transformations, the right optimization scope has to be exposed
for this step. This is especially true for embedded system applications with com-
plex control-flow which prohibits design time optimizations, like advanced global
loop transformations. Chapters 4 and 5 contributed to the preprocessing which sets
the right scope for DTSE optimizations. In this dissertation we also identified that
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the GLT step of DTSE prunes potentially good solutions from the exploration space.
Thus in Chapter 6 we presented research towards multi-objective decisions in the
loop transformation stage of DTSE.

All of those issues occur during the platform independent stage of the DTSE. Thus,
the primary goal of this dissertation has been filling the gaps and extending some
steps in this stage towards future dynamic applications with complex control flow
and towards multi-objective decisions. The dissertation contributes particularly in
four areas:

• Formalization and implementation of the hierarchical rewriting in preprocess-
ing (Chapter 4) [162]

• Proposing a systematic methodology of scenario usage for extending the ap-
plicability of GLT (Chapter 5) [163, 164, 165, 166, 167, 169]

• Systematic application case studies leading to trade-off oriented GLT (Chap-
ter 6) [168]

• Coupling of high-level estimators to the GLT framework as steering mecha-
nism for trade-off oriented GLT (Chapter 6) [123, 12, 180, 104, 105, 106, 107,
108, 196, 197]

The DTSE methodology requires a clear separation of top-level process control flow,
loop hierarchy, indexed signals and arithmetic, logic and data-dependent operations.
The top-level control flow is usually well separated by the designer. However, the
loop hierarchy, indexed signals, arithmetic, logic and data-dependent operations are
intermingled. In this dissertation we have formalized and implemented the hierar-
chical rewriting which separates the loop hierarchy and indexed signals from arith-
metic, logic and data-dependent operations. The splitting is performed on an Ab-
stract Syntax Tree (AST) where the undesired constructs are identified and hidden
by function encapsulation. The remaining code consists of loop hierarchy and in-
dexed signals only, which is the starting point for the DTSE steps. We have devel-
oped an algorithm for rewriting the innermost if-conditions to ternary operators and
encapsulation of if-converted basic block computations into functions. Using these
algorithms on a QSDPCM video encoder followed by the DTSE optimization steps
reduces the number of main memory accesses by 31.3% when compared to direct
DTSE optimization without our preprocessing.

The GLT step of the DTSE methodology can be applied only to the Static Control
Part (SCoP)s of a program. An SCoP is a maximal set of consecutive statements
without while loops, where loop bounds and conditionals may only depend linearly
on invariants within this set of statements. These invariants include symbolic con-
stants, formal function parameters and surrounding loop counters. In the past, most
programs were static and the whole program usually fulfilled the requirements for
being one SCoP. Future multimedia applications are dynamic and have quite com-
plex CFG. They consists typically of large amounts of small SCoPs. In this disser-
tation we have proposed using scenarios to create bigger SCoPs which exhibit more
optimization freedom compared to the original application. Using scenarios on top
of the DTSE methodology reduces the number of main memory accesses for an MP3
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audio decoder by 45.8% when compared to only applying the DTSE methodology.
Except for the basic scenario methodology for GLT, we have developed also several
heuristics with different accuracy and execution time. We have provided also exten-
sions of the scenario methodology for while loops and for identification of scenarios
when the switching cost is dominant.

We believe, that scenario oriented techniques will play an important role in future
applications which are only partly predictable at run-time. This area is the most chal-
lenging future research from the topics that we covered in this dissertation. From an
implementation point of view, scenario techniques, as proposed in Chapter 5, have
to be covered as soon as possible by modern compilers. Particularly, for scenarios
in GLT, GLT optimizing compilers which support the GM will be required. Such
compilers will be available in the near future [174].

The state of the art in GLT focuses on one particular cost function. In this dissertation
we have shown that this can lead to suboptimal solutions and that the trade-off ori-
ented GLT approach is crucial. We have demonstrated it on small educational exam-
ples and also on a real-life QSDPCM example. The different versions of the real-life
example resulting from the trade-off oriented GLT approach have been compiled for
the ARM processor, resulting in a trade-off between the execution time and Layer 1
data memory size. We have proposed to combine the trade-off oriented GLT with
high-level cost estimators which can rapidly estimate the impact of the incremental
GLT on the remaining DTSE steps. This work has been performed together with our
colleagues from the Norway University of Science and Technology. We have also
shown on a MP3 audio decoder, that algorithmic kernel optimizations can affect the
GLT decisions.

Parts of this dissertation have been implemented in a set of prototype tools based
on different external and internal C++ libraries such as the ATOMIUM library set,
the Backbone (BB) library, the Boost library set, and STL. The hierarchical rewriting
prototype tool (3859 C++ lines) covers rewriting of the innermost if conditions to
ternary operators and encapsulation of if-converted basic block computations into
functions as explained in Chapter 4. The scenario creation prototype tool (6908 C++
lines) covers the scenario creation technique described in Chapter 5 from parsing the
C code till generation of the code for different scenarios using different heuristics.
The output of those tools can be coupled with the GLT tool input. Dealing with the
while loops is still a semi-automatic process where the special cases for particular
loop trip counts (see Section 5.9 in Chapter 5) have to be created manually. For
the switching cost, just the heuristic is implemented. The tools are supported by
different perl helper scripts. The trade-offs in Chapter 6 are performed manually. The
STOREQ and HMSE estimators are supported by Matlab and python scripts resulting
from joined research (and written by) colleagues from the Norway University of
Science and Technology.

8.2 Directions of future research

In this dissertation we have filled several gaps in the context of the GLT step of the
DTSE methodology. We proposed a systematic hierarchical rewriting and condition
hiding methodology, a scenario methodology for GLT and a trade-off oriented GLT.
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The first two contributions extend the optimization space of GLT. The last contribu-
tion avoids discarding good points form the GLT exploration space for the following
steps. Still there is plenty of room for future research directions. Below we propose
several future research topics, grouped in four areas: hierarchical rewriting, scenar-
ios, trade-offs in GLT and high-level estimators.

In the hierarchical rewriting related area, we see the main extensions in preprocessing
more general code, e.g., MATLAB, C++, Java, where the identification of the layers
is also needed.

In the scenario related area, we would desire an approach using the N-dimensional
Pareto curve distance for grouping the Run-Time Situation (RTS)s and generalizing
scenario flow. As we can see in Section 7.2, in state-of-the-art research, the scenar-
ios are already used for different purposes. The applications are going to be more
and more dynamic and the scenario approach can help to handle this dynamism for
different aspects like GLT or DVS. Future research should aim at unifying and gener-
alizing these scenario flows. In scenarios for GLT, we would like to handle more gen-
eral code represented by an arbitrary CFG. This can be achieved by using advanced
control-flow analysis and loop identification based on control-flow dominators [3]
and path profiling of arbitrary control-flow graphs [15]. Also the heuristics used in
this dissertation can be further improved, e.g., by considering multiple solutions for
a given number of scenarios in case of Loss/Similarity and Fruchterman-Reingold
heuristics. Note, that the current realization of those heuristics provides only one
point for a given number of scenarios. Considering multiple solutions will increase
the quality, but the execution time will increase. The proposed clustering heuristics
go into the direction of hierarchical clustering [113]. Also other clustering algorithms
such as exclusive clustering (e.g., K-means clustering [138]) should be evaluated us-
ing our proposed clustering metrics. It would be interesting and challenging to try
overlapping clustering (e.g., Fuzzy C-means clustering [59]) or probabilistic cluster-
ing (e.g., Mixture of Gaussians [54]). Advanced scenario predictors and run time
switching between scenarios are other important aspects that have not been worked
out in this dissertation. Work is ongoing in the scenario PhD team [237]. Also, a de-
tailed analysis of scenario recovery overhead when the scenario predictor has made
a wrong decision is needed.

In the trade-off oriented GLT, the relation between the high-level metrics and the area,
power and performance has to be studied. However, to properly identify this rela-
tion, the platform information and power models have to be analyzed together with
the high-level metrics.

In the high-level estimation related area, the development of a control-flow complexity
estimator is crucial as we have seen in Chapter 6. This estimator has to be coupled
with the Hierarchical Memory Storage Estimation (HMSE) and later integrated into
a trade-off oriented GLT framework.

Both the scenario concept and the trade-off oriented concept of GLT in processor
level DTSE can also be reused inside the task level DTSE and data level DTSE
stages [27]. Task level DTSE focuses on data transfer and storage issues within mul-
tiple dynamic threads mapped on multiple processing elements (where each pro-
cessing element can consist of multiple processors in an array). Data level DTSE
objectives are the data transfer and storage issues within a homogeneous (processor)
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array (also including sub-word parallelism). Processor level DTSE deals with the
memory issues inside one thread and one processor (and its memory hierarchy). In
this dissertation we have focused only on the last issue; the instantiation for the other
two flows requires also further research. Thus, some of the proposed techniques may
have to be reevaluated in light of automatic parallelization where also other aspects
(e.g., communication) have to be considered.





APPENDIX A

Functional description of the test-vehicle
applications

In this appendix we describe the functionality of two multimedia algorithms, an
audio decoder and a video encoder which we have used in most of our experi-
ments.

A.1 MP3 audio decoder

The MPEG-1 Layer 3 decoder is a frame-based algorithm for decoding a bitstream
from the perceptual audio encoder (see Figure A.1). A frame is an instance coding
1152 mono or stereo samples and is divided into two granules of 576 samples. Each
granule consists of 32 subband blocks of 18 frequency lines. One channel in one
granule is called a block.

After receiving a frame, the frame is Huffman decoded (see shaded part on Fig-
ure A.1). Then, on the Huffman decoded frame, several computational kernels are
applied (see the rest of Figure A.1). The computational kernels contain large loop
nests with mostly manifest affine loop bounds, conditions and array indices and
deal with multidimensional arrays as stated in the characteristics of our target appli-
cation domain in Chapter 1. For functional details about the different computational
kernels, see e.g., [132].

Several MPEG-1 Layer 3 decoders exist, e.g., [100]. Their implementations include
processor-specific low-level optimizations, focusing on performance, and trading-off
computation for storage. This is definitely not good for energy. Thus, these decoder
implementations are not suited as an application driver for low-power high-level
techniques we are discussing in this dissertation. However, the reference code from
Lagerström [132] is close to the initial specification. Also, high level algorithmic
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Figure A.1: MPEG-1 Layer 3 audio decoder structure.

optimizations, like using Newton’s method in the requantization kernel, using fast
IMDCT in IMDCT kernel and using fast DCT in matrixing operation of the synthesis
polyphase filterbank [132], are already performed on the code.

For the decoding of the MPEG-1 Layer 3 blocks (one channel in one granule), differ-
ent methods are used depending of the initial coding of the block on the encoder site.
Each block can be coded using a short window, mixed window or one of 3 types of
long windows. The type of window determines on how many samples the IMDCT is
performed and what is the weight of the individual samples. Also, each block can be
coded using stereo decoding or joint stereo decoding (middle side and/or intensity
stereo decoding). The combination of these options introduces different modes of
decoding which are represented with data dependent conditions in the driver code.
However, the probability distribution of the different modes is not uniform. To iden-
tify the most probable modes the application needs to be profiled.

A.2 QSDPCM video encoder

The QSDPCM is a data-dominated multimedia application with many accesses and
large arrays. The application has an inter frame compression technique for video
images which can be used for image sequences at very low bit-rates (videophone,
videoconference, etc.). It involves a three-stage hierarchical Motion Estimation (ME),
a quadtree based encoding of the motion compensated frame-to-frame difference
signal, and a quantization followed by Huffman compression. This section briefly
explains the application; a more detailed description can be found in [193].

Figure A.2 gives an overview of the components in the application. A ME is based on
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Figure A.2: QSDPCM video encoder structure.

the temporal correlation between successive frames. Therefore, the ME searches for
the blocks that have the biggest similarity. A block in the current frame is matched
with a block in the previous frame and a Motion Vector (MV) points to this matching
block. An exhaustive search for matching blocks, however, can be very expensive.
Therefore, in this application an initial search is made on a subsampled frame. The
smaller data sizes reduce the effort needed to search in a large range by hiding de-
tails. The details are gradually added in 3 stages. First a motion estimation with a
block of 4×4 in a 4 times subsampled frame (4 in both dimensions thus 16× smaller)
is searched in a range of ±4 subsampled pixels. Note that this is a range of ±16 pixels
on the full resolution frame. Then the motion vector is refined in the sub-sampled
by two resolution. A search of ±2 subsampled pixels is made, starting from the MV
found in the previous stage. This method will extend the maximum range of search-
ing, because the search is continued even when an extreme vector was found in the
first stage. This brings the total search range to ±20 pixels in full resolution. Finally,
the last (full) search of ±1 pixel is made on the full resolution frame and extends the
range to a total search range of ±21 pixels. Thus a search is performed over 43×43
locations requiring a search area of 58×58 pixels in the previous frame.

All video codecs transform, except of the MV, also additional information to effi-
ciently code the spatial correlation between the current image and motion compen-
sated previous image represented by the coded error image. Mostly, the error image
is decomposed into Macro Block (MB)s of size 16×16 that are transformed and coded
individually. DCT is the most widely used transform for this purpose. Although the
DCT is a very appropriate technique for coding of highly correlated natural images,
the same transformation does not work efficiently when applied on motion compen-
sation prediction error images.

As long as the motion estimator can track the moving object accurately, the resulting
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motion compensation error images exhibit line drawing characteristics with signifi-
cant amplitudes appearing mainly along the boundaries and in high-contrast regions
of moving objects. These characteristics are the reason for the unsatisfactory behav-
ior of the DCT.

Thus, the motion compensation error images with these characteristics are weakly
correlated, and a DCT coding does not result in significant further compression of
the motion compensation error signal. The author of the QSDPCM application [193]
shows that the motion compensation error images can better be directly encoded
without transformation to an intermediate frequency domain.

In the QSDPCM method, the Motion Compensation (MC) error image is adaptively
decomposed into blocks of variable size, where in each block the MC error image is
represented by the local sample means. Essentially, the algorithm first tries to code
the entire MB of the error image using one single mean value. This mean value is
subtracted from the pixel values to calculate the residual errors. In a second stage,
the MB can be decomposed into 4 smaller blocks when the residual error is too large.
These smaller blocks code the residual error using 4 means. This process is repeated
hierarchically down to the pixel level if necessary. The variable block size structure
is described by a quadtree. The local sample means are independently quantized
and Huffman coded.
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De gegevensoverdracht en -opslag van grote meerdimensionale rijen in achter-
grondgeheugens hebben een dominante invloed wat betreft oppervlakte-
vereisten en vermogenverbruik voor alle moderne ingebedde multimedia-

systemen. Moderne hoog-niveau optimalisaties zoals DTSE dragen in grote mate
bij tot de kosten-efficiënte verwezenlijking van deze systemen. Binnen deze opti-
malisaties is een grote rol weggelegd voor globale lustransformaties (GLT), die la-
tere hergebruik- en in-plaats-geheugenbeheeroptimalisaties mogelijk maken. Opdat
deze transformaties ten volle tot hun recht zouden kunnen komen, moet de juiste
draagwijdte van deze stap blootgesteld worden. Dit is vooral het geval voor in-
gebedde systeemtoepassingen met complexe controlestromen die verhinderen dat
optimalisaties, zoals geavanceerde globale lustransformaties, tijdens het ontwerp
gebeuren.

Hoofdstukken 4 en 5 dragen bij tot de voorbewerking die de draagwijdte van de
DTSE-optimalisaties maximaliseren. In deze dissertatie tonen we ook aan dat de
GLT-stap van de DTSE-methodologie soms waardevolle alternatieven uit de explo-
ratieruimte wegsnoeit. Daarom presenteren we in Hoofdstuk 6 onderzoek naar
beslissingen met meervoudige doelstellingen in het transformatiestadium van de
DTSE-methodologie.

Al deze kwesties komen aan bod tijdens het platformonafhankelijke stadium van
de DTSE-methodologie. Daarom is de primaire doelstelling van deze dissertatie het
opvullen van de gaten in, en het uitbreiden van, een aantal stappen in dit stadium
naar toekomstige dynamische toepassingen met complexe controlestromen en naar
beslissingen met meervoudige doelstellingen. Deze dissertatie draagt vooral bij op
de volgende vier gebieden:

• De formalisatie en implementatie van hiërarchische herschrijving tijdens de
voorbewerking (Hoofdstuk 4) [162])

• Het voorstellen van een systematische methodologie die gebruik maakt van
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scenario’s voor het uitbreiden van de toepasbaarheid van GLT (Hoofdstuk 5)
[163, 164, 165, 166, 167, 169]

• Systematische gevalstudies van toepassingen, die leiden tot afwegingsgeba-
seerde GLT (Hoofdstuk 6) [168]

• Het koppelen van hoog-niveaus schatters in het GLT raamwerk als sturings-
mechanisme voor afwegingsgebaseerde GLT (Hoofdstuk 6) [123, 12, 180, 104,
105, 106, 107, 108, 196, 197]

De DTSE-methodologie heeft nood aan een duidelijke scheiding tussen de top-
niveau process controlestromen, de lushiërarchie, de geı̈ndexeerde signalen en
wiskundige bewerkingen, de logica en de data-afhankelijke bewerkingen. De top-
niveau controlestromen zijn gewoonlijk reeds behoorlijk afgescheiden door de ont-
werper. Echter, de lushiërarchie, de geı̈ndexeerde signalen en wiskundige bewer-
kingen, de logica en de data-afhankelijke bewerkingen zijn meestal door elkaar
gemengd. In deze dissertatie hebben we de hiërarchische herschrijving geforma-
liseerd die de lushiërarchie en geı̈ndexeerde signalen van de overige componen-
ten scheidt. Deze scheiding wordt uitgevoerd op een Abstract Syntax Tree (AST)
waar de ongewenste constructies geı̈dentificeerd worden en daarna verborgen wor-
den door ze te verpakken in functies. De overblijvende code bevat dan enkel de
lushiërarchie en de geı̈ndexeerde signalen, wat een ideaal startpunt is voor de DTSE-
stappen. We hebben een algoritme ontwikkeld voor het herschrijven van de binnen-
ste if-condities naar ternaire operatoren en het inpakken van de geconverteerde ba-
sisblokken in functies. Door gebruik te maken van deze algoritmes op de QSDPCM
video-encoder, gevolgd door de DTSE-optimalisatiestappen, wordt het aantal toe-
gangen tot het hoofdgeheugen met 31,3% gereduceerd in vergelijking met de directe
toepassing van DTSE-optimalisaties zonder onze voorbewerkingen.

De GLT-stap van de DTSE-methodologie kan enkel toegepast worden op de Static
Control Part (SCoP)s van een toepassing. Een SCoP is een maximale groep van
opeenvolgende programma-instructies zonder while-lussen, waar de lusgrenzen en
condities enkel linear afhangen van invarianten binnen deze groep van instructies.
Deze invarianten omvatten symbolische constanten, formele functieparameters en
tellers van omliggende lussen. In het verleden waren de meeste toepassingen vrij
statisch qua gedrag en voldeed de toepassing in zijn geheel dikwijls aan de vereisten
van een SCoP. Toekomstige multimediatoepassingen zijn echter zeer dynamisch
en hebben vrij complexe controlestromen. Deze bevatten meestal een groot aan-
tal kleine SCoPs. In deze dissertatie stellen we het gebruik van scenario’s voor om
grotere SCoPs te creëren die meer optimalisatievrijheid vertonen in vergelijking met
de oorspronkelijke toepassing. Door het gebruik van scenario’s bovenop de DTSE-
methodologie kunnen we het aantal toegangen naar het hoofdgeheugen van een
MP3 audiodecoder met 45,8% reduceren in vergelijking met het geval waarin enkel
de DTSE-methodologie wordt toegepast. Naast de basis scenario-methodologie voor
GLT, hebben we ook een aantal heuristieken ontwikkeld met verschillende nauw-
keurigheden en uitvoeringstijden. We hebben ook uitbreidingen aan de scenario-
methodologie voorgesteld voor while-lussen en voor de identificatie van scenario’s
wanneer de kosten voor het omschakelen dominant zijn.

We zijn ervan overtuigd dat de scenariogebaseerde technieken een belangrijke rol
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gaan spelen in toekomstige toepassingen waarvan het gedrag slechts beperkt voor-
spelbaar is tijdens de ontwerpfase. Dit onderzoeksonderwerp is het meest uitda-
gende van de onderwerpen die we in deze dissertatie behandelen. Vanuit een imple-
mentatiestandpunt zouden scenariotechnieken, zoals voorgesteld in Hoofdstuk 5, zo
snel mogelijk moeten geı̈ntegreerd worden in moderne compilers. Voor het gebruik
van scenario’s voor GLT hebben deze compilers nood aan een geometrische model-
lering. Dit soort van compilers zal in de nabije toekomst beschikbaar zijn [174].

Het state-of-the-art onderzoek naar GLT concentreert zich op een specifieke kosten-
functie. In deze dissertatie tonen we aan dat dit kan leiden tot suboptimale op-
lossingen en dat een afwegingsgebaseerde GLT-benadering van cruciaal belang is.
We tonen dit aan op kleine educatieve voorbeelden, maar ook op het realistische
QSDPCM-voorbeeld. De verschillende versies van dit laatste voorbeeld die bekomen
zijn met behulp van de afwegingsgebaseerde GLT-benadering hebben we gecom-
pileerd op een ARM processor, en dit resulteerde in een afweging tussen de uit-
voeringstijd van de toepassing en de benodigde grootte van de L1 geheugenlaag.
We stellen voor om deze afwegingsgebaseerde GLT te combineren met hoog-niveau
kostenschatters die snel de impact van de incrementele GLT kunnen afschatten voor
de overblijvende DTSE-stappen. Dit onderzoek werd uitgevoerd samen met onze
collega’s van de Norway University of Science and Technology. We hebben ook
aangetoond op een MP3 audiodecoder dat algoritmische kerneloptimalisaties de
GLT-beslissingen kunnen beı̈nvloeden.

Delen van deze dissertatie werden geı̈mplementeerd in een aantal prototype-pro-
gramma’s, gebaseerd op zowel interne als externe C++ bibliotheken zoals ATO-
MIUM, de Boost bibliotheken en STL. Het hiërarchische herschrijvingsprototype
(3859 lijnen C++) omvat het herschrijven van binnenste if-condities naar ternaire
operatoren en het verpakken van de geconverteerde basisblokken in functies, zoals
beschreven in Hoofdstuk 4. Het scenariocreatie-prototype (6908 lijnen C++) om-
vat de scenariecreatietechniek beschreven in Hoofdstuk 5 vanaf het inlezen van de
C code tot de generatie van de code voor verschillende scenario’s, gebruik ma-
kende van verschillende heuristieken. De uitvoer van deze prototypes kan als invoer
gebruikt worden voor het GLT-prototype. Het behandelen van de lussen gebeurt
vooralsnog semi-automatisch, waarbij de speciale gevallen manueel geconstrueerd
moeten worden. Voor de omschakelingskostenschatting is enkel de heuristiek ge-
ı̈mplementeerd. Deze programma’s worden bijgestaan door verschillende perl hulp-
scripts. De afwegingen uit Hoofdstuk 6 worden manueel uitgevoerd. De STOREQ
en HMSE schatters worden ondersteund door Matlab en python hulpscripts, resul-
terende uit gemeenschappelijk onderzoek samen met (en geschreven door) collega’s
van de Norway University of Science and Technology.
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Martin Palkovič was born in Bratislava, Slovakia, on June 22, 1977. He received his
B.Sc. and M.Sc. degrees in Electrical Engineering from the Slovak University of Tech-
nology, Bratislava, Slovakia, in 1999 and 2001 respectively, and his M.Sc. degree in
Economics from the University of Economics, Bratislava, Slovakia, in 2000. He joined
the Nomadic Embedded Systems division at the Inter-University Micro Electronics
Center (IMEC), Leuven, Belgium, in March 2001, where he is currently a researcher
in the Design Technology group. From 2002 to 2007 he was also working towards
the PhD degree in the department of Electrical Engineering at the Technische Uni-
versiteit Eindhoven, The Netherlands. His research interests include high-level opti-
mizations in data dominated multimedia applications and wireless systems, related
aspects of system design automation, and platform architectures for low power.




	Acknowledgements
	Summary
	Contents
	1. Introduction
	2. The DTSE methodology
	3. Global loop transformations
	4. Preprocessing for innermost conditions
	5. Preprocessing for outermost conditions
	6. Trade-offs in the GLT
	7. Related work
	8. Conclusions and future work
	Appendix A
	Nederlandse samenvatting
	Bibliography
	List of publications
	List of acronyms
	Curriculum Vitae

